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Abstract Preventing improper information leaks is a
greatest challenge of the modern society. In this paper, we
present a technique for measuring the ability of several fam-
ilies of adversaries to set up a covert channel. Our approach
relies on a noninterference based formulation of security
which can be naturally expressed by semantic models of
the program execution. In our analysis the most powerful
adversary is measured via a notion of approximate process
equivalence. Even if finding the most powerful adversary is
in general impractical, we show that this requires only a finite
number of checks for a particular family of adversaries which
are related to a probabilistic information flow property.
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1 Introduction

Ideally, a completely secure computer system should have no
covert channels, though in practice it is virtually impossible
to guarantee that information flows only along authorized
paths and to eliminate all those states in which informa-
tion leaks to unauthorized receivers (see, e.g., [3,4,15,31,
35,37]). Hence, in a realistic scenario security cannot be an
absolute requirement and approximate versions of security
properties would be more appropriate. Moreover, in a quan-
titative setting the estimation of the approximation can be
used as a measure for the security of the system, as it essen-
tially expresses the difference between the real system and
an idealized perfectly secure system or, in other words, a
quantitative estimation of the information flow. In terms of
confidentiality, this corresponds to the amount of system’s
information leakage.

In this paper, we address the problem of providing a quan-
titative estimate of the confidentiality of a system by measur-
ing its information leakage; this corresponds to the amount
of information that is illegally revealed to an unauthorized
user because of the interference of an adversary.

Formally, we base our treatment on an action-labeled tran-
sition system model which includes both probabilistic choice
and nondeterminism; the latter is due to the possible inter-
actions of the system with the environment. More precisely,
our model is a mixture of the generative and reactive mod-
els of probabilities [36]. This model has been successfully
used in [4] as a base for the analysis of probabilistic non-
interference. The problem of measuring the confinement of
a system has been addressed in [15,16] in the context of
purely generative systems. The approach in [15,16] is based
on the idea that checking noninterference is actually checking
the indistinguishability (in terms of a given process equiva-
lence) of the involved processes [30]; then the quantifiable
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amount of interference is defined via a notion of approximate
confinement, which allows for some leakage of information
corresponding to a statistical measure of the power of the
adversary.

In [5] we adapt the approach in [15,16] to the mixed gen-
erative and reactive model of [4]. In this setting the envi-
ronment is viewed as a hostile element, and an adversary is
identified with a scheduler that guides the interactions of the
system with the environment. Such interactions affect both
the probabilistic behavior of the system and the way in which
the nondeterminism is resolved, thus causing possible covert
channels. The way in which the adversary can govern such
interactions determines its expressive power.

Based on this, we provide a classification of the possi-
ble adversaries interacting with the system in three differ-
ent classes. For each class we give a formal definition of
the interference caused by an adversary in that class, and
analyze the complexity of evaluating the most powerful rep-
resentative of the class. This corresponds to the adversary
for which the probability that its interference is revealed by
an external observer is maximal. As this requires the check-
ing of possibly infinitely many adversary strategies, such an
evaluation might in general be impractical as its cost grows
factorially with the number of the states of the analyzed sys-
tem. This was already noted in [6], where the approach in [5]
is applied for analyzing a probabilistic protocol in order to
obtain a numerical estimate of its security against proba-
bilistic covert channels. It is therefore important to single
out conditions under which this cost can be reduced and the
calculation can be done effectively. An important result of
our study is the introduction of a method that for one class,
namely the one we call history-dependent adversaries, allows
us to find the most powerful adversary by checking only a
finite number of adversary strategies.

We then consider a probabilistic process algebra conform-
ing the generative-reactive model, in which we can character-
ize the adversaries in terms of system’s behaviors expressed
via a transition system semantics. This probabilistic process
algebra and its operational semantics were introduced in [4]
in order to give a semantical characterization (based on a
probabilistic process equivalence inspired by the weak bi-
simulation [11]) of some security properties; these are essen-
tially probabilistic versions of the information flow properties
introduced in [17] in a possibilistic setting.

In such a process algebraic framework we establish a cor-
respondence between the probabilistic noninterference based
properties of [4] and the classes of adversaries introduced in
this paper. In particular, we show that the two classes that we
call of simple and interactive adversaries are related to the
probabilistic version of noninterference and nondeducibility
on compositions, respectively. The third class, namely the
class of history-dependent adversaries, has no counterpart
in the existing classification of probabilistic noninterference

properties. Rather, it bears a strong analogy with an infor-
mation flow property based on the notion of nondeducibility
on strategies which was introduced in [23] in the setting of a
nondeterministic state machine model of computation. Based
on this analogy, we introduce a probabilistic version of this
property that we call probabilistic nondeducibility on strate-
gies, PNDS, and we relate it to the class of history-dependent
adversaries, by showing that these capture the same informa-
tion leakage revealed by PNDS. The important conclusion is
that if a system does not satisfy PNDS, then the observable
attack that maximizes the information flow is computable
with our method. As an application of this result we report
on a case study in which we show how to analyze a proba-
bilistic non-repudiation protocol and efficiently estimate its
maximum information leak.

1.1 Related work

The idea of quantifying information flow has been used in
[9] in the setting of cryptographic protocols. This work is
the closest to ours in spirit as it addresses the computational
aspects of estimating the information leakage. This estimate
is obtained by measuring the distance between the different
behaviors of the high user that result in different views of
the low user (i.e., probability distributions) and then max-
imizing the resulting measurements for different behaviors
of the high user. Contrary to our process algebraic approach,
the model considered in [9] is automata based and consists in
probabilistic state-transition machines which interact to each
other asynchronously with a distributed scheduling.

In [39], it is shown how closely information leakage is
related to the anonymity degree of systems; this is estimated
in terms of covert channel capacity and the quantitative analy-
sis is conducted within the framework of information theory.

The problem of estimating the anonymity of systems is
also investigated in [14], where a notion of weak proba-
bilistic anonymity is proposed, with the aim of modeling
situations in which some amount of probabilistic informa-
tion may be revealed due to either the interference of an
attacker or the imperfection of the anonymity protocol itself.
As in our framework, a formal model combining both non-
deterministic and probabilistic choice is employed, which is
essentially based on the probabilistic automata of [34]. The
authors define a notion of α-anonymity, where α expresses
the tolerated distance between the system views under the
interactions with different users. If re-formulated in terms
of noninterference, α-anonymity is nothing else than the
notion of approximate confinement at the base of our work.
However, the authors do not discuss a general approach for
determining the minimum value of α that allows a given sys-
tem to satisfy the α-anonymity property.

A quantitative notion of indistinguishability based on a
probabilistic bisimulation semantics is also exploited in [28],
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where the objective is to estimate the robustness of crypto-
graphic protocols in the case of computational adversaries
and imperfect cryptography.

Finally, in [13] the security of cryptographic protocols is
estimated within the probabilistic I/O automata framework
of Lynch et al. [34]. This model includes a combination
of nondeterminism and probabilistic choices. With respect
to our framework, the adversary is modeled as a scheduler
that exhibits resource-bounded cryptographic analysis
capabilities.

1.2 Outline

The rest of the paper is organized as follows. First, we
describe the action-labeled transition system that is based
on the generative and reactive models of probabilities of [36]
(Sect. 2). We then explain how the noninterference approach
is interpreted in this model and we introduce three classes
of probabilistic adversaries which differ from each other for
their expressive power (Sect. 3). The efficiency of such adver-
saries is formally stated through an approximate equivalence
relation. In particular, we show how to measure the differ-
ence between the system at hand and a perfectly secure sys-
tem (Sect. 4). The objective is then to establish conditions
under which it is practical to estimate the interference of the
most powerful adversary, i.e., the maximum probability of
revealing an information leakage for each class of adversar-
ies (Sect. 5). The material presented in these sections is an
extended and revised version of [7]. We then consider a pro-
cess algebraic notion of probabilistic noninterference based
on the generative-reactive model. In this setting we relate the
expressive power of the three classes of adversaries to the
kind of attacks revealed by corresponding noninterference
based properties (Sect. 6). We finally present a case study
that demonstrates the relation between the expressive power
of the adversary and the complexity of finding the most pow-
erful adversary. We conclude the paper by reporting on some
perspectives for future work (Sect. 8).

2 Generative-reactive transition systems

The formal model at the base of our analysis is called
generative-reactive transition system (GRTS) [4,12]. A
GRTS is a labeled transition system including both proba-
bilistic and nondeterministic behaviors in a way inspired by
the automata model in [33] and [38]. Each transition in a
GRTS is labeled with an action name and a probability.

The actions model output and input events that allow the
system to interact with the environment. Formally, we call
AType the set of visible action types, ranged over by a, b, . . ..
We also use the special type τ to express an unobservable
event internally executed by the system. Then the set of action

names is defined as Act = {a∗ | a ∈ AType}∪{a | a ∈ AType∪
{τ }}, where a∗ denotes an input action of type a and a denotes
either an output action of type a or an invisible action τ . Act
is ranged over by π, π ′, . . ..

The execution probability of the actions is interpreted as
follows. On the one hand, the output actions and the internal
actions τ are governed by a generative model of probabil-
ities: the system autonomously decides, on the basis of a
probability distribution, which output/internal action has to
be performed [36]. On the other hand, the input actions fol-
low a reactive model of probabilities: the choice of the input
action type is nondeterministically left to the environment.
Then, the choice of the particular input action of the chosen
type, say a, is performed on the basis of a probability distri-
bution associated with the input actions of type a offered by
the system [36].

Therefore, GRTSs express both probabilistic behaviors
guided by probability distributions and nondeterministic
behaviors. Technically speaking, transitions leaving a state
are grouped into several bundles [33]. We have a single gen-
erative bundle composed of all the transitions labeled with
an output or an invisible action, and several reactive bundles,
each one referring to a different action type a and consisting
of all the transitions labeled with a∗. A bundle of transitions
expresses a probabilistic choice guided by a probability dis-
tribution. The choice among bundles is nondeterministic.

Definition 1 A generative-reactive transition system is a
tuple (S, Act, T ), where S is a set of states, Act is a set of
actions, and T ⊆ S × Act ×]0, 1] × S is a transition relation
such that:

1. ∀s ∈ S, a∗ ∈ Act.
∑{| p | ∃t ∈ S. (s, a∗, p, t) ∈ T |} ∈

{0, 1}
2. ∀s ∈ S.

∑{| p | ∃a ∈ Act, t ∈ S. (s, a, p, t) ∈ T |} ∈
{0, 1}.

A rooted GRTS is a tuple (S, Act, T, s0), such that s0 ∈ S is
the initial state of the GRTS (S, Act, T ).

The two requirements of Definition 1 say that for each
bundle leaving a state—which can be either a reactive bun-
dle of a given action type (see req. 1) or the unique generative
bundle (see req. 2)—the sum of the probabilities of the transi-
tions composing the bundle is equal to 1. In the following we
restrict ourselves to finite state, finitely branching GRTSs.

Example 1 The initial state of the GRTS of Fig. 1 is made of
a generative bundle which enables two transitions (labeled
with the output actions i and j , respectively), and a reac-
tive bundle of type h enabling a single transition. The choice
between the bundles is nondeterministic. Instead, within each
bundle, the choice is probabilistic. In particular, if an output
is executed, then the choice between the two possible output
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Fig. 1 A generative-reactive transition system

actions is guided by a probability distribution that assigns
to j (resp. i) the execution probability p (resp. 1 − p). On
the other hand, if the system executes an input of type h, then
the unique input action h∗ is executed with probability 1.
In the following we omit the probability from the transition
label whenever this is equal to 1.

In essence, the nondeterminism in a GRTS derives from
the input actions that can be viewed as incomplete actions
whose execution depends on the environment behavior.
Hence, once the environment resolves such a nondetermin-
ism (e.g., through a probabilistic choice, as exemplified in
the next section), we obtain a fully specified system, i.e.,
a fully probabilistic transition system that does not include
reactive bundles. Therefore, from such a transition system a
well-defined discrete time Markov Chain [24] can be trivi-
ally derived which in turn can be analyzed in order to get
performance measures of the system.

3 GRTS and noninterference

In this section, we show how probabilistic noninterference
can be expressed in the formal setting of GRTSs. As it is
common in the security setting, we assume that action types
are classified into low level and high level. Syntactically, we
denote by L the set of low-level action types, ranged over
by i, j, l, . . ., and with H the set of high-level action types,
ranged over by h, k, . . .. L and H are disjoint and form a
covering of AType. Accordingly, we denote by ActL (resp.
ActH ) the set of low-level (resp. high-level) actions.

