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Abstract

We present a technique for measuring the security of a system which relies on a probabilistic process
algebraic formalisation of noninterference. We define a mathematical model for this technique
which consists of a linear space of processes and linear transformations on them. In this model
the measured quantity corresponds to the norm of a suitably defined linear operator associated to
the system. The probabilistic model we adopt is reactive in the sense that processes can react to
the environment with a probabilistic choice on a set of inputs; it is also generative in the sense
that outputs autonomously chosen by the system are governed by a probability distribution. In
this setting, noninterference is formulated in terms of a probabilistic notion of weak bisimulation.
We show how the probabilistic information in this notion can be used to estimate the maximal
information leakage, i.e. the security degree of a system against a most powerful attacker.
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1 Introduction

Several characterisations of the security of a system against illegal information
flows from a high-security level enclave to a low-security level enclave have
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been proposed in the literature, which employ qualitative methods based,
e.g., on a logical interpretation of the noninterference idea by Goguen and
Meseguer [17]. This idea ultimately depends on some notion of indistinguisha-
bility of process behaviours (see, e.g., [14,25]). However, in many practical
situations the complete absence of any information flow is difficult to be guar-
anteed and it is more realistic to assume that some amount of information
leakage can be tolerated [18,24]. In such a scenario security is not an absolute
requirement and approximated versions of security properties would be more
appropriate. The latter would also allow us to estimate the difference between
the real system of interest and an idealised perfectly secure system by means
of a measure of the approximation.

On the basis of such considerations, in [1] it is shown how a security prop-
erty termed Probabilistic Noninterference (PNI ) can be used for establishing
the security of a system in an approximated way. PNI extends with probabil-
ities a nondeterministic notion of noninterference [14], which checks whether,
from the viewpoint of a low-level observer, the behaviour of the system is in-
variant with respect to the behaviour of high-level users interacting with the
system. The particular class of high-level users considered by PNI , denoted
APNI , can be viewed as a family of probabilistic adversaries that try to set up
a covert communication channel from high level to low level by affecting the
behaviour of the system. Such adversaries are memoryless in the sense that
their probabilistic behaviour is fixed at the beginning and does not change
during the system execution. Formally, for each H ∈ APNI , an equivalence
check is performed between the process modelling the behaviour of the sys-
tem without high-level interferences and the process modelling the behaviour
of the system interacting with H . If such low-level views of the system are
equivalent, then a low-level observer cannot infer anything about the activity
of H or, in other words, H cannot affect the low-level behaviour of the system
(see [1] and the references therein). The main idea behind an approximated
notion of probabilistic noninterference is to replace equivalence by similarity.
This allows for some tolerance in the comparison of the two low-level views of
the system rather than giving a binary answer to the potential equality be-
tween them. In this paper we concentrate on the problem of estimating such
a tolerance factor in terms of “how much” similar two probabilistic processes
are. The relaxed notion of indistinguishability we propose implies the one
described in [1] and allows us to apply a methodology to detect the most pow-
erful adversary; this corresponds to the high-level user of APNI that maximises
the difference between the two low-level views considered by PNI .

The criterion we adopt to establish the indistinguishability of two proba-
bilistic processes refers to a probabilistic notion of weak bisimulation [3]. An
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approximated version of noninterference can be formalised through the def-
inition of a corresponding similarity relation. We define such a relation in
terms of the observable difference between two processes, where observabil-
ity is based on the weak probabilistic bisimulation semantics. The maximal
observable difference between processes will give us a measure of their indis-
tinguishability, that is in our formalisation of noninterferference a measure of
the information leakage.

A formal justification of such quantity is given in a mathematical frame-
work in which the operational semantics of the probabilistic calculus is defined
in terms of linear operators on a vector space representing the state space. In
this setting we show that the metric induced by a particular operator norm
on the process terms corresponds to a notion of distance which coincides with
the measure above. This result exploits techniques introduced in [13,11].

The probabilistic model we adopt was introduced in [5] and used in [1,2]
to formalise the PNI property. This model includes both probabilities and
nondeterminism. On the one hand, a probability distribution is used to gov-
ern the choice among the various output actions that can be autonomously
performed by the system. On the other hand, the choice among different types
of input actions that can be accepted by the system depends on the environ-
ment behaviour. Therefore, such choices are nondeterministic. More precisely,
once the environment has decided which type of input will be activated, the
system reacts according to a specified probability distribution associated with
the input actions of that type. Thus, the model is a mixed generative-reactive
model, where output operations follow the generative model of probabilities
and input operations follow the reactive model of probabilities [16].

The presence of nondeterminism in the model is in a sense not compatible
with our quantitative approach which requires that all transition probabilities
are specified in order to calculate the behavioural difference between processes.
In fact, in our security analysis nondeterminism is resolved by the probabilistic
adversaries in APNI , which play the role of probabilistic schedulers. Such
schedulers are responsible of the information that may flow from the high to
the low level, and therefore represent the “attackers” in our model of security.

In the rest of the paper, we first describe the formal model surveyed above
(Section 2) and then present the PNI property and its application to an exact
verification of the system security (Section 3), as done in [1,2]. In Section 4 we
introduce the main contribution of this paper by presenting our quantitative
approach towards measuring noninterference. In Section 5 we show that the
quantity introduced as a measure for noninterference can be formalised in
terms of the metric on probabilistic processes induced by a particular operator
norm. Finally, in Section 6 we conclude by discussing some related work.
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2 The Probabilistic Model

In this section we present the probabilistic framework in which we formalise a
quantitative approach to noninterference. In particular, we consider a proba-
bilistic calculus that was introduced in [4] and used in [2] to define a proba-
bilistic extension of the nondeterministic approach to noninterference of [14].
Such a calculus derives from a simple nondeterministic process algebra where
actions are syntactically divided into input actions and output actions. For-
mally, for each visible action of type a, we distinguish the output action a and
the input action a∗. Process terms synchronously communicate with the envi-
ronment through their inputs and outputs, and perform internal computations
through unobservable actions, termed τ actions.

