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Abstract 

 
 
The ability to design and engineer complex and dynamical Cyber-Physical Systems (CPS) requires 

a systematic view that requires a definition of level of automation intent for the system. Since CPS 

covers a diverse range of systemized implementations of smart and intelligent technologies 

networked within a system of systems (SoS), the terms “smart” and “intelligent” is frequently 

used in describing systems that perform complex operations with a reduced need of a human-

agent. The difference between this research and most papers in publication on CPS is that most 

other research focuses on the performance of the CPS rather than on the correctness of its design. 

However, by using both human and machine agency at different levels of automation, or 

autonomy, the levels of automation have profound implications and affects to the reliability and 

safety of the CPS. The human-agent and the machine-agent are in a tidal lock of decision-making 

using both feedforward and feedback information flows in similar processes, where a transient 

shift within the level of automation when the CPS is operating can have undesired consequences. 

As CPS systems become more common, and higher levels of autonomy are embedded within 

them, the relationship between human-agent and machine-agent also becomes more complex, 

and the testing methodologies for verification and validation of performance and correctness also 

become more complex and less clear. A framework then is developed to help the practitioner to 

understand the difficulties and pitfalls of CPS designs and provides guidance to test engineering 

design of soft computational systems using combinations of modeling, simulation, and 

prototyping. 
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 Introduction 
 

1.1 Thesis Purpose and Intention 

Cyber-physical systems (CPS) covers a diverse range of systemized implementations of smart and 

intelligent technologies. The term “Smart” or “Intelligent” technology is used frequently in 

describing systems with the inherent ability of an engineered system to perform complex 

operations without the requirement of a human-agent (Sheridan, 2011). The terms “smart” and 

“intelligent” are relatively synonymous with only varying degrees of interpretation as to an actual 

agreed upon definition (Lee, 2015). This thesis researches smart and intelligent technologies a 

domain that refers to itself as the cyber-physical system. The difference between this research 

and most papers in publication on CPS, is that most of the research focuses on how levels of 

automation, or autonomy, are designed into the engineered system, and how the levels of 

autonomy affect reliability and safety of the system. This research focuses on the human-agent, 

namely an operator interacting or monitoring the system, as being directly affected by shifts and 

transitions within a system’s levels of autonomy, while the system is under operation (Chen et al, 

2011). As the CPS systems become more and more common, the relationship between the 

human-agent and machine become ever more complex chorography of engineering, science, and 

cultural (Tweedale and Jain, 2011). 

1.2 Cyber-Physical Systems 

 Definition of Cyber-Physical Systems 

The terms and definitions used in the thesis are complicated by the newness and diversification 

of CPS technologies. The term cyber-physical system was first used in 2006 and is attributed to 
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Helen Gill at the National Science Foundation (NSF) for having coined the term (Lee and Seshia, 

2012). The context in which the term cyber-physical system is used refers to a computational 

system that integrates itself into physical processes (Lee, 2015). This is an extremely generic 

definition but will suffice. The problem with defining a CPS is that it comes in all sizes, forms, and 

functions. The argument of when CPS came into existence is controversial. Some experts claim 

that CPS have existed since the early 1980’s in industrial manufacturing processes using PLC 

controllers (Lee, 2015). However, other researchers claim that there is a much longer history and 

deeper history that surrounds the current model of CPS development and that technologies that 

use terms such as smart or intelligent are mere marketing attempts at making products “sexier.” 

This research uses the latter rather than the former viewpoint because the evolution of 

technology depends on the infrastructure of where science, engineering, and society are currently 

rather than where or when the idea or invention took place. That is, using machines to offload 

tasks is essentially the whole point of the industrial revolution, and cyber-physical systems is the 

latest application that uses microprocessors and microcontrollers. The smarts and intelligence of 

the CPS is the ability to program by software into the hardware the system’s ability to be reactive 

to external information (Tweedale and Jain, 2011).  

 Definition of Cyber-Physical Embedded Systems 

Since there is little agreement on the definition of an embedded system, the embedded systems 

as presented in this research are the few to many smaller systems that interact with larger 

systems by a collection of smart technologies that interact with the physical system (Lee and 

Seshia, 2012). The term cyber-physical system, then, will be used throughout the remainder of 

the thesis to encapsulate the idea of a system in its entirety, and the definition of an embedded 

system is the component level of the CPS. Because the definitions are general and describe a wide 

range of system types, the generalization will work adequately to explain the complex nature of 
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the CPS without the need to understand the lower level details of the embedded system’s 

structure.  

The research in the field of CPS and embedded systems is limited; however, it is growing as both 

the conceptual ideas of CPS and embedded systems usage expands and is rapidly advancing into 

every area of daily life (Yarmoluk, 2017). For example, the Internet of Things (IoT) is causing much 

excitement in the way intelligent technologies are used (Lee, 2015). The IoT is composed of 

embedded intelligent technologies, and thus is considered the cyber-physical system that 

integrates smart sensors, microcontrollers, and networking technologies in existing products 

(Tweedale and Jain, 2011). The IoT forms communication networks that interact as information 

conduits across multiple types of technology platforms. The IoT architecture is being used and 

adapted in all facets of industrial and commercial based applications (Yarmoluk, 2017). 

1.3 Cyber-Physical Embedded Systems Forms and Usage 

The definition of the cyber-physical embedded system is therefore general and is mostly used to 

describe a “thing” with intelligence that can interact in both closed and open loop systems (Lee, 

2015). The specific nature of such a system is its relation to its application. It becomes an appliance 

to a larger framework of a System of Systems (SoS). For example, the cruise control in a car is an 

embedded system that appeared in automobiles around the mid-1950’s. These control systems 

were analog and used to maintain a car at a constant set speed. Cruise control systems in 

automobiles today use computers (Vahidi and Eskandarian, 2003). However, the implementation 

is not what is important but that the same system exists in many different implementations. What 

needs clarification then is the system or systemness of what is being described. The definition of 

system is a wide range and class of “things” forming “relations” with its environment (Klir, 2001). 
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The description of the CPS demonstrates the necessity of viewing the system as a SoS and using 

the “black box” perspective to form its model, so an attempt to analyze its design can be made 

(Ashby, 1956). This assumes that the inherent decision-making processes of the CPS, i.e., 

intelligent system, is in fact operating within design parameters in an environmentally rich input 

data landscape that uses much of the dominant information to from hypotheses on which to act 

and react (Chen et al., 2011). In most cases, the external responses of those decisions are only 

noticed in the observable state. The internal data structures remain internal to the hidden layers 

that are embedded, and therefore, transparent to the operation of the system. This produces a 

natural emergent layer of security to the system (Backhaus et al., 2013). The idea of security will 

be addressed only briefly, but as an abstraction to the ability of the system to defend itself against 

threat, it becomes a very important topic, but beyond the scope of this thesis. 

1.4 Level of Automation in Adaptive Systems  

The level of automation is a topic that has relatively disappeared from the literature, which is 

troublesome because as this thesis maintains, the validation of the system is the demonstration 

of controlling transient levels of automation (Moradi-Pari et al., 2014). These are adaptive 

systems. In human factors engineering, the interaction between human and machine is best 

described as adaptive automation which is thus defined: 

…refers to human interaction with electro-mechanical control devices that 
interact with humans such that the allocation of control function (to either human 
or computer) changes with time to accommodate changes in the conditions of 
either the physical environment or the human. (Sheridan, 2011) 
 

This definition somewhat describes the CPS and the involvement of the human-agent with the 

operation of the system. The problem is with the evolution of the technology that uses “electro-

mechanical control devices” to interact with the physical world. This is reinterpreted as the CPS 
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with human-agent in a mix of responsibilities over the system at certain times based on certain 

conditions (Sheridan, 2011). 

The idea that both the CPS and human-agent are decision-making is loosely based on the fact that 

sensory observation is being used to create or enhance experience. This provides the command 

and supervisory authority to create actionable events (Chen et al., 2011). In this sense, the case 

that the system is intelligent is partially made if it were not for the fact that the human-agent is 

involved. Since the CPS is reactive to the sensory inputs, and the levels of automation are used as 

a design specification, the reliability and safety factors are determined although not necessarily 

known. There is a chance of emergent behavior from the system that the designer did not account 

for. For the system engineer, the system needs to meet or exceed the primary design 

requirements for the success of the system. The decision-making supervisory controls define the 

level of automation and become the definition of the system’s architecture and robustness of its 

design (Parnell et al., 2011). 
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1.5 Propositions of the Thesis 

There are three fundamental propositions of this thesis that form the basis of a framework to 

validate any cyber-physical system in its ability to remain reliable and safe.  

 Proposition One 

The first proposition uses the definition of an embedded system that possesses properties that 

define cyber-physicality. Decision-making is a general process that leverages the ability of the 

human-agent and intelligent machine through a physical world of hardware, software, sensors, 

actuators, controllers, and human physical capital. The first proposition of this thesis is as follows: 

Proposition 1: The human-agent and machine use similar principles, 

rules, and guidelines to generate decisions that form actions. The 

combination is a reactive system to external input stimuli and external 

output response. 

The human-agent is the person(s) interacting with the CPS. By interacting, the human-agent is 

either monitoring or physically providing stimulus to the machine, i.e., information (Ruff et al., 

2002). The principal operating guidelines to the decision-making process, or structured source 

system, are generalized. The application of the system determines the operational state in 

dynamic conditions that are either discrete, continuous, or a combination of both (Novak et al., 

2017). 

 Proposition Two  

The second proposition pertains to the composition of the machine state and is considered the 

algorithm that the system operates under. It is the use of input states to the internal structure of 

the machine that form the basis of decision-making. The source structure is the external stimulus 

of information that is forming knowledge and experience and being transformed into actions. This 

is how an intelligent system would arrive at the actionable state (Tweedale and Jain, 2011). 

Proposition 1 assumes an isomorphic relation between human-agent and intelligent machine as 
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each being equally capable of making the same decision by using similar decision-making 

processes. The second proposition of the research is as follows:   

Proposition 2: Decisions and actions are only optimal if the system 

continues to operate at equal or greater performance to the previous 

machine-state cycle. 

There are many types of decision-making systems that are useful in governmental, business, 

military, emergency service, air traffic control, etc. decision-making processes (Alippi et al., 2017). 

The fundamental algorithmic process of decision-making is then deployed on the CPS. Since the 

CPS bases its performance on collaboration with the human-agent, this is essentially the idea of 

teamwork because there are at least two decision-making systems involved in a single CPS. This 

complicates the design paradigm of the system because first, the decisions of the system are not 

allowed to cause degradation of the overall performance from state-machine cycle to state-

machine cycle; and second, the machine’s performance is confined to equal or greater to the last 

time it performed an action. System performance is the requirement to have a perpetually 

functioning system that is equal or greater to its start state, which goes against the first and 

second laws of thermodynamics, so the machine is constantly using information to maintain the 

appearance of perpetual motion (Kang et al., 2018).  

In this case, it is the adaptation to uncertain input states that must be sufficiently dealt with by 

the system for continuation to the next machine-state cycle. A decision that is optimal sets a 

maximum to the decision-to-action function. Therefore, this requires the system to have 

knowledge and experience of “good” and “bad” attributes, which are more qualitative than 

quantitative. The machine-states then become a probabilistic continuous system and not a 

directly observable deterministic system. This is the definition of an “Intelligent Machine.”   
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 Proposition Three 

The third proposition uses, and is derived directly from, Ashby’s Law of Requisite Variety. The law 

is stated as follows: 

The larger the variety of actions available to a control system, the larger the 
variety of perturbations it is able to compensate (Ashby, 1956). 

The Law of Requisite Variety is also known as the first law of cybernetics (Boisot and McKelvey, 

2011). The third proposition is as follows: 

Proposition 3: The Law of Requisite Variety remains valid and is 

conceptually necessary to the design of test and validation 

methodologies where the states of hidden variables within a generative 

system is not known. 

This proposition sets forth the test and validation methodology that defines the informational 

entropy in the system. The knowledge of the variables and their states is not as important as 

quantifying the informational energy and entropy within the system. That is, the information, 

known or unknown, hidden or observable, forms the context of the system whose external 

observation will be used to gain deep insight into the internal machine-state decision-making. The 

validation only needs to identify the guard bands and constraints of the system’s behaviors that 

are either consistent or inconsistent with the requirements of the design. To prove the integrity 

of the system becomes a multifaceted problem of linear and non-linear optimization (Zhang et 

al., 2017). 

1.6 Significance of the Research 

In the current era, where the rise and almost intrusive nature of automated systems is becoming 

extremely advanced, the need to verify and validate such systems as driverless cars, pilotless 

planes, deep space probes, and other unmanned systems becomes paramount (Wan et al., 2017). 

Although a driverless car may have an intelligent machine at the steering wheel, it will also have 

http://pespmc1.vub.ac.be/VARIETY.html
http://pespmc1.vub.ac.be/CONTROL.html
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flesh and blood passengers. Turning complex high reliability tasks over to such intelligent 

automated systems is in the beta-test phase as of the writing of this thesis (Noh and An, 2018). 

However, the debate on how to prove the reliability and safety of such systems is controversial 

and loosely defined in many engineering circles. Here the groundwork of a framework is laid down 

on how to accomplish such an important and difficult task. 

The thesis carries forward several paradigms from game, control, and information theory 

(Backhaus, 2013; Wiener, 1948; Shannon, 1948). One such paradigm is that all information 

contained within systems will not be made available, and the composite of information that is 

available will allow certain mathematical properties of the system to be used. The information 

will need mapping and interpretation that it conforms to the design and model of the system. By 

defining an autonomous system using an informational based approach, through a good 

modeling, simulation, and prototyping activity, it will provide the bounds and operational test 

limits of the system (Sheng et al. 2017). The model only needs to substantiate the keys elements 

of the design; whereas, the simulation and prototyping need only factor in the possibilities of 

conditions that have strong causal relations, such as to the external stimuli (Sheng, et al. 2017; 

Alippi et al., 2017).  

1.7 Challenges of Cyber-Physical Systems 

The development of CPS requires a variety of detailed expert knowledge concerning the system’s 

software and hardware architecture, and how it automates decision-making processes, maintains 

levels of automations, and the internal and external command and control structure of the system 

(Chen et al., 2011). It is not enough to understand individual characteristics of the above-

mentioned categories, but to understand the complex set of dynamical processes at play in 

harmonious balance when the system is working well, or the imbalances when it is not. Placing 
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such systems in charge, especially in safety critical applications, has engineering, governmental 

regulatory, and cultural challenges (Sheridan, 2002). 

This thesis exemplifies the use decision-making process at hierarchical levels of automation within 

the cyber-physical system architectures (Robertson, 2010). By leveraging the human-agent ability 

to help the CPS react, the design builds in a safety factor; however, this will prove difficult to 

validate. A framework of verification and validation test methodologies of cyber-physical systems, 

as well as other autonomous systems that use software and hardware based neural computing 

techniques will be discussed, developed, and designed (Dundar et al., 2017). This framework will 

help ensure integrity, reliability, and safety of the system for optimal trust. 

1.8 Summary and Overview 

The thesis is separated into five sections to form a framework of working knowledge to aspects 

of solving autonomous design related issues. The literature review discusses the historic, current, 

and future applications of CPS and autonomous systems. The following four sections give a review 

of decision-modeling, embedded automation design, and levels of automation architectures. The 

combination of these sections lays the ground work for the basis of a framework to both real and 

generalized design. Further, two case studies examine automation in CPS are described, and the 

inherent problem of how automation is both “friend and foe” to the end user. The case study uses 

a train accident and a plane accident. The final section proposes a framework for use in modeling 

and simulating the intelligently designed CPS systems. By applying common tools, the framework 

will be demonstrated as a standardization of tests for verification and validation of intelligent 

systems using modeling, simulation, and prototyping. 
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 Literature Review 

2.1 A Brief History on Cyber-Physical Systems 

In the time period from the late 1940’s through the 1950’s, control theory, information theory, 

cybernetics, artificial intelligence, and complexity were being discussed and formulated into 

mathematical equations, scientific theory, and applied engineering applications (Lee, 2015). The 

first digital computers were bulky, hard to maintain, and slow. However, it was the gateway to 

the age of the cyber-physical system. Performance of the machine would increase as larger and 

larger problems would be thrown at it. Psychology, mathematics, biology, and engineering were 

brought together to research the human-machine relationship by improved means of automation 

as technologies in materials allowing a continued growth in the power of digital systems from the 

analogue systems (James, 1953; Wiener, 1948; Sanders and McCormick, 1993; Von Bertalanffy, 

1974). 

