
Theoretical Computer Science 290 (2003) 355–406
www.elsevier.com/locate/tcs

Discrete time generative–reactive probabilistic processes
with di$erent advancing speeds

M. Bravetti ∗, A. Aldini
Dipartimento di Scienze dell’Informazione, Universit�a di Bologna, Mura Anteo Zamboni 7,

40127 Bologna, Italy

Received February 2001; received in revised form July 2001; accepted August 2001
Communicated by R. Gorrieri

Abstract

We present a process algebra expressing probabilistic external=internal choices, multi-way syn-
chronizations, and processes with di$erent advancing speeds in the context of discrete time, i.e.
where time is not continuous but is represented by a sequence of discrete steps as in discrete time
Markov chains (DTMCs). To this end, we introduce a variant of CSP that employs a probabilis-
tic asynchronous parallel operator whose synchronization mechanism is based on a mixture of
the classical generative and reactive models of probability. In particular, di$erently from existing
discrete time process algebras, where parallel processes are executed in synchronous locksteps,
the parallel operator that we adopt allows processes with di$erent probabilistic advancing speeds
(mean number of actions executed per time unit) to be modeled. Moreover, our generative–
reactive synchronization mechanism makes it possible to always derive DTMCs in the case of
fully speci9ed systems. We then present a sound and complete axiomatization of probabilistic
bisimulation over 9nite processes of our calculus, that is a smooth extension of the axiom system
for a standard process algebra, thus solving the open problem of cleanly axiomatizing action re-
striction in the generative model. As a further result, we show that, when evaluating steady state
based performance measures which are expressible by attaching rewards to actions, our approach
provides an exact solution even if the advancing speeds are considered not to be probabilistic,
without incurring the state space explosion problem that arises with standard synchronous ap-
proaches. We 9nally present a case study on multi-path routing showing the expressiveness of
our calculus and that it makes it particularly easy to produce scalable speci9cations. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Process Algebra; Discrete time Markov chain; Performance evaluation; Probabilistic
models

∗ Corresponding author. Fax: +39-0547-610054.
E-mail address: bravetti@cs.unibo.it (M. Bravetti).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00344 -9

356 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

1. Introduction

The modeling experience in the speci9cation of complex concurrent systems
(see e.g. [3, 4, 10]) has revealed the importance of using languages expressing time
(the advancing speed of processes), probabilistic internal=external choices and multi-
way synchronizations to be able to represent the behavior of such systems.
In this paper we address the open problem of developing a calculus for describing

and analyzing probabilistic distributed systems that combines, in a natural way, such
mechanisms in a discrete time setting. More precisely, we make the assumption that
time does not Cow continuously, as e.g. in continuous time Markov chains (CTMCs)
[22], but the passage of time is represented by a sequence of discrete steps, as in
discrete time Markov chains (DTMCs) [22]. In particular, we recall that DTMCs are
labeled transition systems, where the transitions are labeled with their execution prob-
abilities, that represent timed systems performing a transition every discrete time step
of the same length 1.

1.1. Generative–reactive probabilistic models for discrete time systems

In the past 10 years several models for representing probabilistic systems (see e.g.
[15, 28] and the references therein) and several probabilistic extensions of classical
process algebras (see e.g. [21, 24, 31, 5, 15, 14]) based on such models have been pro-
posed. In particular, we brieCy recall two di$erent models of probability, which have
been presented in [15], by resorting to the terminology of Milner [27], where action
type based synchronizations are described in terms of button pushing experiments.
In this view the environment experiments on a process by pushing one of several but-
tons, where a button represents an action type. According to the reactive model of
probability, a process reacts internally to a button push performed by its environment
on the basis of a probability distribution that depends on the button that is pushed.
According to the generative model of probability, instead, the process itself autonomously
decides, on the basis of a probability distribution, which button will go down and how
to behave after such an event.
When two processes, which behave in a reactive way, synchronize on an action of

type a, each of them reacts internally to the synchronization according to the probability
distribution associated with the actions of type a it can perform. Whenever the two
processes can synchronize on more than one action type, each of them leaves the
decision to the environment, hence the choice of the synchronizing action type turns
out to be non-deterministic. This kind of synchronization is simple and natural [28],
but does not allow a mechanism for the choice of the button to be pushed (external
choice) to be expressed, thus leaving the system, in a sense, under-speci9ed.
On the other hand, two processes that behave in a generative way independently

decide the action type over which they want to synchronize, hence there may be
no agreement on the action type. Almost all the solutions proposed in the literature
(see e.g. [15, 5]) are based on the fact that the synchronization on di$erent action types

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 357

is allowed. In the case the model of synchronization adopted is such that processes
can synchronize only on the same action type then, as also stated in [28], there is
no simple and intuitive solution to the problem. 1 As an example, let us consider a
system composed of two sequential processes that must synchronize over actions of
types a and b. Suppose that one process may execute an action a with probability
p and an action b with probability 1 − p, while the other process may execute an
action a with probability q and an action b with probability 1 − q. This scenario
could be represented by a term like a+p b ‖{a; b} a+q b. The problem is: How do we
choose the synchronization to be performed? The choice cannot be made independently
by the two processes, because e.g. if the lefthand process locally chooses a and the
righthand process locally chooses b, then no synchronization is possible between the
two processes. In order to have a clear model of synchronization, it is important that,
once chosen the set of processes that must cooperate, each of such processes can
independently choose one of its local actions. The problem is that we do not know who
is in control of the system since both processes want to decide the button to be pushed.
A simple and intuitive solution to the problem (as suggested also in [28]) is to

adopt a mixed generative–reactive approach by considering an asymmetric form of
synchronization, where a process that behaves generatively may synchronize only with
processes that behave reactively. The intuition is that the process that behaves genera-
tively decides which button will go down (and how to behave afterwards), while the
process that behaves reactively just reacts internally to the button push of the other
process. The integration of the generative and reactive approaches is naturally obtained
(similarly as done in [32] for a probabilistic version of I=O automata [25]) by designat-
ing some actions, called generative actions, as predominant over the other ones, called
reactive actions, and by imposing that generative actions can synchronize with reactive
actions only. Syntactically, we distinguish reactive actions from generative actions by
using the subscript ∗ stating the reactive nature of the action. As an example, let us
consider a system composed of two sequential processes that must synchronize over
actions of types a and b whose behavior could be described by a term like:

(a+p b) ‖{a;b} ((a∗ +q a∗) + (b∗ +r b∗)):

According to the generative–reactive approach: 9rst we probabilistically choose, locally
to the lefthand process, between the two generative actions a and b according to proba-
bilities p and 1−p (generative choice); then we probabilistically choose, locally to the
righthand process, either between the two reactive actions a according to probabilities
q and 1 − q or between the two reactive actions b according to probabilities r and
1 − r, depending on whether generative action a or b wins in the 9rst step (reactive
choice).
The discrete time probabilistic transition systems that we consider, called generative–

reactive transition systems (GRTSs), are a mixture of the generative and reactive

1 In spite of this, a rather arti9cial solution has been proposed in [14].

358 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

transition systems of [15]. In a GRTS (a restricted version of the general model of
[28]), each transition represents a discrete time step and is labeled with an action,
which can be either a generative action a or a reactive action a∗, and a probability.
Transitions leaving a state are grouped in several bundles. We have a single generative
bundle composed of all the transitions labeled with a generative action and several
reactive bundles, each one referring to a di$erent action type a and composed of all
the transitions labeled with a∗. A bundle of transitions expresses a probabilistic choice,
hence the sum of the probabilities of the transitions composing a bundle must be 1.
On the contrary, the choice among bundles is performed non-deterministically. In a
GRTS we see the reactive actions as incomplete actions, which must synchronize with
generative actions of another system component in order to form a complete system.
A system is considered to be fully speci9ed only when it gives rise to a probabilistic
transition system that is purely generative, in the sense that it does not include reac-
tive bundles. Fully speci9ed systems are therefore fully probabilistic systems (systems
not including non-deterministic choices [28]), from which a DTMC can be trivially
derived by discarding actions from transition labels. As a consequence, they can be
easily analyzed to get performance measures. In other words, the limited form of non-
determinism that we consider is suIcient to have a clear notion of control over action
synchronizations, but is harmless from the performance analysis viewpoint, in the sense
that for complete systems the underlying probabilistic transition system is fully proba-
bilistic. Moreover, the modeling experience [9, 3, 4, 10, 8] showed that considering, as
in the generative–reactive approach, two kinds of actions where one predominates over
the other, leads to a master–slave discipline that is very suitable for describing real
systems.

1.2. Probabilistic asynchronous parallel composition

The parallel operator that we consider is similar to the CSP [19] operator P ‖S Q,
where processes P and Q are required to synchronize over actions of the same type in
the set S and locally execute all the other actions. Such an operator expresses multi-
way synchronizations by assuming that the result of the synchronization of two actions
a is again a visible action a. In addition, we impose that a synchronization between
two actions of type a may occur only if either they are both reactive actions a∗
(and the result is a reactive action a∗), or one of them is a generative action a and
the other one is a reactive action a∗ (and the result is a generative action a). As a
consequence, a multi-way synchronization is composed of all reactive actions except at
most one generative action: the choice of a generative action a performed by a process
determines the button that is pushed (button a) and the other processes internally react
by independently choosing one of their reactive actions a∗.
Di$erently from existing discrete time process algebras, where parallel processes

are executed in synchronous locksteps (see e.g. [21, 31, 24]), the parallel composition
operator that we adopt is asynchronous and allows processes with di$erent probabilistic
advancing speeds (mean number of actions executed per time unit) to be modeled.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 359

Our approach is inspired by that of [5] where ACP [6] is extended with proba-
bility by means of a probabilistic parallel composition operator, even if in [5] time
is not explicitly considered. In particular, as in [5], our parallel composition operator
is parameterized with a probability p, so that in P ‖pS Q the process performing the
next move is determined according to probability p. As an example, let us consider a
system composed of two sequential processes whose behavior is described by a term
like: 2

(a+p b) ‖q (c +r d):

According to the approach inspired by [5], we 9rst choose which of the two processes
must make the next move according to probabilities q and 1− q. Then, if the lefthand
process wins we locally choose between a and b according to probabilities p and 1−p,
otherwise we locally choose between c and d according to probabilities r and 1− r.
As we will shortly show, in our discrete time setting P ‖pS Q represents a system

where the mean action frequency (mean number of actions executed per time unit) of
process P is p, while the mean action frequency of process Q is 1−p. Since P and Q
may advance at di$erent action frequencies, with respect to the classical synchronous
approach, modeling a concurrent system does not necessarily imply adopting the same
duration for the actions of P and Q. For instance, we could model a post oIce with a
priority mail and an ordinary mail service simply by the term P ‖0:2∅ Q, where: process
P, representing the ordinary mail service (see Fig. 1), repeatedly executes actions a
expressing the delivery of a letter via ordinary mail; and process Q, representing the
priority mail service, repeatedly executes actions b expressing the delivery of a letter
via priority mail. Suppose we take minutes to be the time unit on which the post oIce
speci9cation is based, in P ‖0:2∅ Q the mean frequency for the ordinary mail service
is 0:2 letters per minute (288 per day) and the mean frequency for the priority mail
service is 0:8 letters per minute (1152 per day). Therefore the actions of P take 5min
on average to be executed, while the actions of Q take 1min and 15 s to be executed.

Fig. 1. The post oIce example.

2 We use ‖q instead of ‖qS when S = ∅.

360 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

To be more precise, the execution of a system P ‖pS Q is determined by assuming a
probabilistic scheduler that in each global state decides which process between P and
Q will perform the next step. In particular, P and Q advance in discrete steps and the
scheduler decides who is going to perform the next move by tossing an unfair coin
that gives “head” with probability p and “tail” with probability 1−p. If the coin gives
“head” P moves, if the coin gives “tail” Q moves. After a certain number, let us say
n, of coin tosses, i.e. after n time units, it turns out that the mean number of heads that
have occurred (steps P has made) is n ·p while the mean number of tails that have
occurred (steps Q has made) is n · (1−p). Formally, such mean values are derived in
the following way: n ·p is the mean value of a discrete random variable following a
binomial distribution with parameters n (number of experiments) and p (probability of
success for each experiment). This means that P performs a mean of p steps per time
unit and Q performs a mean of 1−p steps per time unit. Hence p is P’s probabilistic
advancing speed while 1− p is Q’s probabilistic advancing speed.
Note that in the representation of the behavior of a system P ‖pS Q we do not express

an actual concurrent execution of the actions of P and Q (so that when time passes
for an action of P then it passes also for a concurrent action of Q). The behavior of
a system P ‖pS Q is, instead, described at a higher level of abstraction by a model with
discrete time steps where there is no actual parallel execution, but only an interleaving
of the steps of the two processes, where each step takes the same amount of time
(a time unit). To make this more clear, we can interpret the behavior of P ‖pS Q as
originated by a single-processor machine executing both processes (P and Q) via a
probabilistic scheduler. In this view, the choices in the global states of P ‖pS Q do not
represent “races” between concurrent time delays (as it is usual for continuous time
process algebras) but only probabilistic choices that determine which is the process
performing the next discrete step. Therefore, we do not assume continuous memory-
less distributed sojourn times as, e.g., in the time model of [32], but we simply execute
a system transition every discrete time unit. In the execution of P ‖pS Q sometimes we
perform a discrete move of P and sometimes we perform a discrete move of Q and
what matters, from the viewpoint of performance behavior, is the frequency with which
the actions of a given process are executed. Therefore, even if we represent the system
behavior at a certain level of abstraction where actions are not concurrently executed
but just interleaved, we have that such a representation gives the correct execution fre-
quencies for actions of processes. Representing the system behavior just taking care of
execution frequencies (and not actual concurrency) is the level of abstraction necessary
in order to evaluate performance properties in discrete time. This is because, since the
sojourn times in the states of a DTMC before taking a transition are all equal to 1, as
opposed to the states of a CTMC, the evaluation of performance measures in a DTMC
is entirely based on the execution frequency of transitions.
So far we have explained the behavior of parallel composition in the case of pro-

cesses performing independent moves. Now we show what happens when we con-
sider also generative–reactive synchronizations. Our approach integrates the generative–
reactive approach inspired by [32] with the approach to probabilistic process choice

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 361

inspired by [5], in that the selection of the action to be executed in a system state is
conceptually carried out through two steps (a generative choice determining the action
type followed by a reactive choice) each employing probabilistic choice among pro-
cesses. As an example, let us consider a system composed of four sequential processes
whose behavior is described by the term:

(a ‖p (b+p′
c)) ‖{b} (b∗ ‖q (b∗ +q′ b∗)):

In the 9rst step a generative action is chosen as follows. We 9rst choose which
of the two lefthand processes must make a move according to probabilities p and
1 − p. Then, if the process executing a wins then a is the winning generative ac-
tion. Otherwise we choose between b and c according to probabilities p′ and 1− p′.
If the generative action chosen in the 9rst step must not synchronize (as for the ac-
tions a and c) then we are done, otherwise (as for the action b) a second step must
be undertaken, where we choose a reactive action among those that can synchronize
with the winning generative action. We 9rst choose which of the two righthand pro-
cesses must make a move according to probabilities q and 1− q. Then, if the process
executing a single b∗ wins then this is the winning reactive action. Otherwise we
choose between the two reactive actions b∗ of the other process according to prob-
abilities q′ and 1 − q′. Note that extending a generative–reactive approach similar to
that of [32] with a probabilistic parallel composition allows us to obtain fully prob-
abilistic models, nevertheless remaining in a discrete time probabilistic setting. The
approach of [32], instead, strictly relies on the fact that continuous time is consid-
ered. This is because by endowing each state of a probabilistic I=O automata with
an exponentially distributed sojourn time, the relative advancing speeds of the prob-
abilistic I=O automata involved in a parallel composition are determined by a timed
race condition. Moreover, expressing advancing speeds of processes via a parameter-
ized parallel operator (instead of, e.g., via weights attached to the actions they can
perform [31]) is also adequate from a modeling viewpoint. This is because the mod-
eler can 9rst specify the behavior of processes in isolation and then establish, inde-
pendently on how they are speci9ed, their relative advancing speed when composing
them in parallel. Finally, as we will show by means of a case study, this approach is
also convenient because it leads to speci9cations that are easily scalable.