Probabilities are introduced by adding probabilistic information to the
algebraic operators. As an example, the classical CCS choice operator P + Q
is replaced by a probabilistic choice operator P +p Q, where p is the parameter
of a probability distribution that guides the choice between P (chosen with
probability p) and Q (chosen with probability 1 − p).

As far as the model of probabilities is concerned, we adopt a mixture
of the generative and reactive approaches of [16]. We assume that output
actions behave as generative actions, i.e. the system autonomously decides,
on the basis of a probability distribution, which output action will be offered
to the environment and how to behave after such an event. In particular, τ
is a generative action, since it expresses an autonomous internal move that
does not react to external stimuli. For example, the process a.P +p τ.Q will
either execute a with probability p and then proceed as P , or execute τ with
probability 1 − p and then proceed as Q.

Input actions are modelled as reactive actions, i.e. the system internally
reacts to the choice of an action type performed by the environment. Once
the action type has been (nondeterministically) chosen, a particular reactive
action of that type is executed on the basis of a probability distribution. Thus,
we can see the input actions as underspecified, since their execution is guided
by the environment behaviour. For example, the process b∗.P +p(a∗.Q+qa∗.R)
will react to one of two action types, a or b, which can be selected by the
environment. Note that such a choice is purely nondeterministic and does not
depend on the probability distribution specified by parameter p. If the chosen
event is a, the system performs one of the possible reactive input actions a∗

according to the probability distribution specified by parameter q. Instead, if
the chosen event is b, the system reacts by executing the unique reactive input
action b∗ it can perform with probability 1.

In the following, we present the syntax and the semantics of the proba-
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bilistic calculus. The interested reader is referred to [1,2,4,5] for more details.
Then, we describe a notion of process equivalence [3] based on a probabilistic
extension of the weak bisimulation of [23].

2.1 Syntax

The syntax of the probabilistic process calculus is as follows:

P ::= 0 | π.P |P +p P |P ‖p
S P |P\L |P/p

a |A.

We use 0 to represent the terminated process (we usually omit it).

Action π is drawn from the set of actions Act and can be an internal action
τ , an output action a, or an input action a∗, where a belongs to the set of
visible action types AType. π.P performs the action π with probability 1 and
then behaves like P .

The alternative choice operator P +p Q, where p ∈ (0, 1), performs a mixed
probabilistic/nondeterministic choice among the actions of P and Q. More
precisely, P +p Q executes a generative (reactive of type a) action of P with
probability p and a generative (reactive of type a) action of Q with proba-
bility 1 − p. If one process P or Q cannot execute generative (reactive of
type a) actions, P +p Q chooses a generative (reactive of type a) action of the
other process with probability 1. The choice among generative and reactive
actions and among reactive actions of different types is purely nondeterminis-
tic. Hence, the parameter that probabilistically guides the choices comes into
play if and only if a probabilistic choice is actually performed.

The parallel composition operator P ‖p
S Q, where p ∈ (0, 1) and S ⊆ AType,

asynchronously performs all the actions of P and Q that do not belong to the
synchronisation set S and imposes synchronisation for all the actions belonging
to S. Two actions can synchronise if they are of the same type a and either
they are both input actions (and the result is an input action of type a), or
one of them is an output action and the other one is an input action (and
the result is an output action of type a). The probabilistic choice mechanism
among the actions of P and Q is the same as described in the case of the choice
operator. Because of the synchronisation policy, the execution of some actions
of P may be prevented in P ‖p

S Q. Thus, we normalise the probabilities of the
generative actions of P executable by P ‖p

S Q in order to obtain a probability
distribution. A symmetric argument holds for Q.

The restriction operator P\L prevents the execution of the actions of type
in L ⊆ AType. The semantics of this operator can be expressed in terms of
the parallel operator. In fact, we have that P\L corresponds to P ‖p

L 0, for
any choice of parameter p.
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The hiding operator P/p
a turns visible actions of type a into internal actions

τ . In particular, when hiding an action a∗, we must pay attention to the
side effect caused by the fact that a reactive action becomes a generative
action. To this purpose, we use parameter p to express the probability that
generative actions τ obtained by hiding reactive actions a∗ of P are executed
with respect to the generative actions previously enabled by P . Obviously, p
is not used when hiding generative actions, because in such a particular case
no nondeterminism must be resolved.

Example 2.1 Consider the process P defined by a +q b, where the proba-
bilistic choice is governed by parameter q. The semantics of P/p

a is given by
τ +q b, i.e. it is again a probabilistic choice governed by parameter q. In such a
case, parameter p of the hiding operator is not used since no nondeterministic
choice must be resolved.

Now, consider process P given by a∗ +q b, where the choice is purely non-
deterministic (parameter q is not considered). The semantics of P/p

a is the
probabilistic choice τ +p b, governed by parameter p, between τ (obtained by
hiding a∗) and b.

By turning reactive actions into generative invisible actions, the hiding op-
erator allows us to obtain closed (fully generative) systems from open systems
(i.e., systems enabling reactive choices). In order to obtain a closed system,
the nondeterministic choices due to possible interactions with the environment
have to be resolved, and parameter p turns such choices into probabilistic
choices. In this sense, the hiding operator allows us to obtain a more concrete
(fully specified) system which is an essential requirement for a quantitative
reasoning about the system.

Constants A are used to specify recursive systems. In general, when defin-
ing a process term, we assume a set of constants defining equations of the

form A
∆
= P (with P a guarded term [23]) to be given.