Automation in the early stages of the 21st century has many promising possibilities. Most 

machines are now built with some form of automation that adds a layer of ease of use to the 

machine. From cars to refrigerators to smartphones to GPS devices, the lives of 21st century 

denizens have become unencumbered from the drudgery of working with a small amount of 

information, usually hard to obtain, to having mountains of information, easily accessible but 

difficult to decipher (Gubbi et al. 2013; Sheridan, 2017). For example, refrigerators can upload 

grocery lists to a Smartphone, and the Smartphone can notify the car, which makes the 

recommendation of the store to shop based on traffic flow and produce pricing. Cars are now 

coming equipped with Lane Change Detection, GPS, satellite radio, cruise control, and Collision 

Avoidance Systems (Safety, 2015; Katzourakis et al., 2014) The idea of carrying a roadmap in the 
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glove compartment is obsolete. Daily life becomes highly optimized and control by systems 

embedded within the technology. 

The telephone system is a good example of a Cyber-Physical System that has maintained longevity 

and increased the use of automated technology over a period of a century. The common practice 

of making a telephone call is a great achievement in the telecommunication technology of the 

past decade. The telephone has been around since 1887, and the Smartphones of 2017 perform 

the same basic function as phones from 1900. Here, the technological history demonstrates a 

basic mapping of automation within a framework of solutions to improve on the existing 

technology. In Figure 2-1, a telephone switchboard operating room is shown from circa 1914. The 

women are sitting at the switchboards connecting callers to one another by manually inserting a 

plug from the caller into the receptacle of the callee. 

 

Figure 2-1: Telephone Operators Salt Lake City, Utah circa 1914 (Reyner Media, 2009) 

Essentially, the technology of 1914 was manually and mechanically driven by the telephone 

operators. When someone called into the switchboard, the caller would ask the operator to 

simply connect them to the phone number of the callee. The problem is that the expansion of the 
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phone system required more and more space for the switchboards, operators, and power 

systems. The telephone system in this configuration was not very scalable. In Figure 2-2, the 

Nortel digital switch replaces all the operators by performing the same essential functions, i.e., 

connecting callers, but with less transparency to how this is being accomplished with end results 

that are much faster and accurate because of the automation. The switch operates 24 hours a 

day, 7 days a week for the entire year. Even a rare break for maintenance will not take the whole 

system offline. It allows scalability from the few hundreds of phones in 1914 to over one-million 

in 2007. 

 

Figure 2-2: Nortel DMS-100 Digital Multiplexing System (Mudares, 2007) 

But the history of Cyber-Physical Systems does not begin there. The first transatlantic telegraph 

cable was first laid in 1858. A telegraph operator on one side of the Atlantic would send 

communiqués by Morse code to another operator on the other side of the Atlantic. It would be 

100-years further on until the first transatlantic telephone cable was put into service. However, 

from the isomorphic nature of the technology, the telegraph was in essence a digital 

communication system. The telegraph operated by sending bits of information in the form of 

short and long pulses via Morse code. Today, a person making a call from New York to Moabi is 

converted into a bit stream that is packetized through communication protocols, such as 
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Transmission Control Protocol/Internet Protocol (TCP/IP), a more sophisticated and robust 

version of Morse code. 

The human and the machine became an important area of study in the engineering profession 

especially during the World War II era from 1939 to 1945. The term “cybernetics” was coined by 

Nobert Wiener at the Massachusetts Institute of Technology (MIT) (Wiener, 1948). With new 

technologies and rapid advancement in fields such as aerospace, the importance of the human-

machine interface (HMI) was even more closely scrutinized by research using scientific 

methodologies of descriptive studies, experimental, and evaluation research (Gobbo and Benini, 

2013; Sheridan, 2017; Palmer et al., 2003). Job titles such as human factors engineer, ergonomic 

engineer, and engineering psychologist began to appear in the help wanted ads and became part 

of the curriculum of engineering colleges and universities. Machines being designed from 1940 

onward increased rapidly in complexity, operation, and performance (Zadeh, 2008). The 

operators of these machines needed to keep up with the learning and training. However, the 

operators would reach a limit on involvement with the cyber-physical processes. Automating the 

processes would become the goal to achieve system efficiency and affectedness. 

2.2 Classifying System Automation and Autonomy 

The term Cyber-Physical System was used circa 2006 and attributed to Helen Gill at the National 

Science Foundation (NSF) for coining the term (Lee and Seshia, 2012). The CPS computationally 

integrates itself into a physical process, and although the definition is relatively simple, the 

difficulty is trying to understand the computational mechanism that underlies that physical 

system (Lee, 2015). Because of this, a clarification between the definition of autonomy and 

automation needs to be made: 
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Automation – Any mechanical or electronic replacement of 

human labor (Sheridan, 2002). 

 

Autonomy - The attribute of a system to meet mission 

performance requirements without external support for a 

specified period of time (Turner, 1985). 

 

 

In the definition of automation, the term labor is used to mean physical or mental labor. However, 

the definition of “mechanical or electronic” device is the “embedded system.” The definition 

could read as, “Any embedded system mechanical and/or electronic…” which provides further 

clarity of the system’s autonomous designs. An example of an embedded system with mechanical 

and electronic features would be the television remote. The buttons on the remote would be the 

mechanical aspect of the system, and the ability to control the channels on a television is viewed 

as the electronic feature. The user of the remote gains no insight into how the system works, but 

they can sit on the couch and remotely control the channels to watch without much physical 

effort. Although using a remote with televisions was a rarity in the first couple of decades of the 

television, the remote was adopted early on by higher-end models of television and later 

improved as the television became more digital. Almost no televisions are manufactured that do 

not require a remote. This is an example of the technology becoming extremely advanced digitally 

and embedded over time. The human-agent has only to perform channel selection and watching, 

and with the exception of changing the batteries in the remote occasionally, there is not much 

else required.  

From the above example, it is interesting to note that engineering design in cyber-physical 

systems has a relation to an economic and social class structure. The early adopters of 

technologies tend to be high-end products afforded by a wealthy class of consumer, such as luxury 

car models. The high-end car models have always been accessorized by the latest trends and 

fashions in technology. For example, although it is hard to imagine a car without a radio and music 
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system, it was common through even the late 1990’s where radios, tape players, CD-ROM drives 

existed as options and expensive add-ons. Today, the dash board of even economy class cars 

makes these features standard or part of a service package, such as Bluetooth, General Motors 

OnStar™ or SiriusXM™. With global positioning navigation, backup cameras, satellite radio, hands 

free communication, lane departure detection, etc., the functionality of the automobile has 

radically departed from the idea of a 1910 Ford Model-T. That is, an automobile is no longer a 

purely functional means of getting from point A to B. It is a fully accessorized extension of existing 

technologies embedding themselves into the structure known as “car”. And the push to make the 

car self-sustaining and driverless is the next phase in this evolution (Borenstein et al., 2017). 

2.3 Levels of Technology Development 

Currently, there is much literature and research in the driverless car technologies and the 

companies investing in these technologies. The large and well-known technology companies, such 

as Tesla, Google, Microsoft, Amazon, and Tom-Tom are willing to compete against long time 

established companies like Ford, BMW, and Toyota for the driverless car market share. The 

threshold of available technology appears at the precipice of making the driverless car a reality. 

There are many technical challenges and regulatory hurdles to overcome, but many companies 

are achieving success in the beta-testing phase (Borenstein et al., 2017; Lazanyi and Maraczi, 

2017). 

The driverless car technology comes at the high price that it may takes years to migrate the newer 

autonomous technology from prototypes into all cars. Current driver assistance systems 

commonly found in high-end vehicles (circa, 2017) are the Collision Avoidance System (CAS), 

automatic parallel parking, and lane drift warning (Liu et al., 2017; Schnelle et al., 2017; 

Katzourakis, et al., 2014; NTSB, 2015). Though these three mentioned features will become 
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standard in economy class cars, it will be by governmental regulatory means that the safety 

standards of all automobiles sold within the United States will be made. This creates the parity 

between a high-end and economy car. The National Transportation Safety Board (NTSB) has 

directed automakers to install forward and rear collision avoidance systems and the backup 

camera in all cars in the next few years. The NTSB states that 80% of all deaths and injuries would 

have been prevented if such systems were installed (Safety, 2015). So, the question is, “Why not 

do it sooner than later?”   

The simple answer is economics. A decision is being made purposely by automobile 

manufacturers to leave low end model cars without the safety features to contain cost. The irony 

is that everyone shares the same road, and the cars without collision avoidance will still end up 

colliding with cars with the collision avoidance (Bajpayee and Mathur, 2015). But the technology, 

although produced and sold circa 2017, is not as mature as the sales and marketing brochures 

tell. There are different types of collision avoidance systems that have advantages and 

disadvantages depending on the driving environment. Also, not all CAS has the same performance 

record and may be more detrimental to the driver who assumes that the system is safe, and 

therefore, relaxes vigilance (Safety, 2015). 

There are three common types of technology used in the CAS. These technologies are essentially 

the eyes of the car. First, CAS technology can use a LIDAR-based sensor data system. These are 

fairly accurate systems with fewer false alarms than the other types of technology, but LIDAR 

systems lack information such as target speed and direction. Speed and direction are critical 

attributes of a 2-dimensional system in motion (Safety, 2015). Whereas the RADAR-based CAS 

provides excellent data of target motion and speed, the drawback is that RADAR is easily 

interfered with by outside sources of electro-magnetic inference (EMI) (Safety, 2015). The third 

type of CAS technology uses a camera-based data collection system. By using machine vision 
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algorithms, the car sees what a human would see; however, the ability of the algorithm to 

interpret the captured data and turn the data into speed and distance determines the 

performance quality of a camera-based CAS. The camera-based CAS is limited to the same factors 

of human vision such as conditions of poor visibility (i.e., rain, fog, night time, etc.). So ideally, it 

would seem the design solution should include all three CAS; however, the complexity of such a 

system would be formidable, and the reliability uncertain. Based on the above discussion, 

automation challenges the available technology to be able to deliver results that are optimal in 

terms of good reliability and safety metrics (Young et al., 2017). By defining the autonomous 

systems at a particular level of automation, the descriptive language that classifies the roles and 

responsibilities of human-agent and machine-agent will lead to the expectation of performance 

and operation of any cyber-physical system. The test methodology frames the validation 

measures necessary to prove the such system requirements (Young et al., 2017; Parasuraman et 

al., 2000; Sheridan, 2011). 

2.4 Usefulness of Autonomy 

In a different mode of autonomy, deep space exploration also leverages the use of automated 

systems. The reason for this is simple. The communication time between Earth and the deep 

space probe gets longer as distances grow between the two. Radio signals, even at the speed of 

light, become so delayed that working in anything close to real-time system is impossible. The 

communication turn-around time could be in the neighborhood of hours and days as in the cases 

of deep space probes such as New Horizon, Cassini, and Voyager (Reinholtz and Patel, 2008; NASA, 

2015; Popken, 2007). Additionally, if data is coming from a deep space probe, the bit-rate (baud) 

determines the amount of data that will be received per unit of time. This could potentially 

constrain the system as much more data could be collected than downloaded, especially when 
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high resolution pictures are being sent. So, it is critical to get the memory storage system 

optimized because radio carrier frequencies used to transmit data over the vast distances of space 

are low frequency, meaning, less bits are transferred per unit time than if the signal were at a 

higher frequency. 

The propagated communications delay between Earth and a space probe creates the 

environment where autonomy built into the probe is essential. The probe may need to detect, 

orient, make decisions, and take actions that are necessary to keep the mission safe. For instance, 

the New Horizon mission is a deep space probe that reached Pluto in 2016. The distance the probe 

had to travel was a staggering 3 billion-mile journey that took over 9 years. The probe travelled 

at a speed of approximately 50,000 mph and approached Pluto and its moons for a one-time 

encounter before hurtling into the deeper regions of the Kuyper Belt. The near approach to 

Plutonium System was an event that only took 4 hours to complete before it was all over. At a 

distance of 3 billion miles, communications take a little more than 5 hours one way. The quickest 

message turn-around time was approximately 11 hours. Because so little was known about the 

Plutonium System (uncertainty), the probe was essentially communicating back to Earth the 

pictures of what lay ahead in its course. The telemetry of the positions of Pluto, its moons, and 

anything else that might be in the path of New Horizon was a guess. Since no Earth based 

telescope had the resolution to provide navigation information to New Horizon, the navigation 

system was control by the probe. The probe sailed through the Plutonium system without 

incident, all the while collecting data by being able to point the scientific equipment on board 

with pinpoint accuracy (NASA, 2015). 

This is considered a Level 5 type of automated system (SAE INTERNATIONAL, 2014), except that 

the maneuvering plan for the New Horizon flyby was automated based on the predefined mission 

parameters and was adjusted in the last months before the Plutonium encounter. However, New 
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Horizons would autonomously fire its maneuvering thrusters to gain the best angles for the 

scientific equipment it was carrying. The flyby needed to happen without real-time coordination 

from ground control because of the distance to Earth. Once New Horizon cleared the Pluto 

systems, it would take nearly a year and a half to send all the data to Earth that it collected from 

the 4-hour encounter (NASA, 2015). 

Aviation systems safety and accident investigation has been a vast field of research for well over 

100 years. The accident investigations become a forensic tool to understand design problems in 

a CPS. Since the early age of heavier than air aviation, autonomy has been used to assist and aid 

in the control of the aircraft. The first autopilot was used in 1914, just ten years after the Wright 

Brothers’ first flight. Automation remains a top priority to embed into any cyber-physical system. 

For example, a B-2 Stealth Bomber is a plane that will not fly without computers and other 

autonomous control systems. These systems control and supervise the aircraft in flight and are 

outside the range of the pilot’s need to adjust. On February 23, 2008, the United States Air Force 

lost a $1.4 billion-dollar B-2 as a result of improperly calibrated sensors that the aircraft computer 

interpreted as correct. The input sensors caused a mismatch between what the automated 

system was interpreting and what the aircraft was doing. The pilot had no chance to react during 

takeoff when the plane suddenly flew itself into the ground (USAF, 2008). 

The term human factor is used to define the human-agent as an entity that interacts and provides 

feedback to keep the system operational. In aviation, the operational state is the management of 

the operation being performed based on the level of criticality (i.e., landing, taxiing, embarking, 

takeoff, etc.). An example of human-agent and machine interacting poorly happened on June 1st, 

2009 when Air France Flight 447 from Rio de Janeiro to Paris, France crashed with the loss of 216 

passengers and 12 crew. The events that led up to the crash were barely notable. However, in the 

matter of minutes, the plane was flying through heavy weather, which is normal for the latitudes 
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at the equator, but suddenly the plane’s autopilot disengaged. The plane essentially gave control 

back to the pilots. (This is a transient down-shift in the level of the automation). However, there 

was no indication of why the autopilot disengaged, because all instruments appeared normal, 

except air speed. The air speed indicated that the plane was flying too slow at a very high cruising 

altitude. The aircrew had control of the plane but were unaware that the airspeed pitot tubes had 

frozen over. The air speed indication from the flight computer was mismatched to the actual 

speed of the aircraft. The sensor data was being reported in error. The crash investigation 

determined that this problem should have been easily recognized by the aircrew. The plane at the 

time before the crash was operational and safe, but for unknown reasons, the aircrew accelerated 

the plane, and essentially put the plane into a fatal non-recoverable stall at speeds at an altitude 

outside the performance limits of the aircraft. The investigation that followed concluded that 

training of the aircrew was insufficient, and that the plane did not have redundant air speed 

sensors (BEA, 2012). 

2.5 Developing a Cyber-Physical Autonomous System 

Science and engineering from the late 1940s onward has brought about many changes in fields 

that use automation and autonomy in a variety of disciplines such as astronomy, mathematics, 

computers, aerospace, etc. There is a distinct definition of what the term autonomous means for 

science and engineering. When speaking about autonomy, the definition of choice is the one used 

by the aerospace industry: 

The attribute of a system to meeting mission performance 
requirements without external support for a specified period of 
time (Reinholtz, 2008). 
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The research concerning the design of engineering systems that embed autonomous features into 

the design has initiated debate for more than 50 years (Sheridan, 2011). Using Sheridan’s 

classification of autonomy (Table 3-1), design engineers are required to describe and discuss the 

motivations for choices being made for the design. These choices will inevitably impact the design 

functionality as related to cost, schedule and quality. If planning for a design with some or all 

automation, three types of distinctions need to be made (Sheridan, 2002):  

1. Command and Supervisory Controls  

2. Modes in which the automation is to be used  

3. The Failsafe 

The first distinction is about who or what is in control during normal operation, and who or what 

is in control during an actionable event. For CAS, automation is fully implemented from the 

system, that is, the CAS has full command and control when it detects a possible collision event. 

