

RA Computer Science and Applications

A Uniform Framework for Modelling
Nondeterministic, Probabilistic,
Stochastic, or Mixed Processes and
their Behavioral Equivalences

Marco Bernardo
Rocco De Nicola
Michele Loreti

IMT LUCCA CSA TECHNICAL

REPORT SERIES 02
August 2012

#02
2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097140?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMT LUCCA CSA TECHNICAL REPORT SERIES #02/2012

© IMT Institute for Advanced Studies Lucca
Piazza San Ponziano 6, 55100 Lucca

Research Area

Computer science and applications

A Uniform Framework for
Modelling Nondeterministic,
Probabilistic, Stochastic, or Mixed
Processes and their Behavioral
Equivalences

Marco Bernardo
Università di Urbino - Dipartimento di Scienze di Base e Fondamenti

Rocco De Nicola
IMT Institute for Advanced Studies Lucca

Michele Loreti
Università di Firenze - Dipartimento di Sistemi e Informatica

A Uniform Framework for Modeling Nondeterministic, Probabilistic,
Stochastic, or Mixed Processes and their Behavioral Equivalences

Marco Bernardoa, Rocco De Nicolab, Michele Loretic

aDipartimento di Scienze di Base e Fondamenti – Università di Urbino – Italy
bIMT – Institute for Advanced Studies Lucca – Italy

cDipartimento di Sistemi e Informatica – Università di Firenze – Italy

Abstract

Labeled transition systems are typically used as behavioral models of concurrent processes. Their labeled
transitions define a one-step state-to-state reachability relation. This model can be generalized by modifying
the transition relation to associate a state reachability distribution with any pair consisting of a source
state and a transition label. The state reachability distribution is a function mapping each possible target
state to a value that expresses the degree of one-step reachability of that state. Values are taken from
a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered
sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to
capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC),
fully stochastic processes (ACTMC), and nondeterministic and probabilistic (MDP) or nondeterministic and
stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral
equivalences. They can be defined on ULTraS by relying on appropriate measure functions that express
the degree of reachability of a set of states when performing multi-step computations. It is shown that
the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS
coincide with the behavioral equivalences defined in the literature over traditional models except when
nondeterminism and probability/stochasticity coexist; then new equivalences pop up.

Keywords: labeled transition systems, discrete-/continuous-time Markov chains, discrete-/continuous-time
Markov decision processes, bisimulation equivalences, trace equivalences, testing equivalences.

1. Introduction

Process algebras (see [15] and references therein) have been successfully used in the last thirty years to
model and analyze the behavior of concurrent systems. Apart from specific syntactic operators used to
define the term algebra, the basic ingredients of these formalisms are the model called labeled transition
system (LTS) [81] and behavioral relations in the form of equivalences or preorders. By exploiting the
structural operational semantic approach [104], an LTS is compositionally associated with each term and
behavioral relations over LTS models are introduced to compare process terms describing systems at different
levels of abstraction and to investigate properties of interest.

Initially, process algebras were mainly designed to model and assess functional behaviors. However, it
was soon noticed that other aspects of concurrent systems are at least as important as the functional ones.
Thus, many variants of process algebras have been introduced to take into account quantitative aspects of
concurrent systems. There have been proposals of (deterministically) timed process algebras, probabilistic
process algebras, and stochastic(ally timed) process algebras, whose semantics have been rendered in terms
of richer LTS models quotiented with appropriate behavioral relations.

The purpose of this paper is to set up a unifying semantic framework based on an extension of the
LTS model and to provide a uniform definition of the main behavioral relations, which underpins the
many nondeterministic, probabilistic, timed, and mixed variants of process algebras that have appeared

To appear in Information and Computation February 28, 2013

in the literature. Our work builds on two existing extended models – rate transition systems and simple
probabilistic automata – which we now briefly recall.

In [48], two of the authors of the present paper, together with Latella and Massink, introduced a variant
of the LTS model called rate transition system (RTS) as a uniform tool for providing semantics to stochastic
process languages. The transition relation of LTS describes the evolution of a system as a set of triples
(s, a, s′) each expressing reachability in one step of a state s′ from a state s when executing action a.
The transition relation � of RTS, instead, associates with any pair, consisting of a source state s and an
action a, a function P mapping each possible target state s′ into a nonnegative real number. The RTS

transition s
a
� P has the following meaning: if P(s′) = v > 0, then s′ is reachable from s by executing a

at rate v; if P(s′) = 0, then s′ is not reachable from s via a. In [49], the same authors provided an elegant
RTS-based operational semantics for TIPP [63], PEPA [73], EMPA [27], and IML [69] (as representatives
of stochastic languages with a multi-way interaction paradigm) and for stochastic CCS and stochastic
π-calculus [105] (as examples of stochastic languages based on the two-way interaction paradigm).

In [109], Segala introduced a variant of Rabin’s probabilistic automata [107] whose transition relation
associates a discrete probability distribution over actions and target states with any source state. Every
transition is thus of the form (s,P) where s is the source state and P associates a probability value with each
pair (a, s′) formed by an action a and a target state s′. This results in a model combining probability and
nondeterminism, which is fully probabilistic when every state has at most one outgoing transition and fully
nondeterministic when every transition leads to a probability distribution concentrating all the probability
mass on a single pair. A special case of this model is the so-called simple probabilistic automaton, in which
every transition leads to a probability distribution concentrating all the probability mass on pairs with the
same action a and hence can be expressed as s

a−→P where P is a discrete probability distribution over
target states only. For simple probabilistic automata, notions of bisimulation, trace, and testing equivalence
were studied by Segala and coauthors in [112, 110, 111].

In this paper, we perform a further step in the direction of a uniform characterization of the semantics
of different process calculi by developing a generalization of RTS models and simple probabilistic automata
that uses the same format as their transition relations, i.e., the third element of each transition is a function
over states and not just a single state. The model we propose is called ULTraS from Uniform Labeled
Transition Systems. Its transition relation associates with any pair of source state and transition label
(s, a) a function D mapping each possible target state into an element of the support D of a preordered

set equipped with a minimum denoted by ⊥D. Given a transition s
a−→D, the value of D(s′) expresses the

degree of one-step reachability of s′ from s via that a-transition; if D(s′) = ⊥D then s′ is not reachable
from s via that a-transition.

The ULTraS model can be used to capture different classes of processes by appropriately choosing D.
In particular, we will see that we capture:

1. Fully nondeterministic processes, if D is the support set B = {⊥,>} of the traditional Boolean algebra.

2. Fully probabilistic processes and processes combining nondeterminism and probability, if D = R[0,1].

3. Fully stochastic processes and processes combining nondeterminism and stochasticity, if D = R≥0.

As stressed at the beginning of this section, modeling state transitions and their annotations is only one
of the key ingredients of the description of concurrent processes. One must also combine single transitions
into computations and find out ways for determining when two states give rise to behaviorally equivalent
computation trees. In this paper, we focus on the three major approaches to the development of behavioral
equivalences and we define bisimulation, trace, and testing equivalences for the ULTraS model. We restrict,
for the moment, attention to their strong version, i.e., we assume that all actions are observable.

An important component of our definitions of the three equivalences is a measure function MM (s, α, S′)
that returns elements of the support M of another preordered set equipped with a minimum. This function
computes the degree of multi-step reachability of a set of target states S′ from a source state s when
performing computations labeled with the sequence of actions α. We will see that, to capture classical
equivalences for the different classes of processes, we need different measure functions:

2

1. For nondeterministic processes, the measure of a computation from s to S′ labeled with α is > if the
computation exists and ⊥ otherwise.

2. For probabilistic processes, the measure function yields a value in R[0,1] that represents the probability
of the set of computations from s to S′ labeled with α.

3. For stochastic processes, to capture the different equivalences proposed in the literature, we have to
distinguish two cases:

• In the end-to-end case, given a time threshold t ∈ R≥0, the measure function yields a value in
R[0,1] that represents the probability that the set of computations labeled with α leads from s
to S′ within t time units.

• In the step-by-step case, given a sequence of time thresholds ti ∈ R≥0, the measure function yields
a value in R[0,1] that represents the probability that the set of computations labeled with α leads
from s to S′ within ti time units for each step i.

One of the main objectives of this work is assessing the different choices that have been presented in the
literature in the last twenty years for generalizing behavioral equivalences over LTS models to richer models.
We consider it interesting to see which of them are naturally captured by our general approach and which
ones need, instead, an ad hoc treatment. We will see that, as long as we confine ourselves to considering
models that deal with purely nondeterministic, purely probabilistic, or purely stochastic processes, the
known (and generally accepted) equivalences are directly captured. For models that combine probability
or stochasticity with nondeterminism, the situation is less straightforward. There are many different ways
of interpreting such combinations that influence the way behavioral equivalences are defined, leading to an
explosion of potential approaches.

Interestingly enough, for mixed processes we will see that our abstract approach leads to new equivalences
that were not known in the literature. More precisely, our variant of probabilistic bisimulation equivalence,
which has been studied in [26], has a strong connection with PML, the simple probabilistic extension of
Hennessy-Milner logic that is in agreement with probabilistic bisimilarity for probabilistic processes without
internal nondeterminism [85]. In contrast, the probabilistic bisimulation equivalence in [112] corresponds
to a much richer modal logic with a specific operator for capturing probability measures of states reacha-
bility [70]. Moreover, our variant of probabilistic testing equivalence, which has been studied in [25], is a
conservative extension of the nondeterministic testing equivalence in [47] also when both nondeterministic
and probabilistic tests are used, and implies probabilistic trace equivalence also under deterministic sched-
ulers. This is not the case with the probabilistic testing equivalences in [129, 77, 111, 52]. Finally, our
variant of probabilistic trace equivalence, which has been studied in the full version of [25], is a congruence
with respect to parallel composition, while the probabilistic trace equivalence in [110] is not compositional.

The rest of the paper, which extends [23] in that it considers also mixed processes and testing equiva-
lences, is organized as follows. In Sect. 2, we define the ULTraS model and show that suitable specializations
of this model coincide with seven models that are widely used to describe fully nondeterministic processes,
fully probabilistic processes, fully stochastic processes, and processes combining nondeterminism and proba-
bility or nondeterminism and stochasticity. In Sect. 3, we provide three uniform definitions for bisimulation,
trace, and testing equivalences over the ULTraS model. In Sects. 4 to 10, we show that suitable spe-
cializations of these three equivalences to the seven specializations of the ULTraS model coincide with
behavioral equivalences defined in the literature for the traditional models1 except when nondeterminism
and probability/stochasticity coexist; then new equivalences pop up. Finally, Sect. 11, which contains a ta-
ble summarizing the considered models and behavioral equivalences, draws some conclusions and discusses
future work. For the sake of readability, all the proofs are confined to an appendix.

1For each equivalence over traditional models, we will recall only its definition and refer the interested reader to the
papers cited at the beginning of the corresponding section for information about congruence properties, equational and logical
characterizations, alternative characterizations, and decision algorithms.

3

2. ULTraS: A Unifying View of LTS-Based Models

The behavior of sequential, concurrent, and distributed processes can be described by means of the so-called
labeled transition system (LTS) model [81]. It consists of a set of states, a set of transition labels, and a
transition relation. States correspond to the operational modes that processes can pass through. Labels
describe the activities that processes can perform independently or in collaboration with each other or with
their external environment. The transition relation defines process evolution as determined by the execution
of specific activities and is formalized as a state-to-state reachability relation.

In this section, we first introduce a generalization of the LTS model that aims at providing a uniform
framework that can be employed for defining the behavior of different types of process. In the new model,
named ULTraS from Uniform Labeled Transition System, the transition relation associates with any pair
composed of a source state and a transition label, a function mapping each possible target state to an element
of a preordered set equipped with a minimum. In other words, the state-to-state reachability relation typical
of the LTS model is replaced by a state-to-state-distribution reachability relation. This is a consequence of
the fact that the concept of next state is generalized via a function that distributes the one-step reachability
among all states by assigning to each possible next state the degree of reachability from the current state.

The definition of ULTraS is provided in Sect. 2.1, then we prove that the ULTraS model offers a
unifying view of LTS-based models that have been widely used to describe specific classes of processes.
More precisely, we consider fully nondeterministic processes in Sect. 2.2, fully probabilistic processes in
Sect. 2.3, mixed probabilistic-nondeterministic processes in Sect. 2.4, fully stochastic processes in Sect. 2.5,
and mixed stochastic-nondeterministic processes in Sect. 2.6.

2.1. Uniform Labeled Transition Systems

The definition of our uniform model is parameterized with respect to a set D and a preorder relation vD
on it that is equipped with minimum ⊥D. The elements of D are used to express the degree of one-step
reachability of states, with ⊥D representing unreachability. In the following, we denote by [S → D] the set
of functions from a set S to D, which is ranged over by D. Whenever S is a set of states, every element D
of [S → D] will be interpreted as a next-state distribution function.

Definition 2.1. Let (D,vD,⊥D) be a preordered set equipped with a minimum. A uniform labeled tran-
sition system on (D,vD,⊥D), or D-ULTraS for short, is a triple U = (S,A,−−−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× [S → D] is a transition relation.

We say that the D-ULTraS U is functional iff −−−→ is a function from S ×A to [S → D].

Every transition (s, a,D) is written s
a

−−−→D where D(s′) is a D-value quantifying the degree of reach-
ability of s′ from s via that specific a-transition leading to D, with D(s′) = ⊥D meaning that s′ is not
reachable with that transition. When the considered D-ULTraS is functional, we will write Ds,a(s′) to
denote the same D-value. We now define the notion of computation for the ULTraS model as a sequence

of state-to-state steps, each denoted by s
a
−7→ s′ and derived from a state-to-state-distribution transition of

the model itself.

Definition 2.2. Let U = (S,A,−−−→) be a D-ULTraS, n ∈ N, si ∈ S for all i = 0, . . . , n, and ai ∈ A
for all i = 1, . . . , n. We say that s0

a1
−7→ s1

a2
−7→ s2 . . . sn−1

an
−7→ sn is a computation of U of length n going

from s0 to sn iff for all i = 1, . . . , n there exists a transition si−1

ai
−−−→Di such that Di(si) 6= ⊥D.

4

LTS

b c

a

d e

T TT T

21a

0.3

b c

a

d e

0.4

a1 2

GPLTS

0.1 0.2 0.7 0.3

b c

a

d e

0.4 0.6

NPLTS

a

0.7 0.3

b c

a

d e

0.4 0.6

a1 2

RPLTS

b c

a

d e

a1 2

GMLTS/RMLTS

7.5 4.9 1.1 8.2

b c

a

d e

7.5 4.9 1.1 8.2

NMLTS

a

Figure 1: Traditional models represented as ULTraS models (note that a1 6= a2 for functional models)

A D-ULTraS can be depicted as a directed graph-like structure in which vertices represent states and

action-labeled edges represent action-labeled transitions. Given a transition s
a

−−−→D, the corresponding
a-labeled edge goes from the vertex representing s to a set of vertices linked by a dashed line, each of which
represents a state s′ such that D(s′) 6= ⊥D and is labeled with D(s′). Should D(s′) = ⊥D for all states s′ –
which may happen when the considered D-ULTraS is functional – the transition would not be depicted at
all. Six ULTraS models are shown in Fig. 1, where the fourth one and the last one are not functional.

2.2. A Fully Nondeterministic Specialization: The LTS Model

Fully nondeterministic processes are traditionally represented through state-transition graphs in which every
transition is labeled with the action determining the related state change [81]. In these graphs, which
correspond to classical automata without final states, there is no information about how to choose among
the various transitions departing from a state.

Definition 2.3. A labeled transition system, LTS for short, is a triple (S,A,−−−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× S is a transition relation.

Every transition (s, a, s′) is written s
a

−−−→ s′ and means that s can reach s′ by executing a.
It is immediate to see that an LTS can be encoded as a functional B-ULTraS U , where B = {⊥,>} is

the support set of the Boolean algebra with ⊥ representing false, > representing true, and ⊥ vB >. Given

a transition s
a

−−−→U Ds,a, Ds,a(s′) = ⊥ means that it is not possible to reach s′ from s by executing a,
whereas Ds,a(s′) = > means that it is possible.

Definition 2.4. Let (S,A,−−−→) be an LTS. Its corresponding functional B-ULTraS U = (S,A,−−−→U)
is defined by letting:

• s
a

−−−→U Ds,a for all s ∈ S and a ∈ A.

• Ds,a(s′) =

{
> if s

a
−−−→ s′

⊥ if (s, a, s′) /∈ −−−→
for all s′ ∈ S.

2.3. A Fully Probabilistic Specialization: The GPLTS Model

Fully probabilistic processes, also called generative probabilistic processes according to the terminology
of [125], can be represented through state-transition graphs in which every transition is labeled with both
the action and the probability of the related state change. In other words, each such process corresponds

5

to an action-labeled discrete-time Markov chain (ADTMC), i.e., a discrete-time Markov chain [118] whose
transitions are additionally labeled with actions.2

In the following, we use {| and |} to delimit multisets. We also assume that the summation over the
empty multiset of numbers is zero.

Definition 2.5. A generative probabilistic labeled transition system, GPLTS for short, is a triple (S,A,−−−→)
where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× R(0,1] × S is a transition relation.

• For all s, s′ ∈ S and a ∈ A, whenever (s, a, p1, s
′), (s, a, p2, s

′) ∈ −−−→, then p1 = p2.

• For all s ∈ S, it holds that
∑
{| p ∈ R(0,1] | ∃a ∈ A.∃s′ ∈ S. (s, a, p, s′) ∈ −−−→ |} ∈ {0, 1}.

Every transition (s, a, p, s′) is written s
a,p
−−−→ s′, with p being the probability with which s′ is reached from s

by executing a.
It is easy to see that a GPLTS can be encoded as a functional R[0,1]-ULTraS U in which∑
a∈A

∑
s′∈S Ds,a(s′) ∈ {0, 1} for all s ∈ S, where vR[0,1]

is the usual ordering of reals whose minimum

is 0. Given a transition s
a

−−−→U Ds,a, Ds,a(s′) = 0 means that it is not possible to reach s′ from s by
executing a, whereas Ds,a(s′) ∈ R(0,1] means that it is possible with probability p = Ds,a(s′).

Definition 2.6. Let (S,A,−−−→) be a GPLTS. Its corresponding functional R[0,1]-ULTraS

U = (S,A,−−−→U) is defined by letting:

• s
a

−−−→U Ds,a for all s ∈ S and a ∈ A.

• Ds,a(s′) =

{
p if s

a,p
−−−→ s′

0 if @p ∈ R(0,1]. s
a,p
−−−→ s′

for all s′ ∈ S.

2.4. Two Mixed Probabilistic-Nondeterministic Specializations: The RPLTS and NPLTS Models

In an LTS-based model, probability and nondeterminism can be combined in at least two different ways,
which give rise to two variants of Markov decision processes (MDP) [56].

In the first case, assuming that transitions are labeled with both actions and probabilities, unlike fully
probabilistic processes the probabilities can be enforced only among transitions departing from the same
state that are labeled with the same action. In other words, the choice among transitions labeled with
the same action is probabilistic, whereas the choice among transitions labeled with different actions is
nondeterministic. According to the terminology of [125], the resulting processes are reactive probabilistic
processes and correspond to probabilistic automata in the sense of [107].

Definition 2.7. A reactive probabilistic labeled transition system, RPLTS for short, is a triple (S,A,−−−→)
where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

2The name discrete-time Markov chain is used here for historical reasons. Since time does not really come into play, a name
like time-abstract Markov chain would be better. A discrete-time interpretation is appropriate only when all state changes
occur at equidistant time points.

6

• −−−→ ⊆ S ×A× R(0,1] × S is a transition relation.

• For all s, s′ ∈ S and a ∈ A, whenever (s, a, p1, s
′), (s, a, p2, s

′) ∈ −−−→, then p1 = p2.

• For all s ∈ S and a ∈ A, it holds that
∑
{| p ∈ R(0,1] | ∃s′ ∈ S. (s, a, p, s′) ∈ −−−→ |} ∈ {0, 1}.

The difference between a GPLTS and an RPLTS has to do with the last constraint imposed on the
transition relation. Given a state with outgoing transitions, in a GPLTS the probabilities of all those
transitions must sum up to one, while in an RPLTS this must be the case for each maximal subset of
transitions among the considered ones that are labeled with the same action. As a consequence, given a

transition s
a,p
−−−→ s′ of an RPLTS, the value p is the probability with which s′ is reached from s by executing a

conditioned on the fact that a has been chosen among all the possible actions. Therefore, an RPLTS can
be encoded as a functional R[0,1]-ULTraS in which

∑
s′∈S Ds,a(s′) ∈ {0, 1} for all s ∈ S and a ∈ A, where

again vR[0,1]
is the usual ordering of reals whose minimum is 0.

Definition 2.8. Let (S,A,−−−→) be an RPLTS. Its corresponding functional R[0,1]-ULTraS

U = (S,A,−−−→U) is defined by letting:

• s
a

−−−→U Ds,a for all s ∈ S and a ∈ A.

• Ds,a(s′) =

{
p if s

a,p
−−−→ s′

0 if @p ∈ R(0,1]. s
a,p
−−−→ s′

for all s′ ∈ S.

In the second case, also the choice among transitions labeled with the same action is nondeterministic.
In this setting, transitions are labeled only with actions while probabilities are embedded in a next-state dis-
tribution function, so that the transition relation becomes a state-to-state-distribution reachability relation.
The resulting processes are nondeterministic and probabilistic processes that are representative of a num-
ber of slightly different probabilistic computational models including internal nondeterminism among which
we mention concurrent (discrete-time) Markov chains [127], alternating probabilistic models [65, 129, 103],
probabilistic automata in the sense of [109], and the denotational probabilistic models in [75] (see [115] for
an overview).

Definition 2.9. A nondeterministic and probabilistic labeled transition system, NPLTS for short, is a triple
(S,A,−−−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× [S → R[0,1]] is a transition relation.

• For all (s, a,D) ∈ −−−→, it holds that
∑
s′∈S D(s′) = 1.

Obviously, an NPLTS is an R[0,1]-ULTraS in which
∑
s′∈S D(s′) = 1 for all (s, a,D) ∈ −−−→, where once

more vR[0,1]
is the usual ordering of reals whose minimum is 0. Notice that, unlike all the previous special-

izations, such an ULTraS is not necessarily functional due to the coexistence of internal nondeterminism
and probabilistic choices.

7

2.5. A Fully Stochastic Specialization: The GMLTS Model

Fully stochastic processes in which the notion of time is formalized by means of exponentially distributed
durations, also called (generative) Markovian processes, can be represented through state-transition graphs
in which every transition is labeled with both the action and the rate of the related state change. In other
words, each such process corresponds to an action-labeled continuous-time Markov chain (ACTMC), i.e., a
continuous-time Markov chain [118] whose transitions are additionally labeled with actions.

Any ACTMC can be viewed as being obtained from an ADTMC in which every state s is labeled
with an exponentially distributed sojourn time, which is uniquely identified by a positive real number E(s)
called state exit rate, whose reciprocal coincides with the average sojourn time in s. In fact, if we assume
that transition firing is governed by a race policy – i.e., the transition that is chosen in every state is the
one sampling the least duration – then in this ADTMC augmented with state exit rates we can merge
probabilistic and time information by eliminating all state labels and replacing the probability labeling each
transition departing from any state s with a rate given by E(s) multiplied by the transition probability.
The sum of the resulting transition rates is equal to E(s), which is consistent with the adoption of the race
policy and the fact that the minimum of a set of exponentially distributed random variables is exponentially
distributed with rate equal to the sum of the original rates.

Definition 2.10. A generative Markovian labeled transition system, GMLTS for short, is a triple
(S,A,−−−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× R>0 × S is a transition relation.

• For all s, s′ ∈ S and a ∈ A, whenever (s, a, λ1, s
′), (s, a, λ2, s

′) ∈ −−−→, then λ1 = λ2.

Every transition (s, a, λ, s′) is written s
a,λ
−−−→ s′, with λ being the rate at which s′ is reached from s by

executing a and hence 1/λ being the average duration of the transition.
It is straightforward to see that a GMLTS can be encoded as a functional R≥0-ULTraS U , where vR≥0

is the usual ordering of reals whose minimum is 0. Given a transition s
a

−−−→U Ds,a, Ds,a(s′) = 0 means
that it is not possible to reach s′ from s by executing a, whereas Ds,a(s′) ∈ R>0 means that it is possible at
rate λ = Ds,a(s′). Note that E(s) =

∑
a∈A

∑
s′∈S Ds,a(s′) for all s ∈ S.

Definition 2.11. Let (S,A,−−−→) be a GMLTS. Its corresponding functional R≥0-ULTraS
U = (S,A,−−−→U) is defined by letting:

• s
a

−−−→U Ds,a for all s ∈ S and a ∈ A.

• Ds,a(s′) =

 λ if s
a,λ
−−−→ s′

0 if @λ ∈ R>0. s
a,λ
−−−→ s′

for all s′ ∈ S.

2.6. Two Mixed Stochastic-Nondeterministic Specializations: The RMLTS and NMLTS Models

Similar to the probabilistic case, in an LTS-based model stochasticity and nondeterminism can be combined
in at least two different ways, which give rise to two variants of continuous-time Markov decision processes
(CTMDP) [106].

In the first case, assuming that transitions are labeled with both actions and rates, unlike fully stochastic
processes the race policy can be enforced only among transitions departing from the same state that are
labeled with the same action. In other words, the choice among transitions labeled with the same action is
governed by the race policy, whereas the choice among transitions labeled with different actions is nonde-
terministic. As a consequence, only the conditional exit rate Ea(s) can be defined, which is the sum of the
rates of the transitions departing from state s that are labeled with action a. The resulting processes are
reactive Markovian processes and correspond to continuous-time probabilistic automata [82].

8

Definition 2.12. A reactive Markovian labeled transition system, RMLTS for short, is a triple
(S,A,−−−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× R>0 × S is a transition relation.

• For all s, s′ ∈ S and a ∈ A, whenever (s, a, λ1, s
′), (s, a, λ2, s

′) ∈ −−−→, then λ1 = λ2.

The difference between a GMLTS and an RMLTS is simply related to the scope of the race policy: it
is generative in the former model, whereas it is reactive in the latter model. As a consequence, given a

transition s
a,λ
−−−→ s′ of an RMLTS, the value λ is the rate at which s′ is reached from s by executing a

conditioned on the fact that a has been chosen among all the possible actions. Therefore, an RMLTS can
be encoded as a functional R≥0-ULTraS, where again vR≥0

is the usual ordering of reals whose minimum
is 0. Note that Ea(s) =

∑
s′∈S Ds,a(s′) for all s ∈ S and a ∈ A.

Definition 2.13. Let (S,A,−−−→) be an RMLTS. Its corresponding functional R≥0-ULTraS
U = (S,A,−−−→U) is defined by letting:

• s
a

−−−→U Ds,a for all s ∈ S and a ∈ A.

• Ds,a(s′) =

 λ if s
a,λ
−−−→ s′

0 if @λ ∈ R>0. s
a,λ
−−−→ s′

for all s′ ∈ S.