In the rest of the paper, we denote by G the set of finite state, guarded, and
closed terms [23], called processes, generated by the syntax above. Moreover,
we assume p = 1

2
in the case parameter p of a probabilistic operator is omitted.

2.2 Operational Semantics

The semantics of the probabilistic process calculus is expressed in terms of
mixed generative/reactive transition systems, which we now introduce. To
this aim, we assume the following notation. Sets RAct and GAct denote the
sets of input actions and of output and internal actions, respectively. We use

the abbreviation P
π

−−−→ for P
π, p

−−−→ P ′, denoting that P can execute action
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π with probability p and then behave as P ′, for some p ∈]0, 1] and some

process P ′. We also use P
G

−−−→ , with G ⊆ GAct , to indicate P
a

−−−→ , for
some a ∈ G, denoting that P can execute a generative action belonging to the
set G.

The operational semantics of the probabilistic process algebra is given by
the labeled transition system (G,Act , T ), called generative/reactive transition
system, where states are process terms and the transition relation T is the least
multiset satisfying the operational rules reported in Table 1 and in Table 2.
As far as the rules for P +p Q and P ‖p

S Q are concerned, in addition to the
reported rules, which refer to the local moves of the left-hand process P , we
also consider the symmetric rules taking into account the local moves of the
right-hand process Q. Such symmetric rules are obtained by exchanging the
roles of terms P and Q in the premises and by replacing p with 1 − p in the
label of the derived transitions.

The semantics rules reflect the informal presentation of the syntax of the
operators. Here, we go through some details concerning the parallel operator.
If both P and Q can execute some synchronising actions a∗ in P ‖p

S Q, then
the composed system can execute some actions a∗: the probability of each
action a∗ executable by P ‖p

S Q is the product of the probabilities of the two
actions a∗ (one of P and one of Q) that are involved in the synchronisation.
The probabilities of the generative actions of P (Q) that are executable by
P ‖p

S Q are normalised in order to obtain a probability distribution [16]. To
this purpose, we employ some additional notation.

• The set GS,Q = {a ∈ AType ∪{τ} | a �∈ S ∨ (a ∈ S ∧Q
a∗

−−−→ )} contains the
action types not belonging to set S and the action types belonging to S for
which an input action of Q can be performed. Intuitively, GS,Q contains all
the types of the actions that any process P can execute within P ‖p

S Q.

• The function νP (GS,Q) : P(AType ∪ {τ}) −→]0, 1] computes the sum of the
probabilities of the generative actions of P with type in GS,Q. The value
νP (GS,Q) is used to normalise the probabilities of the generative actions of
P executable by P ‖p

S Q.

2.3 Weak Probabilistic Bisimulation

The security analysis we conduct is based on the semantics of processes (i.e.,
the security check considers the program behaviour), so that we need an equiv-
alence relation allowing for a comparison among the observable behaviours of
different systems. As argued in [27,2] a natural notion of observational equiv-
alence on which to base notions of confinement is weak bisimulation: a seman-
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π.P
π,1

−−−→ P

P
a∗,q

−−−→ P ′ Q
a∗

−−−→

P +p Q
a∗,p·q
−−−→ P ′

P
a∗,q

−−−→ P ′ Q
a∗

−−−→/

P +p Q
a∗,q

−−−→ P ′

P
a,q

−−−→ P ′ Q
GAct

−−−→

P +p Q
a,p·q
−−−→ P ′

P
a,q

−−−→ P ′ Q
GAct

−−−→/

P +p Q
a,q

−−−→ P ′

P
a∗,q

−−−→ P ′ P
GAct

−−−→

P/p
a

τ,p·q
−−−→ P ′/p

a

P
a∗,q

−−−→ P ′ P
GAct

−−−→/

P/p
a

τ,q
−−−→ P ′/p

a

P
b∗,q

−−−→ P ′

P/p
a

b∗,q
−−−→ P ′/p

a

a �= b

P
b,q

−−−→ P ′ P
a∗

−−−→

P/p
a

b,(1−p)·q

−−−−−−−−→ P ′/p
a

a �= b
P

a,q
−−−→ P ′ P

a∗

−−−→

P/p
a

τ,(1−p)·q

−−−−−−−−→ P ′/p
a

P
b,q

−−−→ P ′ P
a∗

−−−→/

P/p
a

b,q
−−−→ P ′/p

a

a �= b
P

a,q
−−−→ P ′ P

a∗

−−−→/

P/p
a

τ,q
−−−→ P ′/p

a

P
π,q

−−−→ P ′

A
π,q

−−−→ P ′
if A

∆
= P

Table 1
Operational semantics (part I)

tics based on weak bisimulation allows us to neglect details about the internal
behaviour of a system which are not important for a security analysis (such
as the running time of a concurrent thread) and to concentrate only on those
behaviours which are interesting for the analysis (e.g. behaviours which are
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P
a∗,q

−−−→ P ′ Q
a∗

−−−→

P ‖p
S Q

a∗,p·q
−−−→ P ′ ‖p

S Q
a �∈ S

P
a∗,q

−−−→ P ′ Q
a∗

−−−→/

P ‖p
S Q

a∗,q
−−−→ P ′ ‖p

S Q
a �∈ S

P
a∗,q

−−−→ P ′ Q
a∗,q′

−−−→ Q′

P ‖p
S Q

a∗,q·q′

−−−→ P ′ ‖p
S Q′

a ∈ S

P
a,q

−−−→ P ′ Q
GS,P

−−−→

P ‖p
S Q

a,p·q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q

a �∈ S

P
a,q

−−−→ P ′ Q
GS,P

−−−→/

P ‖p
S Q

a,q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q

a �∈ S

P
a,q

−−−→ P ′ Q
a∗,q′

−−−→Q′ Q
GS,P

−−−→

P ‖p
S Q

a,p·q′·q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q′

a ∈ S

P
a,q

−−−→ P ′ Q
a∗,q′

−−−→ Q′ Q
GS,P

−−−→/

P ‖p
S Q

a,q′·q/νP (GS,Q)