A low-level observer (Low, for short) can only see low-
level actions. Therefore, the interactions between the sys-
tem and the high-level environment represent unobservable
events from the viewpoint of Low. According to the stan-
dard notion of noninterference [20], the high-level environ-
ment (which we simply refer to as the adversary) interferes
with Low if the execution of the high-level actions has an
observable impact on the execution of the low-level actions.

Example 2 Consider again the GRTS of Fig. 1, where either
the system executes one of two possible low-level outputs,
j and i with probabilities p and 1 − p respectively, or the

i,1 − p

j, p

τ

j,

l,

p

, q

(1 − q)

i,(1 − p)(1 − q)

1

(b)

(a)

Fig. 2 Two evolutions of the GRTS of Fig. 1 which depend on the
environment behavior

adversary interferes through a high-level input of type h (and
in such a case the unique action h∗ enabled by the system is
executed with probability 1). If the adversary does not inter-
act, the system behavior observable by Low results in the
GRTS of Fig. 2a. By contrast, the adversary may interact
with the system thus solving somehow the nondeterministic
choice between the output events and the input. For instance,
the nondeterminism can be probabilistically solved through
a choice guided by a parameter q chosen by the adversary,
thus resulting in the GRTS of Fig. 2b. Such a GRTS models
what Low can see. In particular, the transition labeled with an
input action in Fig. 1 has been turned into a transition labeled
with an unobservable action τ in Fig. 2b. This is because the
interaction between the system and the adversary becomes—
from the viewpoint of Low—an invisible event performed
by the system. Obviously, the choice of parameter q deter-
mines which probabilistic adversary actually interacts with
the system.

In the case the chosen model of communication is asyn-
chronous, it is possible to abstract away from the high-level
outputs, which represent events that are completely indepen-
dent of the high-level environment. Thus, from the viewpoint
of Low they cannot have any visible effect. However, if we
consider a synchronous model of communication then the
success of any kind of communication depends on the envi-
ronment behavior. In other words, both high-level outputs
and high-level inputs are under the control of the high-level
environment, which may exploit them to set up a covert chan-
nel [1,21,29]. In this respect, we assume the synchronous
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Fig. 3 A GRTS with two possible evolutions which depend on the adversary behavior

model of communication, whose effect is illustrated in the
following example.

Example 3 In Fig. 3 it is shown a variant of the GRTS of
Fig. 1 that replaces the high-level input by a high-level output
of the same type. Hence, the initial state enables the gener-
ative bundle only, which is made of three transitions whose
probabilities sum up to 1. If the adversary blocks the high-
level output then the probabilities of the two remaining out-
puts must be normalized in order to fulfill the requirements
of Definition 1. On the other hand, if the adversary interacts,
then the output of type h is simply turned into an action τ ,
because its execution cannot be directly observed by Low.

As shown in the examples above, the interference of an
adversary is revealed by comparing the semantics of differ-
ent low-level views of the system, namely the view of the
system in isolation (no adversary interactions) and the view
of the system in the presence of the adversary. Hence, the
effectiveness of the adversary strategy is established by the
observations of Low with or without the adversary. In particu-
lar, Low reveals the adversary’s interference if the two system
views exhibit either different observations or the same obser-
vations with different probability distributions. On the other
hand, the efficiency of the adversary strategy is estimated in
terms of the probability for Low of observing the interference
of such an adversary. In the following, we define several such
strategies, which differ from each other for the observational
power of the adversary. For the sake of simplicity, we con-
sider systems that are fully specified from the viewpoint of
Low, i.e., the corresponding GRTSs do not include reactive
bundles of low-level type. Thus the nondeterminism is lim-
ited to the interactions with the high-level environment. The
more general case in which the system can accept low-level
inputs will be discussed in Sect. 8.

3.1 Defining the absence of the adversary

In the simplest scenario, an adversary A does not interact
with the system in any way. We formalize this situation in
terms of GRTS by defining the system S\A, expressing what
Low can see when the high-level interface of the system S is
not active because of the absence of adversaries.

Definition 2 Let S = (S, Act, T, s0) be a GRTS. Then
S\A = (S′, Act, T ′, s0), where S′ ⊆ S and T ′ are obtained
as follows:
S′ := ∅; T ′ := ∅;
No_Adv(s0);
where function No_Adv(s) is defined as follows:
No_Adv(s) :

S′ := S′ ∪ {s};
for each (s, a, q, t) ∈ T
if a 	∈ ActH then T ′ := T ′ ∪ {(s, a, q/p(s), t)};
for each (s, _, _, t) ∈ T ′
if t 	∈ S′ then No_Adv(t);

where
p(s) = ∑{| p | ∃s′ ∈ S, ∃a ∈ ActL ∪{τ }. (s, a, p, s′) ∈ T |}.
In S\A all the transitions labeled with high-level actions are
simply removed from S. Such a restriction may impose a
normalization of the generative bundle of every state, as also
shown in Example 3. The view of the system defined by S\A
expresses, at the GRTS level, the semantics of a process alge-
braic restriction operator applied to the high-level actions of
the system (see e.g., [4]).

3.2 Families of probabilistic adversaries

Having identified an adversary with the high-level environ-
ment, we identify accordingly a probabilistic adversary A
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that interacts with a system S with a probabilistic scheduler
which guides the execution of the inputs/outputs constituting
the interface of S with the high-level environment. We can
define several different scheduling policies and correspond-
ingly several classes of adversaries with different expressive
power. For each class, we show how to express the seman-
tics of the low-level view of S under the interference of an
adversary A in that class, which we formally denote by S | A.

3.2.1 Simple adversaries

We start with considering adversaries that, for every high-
level type, choose a priori the behavior of the corresponding
inputs/outputs and do not change it at run-time. Hence, in a
sense, this class of schedulers is history-independent and we
will refer to it as the class AS of simple adversaries.

Definition 3 A simple adversary A is defined by a pair (Ag,

Ar ), where Ag ⊆ H is the set of types of the high-level
output actions that A can accept, and Ar ⊆ H×]0, 1[ is a
set of pairs of the form (h, ph) such that ph expresses the
probability distribution associated with the reactive bundle
of type h.

Definition 4 Let S = (S, Act, T, s0) be a GRTS and A =
(Ag, Ar ) be a simple adversary. Then S | A = (S′, Act, T ′,
s0), where S′ ⊆ S and T ′ are obtained as follows:
S′ := ∅; T ′ := ∅;
S_Adv(s0);
where function S_Adv(s) is defined as follows:
S_Adv(s) :

S′ = S′ ∪ {s};
Gen(s, Ag);
for each reactive bundle of type h ∈ H enabled at s
if (h, ph) ∈ Arthen React(s, h, ph);
for each (s, _, _, t) ∈ T ′
if t 	∈ S′then S_Adv(t);

Gen(s, I ) :
for each (s, a, q, t) ∈ T
if a 	∈ ActH then T ′ := T ′ ∪ {(s, a, q/p(s, I ), t)};
if a ∈ I then T ′ := T ′ ∪ {(s, τ, q/p(s, I ), t)};

where
p(s, I ) = ∑{| p | ∃s′ ∈ S, ∃a ∈ ActL ∪ I ∪ {τ }

. (s, a, p, s′) ∈ T |}.

React(s, h, ph) :
if the generative bundle is non-empty at s ∈ S′ then
for each (s, a, q, t) ∈ T ′q := q · (1 − ph);
for each (s, h∗, q, t) ∈ T,

T ′ := T ′ ∪ {(s, τ, q · ph, t)};
else
for each (s, h∗, q, t) ∈ T,

T ′ := T ′ ∪ {(s, τ, q, t)};

Intuitively, in each state of the GRTS all the high-level
actions that can be executed because of the adversary strategy
are turned into unobservable actions, because they cannot be
observed by Low. All the other high-level actions are simply
removed. A twofold normalization of the generative bundle
may occur. The former occurs in function Gen and is due
to the restriction of the high-level output actions not in Ag ,
while the latter is due to the relabeling of the high-level input
actions. In particular, here and in the rest of the paper we
assume that the reactive bundles with type in Ar are con-
sidered by following the alphabetic order of the high-level
type names. Then, for each reactive bundle h enabled by
the adversary, in function React the following operations are
performed. If the generative bundle is non-empty, parame-
ter ph is used to redistribute the probabilities of the actions τ

obtained by hiding the input actions h∗—whose overall prob-
ability must be equal to ph—and the probabilities associated
with the pre-existing transitions of the generative bundle,
whose overall probability must be equal to 1 − ph . By so
doing, the requirements of Definition 1 are preserved.

Example 4 The GRTSs of Fig. 2a and b express what Low
can see when observing the GRTS of Fig. 1 under the interfer-
ence of a simple adversary such that (h, _) 	∈ Ar and (h, q) ∈
Ar , respectively. Similarly, in the case of Fig. 3, it is possible
to observe the behavior of a system under the interference of
a simple adversary such that either h 	∈ Ag or h ∈ Ag .

3.2.2 Interactive adversaries

The main limitation of the simple adversaries is that they
cannot take into consideration the current state of the system
when deciding their strategy. By relaxing this constraint, we
obtain a more powerful class of schedulers which can decide
the behavior of the high-level inputs/outputs on the basis of
the high-level interface that is currently enabled by the sys-
tem. We refer to it as the class AI of interacting adversaries.

Definition 5 An interactive adversary A is defined by a pair
(Ag, Ar ), where Ag : P(H) → P(H) is such that Ag(G)

is the set of types of the high-level output actions that A can
accept when G is the set of types of the high-level output
actions currently enabled, and Ar : P(H) → P(H×]0, 1[)
is such that Ar (R) is a set of pairs of the form (h, ph) such
that ph expresses the probability distribution associated with
the reactive bundle of type h when R is the set of types of
the reactive bundles currently enabled.

Given s ∈ S we denote by Hs the set of types of the
high-level actions labeling the transitions of the generative
bundle enabled at s, and by H∗s the set of types of the high-
level reactive bundles enabled at s.
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Definition 6 Let S = (S, Act, T, s0) be a GRTS and A =
(Ag, Ar ) be an interactive adversary. Then S | A = (S′, Act,
T ′, s0), where S′ ⊆ S and T ′ are obtained as follows:
S′ := ∅; T ′ := ∅;
I_Adv(s0);
where function I_Adv(s) is defined as follows:
I_Adv(s) :

S′ = S′ ∪ {s};
Gen(s, Ag(Hs));
for each reactive bundle of type h ∈ H enabled at s
if (h, ph) ∈ Ar (H∗s)then React(s, h, ph);
for each (s, _, _, t) ∈ T ′
if t 	∈ S′then I_Adv(t);

The novelty with respect to the algorithm of Definition 4
is that the choice of the high-level behavior is not fixed a pri-
ori, but it can change depending on the high-level interface
enabled by the system at the current state.

Proposition 1 AS ⊂ AI .

Proof It is an immediate consequence of Definition 3 and of
Definition 5. �

3.2.3 History-dependent adversaries

We now consider another extension of the simple adversar-
ies that allows the high-level behavior to be governed by
the previous history, which is described by a trace of events
Tr ∈ Act∗. Hence, we call this class the class of history-
dependent adversaries and we refer to it as AHD.

Definition 7 A history-dependent adversary A is defined by
a pair (Ag, Ar ), where Ag : Act∗ → P(H) is such that
Ag(Tr) is the set of types of the high-level output actions
that A can accept when the executed trace is Tr, and Ar :
Act∗ → P(H×]0, 1[) is such that Ar (Tr) is a set of pairs
of the form (h, ph), where ph expresses the probability dis-
tribution associated with the reactive bundle of type h when
the executed trace is Tr.

At each execution step the previous history, which is mod-
eled by a trace Tr, affects the adversary strategy that governs
the high-level behavior. Therefore, with respect to Defini-
tion 5, the choice of the high-level inputs and outputs that
can be executed depends on the previous history rather than
the current state. As a consequence, each state of S may result
in several different states depending on which trace has been
executed to reach that state. Hence, each state of S | A is
actually described by a pair (s, Tr), with s a state of S and
Tr an execution trace. In the following definition, we denote
by ε the empty trace.