In the second case, also the choice among transitions labeled with the same action is nondeterministic. In
this setting, transitions are labeled only with actions while rates are embedded in a next-state distribution
function, so that the transition relation becomes a state-to-state-distribution reachability relation. The
resulting processes are nondeterministic and Markovian processes.

Definition 2.14. A nondeterministic and Markovian labeled transition system, NMLTS for short, is a triple
(S,A,−−−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −−−→ ⊆ S ×A× [S → R≥0] is a transition relation.

• For all (s, a,D) ∈ −−−→, it holds that
∑
s′∈S D(s′) > 0.

Obviously, an NMLTS is an R≥0-ULTraS in which
∑
s′∈S D(s′) > 0 for all (s, a,D) ∈ −−−→, where

once more vR≥0
is the usual ordering of reals whose minimum is 0. However, it is not necessarily functional

due to the coexistence of internal nondeterminism and rate-based probabilistic choices.

3. Bisimulation, Trace, and Testing Equivalences for the ULTraS Model

LTS-based models come equipped with equivalences through which it is possible to compare processes on
the basis of their behavior and reduce their state spaces before analyzing their properties. These behavioral
equivalences result in a linear-time/branching-time spectrum [46, 124, 79, 74, 11, 3] including several variants
of three major approaches: bisimulation [68], trace [31], and testing [47].

In this section, we show that bisimulation, trace, and testing equivalences can be defined in a uniform
manner over the ULTraS model, thus emphasizing the adequacy of this model as a unifying semantic
framework. In the subsequent sections, we will see that suitable instances of the uniform definition of
the three equivalences coincide with the corresponding behavioral equivalences defined in the literature in
the case of the seven classes of processes considered in Sect. 2, except when internal nondeterminism and
probability/stochasticity coexist.

9

3.1. Multi-Step Reachability Measure Functions

The definition of bisimulation, trace, and testing equivalences over the ULTraS model is parameterized
with respect to a measure function that expresses the degree of multi-step reachability of a set of states.
Similar to the one-step reachability encoded within an ULTraS, in which we consider individual actions,
multi-step reachability has to do with sequences of actions commonly called traces, which are the observable
effects of the computations performed by an ULTraS.

Definition 3.1. Let A be a countable set of transition-labeling actions. A trace α is an element of A∗,
where α = ε denotes the empty trace, operation “| |” computes the length of a trace, and operation “ ◦ ”
computes the concatenation of two traces.

Definition 3.2. Let U = (S,A,−−−→) be a D-ULTraS and (M,vM ,⊥M) be a preordered set equipped
with a minimum. A measure function on (M,vM ,⊥M) for U , or M -measure function for U for short, is a
function MM : S × A∗ × 2S → M such that the value of MM (s, α, S′) is defined by induction on |α| and
depends only on the reachability of a state in S′ from state s through computations labeled with trace α.

From a conceptual viewpoint, a measure function subsumes the existence of two operators. The first
operator, which we may think of as an additive operator ⊕, determines the M -value representing the
reachability of a state in S′ from state s via trace α by combining the M -values representing the reachability
of a state in S′ from state s along each single computation labeled with trace α that goes from s to S′. The
second operator, which we may think of as a multiplicative operator ⊗, determines the M -value representing
the reachability of a state in S′ from state s along a single computation labeled with trace α that goes from
s to S′ by combining the D-values representing reachability at each individual step of the computation.

Note that different measure functions can induce different variants of a behavioral equivalence on the
same D-ULTraS depending on the choice of (M,vM ,⊥M). Although D and M may be the same support
set, this is not necessarily the case as we will see later on. In fact, while a D-value is related to one-step
reachability, an M -value – of the formMM (s, α, S′) – is computed on the basis of D-values to quantify multi-
step reachability, with ⊥M representing multi-step unreachability. For instance, in the testing equivalence
for fully nondeterministic processes, the M -value will be a pair of B-values – rather than a single B-value
– expressing the possibility and the necessity of reaching S′ from s after α. For probabilistic processes
including internal nondeterminism, it will be a nonemtpy set of R[0,1]-values – rather than a single R[0,1]-value
– containing the probability of reaching S′ from s after α for each possible way of resolving nondeterminism.
For stochastic processes, it will be an R[0,1]-valued (or in case of internal nondeterminism a 2R[0,1] -valued)
function – rather than a single R≥0-value – representing for each possible deadline the probability of reaching
S′ from s after α within the considered deadline (for each possible way of resolving nondeterminism).

3.2. A Uniform Definition of Bisimulation Equivalence

The basic idea behind bisimulation equivalence is that of capturing the ability of two models of mimicking
each other’s behavior at every step. In the literature, two different ways of defining a bisimulation relation
have been given. In the case of fully nondeterministic models, for any pair of related states it is sufficient to
compare the individual states reached by performing equally labeled transitions. In the case of quantitative
models, equivalence classes of reachable states are considered, because it is necessary to combine probabilities
or rates across equally labeled transitions departing from the same state that reach equivalent states.

For ULTraS models, we provide an even more general definition that examines groups of equivalence
classes. The objective is to adequately support models in which nondeterminism and quantitative aspects
coexist by opening the possibility that, during the bisimulation game, a single transition on one side is
matched by several equally labeled transitions on the other side with respect to different sets of states.
We note that the more traditional definition based on equivalence classes is easily reobtained by restricting
attention to singleton groups. Given a D-ULTraS U = (S,A,−−−→), a state s ∈ S, an action a ∈ A, a
group G ∈ 2S/B of equivalence classes with respect to an equivalence relation B over S, and an M -measure
functionMM for U , the M -values that we need to compare in the case of bisimulation equivalence are thus
of the form MM (s, a,

⋃
G), where

⋃
G is the union of all the equivalence classes in G.

10

Definition 3.3. Let U = (S,A,−−−→) be a D-ULTraS and MM be an M -measure function for U .
An equivalence relation B over S is an MM -bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ A and groups of equivalence classes G ∈ 2S/B:

MM (s1, a,
⋃
G) = MM (s2, a,

⋃
G)

We say that s1, s2 ∈ S are MM -bisimilar, written s1 ∼B,MM
s2, iff there exists an MM -bisimulation B

over S such that (s1, s2) ∈ B.

3.3. A Uniform Definition of Trace Equivalence

Trace equivalence compares the ability of two models of performing equally labeled computations thereby
abstracting from branching points in their behavior. With respect to bisimulation equivalence, entire traces
have to be considered instead of individual actions, whilst the set of destination states is not important.
Given a D-ULTraS U = (S,A,−−−→), a state s ∈ S, a trace α ∈ A∗, and an M -measure functionMM for U ,
the M -values that we need to compare in the case of trace equivalence are thus of the form MM (s, α, S).

Definition 3.4. Let U = (S,A, −−−→) be a D-ULTraS and MM be an M -measure function for U .
We say that s1, s2 ∈ S are MM -trace equivalent, written s1 ∼Tr,MM

s2, iff for all traces α ∈ A∗:
MM (s1, α, S) = MM (s2, α, S)

3.4. A Uniform Definition of Testing Equivalence

The definition of testing equivalence requires the formalization of the notion of test and the consideration
of configurations rather than ordinary states. A test specifies which actions of a process are permitted at
each step and can be expressed as a suitable D-ULTraS that includes a success state, which determines
the computations that are successful.3 If this D-ULTraS is not functional, then the success state cannot
have outgoing transitions, otherwise the next-state distribution function of each transition departing from
the success state must be identically equal to ⊥D. For the sake of simplicity, we restrict ourselves to
finite tests, i.e., tests whose underlying graph structure is finite state and acyclic – so that only finite-length
computations are considered – and finitely branching – so that only a choice among finitely many alternative
actions is made available at each step.

Definition 3.5. Let (D,vD,⊥D) be a preordered set equipped with a minimum. An observation sys-
tem on (D,vD,⊥D), or D-observation system for short, is a finite-state, acyclic, and finitely-branching
D-ULTraS O = (O,A,−−−→) where O contains a distinguished success state denoted by ω such that,

whenever ω
a

−−−→D, then D(o) = ⊥D for all o ∈ O. We say that a computation of O is successful iff its last
state is ω.

A D-ULTraS can be tested only through a D-observation system by running them in parallel and
enforcing synchronization on any action. The states of the resulting D-ULTraS are called configurations
and are pairs each formed by a state of the D-ULTraS under test and a state of the D-observation system.
A configuration can evolve to a new configuration only through the synchronization of two transitions –
departing from the two states constituting the configuration – that are labeled with the same action.

For each such pair of synchronizing transitions, the next-state distribution function of the resulting transi-
tion is obtained from the two original next-state distribution functions by means of a suitable
D-valued function δ, which computes the degree of one-step reachability of every possible target config-
uration. Since ⊥D represents unreachability, function δ must be ⊥D-preserving, i.e., it must yield ⊥D iff
at least one of its arguments is ⊥D. As a consequence of this first constraint, in the case of nondeter-
ministic processes δ boils down to logical conjunction, whereas several alternative options are available in
the case of probabilistic and stochastic processes. In order for tests not to blur distinctions among pro-
cesses, function δ must also be injective over tuples of D-values not including ⊥D when considering one

3Unlike the original testing theory of [47] in which a success action is used, here we employ a success state as it is more
convenient from a technical viewpoint when dealing with quantitative domains.

11

argument at a time. This second constraint can be formalized as follows: given n ∈ N≥2 and two tuples
(d1, . . . , di−1, d

′, di+1, . . . , dn), (d1, . . . , di−1, d
′′, di+1, . . . , dn) ∈ (D\{⊥D})n, if δ : Dn → D and d′ 6= d′′ then

δ(d1, . . . , di−1, d
′, di+1, . . . , dn) 6= δ(d1, . . . , di−1, d

′′, di+1, . . . , dn). For the sake of conciseness, we say that
δ must be ⊥D-preserving and argument-injective. Note that n can be greater than 2 in order to take into
account further information such as normalizing factors commonly used for probabilistic processes.

Definition 3.6. Let U = (S,A,−−−→U) be a D-ULTraS, O = (O,A,−−−→O) be a D-observation system,
and δ be a ⊥D-preserving and argument-injective D-valued function. The interaction system of U and O
with respect to δ is the D-ULTraS Iδ(U ,O) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S×O is called a configuration and is said to be successful iff o = ω. We denote
by Sδ(U ,O) the set of successful configurations of Iδ(U ,O).

• The transition relation −−−→ ⊆ (S × O) × A × [(S × O) → D] is such that (s, o)
a

−−−→D iff

s
a

−−−→U D1 and o
a

−−−→O D2 with D(s′, o′) being obtained from D1(s′) and D2(o′) by applying δ.
We say that a computation of Iδ(U ,O) is successful iff its last configuration is successful.

The extension to Iδ(U ,O) of an M -measure function MM for U is defined as the M -measure function

Mδ,O
M : (S × O) × A∗ × 2S×O → M obtained from MM by replacing states and transitions of U with

configurations and transitions of Iδ(U ,O).

Two states of U are Mδ
M -testing equivalent with respect to O iff, for each trace α, according to MM

the two configurations respectively including the two states and the initial state of O result in the same
δ-based degree of multi-step reachability via α towards the set of successful configurations. Therefore, given
a state s and indicating with o the initial state of O, the M -values that we need to compare in the case of
testing equivalence are of the form Mδ,O

M ((s, o), α,Sδ(U ,O)).

Definition 3.7. Let U = (S,A,−−−→U) be a D-ULTraS, MM be an M -measure function for U , and
δ be a ⊥D-preserving and argument-injective D-valued function. We say that s1, s2 ∈ S are Mδ

M -testing
equivalent, written s1 ∼Te,Mδ

M
s2, iff for every D-observation system O = (O,A,−−−→O) with initial state

o ∈ O and for all traces α ∈ A∗:
Mδ,O

M ((s1, o), α,Sδ(U ,O)) = Mδ,O
M ((s2, o), α,Sδ(U ,O))

3.5. Inclusion Relations Among the Three Uniform Equivalences

We conclude by showing that, as expected, bisimulation equivalence for ULTraS models is finer than
testing equivalence for ULTraS models, which in turn is finer than trace equivalence for ULTraS models.
Of course, this holds true when fixing the two preordered sets (D,vD,⊥D) for one-step reachability in the
models and (M,vM ,⊥M) for multi-step reachability in the equivalences.

Theorem 3.8. Let U = (S,A, −−−→) be a D-ULTraS, MM be an M -measure function for U , and
δ be a ⊥D-preserving and argument-injective D-valued function. Then for all s1, s2 ∈ S:

s1 ∼B,MM
s2 =⇒ s1 ∼Te,Mδ

M
s2 =⇒ s1 ∼Tr,MM

s2

4. Equivalences for Fully Nondeterministic Processes

In this section, we instantiate the three behavioral equivalences of Sect. 3 – i.e., bisimulation, trace, and
testing equivalences – for fully nondeterministic processes represented as functional B-ULTraS models
(see Sect. 2.2). This is accomplished by introducing two measure functions based on logical disjunction
and logical conjunction, respectively, each associating a suitable B-value with every triple composed of a
source state s, a trace α, and a set of destination states S′. More precisely, the first function computes a
value MB,∨(s, α, S′) that establishes whether there exists a computation that is labeled with trace α and
leads to a state in S′ from state s. By contrast, the second function computes a value MB,∧(s, α, S′) that

12

MB,∨(s, α, S′) =

∨

s′∈S s.t. Ds,a(s′)6=⊥
MB,∨(s′, α′, S′) if α = a ◦ α′ and ∃s′ ∈ S.Ds,a(s′) 6= ⊥

> if α = ε and s ∈ S′
⊥ if α = a ◦ α′ and @s′ ∈ S.Ds,a(s′) 6= ⊥

or α = ε and s /∈ S′

MB,∧(s, α, S′) =

∧

s′∈S s.t. Ds,a(s′)6=⊥
MB,∧(s′, α′, S′) if α = a ◦ α′ and ∃s′ ∈ S.Ds,a(s′) 6= ⊥

> if α = ε and s ∈ S′
⊥ if α = a ◦ α′ and @s′ ∈ S.Ds,a(s′) 6= ⊥

or α = ε and s /∈ S′
MB×B(s, α, S′) = (MB,∨(s, α, S′),MB,∧(s, α, S′))

Table 1: Measure functions for functional B-ULTraS models representing fully nondeterministic processes

establishes whether there exists a computation that is labeled with trace α and leads to a state in S′ from
state s and, in such a case, whether any computation from state s labeled with a prefix of trace α is part
of a computation from state s that is labeled with the entire trace α and leads to a state in S′. In other
words, the two measure functions respectively express the possibility and the necessity of reaching S′ from s
through α. We then introduce a third measure function that combines the first two functions.

Definition 4.1. Let U = (S,A,−−−→) be a functional B-ULTraS:

• The measure functions MB,∨ : S × A∗ × 2S → B and MB,∧ : S × A∗ × 2S → B for U are inductively
defined in the first two parts of Table 1, where the associated preorder relation is the ordering vB of
Booleans whose minimum is ⊥.

• The measure functionMB×B : S×A∗×2S → B×B for U is defined in the third part of Table 1, where the
associated preorder relation, whose minimum is (⊥,⊥), is defined by letting (v1,1, v1,2) vB×B (v2,1, v2,2)
iff v1,1 vB v2,1 and v1,2 vB v2,2.

Note that the first clause ofMB,∨(s, α, S′) could have been defined as
∨
s′∈S Ds,a(s′)∧MB,∨(s′, α′, S′) while

the first clause of MB,∧(s, α, S′) could not have been defined as
∧
s′∈S Ds,a(s′) ∧MB,∧(s′, α′, S′) because,

in the presence of at least one state s′ ∈ S such that Ds,a(s′) = ⊥, we would erroneously get ⊥.
We now show that the three resulting behavioral equivalences ∼B,MB,∨ , ∼Tr,MB,∨ , and ∼Te,MLC

B×B
on func-

tional B-ULTraS models – where LC stands for logical conjunction, the only ⊥-preserving and argument-
injective B-valued function – respectively coincide with the bisimulation, trace, and testing equivalences
defined in the literature for LTS models.

4.1. Bisimulation Equivalence

Bisimilarity for LTS models [100, 68, 90, 14, 80, 98] compares the ability of two fully nondeterministic
processes of mimicking each other’s behavior at every step.

Definition 4.2. Let (S,A,−−−→) be an LTS. A binary relation B over S is a bisimulation iff, whenever
(s1, s2) ∈ B, then for all actions a ∈ A:

• Whenever s1

a
−−−→ s′1, then s2

a
−−−→ s′2 with (s′1, s

′
2) ∈ B.

• Whenever s2

a
−−−→ s′2, then s1

a
−−−→ s′1 with (s′1, s

′
2) ∈ B.

We say that s1, s2 ∈ S are bisimilar, written s1 ∼B s2, iff there exists a bisimulation B over S such that
(s1, s2) ∈ B.

13

Theorem 4.3. Let (S,A,−−−→) be an LTS and U = (S,A,−−−→U) be its corresponding functional
B-ULTraS. For all s1, s2 ∈ S:

s1 ∼B s2 ⇐⇒ s1 ∼B,MB,∨ s2

4.2. Trace Equivalence

Similar to language equivalence for ordinary automata in the case that all the states are accepting, trace
equivalence for LTS models [31] compares the ability of two fully nondeterministic processes of performing
computations labeled with the same traces. In order to formalize this for an LTS (S,A,−−−→), we need to

lift the transition relation from actions to action sequences by letting s
a1...an====⇒ s′ ≡ s

a1
−−−→ s1 . . . sn−1

an
−−−→ s′

when n ∈ N>0 and s
ε

====⇒ s when n = 0. Given s ∈ S and α ∈ A∗, we also write s
α

====⇒ to denote the
existence of s′ ∈ S such that s

α
====⇒ s′, i.e., the existence of a computation from s labeled with α.

Definition 4.4. Let (S,A,−−−→) be an LTS. We say that s1, s2 ∈ S are trace equivalent, written s1 ∼Tr s2,
iff for all traces α ∈ A∗:

• If s1
α

====⇒ , then s2
α

====⇒ .

• If s2
α

====⇒ , then s1
α

====⇒ .

Theorem 4.5. Let (S,A,−−−→) be an LTS and U = (S,A,−−−→U) be its corresponding functional
B-ULTraS. For all s1, s2 ∈ S:

s1 ∼Tr s2 ⇐⇒ s1 ∼Tr,MB,∨ s2

4.3. Testing Equivalence

Testing equivalence for LTS models [47, 66, 46, 39] compares two fully nondeterministic processes on the
basis of the fact that they may or must pass the same tests. The idea is that each of the two processes is run
in parallel with any test by enforcing synchronization on any action, then the responses to the test provided
by the two processes are compared. Tests are formalized as LTS models equipped with a success state.

Definition 4.6. A fully nondeterministic test is a finite-state, acyclic, and finitely-branching LTS T =
(O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing transitions.
We say that a computation of T is successful iff its last state is ω.

Definition 4.7. Let L = (S,A,−−−→L) be an LTS and T = (O,A,−−−→T) be a fully nondeterministic
test. The interaction system of L and T is the LTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

• The transition relation −−−→ ⊆ (S × O) × A × (S × O) is such that (s, o)
a

−−−→ (s′, o′) iff

s
a

−−−→L s′ and o
a

−−−→T o′. We say that a computation of I(L, T) is successful iff its last configu-
ration is successful.

Definition 4.8. Let L = (S,A,−−−→L) be an LTS, s ∈ S, and T = (O,A,−−−→T) be a fully nondetermin-
istic test with initial state o ∈ O. We say that:

• s may pass T iff there exists at least one successful computation in I(L, T) from (s, o).

• s must pass T iff all maximal computations in I(L, T) from (s, o) are successful.

Definition 4.9. Let (S,A,−−−→) be an LTS. We say that s1, s2 ∈ S are testing equivalent, written
s1 ∼Te s2, iff for every fully nondeterministic test T = (O,A,−−−→T) with initial state o ∈ O:

s1 may pass T ⇐⇒ s2 may pass T
s1 must pass T ⇐⇒ s2 must pass T

14

MR[0,1]
(s, α, S′) =

∑
s′∈S
Ds,a(s′) · MR[0,1]

(s′, α′, S′) if α = a ◦ α′

1 if α = ε and s ∈ S′
0 if α = ε and s /∈ S′

Table 2: Measure function for functional R[0,1]-ULTraS models representing generative or reactive probabilistic processes

Consistent with Def. 4.7, we denote by LC : B×B→ B the logical conjunction function defined by letting
LC(v1, v2) = v1 ∧ v2, which is the only ⊥-preserving and argument-injective B-valued function. Given a
B-ULTraS U = (S,A,−−−→U) and a B-observation system O = (O,A,−−−→O), for all configurations (s, o)

of their interaction system ILC(U ,O) and for all a ∈ A we let (s, o)
a

−−−→D iff s
a

−−−→U D1 and o
a

−−−→O D2

with D(s′, o′) = LC(D1(s′),D2(o′)) for each (s′, o′) ∈ S ×O.

Theorem 4.10. Let (S,A,−−−→) be an LTS and U = (S,A,−−−→U) be its corresponding functional
B-ULTraS. For all s1, s2 ∈ S:

s1 ∼Te s2 ⇐⇒ s1 ∼Te,MLC
B×B

s2

5. Equivalences for Fully Probabilistic Processes

In this section, we extend the work done in the previous section by additionally taking into account the
execution probability of transitions. More precisely, we instantiate the three behavioral equivalences of
Sect. 3 for fully probabilistic processes represented as functional R[0,1]-ULTraS models (see Sect. 2.3). This
is accomplished by introducing a measure function that associates a suitable R[0,1]-value with every triple
composed of a source state s, a trace α, and a set of destination states S′. The value MR[0,1]

(s, α, S′)
computed by this function expresses the probability of performing a computation that is labeled with
trace α and leads to a state in S′ from state s. Notice that, unlike fully nondeterministic processes where
we need two qualitative measure functions for expressing the possibility and the necessity of performing
certain computations, here a single quantitative measure function suffices. In this generative setting, we can
interpret MR[0,1]

(s, α, S′) > 0 as the existence of a computation that is labeled with trace α and leads to a
state in S′ from state s and MR[0,1]

(s, α, S′) = 1 as the existence of such a computation together with the
fact that all the computations from state s of length |α| are labeled with trace α and lead to a state in S′.

Definition 5.1. Let U = (S,A,−−−→) be a functional R[0,1]-ULTraS. The measure function
MR[0,1]

: S × A∗ × 2S → R[0,1] for U is inductively defined in Table 2, where the associated preorder
relation is the usual ordering of reals whose minimum is 0.

We now show that the three resulting behavioral equivalences ∼B,MR[0,1]
, ∼Tr,MR[0,1]

, and ∼Te,MNPM
R[0,1]

on

functional R[0,1]-ULTraS models – where NPM stands for normalized probability multiplication,
a 0-preserving and argument-injective R[0,1]-valued function that we will introduce later on – respectively
coincide with the bisimulation, trace, and testing equivalences defined in the literature for GPLTS models.

5.1. Bisimulation Equivalence

Bisimilarity for GPLTS models [61, 79, 125, 120, 8, 43, 117, 2, 29, 74] compares the ability of two fully
probabilistic processes of mimicking each other’s probabilistic behavior at every step. It is based on the
notion of state exit probability. Given a GPLTS (S,A,−−−→), the exit probability of a state s ∈ S with
respect to action a ∈ A and destination S′ ⊆ S is the probability with which s can execute transitions

labeled with a that lead to S′: probe(s, a, S′) =
∑
{| p ∈ R(0,1] | ∃s′ ∈ S′. s

a,p
−−−→ s′ |}.

Definition 5.2. Let (S,A,−−−→) be a GPLTS. An equivalence relation B over S is a probabilistic bisimu-
lation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes C ∈ S/B:

15

probe(s1, a, C) = probe(s2, a, C)
We say that s1, s2 ∈ S are probabilistic bisimilar, written s1 ∼PB s2, iff there exists a probabilistic bisimu-
lation B over S such that (s1, s2) ∈ B.

Theorem 5.3. Let (S,A,−−−→) be a GPLTS and U = (S,A,−−−→U) be its corresponding functional
R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PB s2 ⇐⇒ s1 ∼B,MR[0,1]
s2

5.2. Trace Equivalence

Trace equivalence for GPLTS models [79, 114, 36, 74] compares the probability with which two fully proba-
bilistic processes perform computations labeled with the same traces. In order to formalize this for a GPLTS
(S,A,−−−→), given s ∈ S we denote by Cfin(s) the set of finite-length computations of s and by |c| the length
of any c ∈ Cfin(s). The probability of executing c ∈ Cfin(s) is the product of the execution probabilities of
the transitions occurring in c:

prob(c) =

{
1 if |c| = 0

p · prob(c′) if c ≡ s
a,p
−−−→ c′

which is lifted to C ⊆ Cfin(s) as follows:
prob(C) =

∑
c∈C

prob(c)

whenever C is finite and all of its computations are independent of each other, i.e., none of them is a proper
prefix of one of the others.

Indicating with trace(c) the sequence of actions labeling the transitions occurring in c ∈ Cfin(s), we say
that c is compatible with α ∈ A∗ iff trace(c) = α and we denote by CC(s, α) the set of computations in Cfin(s)
that are compatible with α.

Definition 5.4. Let (S,A,−−−→) be a GPLTS. We say that s1, s2 ∈ S are probabilistic trace equivalent,
written s1 ∼PTr s2, iff for all traces α ∈ A∗:

prob(CC(s1, α)) = prob(CC(s2, α))

Theorem 5.5. Let (S,A,−−−→) be a GPLTS and U = (S,A,−−−→U) be its corresponding functional
R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PTr s2 ⇐⇒ s1 ∼Tr,MR[0,1]
s2

5.3. Testing Equivalence

Testing equivalence for GPLTS models [35, 38, 97, 17, 36] compares the probability with which two fully
probabilistic processes pass the same tests. Like in the nondeterministic case, each of the two processes is
run in parallel with any test by enforcing synchronization on any action name, with tests being formalized
as GPLTS models equipped with a success state.4 We also extend to interaction systems the notation for
the execution probability of computations introduced in Sect. 5.2.

Definition 5.6. A fully probabilistic test is a finite-state, acyclic, and finitely-branching GPLTS T =
(O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing transitions.
We say that a computation of T is successful iff its last state is ω.

Definition 5.7. Let L = (S,A,−−−→L) be a GPLTS and T = (O,A,−−−→T) be a fully probabilistic test.
The interaction system of L and T is the GPLTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

4To be precise, the tests considered in [35] were formalized as deterministic LTS models.

16

• The transition relation−−−→ ⊆ (S×O)×A×R(0,1]×(S×O) is such that (s, o)
a,p
−−−→ (s′, o′) iff s

a,p1
−−−→L s′

and o
a,p2
−−−→T o′ with p = p1·p2

q , where q =
∑
{| q1 ·q2 | ∃b ∈ A, s′′ ∈ S, o′′ ∈ O. s

b,q1
−−−→L s′′∧o

b,q2
−−−→T o′′ |}

is a normalizing factor. We say that a computation of I(L, T) is successful iff its last configuration
is successful. Given s ∈ S and o ∈ O, we denote by SC(s, o) the set of successful computations in
I(L, T) from (s, o).