−−−−−−−−−−−−−→ P ′ ‖p
S Q′

a ∈ S

Table 2
Operational semantics (part II)

observable from an external or low-level viewpoint). We consider here a prob-
abilistic variant of the weak bisimulation which was introduced in [3]. Such a
relation, denoted by ≈PB, is a probabilistic extension of the weak bisimulation
(≈B) of [23]. In essence, ≈PB replaces the classical weak transitions of ≈B

by the probability of reaching classes of equivalent states. More precisely, we
use a function Prob such that Prob(P, π, C) denotes the aggregate probability
of going from P to a term in the class (of equivalent terms) C by executing
an action π, and Prob(P, τ ∗a, C) expresses the aggregate probability of going
from P to a term in the equivalence class C via sequences of any number of τ
actions followed by an action a, possibly equal to τ .

Lemma 2.2 The value of Prob(P, τ ∗a, C) is the minimal non-negative solu-
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tion to the equation system:


1 if a = τ ∧ P ∈ C
∑

Q∈G Prob(P, τ, Q) · Prob(Q, τ ∗, C) if a = τ ∧ P �∈ C
∑

Q∈G Prob(P, τ, Q) · Prob(Q, τ ∗a, C) + Prob(P, a, C) if a �= τ

As shown in [2], this system has a least solution. We are now ready to
define the weak probabilistic bisimulation equivalence.

Definition 2.3 An equivalence relation R ⊆ G × G is a weak probabilistic
bisimulation if and only if, whenever (P, Q) ∈ R, then for all C ∈ G/R:

• Prob(P, τ ∗a, C) = Prob(Q, τ ∗a, C) ∀a ∈ GAct

• Prob(P, a∗, C) = Prob(Q, a∗, C) ∀a∗ ∈ RAct .

Two terms P, Q ∈ G are weakly probabilistically bisimulation equivalent, de-
noted P ≈PB Q, if there exists a weak probabilistic bisimulation R including
the pair (P, Q).

Note that such a definition requires two equivalent terms to be strongly
equivalent in the case of reactive actions and weakly equivalent in the case of
generative actions. This is because τ is a generative action, therefore com-
puting the probability associated with a mixed trace of generative/reactive
actions (like, e.g., τ ∗a∗) does not actually make sense. Note also that, as
shown in [3], the first equation in Definition 2.3 can be equivalently written
as Prob(P, τ ∗aτ ∗, C) = Prob(Q, τ ∗aτ ∗, C).

Example 2.4 Processes P
∆
= a+

1

2 b and Q
∆
= τ.Q+

1

3 (a+
1

2 b) behave the same
from the viewpoint of an external observer, who can see either an output
action a or an output action b with equal probabilities. Formally, P and
Q are weakly probabilistically bisimulation equivalent and the relation that
satisfies Definition 2.3 is R = {C, [0]}, with C = {P, Q} and [0] = {0}. The
only interesting case to be verified is related to the execution of a visible
action (possibly preceded by a sequence of internal actions) starting from
the initial state and reaching the null term. As it is easy to see, we have
Prob(P, τ ∗π, [0]) = 1

2
, with π ∈ {a, b}. As far as Prob(Q, τ ∗π, [0]) is concerned,

we observe that Q can execute an arbitrary number of times the action τ before
reaching state 0 via an action a (b). Hence, the probability 1

3
associated with

the outgoing internal transition of Q is distributed among the other outgoing
transitions of Q. Formally, by resolving the equation system of Lemma 2.2,
we have Prob(Q, τ ∗a, [0]) = 1

3
· Prob(Q, τ∗a, [0]) + 1

3
, from which we derive

Prob(Q, τ∗a, [0]) = 1
2

(similarly for b). Therefore, R is a weak probabilistic
bisimulation and P ≈PB Q.
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3 Probabilistic Noninterference

According to the standard definition of noninterference given by Goguen and
Meseguer [17], a high-level user (High, for short) is said to interfere with a
low-level user (Low, for short) if what High can do is reflected on what Low
can observe. In this setting, High can perform high-level activities only and
observe all the interactions between the system and the environment. Instead,
Low can perform low-level activities only and is not allowed to directly observe
the occurrence of high-level events. In spite of this, Low may succeed in de-
tecting the High behaviour by simply interacting with the low-level interface
of the system. In other words, even if there does not exist a direct communi-
cation channel from High to Low, High may have the possibility of indirectly
passing information to Low through interactions with the system. Noninter-
ference analysis mainly aims at checking the presence of indirect information
flows, called covert channels, from High to Low. In our probabilistic frame-
work, what Low can see in order to infer the High behaviour is not only the
logical low-level interface of the system interacting with the environment, but
also the probability distribution of the events representing such interactions.
In this section we describe a formalisation of the noninterference approach in
the probabilistic process calculus surveyed in the previous section [1,2].

The noninterference-based security analysis roughly consists of deriving
two models from the system specification at hand, corresponding to two differ-
ent low-level views of the system, and then checking the semantic equivalence
between such derived models. The semantic equivalence between processes is
based on the weak probabilistic bisimulation ≈PB, introduced in Section 2.3,
while the choice of the low-level models to be compared depends on the defi-
nition of the security property. The property we consider here was introduced
in [2] as a probabilistic extension of the Strong Nondeterministic Noninterfer-
ence property of [14]. Such a property, which we call Probabilistic Noninter-
ference (PNI ), compares the low-level view of the system in the absence of
high-level interactions and the low-level view of the system in the presence of
high-level interactions.