Definition 8 Let S = (S, Act, T, s0) be a GRTS and A =
(Ag, Ar ) be a history-dependent adversary. Then S | A =

(S′, Act, T ′, (s0, ε)), where S′ ⊆ P(S × Act∗) and T ′ ⊆
S′ × Act ×]0, 1] × S′ are obtained as follows:
S′ := ∅; T ′ := ∅;
H_Adv((s0, ε));
where function H_Adv((s, Tr)) is defined as follows:
H_Adv((s, Tr)) :

S′ = S′ ∪ {(s, Tr)};
for each (s, a, q, t) ∈ T
if a 	∈ ActH then T ′ := T ′ ∪

{((s, Tr), a, q/p(s, Ag(Tr)), (t, Tr.a))};
if a ∈ Ag(Tr) then T ′ := T ′ ∪

{((s, Tr), τ, q/p(s, Ag(Tr)), (t, Tr.a))};
for each reactive bundle of type h ∈ H enabled at s
if (h, ph) ∈ Ar (Tr) then
if the generative bundle is non-empty at
(s, Tr) then
for each ((s, Tr), a, q, _) ∈ T ′q := q · (1 − ph);
for each (s, h∗, q, t) ∈ T,

T ′ := T ′ ∪ {((s, Tr), τ, q · ph, (t, Tr.h∗))};
else
for each (s, h∗, q, t) ∈ T,

T ′ := T ′ ∪ {((s, Tr), τ, q, (t, Tr.h∗))};
for each((s, Tr), _, _, (t, Tr.π)) ∈ T ′
if (t, Tr.π) 	∈ S′then H_Adv((t, Tr.π));

Proposition 2 AS ⊂ AHD.

Proof It is an immediate consequence of Definition 3 and of
Definition 7. �

4 Measuring noninterference

We evaluate the interference of an adversary A with respect
to a system S = (S, Act, T, s0) and the low-level observer
by comparing the visible behavior of S in the absence of A,
given by S\A, and the visible behavior of S in the presence
of A, given by S | A. The comparison between the two system
views is performed on the basis of a behavioral equivalence
that abstracts from unobservable actions, similar to the weak
probabilistic bisimulation of [11].

As done in [4] we consider a probabilistic variant of the
weak probabilistic bisimulation, denoted by ≈PB, which
replaces the classical weak transitions of the Milner’s weak
bisimulation by the probability of reaching classes of equiv-
alent states. For this purpose we employ a function Prob
such that Prob(s, π, s′) denotes the aggregate probability of
going from s to s′ by executing an action π . Sometimes we
use the abbreviation Prob(s, s′) to represent the aggregate
probability of going from s to s′ via sequences of any num-
ber and type of actions. Similarly, Prob(s, π, C) denotes the
aggregate probability of going from s to a state in the equiva-
lence class C by executing an action π , and Prob(s, τ ∗a, C)

expresses the aggregate probability of going from s to a state
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in the equivalence class C via sequences of any number of τ

actions followed by an action a.

Lemma 1 The value of Prob(s, τ ∗a, C) is the minimal non-
negative solution to the equation system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if a = τ ∧ s ∈ C∑
s′∈S Prob(s, τ, s′)
·Prob(s′, τ ∗, C) if a = τ ∧ s 	∈ C

∑
s′∈S Prob(s, τ, s′) · Prob(s′, τ ∗a, C)

+Prob(s, a, C) if a 	= τ

As shown in [4], this system has a least solution.

Definition 9 An equivalence relation R ⊆ S × S is a weak
probabilistic bisimulation if and only if, whenever (s, s′) ∈
R, then for all C in the quotient set S/R :

1. Prob(s, τ ∗a, C) = Prob(s′, τ ∗a, C) ∀a ∈ Act
2. Prob(s, a∗, C) = Prob(s′, a∗, C) ∀a∗ ∈ Act.

Two states s, s′ ∈ S are weakly probabilistically bisimilar,
denoted s ≈PB s′, if there exists a weak probabilistic bisim-
ulation including the pair (s, s′).

On the basis of ≈PB, we say that Low cannot detect the
interference of the adversary A whenever there exists a weak
probabilistic bisimulation including the pair of initial states
of S\A and S | A. In this case we write S\A ≈PB S | A.
Since S\A and S | A are fully generative — in the former all
the reactive actions are removed while in the latter they are
removed or turned into actions τ — the noninterference check
is performed by verifying only condition 1 of Definition 9.

Example 5 Consider the GRTS of Fig. 1. The interference
of a simple adversary A is revealed to Low by the execution
of the output action l. In fact, the GRTS of Fig. 2a, mod-
eling S\A, cannot execute the output action l, while in the
GRTS of Fig. 2b, modeling S | A, such an action occurs with
probability q, i.e., S\A 	≈PB S | A.

Whenever the outcome of the comparison based on ≈PB is
negative, it is important and useful to measure the difference
between the observable behaviors ofS\A andS | A in order to
get an estimate of the security of the system against the adver-
sary A (or equivalently of the power of A). This can be done
by replacing ≈PB with an approximate equivalence relation
R that allows states with slightly different weak transition
probabilities to belong to the same class [6,5]. In practice,
if R is not a weak probabilistic bisimulation, there exists
at least a pair (s, s′) ∈ R that does not satisfy condition 1
of Definition 9. Such a pair of states effectively expresses
the interference caused by A only in the case s ∈ S\A and
s′ ∈ S | A. In fact, if (s, s′) ∈ R and both s and s′ belong to the
same system view—either S\A or S | A—then the compari-
son between them does not actually reveal any interference,
as it locally refers to a single system view.

Formally, we can express the quantitative estimation of
the adversary interference as follows:

d R
A (s, s′, a, C) = | Prob(s, τ ∗a, C) − Prob(s′, τ ∗a, C) |

where s ∈ S\A, s′ ∈ S | A, (s, s′) ∈ R, a ∈ Act, and
C ∈ S/R . Whenever such a difference is equal to zero for
every pair of states in R and for all actions and classes, then
R turns out to be a weak probabilistic bisimulation, and Low
cannot distinguish the way in which the system and the adver-
sary communicate.

The difference d R
A (s, s′, a, C) between the two weak tran-

sition probabilities expresses the local distance between s and
s′ with respect to a and C . We say that the distance above
is local because, as stated by the notion of bisimulation, the
comparison between s and s′ does not take into account the
way in which such states have been reached from the ini-
tial ones. On the other hand, a measure of the interference
of the adversary A should not only consider the local dis-
tance between s and s′, but also the probability of reaching
such states. For instance, the local distance between the ini-
tial state of S\A, which we call s0, and the initial state of
S | A, which we call s A

0 , does not have the same impact
on the Low perception of the difference between S\A and
S | A as the local distance between two states that can be
reached from the initial ones with negligible probability. We
deal with this problem by considering a difference weighted
by the probability of reaching s and s′:

d̄ R
A (s, s′, a, C) = Prob(s0, s) · Prob(s A

0 , s′)
· | Prob(s, τ ∗a, C) − Prob(s′, τ ∗a, C) |

where s ∈ S\A, s′ ∈ S | A, (s, s′) ∈ R, a ∈ Act, and C ∈
S/R . The difference d̄ R

A (s, s′, a, C) between the two weak
transition probabilities expresses the weighted local distance
between s and s′ with respect to a and C , which is a measure
less than (or equal to) the local distance d R

A (s, s′, a, C). In
particular, the difference between the weighted local distance
and the local distance is inversely proportional to the proba-
bility of being in the considered states. The approach based
on the weighted local distance is conservative with respect to
the notion of approximate weak probabilistic bisimulation.
More precisely, two states that are indistinguishable accord-
ing to ≈PB are expected to have distance equal to zero in the
approximate version of ≈PB.

The pair of states in R which maximally differ expresses
the degree of approximation of R with respect to ≈PB. For-
mally, the most effective interference caused by A under the
relation R is given by:

δR
A = max{| d̄ R

A (s, s′, a, C) | s ∈ S\A, s′ ∈ S | A,

(s, s′) ∈ R, a ∈ Act, C ∈ S/R |}.
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In essence, we take the pair of states belonging to different
system views and to the same class which maximize the
probability of revealing to Low the strategy of A.

Among all the possible adversaries, we are interested in
determining the adversary with the strategy that maximizes
the difference between R and ≈PB or, equivalently, the adver-
sary that is most easily revealed by Low. Formally,

εR = sup
A

δR
A

is the maximum distance between the two system views that
any adversary may cause when the considered relation is R.
In other words, εR represents the maximum information leak-
age with respect to R that can be set up from the high level
to the low level.

Among all the possible relations, we recall that we must
evaluate the closest approximation of ≈PB. For this purpose,
it is necessary to impose a requirement on the choice of
R, which should include the pair (s0, s A

0 ). Indeed, accord-
ing to the notion of approximate weak probabilistic bisim-
ulation, if (s0, s A

0 ) 	∈ R the observable difference between
S\A and S|A is erroneously undetected. For instance, in
the case s0 and s A

0 are not in the same class it is easy to
provide a partitioning S/R such that if s ∈ S\A and s′ ∈ S |
A then (s, s′) 	∈ R. This implies that the distance between
the two system views is null, even if intuitively an external
observer can immediately notice the difference between them
by observing what happens at the initial states. In the follow-
ing, we call R the set of relations satisfying the condition on
the initial states. Then, it holds that

ε̄ = inf
R∈R

εR

represents the maximum adversary interference for the clos-
est approximation of ≈PB. Thus, the corresponding adversary
is the most powerful adversary that maximizes the informa-
tion leakage from the high level to the low level.

Example 6 Consider the family of simple adversaries and
the scenario of Fig. 3. Two different adversary strategies may
be applied. The first one blocks the output action h, but in
such a case S\A ≈PB S | A. The second one enables the
output action h, thus enabling the observation τ.l, which is
not offered by S\A. In such a case, it holds that ε̄ = 1 −
(p + q), which corresponds to the probability of observing
the distinguishing behavior.

The analysis seems to be more complicated in the case of
Fig. 1, where infinitely many adversaries may interact with
the system, one for each possible value assigned to parameter
q that solves the nondeterminism due to the high-level input
(see Fig. 2b). However, it can be proved that the most pow-
erful simple adversary A assigns to q the limiting value 1. In
fact, for each R ∈ R, it holds that δR

A = 1, from which the
result follows.

4.1 Relation to discrete time markov chain analysis

As emphasized in the previous section, the GRTSs modeling
the two system views to be compared are fully specified, i.e.,
they do not include reactive bundles. Therefore, as already
observed in Sect. 2, such GRTSs are well-defined action-
labeled Discrete Time Markov Chains [12] (DTMCs). In
this section, we compare our approach to the estimation of
the adversary interference with the numerical analysis of
DTMCs that is usually conducted for performance evalua-
tion purposes.

Definition 10 A finite action-labeled DTMC is a tuple M =
(S, Act, T, s0) where S is a finite set of states, s0 ∈ S is the
initial state, Act is a non-empty set of activities, and T ⊆
S × Act×]0, 1]× S is a finite transition relation such that for
all s ∈ S it holds that

∑{| p | ∃a ∈ Act, t ∈ S. (s, a, p, t) ∈
T |} ∈ {0, 1}.

As far as the analysis of action-labeled DTMCs is
concerned, a typical approach to performance measure spec-
ification relies on reward structures [22]. This requires asso-
ciating real numbers with states (rate rewards) and transitions
(instantaneous rewards) of the DTMC, respectively. A rate
reward ys expresses the rate at which a gain (or a loss, if
the number is negative) is accumulated while sojourning in
state s. By contrast, an instantaneous reward bs,π,p,s′ speci-
fies the instantaneous gain (or loss) implied by the execution
of the transition (s, π, p, s′) ∈ T .

The instant-of-time value of a performance measure
expresses the gain (loss) received at a particular instant of
time [32]. If the system reaches a steady behavior at a limit-
ing execution time, in the stationary case the instant-of-time
performance measure expresses the long run gain (loss) per
unit of time.

Formally, the instant-of-time value of a performance mea-
sure specified through a reward structure is computed through
the following equation:
∑

s∈S

ys · π(s) +
∑

(s,π,p,s′)∈T

b(s,π,p,s′) · φ(s, π, p, s′), (1)

where π(s) is the probability of being in s at the considered
instant of time and φ(s, π, p, s′) is the frequency of the tran-
sition (s, π, p, s′) at the considered instant of time, which is
given by π(s) · p.