In normal operation, the system is monitoring and during the actionable event the car is braking. 

The human-agent is at all times driving the car, but the CAS can go into operational mode within 

milliseconds of the possible collision (NTSB, 2015; Vahidi and Eskandarian, 2003; Schnelle et al. 

2017). 

A cyber-physical autonomous system by definition has decision-making capabilities. There is 

either a linear or cluster of details that define what actions the system is to take based on sensor 

data input (Noh and An, 2018). But herein lies the cleverness of cyber-physical system design. The 

human-agent is part of the system as well as the machine. As levels of automation become greater 

and more complex, as defined by the requirements of the system, the algorithms and types of 

Artificial Intelligence (AI) used in design become more difficult to test, especially when an 

automation level is transient and can shift upward or downward unexpectedly (Sheridan, 2002; 
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Chen et al., 2011). This is the software of the system, and in the strictest sense, software source 

code coverage and cyclical complexity measures become very unclear whether the use of a 

probability-based machine model can be reliably tested and guaranteed safe. If the system 

optimizes for the choice of best decision, what will the system truly do once the threshold of an 

activation point is reached or exceeded? This is where the case of the human-agent as a variable 

within the equation of the CPS is slightly different from the machine’s role. The decision whether 

to interact either partially or fully with the machine is an uncertainty. It is based on human-agent 

state conditions like training and alertness (Parasuraman et al., 2000;  Sheridan, 2011). 

The second distinction implies whether the level of automation is optimal for the system. 

Implementing automation into a CPS may only achieve a level of novelty, but again, it may have 

adverse effects. This is, of course, why testing is crucial. For example, if the design is to contain an 

internal monitoring system, and the system does not achieve the performance metrics necessary 

to be implemented, much time and money could go into fixing a bad design, making one that is 

barely adequate. The case of Volkswagen (VW) emissions testing is a case in point. When VW was 

testing the emission system standards for diesel cars, there was a precipice drop of engine 

horsepower with the emissions system “on”. However, VW used the data with the emission 

systems “on” to report to the Environmental Protection Agency (EPA), but turned “off” the 

emissions system when the cars went to dealerships. The clients of VW’s enjoyed the exceptional 

horsepower of environmentally friendly diesel cars, when in fact, the cars were polluting the air 

far beyond the regulatory limits set by the EPA (Mansouri, 2016; Blackwelder et al., 2016). 

The third distinction of a failsafe is simple. In the event that things go terribly wrong, can the 

system recover? Again, this is where the knowledge of environmental conditions coincides with 

the internal operation of the CPS to provide controlled responses that keep the CPS operating 

safe at the equal or better performance prior to the event (that is, Proposition 2). In the case of 
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the CAS, the driver of the car has the ultimate say in the matter, as the CAS can be turned off. The 

driver is, by the design, the failsafe (Petit, 2009). 

2.6 The Taxonomies of Levels of Automation 

The taxonomies for defining levels of automation are numerous and growing (Sheridan, 2002; 

ASME, 2012; EU, 2015). There are many similarities in the various definitions of levels of 

autonomy continuously revisited by designers of autonomous systems. The refinement is based 

on the science and an engineering acumen of autonomous systems need for both a specific and 

general purpose. Automated systems are improving and becoming more numerous. The 

embedded processors and microcontrollers that these systems use have more computational 

power, higher digital-analog resolutions, faster communications channels, and low power 

consumption, than just a decade ago. In the embedded autonomous system world, the realm of 

sensors and data streams is getting more powerful, cost effective, and reliable. The Internet of 

Things (IoT) revolution that is currently being acknowledged by most technologists as the next 

growth industry will revolutionize by automating processes through the linking of systems 

together over a network fabric. IoT is embedding itself into an already existing infrastructure that 

forms a tapestry of digital information (Yarmoluk, 2017; Gubbi et al., 2013). 

The notion that small computer-like systems being used as part of the layer of monitoring and 

servicing a larger system in scalable designs is not new. The idea of embedded systems has been 

around since the 1970’s. However, there has been impracticality to using embedded systems. 

Previous generations of embedded systems have been computationally under-powered, 

expensive, and unreliable to operate. Also, because of the low level of automation used in systems 

in the past, most autonomous systems were for the most part unnecessary and added very little 

to the design. This notion has changed in the last few years that parallels the evolution of cell 



 

25 
 

phone technology. It can be shown that the benchmarks of cost, computational power, and 

reliability has been achieved to allow this technology to become a part of everyday systems. This 

essentially is the formation of the “Internet of Things” (Chen et al., 2018; Dhanalaxmi and Naidu, 

2017; Gubbi et al., 2013). 

The agent-based frameworks within these designs are very complex. There are many different 

types of agents that could be discussed: mobile, intelligent, software, information, etc. (Tweedale, 

2012). The word “agent” means anything that interacts with the system and/or its environment. 

In this research, the consideration to the human-agent with the embedded system is implied. The 

human interacts with the system in a monitoring task or performs an action task that is required 

to keep the system operational. 

2.7 Testing Architectures for Command and Control 

The testing architectures for automation, especially where the human-agent takes command and 

control within the higher levels of autonomy, complicates the design, and therefore, its testability. 

Rarely is there an agreement for the type of testing architecture that implements and engages a 

technology framework that covers all facets and forms. There will be gaps or loss of test coverage 

based on unknowns and assumptions made. The information within the system exists, but it is 

hidden and does not advance the knowledge of the system (Shannon, 1948).  

This is due to the informational loss within the system. The system is a black box (Ashby, 1956). 

However, by understanding the requirements of the design, and being able to provide test plans 

that have knowledge of the system performance in the environment, the cyclical complexities of 

the software (software-in-the-loop) and firmware (hardware-in-the-loop) to the properties of the 

system, (meaning, the execution of software in conjunction with the firmware) become 
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inextricably intertwined and abstract. The external stimuli input will invariably cause different 

outputs as the complexity of the system gets larger. The software and hardware states are 

controlled through the pre-emptive and cooperative multitasking of the systems (Reinholtz and 

Patel, 2008; Ryan and Cummings, 2016). Additionally, defining the CPS model as discrete or 

dynamic, state-transition or time-transition, is analogous to trying to understand Maxwell’s 

Demon or Schrödinger’s Cat for these systems. 

2.8 Cyber-Physical Systems in the Real World 

The concern is the command and control structure of the CPS. The case studies will demonstrate 

the importance of a command and control (C2), and the consequences that erupt when the system 

is not used properly. Command and control is a large area of research across many different 

systems. The US Department of Defense uses a term called C4, C5, or C4+1 ISR (Command, Control, 

Computers, Communications, Cyber, Intelligence, Surveillance, and Reconnaissance) to formulate 

decision making in strategic and tactical military environments (Arne, 2000). The C4 model is also 

used in business and emergency services decision-making systems. Essentially, in any system 

reacting to its environment, the more complex and diverse the system is, the more sophisticated 

the decision-making capabilities are required to perform predefined algorithms offloads to the 

decision-making authority. This becomes the high-level architecture and design of a Decision 

Support System (DSS) (DHS, 2002; National Research Council, 2006; Arciszewski, 2009). 

For example, the computer center would be collecting data for fighting forest fires (i.e., wind, 

humidity, available area responders, equipment on hand, ground reports, etc.). The computer 

uses the variety and complexity of the information to make recommendations, such as allocating 

firefighting resources to an area, or predicting the spread of a wild fire based on wind conditions 

(DHS, 2002). Systems such as these improve safety and reliability for both responders and 
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bystanders. Responders are allocated to where they are needed most, and the bystanders can be 

guided away from the potential threats wild fires bring. 

The command and supervisory control structure within the design of the CPS has to be carefully 

mapped out, fully documented, and rigorously tested. For example, the use of “watch-dogs” in 

CPS are essential to its effectiveness. The watchdog is essentially a timed interrupt to the system 

where an event has not occurred. If servicing the watchdog fails to occur before time expires, the 

watchdog will fall into a different set of routines that are not part of the normal operation. 

However, the problem is twofold and does matter whether the CPS is time or state controlled. 

The watchdog expires because something happens on the system that prevents the watchdog 

from being serviced, and the system has to find a recovery path. The command handler, based on 

the state or time transitions, will perform certain tasks to recover the system. That is, the system 

should be designed to recover. The control structure is what interacts with the system’s 

environment. So, based on the needs of the command handler, the control system will interact 

with sensor and effector to carry out the instructions. 

Communication is the single most complex standard to any system (Klir, 1995). Signaling is how a 

network of systems communicate with one another. How systems communicate with each other 

is part of the initial design of the system, and without radical redesigning, remains a permanent 

infrastructure to the lifetime of the design. The CPS consists of the software-in-the-loop, 

hardware-in-the-loop, and a human-in-the-loop. Using the adopting principles of cognitive 

psychology and human factors engineering, there is an enormous opportunity to identify and 

solve problems where learning, memory, attention, and perception are concerned. The 

development of machine intelligence in artificial systems is isomorphic to that of human 

intelligence. In the design of machine intelligence, terms like neural networks, genetic algorithms, 
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etc. are used to describe the machine intelligence from an animal intelligence perspective, 

essentially mapping natural systems onto artificial ones (Holland, 1975). 

2.9 Multi-disciplinary Approach of CPS 

At the nexus of cognitive psychology, systems engineering, and design engineering is an 

engineering discipline called joint cognitive systems engineering (CSE). By using multidisciplinary 

approaches to problems of human factors engineering, the design of systems (i.e., software, 

hardware, interface, space, etc.) uses certain principles and guidelines to improve and leverage 

through the arrangement and augmentation of internal and external features – switches, displays, 

lights, software, hardware, etc. Training is a learning process by which both the machine-agent 

and the human-agent interact with the CPS to reach the full potential of the design. Keeping the 

performance of the CPS within safe limits during operations for which it was designed reduces the 

risk of unwanted occurrences happening, i.e., faults (Kang et al., 2018; Martin et al., 2014; Novak 

et al., 2017). 

For example, an elevator that has voice control will detect passengers stepping into and out of 

the elevator. The elevator would ask which floor the rider would like to visit and would inform the 

rider once the elevator reached the desired floor. But is this a good design choice of automation? 

If the rider does not understand the language of the voice system, cannot speak to the voice 

system, or cannot hear the voice system, the voice system becomes irrelevant. The designers of 

the system assumed that all riders would understand the language, would speak back to the 

request of the automated system, and could hear the voice from the automated system. However, 

if the rider did not understand the language or how to control an elevator, the elevator and rider 

would remain in a virtual deadlock. The rider is then assumed by the designer to understand how 

to use the elevator’s manual system. Currently, there are very few human elevator operators, but 
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in the not too distant past, the job description of elevator operator was found in the help wanted 

ads. Today, elevators are almost all exclusively automated. The economics of having a person as 

an elevator operator is no longer feasible. The elevator designers have leveraged the assumption 

that human agency is competent to use an elevator as designed. The human-agent boards the 

elevator and pushes the button to the desired floor. The machine-agent of the elevator’s 

automated control systems close the doors, and proceeds to the desired floor while stopping 

along the way to pick up other passengers. The passenger is only singly tasked whereas the 

elevator is multitasking. 

Cognitive psychology is a branch of psychology that concerns itself with mental processes such as 

learning, memory, language, perception, creativity, problem solving, and thinking. The cognitive 

psychology that is of interest here is the branch consisting of computer analogies (Figure 2-3). The 

middle branch of Figure 2-3 is concerned with approaches to intelligence that are most apt to be 

used in the internal development of the intelligent machines. This is especially the case when 

computer algorithms are used to create artificial intelligence that mimics human behavior, like in 

robotics (Chen et al., 2011). 
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Figure 2-3: Joint Cognitive Systems Engineering Chart (Hollnagel et al, 2005) 
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Cognitive psychology is the integration of all these aspects into a framework attempting to 

describe what it is to be human from the perspective of experience. In the mid-20th century, with 

new technologies concerning warfare being developed, cognitive psychology was at the forefront 

of this research to understand human performance with newly designed machines. The designers 

needed to know a person’s aptitude to operate the system. One of the first key aspects discovered 

was that training and attention were extremely important. Attention to the indicators and the 

actions necessary when situations arose needed to be dealt with quickly. This was especially the 

case in aerospace design (Casanova et al., 2014; Tweedale and Jain, 2011). 

Recognizing and reacting to the system when the system is operating normally is much different 

than reacting to the system under duress (Smets et al., 2010). It is bridging this understanding 

with the design, especially in the initial phases of the design, that becomes extremely important 

(this is why modeling and simulation are very important at the preliminary design phase). For 

example, if a person is told to monitor a light on the panel, the person has to know what the light 

means, and what to do about it when it either comes on or goes off. This is the learning and 

memorization activity that the person acquires in order to have knowledge of and control the 

system. There lies the simplest of problems with a design: the requirement. “What is the 

requirement of the light, and what is the person to do if the light blinks?” This example is level 3 

in the Sheridan’s Level of Automation. If the light blinks, the operator needs know what actions 

to perform. The scenario goes like this, “What if after performing the action the light is still 

blinking?” Is the operator going to have enough knowledge of the system to properly assess the 

situation? Or is it beyond the normal operating strategies and standard operating procedures? 

Also, what is the safety factor involved? Should the person take flight or fight the response to the 

system? In any design that leverages the human-agents, it is essential to have an operator who is 

trained and experienced. This prevents the operator from being subjected to situations beyond 
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their cognitive skills and abilities to command and control the CPS (Tweedale and Jain, 2011; 

Sheridan, 2011). 

Design and systems engineering are multidisciplinary fields within the context of engineering 

disciplines. The attempt to identify and apply good design and processes is a result of experience 

and knowledge from several other disciplines, such as construction, mechanics, electricity, 

chemistry, etc. The system engineer derives requirements of the system where the human-

machine interface is concerned based on the specification set by the end user. In essence, the 

system engineer would be the cognitive systems engineer (CSE) in embedded CPS designs. The 

strategies employed would be to recognize and define all confluences to the design through an 

adaptive activity of the modeling, simulation, and prototype testing (Chen et al., 2011; Klien et al., 

2004). 

The CSE identifies the interface that is necessary to allow for performance, safety, and knowledge 

to improve adaptive activities between the human-agents and machine-agents. Through good 

system development of interfaces of control panels, software, ergonomic design, teams, etc., the 

establishment and certifications can be obtained for the CPS. The amount of operator training 

and education that allows for the safe and optimal performance of systems is paramount to 

success. In applying these preliminary adaptive design activities, the development of the system 

goes through three phase concurrent process of design, analysis, and evaluation (Wang, 2016; 

Rovere et al., 2016). 

2.10 Future Growth and Consequences 

Understanding how the human-agent relates to the environment is a growing concern in the 

world of automation. The desk jobs of accountants, computer programmers, and administrative 
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assistants have a negative consequence of being too easy on the human body. In the early part of 

the last century, machines in factories were notorious for putting out eyes and chopping off limbs. 

However, in the 21st century, the human-agent gets carpal tunnel syndrome from typing too 

much, or too fat from being sedentary at the computer terminal. The economy benefits from 

doing tasks quicker and more efficiently but has a negative side effect. This is especially true when 

the human interfaces with technology (i.e., the intelligent machine) that improves performance 

but sometimes leaves little else to the human-agent except to watch data scroll on a monitor. The 

health and welfare of a human-agent depends on understanding the human interacting with the 

machine (Robertson, 2010). Many companies now employ ergonomic standards as a matter of 

worker compensation, government mandate, and litigation.  

The human-agent should always be considered at the center of the design (Robertson, 2010; 

Parasuraman et al., 2000). Whether the person is the end user of the system or a member of the 

development team, when designing a new system or upgrading an existing system, the cost 

associated with implementing automation must be clearly understood. Properly managing -- not 

only the different teams, but the expectation of the end user, or customer -- will have great 

economic benefit through cost savings and improved capacities and throughputs. Using modeling 

and simulation greatly improves the design process of both large and small projects by identifying 

areas where improvements need to be made before the physical system even exists (Parasuraman 

et al., 2000). 

The human-agent experience of interfacing with and becoming machines may seem farfetched 

today, but as technology continues developing with societal and cultural norms readily adapting 

to new technologies, the understanding and implication of how these technologies are used, and 

what repercussions the technologies will have, is a rich and deep subject open for much debate 

(Young et al., 2017; Quintas et al., 2017). Technologies that become engrained into society will 
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both have a negative and positive effect, and since it is the desire to have technology work in the 

most economically efficient manner, it is important to understand the effects once a significantly 

complex and well-developed autonomous system is deployed. This applies to newer technologies, 

such as autonomous cars, unmanned aerial delivery vehicles, embryonic DNA editing, quantum 

computing, etc. It is sufficient to state that a technological system must be useful and must meet 

all regulatory and safety standards. This is easier said than done. 