Formally, we divide actions into high-level actions and low-level actions,
denoted High and Low , respectively, depending on the nature of the activities
they represent. High and Low are two disjoint sets that form a covering of
AType. Given a process P , we denote with h̄P = hP

1 , . . . , hP
n the sequence (in

alphabetic order) of types of the high-level input actions that syntactically
occur in the action prefix operators within P . Then, the application of the
security check to P is as follows. The low-level view of P in the absence
of high-level operations is obtained by preventing P from executing its high-
level actions. This is carried out by applying the restriction operator to P , i.e.
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P\High. The low-level view of P in the presence of high-level interactions is
obtained by turning all the high-level actions of P into invisible actions, since
Low is not expected to observe them. This is carried out by applying the
hiding operator to P , thus obtaining a family of processes P/p1

hP
1

. . . /pn

hP
n
, with

p1, . . . , pn ∈ (0, 1), where each possible sequence p̄ = p1, . . . , pn expresses the
probability distribution (chosen by High) of the hidden high-level input actions
executable by P . In the following, we sometimes use the abbreviation P/p̄

h̄P

to stand for P/p1

hP
1

. . . /pn

hP
n
. Finally, for each possible p̄, we compare P\High

and P/p̄

h̄P to check whether they are weak probabilistic bisimilar. If such a
condition holds we say that P satisfies the PNI property, or P ∈ PNI .

Definition 3.1 P ∈ PNI ⇔ P\High ≈PB P/p1

hP
1

. . . /pn

hP
n
∀p1, . . . , pn ∈ (0, 1).

Note that the sequence p̄ = p1, . . . , pn represents the particular proba-
bilistic behaviour (i.e. the strategy) followed by High. Hence, the universal
quantification over all possible sequences imposes that the equivalence check
must hold for each High strategy. In particular, we can interpret each p̄ as rep-
resenting an adversary whose probabilistic behaviour may be responsible for
setting up a covert channel from High to Low. The PNI definition takes into
account a family APNI of adversaries (against which PNI checks the presence
of information flows from High to Low) that turn out to be:

• active: an adversary can alter the probabilistic low-level behaviour of the
system, since the application of the hiding operator affects the probability
distribution of the generative low-level actions.

• memoryless: an adversary cannot alter its strategy step by step, since the
probability distribution of the hidden high-level inputs, expressed by pa-
rameters p1, . . . , pn and chosen by the adversary, does not change during
the system execution.

If PNI holds, Low cannot infer the behaviour of any adversary in APNI , that
means the system does not leak information from High to Low.

As shown in [1,2], probabilistic noninterference reveals covert channels that
are not observable in a purely nondeterministic setting, and offers the means
for measuring the information leakage in terms of probability of observing the
related covert channel. We now provide some examples showing the expressive
power of PNI .

Example 3.2 Consider process P
∆
= h∗.(l∗.0+ l′∗.0)+ (l∗.0+ l′∗.0), which may

accept a high-level input of type h before interacting with Low through one
of the low-level actions, l∗ or l′∗. From the viewpoint of Low, the observable
interface of the system cannot be altered by the strategy followed by High.
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This is reflected by the security check, which states that P satisfies the PNI

property, since (l∗.0 + l′∗.0) ≈PB τ.(l∗.0 + l′∗.0) +p (l∗.0 + l′∗.0) for any choice of
parameter p.

An example of an information flow from High to Low is given by the follow-

ing process P
∆
= l.(h∗.0 + l′.0) + l′.l.0. If P produces the sequence of low-level

outputs l′.l, then High cannot interact with the system and no information can
flow from High to Low. Instead, if the system first chooses l, then High can
be responsible for deciding whether l′ will be executed. Formally, l.l′.0+ l′.l.0,
which expresses the semantics of P\{h}, is not weak probabilistic bisimilar to
l.(τ.0+p l′.0)+ l′.l.0, which expresses the semantics of P/p

h. In particular, they
cannot be equivalent for any choice of parameter p of the hiding operator.
The same example revisited in a nondeterministic scenario reveals the same
covert channel described above, which turns out to be a purely possibilistic
information flow.

An example of a probabilistic information leakage is given by the process

P
∆
= l.h.l′.0 + (l.l′.0 + l.0). The behaviour of High does not affect the set

of possible results, l.l′ or l, observable by Low. However, High can alter
the probability distribution of such results. Formally, a probabilistic covert
channel is captured by the PNI property, since l.0 + (l.l′.0 + l.0), which is

the semantics of P\{h}, is equivalent to l.l′.0 +1/4 l.0, and P
∆
= l.τ.l′.0 +

(l.l′.0 + l.0), which is the semantics of P/h, is equivalent to l.l′.0 +3/4 l.0.
Hence, P\{h} and P/h are not weak probabilistic bisimilar. From a statistical
viewpoint, if High interferes and Low observes repeated executions of P , then,
on average, the result of 3

4
· n experiments over n will be l.l′. On the other

hand, the same observation occurs 1
4
· n times over n (on average) in the

case High does not interact with P . From the viewpoint of Low, a small
number of experiments is sufficient to guess the behaviour of High (see [1] for
a mathematical justification of this statistical interpretation).

The following example shows an application of the noninterference general
idea to study interferences between honest users and malicious parties (see,
e.g., [15] for an application of the noninterference approach to the analysis of
cryptographic protocols).