1.3. Modeling exact advancing speeds

We also consider the problem of modeling timed systems where the di$erent ad-
vancing speeds at which concurrent processes proceed are not probabilistic. According
to this interpretation of the notion of advancing speed, if, e.g., the action frequency of
a process P in a parallel composition is 1=n, with n natural number, then each action
of P takes exactly n time units to be executed, instead of n time units on average.
With a standard approach based on a synchronous parallel composition, where par-

allel processes are executed in synchronous locksteps (see, e.g., [21, 26, 24, 31, 17]),
exact advancing speeds could be modeled as follows. Called nP the duration of the

362 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

actions of a process P (number of time units taken to execute each action of P), we
compute the greater common divisor div of the set of durations nP where P is a process
composing the system. Then for each process P we split each action in nP=div time
units and we take div to be the duration of the time unit in the speci9cation of the
whole system. Such an approach has the problem that the state space of the system
greatly increases due to the splitting of the actions of processes, especially if actions
with largely di$erent durations are employed: since the step reached by a timed action
during its execution needs to be counted in the semantics, each action of P gives rise
to nP=div states. Other approaches in the literature that avoid action splitting (see, e.g.,
[12, 2, 13]) do not give rise to models that can be turned into analyzable stochastic
processes. The reason is that they either (as in [12]) produce dense-time models with
in9nite states, or (as in [2, 13]) produce models in which the time progress is separately
represented within each di$erent process.
Our approach, which is based on probabilistic advancing speeds, constitutes an ap-

proximated solution to the problem of modeling timed systems with di$erent exact
advancing speeds, in that action frequencies of processes are probabilistic instead
of being exact, but it has the advantage that actions are not split. Nevertheless, an
important property of our approach is that, in the case of non-blocking processes
(i.e. processes enabling at least a generative action in each state), while such an approx-
imation may a$ect the performance behavior of the system during an initial transient
evolution, it gives exact values for the performance measures of interest when the sys-
tem reaches a stationary behavior. Note that the restriction to non-blocking processes
is not a limiting requirement from the modeling viewpoint, because the waiting con-
dition of a process can be expressed by executing generative idle actions representing
the fact that the process is idle. Therefore, as far as the evaluation of steady state
based performance measures of systems is concerned (at least if they are expressible
by associating rewards with actions [8]), our approach avoids action splitting, hence
the state space explosion problem, while preserving the possibility of exactly analyzing
concurrent processes with exact advancing speeds.

1.4. Overview and main results

We start by formally presenting the probabilistic model for discrete time, based on
a mixture of the generative and reactive models of probability, we explained above.
In particular we show that, from the models of fully speci9ed systems, we can easily
derive DTMCs (Section 2).
We then introduce a calculus based on the generative–reactive model and the prob-

abilistic asynchronous parallel composition operator explained above. In particular we
present its syntax, its formal semantics and we show that a simple extension of the
probabilistic bisimulation equivalence [23] is a congruence with respect to all the op-
erators of the calculus and recursive de9nitions (Section 3).
Afterwards, we address the problem of 9nding a sound and complete axiomatization

for the probabilistic bisimulation equivalence over the 9nite processes of our calculus.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 363

In order to do this we introduce a new auxiliary operator 〈P〉JK , de9ned in such a way
that if 〈P〉JK is derived from P by our axiom system, then K denotes which bundles
are executable by P and J denotes the set of types of the generative actions executable
by P. Thanks to this operator we obtain an axiomatization that is a smooth probabilistic
extension of the classical axiomatization for the parallel composition based on the
left and synchronization merge operators [5]. In particular, one of the most important
consequences of adopting such an operator is that it leads to a clean axiomatization of
action restriction in the generative model, without resorting to axioms with implications
as in [5]. Moreover, the axioms for the reactive actions are exactly like the axioms for
the standard actions except for the calculations related to probability (Section 4).
We subsequently show that when evaluating performance measures of a system that

are based on its behavior at a steady state, our approach provides a correct solution
even when the advancing speeds are considered to be exact. In particular, with respect
to the standard approach based on a synchronous parallel composition, we avoid the
state space explosion problem mentioned above (Section 5).
Finally, we present a case study that shows all the main features of our calculus:

the algebraic model of a router implementing a probabilistic multi-path routing mech-
anism (Section 6). In this case study we show that: (i) our approach makes it possible
to analyze systems whose components are speci9ed through actions with largely dif-
ferent exact durations (in our model we have actions lasting from 0:5 �s to 20 ms);
(ii) expressing advancing speeds of processes via a parameterized parallel operator
(instead of, e.g., via weights attached to the actions they can perform) is convenient
from a modeling viewpoint because the modeler can 9rst specify the behavior of pro-
cesses in isolation and then establish, independently of how they are speci9ed, their
advancing speeds when composing them in parallel; (iii) thanks to the use of our prob-
abilistic parallel operator and to the generative–reactive mechanism, it is possible to
de9ne a speci9cation of the router that is easily scalable to an arbitrary size of the
routing table.
To terminate the paper, we report some concluding remarks (Section 7).

2. The generative–reactive model

GRTSs are a mixture of the generative and reactive transition systems of [15].
In a GRTS (a restricted version of the general model of [28]), each transition is la-
beled with an action, which can be either a generative action a or a reactive action
a∗, and a probability. Formally, we denote the set of action types by AType, ranged
over by a; b; : : : . As usual AType includes the special type � denoting internal actions.
We denote the set of reactive actions by RAct= {a∗ | a∈AType} and the set of gen-
erative actions by GAct=AType. The set of actions is denoted by Act=RAct ∪GAct,
ranged over by �; �′; : : :.
Transitions leaving a state are grouped in several bundles. We have a single genera-

tive bundle composed of all the transitions labeled with a generative action and several

364 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

a,

c,

b,

*
 , qb

*
 ,b 1-q

*
d

pq p(1-q)

1-p

Fig. 2. Example of a generative–reactive transition system.

reactive bundles, each one referring to a di$erent action type a and composed of all
the transitions labeled with a∗. A bundle of transitions expresses a probabilistic choice.
On the contrary the choice among bundles is performed non-deterministically.

De�nition 2.1. A probabilistic transition system PTS is a quadruple (S;AType; T; s1)
with
• S a set of states,
• AType a set of action types,
• T ∈M(S ×Act×]0; 1]× S) a multiset 3 of probabilistic transitions,
• and s1 ∈ S the initial state.

De�nition 2.2. A GRTS is a PTS (S;AType; T; s1) such that
(1) ∀s∈ S; ∀a∗ ∈RAct;

∑{|p | ∃t ∈ S : (s; a∗; p; t)∈T |} ∈ {0; 1},
(2) ∀s∈ S;

∑{|p | ∃a∈GAct; t ∈ S : (s; a; p; t)∈T |} ∈ {0; 1}.

The 9rst requirement de9nes the structure of the reactive bundles leaving a state
(one for each action type), and the second requirement says that each state must have
a unique generative bundle. Both requirements say that for each state the probabilities
of the transitions composing a bundle, if there are any, sum up to 1 (otherwise the
summation over empty multisets is de9ned equal to 0).
As an example, we show in Fig. 2 a GRTS composed of a generative bundle which

enables three transitions (a; b; and c), a reactive bundle of type b which enables two
transitions b∗, and a reactive bundle of type d. As in [28] we denote transitions of the
same bundle by grouping them by an arc, and we omit the probability from a transition
label when it is equal to 1.
We recall that reactive actions are seen as incomplete actions which must synchro-

nize with generative actions of another system component in order to form a complete
system. Therefore a fully speci9ed system is performance closed, in the sense that
it gives rise to a fully probabilistic transition system which does not include reactive
bundles. From such a transition system a DTMC can be trivially derived by discard-
ing actions from transition labels. Such a DTMC can, then, be easily analyzed to get
performance measures of systems. Formally, a (homogeneous) DTMC [22] on a set
of states S is de9ned by a transition matrix P= [pi; j]i; j∈S , where pi; j represents the

3 We use “{|” and “|}” as brackets for multisets and M(S) to denote the collection of multisets over
set S.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 365

probability of going from the state i to the state j, and a vector of initial probabili-
ties which associates with each state i∈ S the probability of being the starting state.
From a GRTS ({s1; : : : ; sn};AType; T; s1) not including reactive bundles we derive the
corresponding DTMC P= [pi; j]i; j∈{1;:::; n} (whose vector of initial probabilities assigns
probability 1 to state s1 and probability 0 to all the other states) as follows:

pi;j =
∑ {|p | ∃ a ∈ GAct : (si; a; p; sj) ∈ T |}:

If the system under analysis reaches a steady behavior at a limiting execution time,
we can evaluate its performance by studying the (time averaged) stationary state prob-
abilities of the underlying DTMC P [22, 30]. This is done by computing the vector of
state probabilities �= [�i]i∈{1;:::; n} (such that

∑
i∈{1;:::; n} �i=1) that solves the global

balance equation:

� · P = �:
The ith element �i of the steady state probability vector � represents the probability
that P is in state i when observed at a steady behavior.
Analyzing the system for a particular performance measure can be done by asso-

ciating (bonus) rewards with the generative actions occurring in the system algebraic
speci9cation [20]. In particular we express the performance measure that we want to
evaluate in terms of the reward ra earned by the execution of an action of type a
according to such a performance measure. In order to compute the value m of the
performance measure we have to evaluate the reward structure B= [bi; j]i; j∈{1;:::; n} as-
sociated to the DTMC P underlying the system. This is done as follows:

bi; j =
∑ {∣∣∣∣ ra · p

pi;j

∣∣∣∣ ∃a ∈ GAct : (si; a; p; sj) ∈ T
∣∣∣∣
}
;

where p=pi; j is the probability that the transition with reward ra is performed given that
we perform a transition from state i to state j. We use such probabilities to aggregate
the rewards of several transitions going from state i to state j into a single reward.
Finally, the performance measure m is computed as follows:

m =
∑

i∈{1;:::;n}

∑
j∈{1;:::;n}

�i · bi;j · pi;j:

3. The calculus: syntax and semantics

In this section we introduce the generative–reactive calculus. We begin by presenting
the syntax of the calculus and a detailed explanation of the probabilistic parallel com-
position. We then introduce the calculus operational semantics which generates GRTSs
from process terms. Finally, we present a notion of strong probabilistic bisimulation,
which is shown to be a congruence for the calculus.

3.1. Syntax

The syntax of the generative–reactive process algebra is de9ned as follows.

366 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

Let Const be a set of constants, ranged over by A; B; : : : :

De�nition 3.1. The set L of process terms is generated by the syntax:

P ::= 0 | �:P | P +p P | P‖pS P | P[a → b]p | A;
where a∈AType−{�}; b∈AType; S ⊆AType−{�}; p∈]0; 1[. The set L is ranged
over by P; Q; : : : : We denote by G the set of guarded and closed terms of L.

0 represents a terminated or deadlocked term having no transitions, while the pre9x
operator �:P performs the action � with probability 1 and then behaves like P.
The alternative composition operator P+pQ represents a probabilistic choice between

the generative actions of P and Q and between the reactive actions of P and Q of the
same type. As far as generative actions are concerned, P+p Q executes a generative
action of P with probability p and a generative action of Q with probability 1 − p.
In the case one process P or Q cannot execute generative actions, P+p Q chooses a
generative action of the other process with probability 1 (similarly as in [5]). As far as
reactive actions of a given type a are concerned, P+p Q chooses between the reactive
actions a∗ of P and Q according to probability p, by following the same mechanism.

Example 3.2. As an example, 4 a+p b and b∗ +p b∗ represent purely probabilistic
choices made according to parameter p (see the corresponding GRTSs in Fig. 3(a)).
On the other hand, a+p b∗ and a∗+p b∗ represent purely non-deterministic choices,
where the parameter p is not considered (see Fig. 3(b)). Finally, (a+p′

b∗)+p(b+p′′
b∗)

represents a mixed probabilistic and non-deterministic choice where parameters p′ and
p′′ are not considered and therefore we have: one generative bundle made up of two
transitions a and b, with probabilities p and 1−p, respectively, and one reactive bundle
of type b made up of two transitions b∗, with probabilities p and 1− p, respectively
(see Fig. 3(c)).

The parallel composition operator P ‖pS Q is based on a CSP like synchronization
policy, where processes P and Q are required to synchronize over actions of type in

p
*
,b,pa, 1-p ,

*
1-p

(a)

a b
*

b a
* *

(b)

*
,b

*
,b

(c)

p 1-p1-pb,a, p

b b

Fig. 3. Some examples of GRTSs derived from alternative composition.

4 We abbreviate terms �:0 by omitting the 9nal 0.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 367

the set S, and locally execute all the other actions. Moreover, as already explained
in the introduction, we impose that a synchronization between two actions of type a
may occur only if either they are both reactive actions a∗ (and the result is a reactive
action a∗), or one of them is a generative action a and the other one is a reactive
action a∗ (and the result is a generative action a). As far as generative actions are
concerned, the generative actions of P (Q) executable by P ‖pS Q are such that either
their type a is not in S, or a is in S and Q (P) can perform some reactive action
a∗. In particular, as standard when restricting actions in the generative model [15],
the probabilities of executing such actions are proportionally redistributed so that their
overall probability sums up to 1. The choice among the generative actions of P and
Q executable by P ‖pS Q is made according to probability p, by following the same
probabilistic mechanism seen for alternative composition. In the case of synchronizing
generative actions a of P (Q), their probability is further redistributed among the
reactive actions a∗ executable by Q (P), according to the probability they are chosen
in Q (P). As far as reactive actions of a given type a =∈ S are concerned, P‖pS Q may
perform all the reactive actions a∗ executable by P or Q and the choice among them
is made according to probability p, by following the same probabilistic mechanism
seen for alternative composition. As far as reactive actions of a given type a∈ S are
concerned, if both P and Q may execute some reactive action a∗, the choice of the two
actions a∗ of P and Q forming the actions a∗ executable by P ‖pS Q is made according
to the probability they are independently chosen by P and Q.

Example 3.3. As a 9rst example, consider the term P1≡ ((a +q b) +q′ c) ‖p{b} 0. The
term P1 may execute the generative actions a and c only, because action b must
synchronize but does not have a reactive counterpart in the righthand process. Since
term ((a+q b)+q′ c) in isolation executes the generative action a with probability q′ ·q,
the generative action b with probability q′ ·(1 − q) and the generative action c with
probability 1 − q′, we redistribute the probabilities of a and c by dividing them by
the sum of their probabilities q′ ·q+ 1− q′. Therefore term P1 executes action a with
probability (q′ ·q)=(q′ ·q+1− q′) and action c with probability (1− q′)=(q′ ·q+1− q′)
(see the GRTS of Fig. 4(a)).
As a second example, consider the term P2≡ ((a +q b) +q′ c∗) ‖p{c} c which may

execute the two non-synchronizing generative actions a and b of the lefthand pro-
cess and the synchronizing generative action c of the righthand process (note that
the execution of c is allowed by the reactive action c∗ of the lefthand term). As in
the case of alternative composition, since both processes may execute some genera-
tive actions, we perform a generative action of the lefthand process with probability
p and a generative action of the righthand process with probability 1 − p. Since the
generative actions executable by (a +q b) +q′ c∗ are a with probability q and b with
probability 1 − q (according to the probabilistic mechanism of alternative composi-
tion q′ is not considered), term P2 executes action a with probability p ·q, action b
with probability p ·(1 − q) and action c with probability 1 − p (see the GRTS of
Fig. 4(b)).

368 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

(a)

(qq’ + (1-q’))

qq’

a,

c,

pq

1-p

b, p(1-q)

(b)

(c) (d)

dc

a

b,b,

d

q 1-q

c

b , 1-qb , q

a, c,
(qq’ + (1-q’))

1-q’

**

Fig. 4. Some examples of GRTSs derived from parallel composition.

As a third example, consider the term P3≡ b ‖p{b} (b∗: c +q b∗:d) where only the
lefthand process may execute some generative action. Therefore, as in the case of
alternative composition, we execute the unique generative action b with probability
1 and parameter p is not considered. Such an action synchronizes with one of the
two reactive actions b∗ of the righthand process chosen according to probability q.
Therefore we execute the action b leading to 0 ‖p{b} c with probability q and the action
b leading to 0 ‖p{b} d with probability 1− q (see the GRTS of Fig. 4(c)).

As a 9nal example, consider the term P4≡ (a +q′ b∗) ‖p{b} (b∗: c +q b∗:d). As far
as the generative actions executable by P4 are concerned, only the lefthand process
may execute some generative action, hence, as in the case of alternative composition,
we execute the unique generative action a with probability 1 and parameter p is not
considered. As far as the reactive actions are concerned, P4 may execute reactive actions
of type b because b belongs to the sychronization set and both lefthand and righthand
processes may execute some action b∗. The probability associated with an action b∗
obtained by synchronizing an action b∗ of the lefthand process with an action b∗ of
the righthand process is given by the probability that such actions are independently
chosen by the two processes among their reactive actions of type b. Therefore, since in
our example the lefthand process may perform only one reactive action b∗, P4 executes
the action b∗ leading to 0 ‖p{b} c with probability q and the action b∗ leading to 0 ‖p{b} d
with probability 1− q (see the GRTS of Fig. 4(d)).