For instance, two typical performance measures are sys-
tem throughput and resource utilization. On one hand, in
order to measure the throughput of the system with respect
to the action a, i.e., the number of occurrences of a observed
per unit of time, it is sufficient to set b(_,a,_,_) = 1 and set to
0 any other reward. On the other hand, in order to compute
the percentage of time during which the system is in a certain
state s (modeling e.g., the usage of a certain resource), we
need to set ys = 1 and set to 0 any other reward.
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Fig. 4 Two examples of discrete-time Markov chains

Example 7 For the DTMC of Fig. 4a the steady state
probability vector is (1/3, 1/3, 1/3), meaning that at a limit-
ing execution time we have the same probability 1/3 of being
in one of the three states s0, s1, or s2. Then, the value of the
stationary performance measure expressing the throughput of
the system in terms of occurrences of the transition labeled
with action j ′ is given by bs2, j ′,1/2,s1 · φ(s2, j ′, 1/2, s1) =
1 · π(s2) · 1/2 = 1/6.

Similarly, consider the same performance measure for the
DTMC of Fig. 4b, whose steady-state probability vector is
(3/10, 3/10, 3/10, 1/10). In the long run we have the same
probability 3/10 of being in one state among s′

0, s′
1, or s′

2,
while the probability of being in s′

3 is 1/10. Then, the through-
put of action j ′ is given by bs′

2, j ′,1/2,s′
1
· φ(s′

2, j ′, 1/2, s′
1) =

1 · π(s′
2) · 1/2 = 3/20.

By following the performance evaluation approach, the
distance between two different systems can be estimated in
terms of the difference between the values of the same perfor-
mance metrics. In particular, if the chosen metric is the sys-
tem throughput with respect to action a, the distance between
two states s and s′ is:

| π(s) · p − π(s′) · p′ | (2)

if the probability of observing a at s is p and the probability
of observing a at s′ is p′.

Example 8 Suppose that we are interested in estimating the
difference between the DTMCs of Fig. 4. If the comparison

parameter is the throughput of action j ′, then the distance
between such systems is given by | 1/6 − 3/20 |= 1/60.

Similarly, if the comparison is conducted on the basis of
the throughput of the actions l1, then we have | 1/3 · 1/2 −
(3/10 · 1/3 + 1/10 · 1/2) |= 1/60.

The measure estimated according to Eq. (2) is a global dis-
tance, because it is obtained by comparing two values that
depend on the steady state probabilities of the states under
consideration. We now compare this performance-related
notion of distance with the weighted local distance presented
in the previous section. In the stationary case, the probability
Prob(s0, s) of reaching state s from the initial state corre-
sponds to the stationary probability π(s). Therefore, in the
long run the weighted local distance between s and s′ with
respect to a and C can be formulated as follows:

π(s) · π(s′)· | p − p′ | (3)

in the case Prob(s, τ ∗a, C) = p and Prob(s′, τ ∗a, C) = p′.
As we have seen, with respect to Eq. (2) the measure esti-
mated according to Eq. (3) expresses a local view of the
distance between s and s′, in accordance with the bisimula-
tion-based approach. In fact, it is obtained by comparing two
values that depend on the local probabilistic behavior of the
system. The result of this local comparison is then weighted
according to the global information that is represented by
the steady state probabilities of the states under consider-
ation. As seen in the previous section, this notion of distance
is conservative with respect to the approximate bisimulation.
In particular, two bisimilar states continue to have distance
equal to zero when relaxing the bisimulation relation. This
would not be the case with the performance-related notion
of distance.

Example 9 Suppose that the two DTMCs of Fig. 4 repre-
sent two different system views to be compared. The for-
mer expresses the behavior of the system in the absence of
adversary interferences, while the latter shows what happens
when the adversary does interfere. In particular, the transi-
tions labeled with τ actions model the interactions between
the system and the adversary.

First of all, we have to construct a relation R including
the pair (s0, s′

0) that approximates ≈PB as close as possible.
To this aim, in order to minimize the distance between s0

and s′
0, corresponding states in the two DTMCs that can be

reached by s0 and s′
0, respectively, must be related by R, i.e.,

(s1, s′
1) ∈ R. Similarly, it also holds that (s2, s′

2) ∈ R. Finally,
by looking at the ingoing/outgoing transitions, we have that
the remaining state s′

3 can be put either in the same class of
the initial states, or in a novel class. As can be easily verified
by considering the execution probability of such transitions,
it turns out that the relation we must consider induces the
partition S/R = {{s0, s′

0, s′
3}, {s1, s′

1}, {s2, s′
2}}.
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Fig. 5 A GRTS S, its interaction with a simple adversary A, and its behavior in the absence of adversaries

Now, if we consider s2 and s′
2 with respect to action j ′ and

class C = {s1, s′
1}, we have that the weighted local distance

between s2 and s′
2 is equal to zero, because the two states are

locally indistinguishable from the viewpoint of Low. Instead,
in the performance evaluation setting we obtained a global
distance equal to 1/60. As another example, if we consider
the difference between s0 and s′

0 in the long run and with
respect to action l1 and class C , we have Prob(s0, τ

∗l1, C) =
1/2, Prob(s′

0, τ
∗l1, C) = 3/5, and a weighted local distance

equal to 1/3 · 3/10 · (3/5 − 1/2) = 1/100. Note that in
the performance evaluation setting we obtained the global
distance 1/60.

5 Evaluating the most powerful adversary

The objective of an adversary is to apply the strategy that
maximizes the probability of distinguishing, from the view-
point of Low, the behavior of the system without high-level
interferences from the behavior of the system with high-
level interferences. As we have shown, the nondeterminis-
tic choice between a high-level input and any other event
can be solved by a probabilistic adversary through an infi-
nite number of different strategies. It is therefore important
to investigate conditions which allow us to analyze only a
finite number of such strategies and yet guarantee a correct
evaluation of the power of the probabilistic adversary. In the
following, we show for each class whether the most powerful
adversary can be determined or not by considering a finite
subset of such strategies.

5.1 Simple adversaries

When defining a simple adversary, infinite sets of the form
{(h1, p1), . . . , (hn, pn)} can describe the probabilistic
behavior of the high-level input interface represented by the
reactive bundles of type h1, . . . , hn . One may ask whether
the most powerful simple adversary can be found by consid-
ering a finite subset of such sets, like e.g., the sets containing
only the limiting probability values 0 and 1, as suggested
by the example of Fig. 1. However, the following examples
show that in general it is not possible to predict the set of
probability values that determine the most powerful adver-
sary.

Example 10 Consider the GRTS S of Fig. 5, where the adver-
sary controls the probability distribution of the inputs of type
h and k. Hence, a simple adversary is described by two prob-
ability values ph and pk that are assigned to the reactive bun-
dles of type h and k, respectively. Whenever the adversary is
absent, see S\A, the system executes the trace l. j . Instead, the
interference of a simple adversary A, see S | A, may enable
the action i , which allows Low to distinguish the two system
views. Hence, S\A and S | A cannot be weakly bisimilar.
In order to approximate ≈PB and to relate S\A and S | A
we follow the same argumentation provided in Example 9.
First, we impose (s′

0, s0), (s′
1, s1), (s′

2, s2) ∈ R. Then, from
the analysis of the ingoing/outgoing transitions of s3, s4, s5 it
follows (s3, s0) ∈ R, (s1, s4) ∈ R, and (s1, s5) ∈ R. Finally,
we consider state s6, which is the one enabling the distin-
guishing action and, therefore, is the unique representative
of its class. Thus, we obtain:
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Fig. 6 A GRTS S, its interaction with a simple adversary A, and its behavior in the absence of adversaries

R = {{s′
0, s0, s3}, {s′

1, s1, s4, s5}, {s′
2, s2}, {s6}, {s7}}

for which the maximum weighted local distance is given by
d̄ R

A (s′
1, s1, j, {s′

2, s2}) = (1−ph)·pk ·ph ·(1−pk). This value,
which is also obtained by calculating, e.g., d̄ R

A (s′
1, s5, j,

{s′
2, s2}) or else d̄ R

A (s′
1, s5, i, {s7}), intuitively represents the

probability of observing the distinguishing action i . Now it
is easy to see that each simple adversary described by the
limiting probability values 0 and 1 prevents the system from
executing action i . This is because the adversary should first
disable h∗ and force k∗, while thereupon should follow the
opposite policy. However, a simple adversary cannot change
its strategy at run time. Formally, the adversary that maxi-
mizes εR sets ph = pk = 1

2 , for which we obtain the maxi-
mum value 1/16.

As another example, consider the GRTS S of Fig. 6. There,
the execution of the output j , which is the unique action that
can be observed only whenever a simple adversary A inter-
acts with the system, depends on which states enable the
input of type h, which is an event controlled by the adver-
sary, compare S\A and S | A. Formally, in order to approx-
imate ≈PB it is sufficient to observe that (s0, s′

0) must be in
R, while s1, s2, s5 belong to the same class if we ignore the
distinguishing state s3, which is the one enabling the distin-
guishing action. Thus, we obtain:

R = {{s′
0, s0, s1, s2, s5}, {s3}, {s4}}.

Let ph be the probability associated with the input of type h
by the simple adversary. Then, the maximum weighted local
distance is given by d̄ R

A (s′
0, s1, j, {s′

4}) = (1 − ph) · ph · ph ,
which is maximized by taking ph = 2/3, for which the max-
imum probability of observing the interference is ε̄ = 4/27.

In general, the most powerful simple adversary is deter-
mined as follows. For each R ∈ R, we maximize — for
all a ∈ Act, C ∈ S/R and (s, s′) ∈ R such that s and s′
belong to different system views — the function expressing

the weighted local distance between s and s′. This corre-
sponds to solving a constraint programming problem with as
many variables as the number of different high-level actions,
each one being associated with a different probability value
(like in the examples above where e.g., the high-level input
action of type h is associated with the probability value ph).
We point out that the number of relations in R exponentially
depends, according to the Bell formula [27], on the num-
ber of states of the two system views to be compared. This
makes the problem of finding the most powerful adversary
intractable as its complexity is hyper-exponential.

In all the examples above, where the difference between
the two system views is expressed by a distinguishing action
that can be performed by one view only, the closest approxi-
mation of the weak probabilistic bisimulation turns out to be
computed as follows. The state enabling the distinguishing
action is the unique representative of its class, while corre-
sponding states of the two views are lumped in the same class.
The related partitioning is simply obtained by ignoring the
state enabling the distinguishing action and by lumping all
the other states according to the weak bisimulation semantics.
In such a way, the differences between the two system views
are limited to the analysis of the distinguishing behavior.

5.2 Interactive adversaries

Despite the enhanced expressiveness of the strategies that
characterize the interactive adversaries, the analysis of the
most powerful interactive adversary suffers from the same
problems as in the case of the simple adversaries.

Example 11 Consider again the system S of Fig. 5. In order
to maximize the execution probability of the action i , an inter-
active adversary can work as follows. First, such an adver-
sary associates the empty set with set {h}, which expresses the
high-level input interface of the system at the initial state, thus
forcing the execution of the action l. Then, she/he associates
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{(k, 1)} with set {k} and {(h, 1)} with set {h, k} (note that 1
represents a limiting value), thus reaching the distinguishing
behavior, which is observed by Low with probability tending
to 1.

Unfortunately, in general we cannot restrict ourselves to
considering the limiting probability values in order to deter-
mine the most powerful interactive adversary.

Example 12 Consider again the system S of Fig. 6. In order
to maximize the probability of executing the output j , the first
occurrence of h∗ should be disregarded. Instead, the follow-
ing occurrences of h∗ should be forced. However, an inter-
active adversary cannot follow such a strategy, as each state
where she/he can interfere has the same high-level input inter-
face, which is given by {h}. Hence, it turns out that the most
powerful interactive adversary associates {(h, 2

3 )} with set
{h}, exactly as done by the most powerful simple adversary.

In general, with respect to the simple adversaries the situ-
ation is even worse with the interactive adversaries, because
in such a case a given high-level action may be associated
with different probability values depending on the number of
different states in which it is enabled. Hence, the number of
variables of each constraint programming problem is greater
with respect to the case of the simple adversaries.

5.3 History-dependent adversaries

Based on the definition of history-dependent adversary given
in Sect. 3.2.3, a system described by a finite-state GRTS S
can result in an infinite-state GRTS S | A when interacting
with an adversary A with unbounded time resources. In such
a case the infinite-state system S | A can be reduced to a
finite-state system by limiting the time resources of A.

In the computational complexity approach it is common to
check the system against attackers with polynomially
bounded resources with respect to a security parameter ν rep-
resenting e.g., the key length. In our setting the time resources
of a history-dependent adversary are bounded by limiting the
number of interactions occurring between such an adversary
and the system. Such a limitation does not underestimate
the amount of information leakage if the system is safe with
respect to the adversary, i.e., if, as the number of visited states
and the length of the observable traces increase, the proba-
bility of augmenting the information flow approaches zero.