Definition 5.8. Let (S,A,−−−→) be a GPLTS. We say that s1, s2 ∈ S are probabilistic testing equivalent,
written s1 ∼PTe s2, iff for all every probabilistic test T = (O,A,−−−→T) with initial state o ∈ O:

prob(SC(s1, o)) = prob(SC(s2, o))

Consistent with Def. 5.7, we denote by NPM : R[0,1] ×R[0,1] ×R[0,1] → R[0,1] the normalized probability
multiplication function defined by letting NPM(p1, p2, q) = p1·p2

q when q > 0 and NPM(p1, p2, q) = 0 when

q = 0, which is 0-preserving and argument-injective. Given an R[0,1]-ULTraS U = (S,A,−−−→U) and

an R[0,1]-observation system O = (O,A,−−−→O), for all configurations (s, o) of their interaction system

INPM(U ,O) and for all a ∈ A we let (s, o)
a

−−−→D iff s
a

−−−→U D1 and o
a

−−−→O D2 with D(s′, o′) =
NPM(D1(s′),D2(o′),

∑
{|D1(s′′) · D2(o′′) | s′′ ∈ S ∧ o′′ ∈ O |}) for each (s′, o′) ∈ S ×O.

In the following, given s ∈ S, o ∈ O, and α ∈ A∗ where S is the set of states of a GPLTS and O is the
set of states of a fully probabilistic test, we denote by SCC(s, o, α) the set of computations in SC(s, o) that
are compatible with α.

Lemma 5.9. Let (S,A,−−−→) be a GPLTS and s1, s2 ∈ S. Then s1 ∼PTe s2 iff for every fully probabilistic
test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:

prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))

Theorem 5.10. Let (S,A,−−−→) be a GPLTS and U = (S,A,−−−→U) be its corresponding functional
R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PTe s2 ⇐⇒ s1 ∼Te,MNPM
R[0,1]

s2

6. Equivalences for Reactive Probabilistic Processes

In this section, we address a different class of probabilistic processes including a limited form of nondeter-
minism. More precisely, we instantiate the three behavioral equivalences of Sect. 3 for reactive probabilistic
processes represented as functional R[0,1]-ULTraS models (see the first part of Sect. 2.4). This is accom-
plished by using the same measure functionMR[0,1]

that we have introduced in Def. 5.1 for fully probabilistic
processes. In this reactive setting, the valueMR[0,1]

(s, α, S′) expresses the probability of performing a com-
putation labeled with trace α that leads to a state in S′ from state s among all the computations starting
at s that are labeled with α. As a consequence, here we can interpret MR[0,1]

(s, α, S′) > 0 as the existence
of a computation that leads to a state in S′ from state s among all the computations starting at s that are
labeled with α and MR[0,1]

(s, α, S′) = 1 as the existence of such a computation together with the fact that
all the computations from s labeled with α lead to a state in S′.

We now show that the three resulting behavioral equivalences ∼B,MR[0,1]
, ∼Tr,MR[0,1]

, and ∼Te,MPM
R[0,1]

on

functional R[0,1]-ULTraS models – where the first two have been considered in Sect. 5 under a generative
interpretation while in the third one PM stands for probability multiplication, a 0-preserving and argument-
injective R[0,1]-valued function that we will introduce later on – respectively coincide with the bisimulation,
trace, and testing equivalences defined in the literature for RPLTS models.

6.1. Bisimulation Equivalence

Bisimilarity for RPLTS models [85, 86, 125, 9, 57, 62] is defined in the same way as bisimilarity for GPLTS
models (see Def. 5.2), with the difference that in an RPLTS (S,A,−−−→) the exit probability probe(s, a, S′)
of a state s ∈ S with respect to action a ∈ A and destination S′ ⊆ S has a reactive meaning.

17

Definition 6.1. Let (S,A,−−−→) be an RPLTS. An equivalence relation B over S is a probabilistic bisim-
ulation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes C ∈ S/B:

probe(s1, a, C) = probe(s2, a, C)
We say that s1, s2 ∈ S are probabilistic bisimilar, written s1 ∼PB s2, iff there exists a probabilistic bisimu-
lation B over S such that (s1, s2) ∈ B.

Theorem 6.2. Let (S,A,−−−→) be an RPLTS and U = (S,A,−−−→U) be its corresponding functional
R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PB s2 ⇐⇒ s1 ∼B,MR[0,1]
s2

6.2. Trace Equivalence

Trace equivalence for RPLTS models can be defined in the same way as trace equivalence for GPLTS models
(see Def. 5.4), with the difference that in an RPLTS (S,A,−−−→) the execution probability prob(c) of a
finite-length computation c ∈ Cfin(s) starting from a state s ∈ S has a reactive meaning. Moreover, given a
finite set C ⊆ Cfin(s) of independent computations, in this reactive setting prob(C) is well defined only if all
the computations in C are compatible with the same trace.

To the best of our knowledge, apart from an investigation of algorithmic issues in [122], there is no
paper in the literature that extensively deals with trace equivalence for reactive probabilistic processes. The
closest work is the second part of [114], where a trace-based relation is defined for processes in which the
choice among transitions labeled with the same action is probabilistic, whereas the choice among transitions
labeled with different actions can be probabilistic or nondeterministic.

Definition 6.3. Let (S,A,−−−→) be an RPLTS. We say that s1, s2 ∈ S are probabilistic trace equivalent,
written s1 ∼PTr s2, iff for all traces α ∈ A∗:

prob(CC(s1, α)) = prob(CC(s2, α))

Theorem 6.4. Let (S,A,−−−→) be an RPLTS and U = (S,A,−−−→U) be its corresponding functional
R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PTr s2 ⇐⇒ s1 ∼Tr,MR[0,1]
s2

6.3. Testing Equivalence

Testing equivalence for RPLTS models [83] compares the probability with which two reactive probabilistic
processes pass the same tests. Like in the fully probabilistic case, each of the two processes is run in parallel
with any test by enforcing synchronization on any action name, with tests being formalized as RPLTS models
equipped with a success state.5 Unlike the fully probabilistic case, due to the presence of a limited form of
nondeterminism, there is not necessarily a single probability value with which a process passes a test. In
general, there can be several values, each of which depends on how at each step the nondeterministic choice
is solved among transitions labeled with different actions enabled both in the process and in the test. When
considering two reactive probabilistic processes and a test, it is thus necessary to compute for every trace
of the interaction system of each process the probability of performing a successful computation compatible
with that trace. Then, one option is to compare for the two processes the suprema (

⊔
) and the infima (

d
)

of these values over all traces of the two interaction systems.
Given a reactive probabilistic process and a test, taking the supremum and the infimum of the values

mentioned above is a natural extension of testing equivalence for fully nondeterministic processes: when
the supremum is greater than zero then it means that the reactive probabilistic process may pass the test,
whereas when the infimum is equal to one then it means that the process must pass the test. From a
different perspective, we note that with every maximal computation of the interaction system of a fully
nondeterministic process and a test we could associate a truth value indicating whether that computation
is successful or not. Then, in the may-testing case we should consider the supremum of these truth values

5To be precise, the tests considered in [83] were formalized as possibly replicated deterministic LTS models.

18

(i.e., their logical disjunction), whilst in the must-testing case we should consider the infimum of these truth
values (i.e., their logical conjunction). When dealing with a reactive probabilistic process, the difference
is that we associate a probability value rather than a truth value. This is possible only after solving all
nondeterministic choices, with each resolution of nondeterminism corresponding to the selection of a specific
trace labeling a maximal computation of the interaction system.

Definition 6.5. A reactive probabilistic test is a finite-state, acyclic, and finitely-branching RPLTS T =
(O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing transitions.
We say that a computation of T is successful iff its last state is ω.

Definition 6.6. Let L = (S,A,−−−→L) be an RPLTS and T = (O,A,−−−→T) be a reactive probabilistic
test. The interaction system of L and T is the RPLTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

• The transition relation −−−→ ⊆ (S × O) × A × R(0,1] × (S × O) is such that (s, o)
a,p
−−−→ (s′, o′) iff

s
a,p1
−−−→L s′ and o

a,p2
−−−→T o′ with p = p1 · p2. We say that a computation of I(L, T) is successful iff its

last configuration is successful. Given s ∈ S, o ∈ O, and α ∈ A∗, we denote by SCC(s, o, α) the set of
successful computations in I(L, T) from (s, o) that are compatible with α.

In the following, given s ∈ S and o ∈ O where S is the set of states of an RPLTS and O is the set
of states of a reactive probabilistic test, we denote by Trmax(s, o) the set of traces labeling the maximal
computations from (s, o). We will not consider traces in A∗ \ Trmax(s, o) when computing the supremum
and the infimum of the probabilities of performing a successful computation compatible with some trace,
because otherwise for the infimum we would always get 0.

Definition 6.7. Let (S,A,−−−→) be an RPLTS. We say that s1, s2 ∈ S are probabilistic testing equivalent,
written s1 ∼PTe s2, iff for every reactive probabilistic test T = (O,A,−−−→T) with initial state o ∈ O:⊔

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
⊔

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

d

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
d

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

Consistent with Def. 6.6, we denote by PM : R[0,1]×R[0,1] → R[0,1] the probability multiplication function
defined by letting PM(p1, p2) = p1 · p2, which is 0-preserving and argument-injective. Given an R[0,1]-

ULTraS U = (S,A,−−−→U) and an R[0,1]-observation system O = (O,A,−−−→O), for all configurations

(s, o) of their interaction system IPM(U ,O) and for all a ∈ A we let (s, o)
a

−−−→D iff s
a

−−−→U D1 and

o
a

−−−→O D2 with D(s′, o′) = PM(D1(s′),D2(o′)) for each (s′, o′) ∈ S ×O.

Lemma 6.8. Let (S,A,−−−→) be an RPLTS and s1, s2 ∈ S. Then s1 ∼PTe s2 iff for every reactive
probabilistic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:

prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))

Theorem 6.9. Let (S,A,−−−→) be an RPLTS and U = (S,A,−−−→U) be its corresponding functional
R[0,1]-ULTraS. For all s1, s2 ∈ S:

s1 ∼PTe s2 ⇐⇒ s1 ∼Te,MPM
R[0,1]

s2

It is worth pointing out that, due to Lemmas 5.9 and 6.8 coming from [25], probabilistic testing equiva-
lence for fully probabilistic processes and probabilistic testing equivalence for reactive probabilistic processes
could have been defined in the same way in the literature, as was the case with probabilistic bisimulation
equivalence and probabilistic trace equivalence for the same two classes of probabilistic processes.

19

M
2.
R[0,1] (s, α, S

′) =

⋃
s

a
−−−→D

{
∑
s′∈S
D(s′) · ps′ | ps′ ∈M2.

R[0,1] (s
′, α′, S′)}

if α = a ◦ α′ and ∃D ∈ [S → R[0,1]]. s
a

−−−→D
{1} if α = ε and s ∈ S′

{0} if α = a ◦ α′ and @D ∈ [S → R[0,1]]. s
a

−−−→D
or α = ε and s /∈ S′

Table 3: Measure function for R[0,1]-ULTraS models representing nondeterministic and probabilistic processes

7. Equivalences for Nondeterministic and Probabilistic Processes

In this section, we examine another class of probabilistic processes including internal nondeterminism. More
precisely, we instantiate the three behavioral equivalences of Sect. 3 for nondeterministic and probabilistic
processes represented as R[0,1]-ULTraS models (see the second part of Sect. 2.4). This is accomplished
by introducing a measure function that associates a suitable nonempty set of R[0,1]-values with every triple

composed of a source state s, a trace α, and a set of destination states S′. Let us denote by 2.R[0,1] the
set of nonempty subsets of R[0,1]. The setM

2.
R[0,1] (s, α, S

′) computed by the previously mentioned function
contains for each possible way of resolving nondeterminism the probability of performing a computation
that is labeled with trace α and leads to a state in S′ from state s. The set M

2.
R[0,1] (s, α, S

′) boils down
to {MR[0,1]

(s, α, S′)} when there is no internal nondeterminism, i.e., when for every state of the considered
R[0,1]-ULTraS the actions labeling the outgoing transitions are all different from each other.

Definition 7.1. Let U = (S,A,−−−→) be an R[0,1]-ULTraS. The measure functionM
2.
R[0,1] : S×A∗×2S →

2.R[0,1] for U is inductively defined in Table 3, where the associated preorder relation, whose minimum is {0},
is defined by letting R1 v2.

R[0,1] R2 iff
d
R1 ≤

d
R2 and |R1| ≤ |R2|.6

Unlike all previous cases, we now show that the three resulting behavioral equivalences ∼B,M
2.
R[0,1]

,

∼Tr,M
2.
R[0,1]

, and∼Te,MPM

2.
R[0,1]

on R[0,1]-ULTraS models – where PM is the probability multiplication function

introduced in Sect. 6.3 – do not coincide with the bisimulation, trace, and testing equivalences defined in
the literature for NPLTS models. They are shown to coincide instead with new behavioral equivalences for
NPLTS models recently studied in [26, 25].

7.1. Bisimulation Equivalence

Bisimilarity for NPLTS models [65, 112, 13, 92, 113, 51, 70, 67, 9, 32, 41] combines bisimilarity for fully
nondeterministic processes with bisimilarity for fully or reactive probabilistic processes, with the former ex-
tended to state distributions and the latter abstracting from action names.7 Given an NPLTS (S,A,−−−→),
D ∈ [S → R[0,1]], and S′ ⊆ S, in the following we let D(S′) =

∑
s′∈S′ D(s′).

Definition 7.2. Let (S,A,−−−→) be an NPLTS. An equivalence relation B over S is a probabilistic class-

distribution bisimulation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A it holds that s1

a
−−−→D1

implies s2

a
−−−→D2 with D1(C) = D2(C) for all equivalence classes C ∈ S/B. We say that s1, s2 ∈ S

are probabilistic class-distribution bisimilar, written s1 ∼PB,dis s2, iff there exists a probabilistic class-
distribution bisimulation B over S such that (s1, s2) ∈ B.

6The constraint on set cardinalities ensures the existence of the minimum element {0}. Without this constraint, there would
be infinitely many minimal elements, which are all the sets containing 0, but no minimum element.

7In [112], also a coarser bisimilarity for NPLTS models was defined, which additionally allows convex combinations of equally
labeled transitions to be considered in the bisimulation game.

20

s1 ~PB,dis

~PB,N

s2
a a

a

0.4 0.6 0.6 0.4 0.6 0.4

a a

a

0.6 0.4 0.4 0.6 0.4 0.6

b d b c c db d b c c d

Figure 2: Counterexample showing that ∼PB,dis is strictly finer than ∼PB,N

The bisimulation equivalence∼B,M
2.
R[0,1]

does not capture the bisimulation equivalence∼PB,dis of Def. 7.2.

The reason is that the latter matches transitions on the basis of class distributions, which means that for
each transition of one of two bisimilar states there must exist an equally labeled transition of the other
state such that, for every equivalence class, the two transitions have the same probability of reaching a
state in that class. Similar to [45, 121], this constraint can be relaxed by considering a single equivalence
class at a time, i.e., by anticipating the quantification over equivalence classes. In this way, a transition
departing from one of the two states can be matched, with respect to the probabilities associated with
different classes, by several different transitions departing from the other state, which leads to the following
coarser bisimulation equivalence for NPLTS models recently studied in [26] that is captured by ∼B,M

2.
R[0,1]

.

Groups of equivalence classes are considered so that, similar to [116] and unlike ∼PB,dis, the new bisimulation
equivalence is characterized by a minor variant of a standard probabilistic logic, which is PML [85]. We have
also that a slight variant of the new bisimulation equivalence in which ≤ is used in place of = is precisely
characterized by PML. Figure 2 illustrates the difference between ∼PB,dis and the new equivalence.

Definition 7.3. Let (S,A,−−−→) be an NPLTS. An equivalence relation B over S is a probabilistic bisim-
ulation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and groups of equivalence classes G ∈ 2S/B it

holds that s1

a
−−−→D1 implies s2

a
−−−→D2 with D1(

⋃
G) = D2(

⋃
G). We say that s1, s2 ∈ S are probabilistic

bisimilar, written s1 ∼PB,N s2, iff there exists a probabilistic bisimulation B over S such that (s1, s2) ∈ B.

Theorem 7.4. Let (S,A,−−−→) be an NPLTS. For all s1, s2 ∈ S:
s1 ∼PB,N s2 ⇐⇒ s1 ∼B,M

2.
R[0,1]

s2

7.2. Trace Equivalence

Trace equivalence for NPLTS models [110, 44, 34, 88, 101] combines trace equivalence for fully nondeter-
ministic processes with trace equivalence for fully or reactive probabilistic processes, where the probability
of performing computations labeled with the same traces are examined for each possible way of resolving
nondeterminism. In order to formalize this for an NPLTS L, given a state s of L we take the set of resolu-
tions of s. Each of them is a tree-like structure whose branching points represent probabilistic choices. This
is obtained by unfolding from s the graph structure underlying L and by selecting at each state – without
considering how that state has been reached – a single transition of L – (memoryless) deterministic scheduler
– or a convex combination of equally labeled transitions of L – (memoryless) randomized scheduler – among
all the transitions possible from that state. Every resolution of s corresponds to a computation in L from s
whenever each transition of L concentrates all the probability mass into a single target state. Below, we
restrict ourselves to resolutions arising from deterministic schedulers, described as NPLTS models in which
every state has at most one outgoing transition so that nondeterminism is completely absent.8

Definition 7.5. Let L = (S,A,−−−→L) be an NPLTS and s ∈ S. We say that an NPLTS Z = (Z,A,−−−→Z)
is a resolution of s obtained via a deterministic scheduler iff there exists a state correspondence function
corr : Z → S such that s = corr(zs), for some zs ∈ Z, and for all z ∈ Z:

8In [110, 88, 101], also randomized schedulers are admitted thus ending up with a coarser trace equivalence in which convex
combinations of equally labeled transitions are taken into account.

21

s1

b3 b4b1 b2

~PTr,dis

~PTr,N

s2

b4b1 b2b3

s2

b3 b4b1 b2

s1

b4b1 b2b3

a a

0.5 0.50.5 0.5

a a

0.5 0.50.5 0.5

maximal resolutions of

0.5 0.50.5 0.5

a a

maximal resolutions of

0.5 0.50.5 0.5

a a

Figure 3: Counterexample showing that ∼PTr,dis is strictly finer than ∼PTr,N

• If z
a

−−−→Z D, then corr(z)
a

−−−→LD′ with D(z′) = D′(corr(z′)) for all z′ ∈ Z.

• If z
a1
−−−→Z D1 and z

a2
−−−→Z D2, then a1 = a2 and D1 = D2.

Given a state s of an NPLTS L, we denote by Res(s) the set of resolutions of s obtained via deterministic
schedulers. Given Z ∈ Res(s) and c ∈ Cfin(zs), due to the absence of nondeterminism in Z the probability
of executing c can be defined as in Sect. 5.2 – with prob(c) being always equal to 1 if each transition of L
concentrates all the probability mass into a single target state – and can be lifted as usual to any C ⊆ Cfin(zs)
such that C is finite and all of its computations are independent of each other. In the following, we denote
by CC(zs, α) the set of computations in Cfin(zs) that are compatible with α ∈ A∗.

Definition 7.6. Let (S,A,−−−→) be an NPLTS. We say that s1, s2 ∈ S are probabilistic trace-distribution
equivalent, written s1 ∼PTr,dis s2, iff:

• For each resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that for all traces α ∈ A∗:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

• For each resolution Z2 ∈ Res(s2) there exists a resolution Z1 ∈ Res(s1) such that for all traces α ∈ A∗:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

The trace equivalence ∼Tr,M
2.
R[0,1]

does not capture the trace equivalence ∼PTr,dis of Def. 7.6. The reason

is that the latter matches resolutions on the basis of trace distributions, which means that for each resolution
of one of two trace equivalent states there must exist a resolution of the other state such that, for every trace,
the two resolutions have the same probability of performing a computation labeled with that trace. This
constraint can be relaxed by considering a single trace at a time, i.e., by anticipating the quantification over
traces. In this way, differently labeled computations of a resolution of one of the two states are allowed to
be matched by computations of several different resolutions of the other state, which leads to the following
coarser trace equivalence for NPLTS models captured by ∼Tr,M

2.
R[0,1]

that has been recently shown to be

compositional in the full version of [25]. Figure 3 illustrates the difference between the two equivalences.

Definition 7.7. Let (S,A,−−−→) be an NPLTS. We say that s1, s2 ∈ S are probabilistic trace equivalent,
written s1 ∼PTr,N s2, iff for all traces α ∈ A∗:

• For each resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

• For each resolution Z2 ∈ Res(s2) there exists a resolution Z1 ∈ Res(s1) such that:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

Theorem 7.8. Let (S,A,−−−→) be an NPLTS. For all s1, s2 ∈ S:
s1 ∼PTr,N s2 ⇐⇒ s1 ∼Tr,M

2.
R[0,1]

s2

22

7.3. Testing Equivalence

Testing equivalence for NPLTS models [129, 76, 77, 111, 94, 78, 33, 99, 54, 52, 53] is an extension of testing
equivalence for reactive probabilistic processes. Like in all the previous cases, each of the two processes is
run in parallel with any test by enforcing synchronization on any action name, with tests being formalized
as NPLTS models equipped with a success state. Like in the reactive probabilistic case, there is not a
single probability value with which a process passes a test. Unlike the reactive probabilistic case, due to the
possible presence of equally labeled transitions departing from the same state, it is not enough to consider for
each trace the probability of performing a successful computation compatible with that trace, i.e., traces are
no longer sufficient to resolve nondeterminism. Given two nondeterministic and probabilistic processes and
a test, we thus need to compute the probability of performing a successful computation in every resolution
of the interaction system of each process and the test. Then, like in the reactive probabilistic case, a natural
option is to compare for the two processes the suprema and the infima of these values over all resolutions of
the two interaction systems.9

Definition 7.9. A nondeterministic and probabilistic test is a finite-state, acyclic, and finitely-branching
NPLTS T = (O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing
transitions. We say that a computation of T is successful iff its last state is ω.

Definition 7.10. Let L = (S,A,−−−→L) be an NPLTS and T = (O,A,−−−→T) be a nondeterministic and
probabilistic test. The interaction system of L and T is the NPLTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

• The transition relation −−−→ ⊆ (S×O)×A×[(S×O)→ R[0,1]] is such that (s, o)
a

−−−→D iff s
a

−−−→LD1

and o
a

−−−→T D2 with D(s′, o′) = PM (D1(s′),D2(o′)) = D1(s′) · D2(o′) for each (s′, o′) ∈ S × O. We
say that a computation of I(L, T) is successful iff its last configuration is successful. Given s ∈ S,
o ∈ O, and Z ∈ Res(s, o), we denote by SC(zs,o) the set of successful computations in Z from zs,o.

In the following, given s ∈ S and o ∈ O where S is the set of states of an NPLTS and O is the set of states
of a nondeterministic and probabilistic test, we denote by Resmax(s, o) the set of resolutions in Res(s, o) that
are maximal, i.e., that cannot be further extended in accordance with the graph structure of I(L, T) and
the constraints of Def. 7.5. We will not consider resolutions in Res(s, o) \Resmax(s, o) when computing the
supremum and the infimum of the probabilities of performing a successful computation, because otherwise
for the infimum we would always get 0.

Definition 7.11. Let (S,A,−−−→) be an NPLTS. We say that s1, s2 ∈ S are probabilistic tu-testing
equivalent, written s1 ∼PTe,tu s2, iff for every nondeterministic and probabilistic test T = (O,A,−−−→T)
with initial state o ∈ O: ⊔

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
⊔

Z2∈Resmax(s2,o)

prob(SC(zs2,o))
d

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
d

Z2∈Resmax(s2,o)

prob(SC(zs2,o))

The testing equivalence ∼Te,MPM

2.
R[0,1]

does not capture the testing equivalence ∼PTe,tu of Def. 7.11. The

reason is that the former is based on a measure function that computes for every trace the set of probabilities
of performing a successful computation compatible with that trace corresponding to all possible ways of
resolving nondeterminism in the interaction system, whereas the latter considers only the maximal and
minimal overall probability of performing a successful computation, with overall probability meaning the
sum over all traces of the probability of performing a successful computation compatible with a trace in a
certain resolution.

9In [111], also resolutions coming from randomized schedulers are admitted thus ending up with a coarser testing equivalence
in which convex combinations of equally labeled transitions are taken into account.

23

s1 s2PTe,~
~PTe,N

s1 s2PTe,~
~PTe,N

p1 p2

o(),s2s1 o(),

o(),s2

p1 p2p2p1

s1 o(),

p1 p2

a
a a

cb

(i)

0.5

b

0.5

c c

a a

b

b b

a

c d

(ii)

a a

b

c d

b

a

o

0.5 0.5

b

ω

c

a

o

c

b

ω

b

d

ω

aa

0.5

b

ω

0.5 0.5 0.5

c

a
a a

0.5

b

ω

0.5 0.25 0.25 0.25 0.250.5 0.5

cb

ω

c

b b

d

ω

a a

b

c

b

ω

a

b b

c

ω ω

bb

d

Figure 4: Counterexamples showing that ∼PTe,tu and ∼PTe,N are incomparable

The testing equivalence ∼PTe,tu of Def. 7.11 is known to suffer from a couple of anomalies. As noted
in [25], it is included in neither of the two trace equivalences of Defs. 7.6 and 7.7 introduced for the same
class of processes.10 Most importantly, it has an alternative characterization based on a simulation-like
equivalence rather than a trace-like equivalence, thus discriminating more than classical testing equivalence
over fully nondeterministic processes [46]. In fact, ∼PTe,tu differentiates processes that perform the same
sequence of actions with the same probability but make internal choices in different moments and thus,
when applied to processes without probabilities, does not coincide with ∼Te. This is a consequence of the
presence of probabilistic choices within tests, as they make it possible to take copies of the intermediate
states of the processes under test thereby enhancing the discriminating power of testing equivalence [1]. On
the probabilistic side, this results in an unrealistic estimation of success probabilities [60].

The previously mentioned anomalies of ∼PTe,tu can be overcome through the following testing equiv-
alence for NPLTS models recently studied in [25] that is captured by ∼Te,MPM

2.
R[0,1]

. To counterbalance the

strong discriminating power deriving from the presence of probabilistic choices within tests, the idea is to
match the resolutions of the two interaction systems on the basis of all of their success probabilities where –
building on the results of Lemmas 5.9 and 6.8 – such probabilities are considered in a trace-by-trace fashion
instead of being overall probabilities. Figure 4 illustrates the difference between the two equivalences by
showing two distinguishing tests. In the following, given s ∈ S, o ∈ O, Z ∈ Res(s, o), and α ∈ A∗ where
S is the set of states of an NPLTS and O is the set of states of a nondeterministic and probabilistic test, we
denote by SCC(zs,o, α) the set of computations in SC(zs,o) that are compatible with α.