Humans desire to enhance performance, i.e., using prosthetics, surgical alterations, ingesting 

substances, etc., and the list of the technologies available on the market, i.e., hearing aids, 

liposuction, Viagra, anabolic steroids, etc. are many. The near future technologies that are being 

developed such as autonomous cars, unmanned aerial delivery vehicles, embryonic DNA editing, 

are still future technologies, but these technologies could be available very soon. Other future 

technologies that are seriously being considered: cancer fighting nanobots, genetic transplants, 

ion propulsion space travel, and 3-D printing of organ tissue. The futurist Ray Kurzweil states in 

his 2005 best seller The Singularity Is Near, that by the year 2049, distinguishing between man 

and machine will become so blurred that the whole paradigm of the human as a stimulus-

response organism to technology will no longer be applicable as the human will be part of the 

new matrix of part organic and part machine. The research of this thesis is scalable to this 

paradigm shift should it occur. 

Science fiction movies consider many possible scenarios and combinations of robotics and 

artificial intelligence. Often what is first dreamt of in science fiction, later becomes a technological 

reality (e.g., the Motorola Flip Phone was inspired by the 1960’s television series Star Trek). 

Consider technologies that offload tasks that seem dreary and full of drudgery. Most households 

in the United States have dishwashers, washing machines, vacuum cleaners, etc. These are all first 

world machines automating daily chores that would take much longer in their absence. These 
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machines at one time were deemed luxury, and now they are common-place as they are found in 

most households in the United States. The machines are also getting smarter by the use of 

embedded systems. Dryers can now detect when the clothes are dry and stop the drying process. 

This aids in the efficiency by saving the consumer on power bills. Refrigerators can send emails 

listing grocery item needed, identify necessary servicing and maintenance cycles, sound an alarm 

when the door is open too long, report food storage dates and spoilage, etc. 

This type of futurist thinking can lead to discovering negative possibilities of implementing such 

technologies. Going back to psychology, if a machine can think, can the machine have a severe 

psychotic breakdown? Consider the HAL 9000 computer in Stanley Kubrick’s 1968 movie 2001: A 

Space Odyssey. The HAL 9000 killed all but one astronaut because the computer was worried that 

the astronauts would discover the secret of their mission. So just imagine a Roomba™ vacuum 

cleaner attempting to kill the dog for shedding too much hair. The idea that the machines can be 

hacked and turned into weapons is also a real concern. This brings up concerns as to the security 

of such systems from either internal or external influences (Dundar et al., 2017; Khorrami et al., 

2016). 

The trends in CPS autonomous systems will go unabated in the foreseeable future (Yarmoluk, 

2017; Gubbi et al., 2013). As mentioned, the concepts and designs of unmanned aerial vehicles is 

currently being worked on by Amazon™ (Hernandez et al., 2018). In news reports, there is 

mention of a UAV called the Taco-copter that delivers tacos to the front doorstep. The pizza 

delivery person may soon be a thing of the past like the elevator operator. Concerning the 

development and testing of autonomous cars, the research is ongoing, and there are many players 

with different ideas on how to solve the technical issues. A best guess is that the first production 

release of a fully autonomous car is still five years away. As for avionic systems, both the 

commercial and military systems will continue developing better landing systems both in the 
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aircraft and the air traffic control system. Commercial airliners, such as the Boeing 777, already 

have the capability to take off and land autonomously (that is, if the airport supports the 

technology to do this). However, the FAA, the regulating authority for flight in the United States, 

still requires planes taking-off and landing to have an actual human pilot do the work. Still, it is 

possible and legal elsewhere. 
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 Methodological Framework 

3.1 Modeling Paradigm 

Cyber-Physical Embedded Systems are becoming ever more involved in day-to-day activities 

without much fanfare or notice, in spite of the increase in the interconnection, autonomy, and 

complexity with decision making capabilities (Lee, 2015). The system will still have the normal 

constraints of resources (Wehrmeister et al., 2013). Pure embedded systems, by their very nature, 

are under-resourced. Such things as computational power and memory resources of embedded 

systems will be limited as compared with non-embedded systems (Drumea and Dobre, 2014) 

Using designs of parallelism helps with the resource allocation, but it also makes the system more 

complex in the amount of hardware and software required to operate such a system. The ability 

to test is hampered by complexities of hidden machine states (Shi et al., 2017; Gobbo and Benini, 

2013). 

The definition of a decision is that it is an irrevocable allocation of resources (Parnell and West, 

2011). Any decision-making system deployed in the cyber-physical context will need to use 

hardware efficiently, software effectively, and the human-agent both efficiently and effectively 

to prevent overload demand of the finite resources. Decision making usually is a process of 

selecting a best choice from a number of different alternatives and options, and it is usually 

assumed that the decisions are based on rational and reasonable thought for a course of action 

(Quintas et al., 2017). Even if a choice were irrational and extremely biased, the basis for making 

the best choices out of subjective or perceived outcome will optimize the decision process as long 

as the decision holds to the Proposition Two. Decision making reduces the complexity and the 

uncertainty as a matter of determining a reaction or solution, that in the end, may have multiple 

objectives. In this thesis, the focus is on a supervisory command and control structure in the 
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decision-making process of the cyber-physical embedded system using human-agents (Xin et al., 

2015). 

Supervisory command and control structures are usually well organized and complex (National 

Research Council, 2006). These structures assume a bottom up, feed forward information flow 

(see Figure 3-1). In supervisory command and control structures, the decision-making usually 

works extremely well as a means to an end, but at other times, the structure can fall apart and 

completely collapse on mismatching or contradictory information flowing into the system. For 

example, typical systems that uses supervisory command and control structures are emergency 

management services and military command operations. For responders to an emergency, the 

management of the emergency is essential to coordinate responses across large and different 

agencies, infrastructures, and network topologies, while optimizing the allocation of resources to 

their most effective end (Alippi et al., 2017; DHS, 2002). 

Decision making applied to cyber-physical embedded system design has a pivotal role in defining 

and shaping the human-machine interface within the societal norms of different cultures. The 

machine-agent and human-agent are no longer separable (Backhaus et al., 2013). The application 

of the decision-making system within the construct of the cyber-physical system impacts the 

attributes of system such as performance, safety, economics, etc. There is much debate as to 

whether design principals and guidelines can be well understood or expressed beyond just 

performance (Alippi et al., 2017). There is also the correctness of the design to consider. When 

the design is complex, it should require that the engineering and science be well understood, or 

at least, shown to be both correct and economically beneficial for using the system to increase 

performance. This increase in performance is both a physical and economical advantage.  
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3.2 Cyber Decision Modeling 

The framework for the decision model comes from John Boyd (b.1927-d.1998) who was a USAF 

fighter pilot. At the time around the mid-1950’s, pilots were mainly taught to navigate the airplane 

and drop bombs. Boyd took a very different strategy to making air to air combat decisions. He 

developed a decision-making model for the combat situation called the OODA Loop (Figure 3-1). 

(OODA - Observer, Orient, Decide, and Act.) The generalized structure of the model uses basic 

feed-forward and feed-backward loop within the decision-making process (Novak et al., 2017). 

This type of activity is essentially the cybernetic system described by Nobert Wiener. The 

principles are being applied here to gain a deeper understanding of the internals of the model. 

The decision-making principles and guidelines are not that different between machine-agent and 

human-agent (Wan et al., 2017). The underlying principles and theory of the OODA Loop applies 

to any reactive system, i.e., CPS. By leveraging the OODA Loop as the definitive decision-making 

architecture of the cyber-physical embedded system, and because of the generalized form used 

to describe the systems, the architecture is manageable to the design of intelligent systems. 
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Figure 3-1: OODA Loop: Human-agent (Boyd, 1976) 
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The OODA Loop describes in simple but meaningful terms the functionality of linear and non-

linear systems to external stimulae and internal guidance that changes the behavior of the system. 

This is an open system model where events are not always either continuous or discrete. The use 

of the OODA Loop is to form an agent-based model that accounts for both machine and human 

(Novak et al., 2017). Most of the application of the cyber-physical system would be considered a 

mixture of continuous and discrete input; and therefore, a hybrid system. The research and 

application of using the OODA Loop model to assist in the decision-making process (i.e., DSS) is 

used in many different areas, such as military command operations, emergency response 

management, business ventures, and now cyber-physical embedded systems (National Research 

Council, 2006; DHS, 2002). However, at current, the OODA does not appear in the literature for 

cyber-physical or embedded systems. 

In the algorithmic design of the software and firmware for the cyber-physical embedded system, 

the OODA Loop divides the architecture into four separate entities of phases of the decision-

making process: observe, orient, decide, and act. At each of the stages, the time series of both 

internal and external events must hold the system in balance as it continually operates. 

The OODA Loop works as follows: 

• Observe: the external world is being detected. Both human-agent and 
machine are sensing events in the environment. 
 

• Orient: the internalization of the events unfolding in the environment are 
being computationally digested by both human-agent and machine-agent. 
New information is being added to the external sense data. 
 

• Decide: this is when a decision is made. The decision can be either to do 
something or nothing until more information is acquired. 
 

• Act: if in the decision stage, the system should perform the action that is 
external to it. 
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The interesting thing to note is the feed-forward and feed-backward at the different stages with 

guidance as a control measure of the insurance that the system is functioning properly. This idea 

is further investigated in Chapter 4: The type of AI used in the decision-making process is similar 

to the backpropagation neural network (BPN). In Chapter 4, the Blackjack Player will demonstrate 

the power of using such an artificial neural network (ANN) in the CPS design.  

The machine-agent uses the OODA loop with the only difference being in the Orient phase of the 

OODA process. Instead of the using the decision-making biases of “cultural traditions” and 

“genetic heritage”, the machine-agent terms those biases as “processing power” and ‘base-type 

algorithms”. The definition of the processing power bias is at the heart of the machine’s hardware 

architecture. It will ultimately determine the throughput of the decision process. It is essentially 

a bottleneck. The base-type algorithm is the efficiency and effectiveness in the choice of 

algorithmic design used. This is the software and is also considered a bottleneck. 
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Figure 3-2: OODA Loop: Machine-agent (Trembley et al, 2017) 
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Since the OODA Loop has a time component, and it can be described as a stochastic system with 

random events happening in the external environment, it must quickly interpret the external 

sources of unfolding events and outside information to resolve to an action. However, the 

bottlenecks that are naturally in the design must be dealt with. Because the bottlenecks constrain 

the throughput performance of the decision-making, the bottlenecks then become the points of 

interest in design optimization (Figure 3-3). For example, in cyber-physical embedded systems, 

bottleneck B1 is the sensor data input. The considerations are for the types of sensors used and 

for whether the sensors should be of higher or lower level informational value. The bottleneck B2 

and B3 are internal to the systems and are driven by the hardware and software algorithms. The 

bottleneck B4 is the reactive event from the system based on the decision that was made in 

connection with the sensory inputs from external stimuli. 

 

Figure 3-3: OODA Loop Time Bottlenecks (Boyd, 1976) 

Using the CAS example from the literature review, in order for the collision avoidance to take 

place, the sensors on the car must detect (Observe) that an object is within the path of the moving 

vehicle (Orient). The vehicle’s computer will make the determination (Decide) and trigger event 

that will cause the brakes to be applied or not (Act) (Schnelle et al., 2017; NTSB, 2015).  
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The case for machine-agents and human-agents have biases, and those biases are based on a set 

of learned experiences. Whether the human-agent is working, individually or in a group, the 

predictability of human-agent is less certain than the machine-agent. It is for this reason that the 

cyber-physical systems designers need to be aware of systems, especially those with high levels 

of automation, and the responsibility of the role in the system that human and machine advocate 

(Wang, 2016; Chen et al., 2011). This is undeniably the engineer’s responsibility when embedding 

autonomous features into a system (Shneiderman, 2007). 

3.3 Cyber-Physical Embedded System Automation Design 

This thesis considers combining several concepts of Machine Intelligence: Deep Learning, 

Bayesian Reasoning, and Fuzzy Logic (Figure 3-4). By combining these methods, a number of 

possibilities emerge to design sophisticated cyber-physical intelligent machines and systems. By 

using softcomputing computational techniques on cyber-physical embedded systems, 

considering the computation processing power of small low-end embedded processor devices, 

there is current fascination in the industrial and commercial development and implementation of 

off-the-shelf embedded systems, i.e., IoT, that integrates into a wider fabric of available 

technology, such as WIFI, Internet, Ethernet, etc. The cyber-physical systems go from structured 

finite state machines (FSM) to hybrid combinations of different technologies (Shi et al., 2017; 

Zhang et al., 2016). 
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Figure 3-4: Machine Intelligence Tree Diagram (Lewis, 2015) 

When considering implementing embedded system design into a cyber-physical configuration, 

the design becomes intelligent by adding autonomous computational control to the machine. The 

example in the embedded processes within the CPS is a manual coffee maker that is interfaced 

with a microcontroller to set temperatures, times, and brew preferences. The microcontroller can 

also connect to the Internet and be worked remotely from a distance. The coffee maker can 

essentially be controlled from anywhere there is an Internet connection. The coffer maker is now 

IoT capable and forms the cyber-physical design of a CPS. Features like automatic timers and self-

cleaning modes could be implemented based on the needs of the system, and those features are 

embedded. The IoT coffee maker, by being accessible remotely, does not impede with its prime 

purpose (i.e., to make coffee).  
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3.4 Cyber-Physical System and AI  

Artificial Intelligence and the ideas of neural networks can be traced back to the period just after 

World War II. The idea of Artificial Intelligence is credited to have been invented by the Dartmouth 

conferences of 1957. The beginning of the digital computer age was generating much excitement 

amongst mathematicians who followed the school of thought of the Logic Theorist (Goldstein, 

2002). Herb Simon and Alan Newell from the Carnegie Mellon Institute had spearheaded the idea 

that if computers could solve complex logic problems in novel ways, the “thinking machine” could 

be designed. Other notables who were around at the time were John von Neumann and Norbert 

Weiner. Von Neuman was very instrumental in the early hardware architecture of computer 

systems, and Weiner spearheaded the idea of feedback systems in manmade and natural systems 

(Weiner, 1964). The Boyd OODA Loop is essentially a feedback and feedforward system that has 

many parallels to Weiner’s Control Theory and was developed in the same time period. 

Viewing the configuration of the AI Venn Diagram (Figure 3-5), this thesis considers the cyber-

physical embedded system as an architecture that follows the principles from the deepest 

attribute, i.e., Deep Learning, to that which culminates in a system that is artificially intelligent. 

The thesis demonstrates the choice of correct or best methods when designing such a system, a 

system where correctness and performance are verified and validated. 
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Figure 3-5: AI Venn Diagram (Goodfellow et al, 2015) 

3.5 Backpropagation Neural Network 

In 1985, the Backpropagation Neural Network (BPN) performed the iris classification problem with 

great success, which led to a more optimistic view to neural networks. The philosophical 

arguments that thinking machines were impossible, and that the science of neural networks 

would not amount to much, rapidly vanished. Artificial Neural Networks (ANN) are now commonly 

found in in everything from cars to smartphones. Thus, the BPN, using a probabilistic non-discrete 

method for feature detecting, works. The science of why it works is described in the Blackjack 

Player, Section 4.3.2. 

Essentially, in a BPN, there are a number of hidden layers that combine and assist in the decision-

making of pattern classification. These hidden layers are the black box of the system. Since the 

BPN is very generalized and uses a supervisory level of training, i.e., learning, to a wide range of 

classification and optimization problems, by performing designed experiments using rigorous 

verification and validation methods, the BPN can be tuned to find the optimal or best “fit” of the 

“things” classified (Thalassinakis et al., 2006). 
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3.6 Fuzzy Inference and Fuzzy Logic 

The historical record shows evidence that mathematicians and physicists were developing partial 

models and discussing ‘vague’ and ‘fuzzy’ set theory in the early days of the 20th century (Garrido, 

2012). Among these people were Bertrand Russell (b. 1872 -  d. 1970). Bertrand Russell who 

attempted to solve the 23 Hilbert problems during the entire first half of the 20th century, as well 

as constructing an elegant layout of mathematics in his three volume set Principia Mathematica, 

had great impact on twentieth century thinking dealing with unknown states and conditions by 

finding good answers to very hard problems. However, the credit for the invention of fuzzy 

systems goes to Lotfi A. Zadeh (b. 1921). Zadeh's intention was to create a formalized system to 

handle more efficiently the imprecision of discrete reasoning. The use of fuzzy logic within an 

embedded system to solve for probabilistic non-discrete data in a stepwise method for decision-

making (Zhang et al., 2017). Why a method like this would work is described in the Blackjack Player 

experiment (Section 4.3.2). 