The relabeling operator P[a→ b]p turns actions of type a into actions of type b. The
parameter p expresses the probability that reactive actions b∗ obtained by relabeling
actions a∗ of P are executed with respect to the actions b∗ previously performable by
term P. As an example, consider the second GRTS of Fig. 3(b), corresponding to the
process P, a∗ +q b∗, where the choice is purely non-deterministic. If we apply the
relabeling operator P[a→ b]p we obtain the process represented by the second GRTS

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 369

of Fig. 3(a), where the semantics of P[a→ b]p is a probabilistic choice between the
action b∗ obtained by relabeling the action a∗ and the other action b∗, performed
according to probabilities p and 1 − p, respectively. In this way the probabilistic in-
formation p provided in the operator P[a→ b]p guarantees that the relabeling operator
does not introduce non-determinism between reactive actions of the same type. Pa-
rameter p is, instead, not used when relabeling generative actions because the choice
between generative actions of types a and b in P is already probabilistic. Note that,
since b may be the internal action �, P[a→ b]p may behave also as an hiding operator.
Finally, constants A are used to specify recursive systems. In general, when de9ning

an algebraic speci9cation, we assume a set of constant de9ning equations of the form
A,P to be given.
In order to avoid ambiguities, we introduce the following operator precedence rela-

tion: pre9x¿relabeling¿parallel composition¿alternative composition. Moreover we
use the following abbreviations to denote the hiding and relabeling of several action
types. Let “P=L”, where L is a 9nite sequence 〈ap11 ; : : : ; apn

n 〉 of actions ai �= � with an
associated probability pi, stand for the expression P[a1→ �]p1 : : : [an→ �]pn , hiding the
actions with types a1; : : : ; an. In a similar way, let “P[’]”, where ’ is a 9nite sequence
〈(a1; b1)p1 ; : : : ; (an; bn)pn〉 of pairs of actions (ai; bi) such that � =∈{ai; bi}, with an as-
sociated probability pi, stand for the expression P[a1→ b1]p1 : : : [an→ bn]pn , relabeling
the actions of type a1; : : : ; an with the visible actions b1; : : : ; bn, respectively. For the
sake of simplicity, we assume the parameter p to be equal to 1

2 whenever it is omitted
from any operator of our calculus.
Note that we employ a unique alternative composition operator, instead of a purely

probabilistic one and a purely non-deterministic one for two main reasons. First, it
permits to circumscribe all the non-determinism to bundles of di$erent kinds, so that
fully speci9ed systems are performance closed. Second, a unique probabilistic choice
operator is the natural counterpart of the unique parallel composition operator P ‖pS Q
(having two parallel composition operators is not convenient because it makes it im-
possible to express mixed non-deterministic and probabilistic choices between the same
two processes). An important consequence is that, as we will see in Section 5, we can
simply characterize parallel composition by means of alternative composition.
Now, in order to make the reader more familiar with the probabilistic operators of

the language, we present a small example that employs the main features of the mixed
generative–reactive approach on which our calculus is based.

Example 3.4. Let us consider a system composed of a producer and a bu$er. The
overall system can be described as the interaction of two processes:

Producer ‖p{produce} Bu<er:

The probabilistic parallel composition operator “ ‖pS ” is used to express a set of
concurrent system components, their communication interface, and their probabilistic
advancing speed in the way we will describe.

370 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

The communication interface {produce} says that the two processes can interact
by synchronously executing actions of type produce. Each other local action is asyn-
chronously executed by the two processes. Probability p is the parameter of a prob-
abilistic scheduler which, at each discrete time step (whose duration is the time unit
on which the system speci9cation is based), decides which of the two processes must
be scheduled: in each system state the process between Producer and Bu<er that will
execute the next move is probabilistically chosen according to probability p and 1−p,
respectively. As already explained in Section 1.2 this means that process Producer
executes a mean of p actions per time unit, while process Bu<er executes a mean of
1− p actions per time unit.
Now let us detail each component. Process Producer repeatedly produces new items:

Producer, produce:Producer +q �:Producer:

The probabilistic alternative choice operator “ +q ” says that the producer can either
produce a message (action produce) with probability q, or stay idle (action �) with
probability 1− q, and afterwards behaving as the same process Producer. The actions
produce and � are generative, hence according to the generative model of probability
[15], the process itself autonomously decides, on the basis of a probability distribution,
which action will be executed and how to behave after such an event.
Process Bu<er, instead, is ready to accept new incoming items or it stays idle:

Bu<er, (produce∗:discard:Bu<er +r produce∗:store:Bu<er) +r′ �:Bu<er:

The two actions produce∗ allow a synchronous interaction to be activated with an
external process through a synchronization with an action of type produce. The po-
tential interaction is guided by the external process (the producer) and, whenever this
is the case, the bu$er reacts by choosing either the 9rst action produce∗ with prob-
ability r and then discarding the message (generative action discard), or the second
action produce∗ with probability 1− r and then storing the message (generative action
store). The two actions produce∗ are reactive, hence according to the reactive model
of probability [15], the process reacts internally to an external action of type produce
(performed by its environment) on the basis of a probability distribution associated
with the reactive actions of type produce it can perform. In practice, the bu$er re-
acts to stimuli presented by its environment in the form of synchronizing actions of
type produce. This reCects a master–slave discipline, where a master (the producer)
decides the action to execute and the slave (the bu$er) reacts to its decision (reac-
tive actions are incomplete actions which must synchronize with generative actions of
another system component in order to be executed). In our example, process Bu<er
stays idle by executing internal actions � while it is not getting items from the Pro-
ducer. The choice between the reactive actions produce∗ and such an internal event
is just non-deterministic (parameter r′ is not considered), because the execution of a
reactive action produce∗ by means of process Bu<er is entirely guided by the pro-
cess Producer. Whenever the process Producer performs its generative action produce
the process Bu<er will execute one of its produce∗ actions. For instance, in the initial

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 371

state Producer ‖p{produce} Bu<er of our example, the system executes a move of process
Producer with probability p: it executes either the internal move � with probability
p ·(1− q), or the move produce with probability p ·q (with probability p ·q ·r it exe-
cutes a produce action synchronized with the 9rst reactive action of Bu<er and with
probability p ·q ·(1− r) a produce action synchronized with the second reactive action
of Bu<er). On the other hand, the system may schedule with probability 1 − p the
process Bu<er by executing its internal action � (which gets the entire probability 1−p
associated to process Bu<er).

3.2. Parallel composition of processes with di<erent action durations

As already explained in Section 1.2 our probabilistic parallel composition operator
P ‖pS Q can be used to express the concurrent execution of processes P and Q speci9ed
with respect to di$erent action durations. Before showing how this can be done in the
general case we recall some basic concepts concerning the semantics of our parallel
operator.
In the semantic model of P ‖p∅ Q the parallel execution of processes P and Q is

represented as being originated by a single-processor machine executing both processes
via a probabilistic scheduler. In each global state the scheduler probabilistically decides
if P or Q is going to perform the next move according to probabilities p and 1− p,
respectively. In this way, as we explained in Section 1.2, P performs a mean of p
actions per time unit (P is executed with action frequency p) and Q performs a mean
of 1− p actions per time unit (Q is executed with action frequency 1− p).
If we strictly follow this single-processor interpretation of the semantics of P ‖pS Q,

we assume that the speci9cations of processes P and Q are based on the same time
unit u representing action duration, and consequently that actions of P ‖pS Q also take
time u to be executed, i.e. u is also the time unit of P ‖pS Q. Since P and Q must share
a single resource (the processor), the e$ect of putting P in parallel with Q is that
both P and Q get slowed down. In particular, when P (Q) is considered in isolation
it executes one action per time unit u; when, instead, it is assumed to be in parallel
with Q (P) by means of P ‖p∅ Q, it executes p (1− p) actions per time unit u.
On the other hand such an action interleaving based representation of P ‖pS Q can

be interpreted as being an abstract description of the actual concurrent execution of
two processes P and Q speci9ed with respect to (possibly) di$erent action durations,
as in the case of the post oIce example of Section 1.2. In general, if fP is the mean
action frequency assumed in the speci9cation of P (an action of P is assumed to take
time 1=fP on average to be executed) and fQ is the mean action frequency assumed
for the speci9cation of Q, it is easy to derive a time unit u and a probability p such
that, if we assume actions to take time u to be executed, P ‖p∅ Q represents the actual
concurrent execution of processes P and Q with mean action frequencies fP and fQ,
respectively. Since the mean action frequency of process P is fP and the mean action
frequency of process Q is fQ, the mean action frequency of the parallel composition
of P and Q must be f=fP +fQ. Therefore the time unit representing the duration of

372 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

the actions of P ‖p∅ Q that we have to consider is u=1=f=1=(fP+fQ), and the action
frequency p of P with respect to the new time unit u is given by fP =p=u=p ·f,
hence p=fP=f=fP=(fP+fQ). Similarly, the action frequency 1−p of Q with respect
to u turns out to be 1− p=fQ=f=fQ=(fP + fQ). It is worth noting that by adopting
a suitable time unit in this way, the speed at which P and Q are executed when they
are considered in isolation is not reduced when they are executed in parallel.

Example 3.5. Let us consider a system composed of a server managing a video-
conference and a mail server. The 9rst server must broadcast the Cow of video images,
hence requires a high-speed channel to deliver data, while the second server mainly
deals with textual messages, hence has smaller requirements in terms of channel band-
width.
Let us 9rst consider the scenario where the two servers share a single high-speed

channel which can transmit 500 data packets per second. Since both servers must send
data over the same channel we assume a probabilistic scheduling policy for access-
ing the channel. In particular, since the video-conference server requires much larger
bandwidth than the mail server we assume that every 2 ms (the time it takes to send
a packet through the channel) we schedule: a data packet coming from the video-
conference server with probability 0.8, a data packet coming from the mail server with
probability 0.2. In the system algebraic speci9cation we represent the transmission over
the channel of a packet coming from the video-conference server with actions a and the
transmission over the channel of a packet coming from the mail server with actions b.
The system is then speci9ed by the term A ‖0:8∅ B, where A, a:A (which repeatedly
executes actions a) describes the behavior of the video-conference server and B, b:B
describes the behavior of the mail server. The time unit that we adopt is 2 ms. If we
consider the speci9cation A in isolation, the video-conference server has at its disposal
the full bandwidth of the channel, hence it transmits a packet every time unit, i.e. 500
data packets per second. The same happens if we consider the speci9cation B of the
mail server in isolation. When instead we consider the system A ‖0:8∅ B, since the two
servers must share a unique channel, the e$ect that we obtain is that both servers get
slowed down. In particular the video-conference server transmits 0.8 packets per time
unit, i.e. 400 packets per second, while the mail server transmits 0.2 packets per time
unit, i.e. 100 packets per second.
We can give a di$erent interpretation to the same speci9cation A ‖0:8∅ B by considering

it as the description of the two servers in a di$erent scenario where each of them has
a dedicated channel: the video-conference server has an outgoing channel which can
transmit a mean of 400 packets per second, while the mail server has an outgoing
channel which can transmit a mean of 100 packets per second. According to this
interpretation the actions a executed by process A (considered in isolation) represent
the transmission of a packet of the video-conference server over its dedicated channel
and take a mean of 2:5 ms to be executed, while the actions b executed by process B
(considered in isolation) represent the transmission of a packet of the mail server over
its dedicated channel and take a mean of 10 ms to be executed. In order to specify

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 373

the actual concurrent execution of processes A and B we have to consider the global
action frequency of the two processes, i.e. the total number 400 + 100 of packets per
second they transmit, and take as time unit the mean time to send a packet in the
overall system, i.e. 1=(400 + 100) s or equally 2 ms. Then we have to compute the
action frequency p of A with respect to such a time unit. 400 packets per second
correspond to 0:8=400=500 packets per 2 ms. Similarly, the action frequency 1 − p
of B with respect to the adopted time unit turns out to be 0:2=100=500 packets per
2 ms. Therefore the speci9cation A ‖0:8∅ B with respect to the time unit 2 ms represents
the actual parallel execution of the two servers. In particular, di$erently from the case
of the shared channel their advancing speed is not reduced when they are executed in
parallel.

3.3. Semantics

The formal semantics of our calculus maps terms onto GRTSs, where each transition
label is composed of an action and a probability.
We assume the following abbreviations that will make the de9nition of the semantic

rules easier. We use P �→ to stand for ∃p; P′ :P
�;p−→ P′, meaning that P can execute

action � and P G→ to stand for ∃ a∈G :P a→; G⊆AType, meaning that P can execute
a generative action of type belonging to set G.
The GRTS deriving from a term G is de9ned by the operational rules in Tables 1

and 2, where in addition to the rules (r2l)–(r5l) and (g2l)–(g7l) referring to a local
move of the lefthand process P, we consider also the symmetrical rules (r2r)–(r5r)
and (g2r)–(g7r) taking into account the local moves of the righthand process Q, ob-
tained by exchanging the roles of terms P and Q in the premises and, for rules (r2r);
(r4r), (g2r), (g4r) and (g6r), by replacing p with 1 − p in the label of the derived
transitions. Similarly as in [18], we consider the operational rules as generating a mul-
tiset of transitions (consistently with the de9nition of a GRTS), where a transition has
arity n if and only if it can be derived in n possible ways from the operational rules.
Note that even if the operational rules in Tables 1 and 2 include negative premises,
this does not cause inconsistencies because when applying such rules for deriving the
moves of a term P, the negative premises always refer to the moves of a subterm of
P (and not of P itself), hence the operational semantics is strati9able [16].
Rule (r1) states that a term a∗:P may execute a single reactive bundle of type a

composed of a single transition leading to state P.
Rules (r2) state that, for any type a, the reactive bundle a executable by P +p Q

is obtained by redistributing the probabilities of the transitions composing the reactive
bundle a of P and Q, according to p and 1−p, respectively. In the case the reactive
bundle a of P or Q is empty, according to (r3), P +p Q simply inherits the reactive
bundle a of the other process, without considering the parameter p.
Rules (r4) and (r5) state that, for any type a =∈ S, the reactive bundle a executable

by P‖pS Q is obtained as previously explained for the alternative composition. Rule
(r6) states that, for any type a∈ S, if both the reactive bundles a of P and Q are

374 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

Table 1
Semantic rules for reactive transitions

(r1) a∗:P
a∗ ; 1−−−→ P

(r2l)
P

a∗ ; q−−−→ P′ Q
a∗−−−→

P +p Q
a∗ ; p·q−−−→ P′

(r3l)
P

a∗ ; q−−−→ P′ Q
a∗
=−−−→

P +p Q
a∗ ; q−−−→ P′

(r4l)
P

a∗ ; q−−−→ P′ Q
a∗−−−→

P ‖pS Q
a∗ ; p·q−−−→ P′ ‖pS Q

a
∈ S (r5l)
P

a∗ ; q−−−→ P Q
a∗
=−−−→

P ‖pS Q
a∗ ; q−−−→ P′ ‖pS Q

a
∈ S

(r6)
P

a∗ ; q−−−→ P′ Q
a∗ ; q′−−−→ Q′

P ‖pS Q
a∗ ; q·q′−−−→ P′ ‖pS Q′

a∈ S

(r7) P
a∗ ; q−−−→ P′ P

b∗−−−→
P[a→ b]p

b∗ ; p·q−−−→ P′[a→ b]p
(r8)

P
a∗ ; q−−−→ P′ P

b∗
=−−−→

P[a→ b]p
b∗ ; q−−−→ P′[a→ b]p

(r9) P
b∗ ; q−−−→ P′ P

a∗−−−→
P[a→ b]p

b∗ ;(1−p)·q−−−−−→ P′[a→ b]p
(r10)

P
b∗ ; q−−−→ P′ P

a∗
=−−−→

P[a→ b]p
b∗ ; q−−−→ P′[a→ b]p

(r11) P
c∗ ; q−−−→ P′

P[a→ b]p
c∗ ; q−−−→ P′[a→ b]p

c
∈ {a; b}

(r12) P
a∗ ; q−−−→ P′

A
a∗ ; q−−−→ P′

if A,P

non-empty, then the reactive bundle a of P ‖pS Q is non-empty, and is obtained by
merging the two reactive bundles a of P and Q. In particular, the probability assigned to
each transition a∗ composing the reactive bundle a of P ‖pS Q, is equal to the probability
that the two synchronizing transitions a∗ of P and Q are independently chosen by P
and Q.
Rules (r7) and (r9) state that, the reactive bundle b executable by P[a→ b]p is

obtained by redistributing the probabilities of the transitions composing the reactive
bundles a and b of P, according to p and 1 − p, respectively. As for the alternative
composition, if the reactive bundle a of P is empty, according to (r10), P[a→ b]p

simply inherits the reactive bundle b of P, without considering the parameter p. Sim-
ilarly, if the reactive bundle b of P is empty, according to (r8), the reactive bundle b
of P[a→ b]p is obtained from the reactive bundle a of P by simply relabeling actions
in transitions, without considering the parameter p. Rule (r11) states that, for any type
c =∈{a; b}, P[a→ b]p simply inherits the reactive bundle c of P.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 375