Definition 7.12. Let (S,A,−−−→) be an NPLTS. We say that s1, s2 ∈ S are probabilistic testing equivalent,
written s1 ∼PTe,N s2, iff for every nondeterministic and probabilistic test T = (O,A,−−−→T) with initial
state o ∈ O and for all traces α ∈ A∗:

• For each resolution Z1 ∈ Res(s1, o) there exists a resolution Z2 ∈ Res(s2, o) such that:
prob(SCC(zs1,o, α)) = prob(SCC(zs2,o, α))

• For each resolution Z2 ∈ Res(s2, o) there exists a resolution Z1 ∈ Res(s1, o) such that:
prob(SCC(zs2,o, α)) = prob(SCC(zs1,o, α))

Theorem 7.13. Let (S,A,−−−→) be an NPLTS. For all s1, s2 ∈ S:
s1 ∼PTe,N s2 ⇐⇒ s1 ∼Te,MPM

2.
R[0,1]

s2

10Inclusion would hold if randomized schedulers were admitted as in [111].

24

Mete(s, α, S′)(t) =

t∫
0

E(s) · e−E(s)·x ·
∑
s′∈S

Ds,a(s′)
E(s) · Mete(s′, α′, S′)(t− x) dx

if α = a ◦ α′ and E(s) > 0
1 if α = ε and s ∈ S′
0 if α 6= ε and E(s) = 0

or α = ε and s /∈ S′

Msbs(s, α, S
′)(θ) =

(1− e−E(s)·t) ·
∑
s′∈S

Ds,a(s′)
E(s) · Msbs(s

′, α′, S′)(θ′)

if α = a ◦ α′ and θ = t ◦ θ′ and E(s) > 0
1 if α = ε and s ∈ S′
0 if α 6= ε and θ = ε

or α 6= ε and θ 6= ε and E(s) = 0
or α = ε and s /∈ S′

Table 4: Measure functions for functional R≥0-ULTraS models representing generative stochastic processes

8. Equivalences for Fully Stochastic Processes

In this section, we further extend the work done in the previous sections by additionally taking into account a
notion of time formalized by means of exponentially distributed random variables that quantify the durations
of transitions. More precisely, we instantiate the three behavioral equivalences of Sect. 3 for fully stochas-
tic processes – involving only exponential distributions – represented as functional R≥0-ULTraS models
(see Sect. 2.3). Given one such process, we remind that E(s) denotes the sum of the rates of the transitions
departing from state s and, when E(s) > 0, it holds that:

• Function Exps(t) = 1 − e−E(s)·t is the probability of leaving state s within time t, which is the
cumulative distribution function of an exponentially distributed random variable with rate E(s).

• Value 1
E(s) is the average sojourn time in state s, which is the expected value of an exponentially

distributed random variable with rate E(s).

• Value λ
E(s) is the probability of executing a transition departing from s whose rate is λ ∈ R>0.

Unlike the previous sections, when defining the measure function we distinguish between two cases.
The measure function for the end-to-end case associates a suitable R[0,1]-valued function with every triple
composed of a source state s, a trace α, and a set of destination states S′, which is parameterized with
respect to the end-to-end delay t ∈ R≥0 of the trace. The valueMete(s, α, S′)(t) computed by this function
expresses the probability of performing within time t a computation that is labeled with trace α and leads
to a state in S′ from state s. The subscript “ete” is a symbolic shorthand for [R≥0 → R[0,1]].

Definition 8.1. Let U = (S,A, −−−→) be a functional R≥0-ULTraS. The end-to-end measure function
Mete : S × A∗ × 2S → [R≥0 → R[0,1]] for U is inductively defined in the first part of Table 4, where the
associated preorder relation, whose minimum is the function mapping every element of R≥0 to 0, is defined
by letting f1 vete f2 iff f1(t) ≤ f2(t) for all t ∈ R≥0.

The value Mete(s, α, S′)(t) is the probability of the set of computations that are labeled with trace α
and lead to a state in S′ from state s within t time units. If there are no such computations, then
Mete(s, α, S′)(t) = 0, otherwise Mete(s, α, S′)(t) ∈ R(0,1]. In the case α = a ◦ α′ and E(s) > 0, this
value is computed as the convolution of two probability distributions. Assuming to spend x ∈ R[0,t] time
units in state s, the first operand of the convolution is the exponentially distributed density function quanti-
fying the sojourn time in s, i.e., the derivative of Exps(t) evaluated in x. For each state s′ reachable from s
by executing a, the first operand is multiplied by the probability of the set of computations that are labeled
with the remaining trace α′ and lead to a state in S′ from state s′ within the remaining t− x time units.

25

The measure function for the step-by-step case associates a suitable R[0,1]-valued function with every
triple composed of a source state s, a trace α, and a set of destination states S′, which is parameterized with
respect to the step-by-step delay θ ∈ (R≥0)∗ of the trace. The value Msbs(s, α, S

′)(θ) computed by this
function expresses the probability of performing within time θ a computation that is labeled with trace α
and leads to a state in S′ from state s. The subscript “sbs” is a symbolic shorthand for [(R≥0)∗ → R[0,1]].

Definition 8.2. Let U = (S,A, −−−→) be a functional R≥0-ULTraS. The step-by-step measure function
Msbs : S × A∗ × 2S → [(R≥0)∗ → R[0,1]] for U is inductively defined in the second part of Table 4, where
the associated preorder relation, whose minimum is the function mapping every element of (R≥0)∗ to 0, is
defined by letting f1 vsbs f2 iff f1(θ) ≤ f2(θ) for all θ ∈ (R≥0)∗.

The value Msbs(s, α, S
′)(θ) is the probability of the set of computations that are labeled with trace α

and lead to a state in S′ from state s, such that the average sojourn time in the i-th state traversed by any
such computation is not greater than θ[i] for each i ranging from 1 to the length of the computation. If
there are no such computations, thenMsbs(s, α, S

′)(θ) = 0, otherwiseMsbs(s, α, S
′)(θ) ∈ R(0,1]. In the case

α = a◦α′ and θ = t◦θ′ and E(s) > 0, this value is computed as the product of two probability distributions.
The first operand of the product is the probability of leaving state s within t time units, i.e., Exps(t). For
each state s′ reachable from s by executing a, the first operand is multiplied by the probability of the set
of computations that are labeled with the remaining trace α′ and lead to a state in S′ from state s′ within
the remaining sequence θ′ of time units.

We now show that the six resulting behavioral equivalences ∼B,Mete , ∼B,Msbs
, ∼Tr,Mete , ∼Tr,Msbs

,
∼Te,MRM

ete
, and ∼Te,MRM

sbs
on functional R≥0-ULTraS models – where RM stands for rate multiplication,

a 0-preserving and argument-injective R≥0-valued function that we will introduce later on – respectively
coincide with the end-to-end and step-by-step bisimulation, trace, and testing equivalences defined in the
literature for GMLTS models. In particular, we will see that ∼B,Mete

and ∼B,Msbs
coincide, whereas the

end-to-end trace and testing equivalences are respectively different from the step-by-step trace and testing
equivalences.

8.1. Bisimulation Equivalence

Bisimilarity for GMLTS models [73, 71, 37, 21, 55] compares the ability of two fully stochastic processes of
mimicking each other’s stochastic behavior at every step. It is based on the notion of state exit rate. Given
a GMLTS (S,A,−−−→), the exit rate of a state s ∈ S with respect to action a ∈ A and destination S′ ⊆ S
is the rate at which s can execute transitions labeled with a that lead to S′, which is the sum of the rates
of those transitions due to the fact that transition firing is governed by the race policy: ratee(s, a, S′) =∑
{|λ ∈ R>0 | ∃s′ ∈ S′. s

a,λ
−−−→ s′ |}.

Definition 8.3. Let (S,A,−−−→) be a GMLTS. An equivalence relation B over S is a Markovian bisimu-
lation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes C ∈ S/B:

ratee(s1, a, C) = ratee(s2, a, C)
We say that s1, s2 ∈ S are Markovian bisimilar, written s1 ∼MB s2, iff there exists a Markovian bisimulation
B over S such that (s1, s2) ∈ B.

If we define the rate-based exit probability by letting probe(s, a, S′) = ratee(s, a, S′)/E(s) when E(s) > 0
and probe(s, a, S′) = 0 when E(s) = 0, the definition above is equivalent to requiring that, whenever
(s1, s2) ∈ B, then E(s1) = E(s2) and for all actions a ∈ A and equivalence classes C ∈ S/B:

probe(s1, a, C) = probe(s2, a, C)
Note that condition E(s1) = E(s2), which takes into account only time-related information, represents the
difference between bisimilarity for GMLTS models and bisimilarity for GPLTS models (see Sect. 5.1).

We prove that ∼MB coincides with ∼B,Mete
and ∼B,Msbs

, which implies that for fully stochastic processes
there is no difference between the end-to-end case and the step-by-step case in the bisimulation approach.

Lemma 8.4. Let (S,A,−−−→) be a GMLTS. For all s1, s2 ∈ S:
s1 ∼MB s2 =⇒ E(s1) = E(s2)

26

Lemma 8.5. Let (S,A,−−−→) be a functional R≥0-ULTraS. For all s1, s2 ∈ S:
s1 ∼B,Mete s2 =⇒ E(s1) = E(s2)

Lemma 8.6. Let (S,A,−−−→) be a functional R≥0-ULTraS. For all s1, s2 ∈ S:
s1 ∼B,Msbs

s2 =⇒ E(s1) = E(s2)

Theorem 8.7. Let (S,A,−−−→) be a GMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MB s2 ⇐⇒ s1 ∼B,Mete
s2

Theorem 8.8. Let (S,A,−−−→) be a GMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MB s2 ⇐⇒ s1 ∼B,Msbs
s2

8.2. Trace Equivalence

Trace equivalence for GMLTS models [128, 16] compares the probability with which two fully stochastic
processes perform computations labeled with the same traces within the same amounts of time. In order to
formalize this for a GMLTS (S,A,−−−→), as in the GPLTS case (see Sect. 5.2) given s ∈ S we denote by
Cfin(s) the set of finite-length computations of s and by |c| the length of any c ∈ Cfin(s). The probability
of executing c ∈ Cfin(s) is the product of the rate-based execution probabilities of the transitions occurring
in c:11

prob(c) =

{
1 if |c| = 0

λ
E(s) · prob(c′) if c ≡ s

a,λ
−−−→ c′

which is lifted to C ⊆ Cfin(s) as follows:
prob(C) =

∑
c∈C

prob(c)

whenever C is finite and all of its computations are independent of each other, i.e., none of them is a proper
prefix of one of the others.

In addition to the execution probability, in this stochastic setting we also need to formalize the duration
of a finite-length computation. The end-to-end average duration of c ∈ Cfin(s) is the sum of the average
sojourn times in the states traversed by c:

timea,ete(c) =

{
0 if |c| = 0

1
E(s) + timea,ete(c′) if c ≡ s

a,λ
−−−→ c′

and we denote by C≤t the set of computations in C ⊆ Cfin(s) whose end-to-end average duration is not
greater than t ∈ R≥0. In contrast, the step-by-step average duration of c ∈ Cfin(s) is the sequence of the
average sojourn times in the states traversed by c:

timea,sbs(c) =

{
ε if |c| = 0

1
E(s) ◦ timea,sbs(c

′) if c ≡ s
a,λ
−−−→ c′

and we denote by C≤θ the set of computations in C ⊆ Cfin(s) whose step-by-step average duration is not
greater than θ ∈ (R≥0)∗, i.e., C≤θ = {c ∈ C | |c| ≤ |θ| ∧ ∀i = 1, . . . , |c|. timea,sbs(c)[i] ≤ θ[i]}.

As in Sect. 5.2, indicating with trace(c) the sequence of actions labeling the transitions occurring in
c ∈ Cfin(s), we say that c is compatible with α ∈ A∗ iff trace(c) = α. Given t ∈ R≥0 and θ ∈ (R≥0)∗, we
denote by CC≤t(s, α) the set of computations in Cfin(s) that are compatible with α whose end-to-end average
duration is not greater than t and by CC≤θ(s, α) the set of computations in Cfin(s) that are compatible with α
whose step-by-step average duration is not greater than θ.

Definition 8.9. Let (S,A,−−−→) be a GMLTS. We say that s1, s2 ∈ S are end-to-end Markovian trace
equivalent, written s1 ∼MTr,ete s2, iff for all traces α ∈ A∗ and amounts of time t ∈ R≥0:

prob(CC≤t(s1, α)) = prob(CC≤t(s2, α))

11With abuse of notation, we use the same name prob employed in the GPLTS case as no confusion arises.

27

Definition 8.10. Let (S,A,−−−→) be a GMLTS. We say that s1, s2 ∈ S are step-by-step Markovian trace
equivalent, written s1 ∼MTr,sbs s2, iff for all traces α ∈ A∗ and sequences of amounts of time θ ∈ (R≥0)∗:

prob(CC≤θ(s1, α)) = prob(CC≤θ(s2, α))

It is worth observing that ∼MTr,ete and ∼MTr,sbs do not coincide. In fact, the latter is finer than the
former, because it is somehow able to keep track of the time instants at which the various actions of a trace
start/complete their execution. As an example, if we consider the following two GMLTS models:

s1

g,γ

g,γ

a,λ

a,µ

µb,

λd,

g,γ

g,γ

a,λ

a,µ

s2

µd,

λb,

where λ < µ and b 6= d, it turns out that s1 ∼MTr,ete s2 while s1 6∼MTr,sbs s2 because prob(CC≤θ(s1, α)) =
1
2 6= 0 = prob(CC≤θ(s2, α)) when θ = 1

2·γ ◦
1
λ ◦

1
µ and α = g ◦ a ◦ b. We now prove that ∼MTr,ete is the same

as ∼Tr,Mete
and that ∼MTr,sbs is the same as ∼Tr,Msbs

, from which it follows that ∼Tr,Mete
and ∼Tr,Msbs

do
not coincide either.

Theorem 8.11. Let (S,A,−−−→) be a GMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTr,ete s2 ⇐⇒ s1 ∼Tr,Mete s2

Theorem 8.12. Let (S,A,−−−→) be a GMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTr,sbs s2 ⇐⇒ s1 ∼Tr,Msbs
s2

8.3. Testing Equivalence

Testing equivalence for GMLTS models [22, 16, 17] compares the probability with which two fully stochastic
processes pass the same tests within the same amounts of time. Like in the nondeterministic and probabilistic
cases, each of the two processes is run in parallel with any test by enforcing synchronization on any action
name, with tests being formalized as GMLTS models equipped with a success state.12 We also extend
to interaction systems the notation for the rate-based execution probability and the average duration of
computations introduced in Sect. 8.2.

Definition 8.13. A fully stochastic test is a finite-state, acyclic, and finitely-branching GMLTS T =
(O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing transi-
tions. We say that a computation of T is successful iff its last state is ω.

Definition 8.14. Let L = (S,A,−−−→L) be a GMLTS and T = (O,A,−−−→T) be a fully stochastic test.
The interaction system of L and T is the GMLTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

• The transition relation −−−→ ⊆ (S × O) × A × R>0 × (S × O) is such that (s, o)
a,λ
−−−→ (s′, o′) iff

s
a,λ1

−−−→L s′ and o
a,λ2

−−−→T o′ with λ = λ1 · λ2.13 We say that a computation of I(L, T) is successful
iff its last configuration is successful. Given s ∈ S, o ∈ O, t ∈ R≥0, and θ ∈ (R≥0)∗, we denote by
SC≤t(s, o) the set of successful computations in I(L, T) from (s, o) whose end-to-end average duration
is not greater than t and by SC≤θ(s, o) the set of successful computations in I(L, T) from (s, o) whose
step-by-step average duration is not greater than θ.

12To be precise, the tests considered in [22] for the end-to-end case and in [16] for the step-by-step case were formalized as
RPLTS models in a generative-reactive synchronization framework.

13The interested reader is referred to [72] for a survey of meaningful operations for computing the rate of the synchronization
of two exponentially timed transitions.

28

Definition 8.15. Let (S,A,−−−→) be a GMLTS. We say that s1, s2 ∈ S are end-to-end Markovian testing
equivalent, written s1 ∼MTe,ete s2, iff for every fully stochastic test T = (O,A,−−−→T) with initial state
o ∈ O and for all amounts of time t ∈ R≥0:

prob(SC≤t(s1, o)) = prob(SC≤t(s2, o))

Definition 8.16. Let (S,A,−−−→) be a GMLTS. We say that s1, s2 ∈ S are step-by-step Markovian testing
equivalent, written s1 ∼MTe,sbs s2, iff for every fully stochastic test T = (O,A,−−−→T) with initial state
o ∈ O and for all sequences of amounts of time θ ∈ (R≥0)∗:

prob(SC≤θ(s1, o)) = prob(SC≤θ(s2, o))

Similar to Sect. 8.2, ∼MTe,ete and ∼MTe,sbs do not coincide because the latter is finer than the former.
As an example, if we consider again the following two GMLTS models:

s1

g,γ

g,γ

a,λ

a,µ

µb,

λd,

g,γ

g,γ

a,λ

a,µ

s2

µd,

λb,

where λ < µ and b 6= d, it turns out that s1 ∼MTe,ete s2 while s1 6∼MTe,sbs s2 because prob(SC≤θ(s1, o)) =
1
2 6= 0 = prob(SC≤θ(s2, o)) when θ = 1

2·γ ◦
1
λ ◦

1
µ and o is the initial state of a fully stochastic test having

a single computation that is labeled with α = g ◦ a ◦ b and reaches ω. We now prove that ∼MTe,ete is the
same as ∼Te,Mete

and ∼MTe,sbs is the same as ∼Te,Msbs
, from which it follows that ∼Te,Mete

and ∼Te,Msbs

do not coincide either.
Consistent with Def. 8.14, we denote by RM : R≥0×R≥0 → R≥0 the rate multiplication function defined

by letting RM(λ1, λ2) = λ1 · λ2, which is 0-preserving and argument-injective. Given an R≥0-ULTraS
U = (S,A,−−−→U) and an R≥0-observation system O = (O,A,−−−→O), for all configurations (s, o) of their

interaction system IRM(U ,O) and for all a ∈ A we let (s, o)
a

−−−→D iff s
a

−−−→U D1 and o
a

−−−→O D2 with
D(s′, o′) = RM(D1(s′),D2(o′)) for each (s′, o′) ∈ S ×O.

In the following, given s ∈ S, o ∈ O, α ∈ A∗, t ∈ R≥0, and θ ∈ (R≥0)∗ where S is the set of states
of a GMLTS and O is the set of states of a fully stochastic test, we denote by SCC≤t(s, o, α) the set of
computations in SC≤t(s, o) that are compatible with α and by SCC≤θ(s, o, α) the set of computations in
SC≤θ(s, o) that are compatible with α.

Lemma 8.17. Let (S,A,−−−→) be a GMLTS and s1, s2 ∈ S. Then s1 ∼MTe,ete s2 iff for every fully
stochastic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

prob(SCC≤t(s1, o, α)) = prob(SCC≤t(s2, o, α))

Lemma 8.18. Let (S,A,−−−→) be a GMLTS and s1, s2 ∈ S. Then s1 ∼MTe,sbs s2 iff for every fully
stochastic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

prob(SCC≤θ(s1, o, α)) = prob(SCC≤θ(s2, o, α))

Theorem 8.19. Let (S,A,−−−→) be a GMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTe,ete s2 ⇐⇒ s1 ∼Te,MRM
ete

s2

Theorem 8.20. Let (S,A,−−−→) be a GMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTe,sbs s2 ⇐⇒ s1 ∼Te,MRM
sbs

s2

9. Equivalences for Reactive Stochastic Processes

In this section, we address a different class of stochastic processes including a limited form of nondeter-
minism. More precisely, we instantiate the three behavioral equivalences of Sect. 3 for reactive stochastic

29

Mete,R(s, α, S′)(t) =

t∫
0

Ea(s) · e−Ea(s)·x ·
∑
s′∈S

Ds,a(s′)
Ea(s) · Mete,R(s′, α′, S′)(t− x) dx

if α = a ◦ α′ and Ea(s) > 0
1 if α = ε and s ∈ S′
0 if α = a ◦ α′ and Ea(s) = 0

or α = ε and s /∈ S′

Msbs,R(s, α, S′)(θ) =

(1− e−Ea(s)·t) ·
∑
s′∈S

Ds,a(s′)
Ea(s) · Msbs,R(s′, α′, S′)(θ′)

if α = a ◦ α′ and θ = t ◦ θ′ and Ea(s) > 0
1 if α = ε and s ∈ S′
0 if α 6= ε and θ = ε

or α = a ◦ α′ and θ 6= ε and Ea(s) = 0
or α = ε and s /∈ S′

Table 5: Measure functions for functional R≥0-ULTraS models representing reactive stochastic processes

processes represented as functional R[0,1]-ULTraS models (see the first part of Sect. 2.6). Unlike the reac-
tive probabilistic case, in which we have reused the same measure function as the fully probabilistic case,
here we need two variants Mete,R and Msbs,R of the two measure functions Mete and Msbs that we have
respectively introduced in Defs. 8.1 and 8.2 for fully stochastic processes. The reason is that in this re-
active setting only conditional exit rates of the form Ea(s) are meaningful, with Ea(s) being the sum of
the rates of the a-transitions departing from state s. As a consequence, the functions Mete,R(s, α, S′) and
Msbs,R(s, α, S′) express the probability distribution of performing a computation labeled with trace α that
leads to a state in S′ from state s within a certain end-to-end or step-by-step deadline, respectively, among
all the computations starting at s that are labeled with α.

Definition 9.1. Let U = (S,A, −−−→) be a functional R≥0-ULTraS. The end-to-end measure function
Mete,R : S × A∗ × 2S → [R≥0 → R[0,1]] for U is inductively defined in the first part of Table 5, where the
associated preorder relation is vete introduced in Def. 8.1.

Definition 9.2. Let U = (S,A, −−−→) be a functional R≥0-ULTraS. The step-by-step measure function
Msbs,R : S ×A∗ × 2S → [(R≥0)∗ → R[0,1]] for U is inductively defined in the second part of Table 5, where
the associated preorder relation is vsbs introduced in Def. 8.2.

We now show that the two resulting behavioral equivalences ∼B,Mete,R and ∼B,Msbs,R
on functional

R≥0-ULTraS models coincide with the bisimulation equivalence defined in the literature for RMLTS models.
In contrast, the four remaining behavioral equivalences ∼Tr,Mete,R

, ∼Tr,Msbs,R
, ∼Te,MRM

ete,R
, and ∼Te,MRM

sbs,R

on functional R≥0-ULTraS models – where RM is the rate multiplication function introduced in Sect. 8.3 –
respectively coincide with the end-to-end and step-by-step trace and testing equivalences for RMLTS models
defined for the first time in this paper by analogy with the trace equivalences for GMLTS models and the
testing equivalence for RPLTS models respectively discussed in Sects. 8.2 and 6.3.

9.1. Bisimulation Equivalence

Bisimilarity for RMLTS models [95] is defined in the same way as bisimilarity for GMLTS models (see
Def. 8.3), with the difference that in an RMLTS (S,A,−−−→) the exit rate ratee(s, a, S′) of a state s ∈ S
with respect to action a ∈ A and destination S′ ⊆ S has a reactive meaning.

Definition 9.3. Let (S,A,−−−→) be an RMLTS. An equivalence relation B over S is a Markovian bisimu-
lation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes C ∈ S/B:

ratee(s1, a, C) = ratee(s2, a, C)
We say that s1, s2 ∈ S are Markovian bisimilar, written s1 ∼MB s2, iff there exists a Markovian bisimulation
B over S such that (s1, s2) ∈ B.

30

If we define the rate-based reactive exit probability by letting probe(s, a, S′) = ratee(s, a, S′)/Ea(s) when
Ea(s) > 0, the definition above is equivalent to requiring that, whenever (s1, s2) ∈ B, then for all actions
a ∈ A it holds that Ea(s1) = Ea(s2) and for all equivalence classes C ∈ S/B:

probe(s1, a, C) = probe(s2, a, C)
which emphasizes the difference between bisimilarity for RMLTS models and bisimilarity for RPLTS models.

We prove that∼MB coincides with∼B,Mete,R
and∼B,Msbs,R

, which implies that also for reactive stochastic
processes there is no difference between the end-to-end case and the step-by-step case in the bisimulation
approach.

Lemma 9.4. Let (S,A,−−−→) be an RMLTS. For all s1, s2 ∈ S and a ∈ A:
s1 ∼MB s2 =⇒ Ea(s1) = Ea(s2)

Lemma 9.5. Let (S,A,−−−→) be a functional R≥0-ULTraS. For all s1, s2 ∈ S and a ∈ A:
s1 ∼B,Mete,R s2 =⇒ Ea(s1) = Ea(s2)

Lemma 9.6. Let (S,A,−−−→) be a functional R≥0-ULTraS. For all s1, s2 ∈ S and a ∈ A:
s1 ∼B,Msbs,R

s2 =⇒ Ea(s1) = Ea(s2)

Theorem 9.7. Let (S,A,−−−→) be an RMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MB s2 ⇐⇒ s1 ∼B,Mete,R
s2

Theorem 9.8. Let (S,A,−−−→) be an RMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MB s2 ⇐⇒ s1 ∼B,Msbs,R
s2

9.2. Trace Equivalence

Trace equivalence for RMLTS models can be defined in the same way as trace equivalence for GMLTS
models (see Defs. 8.9 and 8.10), with the difference that in a RMLTS (S,A,−−−→) the rate-based execution
probability and the average durations of a finite-length computation c ∈ Cfin(s) starting from a state s ∈ S
have a reactive meaning and hence are defined as follows:

probR(c) =

{
1 if |c| = 0

λ
Ea(s) · probR(c′) if c ≡ s

a,λ
−−−→ c′

timea,ete,R(c) =

{
0 if |c| = 0

1
Ea(s) + timea,ete,R(c′) if c ≡ s

a,λ
−−−→ c′

timea,sbs,R(c) =

{
ε if |c| = 0

1
Ea(s) ◦ timea,sbs,R(c′) if c ≡ s

a,λ
−−−→ c′

Given a finite set C⊆Cfin(s) of independent computations, in this reactive setting probR(C) =
∑
c∈C probR(c)

is well defined only if all the computations in C are compatible with the same trace. Moreover, we denote
by CC≤t,R and CC≤θ,R the variants of CC≤t and CC≤θ in which we use timea,ete,R and timea,sbs,R in place of
timea,ete and timea,sbs, respectively.