Example 3.3 Let us assume that Low represents a user that interacts with
the system in order to obtain a service, while High is a potential adversary
interacting with the system with some malicious intentions. In particular, we
consider an abstraction of a low-level shared resource with password-based
access. Low can access and consume the resource, while High is not allowed
to. In spite of this, High can try to guess the access password in order to
consume the resource in place of Low. The overall system is given by the
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parallel composition of two processes, LU ‖Act Resource, where LU expresses
the behaviour of the low-level user:

LU
∆
= low request . low insert password . low consume resource . 0 +

low not available∗ . 0

and Resource models the shared resource that reacts to external requests,
which may arrive either from LU or from the high-level adversary:

Resource
∆
= low request∗ . low insert password∗ . low consume resource∗ . 0 +

high request∗ . (high try password∗ . high consume resource∗ .

low not available . 0 +q

high try password∗ .Resource)

In the absence of the adversary, Low can normally access and consume the
resource. More formally, (LU ‖Act Resource)\High does not enable the action
low not available. On the other hand, if High tries to interfere, then Low may
not be able to access the resource. In particular, we have that

(LU ‖Act Resource)/p
high request/high try password/high consume resource

reaches the null term by performing sequences of the form τ ∗low not available

with probability p · q ·
∑∞

i=0(p · (1 − q))i = p·q
1−p+p·q

. Note that when hiding
the action of type high request , parameter p of the hiding operator is used to
resolve the choice between the resulting invisible action and the synchronis-
ing action low request . On the other hand, when hiding the action of type
high try password (resp. high consume resource) the parameter of the hiding
operator is not used, since the system performs an action of this type with
probability 1.

4 Measuring Noninterference

In this section we show how to exploit the probabilistic information associ-
ated with the behaviour of a system in order to give a quantitative estimate of
possible information leakages. This gives us a means to evaluate the effective-
ness of a covert channel that is responsible for an illegal information flow. As
shown in [1], this is related to the number of tests (system executions) needed
to an external observer for detecting such an information flow.

The technique we are going to introduce aims at quantifying the informa-
tion leakage of a system by calculating the maximal difference between the
transition probabilities observed by a low-level user when the system is inter-
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acting with High and when it is not, respectively. As a consequence a basic
requirement for this technique is that the systems we analyse are fully specified

from the viewpoint of a low-level observer. This means that the nondetermin-
ism due to possible interactions with the environment has to be resolved. In
fact, this is the effect of the hiding operator when turning reactive actions
into generative internal actions. Since in our modelling of the PNI property
hiding is applied only to high-level actions, we only need to assure that these
are the only reactive transitions enabled by the system. We think that this
assumption is not restrictive, since a quantitative estimate of a covert channel
observed by Low really makes sense if (i) the behaviour of Low is fully speci-
fied and (ii) we use a technique that takes into account all the possible ways in
which the behaviour of High may influence the probability distribution of the
low-level events. Our approach would be applicable also to the general case
of systems including low-level reactive actions, provided that we complicated
the model in order to consider all the possible associated interactions.

The probability of observing an information flow from high level to low level
can be estimated by relaxing the behavioural equivalence relation expressed by
the weak probabilistic bisimulation defined in Section 2.3. The intuitive idea,
inspired by [1,2], is as follows. According to the PNI property introduced in
Section 3, a process P is not secure if the low-level models corresponding to
the behaviours of P with and without High interferences are not equivalent
in the probabilistic weak bisimulation semantics. Therefore, an information
leakage is detected when, for a given sequence p̄ chosen by High, for each
equivalence relation R ⊆ G×G including the pair (P\High, P/p̄

h̄P ), there exist
C ∈ G/R, a ∈ GAct , and a pair (P ′, P ′′) ∈ R, such that

Prob(P ′, τ ∗a, C) �= Prob(P ′′, τ ∗a, C).

The difference between these two probabilities can be used to give an estimate
of the amount of information leakage. More precisely, for every equivalence
relation R including the pair (P\High, P/p̄

h̄P ), we consider the pair of states (of
a class in G/R) where the weak transition probabilities are maximally different
and calculate the difference. We can then define a measure of the security of
P as the minimal of these differences over all equivalence relations.

More formally, we define the quantity δR
p̄ (P ) (or simply δR

p̄ when process P
is clear from the context), which expresses the behavioural distance between
the low-level models P\High and P/p̄

h̄P of a system P with respect to a given

relation R ⊆ G ×G including the pair (P\High, P/p̄

h̄P ) and a particular choice
of the sequence of parameters p̄ = p1, . . . , pn governing the interaction of each
high-level input action of P with High.

Definition 4.1 Let P be a process, R ⊆ G × G an equivalence relation in-
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cluding the pair (P\High, P/p̄

h̄P ), and p̄ = p1, . . . , pn a sequence of parameters
such that pi ∈ (0, 1), 1 ≤ i ≤ n. We define

δR
p̄ = sup

(P ′, P ′′) ∈ R

a ∈ GAct

C ∈ G/R

|Prob(P ′, τ ∗a, C) − Prob(P ′′, τ ∗a, C) |.

By using this quantity we can then define a measure for the security degree
of a system P as follows.

Definition 4.2 Let P be a process and let R, p̄ and δR
p̄ as in Definition 4.1.

Then we define

εp̄ = inf R δR
p̄ .

The quantity εp̄ expresses the maximal distance between the process with-
out High interferences and the process interacting with the high-level user
modelled by sequence p̄, obtained for the particular relation that is the best
approximation of a weak probabilistic bisimulation. We point out that this
quantity depends on parameters p1, . . . , pn forming the sequence p̄. These
parameters represent an hypothetical high-level adversary that can pass to
Low an amount of information according to the quantity εp̄. The measure εp̄

can also be interpreted as the “effectiveness” of the adversary strategy corre-
sponding to the sequence p̄. In fact, it determines how easy it is for a low-level
user to obtain some confidential information, in terms of the number of tests
(system executions) the low-level user needs to perform in order to distinguish
the behaviours with and without the interference of such an adversary. This
number of tests can be analysed by using various standard statistical methods,
such as the so-called hypothesis testing method [26]. This method provides a
simple way to estimate how many tests are needed to distinguish two processes
and the confidence that the tests outcome is correct. The application of this
method for a statistical interpretation of the approximation of confinement
properties was first described in [13]; a detailed description of this statistical
interpretation in our process algebraic setting can be found in [1].