Definition 11 Let S | A = (S × Act∗, Act, T, (s0, ε)) be an
infinite-state GRTS. We say that system S is safe with respect
to the history-dependent adversary A and the security param-
eter ν if and only if whenever

σ = ((s0, ε), π1, p1, (s1, π1)), ((s1, π1),

π2, p2, (s2, π1π2)), . . .

is an infinite sequence such that:

1. ∀i ∈ NI . ((si−1, γ ), πi , pi , (si , γ πi )) ∈ T ,
2. there does not exist ((s, γ ), π, p, (s′, γ π)) ∈ σ such that

∀γ ′. γ ≤ γ ′:

Ag(γ
′) = Ag(γ ) ∧ Ar (γ

′) = Ar (γ )

3. ∀i ∈ NI ∃ j, k ∈ NI . i < j < k, ∃h ∈ ActH , ∃l ∈ ActL ,
such that:

((s j−1, γ ), h, p j , (s j , γ h)) ∈ σ ∧
((sk−1, γ ), l, p j , (sk, γ l)) ∈ σ

then it holds that

∀k ∈ NI ∃µ ∈ NI ∀(s, γ ) ∈ S | A.

|γ | >µ ∧ (_, _, _, (s, γ )) ∈ σ ⇒Prob((s0, ε), (s, γ ))<ν−k

Intuitively, condition 1 says that σ is an infinite trace in
S | A, condition 2 requires that A is actually an adversary with
unbounded time resources, that is the adversary strategy can
change at any time, and condition 3 requires that such an
adversary is always active, in the sense that at any moment
its behavior in the next future could still be detected by Low.
Then, the notion of safety says that if any prefix γ of the
infinite trace σ is long enough, then the probability of reach-
ing (s, γ ) is negligible. Assuming active adversaries—see
condition 3—is necessary in order to exclude traces reach-
ing states like, e.g., s5 in the GRTS of Fig. 6b, for which the
probability of any trace does not obviously approach zero, but
the adversary cannot affect the low-level view of the system
anymore.

If the system is safe with respect to A and ν then it is
correct to block the interfering activity of A when the length
of the trace is long enough and further interferences of A
are negligible, according to a tolerance threshold ε(ν) that
quantifies what negligible means from the viewpoint of the
low-level observer.

Proposition 3 Let S = (S, Act, T, s0) be a GRTS safe with
respect to A and ν, ε(ν) be the tolerance threshold, and R
be a relation approximating ≈PB. Moreover, let δR

A (n) be the
maximum observable interference caused by A with respect
to R whenever every high-level interaction in (s, γ ) ∈ S | A
is prevented if |γ | > n. Then, there exists µ such that | δR

A −
δR

A (µ) | < ε(ν).

Proof By Definition 11, for all infinite traces modeling
active, unbounded time interferences of A it is possible to
choose k ∈ NI and µ ∈ NI such that if |γ | > µ then
Prob((s0, ε), (s, γ )) < ν−k < ε(ν). Hence, all the states
that do not belong to a prefix with length less than µ are
actually reachable with negligible probability. Now, it is suf-
ficient to group all (and only) such states in a new class Cε(ν).
By virtue of the definition of δR

A , the weighted local distance
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(with respect to Cε(ν)) between any state in S\A, which
cannot reach any state in Cε(ν), and any state in S | A is
less than ε(ν), from which the result immediately follows. �

This result confirms that considering a prefix of the his-
tory generated by S | A, i.e., an adversary A with bounded
resources, does not significantly alter the measurement of the
interference caused by A.

Now, as for the case of the simple and interactive adversar-
ies, we consider the problem of determining the most pow-
erful history-dependent adversary, which can be found by
checking a finite set of strategies.

Theorem 1 Let S = (S, Act, T, s0) be a GRTS such that
(_, τ, _, _) 	∈ T , and let A ∈ AHD be the most powerful
history-dependent adversary for S such that S is safe with
respect to A and ν.

Then, A is defined by a pair (Ag, Ar ) such that for each
execution trace Tr either Ar (Tr) = ∅, or Ag(Tr) = ∅ and
∀h ∈ H such that (h, ph) ∈ Ar (Tr) it holds that ph is the
limiting value 1.

Proof Along the proof, we use the following notation:

– I π
s = {t | (s, π, _, t) ∈ T } is the set of states that are

reachable from s by executing an action π .
– pπ

s,s′ is the probability of going from s to s′ by executing
an action π .

– Xa,C (s, t, pπ
s,t ) = pπ

s,t · Prob(t, τ ∗a, C).
– p(s, Ag(Tr)) = ∑{| p | ∃a ∈ ActL ∪ Ag(Tr)

. (s, a, p, _) ∈ T |}.

By hypothesis, there exists R ∈ R such that δR
A = inf R′∈R

supA′ δR′
A′ . In particular, δR

A is the maximum distance
|Prob(s′, τ ∗a, C)− Prob(s′′, τ ∗a, C)| · Prob(s A

0 , s′) ·
Prob(s0, s′′), where a ∈ Act, C ∈ S/R , s′ ∈ S | A, s′′ ∈ S\A,
(s′, s′′) ∈ R, and s A

0 , s0 are the initial states of S | A,S\A,
respectively.

We observe that Prob(s′′, τ ∗a, C) and Prob(s0, s′′) are
fixed values that do not depend on the adversary strategy.
Therefore, in order to maximize the distance, the adver-
sary can follow two different strategies. In the former the
adversary aims at maximizing both Prob(s A

0 , s′) and Prob
(s′, τ ∗a, C), while in the latter the adversary aims at max-
imizing Prob(s A

0 , s′) and minimizing Prob(s′, τ ∗a, C). By
virtue of Definition 7, the strategy determining Prob(s A

0 , s′)
is completely independent of the strategy followed to derive
Prob(s′, τ ∗a, C). Hence, in the following we show how to
maximize Prob(s′, τ ∗a, C), by observing that we can sym-
metrically argue in order to minimize it and we can follow
the same argumentation in order to maximize Prob(s A

0 , s′).
We can assume that s′ = (s, Tr′) is obtained from s ∈ S

by applying the algorithm of Definition 8. We now show how

to maximize Prob(s′, τ ∗a, C) by induction on the length of
the trace Tr that starts at s′.

Base step: Tr = ε, i.e., the current state is indeed s′ =
(s, Tr′). The strategy followed by A at s′ is as follows. First,
we assume (h, _) 	∈ Ar (Tr′) for each high-level type h such
that the reactive bundle of type h is empty at s. Then, the
probability value associated with each other reactive bun-
dle is calculated on the basis of the structure of the bundles
enabled at s:

1. If the generative bundle of s is empty and one reactive
bundle, of type h, is enabled at s then:

Prob(s′, τ ∗a, C) =
∑

t∈I h∗
s

Xa,C (s, t, ph∗
s,t )

Given that the probability value associated with the reac-
tive bundle of type h is not used, we can assume (h, 1) ∈
Ar (Tr).

2. If the generative bundle of s is non-empty and no reactive
bundle is enabled at s, then

Prob(s′, τ ∗a, C) = 1

p(s, Ag(Tr))
· Prob(s, a, C)

+ 1

p(s, Ag(Tr))

·
∑

k∈Ag(Tr)

∑

t∈I k
s

Xa,C

(
s, t, pk

s,t

)

As a consequence, we set Ar (Tr) = ∅. Moreover,
Ag(Tr) ⊆ Hs can be chosen by A in order to maximize
Prob(s′, τ ∗a, C). Indeed, by Definition 7 the strategy of
A at the current state is completely independent of the
strategy of A in the next future.

3. If the generative bundle of s is empty and {h1, . . . , hn},
with n > 1, is the (alphabetically ordered) sequence of
types of the non-empty reactive bundles enabled at s,
then

Prob(s′, τ ∗a, C)

=
∏

1< j≤n

(1 − p j ) ·
∑

t∈I
h1∗
s

Xa,C

(
s, t, p

h1∗
s,t

)

+
∑

1<i<n

pi ·
∏

i< j≤n

(1 − p j ) ·
∑

t∈I
hi∗
s

Xa,C

(
s, t, p

hi∗
s,t

)

+pn ·
∑

t∈I
hn∗
s

Xa,C

(
s, t, p

hn∗
s,t

)
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By hypothesis, there exists

X = max

⎧
⎪⎨

⎪⎩

∑

t∈I
hi∗
s

Xa,C (s, t, p
hi∗
s,t ) | 1 ≤ i ≤ n

⎫
⎪⎬

⎪⎭
.

Let X = ∑

t∈I
h j∗
s

Xa,C (s, t, p
h j∗
s,t ), with j ∈ {1, . . . , n}.

Since the current strategy of A does not affect the future
behavior of A, the maximum value for the formula above
is obtained by taking Ar (Tr) = {(h j , 1)}.

4. If the generative bundle of s is non-empty and {h1, . . . ,

hn}, with n ≥ 1, is the (alphabetically ordered) sequence
of types of the non-empty reactive bundles enabled at s,
then

Prob(s′, τ ∗a, C)

=
∏

1≤i≤n

(1 − pi ) · 1

p(s, Ag(Tr))
· Prob(s, a, C)

+
∏

1≤i≤n

(1 − pi ) · 1

p(s, Ag(Tr))

·
∑

k∈Ag(Tr)

∑

t∈I k
s

Xa,C (s, t, pk
s,t )

+
∑

1≤i<n

pi ·
∏

i< j≤n

(1 − p j )

·
∑

t∈I
hi∗
s

Xa,C (s, t, p
hi∗
s,t )

+pn ·
∑

t∈I
hn∗
s

Xa,C (s, t, p
hn∗
s,t )

Calculate X similarly as done before. With respect to the
previous case, now it is worth considering the genera-
tive bundle, which may enable high-level output actions.
Hence, if there exists G ⊆ Hs such that

1

p(s, G)
· Prob(s, a, C) + 1

p(s, G)

·
∑

k∈G

∑

t∈I k
s

Xa,C (s, t, pk
s,t ) > X

then the adversary sets Ag(Tr) = G and Ar (Tr) = ∅.
Otherwise, assume h j to be the type of the reactive bun-
dle related to X . Then, the adversary sets Ag(Tr) = ∅
and Ar (Tr) = {(h j , 1)}.

Inductive step: the length of Tr is n − 1 with n > 1,
i.e., the current state is not s′ = (s, Tr′). Instead, the current
state is of the form (_, Tr′′) where Tr′′ = Tr′Tr and Tr is a
sequence of high-level actions executed to reach the current

state. Note that several different states can be reached from s
by executing the trace Tr. Hence, assume that {s1, . . . , sm} ⊆
S is the set of states such that (s j , Tr′′), with j ∈ {1, . . . , m},
is reachable from s′ = (s, Tr′).

We now define the strategy of the n-th move of the adver-
sary A, by assuming that, by induction hypothesis, the result
holds for each i < n. For this purpose, note that for each
(s j , Tr′′) the adversary must follow the same strategy.

Let Prob(s′, Tr, (s j , Tr′′)) be the aggregate probability of
reaching (s j , Tr′′) from s′ through the trace Tr.

Then, it holds that the strategy followed by A at each
(s j , Tr′′) maximizes the following expression:

m∑

j=1

Prob(s′, Tr, (s j , Tr′′)) · Prob(s j , τ
∗a, C) (4)

Assume {h1, . . . , hn} to be the (alphabetically ordered)
sequence of types of the union of the high-level reactive
bundles enabled at s1, . . . , sm , with {p1, . . . , pn} the related
probability distributions chosen by the adversary. According
to what we have shown in the base case, each Prob(s j , τ

∗a, C)

is computed as the summation of a number of sub-terms, each
one possibly multiplied by some variable pi and/or (1 − pi )

determined by the adversary.
Therefore, we now simplify Eq. 4 by moving towards the

outermost position of the equation all the variables pi . By
commutativity of multiplication and distributivity of multi-
plication with respect to summation, we obtain a summation
of some of the sub-terms forming the following equation:

n∑

i=1

pi · X ′
pi

+
∑

Sub⊆{1,...,n}

∏

i∈Sub

(1 − pi ) · X ′
Sub

+
n−1∑

i=1

∑

Sub⊆{i+1,...,n}
pi ·

∏

j∈Sub

(1 − p j ) · X ′
pi ,Sub + X ′

∅ (5)

where X ′
pi

is the sub-term that is to be multiplied by pi ,
X ′

Sub is the sub-term that is to be multiplied by
∏

i∈Sub(1 −
pi ), X ′

pi ,Sub is the sub-term that is to be multiplied by pi ·
∏

j∈Sub(1 − p j ), and X ′
∅ is the sub-term that is not multi-

plied by any variable determined by the adversary. Note that
Eq. (5) really equates Eq. (4) by assuming X ′∗ = 0 for each
sub-term X ′∗ that does not occur in Eq. (4).