Definition 9.9. Let (S,A,−−−→) be an RMLTS. We say that s1, s2 ∈ S are end-to-end Markovian trace
equivalent, written s1 ∼MTr,ete,R s2, iff for all traces α ∈ A∗ and amounts of time t ∈ R≥0:

probR(CC≤t,R(s1, α)) = probR(CC≤t,R(s2, α))

Definition 9.10. Let (S,A,−−−→) be an RMLTS. We say that s1, s2 ∈ S are step-by-step Markovian trace
equivalent, written s1 ∼MTr,sbs,R s2, iff for all traces α ∈ A∗ and sequences of amounts of time θ ∈ (R≥0)∗:

probR(CC≤θ,R(s1, α)) = probR(CC≤θ,R(s2, α))

31

Similar to the fully stochastic case, ∼MTr,ete,R is coarser than ∼MTr,sbs,R as can be seen by considering
two RMLTS models respectively identical to the two GMLTS models of Sect. 8.2. We now prove that
∼MTr,ete,R is the same as ∼Tr,Mete,R

and ∼MTr,sbs,R is the same as ∼Tr,Msbs,R
, from which it follows that

∼Tr,Mete,R
and ∼Tr,Msbs,R

do not coincide either.

Theorem 9.11. Let (S,A,−−−→) be an RMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTr,ete,R s2 ⇐⇒ s1 ∼Tr,Mete,R s2

Theorem 9.12. Let (S,A,−−−→) be an RMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTr,sbs,R s2 ⇐⇒ s1 ∼Tr,Msbs,R
s2

9.3. Testing Equivalence

Testing equivalence for RMLTS models can be defined in a way similar to testing equivalence for RPLTS
models (see Def. 6.7), with the same reactive interpretation of rate-based execution probabilities and average
durations of computations as Sect. 9.2 and tests being formalized as RMLTS models equipped with a success
state. Then, like in the reactive probabilistic case, we show that the equivalence could have been defined
in the same trace-by-trace fashion in which testing equivalence for GMLTS models could have been defined
(see Lemmas 8.17 and 8.18).

Definition 9.13. A reactive stochastic test is a finite-state, acyclic, and finitely-branching RMLTS T =
(O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing transitions.
We say that a computation of T is successful iff its last state is ω.

Definition 9.14. Let L = (S,A,−−−→L) be an RMLTS and T = (O,A,−−−→T) be a reactive stochastic
test. The interaction system of L and T is the RMLTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

• The transition relation −−−→ ⊆ (S × O) × A × R>0 × (S × O) is such that (s, o)
a,λ
−−−→ (s′, o′) iff

s
a,λ1

−−−→L s′ and o
a,λ2

−−−→T o′ with λ = λ1 · λ2.14 We say that a computation of I(L, T) is successful iff
its last configuration is successful. Given s ∈ S, o ∈ O, α ∈ A∗, t ∈ R≥0, and θ ∈ (R≥0)∗, we denote by
SCC≤t,R(s, o, α) the set of successful computations in I(L, T) from (s, o) that are compatible with α
whose end-to-end average duration is not grater than t and by SCC≤θ,R(s, o, α) the set of successful
computations in I(L, T) from (s, o) that are compatible with α whose step-by-step average duration
is not grater than θ.

Definition 9.15. Let (S,A,−−−→) be an RMLTS. We say that s1, s2 ∈ S are end-to-end Markovian testing
equivalent, written s1 ∼MTe,ete,R s2, iff for every reactive stochastic test T = (O,A,−−−→T) with initial
state o ∈ O and for all amounts of time t ∈ R≥0:⊔

α∈Trmax(s1,o)

probR(SCC≤t,R(s1, o, α)) =
⊔

α∈Trmax(s2,o)

probR(SCC≤t,R(s2, o, α))

d

α∈Trmax(s1,o)

probR(SCC≤t,R(s1, o, α)) =
d

α∈Trmax(s2,o)

probR(SCC≤t,R(s2, o, α))

Definition 9.16. Let (S,A,−−−→) be an RMLTS. We say that s1, s2 ∈ S are step-by-step Markovian
testing equivalent, written s1 ∼MTe,sbs,R s2, iff for every reactive stochastic test T = (O,A,−−−→T) with
initial state o ∈ O and for all sequences of amounts of time θ ∈ (R≥0)∗:

14Like in the fully stochastic case, the interested reader is referred to [72] for a survey of meaningful operations for computing
the rate of the synchronization of two exponentially timed transitions.

32

⊔
α∈Trmax(s1,o)

probR(SCC≤θ,R(s1, o, α)) =
⊔

α∈Trmax(s2,o)

probR(SCC≤θ,R(s2, o, α))

d

α∈Trmax(s1,o)

probR(SCC≤θ,R(s1, o, α)) =
d

α∈Trmax(s2,o)

probR(SCC≤θ,R(s2, o, α))

Similar to the fully stochastic case, ∼MTe,ete,R is coarser than ∼MTe,sbs,R as can be seen by considering
two RMLTS models respectively identical to the two GMLTS models of Sect. 8.3. We now prove that
∼MTe,ete,R is the same as ∼Te,MRM

ete,R
and ∼MTe,sbs,R is the same as ∼Te,MRM

sbs,R
, from which it follows that

∼Te,MRM
ete,R

and ∼Te,MRM
sbs,R

do not coincide either. Like in Sect. 8.3, consistent with Def. 9.14 we employ

the rate multiplication function RM in order to build the interaction system of an R≥0-ULTraS and an
R≥0-observation system.

Lemma 9.17. Let (S,A,−−−→) be an RMLTS and s1, s2 ∈ S. Then s1 ∼MTe,ete,R s2 iff for every reactive
stochastic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

probR(SCC≤t,R(s1, o, α)) = probR(SCC≤t,R(s2, o, α))

Lemma 9.18. Let (S,A,−−−→) be an RMLTS and s1, s2 ∈ S. Then s1 ∼MTe,sbs,R s2 iff for every reactive
stochastic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

probR(SCC≤θ,R(s1, o, α)) = probR(SCC≤θ,R(s2, o, α))

Theorem 9.19. Let (S,A,−−−→) be an RMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTe,ete,R s2 ⇐⇒ s1 ∼Te,MRM
ete,R

s2

Theorem 9.20. Let (S,A,−−−→) be an RMLTS and U = (S,A,−−−→U) be its corresponding functional
R≥0-ULTraS. For all s1, s2 ∈ S:

s1 ∼MTe,sbs,R s2 ⇐⇒ s1 ∼Te,MRM
sbs,R

s2

10. Equivalences for Nondeterministic and Stochastic Processes

In this section, we examine another class of stochastic processes including internal nondeterminism. More
precisely, we instantiate the three behavioral equivalences of Sect. 3 for nondeterministic and stochastic
processes represented as R≥0-ULTraS models (see the second part of Sect. 2.6). Denoting again by 2.R[0,1]

the set of nonemtpy subsets of R[0,1], this is accomplished by introducing two measure functions that

associate a suitable 2.R[0,1]-valued function with every triple composed of a source state s, a trace α, and a
set of destination states S′ in the end-to-end case and in the step-by-step case, respectively.

The set Mete,N(s, α, S′)(t) computed by the first function contains for each possible way of resolving non-
determinism the probability of performing within time t ∈ R≥0 a computation that is labeled with trace α
and leads to a state in S′ from state s. The setMete,N(s, α, S′)(t) boils down to {Mete,R(s, α, S′)(t)} when
there is no internal nondeterminism, i.e., when for every state of the considered R≥0-ULTraS the actions
labeling the outgoing transitions are all different from each other. The subscript “ete, N” is a symbolic short-

hand for [R≥0 → 2.R[0,1]]. In the following, given a transition s
a

−−−→D such that D(S) =
∑
s′∈S D(s′) > 0,

the value D(S) represents the exit rate of state s determined by that transition.

Definition 10.1. Let U = (S,A,−−−→) be an R≥0-ULTraS such that D(S) > 0 for all (s, a,D) ∈ −−−→.
The end-to-end measure functionMete,N : S ×A∗ × 2S → [R≥0 → 2.R[0,1]] for U is inductively defined in the
first part of Table 6, where the associated preorder relation is v

2.
R[0,1] introduced in Def. 7.1.

The set Msbs,N(s, α, S′)(θ) computed by the second function contains for each possible way of resolving
nondeterminism the probability of performing within time θ ∈ (R≥0)∗ a computation that is labeled with
trace α and leads to a state in S′ from state s. The setMsbs,N(s, α, S′)(θ) boils down to {Msbs,R(s, α, S′)(θ)}
when there is no internal nondeterminism. The subscript “sbs, N” is a symbolic shorthand for [(R≥0)∗ →
2.R[0,1]].

33

Mete,N(s, α, S′)(t) =

⋃
s

a
−−−→D

{
t∫

0

D(S) · e−D(S)·x ·
∑
s′∈S

D(s′)
D(S) · ps′ dx | ps′ ∈Mete,N(s′, α′, S′)(t− x)}

if α = a ◦ α′ and ∃D ∈ [S → R≥0]. s
a

−−−→D
{1} if α = ε and s ∈ S′

{0} if α = a ◦ α′ and @D ∈ [S → R≥0]. s
a

−−−→D
or α = ε and s /∈ S′

Msbs,N(s, α, S′)(θ) =

⋃
s

a
−−−→D

{(1− e−D(S)·t) ·
∑
s′∈S

D(s′)
D(S) · ps′ | ps′ ∈Msbs,N(s′, α′, S′)(θ′)}

if α = a ◦ α′ and θ = t ◦ θ′ and ∃D ∈ [S → R≥0]. s
a

−−−→D
{1} if α = ε and s ∈ S′
{0} if α 6= ε and θ = ε

or α = a ◦ α′ and θ 6= ε and @D ∈ [S → R≥0]. s
a

−−−→D
or α = ε and s /∈ S′

Table 6: Measure functions for R≥0-ULTraS models representing nondeterministic and stochastic processes

Definition 10.2. Let U = (S,A,−−−→) be an R≥0-ULTraS such that D(S) > 0 for all (s, a,D) ∈ −−−→.
The step-by-step measure function Msbs,N : S × A∗ × 2S → [(R≥0)∗ → 2.R[0,1]] for U is inductively defined
in the second part of Table 6, where the associated preorder relation is v

2.
R[0,1] introduced in Def. 7.1.

We now show that the six resulting behavioral equivalences ∼B,Mete,N
, ∼B,Msbs,N

, ∼Tr,Mete,N
, ∼Tr,Msbs,N

,

∼Te,MRM
ete,N

, and ∼Te,MRM
sbs,N

on R≥0-ULTraS models such that D(S) > 0 for all (s, a,D) ∈ −−−→ – where

RM is the rate multiplication function introduced in Sect. 8.3 – respectively coincide with the end-to-end
and step-by-step bisimulation, trace, and testing equivalences for NMLTS models defined for the first time in
this paper by analogy with the bisimulation, trace, and testing equivalences for NPLTS models respectively
discussed in Sects. 7.1, 7.2, and 7.3. Similar to the generative and reactive stochastic cases, we will see that
∼B,Mete,N and ∼B,Msbs,N

coincide, whereas the end-to-end trace and testing equivalences are respectively
different from the step-by-step trace and testing equivalences.

10.1. Bisimulation Equivalence

Bisimilarity for NMLTS models can be defined in a way similar to bisimilarity for NPLTS models (see
Def. 7.3) by combining bisimilarity for fully nondeterministic processes with bisimilarity for fully or reactive
stochastic processes. Given an NMLTS (S,A,−−−→), D ∈ [S → R≥0], and S′ ⊆ S, in the following we let
again D(S′) =

∑
s′∈S′ D(s′). Unlike bisimilarity for NPLTS models, in the case of NMLTS models it is not

sufficient to require that D1(
⋃
G) = D2(

⋃
G) when considering two matching transitions s1

a
−−−→D1 and

s2

a
−−−→D2. The reason is that, different from RMLTS models, in this setting with internal nondeterminism

a state has, with respect to a given action, as many conditional exit rates as there are outgoing transitions
labeled with that action. Therefore, it is not necessarily the case that the two matching transitions above
result in the same conditional exit rate for their two source states, i.e., D1(S) = D2(S). On the other
hand, we are guaranteed that s1 and s2 reach through those two transitions a state in

⋃
G with the same

probability only if D1(
⋃
G) = D2(

⋃
G) and D1(S) = D2(S).

Definition 10.3. Let (S,A,−−−→) be an NMLTS. An equivalence relation B over S is a Markovian bisim-
ulation iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and groups of equivalence classes G ∈ 2S/B

it holds that s1

a
−−−→D1 implies s2

a
−−−→D2 with D1(

⋃
G) = D2(

⋃
G) and D1(S) = D2(S). We say that

s1, s2 ∈ S are Markovian bisimilar, written s1 ∼MB,N s2, iff there exists a Markovian bisimulation B over S
such that (s1, s2) ∈ B.

34

Theorem 10.4. Let (S,A,−−−→) be an NMLTS. For all s1, s2 ∈ S:
s1 ∼MB,N s2 ⇐⇒ s1 ∼B,Mete,N s2

Theorem 10.5. Let (S,A,−−−→) be an NMLTS. For all s1, s2 ∈ S:
s1 ∼MB,N s2 ⇐⇒ s1 ∼B,Msbs,N

s2

10.2. Trace Equivalence

Trace equivalence for NMLTS models can be defined in a way similar to trace equivalence for NPLTS models
(see Def. 7.7) by combining trace equivalence for fully nondeterministic processes with trace equivalences for
fully or reactive stochastic processes. This is accomplished by extending to NMLTS models the notion of
resolution via deterministic scheduler introduced for NPLTS models (see Def. 7.5). In the following, given
a state s of an NMLTS, the corresponding state zs of a resolution Z ∈ Res(s), t ∈ R≥0, and θ ∈ (R≥0)∗, we
denote by CC≤t(zs, α) the set of computations in Cfin(zs) that are compatible with α ∈ A∗ whose end-to-
end average duration is not greater than t and by CC≤θ(zs, α) the set of computations in Cfin(zs) that are
compatible with α ∈ A∗ whose step-by-step average duration is not greater than θ.

Definition 10.6. Let (S,A,−−−→) be an NMLTS. We say that s1, s2 ∈ S are end-to-end Markovian trace
equivalent, written s1 ∼MTr,ete,N s2, iff for all traces α ∈ A∗ and amounts of time t ∈ R≥0:

• For each resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that:
prob(CC≤t(zs1 , α)) = prob(CC≤t(zs2 , α))

• For each resolution Z2 ∈ Res(s2) there exists a resolution Z1 ∈ Res(s1) such that:
prob(CC≤t(zs2 , α)) = prob(CC≤t(zs1 , α))

Definition 10.7. Let (S,A,−−−→) be an NMLTS. We say that s1, s2 ∈ S are step-by-step Markovian trace
equivalent, written s1 ∼MTr,sbs,N s2, iff for all traces α ∈ A∗ and sequences of amounts of time θ ∈ (R≥0)∗:

• For each resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that:
prob(CC≤θ(zs1 , α)) = prob(CC≤θ(zs2 , α))

• For each resolution Z2 ∈ Res(s2) there exists a resolution Z1 ∈ Res(s1) such that:
prob(CC≤θ(zs2 , α)) = prob(CC≤θ(zs1 , α))

Similar to the fully and reactive stochastic cases, ∼MTr,ete,N is coarser than ∼MTr,sbs,N as can be seen
by considering two NMLTS models respectively identical to the two GMLTS models of Sect. 8.2, in which
the choice between the two initial transitions becomes nondeterministic. We now prove that ∼MTr,ete,N is
the same as ∼Tr,Mete,N and ∼MTr,sbs,N is the same as ∼Tr,Msbs,N

, from which it follows that ∼Tr,Mete,N and
∼Tr,Msbs,N

do not coincide either.

Theorem 10.8. Let (S,A,−−−→) be an NMLTS. For all s1, s2 ∈ S:
s1 ∼MTr,ete,N s2 ⇐⇒ s1 ∼Tr,Mete,N

s2

Theorem 10.9. Let (S,A,−−−→) be an NMLTS. For all s1, s2 ∈ S:
s1 ∼MTr,sbs,N s2 ⇐⇒ s1 ∼Tr,Msbs,N

s2

10.3. Testing Equivalence

Testing equivalence for NMLTS models can be defined in a way similar to testing equivalence for NPLTS
models (see Def. 7.12) by adapting to a setting including internal nondeterminism the trace-by-trace char-
acterization of testing equivalences for fully or reactive stochastic processes, with tests being formalized as
NMLTS models equipped with a success state.

35

Definition 10.10. A nondeterministic and stochastic test is a finite-state, acyclic, and finitely-branching
NMLTS T = (O,A,−−−→) where O contains a distinguished success state denoted by ω that has no outgoing
transitions. We say that a computation of T is successful iff its last state is ω.

Definition 10.11. Let L = (S,A,−−−→L) be an NMLTS and T = (O,A,−−−→T) be a nondeterministic
and stochastic test. The interaction system of L and T is the NMLTS I(L, T) = (S ×O,A,−−−→) where:

• Every element (s, o) ∈ S ×O is called a configuration and is said to be successful iff o = ω.

• The transition relation −−−→ ⊆ (S×O)×A×[(S×O)→ R≥0] is such that (s, o)
a

−−−→D iff s
a

−−−→LD1

and o
a

−−−→T D2 with D(s′, o′) = RM (D1(s′),D2(o′)) = D1(s′) · D2(o′) for each (s′, o′) ∈ S ×O.15 We
say that a computation of I(L, T) is successful iff its last configuration is successful. Given s ∈ S,
o ∈ O, Z ∈ Res(s, o), α ∈ A∗, t ∈ R≥0, and θ ∈ (R≥0)∗, we denote by SCC≤t(zs,o, α) the set of
successful computations in Z from zs,o that are compatible with α whose end-to-end average duration
is not greater than t and by SCC≤θ(zs,o, α) the set of successful computations in Z from zs,o that are
compatible with α whose step-by-step average duration is not greater than θ.

Definition 10.12. Let (S,A,−−−→) be an NMLTS. We say that s1, s2 ∈ S are end-to-end Markovian testing
equivalent, written s1 ∼MTe,ete,N s2, iff for every nondeterministic and stochastic test T = (O,A,−−−→T)
with initial state o ∈ O and for all traces α ∈ A∗ and amounts of time t ∈ R≥0:

• For each resolution Z1 ∈ Res(s1, o) there exists a resolution Z2 ∈ Res(s2, o) such that:
prob(SCC≤t(zs1,o, α)) = prob(SCC≤t(zs2,o, α))

• For each resolution Z2 ∈ Res(s2, o) there exists a resolution Z1 ∈ Res(s1, o) such that:
prob(SCC≤t(zs2,o, α)) = prob(SCC≤t(zs1,o, α))

Definition 10.13. Let (S,A,−−−→) be an NMLTS. We say that s1, s2 ∈ S are step-by-step Markovian test-
ing equivalent, written s1 ∼MTe,sbs,N s2, iff for every nondeterministic and stochastic test T = (O,A,−−−→T)
with initial state o ∈ O and for all traces α ∈ A∗ and sequences of amounts of time θ ∈ (R≥0)∗:

• For each resolution Z1 ∈ Res(s1, o) there exists a resolution Z2 ∈ Res(s2, o) such that:
prob(SCC≤θ(zs1,o, α)) = prob(SCC≤θ(zs2,o, α))

• For each resolution Z2 ∈ Res(s2, o) there exists a resolution Z1 ∈ Res(s1, o) such that:
prob(SCC≤θ(zs2,o, α)) = prob(SCC≤θ(zs1,o, α))

Similar to the fully and reactive stochastic cases, ∼MTe,ete,N is coarser than ∼MTe,sbs,N as can be seen
by considering two NMLTS models respectively identical to the two GMLTS models of Sect. 8.3, in which
the choice between the two initial transitions becomes nondeterministic. We now prove that ∼MTe,ete,N is
the same as ∼Te,MRM

ete,N
and ∼MTe,sbs,N is the same as ∼Te,MRM

sbs,N
, from which it follows that ∼Te,MRM

ete,N
and

∼Te,MRM
sbs,N

do not coincide either.

Theorem 10.14. Let (S,A,−−−→) be an NMLTS. For all s1, s2 ∈ S:
s1 ∼MTe,ete,N s2 ⇐⇒ s1 ∼Te,MRM

ete,N
s2

Theorem 10.15. Let (S,A,−−−→) be an NMLTS. For all s1, s2 ∈ S:
s1 ∼MTe,sbs,N s2 ⇐⇒ s1 ∼Te,MRM

sbs,N
s2

15Like in the fully and reactive stochastic cases, the interested reader is referred to [72] for a survey of meaningful operations
for computing the rate of the synchronization of two exponentially timed transitions.

36

11. Conclusions

In this paper, we have introduced the ULTraS model as an extension of the LTS one. Building on simple
probabilistic automata [109] and rate transition systems [48, 49], an ULTraS is defined as a state-transition
graph in which the transition relation associates a state reachability distribution, rather than a single target
state, with any pair composed of a source state and an action. The one-step reachability values of this
distribution are expressed as elements of the support D of a preordered set equipped with a minimum,
which is used to represent unreachability. We have shown that, by appropriately selecting D, seven widely
used models of nondeterministic, probabilistic, stochastic, and mixed processes can be uniformly described
as ULTraS.

We have then reformulated for the ULTraS model the three major notions of behavioral equivalences,
namely bisimulation, trace, and testing equivalences. The uniform definition of the three equivalences
relies on a measure function based on the support M of another preordered set equipped with a minimum.
The measure function expresses the degree of multi-step reachability of a set of states when performing
computations labeled with a certain trace. We have proven that the specializations of bisimulation, trace,
and testing equivalences obtained by selecting suitable setsM for the measure functions for the various classes
of processes represented as ULTraS models are in full agreement with the behavioral equivalences defined
in the literature over traditional models for the considered classes of processes, except when combining
nondeterminism with probability/stochasticity. On the one hand, this result emphasizes the adequacy of
the ULTraS model as a unifying semantic framework; on the other hand, it constitutes a vindication both
of the originally proposed models and equivalences and of the new equivalences for mixed models that come
out of the general approach.

11.1. Final Considerations

Preordered Sets. Unlike other models such as FuTS [50] where a richer structure in the form of a semi-ring
is adopted, in the ULTraS setting we have preferred to rely on simpler structures. We just make use of
two distinct preordered sets equipped with a minimum. The first one is used in the basic model to define
one-step reachability. The second one is instead used to define measures of multi-step reachability, i.e.,
observations of computations, when defining equivalences for the different kinds of systems. Having two
structures gives us more freedom in defining semantic models and equivalences.

As for the structure of our measure function, in principle we could have used semi-rings. Indeed, like in
semi-rings, the measure functions subsumes the existence of an additive and a multiplicative operator (see
Sect. 3.1) and many of them compute values in the form of sums of products (see the upper part of Table 1
together with the comment following Def. 4.1, as well as Tables 2, 4, and 5). However, this is not always the
case; as an example, consider the measure functions that we have introduced for defining equivalences over
nondeterministic and probabilistic/stochastic processes (see Tables 3 and 6) that computes sets of sums of
products or even convolutions. This fact provides evidence of the difficulty, if not of the impossibility, of
developing our unifying framework on the basis of a specific algebraic structure.

Relationships with Known Equivalences. The most interesting outcome of this work is that, when suitably
instantiating their measure function, the three behavioral equivalences defined over ULTraS models (bisim-
ulation, trace, and testing) lay the basis for directly capturing most of the behavioral equivalences defined
in the literature in the last thirty years. This is shown in Table 7, where the two outer columns indicate
corresponding models while the two inner ones indicate corresponding equivalences. Among the equivalences
in the second column, only the ones with subscript N or R are new.

In the case of fully nondeterministic processes (first row of Table 7), we observe that – unlike all the
other considered classes of processes – it is necessary to introduce two distinct measure functions (MB,∨
and MB,∧ yielding MB×B) for capturing testing equivalence. This is due to the dichotomy between may
testing and must testing, which disappears when moving to probabilistic or stochastic processes because the
possibility and the necessity of passing tests are subsumed by probability values.

In the case of probabilistic processes (second, third, and fourth rows of Table 7), we note that proba-
bilistic bisimulation, trace, and testing equivalences are defined in the same way in both the generative and

37

∼B ∼B,MB,∨

LTS ∼Tr ∼Tr,MB,∨ functional B-ULTraS
∼Te ∼Te,MLC

B×B

∼PB ∼B,MR[0,1]
functional R[0,1]-ULTraS

GPLTS ∼PTr ∼Tr,MR[0,1]
such that for all s ∈ S

∼PTe ∼Te,MNPM
R[0,1]

∑
a∈A

∑
s′∈S Ds,a(s′) ∈ {0, 1}

∼PB ∼B,MR[0,1]
functional R[0,1]-ULTraS

RPLTS ∼PTr ∼Tr,MR[0,1]
such that for all s ∈ S and a ∈ A

∼PTe ∼Te,MPM
R[0,1]

∑
s′∈S Ds,a(s′) ∈ {0, 1}

∼PB,N ∼B,M
2.
R[0,1]

R[0,1]-ULTraS

NPLTS ∼PTr,N ∼Tr,M
2.
R[0,1]

such that for all (s, a,D) ∈ −−−→
∼PTe,N ∼Te,MPM

2.
R[0,1]

∑
s′∈S D(s′) = 1

∼MB ∼B,Mete
∼B,Msbs

GMLTS ∼MTr,ete ∼MTr,sbs ∼Tr,Mete
∼Tr,Msbs

functional R≥0-ULTraS
∼MTe,ete ∼MTe,sbs ∼Te,MRM

ete
∼Te,MRM

sbs

∼MB ∼B,Mete,R
∼B,Msbs,R

RMLTS ∼MTr,ete,R ∼MTr,sbs,R ∼Tr,Mete,R
∼Tr,Msbs,R

functional R≥0-ULTraS
∼MTe,ete,R ∼MTe,sbs,R ∼Te,MRM

ete,R
∼Te,MRM

sbs,R

∼MB,N ∼B,Mete,N ∼B,Msbs,N
R≥0-ULTraS

NMLTS ∼MTr,ete,N ∼MTr,sbs,N ∼Tr,Mete,N ∼Tr,Msbs,N
such that for all (s, a,D) ∈ −−−→

∼MTe,ete,N ∼MTe,sbs,N ∼Te,MRM
ete,N

∼Te,MRM
sbs,N

∑
s′∈S D(s′) > 0

Table 7: Summary of results

reactive cases because the different interpretation of probability values is encoded inside the models (see
Fig. 1). Therefore, in both cases the same measure function is employed on the ULTraS side; only the
synchronization function is slightly different for the two probabilistic testing equivalences. These two testing
equivalences were originally defined in a completely different way, but in [25] we have shown that they could
have been defined in the same trace-by-trace fashion. It is worth recalling that, for nondeterministic and
probabilistic processes, we do not capture the probabilistic bisimulation, trace, and testing equivalences
∼PB,dis, ∼PTr,dis, and ∼PTe,tu originally defined in the literature, but three novel probabilistic equivalences
enjoying interesting properties [25, 26]. We observe that, since the NPLTS models on which the original
equivalences were introduced are already in the ULTraS format, such equivalences can be straightforwardly
recovered by simply applying their definitions to ULTraS models corresponding to NPLTS models. We
would also like to remind the reader that the definition of ∼PTe,N is coherent with the trace-by-trace style
of probabilistic testing equivalence for generative and reactive probabilistic processes.