3.7 Logistic Regression 

Logistic regression is also an exceptionally powerful tool when the independent variables are a 

mixture of categorical and continuous variables. Logistic regression extends the ability to collect 

data of metric and non-metric types that are usable and mathematically justifiable. Since logistic 

regression makes no multivariate normality assumptions of distribution, such as a discriminant 

analysis, logistic regression breaks with methods that impinge on the requirement of normality or 

a standardization of the data set being used (Xu, 2016). 

The method of logistic regression as an a priori and a posterior predictive technique is a powerful 

tool. By considering and using simple Bayesian statistics of calculating odds, the generalized 
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logistic regression technique can be used in many problems of classification. A defined system 

using logistic regression can, in the face of imperfect information, recognize through classification, 

and make a determination to the best or optimal path forward, until the next decision is required. 

The logistic regression multivariate analysis brings with it the assumption of accuracy to 

classification objects and real-time associations to the classifications, i.e., immediate decision-

making data for action (Frankot, 2012). 

3.8 Levels of Automation 

The term “Levels of Automation” is a description of the quantity of interaction between human-

agent and machine. Figure 3-6 shows the four stages of information processing (Sheridan, 2011; 

Parasuraman et al., 2000; Wilkins, 2003). It is essentially a scaled down version of the OODA Loop. 

The beginning stage is the sensory input and processing. The second stage is where the sensory 

input data from the first stage is processed. The third stage is the decision-making process, and 

the fourth stage is the response. This is only looking at the process on a higher level, in that the 

Sheridan and Boyd model of information processing and decision making are similar and 

symmetrical. Sheridan uses a simple description of receiving input from the environment in a one-

way direction using the biases associated with memory and experience to arrive at a decision to 

take an action or not. The Boyd model coincides with the control theory paradigms of feedforward 

and feedback loops; whereas, Sheridan uses a feedforward only model. It is by using the Sheridan 

model that the level of automation is considered in the cyber-physical system. 
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Figure 3-6: Four-stage Model of Information Processing (Sheridan, 2011) 

Using Sheridan’s Levels of Automation, (see Table 3-1), the refinement of dividing automation 

into ten levels is best when working with a system that is being designed or implemented with 

enhanced autonomous features that are more generalized (Wilkins, 2003). The idea is to match 

the expectation of the human-agent with that of the machine-agent. The machine-agent is what 

provides the automation. The levels provide a discrete continuum of ratios of human-

agent/machine-agent systematic automation, from Level 1, where the human-agent is fully in 

control and the machine-agent offers no assistance, to Level 10, where the machine-agent is fully 

in control and ignores the any input from the human-agent. In the intermediary levels from Level 

2 to Level 9, the human-agent and machine-agent basically compromise as to how the system will 

work under operational conditions. The roles and responsibilities need defining based on the level 

of automation in the design (Vahidi and Eskandarian, 2003; Noh and An, 2018; European 

Parliamentary Research Service, 2016). For example, the CAS is a Level 10 system. Although the 

CAS is not in control of the car per se, it could apply the brakes at the time when a braking action 

is detected. The human-agent would not be warned and may even be surprised by the action. 
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Table 3-1: Sheridan Level of Automation (Sheridan, 2002) 

 

Driverless or autonomous vehicles (e.g., cars, airplanes, ships, etc.) are at the forefront of the 

cyber-physical embedded systems technologies, and the latest trend in engineering autonomous 

systems (Wehrmeister et al., 2013). Both the Society of Automobile Engineers (SAE) and the 

European Parliamentary Research Services (EPRS) use six levels of automation to describe levels 

of automation for cars (SAE INTERNATIONAL, 2014; European Parliamentary Research Service, 

2016). The SAE provides comprehensive and complicated definitions at each level, providing 

designers of autonomous cars the specification to the requirement that needs to be met in order 

to be certified. The ultimate certification of autonomous vehicles in United States will come from 

the National Transportation Safety Board (NTSB) (NTSB, 2015).  

In Table 3-2, the SAE Level 0 is like Sheridan’s definition for Level 1. The human is fully in control 

of the vehicle and is offered no assistance by the onboard computer systems; however, the SAE 

definition allows the human-agent to be warned. In accordance with the SAE definition of Level 1 

and Level 2, the driver is still fully in control of the vehicle, but now there is an embedded 

automation system, i.e., machine-agent, starting to take control of some features of the car in 

motion. The Automated Driving Systems (ADS) that is helping the driver maintain coordination 

with the Dynamic Driving Task (DDT) works in cooperation with the human-agent. An example of 

HIGH 10 The computer decides everything, acts autonomously, ignoring the human,

9 informs the human only if it, the computer, decides to.

8 Informs the human only if asked, or

7 executes automatically, then necessarily informs the human, and 

6 allows the human a restricted time to veto before automatic execution, or

5 executes the suggestion if the human approves, or

4 suggests one alternative.

3 Narrows the selection down to a few, or 

2 the computer offers a complete set of decision/action alternatives, or

LOW 1 the computer offers no assistance: the human must make all decisions and actions

LEVELS OF AUTOMATION OF DECISION AND ACTION SELECTION
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this would be the lane departure warning system. At Level 5, is the ADS is fully performing the 

DDT. 

Table 3-2: SAE Levels of Automation (SAE, 2014) 

Level of Driving 
Automation 

 
Role of User 

 
Role of Driving Automation System 

DRIVER PERFORMS THE DYNAMIC DRIVING TASK (DDT) 

Level 0 - No 
Driving 
Automation 

Driver (at all times):  
• Performs the entire DDT 

Driving Automation System (if any):  
• Does not perform any part of the 
DDT on a sustained basis (although 
other vehicle systems may provide 
warnings or support, such as 
momentary emergency intervention)  

Level 1 - Driver 
Assistance 

Driver (at all times): 
• Performs the remainder of the DDT not 
performed by the driving automation 
system 
• Supervises the driving automation system 
and intervenes as necessary to maintain 
safe operation of the vehicle 
• Determines whether/when engagement 
or disengagement of the driving 
automation system is appropriate 
• Immediately performs the entire DDT 
whenever required or desired 

Driving Automation System (while 
engaged): 
• Performs part of the DDT by 
executing either the longitudinal or 
the lateral vehicle motion control 
subtask 
• Disengages immediately upon 
driver request 

Level 2 - Partial 
Driving 
Automation 

Driver (at all times): 
• Performs the remainder of the DDT not 
performed by the driving automation 
system 
• Supervises the driving automation system 
and intervenes as necessary to maintain 
safe operation of the vehicle 
• Determines whether/when engagement 
and disengagement of the driving 
automation system is appropriate 
• Immediately performs the entire DDT 
whenever required or desired 

Driving Automation System (while 
engaged): 
• Performs part of the DDT by 
executing both the lateral and the 
longitudinal vehicle motion control 
subtasks 
• Disengages immediately upon 
driver request 

AUTOMATED DRIVING SYSTEM (ADS) PERFORMS THE ENTIRE DYNAMIC DRIVING TASK (DDT) 
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Level of Driving 
Automation 

 
Role of User 

 
Role of Driving Automation System 

Level 3 – 
Conditional 
Driving 
Automation 

Driver (while the ADS is not engaged): 
• Verifies operational readiness of the ADS-
equipped vehicle 
• Determines when engagement of ADS is 
appropriate 
• Becomes the DDT fallback-ready user 
when the ADS is engaged 
DDT fallback-ready user (while the ADS is 
engaged): 
• Is receptive to a request to intervene and 
responds by performing DDT fallback in a 
timely manner 
• Is receptive to DDT performance-relevant 
system failures in vehicle systems and, 
upon occurrence, performs DDT fallback in 
a timely manner 
• Determines whether and how to achieve 
a minimal risk condition 
• Becomes the driver upon requesting 
disengagement of the ADS 

ADS (while not engaged): 
• Permits engagement only within its 
ODD 
ADS (while engaged): 
• Performs the entire DDT 
• Determines whether ODD limits are 
about to be exceeded and, if so, 
issues a timely request to intervene 
to the DDT fallback-ready user 
• Determines whether there is a DDT 
performance-relevant system failure 
of the ADS and, if so, issues a timely 
request to intervene to the DDT 
fallback-ready user 
• Disengages an appropriate time 
after issuing a request to intervene 
• Disengages immediately upon 
driver request 

Level 4 - High 
Driving 
Automation 

Driver/dispatcher (while the ADS is not 
engaged): 
• Verifies operational readiness of the ADS-
equipped vehicle 
• Determines whether to engage the ADS 
• Becomes a passenger when the ADS is 
engaged only if physically present in the 
vehicle 
Passenger/dispatcher (while the ADS is 
engaged): 
• Need not perform the DDT or DDT 
fallback 
• Need not determine whether and how to 
achieve a minimal risk condition 
ADS (while not engaged): 
• Permits engagement only within its ODD 
ADS (while engaged): 
• Performs the entire DDT 
• May issue a timely request to intervene 
• Performs DDT fallback and transitions 
automatically to a minimal risk condition 
when: 
• May perform the DDT fallback following a 
request to intervene 
• May request that the ADS disengage and 
may achieve a minimal risk condition after 
it is disengaged 
• May become the driver after a requested 
disengagement 

ADS (while not engaged): 
• Permits engagement only within its 
ODD 
ADS (while engaged): 
• Performs the entire DDT 
• May issue a timely request to 
intervene 
• Performs DDT fallback and 
transitions automatically to a minimal 
risk condition when: 
• A DDT performance-relevant 
system failure occurs or 
• A user does not respond to a 
request to intervene or 
• A user requests that it achieve a 
minimal risk condition 
• Disengages, if appropriate, only 
after: 
• It achieves a minimal risk condition 
or 
• A driver is performing the DDT 
• May delay user-requested 
disengagement 
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Level of Driving 
Automation 

 
Role of User 

 
Role of Driving Automation System 

Level 5 - Full 
Driving 
Automation 

Driver/dispatcher (while the ADS is not 
engaged): 
• Verifies operational readiness of the ADS-
equipped vehicle 
• Determines whether to engage the ADS 
• Becomes a passenger when the ADS is 
engaged only if physically present in the 
vehicle 
Passenger/dispatcher (while the ADS is 
engaged): 
• Need not perform the DDT or DDT 
fallback 
• Need not determine whether and how to 
achieve a minimal risk condition 
• May perform the DDT fallback following a 
request to intervene 
• May request that the ADS disengage and 
may achieve a minimal risk condition after 
it is disengaged 
• May become the driver after a requested 
disengagement 

ADS (while not engaged): 
• Permits engagement of the ADS 
under all driver-manageable on-road 
conditions 
ADS (while engaged): 
• Performs the entire DDT 
• Performs DDT fallback and 
transitions automatically to a minimal 
risk condition when: 
• A DDT performance-relevant 
system failure occurs or 
• A user does not respond to a 
request to intervene or 
• A user requests that it achieve a 
minimal risk condition 
• Disengages, if appropriate, only 
after: 
• It achieves a minimal risk condition 
or 
• A driver is performing the DDT 
• May delay a user-requested 
disengagement 

 

Table 3-3 is the European Parliamentary Research Services (EPRS) definitions of Levels of 

Automation, which are directly borrowed from the SAE definitions, but provide an easier 

explanation as to driving mode, human-agent, and car (machine-agent) (European Parliamentary 

Research Service, 2016). In both tables, it is interesting that there is a hard separation between 

human-agent and machine in performance of the driving task, the human-agent becomes 

unknowingly disengaged after Level 2 and is almost knowingly disengaged at Level 4. 
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Table 3-3: UE Levels of Automation (EPRS, 2016) 

 

Using levels of automation to design a model of an embedded system should be relatively 

straightforward. If working with a generalized design, Sheridan’s definition should be used as the 

guideline. At Sheridan Level 1, the human-agent does not need or require a machine-agent for 

assistance in any task. The human-agent acts as the autonomous control to the machine that is 

operating without autonomy. However, the design of the cyber-physical embedded system 

should discretely define the level of automation as the human-agent would need this knowledge 

to be able to work with machine-agent. The roles and responsibilities of each should be well 

established. The importance is that the design is implemented correctly and that it performs as 

SAE Name 

Steering, 

acceleration, 

deceleration

Monitor 

driving 

environment

Fallback 

performance 

of dynamic 

driving task

System 

capability 

(driving 

modes)

No Automation

0

the full-time performance by the human driver of all aspects of the 

dynamic driving task, even when enhanced by warning or 

intervention systems.

Driver Assitance

1

the driving mode-specific execution be a driver assistance system 

of either steering or acceleration/deceleration using information 

about the  drivng environment and with the expection that the 

human driver perfom all remaining task.

Partial Automation

2

the driving mode-specifc execution by one or more driver 

assistance systems of both steering and acceleration/deceleration 

using information about the driving environment and with the 

expection that the human driver perfom all remaining aspects of 

the dynamic driving task.

Conditional Automation

3

the driving mode-specific performance by an automated driving 

system of all aspects of the dynamic driving task with the 

expectation that the human driver will respond appropriately to a 

request to intervene.

High Automation

4

the driving mode-specific performance by an automated driving 

system of all aspects of the dynamic driving task, even if a human 

driver does not respond approporiately to a request to intervene.

Full Automation

5

the full-time performance by an automated driving system of all 

aspects of the dynamic driving task under all roadway and 

environmental conditions that can be managed by a human driver.

Car Car Human
Some driving 

modes

Car

N/A

Car Human Human
Some driving 

modes

Car Car Human
Some driving 

modes
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intended (Backhaus et al., 2013; Vahidi and Eskandarian, 2003; European Parliamentary Research 

Service, 2016; SAE INTERNATIONAL, 2014).  

Billings detailed and argued about of a human-centered approach to autonomy (Billings, 1997). 

There are six important concepts that engineers should remember and internalize that provide 

guidance in automated designs:  

1. Automation systems should be comprehensible. 

2. Automation should ensure operators are not removed from the command role. 

3. Automation should support situation awareness. 

4. Automation should never perform or fail silently. 

5. Management automation should improve system management. 

6. Designers must assume that operators will become reliant on reliable 
automation. 

This is the second point of the thesis: the transient supervisory command and control features of 

many autonomous systems (Tweedale and Jain, 2011; James, 1953). For example, if the machine-

agent has detected a problem, i.e., fault, and downgrades the level of automation, the human-

agent has to be the one to react (Marquez and Ramirez, 2014). This reaction in many cases can 

have fatal consequences, and this needs to be well understood. It will be shown that modeling, 

simulating, and prototyping are the best tools in the engineer’s kit (Novak et al., 2017; Arne, 

2000). The case of Asiana Airline Flight 214 demonstrates the inherent problems with autonomy. 

Even if the autonomy is well thought out, proved using the most rigorous of testing measures, 

with the human-agent involve, it does not always work as expected (NTSB, 2014). 
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3.9 Combining Design Attributes for Autonomy 

In theory, the ability to design “good” cyber-physical embedded systems by using machine 

intelligence that combines with human agency is directly associated with the level of automation 

the system is required to achieve. The cyber-physical embedded system’s level of automation 

requirement allows, in the conceptual and preliminary design phase, the identification of risks to 

cost, schedule, and quality. The greater the level of automation of a system implies greater cost, 

whereas with less automation, the associated costs are spread over the operational lifetime phase 

of the system. To strike a balance with a system design leveraging automation, the definitions of 

the external stimulus on input effects to the internal structures of the machine-agent must be of 

prime consideration (Bosetti et al., 2015). The external output actions produced by the decision 

processes need only be correct. That is, the internal states of the machine are essentially treated 

as a black box and are tested based on a stimulus-response model (Novak et al., 2017; Xin, et al., 

2015). The choice of hardware (processors, memory, sensors, etc.) and software (programming 

language, compiler, algorithms, etc.) will have the ultimate ramifications to the limits that the 

system can achieve and how it can be verified and validated through testing (Xin et al., 2015; 

Moradi-Pari et al., 2014).  