Table 2
Semantic rules for generative transitions

(g1) a:P
a;1−−−→ P

(g2l)
P

a; q−−−→ P′ Q GAct−−−→
P +p Q

a;p·q−−−→ P′
(g3l)

P
a; q−−−→ P′ Q

GAct
=−−−→

P +p Q
a; q−−−→ P′

(g4l)
P

a; q−−−→ P′ Q
GS; P−−−→

P ‖pS Q
a; p·q='P (GS; Q)−−−−−−−→ P′ ‖pS Q

a
∈ S

(g5l)
P

a; q−−−→ P′ Q
GS; P

=−−−→

P ‖pS Q
a; q='P (GS; Q)−−−−−−→ P′ ‖pS Q

a
∈ S

(g6l)
P

a; q−−−→ P′ Q
a∗ ; q′−−−→ Q′ Q

GS; P−−−→

P ‖pS Q
a; p·q′·q='P (GS; Q)−−−−−−−−−→ P′ ‖pS Q′

a∈ S

(g7l)
P

a; q−−−→ P′ Q
a∗ ; q′−−−→ Q′ Q

GS; P

=−−−→

P ‖pS Q
a; q′·q='P (GS; Q)−−−−−−−−→ P′ ‖pS Q′

a∈ S

(g8)
P

a; q−−−→ P′

P[a→ b]p
b; q−−−→ P′[a→ b]p

(g9) P
c; q−−−→ P′

P[a→ b]p
c; q−−−→ P′[a→ b]p

a
= c

(g10) P
a; q−−−→ P′

A
a; q−−−→ P′

if A,P

Rule (r12) states that the reactive bundles executable by A such that A,P are the
same reactive bundles executable by P.
Rules (g1), (g2), and (g3) are similar to the corresponding reactive rules. We only

point out that the set GAct is used in the premises of rules (g2) and (g3) because all
generative actions are grouped in a single bundle.
According to rules (g4)–(g7), the generative transitions of P (Q) executable by

P ‖pS Q are such that either their type a is not in S, or a is in S and Q (P) can
perform some reactive action a∗. In rules (g4)–(g7) we assume the set GS;P ⊆AType,
with S ∈AType − {�} and P ∈G, to be de9ned as follows:

GS;P = {a ∈ AType | a �∈ S ∨ (a ∈ S ∧ P a∗→)}:
In this way GS;Q (GS;P) is the set of types of the generative transitions of P (Q)
executable by P ‖pS Q. Since we consider a restricted set of executable actions, as

376 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

explained in Section 3.1 we redistribute the probabilities of the generative transitions
of P (Q) executable by P ‖pS Q so that their overall probability sums up to 1 [15]. To
this aim in semantic rules we employ the function 'P(G) :P(AType) →] 0; 1], with
P ∈G, de9ned as follows:

'P(G)=
∑ {|p | ∃P′; a ∈ G : P

a;p−→P′|}
which computes the sum of the probabilities of the generative transitions executable
by P whose type belongs to the set G. In this way 'P(GS;Q) ('Q(GS;P)) computes the
overall probability of the generative transitions of P (Q) executable by P ‖pS Q and can
be used to normalize the probabilities of the generative transitions of P (Q). Finally,
the generative bundle of P ‖pS Q is obtained by redistributing the probabilities of the
normalized generative transitions of P and Q executable by P ‖pS Q according to p and
1− p, as for the alternative composition. The probability of the generative transitions
a of P (Q), such that a∈ S, must be further distributed among the reactive transitions
belonging to the reactive bundle a of Q (P).
Rules (g8) and (g9) state that the generative bundle of P[a→ b]p is obtained from

the generative bundle of P by simply relabeling actions in transitions, without consid-
ering the parameter p. Finally, rule (g10) is the exact counterpart of (r12).

De�nition 3.6. The operational semantics of P ∈G is the PTS <P= composed of the
terms reachable from P according to the operational rules of Tables 1 and 2. We say
that P ∈G is performance closed if and only if <P= does not include reactive transitions.

Lemma 3.7. Let P and Q be two processes of G. If <P= and <Q= are GRTSs; then
<�:P=; <P[a→ b]p=; <P +p Q= and <P ‖pS Q= are GRTSs. Moreover; recursive de9nitions
preserve the property of being a GRTS.

Proof. The result simply derives from the fact that, as explained above for each op-
erational rule, the application of an operator preserves the bundle structure of GRTSs.

Theorem 3.8. If P is a process of G; then <P= is a GRTS.

Proof. The result derives by structural induction by using Lemma 3.7.

3.4. Equivalence

We now equip the algebra with a probabilistic bisimulation equivalence (along the
lines of [23]), which relates systems having the same functional and probabilistic be-
havior. We 9rst introduce a function capturing the total probability with which a term
reaches a given class of terms by executing a given action of Act.

De�nition 3.9. We de9ne function Prob : (G×Act×P(G))→ [0; 1] by

Prob(P; �; C) =
∑ {|p |P �;p−→ P′ ∧ P′ ∈ C|}:

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 377

De�nition 3.10. An equivalence relation B⊆G×G is a strong probabilistic bisimula-
tion if and only if, whenever (P;Q)∈B, then for all �∈Act and equivalence classes
C ∈G=B

Prob(P; �; C) = Prob(Q; �; C):

The strong probabilistic bisimulation equivalence, denoted by ∼PB, is the union of all
the strong probabilistic bisimulations.

Theorem 3.11. ∼PB is a congruence w.r.t. all the algebraic operators and recursive
de9nitions.

Proof. The most relevant cases are those of parallel composition operator and recursive
de9nitions. In the case of the parallel operator, it suIces to show that {(P1 ‖pS Q; P2 ‖pS
Q) |P1; P2; Q∈G:P1∼PB P2}∪ IdG, where IdG is the identity relation over G, is a
strong probabilistic bisimulation. In the case of recursive de9nitions, it suIces to apply
the technique introduced in [11].

4. Axiomatization

In this section we develop an equational characterization of ∼PB for the set G9n

of non-recursive terms of G, i.e. guarded and closed terms of our generative–reactive
calculus not including constants A.
In order to produce a 9nite axiom system which is sound and complete over G9n

processes we adopt (as e.g. in [5]) the standard technique of expressing the parallel
composition operator by means of the left merge �pS and the synchronization merge |pS
operators. Moreover, in order to achieve completeness we need to introduce an auxiliary
operator 〈P〉JK , so that when a term 〈P〉JK is derived from P by the axiom system, K
denotes the bundles executable by P and J denotes the type of the executable generative
actions in the case the generative bundle belongs to K . Formally, we de9ne bundle
kinds as follows. Given a term P, “•” is the kind of the generative bundle executable
by P, while a is the kind of the reactive bundle of type a executable by P. We denote
with BKind = {•}∪AType the set of bundle kinds, ranged over by *; *′; : : : :
We denote by Gext the set of terms obtained by extending the syntax of G9n terms

with the auxiliary operators �pS and |pS , and the new operator 〈P〉JK , where K is a 9nite
set of bundle kinds, i.e. a subset of BKind, and J ⊆GAct is such that J �= ∅⇔ • ∈K .
Intuitively we have to introduce the new operator 〈P〉JK in order to understand the

role of parameter p in a choice P+pQ, which can be probabilistic or non-deterministic
depending on which bundles are executable by P and Q. In particular, we have that the
choice 〈P〉JK+p〈Q〉J ′K′ is purely probabilistic when there exists * such that K =K ′= {*},
while it is purely non-deterministic whenever K and K ′ are disjoint.
In order to make it possible to produce an axiom system which, besides being

complete, is also sound, we de9ne an operational semantics for the new operator 〈P〉JK .

378 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

As for the other operators of our calculus we will show that such semantics produces
GRTSs and that 〈P〉JK satis9es the congruence property.
The role of the operator 〈P〉JK in our axiom system is just to denote that, when

〈P〉JK is derived from P, the bundles executable by P are exactly the bundles stated
by K and the types of the generative transitions of P are included in J . Therefore the
operator 〈P〉JK must have no e$ect on the behavior of processes P satisfying such a
requirement. However, even if our axiom system cannot produce a term 〈P〉JK from
a process P not satisfying the requirement above, we have to de9ne the semantics
of 〈P〉JK over arbitrary terms P. The idea here is to de9ne 〈P〉JK in such a way that,
independently on which are the bundles executable by P, the bundles executable by
〈P〉JK satisfy the requirement above. As we will see, de9ning 〈P〉JK in this way will
lead to the soundness of our axiom system.
The operational semantics of 〈P〉JK is de9ned by the semantic rules de9ned in the

9rst part of Table 3. In this table we employ the function * :Act→BKind which
determines the kind of bundle a transition belongs to. Formally *(�) is de9ned as
follows:

∀a ∈ GAct: *(a) = •;
∀a∗ ∈ RAct: *(a∗) = a:

Rule (e1) eliminates all the transitions of P not executable according to K and J .
Rule (e2) creates a reactive bundle of type a in the case P cannot execute such a
bundle and a∈K . Rule (e3) creates a complete generative bundle in the case •∈K
and the generative transitions of P whose type is in J do not form a complete generative
bundle. The action a used in rule (e3) is any 9xed arbitrarily chosen generative action
a∈ J . Such an action can be considered as a 9xed parameter of the operator 〈P〉JK .
In the second and third part of Table 3 we present the obvious operational rules for

�pS and |pS that derive from those we presented for the parallel operator.

Lemma 4.1. Let P and Q be two processes of Gext. If <P= and <Q= are GRTSs then
<〈P〉JK =; <P �pS Q=; and <P |pS Q= are GRTSs.

Proof. The result simply derives from the fact that, as it can be easily veri9ed, the
application of the operators <〈P〉JK =, <P �pS Q=, and <P |pS Q= preserve the bundle structure
of GRTSs. In particular for the left merge and synchronization merge operators this is
a trivial consequence of the fact that the bundle structure is preserved by the parallel
operator.

Theorem 4.2. If P is a process of Gext ; then <P= is a GRTS.

Proof. The result derives by structural induction by using Lemmas 3.7 and 4.1.

Theorem 4.3. ∼PB is a congruence w.r.t. the auxiliary operators 〈P〉JK ; P �pS Q and
P |pS Q.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 379

Table 3
Semantic rules for 〈P〉JK , P �pS Q, and P |pS Q

(e1) P
�; q−−−→ P′

〈P〉JK
�; q−−−→ P′

if
*(�) ∈ K ∧
(*(�)= • ⇒ � ∈ J)

(e2)
P

a∗
=−−−→

〈P〉JK
a∗ ; 1−−−→ 0

if a∈K (e3)
'P(J)¡ 1

〈P〉JK
a; 1−'P (J)−−−−−→ 0

if
• ∈ K ∧
a ∈ J

(lm1)
P

a∗ ; q−−−→ P′ Q
a∗−−−→

P �pS Q
a∗ ; p·q−−−→ P′ ‖pS Q

a
∈ S (lm2)
P

a∗ ; q−−−→ P′ Q
a∗
=−−−→

P �pS Q
a∗ ; q−−−→ P′ ‖pS Q

a
∈ S

(lm3)
P

a; q−−−→ P′ Q
GS; P−−−→

P �pS Q
a; p·q='P (GS; Q)−−−−−−−→ P′ ‖pS Q

a
∈ S

(lm4)
P

a; q−−−→ P′ Q
GS; P

=−−−→

P �pS Q
a; q='P (GS; Q)−−−−−−→ P′ ‖pS Q

a
∈ S

(lm5)
P

a; q−−−→ P′ Q
a∗ ; q′−−−→ Q′ Q

GS; P−−−→

P �pS Q
a; p·q′·q='P (GS; Q)−−−−−−−−−→ P′ ‖pS Q′

a∈ S

(lm6)
P

a; q−−−→ P′ Q
a∗ ; q′−−−→ Q′ Q

GS; P

=−−−→

P �pS Q
a; q′·q='P (GS; Q)−−−−−−−−→ P′ ‖pS Q′

a∈ S

(sm1)
P

a∗ ; q−−−→ P′ Q
a∗ ; q′−−−→ Q′

P |pS Q
a∗ ; q·q′−−−→ P′ ‖pS Q′

a∈ S

Proof. As far as the operator 〈P〉JK is concerned the result simply derives from the
fact that, if P1 ∼PB P2 then for any set of action types J we have that 'P1 (J)= 'P2 (J),
hence 〈P1〉JK ∼PB 〈P2〉JK . Moreover, since the equivalence ∼PB does not abstract from
� transitions the congruence w.r.t. the auxiliary operators P �pS Q and P |pS Q is just a
trivial consequence of the congruence with respect to the parallel operator (see [1]).

The equational characterization of ∼PB is composed of the set A of axioms shown
in Table 4. The axioms A1 −A5 express the basic properties of the choice operator.
The axioms BK1 − BK3 generate the brackets 〈P〉JK denoting the bundles executable

380 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

Table 4
Axiomatization

(A1) P +p 0 = P
(A2) P +p P = P
(A3) P +p Q = Q +1−p P
(A4) (〈P〉J{*} +p 〈Q〉J ′{*}) +

q 〈R〉J ′′{*} = 〈P〉J{*} +pq (〈Q〉J ′{*} +
(1−p)·q=(1−p·q) 〈R〉J ′′{*})

(A5) (〈P〉JK +p 〈Q〉J ′K′) +q R = 〈P〉JK +q (〈Q〉J ′K′ +q R) K ∩K ′ = ∅

(BK1) a:P = 〈a:P〉{a}{•}
(BK2) a∗: P = 〈a∗: P〉∅{a}
(BK3) 〈P〉JK +p 〈Q〉J ′K′ = 〈〈P〉JK +p 〈Q〉J ′K′ 〉J ∪ J ′

K∪K′

(R1) 0[a → b]p = 0
(R2) �:P[a → b]p = �: (P[a → b]p) � =∈{a; a∗}
(R3) a:P[a → b]p = b: (P[a → b]p)
(R4) a∗: P[a → b]p = b∗: (P[a → b]p)
(R5) (〈P〉JK +ND 〈Q〉J ′K′)[a → b]p = 〈P〉JK [a → b]p +ND 〈Q〉J ′K′ [a → b]p

a; b =∈K ∧ K ∩K ′ = ∅
(R6) (〈P〉∅{a} +ND 〈Q〉∅{b})[a → b]p = 〈P〉∅{a}[a → b]p +p 〈Q〉∅{b}[a → b]p

(R7) (〈P〉J{*} +q 〈Q〉J ′{*})[a → b]p = 〈P〉J{*}[a → b]p +q 〈Q〉J ′{*}[a → b]p

(P) P ‖pS Q = (P �pS Q +p Q �1−p
S P) +ND P |pS Q

(LM1) 0 �pS Q = 0
(LM2) a∗: P �pS Q = 0 a∈ S
(LM3) a:P �pS 0 = 0 a∈ S
(LM4) a:P �pS �:Q = 0 a∈ S ∧ �
= a∗
(LM5) a:P �pS a∗:Q = a:(P ‖pS Q) a∈ S
(LM6) a:P �pS (Q +q R) = a:P �pS Q +q a:P �pS R a∈ S
(LM7) �:P �pS Q = �:(P ‖pS Q) � =∈ S
(LM8) (P +q 〈Q〉J{•})�

p
S 〈R〉J

′
K = P �pS 〈R〉J

′
K J ⊆ S ∧ J ∩K = ∅

(LM9) (〈P〉JK +q 〈Q〉J ′K′)�pS 〈R〉J
′′

K′′ = 〈P〉JK�pS 〈R〉J
′′

K′′ +q 〈Q〉J ′K′�pS 〈R〉J
′′

K′′
(J ∪ J ′)∩ S ⊆ K ′′

(SM1) P |pS Q = Q |1−p
S P

(SM2) 0 |pS Q = 0
(SM3) �:P |pS �′:Q = 0 � =∈{a∗|a∈ S} ∨ �
= �′
(SM4) a∗: P |pS a∗:Q = a∗:(P ‖pS Q) a∈ S
(SM5) (P +q Q)|pS R = P |pS R +q Q |pS R

by P. The axioms R1 −R7 and P, LM1 −LM9;SM1 −SM5 refer to the relabeling
and parallel composition operators, respectively.

Theorem 4.4. The axiom system A is sound for ∼PB over processes of Gext .

Proof. Just a trivial veri9cation of the consistency of the axioms with respect to the
operational semantics of the operators. In particular note that the internal angular paren-
theses in the righthand term of axiom BK3 are necessary to achieve soundness. If we
had considered external angular parentheses only, then the axiom system would have
been complete but not sound, as can be seen by taking, e.g. P≡ 0. Moreover, note
that axiom LM6 is sound because we apply it when the lefthand process is guarded

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 381

by a synchronizing generative action a waiting for the reactive counterpart a∗ in the
righthand process.