In the case of stochastic processes (fifth, sixth, and seventh rows of Table 7), we have addressed both the
end-to-end variant and the step-by-step one of the three equivalences. We have seen that these two variants
coincide only for bisimulation equivalence. Moreover, we have that, different from the case of probabilistic
processes, when moving from generative to reactive stochastic processes only the definition of bisimulation
equivalence does not change. This is because the different interpretation of rate values is not encoded inside
the models (see Fig. 1) and hence needs to be captured by the definition of trace and testing equivalences.
As a consequence, two different measure functions for each deadline-related variant of the equivalences are
employed on the ULTraS side (Mete/Mete,R and Msbs/Msbs,R), with the same synchronization function
being used for the two stochastic testing equivalences. We would like to remind the reader that stochastic
trace and testing equivalences for reactive stochastic processes and stochastic bisimulation, trace, and testing

38

equivalences for nondeterministic and stochastic processes had not been studied yet, and that we have defined
them by analogy with their probabilistic counterparts.

11.2. Future Work

There are several directions that are worth investigating in the future. First of all, we would like to use the
ULTraS model for defining the operational semantics of process description languages of nondeterministic,
probabilistic, stochastic, or mixed nature. This should help to establish general properties for the various
languages and to assess the relative expressiveness of their operators. This has already been done, by relying
on the RTS model, in [48, 49] for the fully stochastic case. Some preliminary work addressing also the fully
nondeterministic case and the fully probabilistic case can be found in [24].

What we expect is that the use of the ULTraS model will show that the operational semantics for
calculi with quantitative information defined so far is indeed the natural extension of the definition of the
operational semantics for calculi with only qualitative information. As a consequence, the former calculi
should become more understandable to those people with a process algebraic background who are not
familiar with probability and time. The study could lead to:

1. The definition of a generic process calculus for which we can uniformly derive an ULTraS-based
operational semantics.

2. The achievement of uniform results for congruence properties as well as equational and logical char-
acterizations of behavioral equivalences.

3. The implementation of a customizable software tool for modeling and analyzing concurrent systems
of different nature.

From the generic calculus, it should be possible to retrieve existing calculi by selecting appropriate support
sets, suitable behavioral operators, and additional parameters related to the quantitative aspects. For
the latter dimension, we will have to consider different alternatives, like including quantities within actions
(integrated quantity approach) or attaching them as decorations to traditional operators or providing specific
operators for them (orthogonal quantity approach).

We also plan to extend the uniform definitions of the three behavioral equivalences for ULTraS to
models with invisible or silent actions (τ ’s) whose occurrences have to be abstracted away. In particular,
we are interested in uniformly capturing weak variants of bisimulation equivalence, which have already
received much attention in the literature. Indeed, weak bisimilarity has been deeply studied not only for
nondeterministic processes [68, 91, 93, 126], but also for probabilistic processes [112, 10, 12, 103, 58, 5, 7, 6]
and for stochastic processes [108, 69, 30, 89, 20, 18, 19].

Another objective we intend to pursue is studying the extent to which ULTraS can go with encompass-
ing further classes of processes, especially nondeterministic or probabilistic processes with explicit timing.
Temporal aspects can be described by means of exponentially distributed random variables, like in the
recently proposed Markov automata [59], or arbitrarily distributed random variables. In the former case,
the considered model should be easily recoverable in our ULTraS framework by following an approach
similar to that taken in [50], where FuTS is used as a semantic model for a significant fragment of the
Markov automata process algebra studied in [119]. In the latter case, since the memoryless property can
no longer be exploited, it is often necessary to resort to explicit local or global clocks. Processes behavior
is then represented through models ranging from enriched labeled transition systems (see [96, 123, 40] and
the references therein for deterministic time and nondeterminism, [65, 87, 64] for deterministic time and
probability, and [28] for arbitrarily distributed stochastic time) to timed automata [4], probabilistic timed
automata [84], and stochastic automata [42].

Finally, we would like to extend the ULTraS framework to the case of transitions of the form D
a

−−−→D′,
where state distributions are allowed not only on the target side, but also on the source side. State distri-
butions can be interpreted as expressing alternatives among (global) states or describing combinations of
(local) states. The former interpretation is consistent with the interleaving view of concurrency and, under
this interpretation, generalized transitions of the above mentioned form can be viewed as the Kleisli lifting
of state-to-state-distribution reachability relations, which have been recently used to define new variants of

39

behavioral equivalences (see, e.g., [67] and the references therein). The latter interpretation instead opens
the way to the possibility of representing truly concurrent models such as Petri nets [102]. Using the gen-
eralized transition format, a Petri net could be formalized as an N-ULTraS in which states are Petri net
places, transitions are Petri net transitions, and transition sources (resp. targets) are Petri net transition
presets (resp. postsets). The value associated with each state in the preset (resp. postset) of a transition is
the weight of the corresponding Petri net arc, i.e., the number of tokens to withdraw from that state (resp.
to deposit into that state).

Other natural directions for future work would point to coalgebraic characterizations of the ULTraS
model and its equivalences, to new behavioral relations based on approximations and refinements, and to
meta-theories for structural operational semantics and its formats. We prefer not to elaborate further on this
because the paper is already very long, and also because we are not necessarily the best qualified researchers
to investigate these topics; we hope others will pursue these objectives.

Acknowledgment: We are very grateful to the anonymous referees for their helpful and constructive
comments. This work has been partially funded by EU Collaborative FET project n. 257414 Autonomic
Service-Component Ensemble (ASCENS) and by MIUR PRIN project Compositionality, Interaction, Nego-
tiation, Autonomicity for the Future ICT Society (CINA).

Appendix: Proofs of Results

Proof of Thm. 3.8. Let s1, s2 ∈ S be such that s1 ∼B,MM
s2. Consider an arbitrary D-observation system

O = (O,A,−−−→O) with initial state o ∈ O and an arbitrary trace α ∈ A∗. There are two cases:

• If o has no successful computations labeled with α, then:
Mδ,O

M ((s1, o), α,Sδ(U ,O)) = ⊥M = Mδ,O
M ((s2, o), α,Sδ(U ,O))

• Suppose that o has at least one successful computation labeled with α. Since s1 ∼B,MM
s2, there are

two subcases:

– If neither s1 nor s2 has a computation labeled with α, then:
Mδ,O

M ((s1, o), α,Sδ(U ,O)) = ⊥M = Mδ,O
M ((s2, o), α,Sδ(U ,O))

– Suppose that both s1 and s2 have at least one computation labeled with α. We prove that from
s1 ∼B,MM

s2 it follows that:

Mδ,O
M ((s1, o), α,Sδ(U ,O)) = Mδ,O

M ((s2, o), α,Sδ(U ,O))
by proceeding by induction on |α|:

∗ If |α| = 0, then by virtue of Def. 3.2 for i = 1, 2 the value of Mδ,O
M ((si, o), α,Sδ(U ,O)) de-

pends only on whether (si, o) belongs to Sδ(U ,O) or not. Since α = ε and o has at least one
successful computation labeled with α, it turns out that o = ω. Therefore, (s1, o) and (s2, o)
both belong to Sδ(U ,O) and hence:

Mδ,O
M ((s1, o), α,Sδ(U ,O)) = Mδ,O

M ((s2, o), α,Sδ(U ,O))

∗ Let |α| = n ∈ N>0 and assume that the result holds for all traces of length n− 1. Supposing

α = a ◦ α′, by virtue of Def. 3.2 for i = 1, 2 the value of Mδ,O
M ((si, o), α,Sδ(U ,O)) is defined

as a combination of the following set of values:

Vi = {Mδ,O
M ((s′i, o

′), α′,Sδ(U ,O)) | si
a

−−−→U D1 ∧ o
a

−−−→O D2}
each of which is weighted by the reachability in one step of (s′i, o

′) through an a-transition.
Since s1 ∼B,MM

s2, there exists an MM -bisimulation B over S that, in particular for the
initial a-transitions, guarantees that for all C ∈ S/B:

MM (s1, a, C) =MM (s2, a, C)

By virtue of Def. 3.2 and the fact thatMδ,O
M and δ are functions, we have that for all C ∈ S/B

and o′ ∈ O:

40

Mδ,O
M ((s1, o), a, C × {o′}) = Mδ,O

M ((s2, o), a, C × {o′})
Moreover, for i = 1, 2 it holds that Vi can be rewritten as:

Vi =
⋃
C∈S/B Vi(C)

where for all C ∈ S/B:

Vi(C) = {Mδ,O
M ((s′i, o

′), α′,Sδ(U ,O)) ∈ Vi | s′i ∈ C}
By exploiting the induction hypothesis on α′, it turns out that for all C ∈ S/B:

V1(C) = V2(C)
As a consequence:

Mδ,O
M ((s1, o), α,Sδ(U ,O)) = Mδ,O

M ((s2, o), α,Sδ(U ,O))

It thus holds that s1 ∼Te,Mδ
M
s2 because of the generality of O and α.

Suppose now that s1 ∼Te,Mδ
M

s2. Given an arbitrary trace α ∈ A∗, consider a D-observation system

Oα = (O,A,−−−→Oα) with initial state o ∈ O having a single maximal computation, which is labeled with α
and terminates in ω. From s1 ∼Te,Mδ

M
s2, it follows that:

Mδ,Oα
M ((s1, o), α,Sδ(U ,Oα)) = Mδ,Oα

M ((s2, o), α,Sδ(U ,Oα))
Due to the structure of Oα and the fact that δ is ⊥D-preserving and argument-injective, it holds that:

MM (s1, α, S) = MM (s2, α, S)
and hence s1 ∼Tr,MM

s2 because of the generality of α.

Proof of Thm. 4.3. Let s1, s2 ∈ S. Assume that s1 ∼B s2 due to some bisimulation B over S such that
(s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A:

• whenever s′1
a

−−−→ s′′1 , then s′2
a

−−−→ s′′2 with (s′′1 , s
′′
2) ∈ B;

• whenever s′2
a

−−−→ s′′2 , then s′1
a

−−−→ s′′1 with (s′′1 , s
′′
2) ∈ B.

Without loss of generality, we can suppose that B is an equivalence relation: should this not be the case, it
suffices to take the reflexive and transitive closure of B as this is still a bisimulation. As a consequence, the
assumption is equivalent to having that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and C ∈ S/B:

• whenever s′1
a

−−−→ s′′1 with s′′1 ∈ C, then s′2
a

−−−→ s′′2 with s′′2 ∈ C;

• whenever s′2
a

−−−→ s′′2 with s′′2 ∈ C, then s′1
a

−−−→ s′′1 with s′′1 ∈ C;

or equivalently:

• there exists s′′1 ∈ C such that s′1
a

−−−→ s′′1 iff there exists s′′2 ∈ C such that s′2
a

−−−→ s′′2 .

Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that the existence of s′ ∈
⋃
G such that s

a
−−−→ s′

corresponds to the existence of s′ ∈ C such that s
a

−−−→ s′ for some C ∈ G, we immediately derive that the
assumption is equivalent to having that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B:

• there exists s′′1 ∈
⋃
G such that s′1

a
−−−→ s′′1 iff there exists s′′2 ∈

⋃
G such that s′2

a
−−−→ s′′2 .

Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that:

MB,∨(s, a,
⋃
G) =

∨
s′∈

⋃
G
Ds,a(s′) = (∃s′ ∈

⋃
G. s

a
−−−→ s′)

we further derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A

and G ∈ 2S/B:
MB,∨(s′1, a,

⋃
G) = MB,∨(s′2, a,

⋃
G)

which means that B is an MB,∨-bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,MB,∨ s2.

Proof of Thm. 4.5. Let s1, s2 ∈ S be such that s1 ∼Tr s2, i.e., assume that for all α ∈ A∗:

41

• If s1
α

====⇒ , then s2
α

====⇒ .

• If s2
α

====⇒ , then s1
α

====⇒ .

Since for all s ∈ S and α ∈ A∗ it holds that:

(s
α

====⇒) =

∨

s′∈S s.t. s
a
−−−→ s′

(s′
α′

====⇒) if α = a ◦ α′ and ∃s′ ∈ S. s
a

−−−→ s′

> if α = ε

⊥ if α = a ◦ α′ and @s′ ∈ S. s
a

−−−→ s′

and hence:
(s

α
====⇒) = MB,∨(s, α, S)

we immediately derive that the assumption is equivalent to having that for all α ∈ A∗:
MB,∨(s1, α, S) = MB,∨(s2, α, S)

which means that s1 ∼Tr,MB,∨ s2.

Proof of Thm. 4.10. The proof is divided into four parts:

• Let s1, s2 ∈ S be such that for every fully nondeterministic test T = (O′, A,−−−→T) with initial state
o′ ∈ O′:

s1 may pass T ⇐⇒ s2 may pass T
Then for every B-observation system O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗:

MLC,O
B,∨ ((s1, o), α,SLC(U ,O)) = MLC,O

B,∨ ((s2, o), α,SLC(U ,O))
In fact, given α ∈ A∗, there are two cases:

– If there is no successful computation in O labeled with α, then:
MLC,O

B,∨ ((s1, o), α,SLC(U ,O)) = ⊥ = MLC,O
B,∨ ((s2, o), α,SLC(U ,O))

– Suppose that there is at least one successful computation in O labeled with α. We observe that
either both s1 and s2 have a computation labeled with α, or neither of them has. In fact, if this
were not the case, then only one of them may pass a fully nondeterministic test having a single
computation that is labeled with α and reaches ω, thus violating the hypothesis. There are two
subcases:

∗ If neither s1 nor s2 has a computation labeled with α, then:
MLC,O

B,∨ ((s1, o), α,SLC(U ,O)) = ⊥ = MLC,O
B,∨ ((s2, o), α,SLC(U ,O))

∗ If both s1 and s2 have a computation labeled with α, then:
MLC,O

B,∨ ((s1, o), α,SLC(U ,O)) = > = MLC,O
B,∨ ((s2, o), α,SLC(U ,O))

• Let s1, s2 ∈ S be such that for every B-observation system O = (O′, A,−−−→O) with initial state
o′ ∈ O′ and for all α ∈ A∗:

MLC,O
B,∨ ((s1, o

′), α,SLC(U ,O)) = MLC,O
B,∨ ((s2, o

′), α,SLC(U ,O))

Then for every fully nondeterministic test T = (O,A,−−−→T) with initial state o ∈ O:
s1 may pass T ⇐⇒ s2 may pass T

In fact, if this were not the case because of a fully nondeterministic test T̃ = (Õ, A,−−−→T̃) with initial

state õ ∈ Õ such that (s1, õ) has at least one successful computation labeled with some trace α ∈ A∗
whereas (s2, õ) has no successful computations, then we would have:

MLC,Õ
B,∨ ((s1, õ), α,SLC(U , Õ)) = > 6= ⊥ = MLC,Õ

B,∨ ((s2, õ), α,SLC(U , Õ))

where Õ = (Õ, A,−−−→Õ) is the B-observation system corresponding to T̃ .

• Let s1, s2 ∈ S be such that for every fully nondeterministic test T = (O′, A,−−−→T) with initial state
o′ ∈ O′:

s1 must pass T ⇐⇒ s2 must pass T
Then for every B-observation system O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗:

42

MLC,O
B,∧ ((s1, o), α,SLC(U ,O)) = MLC,O

B,∧ ((s2, o), α,SLC(U ,O))
In fact, given α ∈ A∗, there are two cases:

– If there is no computation in O labeled with α or not all such computations are successful, then:
MLC,O

B,∧ ((s1, o), α,SLC(U ,O)) = ⊥ = MLC,O
B,∧ ((s2, o), α,SLC(U ,O))

– Suppose that there is at least one computation in O labeled with α and that all such computations
are successful. We observe that either both s1 and s2 are such that there is a computation labeled
with α from each of them and any of their computations labeled with a prefix of α is part of a
computation labeled with the entire α, or neither of them is. In fact, if this were not the case,
then only one of them should pass a fully nondeterministic test having a single computation that
is labeled with α and reaches ω, thus violating the hypothesis. There are two subcases:

∗ If neither s1 nor s2 is such that there is a computation labeled with α from it and any of its
computations labeled with a prefix of α is part of a computation labeled with the entire α,
then:

MLC,O
B,∧ ((s1, o), α,SLC(U ,O)) = ⊥ = MLC,O

B,∧ ((s2, o), α,SLC(U ,O))

∗ If both s1 and s2 are such that there is a computation labeled with α from each of them and
any of their computations labeled with a prefix of α is part of a computation labeled with
the entire α, then:

MLC,O
B,∧ ((s1, o), α,SLC(U ,O)) = > = MLC,O

B,∧ ((s2, o), α,SLC(U ,O))

• Let s1, s2 ∈ S be such that for every B-observation system O = (O′, A,−−−→O) with initial state
o′ ∈ O′ and for all α ∈ A∗:

MLC,O
B,∧ ((s1, o

′), α,SLC(U ,O)) = MLC,O
B,∧ ((s2, o

′), α,SLC(U ,O))

Then for every fully nondeterministic test T = (O,A,−−−→T) with initial state o ∈ O:
s1 must pass T ⇐⇒ s2 must pass T

In fact, if this were not the case because of a fully nondeterministic test T̃ = (Õ, A,−−−→T̃) with initial

state õ ∈ Õ such that all the maximal computations from (s1, õ) are successful whereas (s2, õ) has at
least one maximal computation that is not successful, then there would be two possibilities:

– One possibility is that there exists a trace α ∈ A∗ such that α labels some of the successful
computations from (s1, õ), but it does not label any successful computation from (s2, õ) or one
of its prefixes labels an unsuccessful maximal computation from (s2, õ). In this case, we would
have:

MLC,Õ
B,∧ ((s1, õ), α,SLC(U , Õ)) = > 6= ⊥ = MLC,Õ

B,∧ ((s2, õ), α,SLC(U , Õ))

where Õ = (Õ, A,−−−→Õ) is the B-observation system corresponding to T̃ .

– The other possibility is that the set of traces labeling the successful computations from (s1, õ)
coincides with the set of traces labeling the successful computations from (s2, õ) and none of
the prefixes of the traces labeling the successful computations from (s1, õ) labels an unsuccessful
maximal computation from (s2, õ). In this case, denoting by α the trace labeling one of the
shortest unsuccessful maximal computations from (s2, õ), we would have:

MLC,Õ
B,∧ ((s1, õ), α,SLC(U , Õ)) = ⊥ 6= > = MLC,Õ

B,∧ ((s2, õ), α,SLC(U , Õ))

where Õ = (Õ, A,−−−→Õ) is the B-observation system corresponding to a variant of T̃ in which
all the computations from õ labeled with α are terminated with ω.

Proof of Thm. 5.3. Let s1, s2 ∈ S. Assume that s1 ∼PB s2 due to some probabilistic bisimulation B
over S such that (s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and C ∈ S/B:

probe(s′1, a, C) = probe(s′2, a, C)
Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that:

probe(s, a,
⋃
G) =

∑
C∈G

probe(s, a, C)

43

we derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and

G ∈ 2S/B:
probe(s′1, a,

⋃
G) = probe(s′2, a,

⋃
G)

Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that:
MR[0,1]

(s, a,
⋃
G) =

∑
s′∈

⋃
G
Ds,a(s′) = probe(s, a,

⋃
G)

we further derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A

and G ∈ 2S/B:
MR[0,1]

(s′1, α,
⋃
G) = MR[0,1]

(s′2, α,
⋃
G)

which means that B is MR[0,1]
-bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,MR[0,1]

s2.

Proof of Thm. 5.5. Let s1, s2 ∈ S be such that s1 ∼PTr s2, i.e., assume that for all α ∈ A∗:
prob(CC(s1, α)) = prob(CC(s2, α))

Since for all s ∈ S and α ∈ A∗ it holds that:

prob(CC(s, α)) =

{ ∑
s′∈S
Ds,a(s′) · prob(CC(s′, α′)) if α = a ◦ α′

1 if α = ε
and hence:

prob(CC(s, α)) = MR[0,1]
(s, α, S)

we immediately derive that the assumption is equivalent to having that for all α ∈ A∗:
MR[0,1]

(s1, α, S) = MR[0,1]
(s2, α, S)

which means that s1 ∼Tr,MR[0,1]
s2.

Proof of Lemma 5.9. The proof is divided into two parts:

• Suppose that s1 ∼PTe s2. Given an arbitrary fully probabilistic test T = (O,A,−−−→T) with initial
state o ∈ O and an arbitrary trace α ∈ A∗, consider a variant Tα of T in which only the successful
computations of T that are labeled with α reach ω. From s1 ∼PTe s2, we derive that:

prob(SCCT (s1, o, α)) = prob(SCCTα(s1, o, α)) =

= prob(SCTα(s1, o)) =

= prob(SCTα(s2, o)) =

= prob(SCCTα(s2, o, α)) = prob(SCCT (s2, o, α))

• If for every fully probabilistic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:
prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))

then for every fully probabilistic test T = (O,A,−−−→T) with initial state o ∈ O:
prob(SC(s1, o)) =

∑
α∈A∗

prob(SCC(s1, o, α)) =
∑
α∈A∗

prob(SCC(s2, o, α)) = prob(SC(s2, o))

which means that s1 ∼PTe s2.

Proof of Thm. 5.10. Let s1, s2 ∈ S be such that s1 ∼PTe s2, i.e., assume that for every fully probabilistic
test T = (O,A,−−−→T) with initial state o ∈ O:

prob(SC(s1, o)) = prob(SC(s2, o))
By virtue of Lemma 5.9, the assumption is equivalent to having that for every fully probabilistic test
T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:

prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))
Let O = (O,A,−−−→O) be the R[0,1]-observation system corresponding to an arbitrary fully probabilistic

test T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system INPM(U ,O). Since for
all s ∈ S and α ∈ A∗ it holds that:

prob(SCC(s, o, α)) =

∑

(s′,o′)∈S×O
D(s,o),a(s′, o′) · prob(SCC(s′, o′, α′)) if α = a ◦ α′

1 if α = ε and o = ω
0 if α = ε and o 6= ω

and hence:

44

prob(SCC(s, o, α)) = MNPM,O
R[0,1]

((s, o), α,SNPM(U ,O))

we immediately derive that the assumption is equivalent to having that for every R[0,1]-observation system

O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗:
MNPM,O

R[0,1]
((s1, o), α,SNPM(U ,O)) = MNPM,O

R[0,1]
((s2, o), α,SNPM(U ,O))

which means that s1 ∼Te,MNPM
R[0,1]

s2.

Proof of Thm. 6.2. The proof is identical to that of Thm. 5.3.

Proof of Thm. 6.4. The proof is identical to that of Thm. 5.5.

Proof of Lemma 6.8. The proof is divided into two parts:

• Suppose that s1 ∼PTe s2. Given an arbitrary reactive probabilistic test T = (O,A,−−−→T) with initial
state o ∈ O and an arbitrary trace α ∈ A∗, consider a variant Tα of T in which only the successful
computations of T that are labeled with α reach ω. From s1 ∼PTe s2, we derive that:

prob(SCCT (s1, o, α)) = prob(SCCTα(s1, o, α)) =

=
⊔

α′∈Trmax(s1,o)

prob(SCCTα(s1, o, α
′)) =

=
⊔

α′∈Trmax(s2,o)

prob(SCCTα(s2, o, α
′)) =

= prob(SCCTα(s2, o, α)) = prob(SCCT (s2, o, α))

• If for every reactive probabilistic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:
prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))

then for every reactive probabilistic test T = (O,A,−−−→T) with initial state o ∈ O:⊔
α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
⊔

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

d

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
d

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

which means that s1 ∼PTe s2.

Proof of Thm. 6.9. Let s1, s2 ∈ S be such that s1 ∼PTe s2, i.e., assume that for every reactive probabilistic
test T = (O,A,−−−→T) with initial state o ∈ O:⊔

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
⊔

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

d

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
d

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

By virtue of Lemma 6.8, the assumption is equivalent to having that for every reactive probabilistic test
T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:

prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))
Let O = (O,A,−−−→O) be the R[0,1]-observation system corresponding to an arbitrary reactive probabilistic

test T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system IPM(U ,O). Since for
all s ∈ S and α ∈ A∗ it holds that:

prob(SCC(s, o, α)) =

∑

(s′,o′)∈S×O
D(s,o),a(s′, o′) · prob(SCC(s′, o′, α′)) if α = a ◦ α′

1 if α = ε and o = ω
0 if α = ε and o 6= ω

and hence:
prob(SCC(s, o, α)) = MPM,O

R[0,1]
((s, o), α,SPM(U ,O))

we immediately derive that the assumption is equivalent to having that for every R[0,1]-observation system

O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗:
MPM,O

R[0,1]
((s1, o), α,SPM(U ,O)) = MPM,O

R[0,1]
((s2, o), α,SPM(U ,O))

which means that s1 ∼Te,MPM
R[0,1]

s2.

45

Proof of Thm. 7.4. Let s1, s2 ∈ S. Assume that s1 ∼PB,N s2 due to some probabilistic bisimulation B
over S such that (s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B it

holds that s′1
a

−−−→D1 implies s′2
a

−−−→D2 with D1(
⋃
G) = D2(

⋃
G). In other words, whenever (s′1, s

′
2) ∈ B,

then for all a ∈ A and G ∈ 2S/B: ⋃
s′1

a
−−−→D1

{D1(
⋃
G)} ⊆

⋃
s′2

a
−−−→D2

{D2(
⋃
G)}

⋃
s′2

a
−−−→D2

{D2(
⋃
G)} ⊆

⋃
s′1

a
−−−→D1

{D1(
⋃
G)}

or equivalently: ⋃
s′1

a
−−−→D1

{D1(
⋃
G)} =

⋃
s′2

a
−−−→D2

{D2(
⋃
G)}

Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that M
2.
R[0,1] (s, a,

⋃
G) = {0} when s has no a-transition,

otherwise:
M

2.
R[0,1] (s, a,

⋃
G) =

⋃
s

a
−−−→D

{
∑

s′∈
⋃
G
D(s′)} =

⋃
s

a
−−−→D

{D(
⋃
G)}

we derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and

G ∈ 2S/B:
M

2.
R[0,1] (s

′
1, a,

⋃
G) = M

2.
R[0,1] (s

′
2, a,

⋃
G)

which means that B is an M
2.
R[0,1] -bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,M

2.
R[0,1]

s2.

Proof of Thm. 7.8. Let s1, s2 ∈ S be such that s1 ∼PTr,N s2, i.e., assume that for all α ∈ A∗:

• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

• For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

Since for all s ∈ S, Z = (Z,A,−−−→Z) ∈ Res(s), and α ∈ A∗ it holds that:

prob(CC(zs, α)) =

∑

zs′∈Z
D(zs′) · prob(CC(zs′ , α′)) if α = a ◦ α′ and ∃D ∈ [Z → R[0,1]]. zs

a
−−−→Z D

1 if α = ε

0 if α = a ◦ α′ and @D ∈ [Z → R[0,1]]. zs
a

−−−→Z D
and hence:

prob(CC(zs, α)) ∈ M
2.
R[0,1] (s, α, S)

we immediately derive that the assumption is equivalent to having that for all α ∈ A∗:
M

2.
R[0,1] (s1, α, S) ⊆ M

2.
R[0,1] (s2, α, S)

M
2.
R[0,1] (s2, α, S) ⊆ M

2.
R[0,1] (s1, α, S)

or equivalently:
M

2.
R[0,1] (s1, α, S) = M

2.
R[0,1] (s2, α, S)

which means that s1 ∼Tr,M
2.
R[0,1]

s2.