3.10 Summary 

The successful integration of the human-agent with a machine agent requires a well-understood 

balance between the roles and responsibilities in the supervisory command and control decision 

making structure. The decision modeling of the cyber-physical system, using the OODA loop 

decision making model that architects the isomorphic relation between human and machine as 

similar but separate agencies, must be merged to assume the broad, human-agent, and narrow 

(machine-agent) intelligence attributes of the system.  In this way, the modeling of cyber-physical 
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systems becomes less complicated and more tractable because of combinations of linear and non-

linear transitions modes within the hidden variables of the CPS.  Whereas the artificial intelligence 

of the CPS is narrowly focused on the designed task, the human-agent is broadly focused on 

responsibilities that include any number of unknowns from the environment sensor systems in 

which the machine-agent is not proficient in determining.  The inherent problem is that while 

operating, the system as a function of its level of automation can transition to a lower level of 

automation.  The state change of the system releases back more control to the human-agent.  

This is potentially a dangerous time where quick thinking and reaction is needed. 

The reverse is also possible when the AI of the CPS detects an imminent condition, for which it is 

trained, and reacts by transitioning to a higher level of automation; thereby wresting control away 

from the human-agent.  It is in the creation of attempting to develop structured models for the 

CPS that the meta-model paradigm emerges.  This helps create a more simplified model of the 

system that allows for the testing of the sensory inputs and actuator outputs of the system.  Again, 

the meta-model is a “black box” idea of the system but at a hierarchical level of abstraction 

whereby system performance and correctness are determined.  The verification and validation of 

the system can be certified for critical system usage (Karsai, 2003).      
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 Experimental Frameworks Using Modeling, Simulation, and Prototypes 

4.1 Modeling an Experimental Framework  

By using various commercial off the shelf tools, such as LabView, MATLAB, SolidWorks, CATIA, 

Simulink, etc., modeling, simulating, and prototyping a system becomes a very practical 

engineering and development experience. The ability to rapidly develop and deploy models, as 

well as automatically generate software and firmware source code and test branches or perform 

thermal and factual structural analysis, becomes a spring board to getting a design finished 

quicker and with less problems. However, software and firmware bugs still get inserted at all 

levels of the design based on the initial assumptions, or not well understood requirements of 

implementation. So, how does the design need to be tested in order to prove that it has met the 

requirements for performance and correctness?  

The framework for simulating a particular model relies on the granularity to variables that 

dominates the optimizations of the real system (Kang et al., 2018; Corno et al., 2016). The key to 

effective simulation is not to bog down the model in minutiae using variables that have little or 

no relevance or influence to the control of the system’s behavior. Experience can find many of 

the contributing variables, but if the model is built to the generalized specifications of the system, 

then those variables should become identified through running simulation scenarios (Corno et al., 

2016). 

Information is useful when it becomes knowledge and the knowledge allows for decisions and 

actions to be based on the ideal workings of the system (see Figure 4-1). This is the decision-

making properties to OODA Loop in a feedforward design. The information is gathered and sorted 

from external stimulae (i.e., sensor recordings) to refine the data into meaningful sets that should 
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identify the need to action and to what action that should be (Quintas et al., Menezes and Dias, 

2017; Parasuraman et al., 2000; Sheridan, 2011). 

INFORMATION:
Raw and Unsorted

KNOWLEDGE:
Meaning of the 

Information

DECISION:
ACT

INFORMATION:
Raw and Unsorted

KNOWLEDGE:
Meaning of the 

Information

DECISION:
ACT

 

Figure 4-1: Basic Data Flow (Parasuraman et al., 2000) 

Since it is recommended that many different simulation scenarios be run to test and experiment 

the model, the model will need to clarify the nature and define the number of variables for each 

scenario. Managing the model is critical for accuracy and validity in the experimental scenarios. 

The correct level of understanding of the system’s functionality will allow for an ascertainable 

level of predictability using the models (Novak et al., 2017). Since there are hidden variables 

within the internal structure of the cyber-physical embedded system, the designer should choose 

designs where information lost in critical areas of the internal structures are at a minimum. Figure 

4-1 depicts the three high level structures of the system informational data flow. The areas of 

most concern, since each has internal structures that remain hidden, is the software-in-the-loop 

and the hardware-in-the-loop. The human-in-the-loop is assumed to have the cognitive ability to 

coexist within the cyber-physical system, i.e., natural intelligence (Ruff et al., 2002; Chen et al., 

2011). The software-in-the-loop has the multitasking control of the hardware-in-the-loop by using 

intelligent machine algorithms to decide and act based on the structure of its inference engine 

(see Figure 4-2). The software-in-the-loop and hardware-in-the-loop are inextricably tied together 

to perform the machine information processing and are the embedded portion of the CPS 

(Sheridan, 2011).  
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Figure 4-2: Human, Software, Hardware Loop Architecture (Trembley, 2015) 

 Many test methodologies use the Black Box theory of operation. By controlling the inputs to the 

system, the outputs can be observed in temporal relation to the inputs. Because some systems 

can be peered into, the white box methodology of testing could also be used in conjunction with 

these designed models (Novak et al., 2017). The measurement of performance of the system is 

the amount of information that can be processed into useful knowledge, allowing the cyber-

physical embedded system to decide and produces actions that are beneficial. The word beneficial 

is used in conjunction with Proposition 2 because a system not reacting in time because of 

information overload or starvation, i.e., lack of performance, is a measure of the correctness of 

the system. 

The prediction of problems becomes the next hurdle in the model and simulation. Once 

demonstrated that the model is valid, the simulation should be able to demonstrate system 

behavior. Simulation can begin (Frankot, 2012). The problem in defining the simulation scenarios 

is whether the system’s behavior, especially in large complex systems, needs to allow coherency 

to a predictable level of possible and sometimes even plausible outcomes. A scenario would be 

to refine the model to provide an idea of the stimulus for the decision-making process to either 
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the human-agent or the machine-agent (Jin et al., 2018). This is the criticality of the model and 

simulation. A scenario of having the automation mode shift to a different level need to be clearly 

stated or defined as a recovery action, i.e., the machine takes more control or the human takes 

more control. The model then assumes a method of the intention of the design to leverage the 

level of automation in any transient event that correlates to upshifting or downshifting in 

automation. Since the software-in-the-loop uses softcomputing nondeterministic states, the 

awareness to the adaptive and emergent behaviors of radical, or events leading too quickly 

shifting, must be adjusted to fit the criticality of the system (Parasuraman et al., 2000). 

4.2 Cyber-Physical System Test Architecture 

The experimental design would use a recursive test architecture (see Figure 4-3). The test 

architecture uses the different scenarios to generate and drive the system where the output or 

behavior of the system can be monitored and reported (Ohta et al., 2017). The test system 

architecture has the capabilities to allow access to the software and hardware running in real-

time. This is accomplished by means of a debugger, JTAG, or Boundary Scan device. 
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Figure 4-3: Test System Architecture (Trembley, 2015) 

4.3 Applied Experiment of a Cyber-Physical System 

 Simulated Moon landing 

The moon landing has been a classic programming exercise for students in the computer sciences 

since the late 1960’s (Martin et al., 2014). The design and requirement of the program is simple, 

but the exercise is a NP-Hard type problem where optimization is the difference between life and 

death. The scenario is this: 

The astronaut is in a moon lander and starts a descent at 50,000 feet above the surface of the 

moon. The mass and weight of the moon lander is considered all the way to the surface of the 

moon. That is, as the astronaut burns fuel to slow the descent, the moon lander gets lighter; The 

basic physics of the surface approach is the same as a feather being dropped from the same height 

since there is no atmospheric resistance. The bonus is that less energy is needed to slow the moon 

lander as it becomes lighter. From the start of the program, the moon lander descends to the 

surface of the moon commensurate with the gravitational tug of the moon, which is 1.62 m/s2. 
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The goal is for the astronaut to land on the moon surface at speeds not exceeding 5 miles per 

hour. In order to achieve a safe landing, the astronaut fires the moon landers thrusters to slow 

the craft. If the fuel is used prior to reaching the surface, the craft plummets from that height, 

and accelerates at 1.62 m/s2 to its total destruction on the surface of the moon, where 

unfortunately, the astronaut is killed. The optimal speeds of the descent rate at different altitudes 

to achieve a good landing are not linear. The moon lander cockpit controls are written with 

National Instruments LabView (see Figure 4-4). The virtual display has different interfaces to 

indicate fuel levels, altitude, and speed. The experiment also brings in the idea from Marquez and 

Ramirez experiments where the surface of the moon comes into play (Marquez and Ramirez, 

2014). Usually, a type of RADAR system is used to detect the surface directly beneath the moon 

lander (see Figure 4-5). The RADAR data digitally texturizes the surface so the heights and widths 

of the objects beneath the moon lander are known with precision. However, live video feeds to 

the cockpit are also available. For example, the video information of the moon’s surface starts 

with very low-resolution video representing a distance to the surface (see Figure 4-6), and when 

the moon lander is 100 feet from the surface, the detail become high resolution, and complicated, 

fraught with danger (see Figure 4-7). 
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Figure 4-4: Moon Lander Cockpit LabView (Trembley, 2018) 

 

Figure 4-5: RADAR Image 

(NASA, 2009) 

 

Figure 4-6: Video Moon 

Surface Distant (NASA, 1972) 

 

Figure 4-7: Video Moon 

Surface Near (NASA, 1972) 

The controls that the astronaut, or human-agent uses consist of a joystick (see Figure 4-8) and 

throttle control (Figure 4-9). The joystick is used to laterally move the moon lander. The throttle 

is used to control the descent of the moon lander. 
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Figure 4-8: Saitek X52 Joystick  

(Trembley, 2018) 

 

Figure 4-9: Saitek X52 Throttle Control  

(Trembley, 2018) 

There are three different experiments that should be performed using the SAE Levels of 

Automation (Table 3-2) (SAE INTERNATIONAL, 2014): 

1. The astronaut is fully in supervisory control of the craft and has only the basic control 

indicators. There are no warnings, alarms, or indication as to whether the moon lander 

will make it to the surface or not. This is Level 0 autonomy. 

2. The astronaut has warning systems indicating that the descent speed is too slow or too 

fast. This is either Level 2 or Level 3 autonomy. 

3. The astronaut has a warning system and a collision avoidance system using an embedded 

process that will take control of the moon lander and attempt to successfully land. This is 

a Level 4 or 5 autonomy. 

The results of the experiment are the success rates for landing safely on the moon. This also tests 

the softcomputing algorithms and does a baseline comparison between how well the 

autonomous system did against full human agency. This benchmarks the software design for 

correctness to the performance of the experiment (Wilkins, 2003). 
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 Blackjack with the BeagleBone™ 

The Blackjack Player uses a Model-Based Design (MDB) method to document the design process. 

This allows a concurrent engineering process that can help resolve issues much quicker, especially 

in the early design phase where assumptions are necessarily revised. The Blackjack Player is 

modeled and simulated prior to prototyping. The requirements of the design are the definitions 

of the inputs and outputs, and what qualifies the Blackjack Player as being any good. This is an 

experiment to test the verification and validation methods from design through development of 

cyber-physical systems with hidden variables (Shi et al., 2017).  

First, the initial model must show a simplified top-level block diagram of the individual 

components that make the system (see Figure 4-10). These three components are further refined 

to the individual processes that will be developed and tested individually: visual input system, 

neural network, and fuzzy inference system (Xu, 2016; Xin et al., 2015). Once the individual subset 

components are tested and verified, the integration of the subsets are combined to supersets and 

more verification testing is required. These components form the full software design that will 

make the Blackjack Player autonomously function. 
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Figure 4-10: Model Based Design Blackjack Player (Trembley, 2016) 

The following individual activities surround each component: 

• Model-in-the-loop (MIL)  

• Software-in-the-loop simulations (SIL)  

• Hardware-in-the-loop (HIL) 

• Real-time simulations, targeting, verification and validation, design of experiments,  

• Further model refinement 

All the above listed items are required to ensure the correctness of the designed autonomous 

system, i.e., the CPS, and performance that should allow the Blackjack Player to make money 

(Dundar et al., 2017; Backhaus et al., 2013). 

The BeagleBone Black microcontroller board was used in this research. The Beagle Bone consists 

of a fully capable general control input/output (I/O) using an ARM1 Cortex-A8 processor clocked 

at 1GHz with 512 Mb of DDR memory.2 Figure 4-11 shows the BeagleBone with the CCD camera 

attached. The fast processing speeds and considerable memory are key attributes to the system’s 

                                                           
1 The ARM Cortex-A8 is a processor that supports mobile and embedded designs. ARM processors are 
mainly used in today’s smartphones. 
2 DDR memory stands for “double data rate synchronous dynamic random-access memory. 
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overall performance, especially for the image process system (see Figure 4-10). Other notable 

characteristics of the BeagleBone is that it runs on Opensource software using a scaled down 

embedded Linux operating system. This provides a platform that is friendly to the hobbyist as well 

as the serious engineer. Because of its low cost, and its technical performance measures, it was 

chosen over its competitor the Raspberry Pi.  

 

Figure 4-11: BeagleBone with Camera (Trembley, 2017) 

The visual recognition system incorporates the most difficult requirements to achieve. Object 

recognition is a very difficult problem to solve. The understanding of an object is complex subject. 

Visual recognition systems often employ both cognitive psychology and neuro-science techniques 

to model and build the technology that mimics human visualization. If such a system is to be 

developed, it must know the concept of “object” and the 3-D environment in which it resides. All 

the other objects and conditions from the environment must be distinguished and dealt with in 

order to concentrate on the object of interest (Gao et al., 2016). 

An example of this complexity is a visual recognition system attempting to detect chairs in a room. 

The simple object known as “chair” becomes vastly complicated when the many different kinds 

of chairs are considered: armchairs, Adirondack chairs, bikini chairs, chaise longues, etc. And what 

about stools and benches?  Are they considered in the category of chairs?  Usually, objects can be 

broken down into a taxonomy of objects that have strong relational characteristics. The 
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Multinominal Latent Logistic Regression (MLLR) is used in this way with the visual recognition 

component (Xu, 2016). 

In order for a machine learning system to image process, it must be able to model the variability 

within the environment and the objects within it. The images contain data in a grid, and variability 

in the environment would include such things as illumination, shadow, contrast, object angular 

position, motion, and shape parameters. These parameters need to be accounted for by the 

Blackjack Player. To simplify the system, the Blackjack Player only has to recognize a standard 52-

card playing decks (see Figure 4-12) from an orthogonal angle to the playing card. Illumination, 

shadow, contrast, object angular position, motion, and shape parameters will all be optimized for 

the benefit of the Blackjack Player’s performance. However, later models that get closer to real 

world scenarios must account for these environmental factors. 

 

Figure 4-12: Standard 52-card Deck (Shutterstock, 2018) 

The camera is a 5-megapixels digital camera with a frame rate of 60Hz (see Figure 4-13). This 

should provide adequate resolution of the cards and real-time video feed as the game of Blackjack 

is played. Using a minimum resolution while still being able to recognize the cards in play is key 
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to system performance. This is the first optimization area that needs to be considered. The camera 

will be capturing one frame of 640 x 480 picture data at a rate of 60Hz. 

 

Figure 4-13: CCD Camera (Trembley, 2017) 

The Multinominal Latent Logistic Regression (MLLR) is a softcomputing technique that uses a 

supervisory training for image processing (Xu 2016). It is used in this application to improve the 

performance measures against standard image recognition software, such as the Linux OpenCV. 

The MLLR is a refined Latent Structural Support Vector Machine (LS-SVM), which is known to be 

a good classifier, and extends the ability of the LS-SVM hybridization using Regularized 

Multinominal Logistic Regression (RMLR) (Zu, 2016). 

The Algorithm 2 is used in the training of the MLLR. This algorithm uses a Gradient Descent (GD) 

method to improve the overall learning performance of the image processor: 

Step 0.  Initialize training data and latent variable for positive examples. 

Gradient Descent Loop: 

Step 1.  While true, do Steps 2-4. 

Step 2.  Relabel the latent variables. 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ℎ𝑖 (𝑤𝑘
(𝑡)

) = arg 𝑚𝑎𝑥ℎ𝑤𝑘
(𝑡)

∙ 𝜙(𝑥𝑖 , 𝑘, ℎ) 

Step 3.  Update model parameters. 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑤𝑘
(𝑡+1)

= 𝑤𝑘
(𝑡)

− 𝛼𝑡 ∙ ∇𝑙(𝑤𝑘
(𝑡)

) 

Step 4.  Output w. 
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To describe the decision-making process that needs to happen in order for the Blackjack game to 

be played, Figure 4-14 shows the input and output of the BPN. The player’s count, which is known 

in full, and the dealer’s card count, which is partially known, will determine whether the Blackjack 

Player wants another card (Hit) or does not (Stand). The BPN configuration for this research is a 

simple input and output model. 

 

The schematic for the Blackjack Player BPN is shown in Figure 4-15. The similarity to the Deep 

Learning Multilayer Perceptron architecture is the BPN learning (see Figure 3-4). It is therefore 

considered a good choice of algorithms for this design. 