The axiom A2 expresses idempotency and A3 a form of commutativity which com-
plements the parameter p (as in [5]).
The axiom A4 expresses associativity for pure probabilistic choices, i.e. choices

among terms enabling a single common bundle. The axiom de9nes how probabilistic
parameters must be adjusted so that the probability of executing a given member of
the sum is preserved (as in [5]).
Thanks to the properties of commutativity and associativity of pure probabilistic

choices we can just use the notation 5∑
i∈{1;:::;n}

[pi]〈Pi〉Ji{*}

as a shorthand notation for a probabilistic choice among 〈P1〉J1{*} : : : 〈Pn〉Jn{*}, where pi

is the probability of executing 〈Pi〉Ji{*}.
The axiom A5 expresses associativity for choices where two of the terms involved

enable disjoint sets of bundle kinds. Two particular cases of A5 lead to two important
properties of the choice operator.
By taking R≡ 0 in A5 and applying axiom A1 we obtain

〈P〉JK +p 〈Q〉J ′K′ = 〈P〉JK +q 〈Q〉J ′K′ if K ∩ K ′ = ∅:
This equation expresses the fact that whenever we have a choice between two terms
enabling di$erent bundles, i.e. a pure non-deterministic choice, the probabilistic param-
eter of the choice is not important. Thanks to this property, suppose K ∩K ′= ∅, we
can just use the notation 〈P〉JK+ND 〈Q〉J ′K′ , to stand for any term 〈P〉JK+p 〈Q〉J ′K′ obtained
for a particular choice of p. 6

By taking R≡〈R′〉J ′′K′′ , such that K ′′ ∩K = ∅ and K ′′ ∩K ′= ∅, in A5 and by taking
into account the previous equation we obtain

(〈P〉JK +ND 〈Q〉J ′K′) +ND 〈R〉J ′′K′′ = 〈P〉JK +ND (〈Q〉J ′K′ +ND 〈R〉J ′′K′′)

if K; K ′; K ′′ are pairwise disjoint:

This equation expresses associativity for pure non-deterministic choices, i.e. choices
among terms enabling disjoint sets of bundles.
Thanks to the properties of commutativity and associativity of pure non-deterministic

choices we can just use the notation∑
i∈{1;:::;n}

[ND]〈Pi〉JiKi

5 We assume
∑

i∈I [pi]〈Pi〉Ji{*} ≡ 0 whenever I = ∅.
6 This notation is employed just to improve the readability of axioms: whenever P+ND Q occurs in some

equation, it could just be replaced by any choice of a particular parameter p.

382 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

as a shorthand notation for a non-deterministic choice among 〈P1〉J1K1 : : : 〈Pn〉JnKn
, where

Ki with i∈{1; : : : ; n} are pairwise disjoint.
Besides the two properties above that the axiom A5 expresses, this axiom is impor-

tant in that it allows us to turn any sequential term (a term made up of 0, pre9x and
choice) into sum normal form.

De�nition 4.5. P ∈Gext is in sum normal form (snf) if and only if

P ≡ ∑
i∈I
[pi]ai:Pi +ND ∑

a∈AType
[ND]

∑
i∈I a

[pi]a∗:Pi;

where every Pi is itself in snf. 7 We assume the sets of indexes I and I a for each
a∈AType to be pairwise disjoint, i.e. ∀a∈AType: Ia ∩ I = ∅ and ∀a; b∈AType; a �= b:
Ia ∩ Ib= ∅.

The axioms R1 −R7 characterize the behavior of the relabeling operator and allow
us to turn a term P[a → b]p, where P is in snf, into snf. More precisely, we resort
to the axioms R5 − R7 for distributing the relabeling operator among the alternative
behaviors of P, and then we use axioms R1 −R4 for applying the relabeling operator
to each 0 or pre9x term. In particular, axiom R6 speci9es how the non-deterministic
choice among reactive actions a∗ and b∗ in P becomes a probabilistic choice (with
parameter p) among reactive actions b∗ in P[a → b]p. Note that, thanks to the fact
that relabeling employs the same choice mechanism between reactive actions a∗ and
b∗ as that of alternative composition, it is possible to express relabeling with parameter
p in terms of choice with parameter p.
The axiom P characterizes the parallel composition operator in terms of the left

merge �pS and the synchronization merge |pS operators (see e.g. [5]) and allows us
to turn a term P ‖pS Q, where P and Q are in snf, into snf. In particular, we resort
to the left merge in order to express the local reactive and generative moves of the
lefthand process, including the generative moves which synchronize with a reactive
response of the righthand process (note that such moves are those depending on the
parameter p of the parallel composition, see axioms LM1 − LM9), and we resort
to the synchronization merge in order to express the synchronizing reactive moves
(see axioms SM1 − SM5). Note that, thanks to fact that the parallel composition
operator employs the same choice mechanism between the generative and reactive
actions locally executed by P and Q as for the alternative composition, it is possible
to express parallel composition with parameter p in terms of choice with parameter
p. As far as generative actions are concerned, the operator 〈P〉JK used in axioms LM8

and LM9 allows us to deal with action restriction (which in our calculus arises from
parallel composition), without resorting to axioms with implications as in [5]. Finally,
it is worth noting that when considering only reactive actions we obtain a smooth

7 The use of
∑

and ND is correct since we have ai:Pi = 〈ai:Pi〉J{•} (axiom A4) and a∗: Pi = 〈a∗: Pi〉∅{a}
(axiom A5).

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 383

probabilistic extension of the classical axiomatization for the parallel composition by
means of the left and synchronization merge.

Lemma 4.6. For any P∈G9n there exists P′∈G9n in snf such that A�P=P′.

Proof. The proof proceeds by structural induction over terms P ∈G9n. The base step
of the induction is just when P is a pre9x operator or 0, hence it is already in snf.
For the inductive step we have the following cases:

• Suppose terms P1 and P2 are in snf we show that P≡P1 +p P2 can be turned into
snf by using axiom A5.
Since P1 is in snf we can, by using axioms BK1 −BK3, write it as: 〈P′

1〉JK +ND

〈P′′
1 〉J

′
* with * =∈K .

From P=(〈P′
1〉JK +ND 〈P′′

1 〉J
′

*) +
p P2 we derive, by using A5:

P = 〈P′
1〉JK +p (〈P′′

1 〉J
′

* +
p P2):

Now, suppose P2 enables the bundle * (the opposite case is trivial), since P2 is
in snf we can, by using axioms BK1 −BK3, write it as: 〈P′

2〉J
′′

K′ +ND 〈P′′
2 〉J

′′′
* with

* =∈K ′.
Therefore we have: P= 〈P′

1〉JK +p (〈P′′
1 〉J

′
* +

p (〈P′
2〉J

′′
K′ +ND 〈P′′

2 〉J
′′′

*)).
By applying axiom A3 we have

P = 〈P′
1〉JK +p ((〈P′

2〉J
′′

K′ +ND 〈P′′
2 〉J

′′′
*) +1−p 〈P′′

1 〉J
′

*):

By applying the axiom A5 we have

P = 〈P′
1〉JK +p (〈P′

2〉J
′′

K′ +ND (〈P′′
2 〉J

′′′
* +1−p 〈P′′

1 〉J
′

*)):

By applying two times the axiom A3 we have

P = ((〈P′′
2 〉J

′′′
* +1−p 〈P′′

1 〉J
′

*) +
ND 〈P′

2〉J
′′

K′) +1−p 〈P′
1〉JK :

By applying the axiom A5 we have

P = (〈P′′
2 〉J

′′′
* +1−p 〈P′′

1 〉J
′

*) +
ND (〈P′

2〉J
′′

K′ +1−p 〈P′
1〉JK):

By applying two times the axiom A3 we have

P = (〈P′′
1 〉J

′
* +

p 〈P′′
2 〉J

′′′
*) +ND (〈P′

1〉JK +p 〈P′
2〉J

′′
K′):

In this expression we have isolated the bundle * from the other bundles. Now
the same procedure is applied to (〈P′

1〉JK +p 〈P′
2〉J

′′
K′) which no longer includes the

bundle *. When all the bundles have been isolated in this way we have obtained an
expression in snf for term P.

• Suppose term P1 is in snf it is easy to see that P≡P1[a → b]p can be turned into
snf by using axioms R1 − R7. We 9rst employ the axioms R5 − R7 in order to
properly apply the relabeling operator to each alternative behavior of P. We apply
the relabeling operator to each component of P representing a single bundle by

384 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

using axiom R5. It is worth noting that axiom R5 cannot be used to distribute the
relabeling operator among the two reactive bundles a and b. In order to do this,
we apply axiom R6, as it recomputes the probability distribution of the reactive
bundles a and b (by using the parameter p) according to the fact that the reactive
actions a∗ will be turned into the reactive actions b∗. Finally, for each component
representing a single bundle, we use axiom R7 in order to distribute the relabeling
operator among the possible behaviors of the bundle. Then we apply the relabeling
operator to each 0 or pre9x term by means of axioms R1 −R4.

• Suppose terms P1 and P2 are in snf it is easy to see that P≡P1 ‖pS P2 can be turned
into snf by using axioms P, LM1 −LM9 and SM1 −SM5.
In particular, we resort to the synchronization merge in order to manage the actions

of the synchronizing reactive bundles belonging to the set S, and the left merge for
the local reactive and generative actions, including the generative actions which
synchronize with a reactive action. In the case of the synchronization merge, by
applying the axioms SM1 and SM5 we obtain a term in sum form on which we
can apply the axioms SM2, SM3 and SM4. Note that the axiom SM1 is the exact
counterpart of the axiom A3, and all the axioms we use are exactly as in the classical
axiomatization except for the presence of the parameter p in the parallel operator.
In the case of the left merge, by applying the axioms LM8 and LM9 we obtain a
term in sum form on which we can apply the axioms LM1 −LM7. In particular,
the axiom LM8 allows us to eliminate the transitions representing the subset of
the generative bundle which is blocked because of the synchronization constraint
expressed by the set S of the parallel operator. After this, we can apply the axiom
LM9 in order to distribute the left merge operator among the components in sum
form of the left side of the parallel composition. Axioms LM1 − LM4 allows us
to eliminate the blocked components according to the synchronization set S of the
parallel operator, and the axioms LM5 and LM7 determine all the synchronizing
generative moves and the local moves of the lefthand process, respectively. Finally,
axiom LM6 allows us to distribute the left merge operator among the components
of the righthand process, in order to apply the axioms LM4 and LM5.

Example 4.7. Let us consider the term

((((a∗:0 +q a∗:0) +r a∗:0) +ND (b∗:0 +s b∗:0)) +ND a:0)[a → b]p

which is the relabeling of a process in snf. We 9rst apply axiom R5 that allows us to
isolate the components representing the reactive bundles a and b, thus obtaining

(((a∗:0 +q a∗:0) +r a∗:0) +ND (b∗:0 +s b∗0))[a → b]p +ND a:0[a → b]p:

Then, we distribute the relabeling operator between these two components by applying
axiom R6, hence obtaining

(((a∗:0 +q a∗:0) +r a∗:0)[a → b]p +p (b∗:0 +s b∗:0)[a → b]p) +ND a:0[a → b]p:

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 385

In this way the relabeling of the two reactive bundles of type a and b is expressed in
terms of a probabilistic choice among two terms executing reactive actions of type b.
Then, by repeatedly applying axiom R7 we have

(((a∗:0[a → b]p +q a∗:0[a → b]p) +r a∗:0[a → b]p) +p

(b∗:0[a → b]p +s b∗:0[a → b]p)) +ND a:0[a → b]p:

Finally, by applying axioms R1 −R4, we change the actions of type a into actions of
type b as follows:

(((b∗:0 +q b∗:0) +r b∗:0) +p (b∗:0 +s b∗:0)) +ND b:0:

Such a term correctly represents the behavior of the relabeled term, where the choice
among the actions b∗ obtained by relabeling actions a∗ and the preexisting actions b∗
is guided by parameter p.

Theorem 4.8. The axiom system A is complete for ∼PB over processes of G9n.

Proof. The result is a trivial consequence of Lemma 4.6. It is just suIcient to show
that if two terms in snf are equivalent then they can be proved to be equal. Sim-
ilarly as done in [8] this is proved in a rather standard way by inducing on the
structure of the two terms in snf, in such a way that equivalent subterms are turned
into equal subterms. In this procedure an important role is played by the idempotency
axiom A2.

5. Processes with exact advancing speeds

In this section we show that, when evaluating steady state based performance mea-
sures, we are able to deal with processes proceeding with di$erent advancing speeds
which are not probabilistic. In particular, while during an initial transient evolution
considering the action frequency of processes as being exact instead of probabilistic
may lead to di$erent results when evaluating performance, we will show that in the
case of non-blocking processes this does not happen when the system reaches a limiting
steady behavior.

5.1. Exact time unit scaling via action splitting

Let us assume that process P is a fully speci9ed system such that the underlying
DTMC P= [pi; j]i; j∈S , where S = {1; : : : ; d}, possesses a (time averaged) steady state
probability distribution [30]. Let us suppose that we aim at executing P in parallel
with another process which proceeds with a di$erent action frequency. As already
explained in Section 1.3, this could be done through a standard approach based on
a synchronous parallel composition by adequately scaling the time unit on which the
speci9cation of the process is based, i.e. by splitting each action of P in a certain

386 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

number n of subactions. Let us consider the e$ect of such an action split on the
DTMC P underlying the process speci9cation. Considered a state i of the DTMC P,
the split is applied to all the transitions outgoing from i. It is easy to see that, since
in a DTMC each action takes one time unit to be executed, scaling the time unit
by a factor 1=n corresponds to expand i in n states representing the passage of time
while the system sojourns in i. More precisely, for each state i we add n − 1 states
i1; : : : ; in−1 and we modify state transitions as follows. The outgoing transitions of in−1

are all the transitions previously leaving i, the incoming transitions of i are preserved,
and, de9ned i0 = i, for each k ∈{1; : : : ; n− 1} we have a transition going from i k−1 to
i k with probability 1.

. . . i 1

state i

i n 1

ip

pn

outn

out

out1

i

state i expanded

ip

n

1p

outn

out

out1

i
i

p

1p

inm

in1
1q

qm inm

in1
1q

qm

i
1 1

For the sake of simplicity, let us consider the case n=2, i.e. we split each action
into two subactions. The new DTMC P′= [p′

i; j]i; j∈S′ where S ′= {1; : : : ; 2 ·d} can be
represented as follows. Let us suppose that each state i1 added when expanding a state
i of P′ is numbered in P′ by d+ i, hence in P′ the 9rst d states are those of P and
the states from d + 1 to 2 ·d are those added in the expansion procedure. According
to such a procedure P′ turns out to be as shown below:

1 : : : d d+ 1 : : : 2 · d

0 Id

P 0

1
...
d
d+ 1
...
2 · d

where Id is the identity matrix of size d.
Now, let us evaluate the (time averaged) steady state behavior of the DTMC P′.