Let k ∈ {1, . . . , n} be the maximum value such that pk ·
X ′

pk
is a non-null sub-term of Eq. (5), and k′ ∈ {1, . . . , n}

be the number of variables of set {p1, . . . , pn} occurring in
non-null sub-terms of Eq. (5). We now show by induction on
k′ that Eq. (5) is maximized whenever ∀ j : p j ∈ {0, 1}.

Base case: k′ = 1. By Definition 8, Eq. (5) consists of the
sub-terms pk · X ′

pk
, (1 − pk) · X ′

1−pk
and X ′

∅. The related
expression is easily maximized by taking either pk = 1 or
pk = 0.

Inductive step: k′ > 1. By Definition 8, Eq. (5) includes
a unique sub-term that is multiplied by pk , that is pk · X ′

pk
.
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Hence, we can rewrite Eq. (5) as follows:

pk · X ′
pk

+
∑

Sub⊆{1,...,k−1}∪{k}

∏

i∈Sub

(1 − pi ) · X ′
Sub

+
k−1∑

i=1

∑

Sub⊆{i+1,...,k−1}∪{k}
pi ·

∏

j∈Sub

(1 − p j ) · X ′
pi ,Sub

+ X1−pk
(6)

where X1−pk
is the summation over all the non-null sub-

terms of Eq. (5) which are not multiplied neither by pk nor
by (1 − pk). Now assume pk = 0, so that Eq. (5) reduces to
a summation of sub-terms over a set of k′ − 1 variables of
the set {p1, . . . , pn}. By induction hypothesis, such a sum-
mation is maximized by taking either p j = 1 or p j = 0
for each j 	= k. If the maximum value we obtain is greater
than X ′

pk
+ X1−pk

, then we assume pk = 0 to maximize
Eq. (5), otherwise we assume pk = 1, from which we derive
the result and, as an immediate consequence, the proof of the
theorem. �
Example 13 Consider again the example of Fig. 5. A
history-dependent adversary can block the action h∗ at the
initial state, force the execution of the action k∗ after the trace
l, and force the execution of the action h∗ after the trace l.k∗.
In this way, the distinguishing state is reached with prob-
ability tending to 1. Similarly, in the case of Fig. 6, a his-
tory-dependent adversary can first block the action h∗ and,
after one step, force its execution twice, thus reaching the
distinguishing behavior with probability tending to 1.

In general, in order to determine the most powerful adver-
sary, it is sufficient to check a finite number of strategies
without solving a set of constraint programming problems;
this finite number exponentially depends on the amount of
different high-level actions that the system enables. Theo-
rem 1 applies to systems that do not execute internal invisi-
ble actions. We now discuss the need for such a requirement
through the following example.

Example 14 Consider the GRTS of Fig. 7, which includes
two nondeterministic choices between a high-level input
action and an internal system activity. The interference of
the adversary is revealed by the execution of the output i .
If the observational power of the adversary does not reveal

*
k

*
k

τ

j i

τ

j

S

Fig. 7 A GRTS with internal unobservable activities

the events internally executed by the system, then the initial
state and the state reachable by executing the action τ are
indistinguishable from the viewpoint of the adversary. That
means the adversary cannot change strategy when the sys-
tem moves from the former to the latter. As a consequence,
the most powerful history-dependent adversary solves the
nondeterministic choices between k∗ and τ by assuming a
probability distribution governed by parameter 1/2. On the
other hand, if we assume that the adversary can reveal the
internal moves performed by the system—that is the traces
ε and τ are different from the viewpoint of the adversary—
then Theorem 1 holds without restrictions on the form of
the GRTS. Indeed, under such a hypothesis, the adversary
can change strategy after each visible and invisible event
performed by the system. Hence, in our example, the most
powerful history-dependent adversary assumes Ar (ε) = ∅
and Ar (τ ) = {(k, 1)}.

6 A process algebraic view of adversaries

In this section, we rephrase the theory and application of
approximate noninterference in the setting of a process alge-
bra whose semantics is given by the GRTS model introduced
before. The objective is to relate the three classes of adver-
saries to probabilistic noninterference properties defined in
the framework of such a process algebra.

6.1 Probabilistic process algebra

The probabilistic process algebra we consider relies on the
GRTS model. Hence, the actions describing the behavior of
concurrent systems are classified as in Sect. 2. Probabilistic
information is encoded by enriching the algebraic operators
with probability values. In the following we briefly recall
the syntax and the operational semantics of such a language
[4,12].

The set L of process terms is generated by the syntax:

P ::= 0 | π.P | P +p P | P ‖p
S P | P/

p
a | P\L | C,

where S, L ⊆ AType, a ∈ AType, and p ∈]0, 1[. We denote
by G the set of finite state, guarded terms of L, which we call
processes [25]. Similarly as done before, we restrict ourselves
to the set GL of processes that are fully specified from the
viewpoint of Low, i.e., no low-level input action is enabled.
Thus the nondeterminism is limited to the interactions with
the high-level environment. Essentially, the algebraic opera-
tors implement the mixed generative and reactive model of
probabilities described in Sect. 2:

– 0 represents the null, deadlocked process (we usually omit
0 when it is clear from the context).
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– π.P performs the action π with probability 1 and then
behaves like P .

– P +p Q is a CCS-like alternative choice operator, where
every probabilistic choice between P and Q is governed
by parameter p. In particular, in a probabilistic choice
either P moves with probability p or Q moves with prob-
ability 1 − p.

Example 15 The GRTS underlying process ( j +p i)+q h∗.l
is that of Fig. 1. The innermost choice operator models the
probabilistic choice between the two output actions j and i ,
which is governed by parameter p of the operator. On the
other hand, the outermost choice operator does not express
any probabilistic choice. Indeed, the choice between the input
action and the two output actions is nondeterministic, so that
parameter q is not used.

Similarly, take process ( j +1/2 i) +2/3 h.l, whose corre-
sponding GRTS is depicted in Fig. 3 under the hypothesis
p = q = 1 − (p + q) = 1/3. As imposed by the outermost
choice operator, the probability of executing the high-level
output h is equal to 1 − 2/3 = 1/3, while the probability
of executing one between j and i is equal to 2/3. More pre-
cisely, the probability of executing the output j (resp. i) is
equal to 2/3 · 1/2 = 1/3, as imposed by the combination of
the two choice operators.

– P ‖p
S Q is a CSP-like parallel composition operator. P

and Q asynchronously and independently execute all the
actions not in S, while they are constrained to synchro-
nously execute actions of type in S if they are of the same
type, which becomes the type of the resulting action. A
synchronization is possible only between an output action
and an input action, which results in an output action,
or between two input actions, which results in an input
action. The probability p is the parameter of a probabi-
listic scheduler that, in each system state where P and
Q enable actions of the same bundle, probabilistically
decides which action of that bundle must be scheduled,
i.e., one of P with probability p or one of Q with proba-
bility 1− p. Because of the synchronization policy, some
actions locally enabled by P and Q could be prevented
when composing in parallel P and Q. Thus, a normaliza-
tion of the generative bundle enabled by P ‖p

S Q is needed
to fulfill the second requirement of Definition 1.

Example 16 Consider process (( j +p i) +q h∗.l) ‖p′
{h} 0,

whose semantics is the GRTS of Fig. 2a. The synchroniza-
tion policy blocks the input of type h, because the right-hand
process does not enable an input/output action of the same
type. Since no probabilistic choice occurs between the left-
hand process and the right-hand process, parameter p′ is not
used, similarly as seen in the case of the choice operator.

Now, take process ( j +1/2 i) +2/3 h.l ‖p′
{h} 0, which

corresponds to the GRTS without adversary interference
depicted in Fig. 3 under the hypothesis p = q = 1 −
(p + q) = 1/3. Again, the synchronization policy blocks
the action of type h. Hence, the probability 1/3 associated
with the blocked event is redistributed between the other two
available events, as illustrated in Fig. 3.

In order to illustrate an example of synchronous commu-
nication, take again the GRTS of Fig. 2a, which may be gen-
erated by process ( j +p′

i∗) ‖p
{i, j}(i +p′′

j∗). The local output
j offered by the left-hand process is executable by the over-
all system thanks to the input of the same type offered by
the right-hand process. We can argue symmetrically in the
case of output i . Their execution probability is governed by
parameter p of the operator exactly as seen for the choice
operator, while parameters p′ and p′′ are not used for analo-
gous reasons.

– The hiding operator P/
p
a turns output and input actions

of type a into actions τ , by normalizing, if necessary, the
associated probabilities.

Example 17 Take process (( j +p i) +p′
h∗.l)/q

h , whose
semantics is given by the GRTS of Fig. 2b. Hiding the input
action of type h means turning an action belonging to a reac-
tive bundle into an internal action belonging to the generative
bundle. In order to correctly define the resulting generative
bundle, the probabilities associated with the input actions
of type h and the probabilities associated with the previ-
ously enabled generative actions are normalized according
to parameter q of the hiding operator, as illustrated in Fig. 2b.

Similarly, process (( j +1/2 i) +2/3 h.l)/q
h corresponds

to the GRTS with adversary interference depicted in Fig. 3
under the hypothesis p = q = 1 − (p + q) = 1/3. Here,
hiding the output action of type h does not alter the struc-
ture of the generative bundle, so that any normalization is not
needed and parameter q of the operator is not used.

– The restriction operator P\L prevents from execution all
the actions with type in L . Similarly as seen in the case
of the parallel composition operator, a normalization of
the execution probability of the remaining actions of the
generative bundle may be necessary to fulfill the second
requirement of Definition 1. We do not detail such an
operator because it can be expressed in terms of paral-
lel composition. In fact, P\L and P ‖p

L 0 have the same
semantics independently of the value of p.

– Constant C is used to specify recursive systems. In par-
ticular, we assume a set of constants defining equations

of the form C
�= P to be given.

We now provide a brief formal presentation of the
semantics of the probabilistic process algebra. Formally, the
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Table 1 Operational semantics (part I)

π.P
π,1−−−→ P

P
a∗,q−−−→ P ′ Q

a∗−−−→
P +p Q

a∗,p·q−−−→ P ′
P

a∗,q−−−→ P ′ Q
a∗−−−→/

P +p Q
a∗,q−−−→ P ′

P
a,q−−−→ P ′ Q

GAct−−−→
P +p Q

a,p·q−−−→ P ′
P

a,q−−−→ P ′ Q
GAct−−−→/

P +p Q
a,q−−−→ P ′

P
a∗,q−−−→ P ′ P

GAct−−−→
P/

p
a

τ,p·q−−−→ P ′/p
a

P
a∗,q−−−→ P ′ P

GAct−−−→/
P/

p
a

τ,q−−−→ P ′/p
a

P
b∗,q−−−→ P ′

P/
p
a

b∗,q−−−→ P ′/p
a

a 	= b

P
b,q−−−→ P ′ P

a∗−−−→
P/

p
a

b,(1−p)·q−−−−−−−−→ P ′/p
a

a 	= b
P

a,q−−−→ P ′ P
a∗−−−→

P/
p
a

τ,(1−p)·q−−−−−−−−→ P ′/p
a

P
b,q−−−→ P ′ P

a∗−−−→/
P/

p
a

b,q−−−→ P ′/p
a

a 	= b
P

a,q−−−→ P ′ P
a∗−−−→/

P/
p
a

τ,q−−−→ P ′/p
a

P
π,q−−−→ P ′

C
π,q−−−→ P ′

if C
�= P

semantics of a process P is given by a rooted GRTS whose
transition relation is the least multi-set satisfying the opera-
tional rules reported in Tables 1 and 2, and whose initial state
is P .

As far as the notation is concerned, we denote by RAct
and GAct the sets of input actions and of output and internal

actions, respectively. Then, we use the abbreviations P
π−−−→

to stand for ∃p, P ′ : P
π, p−−−→ P ′, denoting that P can exe-

cute action π with probability p and then behave as P ′, and

P
G−−−→ , with G ⊆ GAct, to stand for ∃a ∈ G : P

a−−−→ ,
meaning that P can execute a generative action belonging to
set G.