X1

X2

Z1

Z2

Z3

Y1

Y2

1

1

Player

Dealer

Hit

Stand

 

Figure 4-15: Blackjack BPN Schematic (Trembley, 2017) 

  

Dealer Up Card Hit 

Player Count Stand 

Figure 4-14: BPN/FIS 2-Inputs 2-Outputs (Trembley, 2017) 
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There are three items to address for the BPN configuration:  

• Training of the network,  

• Testing of the network,  

• Setting up of the network. 

Training the BPN is accomplished by using a training data set that has a built-in collection of known 

playing card selections. Testing the network’s training against another verified data set, or even 

known real-world outcomes, allows the verification of the training. An example of the data set for 

the Blackjack BPN training is shown in Table 4-1. The entire data set contains only 40 elements, 

even though there are hundreds of combinations of card deals that could be used. This points to 

the power and robustness of a neural network that is given limited information, and based on 

similarity of common circumstance, the BPN makes possible good decisions based on its machine 

learning. 

Table 4-1: Blackjack BPN Training Data 

 

For the setup of the BPN, only three variables are considered: learning rate (α), activation 

function, and momentum. The learning rate (α) is a constant parameter used to control the speed 

of the Gradient Descent (GD). Momentum is an adjustment of a learning rate that improves the 

neural network’s response due to errors in the training set. Additionally, the activation function 

transforms the net input to a neuron into its activation thresholds. The BPN will have to be treated 

as a black box where only the inputs and outputs are observed.  

ID PlayerCount DealerCount Action

1 10 8 Hit

2 17 5 Stand

3 15 10 Hit

4 12 7 Hit

5 13 2 Hit

6 20 11 Stand
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An Epoch is a complete pattern training iteration to the data set. The number of Epochs that the 

BPN is trained to is set at 2,500. This should be sufficient to adjust the weights to values that do 

not change much with additional training. That is, the neural network has finished training and 

will not learn much more. In this case, the network is now “learned.” 

The form of the BPN training algorithm is as follows: 

Step 0.  Initialize weights to small random values. 

Step 1.  While true, do Steps 2-9. 

Step 2.  For each training pair, do Steps 3-8. 

Feedforward: 

Step 3.  Each input unit receives the input signal and broadcasts it to the hidden 
layer. 

Step 4.  Each hidden layer unit sums its weighted input signals and sends signals 
to the output units. 

Step 5.  Each output unit sums its weighted input signals and applies its activation 
function to compute its output signal. 

Backpropagation of error: 

Step 6. Each output unit receives a target pattern corresponding to the input 
training pattern and computes its error. 

Step 7.  Each hidden unit sums its delta inputs, multiplied by the derivative of its 
activation function, to calculate its error information term. It calculates 
its weight correction and calculates its bias correction term. 

Update weights and biases: 

Step 8.  Each output unit updates its bias and weights. Each hidden unit updates 
its bias and weights. 

Step 9.  Test stopping condition, set to false if complete. 

Once we arrive at a good set of weights for the Blackjack Player BPN, a test for the verification 

and validity of the data can be used.  

For testing, the test data of the BPN will be different from the training data. The weights 

generated from the training will be used, but it is imperative to use a second set of data to 
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understand the quality and reliability of the network. The testing of the BPN is relatively simple 

compared to the training algorithm. The neural network accepts its two inputs, and the outputs 

determine whether to take another card or stand. There is the data to be used that will determine 

whether the Blackjack Player Hits or Stands. 

The following is the general form of the testing and application algorithm for the BPN:  

Step 0.  Initialize weights from the training algorithm. 

Step 1.  For each input vector, do Step 2-4. 

 Step 2.  Set the activation of the input units 

 Step 3.  Set the hidden layer. 

Step 4.  Capture the outputs from the BPNN. 

Step 5.  Use the application to compare results. 

The Blackjack BPN is designed with 2 input nodes, 3 hidden nodes, and 2 output nodes (see Figure 

4-15). The learning rate is set at α = 0.5 and momentum = 0.5. The values of the learning rate and 

momentum are arbitrary. In this case, however, the performance of the network will either 

improve or degrade based on the selection of these variables. The lower the learning rate, the 

longer the network could take to train. 

The type of activation function chosen is called the bipolar sigmoid function: 

𝑓(𝑥) =
2

1 + exp (−𝑥)
− 1; 𝑟𝑎𝑛𝑔𝑒(−1, 1) 

Each node in the Blackjack BPN will use this equation to figure out its activation. Figure 4-16 shows 

a partial screen shot of the activation function calculations on the network node during training.  
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Figure 4-16: Trial Input / Output Activations (Trembley, 2017) 

The Fuzzy Inference System (FIS) references the Fuzzy Inference Hash Table probabilities given a 

count of the dealt cards. This will be very critical to making the final determination of Hit or Stand. 

The FIS strategy will be to use the probabilities generated by the BPN and make the final decision 

of Hit or Stand. For example, if the BPN recognizes that it has an 80% chance of beating the dealer 

and suggests a Standing, the FIS is used to tweak the solution based on probabilities of how many 

cards have been played and how many players are also in the deal.  

4.4 Blackjack Player Experimental Results 

The results of the experiment show that by using only a Blackjack BPN strategy, the win-loss ratio 

does reach an equilibrium as predicted by game theory.  For example, from Blackjack game 20 on, 

the win/loss percentage remained a steady at 41% (see Table 4-2).  With the Blackjack BPN trained 

to only one strategy, the Blackjack BPN will only win about 42% of the games played.  The dealer 

is still in favored in winning.  In review of the training data set for the backpropagation neural 

network (see Table 4-1), the training data set contains the opportunity for the Blackjack player 

winning at least 54% of the games played.  However, in the face of real-world odds and playing 

against a human dealer, it is much less.   
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Table 4-2: BPN Only Win/Loss Ratio 

 

Using a combined Blackjack BPN/Fuzzy Inference strategy, which makes the Blackjack Player a 

more hybridized system, the win/loss ratio again achieves an equilibrium, but becomes slight 

worse in its decision making.  From Blackjack game 20 on, the win/loss percentage remained 

steady at approximately 35% (see Table 4-3).  However, when using the Fuzzy Inference to 

determine whether the player should Hit or Stand, the win/loss ratio actually worsened.  This is a 

result of not adjusting to the marginal calls of hands involved in certain plays.  That is, the FIS 

caused the system to act more conservatively by not taking risks associated with the BPN alone.  

Table 4-3: BPN with FIS 

 

In the game of Blackjack, the binary choice of Hit or Stand is based on applied rules of whether in 

the face of odds for or against the dealer, is not a discrete decision.  For example, if the BPN is 

trained to stand at the card count of 17, while the dealer possesses an up card count of 10, the 

player is in the marginal range of winning the hand.  That is, the dealers down card only needs to 

be an Ace, 10, 9, 8, or 7 to win. The game is statistically in the dealer’s favor.  The distribution 

Trial #1 Wins Losses %

BPN 23 32 41.8182%

Dealer 32 23 58.1818%

Total Games Played 55

Trial #2 Wins Losses %

BPN 19 36 34.5455%

Dealer 33 22 60.0000%

Total Games Played 55
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within a randomly shuffled deck indicates that it will take luck to win (see Table 4-4) as more than 

67% of the cards remaining that the dealer could have is most likely the case. 

       

  

Table 4-4: Card Deck Distribution 



 

77 
 

4.5 Summary 

A modeling framework that contains the resulting data necessary to verify and validate both the 

performance of the system (meaning its ability to sustain and react to the operational 

environment), and the correctness as a measure of the performance (meaning the end result) will 

be conducive to a system that continually operates as designed. This is Proposition 2 from Chapter 

1. The linear and non-linear attributes of the CPS are a complex set of feedforward and feedback 

loops that are best describe using the OODA loop model. The OODA model can be seen as 

information flow through the system as a matter of input sensors and output actuators; however, 

the information internal to the system remains hidden and unknown. With better models of the 

CPS, the test bench setups of the system’s natural architecture emerge as a meta-model.  The 

engineering tools allow for the data extraction of some of the hidden information, whereby the 

model predicts the action and reaction of the system.  In a sense, the system can be tuned.  This 

is because the hidden information is the memory of the system, and it is the learned memory that 

is of most importance as it will need adjusting through training.  The two proposed bench systems, 

the Moon Lander and the Blackjack Player, provide a framework of how this memory extraction 

is accomplished and how to adjust.  In each case, the AI systems within the CPS, interacting with 

a human-agent, is investigated using the principles of model-based development, real-world 

prototypes, and non-invasive test access points.      
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 Application of the Thesis 

5.1 Introduction to Applications 

The frontier of modern softcomputing employs very fast computers and their associated 

algorithms operating on state of the art hardware. Algorithms that execute the probability models 

in the decision-making aspects of the machine-agent for decision-making will compress the timing 

latency of such systems for the foreseeable future. Softcomputing algorithms -- Boltzmann and 

State Vector Machines (SVM), Radial Based and Backpropagation Neural Networks, Self-

Organizing Maps, etc. -- require significant execution overhead that would prevent decisions and 

actions to be made in a timely manner (Geyer and Carle, 2016; Kang et al., 2018). As the CPS 

systems become more complex as a result of the increase in operational complexity with broad 

range functionality, and with increased levels of automation that the system needs to achieve in 

order to carry out its end designed objective, the CPS becomes increasingly difficult to test, and 

harder to verify and validate as to performance and correctness (performance being related to 

the function, and correctness related to the behavioral). However, through an understanding of 

the system’s model, simulation can and should be used, not only as a proof of concept, but as an 

official part of the record in the certification of the system’s use. Applications of the current theory 

are well underway but are still lacking the infrastructure of sound and bullet proof testing 

(Hernandez et al., 2018). 
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5.2 Autonomous Vehicles 

The autonomous vehicle is part of an ongoing development of CPS intelligent technologies. In the 

commercial, industrial, military, medical, governmental, and transportation sectors, has a unique 

role and requirement that can benefit from leveraging the machine-agent to higher levels of 

autonomy in vehicular motion (Korssen et al., 2018). Each sector provides its own oversight, not 

just internally to its own guidelines and principals, but to rules and regulations that legally, 

through licensing and certification, allow the CPS autonomous vehicle technologies to be used in 

existing infrastructures, such as the highway system (Gao et al., 2016; NTSB, 2015). The SAE 

defines levels of automation for autonomous vehicles, but the SAE is only the “specifying” 

authority for the automotive industry (SAE INTERNATIONAL, 2014); a company like Tesla will use 

the SAE specifications in the design of their autonomous car; however, it is the Highway 

Transportation Board (HTB) that will approve any real testing on the highway or certify the 

autonomous vehicle as safe for driving on the highway (Ohta et al., 2017) . 

The autonomous car, when fully certified and licensed for use, will become part of the highway 

infrastructure as overseen by the US Highway Transportation Board. Additionally, the National 

Transportation and Safety Board (NTSB) has the overall say in whether to license an autonomous 

vehicle or not. And this point is made because there is an ongoing debate regarding whether the 

autonomous car gets licensed independently or whether a licensed driver must be with the 

autonomous vehicle. The liability using autonomous vehicles has also to be defined (Lazanyi and 

Maraczi, 2017). In the matter of the collision avoidance system (CAS), this level of automation is 

not considered part of the licensing process of the car, since the car needs a licensed driver, but 

instead, part of the certification process that the automobile needs to establish in order to be 

considered safe for driving on the highways and interstates (Schnelle et al., 2017; Vahidi and 

Eskandarian, 2003). 
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5.3 Unmanned Aerial Vehicles 

Since CPS autonomous vehicle systems are what can best be described as “cutting edge,” the 

distinctions of a regulating authority are fuzzy. Technology is sometimes so new and novel that it 

is uncertain how to categorize it. Other times, the technology is a hybrid of different uses, and 

could fall within the realm of several regulating authorities (Sun et al., 2017). This is the case of 

Unmanned Aerial Vehicles (UAV) where the FAA and local and state governmental authorities 

interact. Because federal and state laws differ, and state to state laws and regulations differ, 

understanding the laws often will determine where a technology is developed (FAA, 2018). 

Unmanned aerial vehicles, a.k.a. “drones”, are controlled remotely or fly autonomously. As with 

every new high-tech “thing” on the market, there is also a learning curve. For example, there are 

many reported incidences of airline pilots in landing patterns at heavily congested airports that 

spot drones at or near the altitude they are flying. Near misses and collisions between UAV and 

aircraft have been reported (Carey, 2017). Because these incidents are very worrisome to the 

airlines and the FAA, congress established the FAA Modernization and Reform Act of 2012 to 

regulate the commercial drone industry. The FAA needed laws to regulate the unexpected 

popularity of commercial off-the-shelf (COTS) drones, and their subsequent misuse by the 

consumer (Carey, 2017). 

The commercial drone industry has not slowed in popularity due to increased regulations. The 

commercial sector has the widest set of uses for UAV technologies, everything from crop dusting 

to aerial inspection of power lines. The sales of drones grew from $44 million in 2013 and is 

estimated to reach $1.3 billion in 2017 (statista, 2017). Plans for Amazon to use drone 

technologies to deliver packages from warehouse to door is being engineered. The days of the 

pizza delivery person are numbered. 
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5.4 Internet of Things 

Continuing the coffee maker example from Section 3.3, consumers have a wide variety of choices 

of coffee makers with various levels of automation. The automatic coffee maker is an ideal 

example of levels of automation in design. Because coffee makers of simple design only have an 

on/off button to press to start the brewing process, this is the simplest example of a CPS at a very 

low level of automation. The person still has to fill the coffee maker with water, feed in the ground 

beans, and figure out when the brewing process is complete; however, there are now coffee 

makers that grind the coffee beans, set the water levels, and schedule when and what 

temperature the coffee is made. The person has very little to do with this coffee maker from the 

initial setup except to make certain that the supply of beans and water in the hoppers are 

adequate. The person can also remotely control the coffee through a smartphone app that can 

enable or disable features or just check in on the status. This example considers the coffee maker 

as an object within an Internet of Things (IoT), a CPS system derived from existing technologies 

(Dhanalaxmi and Naidu, 2017).  

Garage doors can be checked over the smartphone to verify whether the door is open or not. A 

person can remotely open and close the garage door using the smartphone. However, the concept 

of taking a “thing” and hooking up to the Internet gets frightening because often times the 

technology is not as reliable as the marketing brochures claim. For instance, getting the garage 

doors on WIFI can be somewhat difficult, and because the company who manufactured the garage 

door opener probably did not secure the communication channel between opener and the WIFI 

router, a person using this technology is now more vulnerable to a threat vector from outside 

attack. 
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5.5 Security 

In terms of the state of cyber-physical embedded system technology, and where it will be in the 

foreseeable future, there are a few general rules and guidelines that can be applied. The CPS 

systems will be wireless, more capable, and safer (Bajpayee and Mathur, 2015; Backhaus et al., 

2013). Currently, it is known that there is a security problem with this technology. Much of it is 

not safe from intrusion and infiltration. Many home Internet of Things (IoT) devices transmit 

wirelessly, but the wireless transmissions are not secure, so the transmission can be intercepted 

by an outside source monitoring the signals. This outside source, for good or bad, while 

monitoring the signals is invading privacy but is essentially legal as long as the signals intercepted 

are outside the property. The intercepted signals have the potential for being “hacked,” in which 

possible malicious behavior to the CPS could occur. The scenario would go like this: the 

homeowner leaves for the day to go to work. A thief uses a device that captured the signals from 

the garage door opener and decodes the captured signal to open the garage door to gain access 

inside the home in the owner’s absence. In a worse case example, the hacker could knowingly 

turn on devices without proper setup, such as turning on an empty coffee maker, or turning on 

the kitchen stove while flammable materials are on top. This has the potential for damage to the 

device, persons, and property. 

For example, in 2012, the Stuxnet computer worm was introduced to an Iranian nuclear power 

plant; the Stuxnet worm took control of the CPS system that controlled the uranium centrifuges 

by over-speeding the centrifuges, causing massive destruction to the machinery. If security of CPS 

systems is required, this adds another layer to the design that is not part of the functionality, but 

the correctness of the system designed to be hardened against attacks (Kushner, 2013). 



 

83 
 

Unfortunately, there are no clear rules or regulations to force manufacturers to build in 

safeguards against attack vectors. However, there are manufacturers that do take security 

seriously. A case in point is the General Motors (GM) OnStar system. Since cars have a lot of 

automatic features (automatic door locks, remote engine start, etc.), GM OnStar provides a 

secured communication link between the car, the owner, and a remote manager. Providing 

remote assistance to the authorized user of the GM vehicles, command and control over the 

automated features become seamless. If a person with a GM vehicle gets locked out of the car, 

the person can call OnStar with an ID, and the remote GM OnStar manager will unlock the car. 