Called �= [�i]i∈S the steady state probability vector of P, it turns out that in P′ the
stationary probability of a state i∈ S is equally partitioned between the states i and
d+ i obtained by expanding i. Formally, the steady state probability vector �′= [�′i]i∈S′
of P′ is given by

�′i =
{
�i=2 if 16 i 6 d;
�i−d=2 if d+ 16 i 6 2 · d

or more intuitively by

�′ = [�=2 | �=2]:

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 387

It is immediate to verify that the multiplication of such vector �′ by the matrix P′

yields the vector �′ again.
In general for an arbitrary time unit scaling factor 1=n we represent the DTMC

P′= [p′
i; j]i; j∈S′ where S

′= {1; : : : ; n ·d} as follows. Each state i k added when expand-
ing a state i of P′ is numbered in P′ by k ·d + i, hence in P′ the 9rst d states are
those of P, the states from d + 1 to 2 ·d represent the second step of the expansion
of the states of P and so on. Therefore in general P′ is given by

1 : : : d d+ 1 : : : n · d

0 I(n−1)·d

P 0

1
...
(n− 1) · d
(n− 1) · d+ 1
...
n · d

In P′ the stationary probability of a state i∈ S is equally partitioned between the states
i; d+i; 2 ·d+i; : : : ; (n−1) ·d+i obtained by expanding i. This is because it is immediate
to verify that the steady state probability vector �′= [�′i]i∈S′ of P′ turns out to be

�′ = [�′=n| : : : |�′=n︸ ︷︷ ︸
n times

]:

Now, given an arbitrary performance measure m that we want to evaluate for the
process P, m can be expressed by considering a reward structure B= [bi; j]i; j∈S corre-
sponding to m (see Section 2). If B′= [b′i; j]i; j∈S is the reward structure obtained from
B by scaling the time unit by a factor 1=n, then B′ associates rewards to transitions
between expanded states of S, i.e. b′i; j is the reward associated to the transition from
the expanded state i to the expanded state j. More precisely the reward b′i; j is asso-
ciated to the transition representing the execution of the 9nal step of the transition
from i to j, i.e. to the transition from state in−1 = (n− 1) ·d+ i to state j, while, for
each k ∈ 1; : : : ; n− 1 the transitions going from states i k−1 to states i k are endowed
with reward zero. Therefore, we actually consider the reward structure B′′= [b′′i; j]i; j∈S′
depicted below

1 : : : d d+ 1 : : : n · d

0 0

B′ 0

1
...
(n− 1) · d
(n− 1) · d+ 1
...
n · d

388 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

The performance measure m is then given by

m =
∑
i∈S′

∑
j∈S′

�′i · b′′i;j · p′
i;j :

Since b′′i; j is not null only if i∈{(n−1) ·d+1; : : : ; n ·d} and j∈ S; and for all i∈{(n−
1) ·d + 1; : : : ; n ·d} and j∈ S we have that b′′i; j = b′i−(n−1) · d; j, p

′
i; j =pi−(n−1) · d; j and

�′i = �i−(n−1) · d=n, it turns out

m =
∑
i∈S

∑
j∈S

�i
n
· b′i;j · pi;j =

1
n
· ∑
i∈S

∑
j∈S

�i · b′i;j · pi;j: (∗)

Example 5.1. Let us consider a communication system composed of a processing unit
that receives messages from an incoming channel and after some internal computation
it sends out them to an outgoing channel. Suppose that P is a speci9cation of such
a system where the time unit is considered to be a second, i.e. an action takes one
second to be executed, and P= [pi; j]i; j∈S is the underlying DTMC.
Suppose that we want to evaluate the throughput of the system in terms of the

number of messages sent out per time unit. In order to do this we consider a reward
structure Bt= [bi; j]i; j∈S determined as follows. We associate a reward equal to 1 to
each action representing the sending of a message and a reward equal to 0 to each
other action of the system speci9cation. As explained in Section 2, called �= [�i]i∈S
the vector of the steady state probabilities of P, the value mt of the throughput of
the system is given by

∑
i∈S

∑
j∈S �i · bi; j ·pi; j. Now, let us suppose that we want to

express the behavior of the system with respect to a di$erent time unit, e.g. tenth
of seconds instead of seconds. We may need to do this because we want to execute
it in parallel with another process whose speci9cation is made in tenth of seconds.
As already explained, scaling the time unit by a factor 1=10 can be made by splitting
each action a of P in 10 subactions (9 idle actions followed by action a), thus obtaining
a scaled DTMC P′. The reward structure B′

t that we consider for the time scaled system
is unchanged with respect to the reward structure Bt considered for the original system
(we associate reward 0 to idle actions). This is because the reward gained by actions is
not related with their duration but it is just used to count the occurrences of the actions,
i.e. rewards 0 and 1 associated to actions are not durations expressed in seconds, but
just numbers. By calculating the throughput of the time scaled system with the formula
(∗) we obtain the value mt=10, i.e. one tenth of the throughput of the original system.
This is an expected result because the throughput is a frequency which is expressed in
number of actions executed per time unit and we changed the time unit from seconds
to tenth of seconds.
Now, let us suppose that we want to evaluate the utilization of the processing unit

in terms of the percentage of time occupied by the system in performing internal
computations for message processing. We consider a reward structure Bu= [bi; j]i; j∈S
determined by associating a reward 1 to each action representing an internal computa-
tion of the processing unit and a reward equal to 0 to each other action of the system
speci9cation. Let us call mu the value of the utilization of the processing unit derived

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 389

from Bu. Now, similarly as in the previous case, let us suppose that we want to scale
the time unit by a factor 1=10. Considered the DTMC P′ obtained by expanding the
states of P, we have to evaluate the reward structure B′

u for the time scaled system.
Di$erently from the case of the message throughput, in the de9nition of Bu the reward
gained by an action is related to the duration of the activity it represents, i.e. rewards
0 and 1 are durations expressed in seconds. Hence, when we consider as the time
unit tenth of seconds instead of seconds each reward must be multiplied by 10: it is
like as all the subactions obtained by splitting an action with reward 1 of the original
system would contribute to the evaluation of the utilization of the processing unit by
all inheriting reward 1. Therefore, we have B′

u=Bu · 10. By calculating the utilization
of the time scaled system with the formula (∗) we obtain the value mu, i.e. the same
utilization of the original system. This is an expected result because the percentage of
utilization of the processing unit does not change if we scale the time unit for each
activity of the system.

5.2. Exact time unit scaling via probabilistic advancing speed

Now we will show that the above analysis of steady state based performance mea-
sures gives the same results when the time scaling of P is probabilistic instead of
being exact. By employing our probabilistic parallel composition operator we can
approximate the scaling of a factor 1=n of the time unit used in a speci9cation P
by executing P with a probabilistic action frequency 1=n. This is obtained by con-
sidering, e.g., the term P ‖p∅ Idle, where Idle, idle:Idle is a process which repeatedly
executes the action idle and p=1=n.
Let us see what is the e$ect of executing process P with a probabilistic action

frequency p on the DTMC P underlying the process speci9cation. The set of states is
unchanged, in particular the states of the GRTS underlying P ‖p∅ Idle are of the form
P′ ‖p∅ Idle, where P′ is a state of the semantics of P. The transitions leaving a state i
of the DTMC P change as follows. A new transition corresponding to the execution
of the action idle is added, which is executed with probability 1 − p and goes to
i itself (a self-loop). The probability of every old transition leaving i is multiplied
by p. Therefore the new DTMC P′= [p′

i; j]i; j∈S where S = {1; : : : ; d} turns out to be
as follows:

p′
i;j =

{
pi;j · p+ (1− p) if i = j;

pi;j · p if i �= j

or equivalently:

P′ = P · p+ Id · (1− p);

where Id is the identity matrix of size d.
Now, let us evaluate the (time averaged) steady state behavior of the DTMC P′. It

turns out that the stationary probability vector � of P represents the state probabilities at

390 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

a steady behavior also for the new matrix P′. This can be easily seen as follows:

� · P′ = � · (P · p+ I · (1− p))

= (� · P) · p+ (� · I) · (1− p)

= � · p+ � · (1− p)

= �:

Now, suppose that we scale the time unit of process P with our probabilistic parallel
operator and we want to evaluate the performance measure m expressed by the reward
structure B′= [b′i; j]i; j∈S obtained from B= [bi; j]i; j∈S by scaling the time unit of a factor
1=n. In the DTMC P′ obtained from P ‖p∅ Idle the reward b′i; j is associated to the
transitions representing moves of P that go from state i to state j, while we associate
reward zero to the transitions derived from the moves idle of Idle. Since in P′ the
value p′

i; j represents the total probability of going from state i to state j, in the case
i= j it accounts also for transitions going from i to itself due to the execution of the
idle action. Therefore, according to the formula presented in Section 2, the total reward
that we must associate with such an event is given by b′i; i multiplied by the probability
that the passage from state i to itself is due to a self-loop representing a move of P
(and not to an idle action). Such a probability is given by pi; i ·p, i.e. the probability
associated to the execution of a self-loop representing a move of P, divided by the
total probability p′

i; i. Therefore for the DTMC P′ we consider the reward structure
B′′= [b′′i; j]i; j∈S′ de9ned as follows:

b′′i;j =

 b′i;j ·

pi;j · p
p′
i;j

if i = j;

b′i;j if i �= j:

The performance measure m is then given by

m =
∑
i∈S

∑
j∈S

�i · b′′i;j · p′
i;j :

Since it holds that b′′i; j ·p′
i; j = b′i; j ·pi; j ·p both for i= j and for i �= j, it turns out

m =
∑
i∈S

∑
j∈S

�i · b′i;j · pi;j · p = p · ∑
i∈S

∑
j∈S

�i · b′i;j · pi;j (∗∗)

which, recalling that we assumed p=1=n, is the same formula that we obtained with
the standard synchronous approach.

Example 5.2. Let us consider the communication system P of the previous Exam-
ple 5.1. We recall that in P the time unit is considered to be a second and P= [pi; j]i; j∈S
is the DTMC underlying P. Now we show how to evaluate the two performance
measures of Example 5.1 by employing our approach based on probabilistic parallel
composition. We scale the time unit of P to tenth of seconds by executing P with a
probabilistic action frequency 1=10. In particular we consider the term P ‖1=10∅ Idle and
the DTMC P′ obtained from such a term. Let us consider the throughput of the system

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 391

as de9ned by the reward structure Bt of Example 5.1. As explained in Example 5.1,
since Bt is not based on action durations, the reward structure B′

t that we must apply
to the time scaled system is the same as Bt. If we instead consider the utilization
of the processing unit as de9ned by the reward structure Bu of Example 5.1 we must
proceed as follows. As explained in Example 5.1, since rewards are related to durations
of actions, the reward structure B′

u that we must apply to the time scaled system is
B′
u=Bu · 10. Both in the case of the system throughput and in the case of the pro-
cessing unit utilization, by using the same reward structures for the time scaled system
B′
t=Bt and B′

u=Bu · 10 as those considered in Example 5.1, since we showed that
formula (∗∗) coincides with formula (∗), we obtain the same performance measures
as with the approach based on action splitting.

Finally, it is worth noting that, with respect to the approach of Section 5.1 based
on action splitting, scaling the time unit via our probabilistic parallel operator gives
the new possibility of using scaling factors p which are not of the form p=1=n with
n natural number. In general P ‖p∅ Idle, when considered at the steady state, scales the
time unit uP used in the speci9cation of P of a factor p, i.e. u= uP ·p is the time
unit representing action duration in the behavior of P ‖p∅ Idle. This is because P ‖p∅ Idle
executes a mean of p actions of P per time unit u, hence the mean action frequency
fP of P is given by fP =p=u. Since an action of P takes a mean of uP =1=fP time
to be executed we have u= uP ·p. It is easy to see that also in the general case
the performance measures obtained from P ‖p∅ Idle at the steady state are the same
obtained with an exact time unit scaling of factor p. In the case of performance
measures representing a frequency (as e.g. the throughput of the system considered in
Examples 5.1 and 5.2), since the reward structure B′ considered for the scaled system
is the same as that (B) of the original system, the formula (∗∗) yields m ·p, where m is
the value of the measure in the original system. The value m ·p is correct for the scaled
system because when we take time units into account, we have m=uP =(m ·p)=u. In the
case of performance measures representing percentage of time (as e.g. the utilization of
the processing unit in Examples 5.1 and 5.2), since the reward structure B′ considered
for the scaled system is determined from that (B) of the original system by letting
B′=B =p, according to formula (∗∗) the value of the measure in the scaled system is
the same as in the original system. This is correct because a percentage value does not
refer to the time unit considered.
Summing up, we have the following theorem.

Theorem 5.3. Let P ∈ G be a fully speci9ed system such that the underlying DTMC
possesses a time averaged steady state probability distribution. The steady state based
performance measures of P ‖p∅ Idle expressible by attaching rewards to the generative
actions of P are exactly as those derived by executing the generative actions of P
with an exact frequency p. 8

8 In this theorem and in the following Theorem 5.4 we consider performance measures of periodic DTMCs
to be evaluated from their time averaged steady state probabilities [30].

392 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

5.3. Exact time unit scaling of system components

Now we extend the result above by showing that even in the case of non-blocking
processes which are part of a larger system (hence not performance closed processes),
our probabilistic parallel operator determines, when the system is considered at steady
state, an exact scaling of the time unit on which the speci9cation of the processes
in isolation are based. As a consequence we can express the parallel composition of
processes speci9ed with respect to di$erent time units (hence proceeding at di$erent
exact action frequencies) through a common time unit by considering a di$erent scaling
factor for the time unit of each process. In Section 3.2 we showed that given two
probabilistic action frequencies fP and fQ there exists a time unit u and a probability
p such that in P ‖pS Q the processes P and Q advance with mean action frequencies
fP and fQ, respectively. What we show now is that, if we suppose that both processes
P and Q never block during the execution of P ‖pS Q (in all the states of P ‖pS Q at
least one generative action of P and one generative action of Q are executable), at the
steady state the representation of system behavior given by P ‖pS Q is correct even when
the action frequencies fP and fQ are considered as being exact instead of probabilistic,
i.e. when each action of P (Q) is assumed to take exactly uP =1=fP (uQ =1=fQ)
time to be executed. In other words, if we assume that the speci9cations of processes
P and Q in isolation are based on two di$erent time units uP and uQ representing
action duration, then P ‖pS Q just expresses, by performing an exact scaling of the time
units uP and uQ to the new common time unit u, the concurrent execution of the
two processes without a$ecting their behavior (apart from the consequences of action
synchronization). In particular, as explained in Section 5.2, uP turns out to be scaled
of a factor p (u= uP ·p) and similarly uQ turns out to be scaled of a factor 1− p.
In the following we show how the result of Theorem 5.3 can be smoothly extended

to non-blocking system components.
In Section 5.2 we showed that, suppose P is a fully speci9ed system such that

the underlying DTMC possesses a (time averaged) steady state distribution, the term
P ‖p∅ Idle, where Idle,idle:Idle; at the steady state correctly represents the system
behavior even when we execute exactly p actions of P per time unit u.
We generalize this result by 9rst considering the case in which a process P with all

the properties above is in parallel with an arbitrary process Q with the same properties
(instead of the particular process Idle) but we have no synchronization between P
and Q. It is trivial to see that, since P ‖p∅ Idle at steady state may be interpreted as
executing exactly p actions of P per time unit u, then the same holds also for P ‖p∅ Q.
This is because, since both processes P and Q enable at least one generative action
in each system state (otherwise they could not be fully speci9ed processes), given a
state P′ of process P, each system state P′ ‖p∅ Q′ (for any state Q′ of Q) executes
with probability p a transition of P′ and with probability 1 − p a transition of Q′.
Therefore, the particular behavior of process Q in the states Q′ reached through state
changes while process P sojourns in state P′ does not a$ect the behavior of P. Hence
as far as the behavior of P is concerned considering the process Idle,idle:Idle which

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 393

has a single state is just like considering any arbitrary process Q with the properties
above. More formally it is easy to see that in P ‖p∅ Q when we replace Q by the Idle
process the sum of the steady state probabilities of being in states P′ ‖p∅ Q′ for any
state Q′ of Q becomes the steady state probability of being in the state P′ ‖p∅ Idle.
Since in each state P′ ‖p∅ Q′ the process P behaves in the same way (as in P′ ‖p∅ Idle),
at the steady state the behavior of process P in P ‖p∅ Q is the same as in P ‖p∅ Idle.
Note that by a symmetric argument we have also that P ‖p∅ Q at steady state executes
exactly 1− p actions of Q per time unit u.
Now we consider a more general case in which the process P may also synchronize

with process Q. More precisely we consider a system P ‖pS Q such that both P and Q
(which are no longer required to be fully speci9ed processes) never get blocked during
execution, i.e. in all the states of P ‖pS Q at least one generative action of P and one
generative action of Q are executable. Since, whenever a process is a non-interacting
system component executed with mean action frequency p, at steady state it may be
interpreted as executing exactly p generative actions per time unit u, it is easy to see
that the same holds when the interacting process P is executed by P ‖pS Q. This is
because, with respect to the execution of P with no interactions, the synchronization
requirement with the reactive actions of process Q may change the set of generative
actions of P executable in a system state, but, since P and Q never get blocked, not
the frequency p at which generative actions of P are executed. More precisely, since
in every system state both processes P and Q may execute at least one generative
action, the probability for P to be the process performing the next generative action is
always p. Therefore, independently on which are the generative actions of P actually
enabled in system states, we have that the frequency of 9rings of P generative tran-
sitions is still exactly p per time unit u. By a symmetric argument we have also that
the frequency of 9rings of Q generative transitions is exactly 1− p per time unit u.
Summing up, we have the following theorem.

Theorem 5.4. Suppose both P ∈ G and Q ∈ G never block during the execution
of P ‖pS Q (in all the states of P ‖pS Q at least one generative action of P and one
generative action of Q are executable); the steady state based performance measures
of P ‖pS Q expressible by attaching rewards to the generative actions of P and Q are
exactly as those derived by executing the generative actions of P and Q with an
exact frequency p and 1− p; respectively.

6. A case study: multi-path routing

In this section we present a case study showing how our approach provides a modu-
lar, compositional, and intuitive method for specifying concurrent systems in a scalable
way. In particular, we consider a multi-path routing mechanism of the OSI network
layer [29], and we model and analyze an internet-working node, whose arriving packets
have several possible destinations with several possible ways to reach a destination.
In the following, we refer to the node as the interface message processor (IMP).

394 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

Before presenting the model, let us brieCy recall some assumptions used in routing
protocols. The routing algorithm decides, at the network layer, on which output link an
arriving packet should be sent, depending on the destination of that packet. We abstract
from the particular algorithm used to determine an optimal routing path between two
nodes of a network, and we assume that the modeled IMP has a routing table including
the route information with several possible choices for each destination. A weight is
associated to each possible path and these weights are used as probabilities to decide
where to send the present packet. Supporting multiple paths to the same destination,
unlike single-path algorithms, permits traIc multiplexing over multiple lines. The ad-
vantages of multi-path are obvious: they can provide substantially better throughput
and reliability.