As far as P +p Q and P ‖p
S Q are concerned, in addition

to the reported rules, which refer to the local moves of the
left-hand process P , we also consider the symmetric rules
taking into account the local moves of the right-hand pro-
cess Q. Such symmetric rules are obtained by exchanging
the roles of terms P and Q and by replacing p with 1 − p in
the label of the derived transitions.

The semantic rules of Table 2 for parallel composition
show that the execution probability of each generative tran-
sition of P executed by P ‖p

S Q is subject to the normali-
zation factor νP (GS,Q), which is necessary because, as we

Table 2 Operational semantics (part II)

P
a∗,q−−−→ P ′ Q

a∗−−−→
P ‖p

S Q
a∗,p·q−−−→ P ′ ‖p

S Q
a 	∈ S

P
a∗,q−−−→ P ′ Q

a∗−−−→/
P ‖p

S Q
a∗,q−−−→ P ′ ‖p

S Q
a 	∈ S

P
a∗,q−−−→ P ′ Q

a∗,q ′
−−−→ Q′

P ‖p
S Q

a∗,q·q ′
−−−→ P ′ ‖p

S Q′
a ∈ S

P
a,q−−−→ P ′ Q

GS,P−−−→
P ‖p

S Q
a,p·q/νP (GS,Q )−−−−−−−−−−−−−→ P ′ ‖p

S Q
a 	∈ S

P
a,q−−−→ P ′ Q

GS,P−−−→/
P ‖p

S Q
a,q/νP (GS,Q )−−−−−−−−−−−−−→ P ′ ‖p

S Q
a 	∈ S

P
a,q−−−→ P ′ Q

a∗,q ′
−−−→ Q′ Q

GS,P−−−→
P ‖p

S Q
a,p·q ′ ·q/νP (GS,Q )−−−−−−−−−−−−−→ P ′ ‖p

S Q′
a ∈ S

P
a,q−−−→ P ′ Q

a∗,q ′
−−−→ Q′ Q

GS,P−−−→/
P ‖p

S Q
a,q ′ ·q/νP (GS,Q )−−−−−−−−−−−−−→ P ′ ‖p

S Q′
a ∈ S

have seen, some actions of the generative bundle of P may
be blocked by the context _ ‖p

S Q. In particular, the set GS,Q

contains all the types of the actions that are executable in
the context _ ‖p

S Q, i.e., the action types not belonging to
the synchronization set S, which are not subject to any con-
straint, and the action types belonging to S for which an input
action of Q can be performed, thus allowing for a synchro-
nization. Formally, GS,Q = {a ∈ AType ∪{τ } | a 	∈ S ∨ (a ∈
S ∧ Q

a∗−−−→ )}. Then, function νP (A) computes the sum of
the probabilities of all the generative transitions of P with
type in A. Formally, νP : P(AType ∪ {τ }) −→]0, 1] and

νP (A) = ∑{| p | ∃a, P ′ : P
a, p−−−→ P ′ ∧ a ∈ A |}.

Obviously, we can argue symmetrically for the generative
transitions of Q, which are subject to the normalization factor
νQ(GS,P ) when executed in the context P ‖p

S _.

6.2 Adversaries vs noninterference properties

In this section, we study the relation between the three
families of adversaries of Sect. 3.2 and some probabilistic
noninterference-based property defined in the setting of our
probabilistic process algebra. In particular, we will show that
every property we consider expresses the behavior of a spe-
cific class of adversaries.

First, we consider the probabilistic extension of nonin-
terference, which is called bisimulation-based strong proba-
bilistic noninterference (BSPNI, see [4]). In order to detect
the high-level interference for a system model P , the BSPNI
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property compares the low-level behavior of P under two
scenarios differing in the high-level behaviors only. In the
former, P is isolated from the high-level environment, so
that all the high-level interactions are prevented, while in the
latter P can interact with the high-level environment through
any action of the high-level interface of P .

In the following we assume that {h P
1 , . . . , h P

n P
} ⊆ H is

the set of high-level action types that syntactically occur in
the action prefix operators within P .

Definition 12 P ∈ BSPNI if and only if

P\H ≈P B P/
p1

h P
1

· · · /pn P
h P

n P
∀p1 · · · pn P ∈]0, 1[.

On one hand, P\H models the absence of any adver-
sary interference. On the other hand, the vector of values
p1 · · · pn P in the hiding operators expresses the strategy of an
adversary interacting with the system. Because of the univer-
sal quantification, the BSPNI property considers an infinite
set of such strategies, which we call ABSPNI. Intuitively, such
strategies, which are independent of the behavior of the sys-
tem itself and of the passage of time, correspond to a subset
of the simple adversaries.

Proposition 4 ABSPNI ⊂ AS.

Proof Definition 3 subsumes, at the GRTS level, the seman-
tics of the probabilistic hiding operator when Ag = H and
∀h ∈ H : (h, ph) ∈ Ar , with ph ∈]0, 1[. Hence, the result
immediately follows from Definition 12. �

Whenever the system satisfies BSPNI it holds that every
strategy in ABSPNI does not succeed in revealing the adver-
sary interference to the low-level observer. On the other hand,
if the system does not satisfy BSPNI, then there exists at
least one adversary strategy that violates the bisimulation
based check of Definition 12 and, therefore, sets up a covert
channel from high-level to low-level. In our setting, it is pos-
sible not only to find one such strategy, but also to estimate
the covert channel in terms of the maximum probability of
observing it, which is given by the quantity ε̄. More pre-
cisely, the maximum information leakage can be estimated
by measuring how far is from ≈P B the closest approxima-
tion of ≈P B that relates P\H and P/

p1

h P
1

· · · /pn P
h P

n P
whenever

p1, . . . , pn P model the most powerful adversary.
Unfortunately, solving the problem of finding the most

powerful simple adversary in ABSPNI is impractical. In par-
ticular, the examples and the observations shown in Sect. 5
make it clear the complexity of this problem, which is hyper-
exponential.

Then, we consider a stronger property, that is the prob-
abilistic variant of bisimulation-based nondeducibility on
compositions (PBNDC, see [4]), which says that the probabi-
listic low-level behavior of P must be invariant with respect

to the execution of P in parallel with any high-level process
� ∈ GH , where GH ⊆ G is the set of processes that enable
high-level actions only.

Definition 13 P ∈ PBNDC if and only if

P\H ≈P B ((P ‖p
K �)/

p1

hK
1

. . . /
pnK
hK

nK
)\H

∀K = {hK
1 , . . . , hK

nK
} ⊆ H,� ∈ GH , p, p1 . . . pnK ∈]0, 1[.

As shown in [4], PBNDC implies BSPNI. In essence, the
high-level processes � of the PBNDC definition represent
adversary strategies among which we also have the simple
adversaries. Similarly as seen in the case of the interactive
adversaries, a high-level interference is caused by the inter-
action between the system and an active adversary � that
takes into consideration the current high-level interface of the
system. However, the high-level processes � and the inter-
active adversaries differ from each other because of some
technicalities. In fact, the strategy of an interactive adver-
sary A strictly depends on the current high-level interface
of the system, while the strategy of a high-level process �

strictly depends on the sequence of synchronizations between
P and �, because � moves through such communications
only. Thus, if the system interacts with the high-level envi-
ronment without altering its high-level interface, then A can-
not change strategy while � can. By contrast, if the system
interacts with the low-level environment and, in doing so,
its high-level interface changes, then A can change strategy
while � cannot.

In spite of such differences, both families of adversaries
suffer from the same limitations, which make it impossi-
ble to foresee the behavior of the most powerful adversary
whenever the PBNDC property is not satisfied. In practice,
finding the process � that maximizes the observable differ-
ence between P\H and the low-level view of (P ‖p

K �) is as
difficult as finding the most powerful interactive adversary.

Example 18 The system of Fig. 6 is not PBNDC-secure. In
particular, finding the high-level process � that maximizes
the covert channel revealed by PBNDC leads to an argumen-
tation similar to that of Example 12. More precisely, � cannot
adopt different strategies for the two first occurrences of the
input of type h, exactly as seen for the interactive adversaries.

Based on the considerations above, our objective is to
determine whether a reasonable security property can be
defined that models the expressive power of the class of
history-dependent adversaries. This would allow us to exploit
the result of Theorem 1 in order to efficiently estimate the
maximum covert channel that can be set up in the case of
property violation (or, equivalently, evaluate the most pow-
erful adversary). As far as we know such a property has not
been defined yet in the literature, at least in the probabilis-
tic case. Indeed, if we abstract away from the probabilistic
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information, it turns out that the notion of history-dependent
adversary applies to the labeled transition system model just
as the classical definition of nondeducibility on strategies
(NDS, see [23]) applies to the nondeterministic state machine
model.

For the definition of a probabilistic security property
inspired by NDS, we need an operator that implements at the
process-algebraic level the idea of history-dependent adver-
sary. This has been done in [1] in the nondeterministic case.
Here, we propose a probabilistic extension of such an oper-
ator inspired by Definition 7.

In the following, we assume that each state reachable from
P under the interference of the history-dependent adversary
A is described by a pair (P ′, γ ), where P ′ is a process reach-
able from P and γ expresses the sequence of actions executed
along the path from P to P ′. For the initial state, the asso-
ciated configuration is (P, ε). Note that for each process P ′
reachable from P we can have several different states of the
form (P ′, γ ) depending on the number of traces that may be
executed to reach P ′.

We now introduce a probabilistic strategy operator (P, γ )

|A, whose semantics is defined by the operational rules of
Table 3. Intuitively, (P, γ )|A describes the interactions

Table 3 Operational semantics of the strategy operator

P
a,p−−−→ P ′

(P, γ )|A a,p·ν(P,γ,A)−−−−−−−−→ (P ′, γ a)|A
a ∈ ActL ∪ {τ }

P
a∗,p−−−→ P ′

(P, γ )|A a∗,p−−−→ (P ′, γ a∗)|A
a ∈ ActL

P
h,p−−−→ P ′

(P, γ )|A τ,p·ν(P,γ,A)−−−−−−−−−−−−−→ (P ′, γ h)|A
h ∈ Ag(γ )

P
h∗,p−−−→ P ′

(P, γ )|A τ,p·νh (P,γ,A)−−−−−−−−−−−−−→ (P ′, γ h∗)|A
(h, ph) ∈ Ar(γ )

where:

ν(P, γ, A) = (1/g(P, Ag(γ ))) · r(P, Ar (γ ))

g(P, Ag(γ )) = ∑{| q | ∃Q ∈ G, a ∈ ActL ∪ Ag(γ ) ∪ {τ }.
P

a,q−−−→ Q |}
r(P, Ar (γ )) = ∏{| (1 − pi ) | (hi , pi ) ∈ Ar (γ ) ∧ P

hi∗−−−→ |}
s. t. r(P, Ar (γ )) = 1 if the multi-set is empty

νh(P, γ, A) = q · ∏{| (1 − pi ) | (hi , pi ) ∈ Ar (γ ) ∧ h < hi

∧ P
hi∗−−−→ |}

s. t. νh(P, γ, A) = q if the multi-set is empty

q =

⎧
⎪⎨

⎪⎩

ph if g(P, Ag(γ )) > 0 ∨ ∃(hi , pi ) ∈ Ar (γ ).

hi < h ∧ P
hi∗−−−→

1 otherwise

between P and the environment on the basis of the strategy
decided by the adversary A, which in turn depends on the past
history modeled by the trace γ . Formally, both invisible and
low-level actions are enabled (see the first two rules), while
the high-level actions are blocked except for those enabled by
A, which are turned into τ actions (see the other two rules). A
normalization of the probability distribution of the transitions
of the generative bundle is needed exactly as shown in the
previous sections. In particular, function ν is used to redistrib-
ute the probabilities of the generative transitions according
to the restriction of some high-level output actions (see func-
tion g) and the hiding of some high-level input actions (see
function r ). Similarly, function νh is used to normalize the
probabilities of the τ actions obtained by hiding high-level
input actions of type h. The operator < (applied to action
types like in h < hi ) must be interpreted as a lexicographic
comparison operator.

Then, the probabilistic version of NDS, which we call
PNDS, is as follows.

Definition 14 P ∈ PNDS if and only if

P\H ≈P B (P, ε)|A ∀A ∈ AHD.