This service seems beneficial, and other car manufacturers offer similar type services but without 

the necessary security in place. This could raise questions of safety if access to systems can be 

remotely control while the CPS is in operation (Zhang et al., 2016). 

5.6 Safety 

Using the test architecture described in Section 4.2, security can be tested concurrently with the 

functionality by using attack vector scenarios that attempt to intercept or take control. The US 

Consumer Product Safety Commission (CPSC) has oversight on products within the United States; 

however, the CPSC is a reactionary organization to safety concerns of products being sold on the 

market. The CPSC is not a regulatory agency but a watchdog group that collects data being 

reported by and about consumers, typically through hospital emergency room visits. If there is 

sufficient evidence that a product is unsafe, the CPSC will issue a notification and potential recall. 

Most manufacturers of products sold within the US perform a certain amount of testing to certify 

their product as safe. For example, electronic products, cell phones, laptops, televisions, etc., 

usually go to the Underwriter Laboratories (UL) for testing the safety of the product, and also have 

Federal Communication Commission (FCC) testing as well for Electro-Magnetic Interference (EMI). 
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If the product is to be sold in Europe, the product must get the Conformité Européenne (CE) for 

safety and the Technischer Überwachungsverein (TUV) for safety and EMI certification. This 

reduces the overall liability if a product does not behave as expected. 

These are examples where even rigorous testing demonstrated compliance to the rules and 

regulations and allowed the sales of a product to consumers, but the products still have turned 

out to be very dangerous. This is the case of the Samsung Note 7. The Samsung Note 7 has caught 

on fire on planes, in people’s pockets, etc. even though the Note 7 had all the certifications from 

testing. The problem was a defect in the lithium ion battery that caused the phone to suddenly 

explode and catch fire. The eventual loss in revenue for Samsung for this one product is estimated 

between $5 to $17-billion (Mullen and Thompson, 2016). 

5.7 Hardware and Software Maintenance  

Additionally, with any technology, the technology will require upgrades usually in software, but 

also hardware. This is the life-time cycle management paradigm that occurs with most 

technologies. However, the question is, “Does the product with an upgrade need to be retested 

and recertified?” This is a problematic question, and one where modeling and simulation could 

help quickly resolve questions of impact to the system updates. For example, if the product gets 

a software upgrade, the manufacturer could run simulation scenarios using the design changes to 

previous simulations that the product was certified with and provide proof that the changes make 

the product better or fix the bugs from the previous release. This data could then be used as 

evidence to the certification authority, FCC, CE, UL, etc. The regulating authority, manufacturer, 

and consumer would see this as beneficial in saving time and money as compared with a full retest 

as done in the initial certification of product. In the past, regulating authorities were reluctant to 

use modeling and simulation as a method of certification. However, this idea is changing as 
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modeling and simulation methods are vastly improved from where they were a decade ago 

(Quintas et al., 2017).
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 Conclusion 

This thesis frames automated or autonomous systems at the cyber-physical embedded system 

level. Embedded systems that interface with larger systems that form networks for monitoring 

and communications are part of the CPS considered the Internet of Things (Xin et al., 2015; Chen 

et al., 2018). These embedded systems must apply known principles of human factors to the 

design. The ability of the human-agent to adapt to how the machine reacts is paramount to the 

usefulness and eventual success of the system. This essentially becomes the performance 

measure of the system, and for optimal human agency to interact and benefit from the use of an 

automated system, the system must be designed within the limits of skill, knowledge, and 

experience of the user. This is especially the case in safety critical applications (Korssen et al., 

2018; Quintas et al., 2017). 

Past experience with system design has considered the human-agent as the stimulus-response 

function within the system; however, today, many systems have autonomous features that use 

softcomputing techniques such as artificial neural network, genetic algorithms, fuzzy logic, etc., 

which obviate the necessity of human-agent action. However, these systems are difficult to test 

for functionality, performance, and correctness based on dynamic changes in the operating 

environment (Novak et al., 2017). 

The response to external events that are shared between human-agent and machine-agent are 

shown in roles of changing responsibilities to those events that require that the level of 

automation be well known (Zhang et al., 2016). Both the experiential element of human-agent 

and the hard-wired experience of the machine-agent must navigate and ultimately reach 

decisions that are at least optimal or better than what could be achieved by either alone. 

However, with reliance on ever higher levels of automation, the human-agent can become 
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physically and cognitively disassociated from the system (Parasuraman et al., 2000). This could 

lead to disruptive and disastrous consequences that jeopardize the value and success of the 

system. Understanding measurements of complex human-agent and machine-agent response 

states, especially in uncertain environments, requires that critical activities be fully tested and 

proven prior to the system being safely deployed (Sheridan, 2002). The use of modeling, 

simulation, and prototyping become the ultimate tool in the verification and validation process. 

Having a good model provides a method to test the design prior to service, or if in service, allows 

methods to demonstrate how system upgrades can be safely adapted and operated. Simulation 

gives insights to the changes of input stimulae by monitoring the output response. Prototype gets 

the system close to the final system that allows for deep insight to the hidden variables in the 

system and emergent behavior (Korssen et al., 2018). 

The sensors, software and hardware systems that comprise the CPS embedded system derive 

from technologies where the design, test, and deployment of intelligent technologies is difficult 

and techniques often poorly understood (Novak et al., 2017). The choice of using greater 

autonomy in systems requires designing the system to the appropriate level of automation and 

knowing how the CPS embedded system leverages the ability of the human-agent and the 

machine-agent to form a hybridization of statistical methodologies and techniques for decision-

making (Xin et al., 2015). It is not enough to use standard design and engineering principles and 

practices in design and test. It is necessary to understand the “systemness” of such design to 

achieve a better understanding of the system’s core competencies. In order to achieve 

technological milestones in the development and deployment of such systems, the available 

technology must take into account the knowledge of how these systems will be used. This thesis 

opens the door to pushing the frontiers of how these systems should be designed, tested, and 

ultimately fielded (Alippi et al., 2017; Layadi et al., 2015). 
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The framework of human-agent and machine-agent design, in order to be effective, needs to 

coincide with technologies that employ the correct level of automation. These machine-agent 

intelligent systems involving the human-agent are difficult to test because of transient upshifting 

or downshifting in the machine-agents level of autonomy. Once a shift in the level of automation 

occurs, the roles and responsibilities of the machine and human change (Sheridan, 2011). The 

standard black box approach limits the level of understanding of such systems -- that is, “are the 

systems safe to use if a transient downshift occurs?” As the case studies in passenger airline and 

train disasters are a reminder (NTSB, 2014; NTSB, 2015), the answer is “No.” This is due to the 

unknown complexity of hidden variables that the automated system is attempting to solve with. 

Automation in systems such as driverless cars, drones, collision avoidance systems, etc., use 

probabilistic models, and the decision systems of these systems are used mainly to cognitively 

offload tasks from the human-agent. So, before any CPS embedded system is deployed, the roles 

of human-agent and the machine-agent to the level of autonomy and expected autonomy must 

be well understood. 

The future of CPS embedded systems using softcomputing, especially CPS systems embedded 

within larger CPS systems, raises the possibility that such systems can and will help and prevent 

accidents and become optimally efficient (Thalassinakis et al., 2006; Corno et al., 2016). However, 

misuse of such a system is likely to occur without sufficient understanding of the entirety of the 

environment in which these systems operate. The need for safeguards is paramount to prevent 

the misuse and abuse of such systems. The machine-agent and human-agent are prone to Type I 

and Type II errors. However, the supervisory command and control structure of either the 

machine or human should allow for the actionable decisions to remain viable, with the ability to 

recover even under high levels of uncertainty (Xin et al., 2015). This is Proposition 2 from Section 

1. 
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In adapting the principles of many disciplines such as biology, economics, computer, cognitive 

system, human factors, electrical, mechanical, systems engineering, etc., the thesis takes a 

multidisciplinary approach to CPS systems in science and engineering in its design and test, but 

also in its effects on the world at large. Using CPS embedded systems, such as IoT or M2M, 

machine and human intelligence using similar guidelines and principles will have potentially some 

very beneficial outcomes (Lee, 2015). The features of the CPS embedded system will allow for the 

human-agent to operate with different levels of knowledge, learning, and language. This 

safeguards the control of the system so that it operates in its intended effective operational 

manner. In the design of these systems, taking the human out of the loop is not the best of ideas, 

but by coupling the knowledge of the design to the cognitive ability and expectation of the 

operator, the operator trains, learns, and reacts to the normality of the conditions as they arise 

(Parasuraman et al., 2000). 

The idea that the future will be handled by very smart “intelligent” machines is essentially here. 

In the recent past, designing intelligent systems with any level of sophistication and robustness 

was impossible because the computational requirements of such a system were not available. 

Most current CPS embedded systems perform simple tasks that remove the human-agent from 

the design equation without any impact to safety. The automatic coffee-maker example shows 

that although the cup of coffee end result remains unchanged, the methods employed are vastly 

different within the current time and epoch when such advanced technological possibilities are 

realized. But replacing human agency with a machine tends to dehumanize. The human-agent 

becomes a stimulus-response to the design of the system’s operation, which is gradually being 

replaced as technology advances. In many cases, the human is treated as a bio-mechanical 

computer. As Werner von Braun was once quoted as saying, “The best computer is a man, and 

it’s the only one that can be mass-produced by unskilled labor.”   
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Although computer systems offload much responsibility from the human-agent, it is the human 

agency requirement, the “human-in-the-loop”, that determines whether the system succeeds or 

fails, and the human agent should be the final arbiter of the system.  
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 Future Research 

7.1 Introduction to Research and Development 

The need for research and development in the field of CPS embedded systems will continue 

unabated for the foreseeable future. Government agencies like DARPA, NASA, and ESA continue 

to push the frontiers of cyber-physical and other intelligent technologies. Corporations like 

Lockheed Martin, Boeing, Tesla, Sony, Honda, Samsung, Apple, Google, etc. also are in the 

business of advancing to continually push the limits of cyber-physical systems technology. The 

future outlook is promising for research funding and development dollars (Lee, 2015). 

7.2 Mathematical Models and Meta-Modeling  

A formal mathematical model would be a nicety for the development and validation of cyber-

physical systems; however, the feasibility of producing a good and well-understood mathematical 

model of a CPS may not be possible.  The complexity of the system does not allow for a descriptive 

model to be easily formulated.  Although control system theory describes linear and non-linear 

dynamics in both discrete and continuous systems or a hybridization of both, this thesis recognizes 

the drawback of using such structured methods to describe CPS’s in terms of performance and 

correctness where complex hardware and software systems interact with multidimensional time 

domain.  The majority of cyber-physical systems are hybrid versions using combinations of the 

fore mentioned. In the context of using non-trivial intelligent systems with the greater construct 

of the CPS, system behaviors based on unknown or unquantified inputs are likely to attribute to 

abrupt disorganization of the system, where the system must adapt or fail. Since catastrophic 

failure within the context of an operational system is not a desirable outcome, in safety critical 

systems, the liability of not investigating far enough the range of these narrow system behaviors 
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is problematic in the resource intensive activities of design verification and validation.  The 

question is then asked, “Is there a method that can provide the model with sufficient oversight 

that allows the details of the systems to always operate within a safety window?”   

In researching this question, the DARPA META Program was discovered (DARPA, 2017).  The 

program was founded on the idea that improvements in the integration and testing of complex 

cyber-physical systems must rely on a model-based design method that takes into account 

hierarchical abstractions in the system’s architecture (Korssen, et al. 2018).  The true 

mathematical models are now dispensed with in favor of further abstracting the systems as a set 

of objects.  DARPA has essentially developed a new set of tools that allows for the verification and 

validation of the complex CPS design.  The tool set is call the META Tool Suite and was developed 

to improve defense contracting manufacturing and development processes by providing a formal 

meta-modeling language.  System engineering of large scale projects would proceed along the 

lines of the following:  

…to optimize system design with respect to an observable, quantitative measure 
of complexity for entire cyber-physical systems; and to apply probabilistic formal 
methods to the system verification problem, thereby dramatically reducing the 
need for expensive real-world testing and design iteration (DARPA, 2017). 

This is the problem the thesis is attempting to resolve. With the increasing complexity levels of 

cyber-physical systems, the meta-modeling through hierarchical abstraction is an alternative to 

that of traditional structural modeling methods.  With the development of meta-languages and 

tools, the challenge is to investigate the application of hardware and software within the context 

of the cyber-physical system designs.  This begins a research position to better understand the 

implications of the CPS in operation, and how trust is built into the systems.  
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7.3 Cyber Security in Cyber-Physical Systems 

Cyber security is a major concern, and a large part of cyber-physical system architecture.  In 

Chapter 2, the discussion of “hackers” taking control of cyber-physical systems, like an IoT coffee 

maker or a Roomba™, is a real possibility and a big problem for designers of such systems 

(Khorrami, et al., 2016).  The cyber security aspect of CPS’s is especially important when protecting 

critical infrastructure, such as power systems, emergency communication systems, 

transportation, etc.  The Stuxnet worm (Section 5.5) is an example of how cyber-physical systems 

can destroy themselves from the inside out. The proposed research in the area of cyber security 

with cyber-physical systems is then to form a model, using the META tools mentioned in Section 

7.1, to demonstrate the inherent gaps or flaws that could lead to dangerous problems when two 

or more cyber-physical systems are combined.  Since many cyber-physical systems embed 

themselves within larger systems, the hierarchy of their Systems of Systems (SoS) architecture 

needs to be verified for its usability, maintainability, and security (meaning that the “good” guys 

get to use the system, and the “bad” guys are denied access to it).     

In the Figure 7-1, two CPS’s are shown and share a connection called the “CPS Access Bridge.”  

The CPS Access Bridge is how information is passed between the two systems.  Both systems are 

in the Cloud, and each system has a different level and type of security protocol.  For example, 

CPS 1 is connected to the Internet and uses a password authentication protocol, while CPS 2 has 

to be physically accessed at the site.  However, because CPS 1 is able to be accessed remotely, 

and it is connected to CPS 2 through the bridge, the question becomes, “Can it be shown that the 

access gateway from CPS 1 to CPS 2 is secure?”  In cyber security terms, the combining of the two 

systems decreases security though an increase in system complexity.  Both systems provide 

potentially more unsecured channels through compromised passwords and other unknown 
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access points.  It is in this manner that the possibilities of exploiting existing security vulnerabilities 

becomes even more of a concern.   

Internet 
Access 
Point

CPS Access Bridge

Cyber-Physical 
System

1

Cyber-Physical 
System

2

 

Figure 7-1: CPS Cyber Security (Trembley, 2018) 

7.4 Critical Systems using AI 

The definition of a safety critical system is a system whose failure will result in death or serious 

injury to people and damage to equipment and property (Trembley, 2018).  To evaluate a CPS 

using AI, there are three attributes that must be addressed: security, criticality, and robustness. 

Each attribute combines both the usefulness and reliability of such a system, and there are trade-

offs involved.  It is the tradeoffs that must be carefully researched in order for the goals of the 

system to be accomplished.  Any CPS design will require all three attributes to be addressed and 

quantified for a level of cyber-security to prevent disruption from attacks.  The cyber security 

guidelines and standards for network and data protection is needed ensure the confidentiality, 

integrity, and availability of the CPS.  This is addressed in the preceding, see Section 6. 

The criticality is the value placed on the importance of the “things” in the system. Researching 

CPS criticality is a result of its function within the larger system as a measure of its associated risk 

in the system.  For example, the CPS can monitor or control processes with high degrees of 

criticality. Since criticality is a difficult number to assign, in critical systems, redundancy and 
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failsafe emergency shutdowns are often employed to increase the reliability of the system in case 

of unanticipated issues. This is where the research needs to understand the criticality of the 

system and how it behaves.  

The robustness of the CPS system has to be capable of adapting to changes in the operational 

environment without suffering physical damage or loss of the critical features of its functionality. 

The design of the CPS needs to be capable of detecting equipment malfunctions, false alarms, and 

cyber-attacks. This is where the artificial intelligence becomes a necessary agent to the orderly 

and safe operation of the system. A CPS that is constantly exposed to a complex set of 

environmental stimuli will need to navigate the complex nature of faults, false alarms, and 

mismatches. The engineered reliability of the component devices that comprise the CPS is where 

the research into the areas of robustness, security, and criticality is paramount to the overall 

success of the CPS.  
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