6.1. Algebraic speci9cation of the multi-path router

The overall model of our IMP (term Multipath) is shown in Table 5 in the particular
case of two possible destinations (a and b) and two possible paths for each destination
(a1; a2 for a, and b1; b2 for b). 9

The algebraic speci9cation is composed of several processes which are actually con-
current and are speci9ed with respect to di$erent time units. In particular, system
Multipath consists of three concurrent components: a term Arrivals modeling the in-
coming traIc, a term Router modeling the core of the IMP, and a term Channels
modeling the outgoing channels. The structure of the three components is as follows.
• The term Arrivals is composed of two concurrent processes Arrivala and Arrivalb
which model the incoming traIc directed to destinations a and b, respectively. The
time unit representing action duration that we consider for both processes is 1 ms.
The adoption of such a time unit makes it easy to represent a realistic workload
for the IMP. In particular we assume that for each destination at most one packet
per millisecond can arrive to the IMP, i.e. the maximum frequency of the incoming
traIc is 2000 packets per second.

• The term Router represents a process whose time unit is half a microsecond, meaning
that it can execute 2 000 000 actions per second. As we will see, the Router term,
which is the core of the IMP, is a single processor machine managing the packets
directed to the two destinations a and b via a probabilistic scheduler.

• Finally, the term Channels is composed of four concurrent processes modeling the
four possible outgoing channels a1; a2; b1, and b2. Since we take packet transmission
to be represented by the execution of a corresponding action, their time units are
de9ned on the basis of their bandwidth. The time unit for the channel a1 directed to
a is 10 ms, i.e. it can send out 100 packets per second, while the time unit for the
channel a2 directed to a is 2:5 ms, i.e. it can send out 400 packets per second. The
time unit for the channel b1 directed to b is 5 ms, i.e. it can send out 200 packets

9 In Table 5 we omit the parameters of the probabilistic operators if they are not meaningful for the
system speci9cation.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 395

Table 5
Multi-path routing model

Multipath , Arrivals ‖p1S (Router ‖p2C Channels)
S = {receivea; receiveb}
C = {avail cha1; avail cha2; avail chb1; avail chb2;

transma1; transma2; transmb1; transmb2}

Arrivals , Arrivala ‖
1
2Arrivalb

Channels , (Channel[’′
1] ‖pa Channel[’′

2]) ‖v (Channel[’′′
1] ‖pb Channel[’′′

2])
Router , (Queues‖S1∪ISwitch)‖I Idle

S1 = {accepta; acceptb} I = {idle}
Queues , Queue[’′]‖IQueue[’′′]
Switch , (Manager[’′] ‖S′2 (Routing[’

′][’′
1] ‖qaB′ Routing[’′][’′

2])) ‖pI
(Manager[’′′] ‖S′′2 (Routing[’

′′][’′′
1] ‖qbB′′ Routing[’′′][’′′

2]))
S′2 = {senda; busya} S′′2 = {sendb; busyb}
B′ = {busya} B′′ = {busyb}
’′ = 〈(receive; receivea); (accept; accepta); (send ; senda); (busy; busya)〉
’′′ = 〈(receive; receiveb); (accept; acceptb); (send ; sendb); (busy; busyb)〉
’′
i = 〈(transm; transmai); (avail ch; avail chai)〉 i∈{1; 2}

’′′
i = 〈(transm; transmbi); (avail ch; avail chbi)〉 i∈{1; 2}

Arrivala , receivea:Arrivala +ra wait:Arrivala
Arrivalb , receiveb:Arrivalb +rb wait:Arrivalb
Queue , receive∗ :Queue′ + idle∗:Queue
Queue′ , receive∗:accept∗:Queue′ + accept∗ :Queue

Manager , accept:Manager′ + idle∗ :Manager
Manager′ , send :Manager + busy:Manager′

Routing , send∗:Routing′ + avail ch∗:Routing
Routing′ , transm∗ :Routing + busy∗:Routing

′

Idle , idle: Idle
Channel , avail ch :Channel + transm :Channel

per second while the time unit for the channel b2 directed to b is 4 ms, i.e. it can
send out 250 packets per second.

Note that it is possible to compose in parallel the above processes, which are spec-
i9ed with respect to di$erent time units, because, as it can be easily veri9ed, each
of them never blocks during system execution (see Section 5.3). According to what
we have explained in Section 5.3, in order to express the actual concurrent execution
of such processes all the time units used in their speci9cation are scaled to a com-
mon global time unit u. In particular u is evaluated by computing the inverse of the
global action frequency of the composed system. Hence in our case study u is the
inverse of 1000 + 1000 + 2 000 000 + 100 + 400 + 200 + 250 actions per second, i.e.
u=1=2 002 950 s. The global time unit u adopted determines the action frequencies to
be considered as parameters of the parallel operators used to describe the concurrent
execution of system components in Table 5. In particular, parameter p1 representing
the advancing speed of term Arrivals in Arrivals ‖p1S (Router ‖p2C Channels) is
given by the ratio of the action frequency of term Arrivals over the global action
frequency of system Multipath, i.e. if we express action frequency in seconds

396 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

p1 = 2000=2 002 950 ≈ 0:000999 (see Section 3.2). Similarly, parameter p2 repre-
senting the advancing speed of term Router in Router ‖p2C Channels is given by the
ratio of the action frequency of term Router over the global action frequency of
term Router ‖p2C Channels, i.e. p2 = 2 000 000=(2 000 000 + 950)≈ 0:999525. As far as
the speci9cation of the Arrivals component is concerned, the parallel composition
of the two concurrent processes Arrivala and Arrivalb has parameter 1

2 because their
action frequency is the same (1000 actions per second). As far as the speci9cation
of the Channels component is concerned, in (Channel[’′

1] ‖pa Channel[’′
2]) ‖v

(Channel[’′′
1] ‖pb Channel[’′′

2]) we take: pa to be 100=(100+400), i.e. pa=0:2; pb to
be 200=(200+250), i.e. pb≈ 0:444444; and v to be 500=(500+450), i.e. v≈ 0:526316.
It is easy to see that the parameters adopted for the parallel operators give rise to the
correct action frequencies. For instance process Arrivala executes p1 · 12 ≈ 0:000499
actions per time unit u, i.e. 1000 actions per second, and process Router executes
(1− p1) ·p2≈ 0:998527 actions per time unit u, i.e. 2 000 000 actions per second.
Now let us describe in detail the behavior of each process of the system Multipath.
The process Arrivala (Arrivalb) models the incoming traIc through a Bernoulli

distribution with parameter ra (rb). In particular, an arriving packet is represented
by the action receivea (receiveb) which synchronizes with the corresponding reactive
action in the queue for packets a (b) of term Router. In the case such a queue is
full the action receivea (receiveb) is not enabled and the arriving packets are lost (the
generative action wait is executed with probability 1).
The process Router is the core of the IMP and is composed of a term Queues

collecting the arriving packets, a term Switch which delivers the packets to the outgoing
channels and a term Idle modeling the phases of router inactivity. They are de9ned as
follows.
• Term Queues consists of two Queue processes, one for each kind of packet, which
behave reactively. In particular, they receive packets destined to a (b) through reac-
tive actions of type receivea (receiveb) and pass them to the Switch term through
reactive actions of type accepta (acceptb). For the sake of simplicity we assume
both queues to be of size 2.

• Term Switch is a single-processor machine executing two di$erent terms, each one
managing packets with a certain destination (a or b), via a probabilistic scheduler
with parameter p. In this way, by varying p, we can model an IMP that deliv-
ers packets with a particular destination more eIciently than packets with another
destination, e.g. for commercial reasons. The term delivering packets to destina-
tion a (b) is composed of a Manager and two Routing terms, each one delivering
packets to a particular channel a1 or a2 (b1 or b2). Term Manager accepts pack-
ets destined to a (b) from the dedicated queue through action accepta (acceptb)
and afterwards either immediately passes them to one of the two Routing terms
through action senda (sendb), or waits until at least one channel is available for
transmission by performing action busya (busyb). This behavior is realized through a
generative–reactive mechanism as follows. The two Routing terms behave reactively
and each of them accepts packets through a reactive action of type senda (sendb) and

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 397

transmits them through the corresponding channel via a reactive action of type
transma (transmb). Whenever the generative action senda (sendb) is enabled by
the Manager term, the Routing term accepting the packet is chosen according to
the probability qa (qb) parameterizing the parallel composition of the two Routing
terms. Note that a Routing term may be not available for accepting a packet because
it is currently transmitting through action transma (transmb) a packet previously re-
ceived. Therefore, whenever only one Routing process is available for accepting a
packet coming from the Manager term, the packet is transmitted through the cor-
responding channel with probability 1. Whenever both Routing processes are busy
the transmission of packets destined to a (b) is not possible and this is signalled
to the Manager term through a multiway synchronization by enabling the reactive
action of type busya (busyb) whose execution requires the synchronization of the
two Routing processes.

• Term Idle executes an action idle (representing the fact that the IMP is idle) when-
ever term Router has nothing else to do. More precisely, action idle is executed
through a multiway synchronization with all the other Router components if and
only if the input queues (term Queues) are empty and the core of the IMP (term
Switch) is not waiting for delivering a packet to the channel. In particular, term
Idle prevents the term Router from blocking, thus allowing the advancing speed of
terms Arrivals, Router, and Channels to be preserved and satisfying the condition
needed for composing processes with di$erent time units (see Section 5.3).

The four Channel processes model the two outgoing channels a1 and a2 directed to
destination a and the two outgoing channels b1 and b2 directed to destination b. Each
process Channel can either be transmitting a packet when the generative action transm
is synchronized with the corresponding reactive action of term Routing managing that
channel, or be available for transmission when the generative action avail ch is syn-
chronized with the corresponding reactive action of term Routing. For instance in the
case of channel a1 the generative actions transma1 and avail cha1 must synchronize
with the reactive actions transma1∗ and avail cha1∗ of the Routing term managing
channel a1, respectively. In this way the generative actions of a Channel process are
executed in mutual exclusion in the sense that in every system state one and only one
of them is enabled. As a consequence term Channels never blocks.
Thanks to our approach which allows processes speci9ed with respect to di$erent

time units to be modeled without splitting actions (see Section 4), we have that the
transition system underlying the algebraic speci9cation of Table 5 is composed of only
576 states and 4768 transitions. This is a crucial result, because if we want to deal
with the same system by resorting to a classical and intuitive approach which scales
the time unit by splitting each action, we have to cope with the serious problem of
a greatly increased size of the state space. For instance, since the basic time unit for
the router is half a microsecond whereas the basic time unit for the input channels is
a millisecond, in order to compose in parallel terms Arrivals and Router we have to
split the actions of term Arrivals in thousands of subactions thus causing a state space
explosion.

398 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

Moreover, we point out that the generative–reactive behavior of the Switch process
represents the core of this case study. In particular, process Switch generatively decides,
according to probability p, which of the two Manager terms performs a send action
(senda for the manager delivering packets to destination a or sendb for the other
one), while it reactively decides, according to probability qa or qb (depending on the
send action performed) which of the term Routing synchronizes with such an action.
A calculus capable of expressing generative–reactive choices is, therefore, very suitable
(if not necessary) to model systems with such a behavior.
Finally it is worth noting that, thanks to the choice of putting probabilities in the

operators (instead of, e.g., attaching them to actions) and to the expressive power of
our generative–reactive approach, it was possible to specify the IMP in such a way
that all the probabilistic mechanisms on which its behavior is based (and which are
not related with the internal behavior of a process) depend on the parameters of par-
allel composition operators only. As a consequence scaling the system speci9cation
to a higher number of components does not make it necessary to change the internal
behavior of processes. For instance in the router speci9cation we can scale the sys-
tem to a higher number of destinations or di$erent channels for each destination by
simply adding as many instances of Switch and Channel processes as we want and
adjust appropriately the parameters of parallel composition operators. Here we consider
the case of a router with 4 possible channels for each destination a and b instead of
2. In Table 6 we show the algebraic speci9cation of the terms which are modi9ed
by such a scaling. Assumed that the bandwidth of the outgoing channels a1, a2, a3,
and a4 is 50, 100, 150, and 200 packets per second, respectively, whereas the band-
width of the outgoing channels b1, b2, b3, and b4 is 60, 120, 180, and 240 packets
per second, respectively, the parameters of the parallel operators of Table 6 turn out
to be as follows: p1≈ 0:000998, p2≈ 0:998452, v≈ 0:454545, pa′=pb′ ≈ 0:333333,
pa′′=pb′′=0:3, pa′′′=pb′′′ ≈ 0:428571. The transition system derived from such a
speci9cation is composed of 9216 states and 120640 transitions.

6.2. Performance analysis

In order to derive performance measures from the multi-path router speci9cation,
we resorted to the software tool TwoTowers [8], that has been recently extended to
support the generative–reactive approach presented in this paper. Such a tool also
implements the algebraic reward based method described in Section 5 to specify and
derive performance measures. The results of our performance analysis are shown in
Figs. 5–8. In particular, we concentrated on two main metrics.
On the one hand we evaluate the throughput of the system at steady state, represented

by occurrences of actions of type transma1, transma2, transmb1, and transmb2, by
attaching a reward equal to 1 to the above actions and a reward equal to 0 to each
other action. Since the throughput is a frequency expressed in terms of number of
actions executed per time unit and the time unit is 1=2 002 950 s, we have to multiply
the throughput resulting from the Markov chain analysis by 2 002 950 in order to obtain
the results (expressed in seconds) shown in our tables.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 399

Table 6
Multi-path routing model with 4 possible channels per destination

Multipath P= Arrivals ‖p1S (Router ‖p2C Channels)

C = {avail cha1; avail cha2; avail cha3; avail cha4;
avail chb1; avail chb2; avail chb3; avail chb4;
transma1; transma2; transma3; transma4
transmb1; transmb2; transmb3; transmb4}

Channels P= ((Channel[’′
1] ‖pa

′
Channel[’′

2]) ‖pa
′′

(Channel[’′
3] ‖pa

′′′
Channel[’′

4]))
‖v
((Channel[’′′

1] ‖pb
′
Channel[’′′

2]) ‖pb
′′

(Channel[’′′
3] ‖pb

′′′
Channel[’′′

4]))

Switch P= (Manager[’′] ‖S′2 ((Routing[’
′][’′

1] ‖qa
′

B′ Routing[’′][’′
2]) ‖qa

′′
B′

(Routing[’′][’′
3] ‖qa

′′′
B′ Routing[’′][’′

4]))
‖pI
(Manager[’′′] ‖S′′2 ((Routing[’

′′][’′′
1] ‖qb

′
B′′ Routing[’

′′][’′′
2]) ‖qb

′′
B′′

(Routing[’′′][’′′
3] ‖qb

′′′
B′′ Routing[’′′][’′′

4]))

’′
i = 〈(transm; transmai); (avail ch; avail chai)〉 i ∈ {1; 2; 3; 4}

’′′
i = 〈(transm; transmbi); (avail ch; avail chbi)〉 i ∈ {1; 2; 3; 4}

0

200

400

600

800

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor ra = rb

 Throughput (p=1/2, qa=1/5, qb=4/9)

dest. a
dest. b

total

0
50

100
150
200
250
300
350
400
450
500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor ra

 Throughput (p=1/2, qa=1/5)

ch. a1
ch. a2
dest. a

0
50

100
150
200
250
300
350
400
450
500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor rb

 Throughput (p=1/2, qb=4/9)

ch. b1
ch. b2
dest. b

(A)

(B) (C)

Fig. 5. Throughput of the multi-path router.

400 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor ra

 Throughput (p=1/2)

a1: qa=4/5
a2: qa=4/5
a1: qa=1/5
a2: qa=1/5

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor rb

 Throughput (p=1/2)

b1: qb=5/9
b2: qb=5/9
b1: qb=4/9
b2: qb=4/9

(A) (B)

Fig. 6. Throughput obtained by varying the probabilistic choice between the routing processes.

0

200

400

600

800

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor ra = rb

 Throughput (p=0.999, qa=1/5, qb=4/9)

a
b

total
total (p=0.5)

0
50

100
150
200
250
300
350
400
450

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor rb

Throughput (p=0.999, qb=4/9)

b1
b2

dest. b
dest. b (p=0.5)

(B) (A)

Fig. 7. Throughput obtained by varying parameter p.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load factor ra = rb

 Router Idleness

p = 0.5

Fig. 8. Idleness of the multi-path router.