This definition states that P is PNDS-secure if its execu-
tion is invariant, from the viewpoint of Low, with respect to
any strategy decided by a history-dependent adversary. If we
call APNDS the set of adversary strategies described by the
PNDS property, then it is immediate to derive the following
result.

Proposition 5 APNDS = AHD.

Proof The result follows from the definition of history-
dependent adversary and from the semantics of the proba-
bilistic strategy operator. �
Proposition 6 PNDS ⊂ BSPNI.

Proof The result follows from the previous proposition, from
Propositions 2 and 4. �

The PNDS property can be viewed as a probabilistic vari-
ant of NDS defined in a process-algebraic setting. The main
strength of this property with respect to the other properties
introduced in [4] is that in the case of property violation, it
is possible to efficiently estimate the covert channel that is
set up by the most powerful adversary. This can be done,
thanks to Theorem 1, by studying the behavior of a finite set
of history-dependent adversaries.

7 A case study

We show the importance of the result established in the pre-
vious section by means of a case study considered in [8,6],
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i.e., a probabilistic non-repudiation protocol. In particular, in
[6] we show that the protocol is not BSPNI-secure and we
calculate the adversary that maximizes the information leak-
age by means of some ad hoc mathematical argumentation
(as done in Example 10).

Repudiation consists of the denial by one of the entities
involved in a message exchange protocol of having partic-
ipated in all or part of the protocol itself: non-repudiation
of origin is intended to prevent the originator of a message
from denying having sent the message, and non-repudiation
of receipt is intended to prevent the recipient of a message
from denying having received the message. Especially in
e-commerce, non-repudiation is needed to protect a trans-
action against any attempt to repudiate either the payment
for the service or the delivery of the service.

The protocol we analyze offers a non-repudiation service
without resorting to a trusted third party [26]. In particu-
lar, it offers a fair exchange of a message, sent by the orig-
inator O , which offers a service, for an acknowledgment,
sent by the recipient R, which is expected to confirm the
received service. The protocol is ε-fair, i.e., at each step of
the protocol run, either both parties receive their expected
information, or the probability that a cheating party gains
any valuable information, while the other party gains nothing,
is less than ε.

We now describe the protocol by presenting its formal
model in the probabilistic process algebra of Sect. 6. In Fig. 8
we show the GRTS model of the protocol. For the sake of
simplicity, we abstract from the cryptosystem used by the
two authenticated parties and we concentrate on the packet
exchange between them. We also abstract from the channel

receive_ack

send_msg

receive_request
*

*

send_msg,1−p send_msg,p

UNFAIR

receive_ack
*

receive_stop
*

receive_ack
*

receive_stop
*

Fig. 8 GRTS model of the non-repudiation protocol

and the transmission delays, by assuming that a message
which is delayed (not sent) by a participant is not delivered
to the other participant. The algebraic specification describes
the behavior of the originator as follows:

Or
�= receive_request∗.send_msg.receive_ack∗.Or ′

Or′ �= send_msg.Or′′ +p send_msg.Or′′′

Or′′ �= receive_ack∗.0 + receive_stop∗.unfair.0

Or′′′ �= receive_ack∗.Or′ + receive_stop∗.0

The recipient R starts the protocol by sending a signed, time-
stamped request for a service to the originator O (input action
receive_request∗), which in turn sends the first signed, time-
stamped message containing the requested information M
encrypted with a fresh key k (output action send_msg). Upon
receiving the first message from O , R sends a corresponding
signed, timestamped acknowledgment message (input action
receive_ack∗). This initial handshake, modeled by process
Or, precedes the execution of the probabilistic part of the
protocol.

Then, at each protocol step O probabilistically decides
whether to continue the protocol (with probability 1 − p),
by sending to R a signed, timestamped message containing
a key different from k, or to terminate the protocol (with
probability p), by sending a signed, timestamped message
containing the key k needed to obtain the plain text M . Pro-
cess Or′ models such a probabilistic behavior of O .

Since the result of the probabilistic choice is not revealed
by O , R cannot guess when the protocol terminates and, as a
consequence, when it will receive the final message. Hence,
a honest recipient transmits, for each received message, the
corresponding ack message. Obviously, key to success of the
protocol is the immediacy in sending back the ack. In par-
ticular, a cheating recipient may delay the transmission of
the ack in order to check the validity of the received key
and then block the transmission of the ack once the correct
key has been received. If such an unfair behavior is detected,
then O prematurely stops the protocol. To this aim, O fixes
a deadline for the reception of each ack, after which, if the
ack is not received, the protocol is stopped.

From the algebraic specification standpoint, the recep-
tion of the ack is modeled by the input receive_ack∗, while
the expiration of the timeout is abstracted through the input
receive_stop∗. The nondeterminism between these two
events derives from the fact that the related choice depends
on the environment behavior rather than an internal decision
of the originator.

Process O′′′ models the waiting for an ack before the exe-
cution of another protocol step, while process O′′ models the
final step of the protocol. Upon the reception of the ack related
to the last message containing k, O correctly terminates the
protocol in a fair way. On the other hand, if the protocol
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terminates before the transmission of the message that reveals
k, then neither O nor R obtain any valuable information. The
unique unfair case occurs whenever O sends the final mes-
sage without obtaining the corresponding ack; this makes the
protocol terminate in an unfair way from the viewpoint of the
originator. This is signaled by executing the action of type
unfair.

In general, given that the non-repudiation of origin is guar-
anteed by the message containing the encrypted value of M
and the message containing the related key, while the non-
repudiation of receipt is given by the last ack sent by R, the
protocol guarantees non-repudiation of origin with proba-
bility 1 and non-repudiation of recipient with a probability
less than 1. Hence, our goal is to estimate the probability of
violating the non-repudiation of recipient.

Formally, the distinction between high-level actions and
low-level actions follows an approach described in [19] for
the analysis of network security and cryptographic proto-
cols. More precisely, since the recipient is possibly an unfair
adversary, we consider all the communications between the
involved parties as high-level actions. Hence, the only
low-level action is unfair, which reveals to a low-level
observer the violation of the fairness condition.

In [6], it is shown that the verification of BSPNI reveals the
potential unfair behavior of R. Then, a quantitative estimate
of the efficiency of such an information leakage has been
evaluated through the approximate noninterference appro-
ach. In particular, the two system views that derive from
the definition of BSPNI are, respectively, the 0 process and
the following version of the GRTS of Fig. 8: each high-level
action is turned into a τ action, while the nondeterminism that
derives from the choice between the high-level input actions
receive_ack∗ and receive_stop∗ is probabilistically solved by
a simple adversary as an internal choice guided by a given
parameter q. Such a GRTS contains eight states, which can
be lumped in classes to form a partitioning of the GRTS in
4,140 different ways. If we abstract from the sequence mod-
eling the preliminary handshake, we can simply deal with five
states that induce 52 equivalence relations. Among them, the
closest approximation R of ≈P B is determined as follows.
The unique state enabling the distinguishing action is the
unique representative of its class, while all the other states,
which enable the unobservable trace leading to the 0 process,
belong to the same class of the initial state. Therefore, com-
puting εR is a hard problem that corresponds to analyze an
infinite number of simple adversaries, each one determining
the value of parameter q, as shown in [6].

The security analysis of the repudiation protocol can be
efficiently performed by considering PNDS. First, by vir-
tue of Proposition 6 it holds that the protocol is not PNDS-
secure. Second, according to the result of Theorem 1, it
holds that the most powerful history-dependent adversary
that maximizes the probability of violating non-repudiation

employs limiting probabilities (tending to 1) to solve the
nondeterminism due to the high-level inputs. More precisely,
at each step of the protocol, only two strategies must be
considered, i.e., the one blocking the protocol (by enabling
the action receive_stop∗ only) and the one sending a reg-
ular acknowledgment (by enabling the action receive_ack∗
only). In particular, the adversary A1 that follows the former
strategy at the first step is easily described by the following
strategy:

– Ar (ε) = {(receive_request, 1)}
– Ag(receive_request∗) = (send_msg)

– Ar (receive_request∗.send_msg) = {(receive_ack, 1)}
– Ag(receive_request∗.send_msg.receive_ack∗) =

(send_msg)

– Ar (receive_request∗.send_msg.receive_ack∗.
send_msg) = {(receive_stop, 1)}

for which it holds that δR
A1

= p, i.e., the information leakage
occurs with probability p, which is a parameter under the
control of O . The other possible adversary follows the latter
strategy and allows the protocol to be continued, which is an
event occurring with probability 1− p. In general, at the i−th
step the adversary Ai following the former strategy is such
that δR

Ai
= (1 − p)i · p, while the adversary A that always

follows the latter strategy does not enable the unfair behav-
ior, i.e., δR

A = 0. Therefore, it holds that ε̄ = δR
A1

= p. It
is worth considering that this result is obtained without con-
sidering an exponential number of constraint programming
problems with variable q, as it suffices to consider the two
unique adversaries that assume the limiting behaviors q = 0
and q = 1, respectively.

As far as a comparison with the performance evaluation
approach discussed in Sect. 4.1 is concerned, the following
remarks are in order. In the example above, the unique action
observable by Low is put into the protocol specification in
order to reveal the information leakage that can be set up
by the adversary. All the other actions are unobservable as
are under the control of the adversary. As a consequence,
only the system view modeling the interference of the adver-
sary enables an invisible trace leading to a state enabling the
unique low-level action. This is a common feature of most
of protocols described through the approach defined in [19].
Based on such assumptions, it holds that Eqs. (2) and (3)
of Sect. 4.1, which express the distance between the two
different system views according to the performance eval-
uation and our approximate bisimulation approach, respec-
tively, yield the same result. Indeed, if s′ denotes the unique
state of process 0 representing the view of the system in the
absence of the adversary, then it follows that π(s′) = 1 and
p′ = 0, from which the proof immediately follows.
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8 Conclusion

We have shown how to effectively compute an estimate of
the maximum information leakage of an insecure system.
In our approach the system confidentiality is expressed via
a notion of approximate noninterference; this is based on
process indistinguishability with respect to a weak probabi-
listic bisimulation semantics. In practice, the lack of informa-
tion leakage is expressed by a successful weak probabilistic
bisimulation based check. Whenever such a check fails,
approximate relations relax the conditions imposed by the
weak probabilistic bisimulation, in such a way that the level
of approximation represents an estimate of the amount of
information leakage.

We have characterized the system information leakage via
the behavior and the expressive power of classes of adversar-
ies that are described by noninterference-based security prop-
erties. In the case of property violation, the most powerful
adversary among those described by that property expresses
the maximum information leakage that can be revealed by
the property itself.

According to such a characterization, we have seen that
estimating the maximum information leakage is in general
impractical. In fact, the complexity of finding the most pow-
erful adversary is hyper-exponential and depends on the veri-
fication of a possibly infinite number of adversary strategies.
However, for a particular class of adversaries the calculation
can be performed efficiently as it requires only a finite num-
ber of checks that exponentially depends on the number of
activities controlled by the adversary. This class of adversar-
ies corresponds to a novel probabilistic security property that
turns out to be a probabilistic variant of the nondeducibility
on strategies of [23].

In order to simplify the presentation of our approach to the
analysis of approximate noninterference, we have considered
systems that are fully specified from the viewpoint of Low.
The more complex scenario in which the system can accept
inputs from Low can be dealt with by extending in a natural
way the approach adopted in this paper. The idea consists in
parameterizing the formulation of the noninterference prop-
erty with respect to a specific low-level user, who resolves
all the nondeterminism due to the possible interactions of
the low-level input interface of the system with the environ-
ment. By so doing, the result of the noninterference check
expresses a measure of the maximum information leakage
observed by that particular low-level observer.

We have presented an application of our approach to the
analysis of a probabilistic non-repudiation protocol. This
example also shows the relation of our approach with the per-
formance evaluation approach that, e.g., has been employed
to assess the security of a complex system, the NRL pump,
in [2]. As a future work we intend to implement our approach
in order to examine to what extent we can apply it to complex

frameworks, like e.g., the weak probabilistic anonymity of [14]
and the NRL pump itself. We also aim to investigate the
applicability of our approach to cryptographic protocols and,
in particular, its relationship with the reactive simulatability
model of [9,10].

Finally, we plan to extend the notion of history dependent
adversary so as to include timing issues; this would allow
us to deal with another important kind of covert channels,
namely the so-called covert timing channels, in which one
process signals information to another process by modulat-
ing its own use of system resources (e.g., CPU time) in such
a way that this manipulation affects the real response time
observed by the second process.
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