Proof of Thm. 7.13. Let s1, s2 ∈ S be such that s1 ∼PTe,N s2, i.e., assume that for every nondeterministic
and probabilistic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗:

• For each Z1 ∈ Res(s1, o) there exists Z2 ∈ Res(s2, o) such that:
prob(SCC(zs1,o, α)) = prob(SCC(zs2,o, α))

• For each Z2 ∈ Res(s2, o) there exists Z1 ∈ Res(s1, o) such that:
prob(SCC(zs2,o, α)) = prob(SCC(zs1,o, α))

Let O = (O,A,−−−→O) be the R[0,1]-observation system corresponding to an arbitrary nondeterministic and

probabilistic test T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system IPM(U ,O)

46

where U is the NPLTS under examination. Since for all s ∈ S, Z = (Z,A,−−−→Z) ∈ Res(s, o), and α ∈ A∗
it holds that:

prob(SCC(zs,o, α)) =

∑
zs′,o′∈Z

D(zs′,o′) · prob(SCC(zs′,o′ , α′))
if α = a ◦ α′ and ∃D ∈ [Z → R[0,1]]. zs,o

a
−−−→Z D

1 if α = ε and o = ω

0 if α = a ◦ α′ and @D ∈ [Z → R[0,1]]. zs,o
a

−−−→Z D
or α = ε and o 6= ω

and hence:
prob(SCC(zs,o, α)) ∈ MPM,O

2.
R[0,1]

((s, o), α,SPM(U ,O))

we immediately derive that the assumption is equivalent to having that for every R[0,1]-observation system

O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗:
MPM,O

2.
R[0,1]

((s1, o), α,SPM(U ,O)) ⊆ MPM,O
2.
R[0,1]

((s2, o), α,SPM(U ,O))

MPM,O
2.
R[0,1]

((s2, o), α,SPM(U ,O)) ⊆ MPM,O
2.
R[0,1]

((s1, o), α,SPM(U ,O))

or equivalently:
MPM,O

2.
R[0,1]

((s1, o), α,SPM(U ,O)) = MPM,O
2.
R[0,1]

((s2, o), α,SPM(U ,O))

which means that s1 ∼Te,MPM

2.
R[0,1]

s2.

Proof of Lemma 8.4. Let s1, s2 ∈ S be such that s1 ∼MB s2. Then it immediately follows that:
E(s1) =

∑
a∈A

∑
C∈S/∼MB

ratee(s1, a, C) =
∑
a∈A

∑
C∈S/∼MB

ratee(s2, a, C) = E(s2)

Proof of Lemma 8.5. Let s1, s2 ∈ S be such that s1 ∼B,Mete
s2. Then either E(s1) = 0 = E(s2),

in which case the result trivially holds, or E(s1) > 0 and E(s2) > 0, which is the case that we examine.
From s1 ∼B,Mete s2, it follows that:∑

a∈A
Mete(s1, a, S) =

∑
a∈A

∑
C∈S/∼B,Mete

Mete(s1, a, C) =
∑
a∈A

∑
C∈S/∼B,Mete

Mete(s2, a, C) =
∑
a∈A
Mete(s2, a, S)

Since for all s ∈ S such that E(s) > 0 and for all t ∈ R≥0 it holds that:∑
a∈A
Mete(s, a, S)(t) =

∑
a∈A

t∫
0

E(s) · e−E(s)·x ·
∑
s′∈S

Ds,a(s′)
E(s) dx

=
∑
a∈A

∑
s′∈S

Ds,a(s′)
E(s) ·

t∫
0

E(s) · e−E(s)·x dx

= 1
E(s) ·

∑
a∈A

∑
s′∈S
Ds,a(s′) · (1− e−E(s)·t)

= 1− e−E(s)·t

we further derive that for all t ∈ R≥0:
1− e−E(s1)·t = 1− e−E(s2)·t

and hence:
E(s1) = E(s2)

Proof of Lemma 8.6. Let s1, s2 ∈ S be such that s1 ∼B,Msbs
s2. Then either E(s1) = 0 = E(s2),

in which case the result trivially holds, or E(s1) > 0 and E(s2) > 0, which is the case that we examine.
From s1 ∼B,Msbs

s2, it follows that:∑
a∈A
Msbs(s1, a, S) =

∑
a∈A

∑
C∈S/∼B,Msbs

Msbs(s1, a, C) =
∑
a∈A

∑
C∈S/∼B,Msbs

Msbs(s2, a, C) =
∑
a∈A
Msbs(s2, a, S)

Since for all s ∈ S such that E(s) > 0 and for all θ = t ◦ θ′ ∈ (R≥0)∗ it holds that:∑
a∈A
Msbs(s, a, S)(θ) =

∑
a∈A

(1− e−E(s)·t) ·
∑
s′∈S

Ds,a(s′)
E(s)

= (1− e−E(s)·t) · 1
E(s) ·

∑
a∈A

∑
s′∈S
Ds,a(s′)

= 1− e−E(s)·t

we further derive that for all t ∈ R≥0:
1− e−E(s1)·t = 1− e−E(s2)·t

47

and hence:
E(s1) = E(s2)

Proof of Thm. 8.7. Let s1, s2 ∈ S. Assume that s1 ∼MB s2 due to some Markovian bisimulation B over S
such that (s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and C ∈ S/B:

ratee(s′1, a, C) = ratee(s′2, a, C)
Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that:

ratee(s, a,
⋃
G) =

∑
C∈G

ratee(s, a, C)

we derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and

G ∈ 2S/B:
ratee(s′1, a,

⋃
G) = ratee(s′2, a,

⋃
G)

Since for all s ∈ S, a ∈ A, G ∈ 2S/B, and t ∈ R≥0 it holds that Mete(s, a,
⋃
G)(t) = 0 when E(s) = 0,

otherwise:

Mete(s, a,
⋃
G)(t) =

t∫
0

E(s) · e−E(s)·x ·
∑

s′∈
⋃
G

Ds,a(s′)
E(s) dx

= (
t∫

0

E(s) · e−E(s)·x dx) · 1
E(s) ·

∑
s′∈

⋃
G
Ds,a(s′)

= 1−e−E(s)·t

E(s) ·
∑

s′∈
⋃
G
Ds,a(s′)

= 1−e−E(s)·t

E(s) · ratee(s, a,
⋃
G)

we further derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A

and G ∈ 2S/B:
Mete(s′1, a,

⋃
G) = Mete(s′2, a,

⋃
G)

which means that B is an Mete-bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,Mete
s2.

Note that E(s′1) = E(s′2) is guaranteed by Lemma 8.4 (direction =⇒) and Lemma 8.5 (direction ⇐=).

Proof of Thm. 8.8. Let s1, s2 ∈ S. Assume that s1 ∼MB s2 due to some Markovian bisimulation B over S
such that (s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and C ∈ S/B:

ratee(s′1, a, C) = ratee(s′2, a, C)
Since for all s ∈ S, a ∈ A, and G ∈ 2S/B it holds that:

ratee(s, a,
⋃
G) =

∑
C∈G

ratee(s, a, C)

we derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and

G ∈ 2S/B:
ratee(s′1, a,

⋃
G) = ratee(s′2, a,

⋃
G)

Since for all s ∈ S, a ∈ A, G ∈ 2S/B, and θ ∈ (R≥0)∗ it holds that Msbs(s, a,
⋃
G)(θ) = 0 when θ = ε or

E(s) = 0, otherwise for θ = t ◦ θ′:
Msbs(s, a,

⋃
G)(θ) = (1− e−E(s)·t) ·

∑
s′∈

⋃
G

Ds,a(s′)
E(s)

= 1−e−E(s)·t

E(s) ·
∑

s′∈
⋃
G
Ds,a(s′)

= 1−e−E(s)·t

E(s) · ratee(s, a,
⋃
G)

we further derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A

and G ∈ 2S/B:
Msbs(s

′
1, a,

⋃
G) = Msbs(s

′
2, a,

⋃
G)

which means that B is an Msbs-bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,Msbs
s2.

Note that E(s′1) = E(s′2) is guaranteed by Lemma 8.4 (direction =⇒) and Lemma 8.6 (direction ⇐=).

Proof of Thm. 8.11. Given s ∈ S, we define the end-to-end duration of c ∈ Cfin(s) as the sum of the
random variables quantifying the sojourn times in the states traversed by c:

timed,ete(c) =

{
Det0 if |c| = 0

Exps + timed,ete(c′) if c ≡ s
a,λ
−−−→ c′

48

where Det0 is the random variable equal to 0 with probability 1, while Exps is the exponentially distributed
random variable with rate E(s). Moreover, we define the probability distribution of executing a computation
in C ⊆ Cfin(s) within t ∈ R≥0 time units by letting:

probd,ete(C, t) =
∑
c∈C

prob(c) · Pr{timed,ete(c) ≤ t}

whenever C is finite and all of its computations are independent of each other.
Let s1, s2 ∈ S be such that s1 ∼MTr,ete s2, i.e., assume that for all α ∈ A∗ and t ∈ R≥0:

prob(CC≤t(s1, α)) = prob(CC≤t(s2, α))
Due to [22, 16], this is equivalent to having that for all α ∈ A∗ and t ∈ R≥0:

probd,ete(CC(s1, α), t) = probd,ete(CC(s2, α), t)
Since for all s ∈ S, α ∈ A∗, and t ∈ R≥0 it holds that:

probd,ete(CC(s, α), t) =

∑
s′∈S

Ds,a(s′)
E(s) ·

t∫
0

E(s) · e−E(s)·x · probd,ete(CC(s′, α′), t− x) dx

if α = a ◦ α′ and E(s) > 0
1 if α = ε
0 if α 6= ε and E(s) = 0

and hence:
probd,ete(CC(s, α), t) = Mete(s, α, S)(t)

we immediately derive that the assumption is equivalent to having that for all α ∈ A∗ and t ∈ R≥0:
Mete(s1, α, S)(t) = Mete(s2, α, S)(t)

which means that s1 ∼Tr,Mete s2.

Proof of Thm. 8.12. Given s ∈ S, we define the step-by-step duration of c ∈ Cfin(s) as the sequence of
the random variables quantifying the average sojourn times in the states traversed by c:

timed,sbs(c) =

{
Det0 if |c| = 0

Exps ◦ timed,sbs(c
′) if c ≡ s

a,λ
−−−→ c′

where, as in the proof of Thm. 8.11, Det0 is the random variable equal to 0 with probability 1, while
Exps is the exponentially distributed random variable with rate E(s). Moreover, we define the probability
distribution of executing a computation in C ⊆ Cfin(s) within a sequence θ ∈ (R≥0)∗ of time units by letting:

probd,sbs(C, θ) =
|c|≤|θ|∑
c∈C

prob(c) ·
|c|∏
i=1

Pr{timed,sbs(c)[i] ≤ θ[i]}

=
|c|≤|θ|∑
c∈C

prob(c) ·
|c|∏
i=1

(1− e−θ[i]/timea,sbs(c)[i])

whenever C is finite and all of its computations are independent of each other.
Let s1, s2 ∈ S be such that s1 ∼MTr,sbs s2, i.e., assume that for all α ∈ A∗ and θ ∈ (R≥0)∗:

prob(CC≤θ(s1, α)) = prob(CC≤θ(s2, α))
Due to [16], this is equivalent to having that for all α ∈ A∗ and θ ∈ (R≥0)∗:

probd,sbs(CC(s1, α), θ) = probd,sbs(CC(s2, α), θ)
Since for all s ∈ S, α ∈ A∗, and θ ∈ (R≥0)∗ it holds that:

probd,sbs(CC(s, α), θ) =

∑
s′∈S

Ds,a(s′)
E(s) · (1− e−E(s)·t) · probd,sbs(CC(s′, α′), θ′)

if α = a ◦ α′ and θ = t ◦ θ′ and E(s) > 0
1 if α = ε
0 if α 6= ε and θ = ε

or α 6= ε and θ 6= ε and E(s) = 0
and hence:

probd,sbs(CC(s, α), θ) = Msbs(s, α, S)(θ)
we immediately derive that the assumption is equivalent to having that for all α ∈ A∗ and θ ∈ (R≥0)∗:

Msbs(s1, α, S)(θ) = Msbs(s2, α, S)(θ)
which means that s1 ∼Tr,Msbs

s2.

Proof of Lemma 8.17. The proof is identical to that of Lemma 5.9 up to the use of ∼MTe,ete, fully
stochastic tests, SCC≤t, and SC≤t in place of ∼PTe, fully probabilistic tests, SCC, and SC.

49

Proof of Lemma 8.18. The proof is identical to that of Lemma 5.9 up to the use of ∼MTe,sbs, fully
stochastic tests, SCC≤θ, and SC≤θ in place of ∼PTe, fully probabilistic tests, SCC, and SC.

Proof of Thm. 8.19. Let s1, s2 ∈ S be such that s1 ∼MTe,ete s2, i.e., assume that for every fully stochastic
test T = (O,A,−−−→T) with initial state o ∈ O and for all t ∈ R≥0:

prob(SC≤t(s1, o)) = prob(SC≤t(s2, o))
By virtue of Lemma 8.17, the assumption is equivalent to having that for every fully stochastic test T =
(O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

prob(SCC≤t(s1, o, α)) = prob(SCC≤t(s2, o, α))
Due to [22, 16], this is equivalent to having that for every fully stochastic test T = (O,A,−−−→T) with
initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

probd,ete(SCC(s1, o, α), t) = probd,ete(SCC(s2, o, α), t)
where probd,ete has been defined in the proof of Thm. 8.11.

Let O = (O,A,−−−→O) be the R≥0-observation system corresponding to an arbitrary fully stochastic test
T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system IRM(U ,O). Since for all
s ∈ S, α ∈ A∗, and t ∈ R≥0 it holds that:

probd,ete(SCC(s, o, α), t) =

∑
(s′,o′)∈S×O

D(s,o),a(s′,o′)

E(s,o) ·
t∫

0

E(s, o) · e−E(s,o)·x · probd,ete(SCC(s′, o′, α′), t− x) dx

if α = a ◦ α′ and E(s, o) > 0
1 if α = ε and o = ω
0 if α 6= ε and E(s, o) = 0

or α = ε and o 6= ω
and hence:

probd,ete(SCC(s, o, α), t) = MRM,O
ete ((s, o), α,SRM(U ,O))(t)

we immediately derive that the assumption is equivalent to having that for every R≥0-observation system
O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

MRM,O
ete ((s1, o), α,SRM(U ,O))(t) = MRM,O

ete ((s2, o), α,SRM(U ,O))(t)
which means that s1 ∼Te,MRM

ete
s2.

Proof of Thm. 8.20. Let s1, s2 ∈ S be such that s1 ∼MT,sbs s2, i.e., assume that for every fully stochastic
test T = (O,A,−−−→T) with initial state o ∈ O and for all θ ∈ (R≥0)∗:

prob(SC≤θ(s1, o)) = prob(SC≤θ(s2, o))
By virtue of Lemma 8.18, the assumption is equivalent to having that for every fully stochastic test T =
(O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

prob(SCC≤θ(s1, o, α)) = prob(SCC≤θ(s2, o, α))
Due to [16], this is equivalent to having that for every fully stochastic test T = (O,A,−−−→T) with initial
state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

probd,sbs(SCC(s1, o, α), θ) = probd,sbs(SCC(s2, o, α), θ)
where probd,sbs has been defined in the proof of Thm. 8.12.

Let O = (O,A,−−−→O) be the R≥0-observation system corresponding to an arbitrary fully stochastic test
T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system IRM(U ,O). Since for all
s ∈ S, α ∈ A∗, and θ ∈ (R≥0)∗ it holds that:

probd,sbs(SCC(s, o, α), θ) =

∑
(s′,o′)∈S×O

D(s,o),a(s′,o′)

E(s,o) · (1− e−E(s,o)·t) · probd,sbs(SCC(s′, o′, α′), θ′)
if α = a ◦ α′ and θ = t ◦ θ′ and E(s, o) > 0

1 if α = ε and o = ω
0 if α 6= ε and θ = ε

or α 6= ε and θ 6= ε and E(s, o) = 0
or α = ε and o 6= ω

and hence:
prob(SCCd,sbs(s, o, α), θ) = MRM,O

sbs ((s, o), α,SRM(U ,O))(θ)
we immediately derive that the assumption is equivalent to having that for every R≥0-observation system
O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

50

MRM,O
sbs ((s1, o), α,SRM(U ,O))(θ) = MRM,O

sbs ((s2, o), α,SRM(U ,O))(θ)
which means that s1 ∼Te,MRM

sbs
s2.

Proof of Lemma 9.4. The proof is identical to that of Lemma 8.4 up to summations over a ∈ A (which
are no longer present) and the use of conditional exit rates in place of exit rates.

Proof of Lemma 9.5. The proof is identical to that of Lemma 8.5 up to summations over a ∈ A (which
are no longer present) and the use of conditional exit rates and Mete,R in place of exit rates and Mete.

Proof of Lemma 9.6. The proof is identical to that of Lemma 8.6 up to summations over a ∈ A (which
are no longer present) and the use of conditional exit rates and Msbs,R in place of exit rates and Msbs.

Proof of Thm. 9.7. The proof is identical to that of Thm. 8.7 up to the use of conditional exit rates,
Mete,R, Lemma 9.4, and Lemma 9.5 in place of exit rates, Mete, Lemma 8.4, and Lemma 8.5.

Proof of Thm. 9.8. The proof is identical to that of Thm. 8.8 up to the use of conditional exit rates,
Msbs,R, Lemma 9.4, and Lemma 9.6 in place of exit rates, Msbs, Lemma 8.4, and Lemma 8.6.

Proof of Thm. 9.11. The proof is identical to that of Thm. 8.11 up to the use of conditional exit rates,
probR, ∼MTr,ete,R, and Mete,R in place of exit rates, prob, ∼MTr,ete, and Mete.

Proof of Thm. 9.12. The proof is identical to that of Thm. 8.12 up to the use of conditional exit rates,
probR, ∼MTr,sbs,R, and Msbs,R in place of exit rates, prob, ∼MTr,sbs, and Msbs.

Proof of Lemma 9.17. The proof is identical to that of Lemma 6.8 up to the use of ∼MTe,ete,R, reactive
stochastic tests, probR, and SCC≤t,R in place of ∼PTe, reactive probabilistic tests, prob, and SCC.
Proof of Lemma 9.18. The proof is identical to that of Lemma 6.8 up to the use of ∼MTe,sbs,R, reactive
stochastic tests, probR, and SCC≤θ,R in place of ∼PTe, reactive probabilistic tests, prob, and SCC.
Proof of Thm. 9.19. The proof is identical to that of Thm. 8.19 up to the use of ∼MTe,ete,R, reac-
tive stochastic tests, probR, SC≤t,R, Lemma 9.17, SCC≤t,R, conditional exit rates, and MRM

ete,R in place of

∼MTe,ete, fully stochastic tests, prob, SC≤t, Lemma 8.17, SCC≤t, exit rates, and MRM
ete .

Proof of Thm. 9.20. The proof is identical to that of Thm. 8.20 up to the use of ∼MTe,sbs,R, reactive
stochastic tests, probR, SC≤θ,R, Lemma 9.18, SCC≤θ,R, conditional exit rates, and MRM

sbs,R in place of

∼MTe,sbs, fully stochastic tests, prob, SC≤θ, Lemma 8.18, SCC≤θ, exit rates, and MRM
sbs .

Proof of Thm. 10.4. Let s1, s2 ∈ S. Assume that s1 ∼MB,N s2 due to some Markovian bisimulation B
over S such that (s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B it

holds that s′1
a

−−−→D1 implies s′2
a

−−−→D2 with D1(
⋃
G) = D2(

⋃
G) and D1(S) = D2(S). In other words,

whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B:⋃

s′1
a
−−−→D1

{(D1(
⋃
G),D1(S))} ⊆

⋃
s′2

a
−−−→D2

{(D2(
⋃
G),D2(S))}

⋃
s′2

a
−−−→D2

{(D2(
⋃
G),D2(S))} ⊆

⋃
s′1

a
−−−→D1

{(D1(
⋃
G),D1(S))}

or equivalently: ⋃
s′1

a
−−−→D1

{(D1(
⋃
G),D1(S))} =

⋃
s′2

a
−−−→D2

{(D2(
⋃
G),D2(S))}

Since for all s ∈ S, a ∈ A, G ∈ 2S/B, and t ∈ R≥0 it holds that Mete,N(s, a,
⋃
G)(t) = {0} when s has no

a-transition, otherwise:

Mete,N(s, a,
⋃
G)(t) =

⋃
s

a
−−−→D

{
t∫

0

D(S) · e−D(S)·x ·
∑

s′∈
⋃
G

D(s′)
D(S) dx}

=
⋃

s
a
−−−→D

{(
t∫

0

D(S) · e−D(S)·x dx) · 1
D(S) ·

∑
s′∈

⋃
G
D(s′)}

=
⋃

s
a
−−−→D

{ 1−e−D(S)·t

D(S) · D(
⋃
G)}

51

we derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and

G ∈ 2S/B:
Mete,N(s′1, a,

⋃
G) = Mete,N(s′2, a,

⋃
G)

which means that B is an Mete,N-bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,Mete,N
s2.

Proof of Thm. 10.5. Let s1, s2 ∈ S. Assume that s1 ∼MB,N s2 due to some Markovian bisimulation B
over S such that (s1, s2) ∈ B. This means that, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B it

holds that s′1
a

−−−→D1 implies s′2
a

−−−→D2 with D1(
⋃
G) = D2(

⋃
G) and D1(S) = D2(S). In other words,

whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B:⋃

s′1
a
−−−→D1

{(D1(
⋃
G),D1(S))} ⊆

⋃
s′2

a
−−−→D2

{(D2(
⋃
G),D2(S))}

⋃
s′2

a
−−−→D2

{(D2(
⋃
G),D2(S))} ⊆

⋃
s′1

a
−−−→D1

{(D1(
⋃
G),D1(S))}

or equivalently: ⋃
s′1

a
−−−→D1

{(D1(
⋃
G),D1(S))} =

⋃
s′2

a
−−−→D2

{(D2(
⋃
G),D2(S))}

Since for all s ∈ S, a ∈ A, G ∈ 2S/B, and θ ∈ (R≥0)∗ it holds that Mete,N(s, a,
⋃
G)(θ) = {0} when θ = ε or

s has no a-transition, otherwise for θ = t ◦ θ′:
Msbs,N(s, a,

⋃
G)(θ) =

⋃
s

a
−−−→D

{(1− e−D(S)·t) ·
∑

s′∈
⋃
G

D(s′)
D(S) }

=
⋃

s
a
−−−→D

{ 1−e−D(S)·t

D(S) ·
∑

s′∈
⋃
G
D(s′)}

=
⋃

s
a
−−−→D

{ 1−e−D(S)·t

D(S) · D(
⋃
G)}

we derive that the assumption is equivalent to having that, whenever (s′1, s
′
2) ∈ B, then for all a ∈ A and

G ∈ 2S/B:
Msbs,N(s′1, a,

⋃
G) = Msbs,N(s′2, a,

⋃
G)

which means that B is an Msbs,N-bisimulation such that (s1, s2) ∈ B. In other words, s1 ∼B,Msbs,N
s2.

Proof of Thm. 10.8. Let s1, s2 ∈ S be such that s1 ∼MTr,ete,N s2, i.e., assume that for all α ∈ A∗ and
t ∈ R≥0:

• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(CC≤t(zs1 , α)) = prob(CC≤t(zs2 , α))

• For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(CC≤t(zs2 , α)) = prob(CC≤t(zs1 , α))

Due to [22, 16], this is equivalent to having that for all α ∈ A∗ and t ∈ R≥0:

• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
probd,ete(CC(zs1 , α), t) = probd,ete(CC(zs2 , α), t)

• For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
probd,ete(CC(zs2 , α), t) = probd,ete(CC(zs1 , α), t)

where probd,ete has been defined in the proof of Thm. 8.11.

Since for all s ∈ S, Z = (Z,A,−−−→Z) ∈ Res(s), α ∈ A∗, and t ∈ R≥0 it holds that:

probd,ete(CC(zs, α), t) =

∑

zs′∈Z

D(zs′)
D(Z) ·

t∫
0

D(Z) · e−D(Z)·x · probd,ete(CC(zs′ , α′), t− x) dx

if α = a ◦ α′ and ∃D ∈ [Z → R≥0]. zs
a

−−−→Z D
1 if α = ε

0 if α = a ◦ α′ and @D ∈ [Z → R≥0]. zs
a

−−−→Z D
52

and hence:
probd,ete(CC(zs, α), t) ∈ Mete,N(s, α, S)(t)

we immediately derive that the assumption is equivalent to having that for all α ∈ A∗ and t ∈ R≥0:
Mete,N(s1, α, S)(t) = Mete,N(s2, α, S)(t)

which means that s1 ∼Tr,Mete,N
s2.

Proof of Thm. 10.9. Let s1, s2 ∈ S be such that s1 ∼MTr,sbs,N s2, i.e., assume that for all α ∈ A∗ and
θ ∈ (R≥0)∗:

• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(CC≤θ(zs1 , α)) = prob(CC≤θ(zs2 , α))

• For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(CC≤θ(zs2 , α)) = prob(CC≤θ(zs1 , α))

Due to [16], this is equivalent to having that for all α ∈ A∗ and θ ∈ (R≥0)∗:

• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
probd,sbs(CC(zs1 , α), θ) = probd,sbs(CC(zs2 , α), θ)

• For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
probd,sbs(CC(zs2 , α), θ) = probd,sbs(CC(zs1 , α), θ)

where probd,sbs has been defined in the proof of Thm. 8.12.

Since for all s ∈ S, Z = (Z,A,−−−→Z) ∈ Res(s), α ∈ A∗, and θ ∈ (R≥0)∗ it holds that:

probd,sbs(CC(zs, α), θ) =

∑
zs′∈Z

D(zs′)
D(Z) · (1− e−D(Z)·t) · probd,sbs(CC(zs′ , α′), θ′)

if α = a ◦ α′ and θ = t ◦ θ′ and ∃D ∈ [Z → R≥0]. zs
a

−−−→Z D
1 if α = ε
0 if α 6= ε and θ = ε

or α = a ◦ α′ and θ 6= ε and @D ∈ [Z → R≥0]. zs
a

−−−→Z D
and hence:

probd,sbs(CC(zs, α), θ) ∈ Msbs,N(s, α, S)(θ)
we immediately derive that the assumption is equivalent to having that for all α ∈ A∗ and θ ∈ (R≥0)∗:

Msbs,N(s1, α, S)(θ) = Msbs,N(s2, α, S)(θ)
which means that s1 ∼Tr,Msbs,N

s2.