On the other hand we evaluate the router idleness at steady state in terms of the
percentage of time the IMP is inactive. The router is considered to be idle when no
packet is currently inside the IMP, i.e. when it executes actions of type idle. Therefore
we attach a reward equal to 1 to such actions and a reward equal to 0 to each other
action. Since the time unit of the Router process (half a microsecond) is scaled by
a factor (1 − p1) ·p2≈ 0:998527 and the reward gained by actions is related to the

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 401

duration of the corresponding activity expressed in half microseconds (see Section 4),
due to the time unit change we must multiply each reward by 1=0:998527 before
analyzing the Markov chain.
For each conducted analysis, we assumed that the incoming traIc for each kind of

destination a and b follows the same Bernoulli distribution of parameter r= ra= rb.
The pictures are built by showing how the performance measure under analysis changes
when we vary r from 0:1 (sometimes 0:01) to 0:9. In this way we can observe the
system behavior under various levels of workload ranging from 10% (or 1%) to 90%.
We start by evaluating the system throughput under di$erent circumstances. We

9rst consider the situation in which p= 1
2 , i.e. the packets destined to a and b are

managed at the same speed by the Switch process, and parameters qa and qb reCect
the bandwidth distribution over channels directed to destinations a and b, respectively.
In particular, since channel a1 can deliver 100 packets per second and channel a2
can deliver 400 packets per second, we take qa=100=(100 + 400)= 1

5 (the ratio of
the bandwidth of channel a1 over the overall bandwidth of the channels directed to
destination a), so that packets are probabilistically distributed between channels a1 and
a2 in the optimal way. Similarly, since channel b1 can deliver 200 packets per second
and channel b2 can deliver 250 packets per second, we take qb=200=(200+250)= 4

9 .
The obtained results are reported in Fig. 5. As we can see in the 9rst table of Fig. 5
the curve representing the total system throughput is characterized by a high slope in
correspondence of a low workload and a quite Cat slope when the load factor increases
over the 50%. This is because, for packets with a given destination, the bandwidth
associated with the outgoing channels directed to that destination is about one half
of the maximum bandwidth of the incoming traIc. Simply put, when the parameter
r of the Bernoulli distribution representing the incoming traIc reaches the 50%, the
outgoing channel is almost fully occupied, hence a further increament of r gives rise
to a very small increment of the outgoing throughput. Another expected result that we
can observe in Fig. 5 is that the throughput of packets destined to a is slightly greater
than the throughput of packets destined to b. This is because the overall bandwidth of
the outgoing channels directed to a is 500 packets per second, while it is 450 packets
per second for the outgoing channels directed to b. The other two tables of Fig. 5
report the throughput for each single channel a1, a2, b1 and b2. In the case of a1 and
a2 the distance between the two curves is quite great, this is because a1 has just one
fourth of the bandwidth of a2. As expected such a di$erence is smaller in the case of
b1 and b2, because their bandwidth is quite similar (200 and 250 packets per second,
respectively).
Since in a realistic framework the value of parameters qa and qb are established by

the multi-path routing algorithm governing the IMP according to the network conditions
(e.g. estimated time for a packet to reach a destination via a particular path), we study
the e$ect on the throughput of the router of adopting parameters qa and qb which
do not reCect the bandwidth distribution over the outgoing channels. The results of
such an analysis are reported in Fig. 6. The 9rst table shows how the throughput of
a1 and a2 varies when changing the value of qa from 1

5 to
4
5 , i.e. by exchanging the

402 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

value of qa and 1− qa. For the sake of clarity we report the curves obtained for both
qa= 1

5 and
4
5 . We can observe that the parameter qa does not play a signi9cant role

when the router is congested. This is because under a heavy workload both routing
processes are hardly occupied and in most cases at least one of them is busy. In such a
situation the parameter qa is often not used, because when a routing process is busy an
arriving packet destined to a is passed to the other routing process with probability 1.
As a consequence the curves of the throughput converge to the same values when the
load factor ra gets over 50%, i.e. when almost all the bandwidth of each channel is
exploited. On the other hand, when the incoming workload is low, the parameter qa
becomes important as it probabilistically decides which routing process will deliver
the packet, hence increasing the throughput of a routing process with respect to the
other one (see the quite evident di$erence among the curves when ra gets under the
30%). This is because in the presence of a low workload both routing processes stay
idle for most of the time and an arriving packet a is directed to a particular channel
depending on the choice made according to qa. The second table of Fig. 6 shows how
the throughput of the two channels destined to b varies when exchanging the value of
qb and 1− qb. With respect to the case of the channels destined to a, in this case the
di$erence between the old value of qb (49) and its new value (59) is smaller. This is
reCected on the results presented in Fig. 6, where the curves for the old and the new
value of qb are almost overlapped for each value of rb.
Now we show the role played by parameter p on the system throughput. In order to

merely concentrate on the e$ects of varying parameter p we just consider the situation
in which parameters qa and qb reCect the bandwidth distribution over channels directed
to destinations a and b, respectively. Parameter p can be chosen in order to favor the
internal computations of the IMP dedicated to packets destined to a (b) with respect
to those dedicated to packets destined to b (a). To this aim, in Fig. 7 we report the
throughput of the multi-path router in the case p=0:999, hence when packets destined
to b are managed by the IMP much more slowly than packets destined to a. As a
consequence of the unfair behavior of the router, we have that the IMP delivers the
packets destined to a at the usual speed (the curve for packets destined to a in the
9rst table of Fig. 7 is the same as that in the 9rst table of Fig. 5), but it delays the
packets destined to b, hence compromising the throughput of such packets. Therefore
with respect to the case p=0:5 the overall system throughput decreases (for easy of
comparison in the 9rst table of Fig. 7 we also report the curve obtained in the case
p=0:5). The comparison with the case p=0:5 is even more evident in the second
table of Fig. 7, where we report the throughput of the outgoing channels directed to
destination b.
As far as the idleness of the router is concerned, we simply consider the situation in

which p= 1
2 and parameters qa and qb reCect the bandwidth distribution over channels

directed to destinations a and b, respectively. The curve presented in Fig. 8 shows the
relation among the inactivity of the router and the load factor for the incoming traIc.
As expected, the router is almost always idle if the workload is low, but the duration
of its inactivity phases rapidly converges to zero for a load factor greater than 40%.

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 403

0

200

400

600

800

1000

1200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor ra = rb

Throughput (p=0.5)

total
dest. a
dest. b

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load factor ra = rb

 Router Idleness

p = 0.5

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor ra

 Throughput for dest. a (p=0.5)

a
a1
a2
a3
a4

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

ke
ts

 p
er

 s
ec

on
d

Load factor rb

Throughput for dest. b (p=0.5)

b
b1
b2
b3
b4

(C)

(A) (B)

(D)

Fig. 9. Throughput and idleness of the multi-path router with 4 routing per destination.

Finally, we show in Fig. 9 the throughput and the idleness for the router with four
possible channels for each destination presented in Table 6. Once again, the 9gures
report the relation among the di$erent metrics under the usual scenario where p= 1

2 and
parameters qa′, qa′′ and qa′′′, and qb′, qb′′ and qb′′′ reCect the bandwidth distribution
over channels directed to destinations a and b, respectively (hence qa′= qb′ ≈ 0:333333,
qa′′= qb′′=0:3, qa′′′= qb′′′ ≈ 0:428571). As far as the throughput is concerned, since
in the case of destination a we have preserved the overall outgoing bandwidth (500
packets per second) with respect to the router with two channels, the curve for des-
tination a of the 9rst and third table of Fig. 9 is the same as that we showed in
Fig. 5. The total throughput for destination a is distributed among the four possible
channels according to their bandwidth (see the third table of Fig. 9). On the other
hand, the overall outgoing bandwidth for destination b is increased with respect to the
router with two channels (600 packets per second vs. 450 packets per second). This
is reCected on the curves of Fig. 9 which show that, in the case of the router with
four channels for each destination, the total throughput for destination b is greater than
the total throughput for destination a. The fourth table of Fig. 9 shows that, also in
the case of b, the total throughput of packets destined to b is distributed among the
four possible channels according to their bandwidth. As far as the router idleness is
concerned, we can observe that the curve of the second table of Fig. 9 has the same
shape as that seen in Fig. 8.

404 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

7. Conclusion

In this paper we have presented a discrete time probabilistic calculus which
integrates in a simple way a hybrid between the generative and reactive approaches
[15] with probabilistic parallel composition [5]. Our generative–reactive model seems
to be an adequate solution for modeling probabilistic behaviors of real systems, as it
pro9tably joins the characteristics of both the generative and the reactive models, and
mechanisms like probabilistic internal=external choice and multiway synchronization.
Moreover, adopting a probabilistic asynchronous parallel operator in a discrete time
setting gives our calculus a great modeling power. In particular, depending on how we
calculate the time unit to be considered for the composed system, the parallel operator
has a twofold interpretation and allows us to model:
(1) multiple processes executed by a single processor machine with a probabilistic

scheduling policy (in such a case, all parallel processes are assumed to be speci9ed
with respect to the same basic time unit as that representing action duration in the
composed system),

(2) concurrent processes which proceed with di$erent advancing speeds, meaning that,
di$erently from the classical synchronous approach, they may adopt di$erent basic
durations for their actions.

In the latter case, when considering the behavior of the system at a steady state, we
showed that the representation of system behavior arising from our parallel operator
is correct also when process advancing speeds are considered as being exact instead
of probabilistic. This means that, e.g., if the action frequency of a process is 1=n
then each action of the process takes exactly n time units to be executed. Thanks
to this result we can model systems whose components are speci9ed with respect to
di$erent basic action durations without incurring the problem of state space explosion
which arises with an intuitive application (based on action splitting) of a standard
synchronous approach. For instance, our technique made it possible to analyze the
algebraic model of a multi-path router with 8 outgoing channels whose components
are speci9ed with respect to largely di$erent time units: the IMP of the router is, e.g.,
speci9ed with actions (representing process computations) whose duration is half a
microsecond, while the outgoing channel a1 is speci9ed with actions (representing the
time to send a packet through the channel) whose duration is 10 ms. Specifying the
router with a synchronous parallel operator would have required splitting the actions
of the outgoing channels into thousands of subactions, hence making the model hard
(if not impossible) to be analyzed. Moreover, the idea of expressing the probabilistic
advancing speed of processes by means of a parameter of the parallel operator (as in
[5]) instead of, e.g., using weights attached to actions, has turned out to be adequate
from the modeling viewpoint because:
(1) the modeler can 9rst specify the behavior of processes in isolation and then estab-

lish, independently on how they are speci9ed, their relative advancing speed when
composing them in parallel,

M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406 405

(2) it leads to speci9cations which are easily scalable to any number of components
(e.g. outgoing channels in our case study) without changing the internal behavior
of processes.

As a further advantage of adopting a probabilistic parallel operator, we have that in
the case of fully speci9ed systems (where all the reactive actions get synchronized) the
resulting generative–reactive transition system is fully probabilistic and can be trivially
turned into a discrete time Markov Chain. Therefore deriving performance measures
from speci9cations of complete systems can be done by applying standard techniques.
For instance, we have shown how to employ an algebraic reward based method for
expressing performance measures of systems and we have applied it to evaluate the
throughput and idleness of our multi-path router model.
Finally, we have obtained a sound and complete axiomatization for (a simple variant

of) strong probabilistic bisimulation over non-recursive processes of our calculus which:
(1) by employing a simple auxiliary operator expresses restriction of generative actions

in a clean way without resorting to axioms with implications as in [5],
(2) in the case of reactive actions is a smooth extension of the axiom system for

a non-probabilistic standard process algebra which expresses parallel composition
through the left merge and synchronization merge operators.

Note that we did not consider a weak version of our probabilistic bisimulation (see,
e.g., [7]) because, since in the context of discrete time each transition takes one time
unit to be executed, we cannot merge several � transitions into a single � transition
while preserving the temporal behavior of the system.

Acknowledgements

This research has been partially funded by MURST Progetto TOSCA.

References

[1] L. Aceto, On axiomatising 9nite concurrent processes, SIAM J. Comput. 23 (4) (1994) 852–863.
[2] L. Aceto, D. Murphy, On the ill-timed but well-caused, in: Proc. 4th Int. Conf. on Concurrency Theory,

Lecture Notes in Computer Science, Vol. 715, Springer, Berlin, 1993, pp. 97–111.
[3] A. Aldini, M. Bernardo, R. Gorrieri, An algebraic model for evaluating the performance of an ATM

switch with explicit rate marking, in: Proc. 7th Int. Workshop on Process Algebras and Performance
Modeling, Prensas Universitarias de Zaragoza, 1999, pp. 119–138.

[4] A. Aldini, M. Bernardo, R. Gorrieri, M. Roccetti, Comparing the QoS of internet audio mechanisms
via formal methods, ACM Trans. Modeling Computer Simulation 11 (2001) 1–42.

[5] J.C.M. Baeten, J.A. Bergstra, S.A. Smolka, Axiomatizing probabilistic processes: ACP with generative
probabilities, Informat. and Comput. 121 (1995) 234–255.

[6] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge University Press, Cambridge, 1990.
[7] C. Baier, H. Hermanns, Weak bisimulation for fully probabilistic processes, in: Proc. 9th Int. Conf. on

Computer Aided Veri9cation, Lecture Notes in Computer Science, Vol. 1254, Springer, Berlin, 1997,
pp. 119–130.

406 M. Bravetti, A. Aldini / Theoretical Computer Science 290 (2003) 355–406

[8] M. Bernardo, Theory and Application of Extended Markovian Process Algebra, Ph.D. Thesis, University
of Bologna, Italy, 1999.

[9] M. Bernardo, M. Bravetti, Functional and performance modeling and analysis of token ring using
EMPA, in: Proc. 6th Italian Conf. on Theoretical Computer Science, World Scienti9c, Singapore, 1998,
pp. 204–215.

[10] M. Bernardo, R. Gorrieri, M. Roccetti, Formal performance modelling and evaluation of an adaptive
mechanism for packetised audio over the internet, Formal Aspects Computing 10 (1999) 313–337.

[11] M. Bravetti, M. Bernardo, R. Gorrieri, A note on the congruence proof for recursion in Markovian
bisimulation equivalence, in: C. Priami (Ed.), Proc. 6th Int. Workshop on Process Algebras and
Performance Modeling, 1998, pp. 153–164.

[12] L. Cardelli, Real time agents, in: Proc. 9th Int. Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science, Vol. 140, Springer, Berlin, 1982, pp. 94–106.

[13] F. Corradini, M. Pistore, Closed interval process algebra versus interval process algebra, Acta Inform.
37 (2001) 467–509.

[14] P.R. D’Argenio, H. Hermanns, J.P. Katoen, On generative parallel composition, in: Proc. 1st Int.
Workshop on Probabilistic Methods in Veri9cations, Electronic Notes Theoret. Comput. Sci. 22 (2000).

[15] R.J. van Glabbeek, S.A. Smolka, B. Ste$en, Reactive, generative and strati9ed models of probabilistic
processes, Inform. and Comput. 121 (1995) 59–80.

[16] J. Groote, Transition system speci9cations with negative premises, Theoret. Comput. Sci. 118 (2) (1993)
263–299.

[17] M. Hennessy, T. Regan, A process algebra for timed systems, Inform. and Comput. 117 (2) (1995)
221–239.

[18] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press,
Cambridge, 1996.

[19] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cli$s, NJ, 1985.
[20] R.A. Howard, Dynamic Probabilistic Systems, Wiley, New York, 1971.
[21] C.C. Jou, S.A. Smolka, Equivalences, congruences, and complete axiomatizations for probabilistic

processes, in Proc. 1st Int. Conf. on Concurrency Theory, Lecture Notes in Computer Science, Vol.
458, Springer, Berlin, 1990, pp. 367–383.

[22] L. Kleinrock, Queueing Systems, Wiley, New York, 1975.
[23] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. and Comput. 94 (1991) 1–28.
[24] K.G. Larsen, A. Skou, Compositional veri9cation of probabilistic processes, in: Proc. 3rd Int. Conf. on

Concurrency Theory, Lecture Notes in Computer Science, Vol. 630, Springer, Berlin, 1992, pp. 456–
471.

[25] N.A. Lynch, M.R. Tuttle, Hierarchical correctness proofs for distributed algorithms, in: Proc. 6th ACM
Symp. on Principles of Distributed Computing, 1987, pp. 137–151.

[26] F. Moller, C. Tofts, A temporal calculus of communicating systems, in Proc. 1st Int. Conf. on
Concurrency Theory, Lecture Notes in Computer Science, Vol. 458, Springer, Berlin, 1990, pp. 401–
415.

[27] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood, Cli$s, NJ, 1989.
[28] R. Segala, Modeling and veri9cation of randomized distributed real-time systems, Ph.D. Thesis, MIT,

Boston, MA, 1995.
[29] A.S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cli$s, NJ, 1996.
[30] H.M. Taylor, S. Karlin, An Introduction to Stochastic Modeling, 3rd ed., Academic Press, New York,

1998.
[31] C. Tofts, Processes with probabilities, priority and time, Formal Aspects Comput. 6 (1994) 536–564.
[32] S.H. Wu, S.A. Smolka, E.W. Stark, Composition and behaviors of probabilistic I=O automata, Theoret.

Comput. Sci. 176 (1997) 1–38.