In [1,2] an approximated notion of noninterference is proposed by employ-
ing a relaxed version of the weak probabilistic bisimulation ≈PB, termed weak
probabilistic bisimulation with ε-precision (≈PBε), which is a non-transitive
relation formally defined as follows.

Definition 4.3 A relation R ⊆ G × G is a weak probabilistic bisimulation
with ε-precision, where ε ∈ (0, 1), if and only if, whenever (P, Q) ∈ R, then
for all C ∈ G/R :

• |Prob(P, τ ∗a, C) − Prob(Q, τ ∗a, C) | ≤ ε ∀a ∈ GAct
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• |Prob(P, a∗, C) − Prob(Q, a∗, C) | ≤ ε ∀a∗ ∈ RAct .

If P ≈PBε Q then there exists a weak probabilistic bisimulation with ε-
precision including the pair (P, Q).

By replacing ≈PB by ≈PBε in the PNI definition, we obtain a relaxed property
that checks whether a system P is an approximated version of a secure system
up to a tolerance ε. We recall that in this section we apply the security check to
fully generative processes, since the systems we consider do not enable reactive
low-level transitions. Hence, the verification of the condition of Definition 4.3
is applied to the generative actions a ∈ GAct only.

With respect to the PNI security check based on Definition 4.3, in this
section we have proposed a specific notion of measure εp̄ of the security of a
system P against the adversary corresponding to sequence p̄. An important
consequence of Definitions 4.1 and 4.2 is that P turns out to be approximately
secure (up to ε) against the adversary modelled by p̄ – namely there exists a
relation including the pair (P\High, P/p̄

h̄P ) that is a weak probabilistic bisim-
ulation with ε-precision – if and only if εp̄ is less than ε.

Proposition 4.4 Let P be a process and εp̄ as in Definition 4.2. Then

(i) P\High ≈PBεp̄
P/p̄

h̄P .

(ii) P\High ≈PBε P/p̄

h̄P for each ε > εp̄.

(iii) There does not exist ε < εp̄ such that P\High ≈PBε P/p̄

h̄P .

Proof. We immediately derive (i) from Definitions 4.2, 4.1 and from the def-
inition of weak probabilistic bisimulation with ε-precision. Condition (ii) sim-
ply holds if we take the relation R such that εp̄ = δR

p̄ . Finally, to derive (iii), it
suffices to observe that if such an ε exists, then there also exists a relation R′

including the pair (P\High, P/p̄

h̄P ) such that, whenever (P ′, P ′′) ∈ R′, for each
C ∈ G/R′ it holds that |Prob(P ′, τ ∗a, C)−Prob(P ′′, τ ∗a, C) | ≤ ε ∀a ∈ GAct .
That means δR′

p̄ ≤ ε, thus violating the hypothesis that εp̄ is the minimum,
over all relations R, of the family of values δR

p̄ . �

As we have seen, PNI checks whether the system is secure against a class
APNI of adversaries, among which we are interested in evaluating the effec-
tiveness of the adversary that maximises the information leakage, i.e. the most
powerful adversary. Formally, if q̄ = q1, . . . , qn is the sequence representing
such an adversary, we have that εq̄ = sup p̄ εp̄. The problem of estimating the
most effective adversary corresponds to the problem of finding the least upper
bound of the function εp̄.

A. Aldini, A. Di Pierro / Electronic Notes in Theoretical Computer Science 99 (2004) 155–182 171



•1

τ
��

•2

l
��

•3

•1′

τ,p

����
��

��
� τ,1−p

��
��

��
��

�

•2′

l
��

•3′

τ,p

����
��

��
� l,1−p

��
��

��
��

�

•4′ •5′

l′

��

•6′

•7′

Fig. 1. Process h∗.l + τ.(h∗.l
′
.0 + l.0): what Low can observe with or without High interactions.

Transition probabilities are omitted when equal to 1.

4.1 Examples

We now provide some intuitive examples that explain the role of our approxi-
mation in estimating the security degree of systems and determining the worst
case, i.e. the maximal information leakage that the class of adversaries defined
by PNI may set up from high level to low level.

Example 4.5 Process P
∆
= h∗.l + τ.(h∗.l

′.0 + l.0) performs either a high-level
input operation of type h or an internal move. Such a choice is nondeterminis-
tic, as it depends on the behaviour of High. Then, if the action τ is executed,
another nondeterministic choice is to be performed between the high-level in-
put operation of type h and a low-level output l. Note that an information flow
from High to Low occurs if the action l′ is observed by Low, as l′ is executed
only if High interacts with the system. On the other hand, the execution of
l does not reveal anything about the strategy followed by High. In Figure 1
we show the labeled transition systems modelling the low-level views of P to
be compared through equivalence checking. The left-hand system represents
the behaviour of P\High. The right-hand system expresses what Low can
observe in the case High decides to interact with P , i.e. P/p

h. In such a case,
each nondeterministic choice is probabilistically resolved by High according to
parameter p. In other words, each p ∈ (0, 1) expresses a high-level strategy
followed by the adversary.