Proof of Thm. 10.14. Let s1, s2 ∈ S be such that s1 ∼MTe,ete,N s2, i.e., assume that for every nondeter-
ministic and stochastic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

• For each Z1 ∈ Res(s1, o) there exists Z2 ∈ Res(s2, o) such that:
prob(SCC≤t(zs1,o, α)) = prob(SCC≤t(zs2,o, α))

• For each Z2 ∈ Res(s2, o) there exists Z1 ∈ Res(s1, o) such that:
prob(SCC≤t(zs2,o, α)) = prob(SCC≤t(zs1,o, α))

Due to [22, 16], this is equivalent to having that for every nondeterministic and stochastic test T =
(O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

• For each Z1 ∈ Res(s1, o) there exists Z2 ∈ Res(s2, o) such that:
probd,ete(SCC(zs1,o, α), t) = probd,ete(SCC(zs2,o, α), t)

• For each Z2 ∈ Res(s2, o) there exists Z1 ∈ Res(s1, o) such that:
probd,ete(SCC(zs2,o, α), t) = probd,ete(SCC(zs1,o, α), t)

53

where probd,ete has been defined in the proof of Thm. 8.11.

Let O = (O,A,−−−→O) be the R≥0-observation system corresponding to an arbitrary nondeterministic and
stochastic test T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system IRM(U ,O)
where U is the NMLTS under examination. Since for all s ∈ S, Z = (Z,A,−−−→Z) ∈ Res(s, o), α ∈ A∗,
and t ∈ R≥0 it holds that:

probd,ete(SCC(zs,o, α), t) =

∑
zs′,o′∈Z

D(zs′,o′)

D(Z) ·
t∫

0

D(Z) · e−D(Z)·x · probd,ete(SCC(zs′,o′ , α′), t− x) dx

if α = a ◦ α′ and ∃D ∈ [Z → R≥0]. zs,o
a

−−−→Z D
1 if α = ε and o = ω

0 if α = a ◦ α′ and @D ∈ [Z → R≥0]. zs,o
a

−−−→Z D
or α = ε and o 6= ω

and hence:
probd,ete(SCC(zs,o, α), t) ∈ MRM,O

ete,N ((s, o), α,SRM(U ,O))(t)
we immediately derive that the assumption is equivalent to having that for every R≥0-observation system
O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗ and t ∈ R≥0:

MRM,O
ete,N ((s1, o), α,SRM(U ,O))(t) = MRM,O

ete,N ((s2, o), α,SRM(U ,O))(t)
which means that s1 ∼Te,MRM

ete,N
s2.

Proof of Thm. 10.15. Let s1, s2 ∈ S be such that s1 ∼MTe,sbs,N s2, i.e., assume that for every nondeter-
ministic and stochastic test T = (O,A,−−−→T) with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

• For each Z1 ∈ Res(s1, o) there exists Z2 ∈ Res(s2, o) such that:
prob(SCC≤θ(zs1,o, α)) = prob(SCC≤θ(zs2,o, α))

• For each Z2 ∈ Res(s2, o) there exists Z1 ∈ Res(s1, o) such that:
prob(SCC≤θ(zs2,o, α)) = prob(SCC≤θ(zs1,o, α))

Due to [16], this is equivalent to having that for every nondeterministic and stochastic test T = (O,A,−−−→T)
with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

• For each Z1 ∈ Res(s1, o) there exists Z2 ∈ Res(s2, o) such that:
probd,sbs(SCC(zs1,o, α), θ) = probd,sbs(SCC(zs2,o, α), θ)

• For each Z2 ∈ Res(s2, o) there exists Z1 ∈ Res(s1, o) such that:
probd,sbs(SCC(zs2,o, α), θ) = probd,sbs(SCC(zs1,o, α), θ)

where probd,sbs has been defined in the proof of Thm. 8.12.

Let O = (O,A,−−−→O) be the R≥0-observation system corresponding to an arbitrary nondeterministic and
stochastic test T = (O,A,−−−→T) with initial state o ∈ O and consider the interaction system IRM(U ,O)
where U is the NMLTS under examination. Since for all s ∈ S, Z = (Z,A,−−−→Z) ∈ Res(s, o), α ∈ A∗,
and θ ∈ (R≥0)∗ it holds that:

probd,sbs(SCC(zs,o, α), θ) =

∑
zs′,o′∈Z

D(zs′,o′)

D(Z) · (1− e−D(Z)·t) · probd,sbs(SCC(zs′,o′ , α′), θ′)

if α = a ◦ α′ and θ = t ◦ θ′ and ∃D ∈ [Z → R≥0]. zs,o
a

−−−→Z D
1 if α = ε and o = ω
0 if α 6= ε and θ = ε

or α = a ◦ α′ and θ 6= ε and @D ∈ [Z → R≥0]. zs,o
a

−−−→Z D
or α = ε and o 6= ω

and hence:
probd,sbs(SCC(zs,o, α), θ) ∈ MRM,O

sbs,N ((s, o), α,SRM(U ,O))(θ)
we immediately derive that the assumption is equivalent to having that for every R≥0-observation system
O = (O,A,−−−→O) with initial state o ∈ O and for all α ∈ A∗ and θ ∈ (R≥0)∗:

MRM,O
sbs,N ((s1, o), α,SRM(U ,O))(θ) = MRM,O

sbs,N ((s2, o), α,SRM(U ,O))(θ)
which means that s1 ∼Te,MRM

sbs,N
s2.

54

References

[1] S. Abramsky. Observational equivalence as a testing equivalence. Theoretical Computer Science, 53:225–241, 1987.
[2] L. Aceto, Z. Esik, and A. Ingolfsdottir. Equational axioms for probabilistic bisimilarity. In Proc. of the 9th Int. Conf. on

Algebraic Methodology and Software Technology (AMAST 2002), volume 2422 of LNCS, pages 239–254. Springer, 2002.
[3] A. Aldini, M. Bernardo, and F. Corradini. A Process Algebraic Approach to Software Architecture Design. Springer,

2010.
[4] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.
[5] S. Andova and J.C.M. Baeten. Abstraction in probabilistic process algebra. In Proc. of the 7th Int. Conf. on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS 2001), volume 2031 of LNCS, pages 204–219.
Springer, 2001.

[6] S. Andova, S. Georgievska, and N. Trcka. Branching bisimulation congruence for probabilistic systems. Theoretical
Computer Science, 413:58–72, 2012.

[7] S. Andova and T. Willemse. Branching bisimulation for probabilistic systems: Characteristics and decidability. Theoret-
ical Computer Science, 356:325–355, 2006.

[8] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic processes: ACP with generative probabilities.
Information and Computation, 121:234–255, 1995.

[9] C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimilarity and similarity for probabilistic processes. Journal
of Computer and System Sciences, 60:187–231, 2000.

[10] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In Proc. of the 9th Int. Conf. on Computer
Aided Verification (CAV 1997), volume 1254 of LNCS, pages 119–130. Springer, 1997.

[11] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time semantics for Markov chains. Information
and Computation, 200:149–214, 2005.

[12] C. Baier and M. Stoelinga. Norm functions for probabilistic bisimulations with delays. In Proc. of the 3rd Int. Conf.
on Foundations of Software Science and Computation Structures (FOSSACS 2000), volume 1784 of LNCS, pages 1–16.
Springer, 2000.

[13] E. Bandini and R. Segala. Axiomatizations for probabilistic bisimulation. In Proc. of the 28th Int. Coll. on Automata,
Languages and Programming (ICALP 2001), volume 2076 of LNCS, pages 370–381. Springer, 2001.

[14] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and Control, 60:109–137,
1984.

[15] J.A. Bergstra, A. Ponse, and S.A. Smolka (editors). Handbook of Process Algebra. Elsevier, 2001.
[16] M. Bernardo. Non-bisimulation-based Markovian behavioral equivalences. Journal of Logic and Algebraic Programming,

72:3–49, 2007.
[17] M. Bernardo. Uniform logical characterizations of testing equivalences for nondeterministic, probabilistic and Markovian

processes. In Proc. of the 7th Int. Workshop on Quantitative Aspects of Programming Languages (QAPL 2009), volume
253(3) of ENTCS, pages 3–23. Elsevier, 2009.

[18] M. Bernardo. Weak Markovian bisimulation congruences and exact CTMC-level aggregations for sequential processes.
In Proc. of the 6th Int. Symp. on Trustworthy Global Computing (TGC 2011), volume 7173 of LNCS, pages 89–103.
Springer, 2011.

[19] M. Bernardo. Weak Markovian bisimulation congruences and exact CTMC-level aggregations for concurrent processes.
In Proc. of the 10th Int. Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL 2012),
volume 85 of EPTCS, pages 122–136, 2012.

[20] M. Bernardo and A. Aldini. Weak Markovian bisimilarity: Abstracting from prioritized/weighted internal immediate
actions. In Proc. of the 10th Italian Conf. on Theoretical Computer Science (ICTCS 2007), pages 39–56. World Scientific,
2007.

[21] M. Bernardo and M. Bravetti. Performance measure sensitive congruences for Markovian process algebras. Theoretical
Computer Science, 290:117–160, 2003.

[22] M. Bernardo and R. Cleaveland. A theory of testing for Markovian processes. In Proc. of the 11th Int. Conf. on
Concurrency Theory (CONCUR 2000), volume 1877 of LNCS, pages 305–319. Springer, 2000.

[23] M. Bernardo, R. De Nicola, and M. Loreti. Uniform labeled transition systems for nondeterministic, probabilistic, and
stochastic processes. In Proc. of the 5th Int. Symp. on Trustworthy Global Computing (TGC 2010), volume 6084 of
LNCS, pages 35–56. Springer, 2010.

[24] M. Bernardo, R. De Nicola, and M. Loreti. Uniform labeled transition systems for nondeterministic, probabilistic,
and stochastic process calculi. In Proc. of the 1st Int. Workshop on Process Algebra and Coordination (PACO 2011),
volume 60 of EPTCS, pages 66–75, 2011.

[25] M. Bernardo, R. De Nicola, and M. Loreti. Revisiting trace and testing equivalences for nondeterministic and prob-
abilistic processes. In Proc. of the 15th Int. Conf. on Foundations of Software Science and Computation Structures
(FOSSACS 2012), volume 7213 of LNCS, pages 195–209. Springer, 2012.

[26] M. Bernardo, R. De Nicola, and M. Loreti. Revisiting bisimilarity and its modal logic for nondeterministic and proba-
bilistic processes. 2013. Submitted for publication.

[27] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities,
probabilities and time. Theoretical Computer Science, 202:1–54, 1998.

[28] M. Bravetti. Specification and Analysis of Stochastic Real-Time Systems. PhD Thesis, 2002.
[29] M. Bravetti and A. Aldini. Discrete time generative-reactive probabilistic processes with different advancing speeds.

Theoretical Computer Science, 290:355–406, 2003.

55

[30] M. Bravetti. Revisiting interactive Markov chains. In Proc. of the 3rd Int. Workshop on Models for Time-Critical
Systems (MTCS 2002), volume 68(5) of ENTCS, pages 1–20. Elsevier, 2002.

[31] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential processes. Journal of the ACM,
31:560–599, 1984.

[32] S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In Proc. of the 13th Int. Conf. on Concur-
rency Theory (CONCUR 2002), volume 2421 of LNCS, pages 371–385. Springer, 2002.

[33] D. Cazorla, F. Cuartero, V. Valero, F.L. Pelayo, and J.J. Pardo. Algebraic theory of probabilistic and nondeterministic
processes. Journal of Logic and Algebraic Programming, 55:57–103, 2003.

[34] L. Cheung, M. Stoelinga, and F. Vaandrager. A testing scenario for probabilistic processes. Journal of the ACM, 54(6),
2007.

[35] I. Christoff. Testing equivalences and fully abstract models for probabilistic processes. In Proc. of the 1st Int. Conf. on
Concurrency Theory (CONCUR 1990), volume 458 of LNCS, pages 126–140. Springer, 1990.

[36] L. Christoff and I. Christoff. Efficient algorithms for verification of equivalences for probabilistic processes. In Proc. of
the 3rd Int. Workshop on Computer Aided Verification (CAV 1991), volume 575 of LNCS, pages 310–321. Springer,
1991.

[37] G. Clark, S. Gilmore, and J. Hillston. Specifying performance measures for PEPA. In Proc. of the 5th AMAST Int.
Workshop on Formal Methods for Real Time and Probabilistic Systems (ARTS 1999), volume 1601 of LNCS, pages
211–227. Springer, 1999.

[38] R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for probabilistic processes. Information and
Computation, 154:93–148, 1999.

[39] R. Cleaveland and M. Hennessy. Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing, 5:1–20,
1993.

[40] F. Corradini. Absolute versus relative time in process algebras. Information and Computation, 156:122–172, 2000.
[41] S. Crafa and F. Ranzato. Bisimulation and simulation algorithms on probabilistic transition systems by abstract inter-

pretation. Formal Methods in System Design, 40:356–376, 2012.
[42] P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD Thesis, 1999.
[43] P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel composition. In Proc. of the 1st Int. Workshop

on Probabilistic Methods in Verification (PROBMIV 1998), volume 22 of ENTCS, pages 30–54. Elsevier, 1998.
[44] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for probabilistic systems. In Proc. of the 12th Int.

Conf. on Concurrency Theory (CONCUR 2001), volume 2154 of LNCS, pages 351–365. Springer, 2001.
[45] L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game refinement relations and metrics. Logical Methods in

Computer Science, 4(3:7):1–28, 2008.
[46] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica, 24:211–237, 1987.
[47] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer Science, 34:83–133, 1984.
[48] R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based transition systems for stochastic process calculi. In

Proc. of the 36th Int. Coll. on Automata, Languages and Programming (ICALP 2009), volume 5556 of LNCS, pages
435–446. Springer, 2009.

[49] R. De Nicola, D. Latella, M. Loreti, and M. Massink. On a uniform framework for the definition of stochastic process
languages. In Proc. of the 14th Int. Workshop on Formal Methods for Industrial Critical Systems (FMICS 2009), volume
5825 of LNCS, pages 9–25. Springer, 2009.

[50] R. De Nicola, D. Latella, M. Loreti, and M. Massink. A uniform definition of stochastic process calculi. ACM Computing
Surveys. To appear.

[51] Y. Deng and C. Palamidessi. Axiomatizations for probabilistic finite-state behaviors. Theoretical Computer Science,
373:92–114, 2007.

[52] Y. Deng, R.J. van Glabbeek, M. Hennessy, and C. Morgan. Characterising testing preorders for finite probabilistic
processes. Logical Methods in Computer Science, 4(4:4):1–33, 2008.

[53] Y. Deng, R.J. van Glabbeek, M. Hennessy, and C. Morgan. Testing finitary probabilistic processes. In Proc. of the 20th
Int. Conf. on Concurrency Theory (CONCUR 2009), volume 5710 of LNCS, pages 274–288. Springer, 2009.

[54] Y. Deng, R.J. van Glabbeek, C. Morgan, and C. Zhang. Scalar outcomes suffice for finitary probabilistic testing. In Proc.
of the 16th European Symp. on Programming (ESOP 2007), volume 4421 of LNCS, pages 363–378. Springer, 2007.

[55] S. Derisavi, H. Hermanns, and W.H. Sanders. Optimal state-space lumping in Markov chains. Information Processing
Letters, 87:309–315, 2003.

[56] C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.
[57] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov processes. Information and Computation,

179:163–193, 2002.
[58] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Weak bisimulation is sound and complete for pCTL*.

Information and Computation, 208:203–219, 2010.
[59] C. Eisentraut, H. Hermanns, and L. Zhang. On probabilistic automata in continuous time. In Proc. of the 25th IEEE

Symp. on Logic in Computer Science (LICS 2010), pages 342–351. IEEE-CS Press, 2010.
[60] S. Georgievska and S. Andova. Retaining the probabilities in probabilistic testing theory. In Proc. of the 13th Int. Conf.

on Foundations of Software Science and Computation Structures (FOSSACS 2010), volume 6014 of LNCS, pages 79–93.
Springer, 2010.

[61] A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic reasoning for probabilistic concurrent systems. In Proc. of the
1st IFIP Working Conf. on Programming Concepts and Methods (PROCOMET 1990), pages 443–458. North-Holland,
1990.

56

[62] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in Markov decision processes. Artificial
Intelligence, 147:163–223, 2003.

[63] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed systems design: The integration of functional
specification and performance analysis using stochastic process algebras. In Proc. of the 16th Int. Symp. on Computer
Performance Modelling, Measurement and Evaluation (PERFORMANCE 1993), volume 729 of LNCS, pages 121–146.
Springer, 1993.

[64] C. Gregorio-Rodriguez, L. Llana-Diaz, M. Nuñez, and P. Palao-Gostanza. Testing semantics for a probabilistic-timed
process algebra. In Proc. of the 4th AMAST Int. Workshop on Real-Time Systems and Concurrent and Distributed
Software (ARTS 1997), volume 1231 of LNCS, pages 353–367. Springer, 1997.

[65] H. Hansson and B. Jonsson. A calculus for communicating systems with time and probabilities. In Proc. of the 11th
IEEE Real-Time Systems Symp. (RTSS 1990), pages 278–287. IEEE-CS Press, 1990.

[66] M. Hennessy. Acceptance trees. Journal of the ACM, 32:896–928, 1985.
[67] M. Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of Computing, 24:749–768, 2012.
[68] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM, 32:137–162, 1985.
[69] H. Hermanns. Interactive Markov Chains. Springer, 2002. Volume 2428 of LNCS.
[70] H. Hermanns, A. Parma, R. Segala, B. Wachter, and L. Zhang. Probabilistic logical characterization. Information and

Computation, 209:154–172, 2011.
[71] H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences, and axioms for MTIPP. In Proc. of the 2nd Int.

Workshop on Process Algebra and Performance Modelling (PAPM 1994), pages 71–87. University of Erlangen, Technical
Report 27-4, 1994.

[72] J. Hillston. The nature of synchronisation. In Proc. of the 2nd Int. Workshop on Process Algebra and Performance
Modelling (PAPM 1994), pages 51–70. University of Erlangen, Technical Report 27-4, 1994.

[73] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.
[74] D.T. Huynh and L. Tian. On some equivalence relations for probabilistic processes. Fundamenta Informaticae, 17:211–

234, 1992.
[75] H. Jifeng, K. Seidel, and A. McIver. Probabilistic models for the guarded command language. Science of Computer

Programming, 28:171–192, 1997.
[76] B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and refinement for nondeterministic and probabilistic processes. In Proc.

of the 3rd Int. Symp. on Formal Techniques in Real Time and Fault Tolerant Systems (FTRTFT 1994), volume 863 of
LNCS, pages 418–430. Springer, 1994.

[77] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic processes. In Proc. of the 10th IEEE Symp. on
Logic in Computer Science (LICS 1995), pages 431–441. IEEE-CS Press, 1995.

[78] B. Jonsson and W. Yi. Testing preorders for probabilistic processes can be characterized by simulations. Theoretical
Computer Science, 282:33–51, 2002.

[79] C.-C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatizations for probabilistic processes. In
Proc. of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), volume 458 of LNCS, pages 367–383. Springer,
1990.

[80] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three problems of equivalence. Information
and Computation, 86:43–68, 1990.

[81] R.M. Keller. Formal verification of parallel programs. Communications of the ACM, 19:371–384, 1976.
[82] R. Knast. Continuous-time probabilistic automata. Information and Control, 15:335–352, 1969.
[83] M.Z. Kwiatkowska and G. Norman. A testing equivalence for reactive probabilistic processes. In Proc. of the 5th Int.

Workshop on Expressiveness in Concurrency (EXPRESS 1998), volume 16(2) of ENTCS, pages 114–132. Elsevier, 1998.
[84] M.Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time systems with discrete

probability distributions. Theoretical Computer Science, 282:101–150, 2002.
[85] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94:1–28, 1991.
[86] K.G. Larsen and A. Skou. Compositional verification of probabilistic processes. In Proc. of the 3rd Int. Conf. on

Concurrency Theory (CONCUR 1992), volume 630 of LNCS, pages 456–471. Springer, 1992.
[87] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical Computer Science, 138:315–352, 1995.
[88] N.A. Lynch, R. Segala, and F. Vaandrager. Compositionality for probabilistic automata. In Proc. of the 14th Int. Conf.

on Concurrency Theory (CONCUR 2003), volume 2761 of LNCS, pages 208–221. Springer, 2003.
[89] J. Markovski and N. Trcka. Lumping Markov chains with silent steps. In Proc. of the 3rd Int. Conf. on the Quantitative

Evaluation of Systems (QEST 2006), pages 221–230. IEEE-CS Press, 2006.
[90] R. Milner. A complete inference system for a class of regular behaviours. Journal of Computer and System Sciences,

28:439–466, 1984.
[91] R. Milner. A complete axiomatisation for observational congruence of finite-state behaviours. Information and Compu-

tation, 81:227–247, 1989.
[92] M. Mislove, J. Ouaknine, and J. Worrell. Axioms for probability and nondeterminism. In Proc. of the 10th Int. Workshop

on Expressiveness in Concurrency (EXPRESS 2003), volume 96 of ENTCS, pages 7–28. Elsevier, 2003.
[93] U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for CCS. Fundamenta Informaticae,

16:171–199, 1992.
[94] C. Morgan, A. McIver, K. Seidel, and J.W. Sanders. Refinement-oriented probability for CSP. Formal Aspects of

Computing, 8:617–647, 1996.
[95] M.R. Neuhäußer and J.-P. Katoen. Bisimulation and logical preservation for continuous-time Markov decision processes.

In Proc. of the 18th Int. Conf. on Concurrency Theory (CONCUR 2007), volume 4703 of LNCS, pages 412–427. Springer,

57

2007.
[96] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In Proc. of the REX Workshop on Real

Time: Theory in Practice, volume 600 of LNCS, pages 526–548. Springer, 1991.
[97] M. Nuñez. Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming, 56:117–177, 2003.
[98] R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16:973–989, 1987.
[99] M.C. Palmeri, R. De Nicola, and M. Massink. Basic observables for probabilistic may testing. In Proc. of the 4th Int.

Conf. on the Quantitative Evaluation of Systems (QEST 2007), pages 189–198. IEEE-CS Press, 2007.
[100] D. Park. Concurrency and automata on infinite sequences. In Proc. of the 5th GI Conf. on Theoretical Computer Science,

volume 104 of LNCS, pages 167–183. Springer, 1981.
[101] A. Parma and R. Segala. Axiomatization of trace semantics for stochastic nondeterministic processes. In Proc. of the

1st Int. Conf. on the Quantitative Evaluation of Systems (QEST 2004), pages 294–303. IEEE-CS Press, 2004.
[102] C.A. Petri. Kommunikation mit Automaten. PhD Thesis, 1962.
[103] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems. In Proc. of the 11th Int. Conf. on

Concurrency Theory (CONCUR 2000), volume 1877 of LNCS, pages 334–349. Springer, 2000.
[104] G.D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic Programming, 60/61:17–

139, 2004.
[105] C. Priami. Stochastic π-calculus. The Computer Journal, 38:578–589, 1995.
[106] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, 1994.
[107] M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
[108] M. Rettelbach. Probabilistic branching in Markovian process algebras. The Computer Journal, 38:590–599, 1995.
[109] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis, 1995.
[110] R. Segala. A compositional trace-based semantics for probabilistic automata. In Proc. of the 6th Int. Conf. on Concur-

rency Theory (CONCUR 1995), volume 962 of LNCS, pages 234–248. Springer, 1995.
[111] R. Segala. Testing probabilistic automata. In Proc. of the 7th Int. Conf. on Concurrency Theory (CONCUR 1996),

volume 1119 of LNCS, pages 299–314. Springer, 1996.
[112] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In Proc. of the 5th Int. Conf. on

Concurrency Theory (CONCUR 1994), volume 836 of LNCS, pages 481–496. Springer, 1994.
[113] R. Segala and A. Turrini. Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic

models. In Proc. of the 2nd Int. Conf. on the Quantitative Evaluation of Systems (QEST 2005), pages 44–53. IEEE-CS
Press, 2005.

[114] K. Seidel. Probabilistic communicating processes. Theoretical Computer Science, 152:219–249, 1995.
[115] A. Sokolova and E.P. de Vink. Probabilistic automata: System types, parallel composition and comparison. In Validation

of Stochastic Systems, volume 2925 of LNCS, pages 1–43. Springer, 2004.
[116] L. Song, L. Zhang, and J.C. Godskesen. Bisimulations meet PCTL equivalences for probabilistic automata. In Proc. of

the 22nd Int. Conf. on Concurrency Theory (CONCUR 2011), volume 6901 of LNCS, pages 108–123. Springer, 2011.
[117] E.W. Stark and S.A. Smolka. A complete axiom system for finite-state probabilistic processes. In Proof, Language, and

Interaction: Essays in Honour of Robin Milner, pages 571–595. MIT Press, 2000.
[118] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, 1994.
[119] M. Timmer, J.-P. Katoen, J. van de Pol, and M. Stoelinga. Efficient modelling and generation of Markov automata. In

Proc. of the 23rd Int. Conf. on Concurrency Theory (CONCUR 2012), volume 7454 of LNCS, pages 364–379. Springer,
2012.

[120] C. Tofts. Processes with probabilities, priority and time. Formal Aspects of Computing, 6:536–564, 1994.
[121] M. Tracol, J. Desharnais, and A. Zhioua. Computing distances between probabilistic automata. In Proc. of the 9th

Int. Workshop on Quantitative Aspects of Programming Languages (QAPL 2011), volume 57 of EPTCS, pages 148–162,
2011.

[122] W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM Journal on Computing,
21:216–227, 1992.

[123] I. Ulidowski and S. Yuen. Extending process languages with time. In Proc. of the 6th Int. Conf. on Algebraic Methodology
and Software Technology (AMAST 1997), volume 1349 of LNCS, pages 524–538. Springer, 1997.

[124] R.J. van Glabbeek. The linear time – branching time spectrum I. In Handbook of Process Algebra, pages 3–99. Elsevier,
2001.

[125] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified models of probabilistic processes.
Information and Computation, 121:59–80, 1995.

[126] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation semantics. Journal of the ACM,
43:555–600, 1996.

[127] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc. of the 26th IEEE Symp.
on Foundations of Computer Science (FOCS 1985), pages 327–338. IEEE-CS Press, 1985.

[128] V. Wolf, C. Baier, and M. Majster-Cederbaum. Trace machines for observing continuous-time Markov chains. In Proc.
of the 3rd Int. Workshop on Quantitative Aspects of Programming Languages (QAPL 2005), volume 153(2) of ENTCS,
pages 259–277. Elsevier, 2005.

[129] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In Proc. of the 12th Int. Symp. on Protocol
Specification, Testing and Verification (PSTV 1992), pages 47–61. North-Holland, 1992.

58

2012 © IMT Institute for Advanced Studies, Lucca

Piazza San ponziano 6, 5100 Lucca, Italy. www.imtlucca.it