Let us consider the most relevant equivalence relations.
For R1 = {{1, 1′}, {2, 2′, 3′}, C = {5′}, {3, 4′, 6′, 7′}} we have

δR1

p = |Prob(2, τ ∗, C) − Prob(3′, τ ∗, C) | = | 0 − p | = p,

and for R2 = {{1, 1′}, C = {2, 2′}, {3′}, {5′}, {3, 4′, 6′, 7′}} we have

δR2

p = |Prob(1, τ ∗, C) − Prob(1′, τ ∗, C) | = 1 − p

from which we derive εp = min{p, 1 − p}. That means the probabilistic be-
haviour of High directly affects the capability of distinguishing between the
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Fig. 2. Two low-level views of process l.(h∗.0 + l
′
.0) + l

′
.l.0

two low-level views of the system. In order to evaluate the worst case, we
maximise function εp, thus obtaining p = 1

2
, for which we have εp = 1

2
. In

fact, it is easy to see that ∀p �= 1
2
, εp < 1

2
. We can then conclude that the most

powerful adversary is the high-level user expressed by parameter p = 1
2
. In the

statistical interpretation mentioned above, where εp is inversely proportional
to the number of tests the adversary has to perform to breach the security
of the system, the most powerful adversary is the attacker which needs the
minimal number of tests. In particular, assume that the most powerful ad-
versary, modelled by parameter p = 1

2
, is interacting with the system. By

applying the technique explained in [1], we obtain that the probability for a
low-level observer of guessing the activity of such a high-level user is about
96.5% after 10 tests. As another example, consider the high-level user mod-
elled by parameter p = 0.01. Such an adversary interferes with the system in
a way that is rarely revealed by the low-level observer. Indeed, in order to
correctly guess the behaviour of such an adversary with the same probability
of success as above, the observer needs about 1312 tests, while after 10 tests
such a probability is about 56%, which is a value very close to the success
probability of a blind guess.

Example 4.6 Consider the second process of Example 3.2, P
∆
= l.(h∗.0 +

l′.0)+ l′.l.0. The low-level models to be compared are l.l′.0+ l′.l.0 and l.(τ.0+p

l′.0)+ l′.l.0, which, as we have seen, cannot be weakly bisimulation equivalent
(see Fig. 2). In particular, the distinguishing behaviour arises if we execute l
with probability 1

2
. In fact, after such an event the former process executes

the action l′ with probability 1, while the latter process executes either an
internal move with probability p or the action l′ with probability 1 − p.

Formally, for R1 = {{1, 1′}, {2, 2′}, {3, 3′}, C = {4, 5, 4′, 5′, 6′}} we have

δR1

p = |Prob(2, τ ∗l′, C) − Prob(2′, τ ∗l′, C) | = | 1 − (1 − p) | = p,

and for R2 = {{1, 1′}, C = {2}, {2′}, {3, 3′}, {4, 5, 4′, 5′, 6′}} we have

δR2

p = |Prob(1, τ ∗l, C) − Prob(1′, τ ∗l, C) | =
1

2
.

Since for any relation R different from R1 and R2 we have δR
p ≥ 1

2
, it follows
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εp = min{1
2
, p}. Note that the information leakage is negligible as p tends to

zero, because in such a case also εp tends to zero. That means High is not
interfering (rarely interferes) with the system. Clearly, the closer p is to 1,
the easier it is for Low to reveal the behaviour of High. However, even for the
worst case (corresponding to the limiting scenario p = 1), we have εp = 1

2
, i.e.

the maximal probability of observing an information leakage depends on the
probability of reaching the state where High can actually interfere.

Example 4.7 Consider the shared low-level resource described in Example 3.3.
The low-level views to be compared through equivalence checking are depicted
in Fig. 3.

If, for instance, we take the relation R1 = {{1, 1′}, {2, 2′}, {3, 3′}, {4, 4′}, C =
{5′}, {6′, 7′}}, we obtain

δR1

p = |Prob(1, τ ∗, C) − Prob(1′, τ ∗, C) | = p.

Instead, for R2 = {{1, 1′, 5′}, {2, 2′}, {3, 3′}, {4, 4′}, C = {6′, 7′}}, from Exam-
ple 3.3 we derive

δR2

p = |Prob(1, τ ∗, C) − Prob(5′, τ ∗, C) | = q ·
∞∑
i=0

(p · (1 − q))i =
q

1 − p + p · q
.

Moreover, it can be verified that considering other relations is not meaningful
if we want to estimate εp. Hence, we have

εp = min{p,
q

1 − p + p · q
}.

We recall that q is the probability of guessing the password and p is the
parameter of the hiding operator, which guides the choice between low-level
access requests and high-level access requests. Therefore, it is easy to verify
that if High lets parameter p tend to 1 then εp tends to 1. That means if the
low-level access request is always preempted by the high-level access request,
High will always succeed in guessing the password and consuming the resource.

5 The Measure εp̄ and Operator Norms

The quantity εp̄ introduced in the previous section is based on a “behavioural
distance” between processes defined by considering all possible equivalence
relations. We now give a more formal justification of such a distance in terms
of an appropriate metric on the space of the processes in the calculus defined in
Section 2.1. We use to this purpose the linear operators framework introduced
in [12,11] for defining approximate process equivalences. In this framework,
the operational semantics of a probabilistic process is described by a linear
operator representing its transition graph, and the distance between processes
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Fig. 3. Low-level views for the shared resource example.

is defined via the notion of operator norm. In the following, we first re-
cast our security framework based on weak probabilistic bisimulation in this
linear operators setting, and then we show that the quantity εp̄ corresponds
to a particular operator norm which captures the idea of behavioural distance
introduced in Section 4.

5.1 Weak Probabilistic Bisimulation via Linear Operators

We will base our treatment on the basic assumption introduced in Section 4
that systems are fully specified from the viewpoint of a low-level observer or,
in other words, all choices are probabilistic after the potential interaction of
the system with High has been resolved. As a consequence, we can actually
consider as a reference model a restriction of the model introduced in Sec-
tion 2 where only generative transitions are executable. More precisely, we
can refer to a restricted version of the labelled transition system (G,Act , T )
that considers fully generative processes only.

Based on such a restriction, as described in [11], where fully probabilistic
processes are considered, we can associate to the probabilistic relation T the
following linear operator:

M(T ) =
⊕

a∈GAct

Ma(T ),

where for all a ∈ GAct and P, Q ∈ G, the matrix defined by:

(Ma(T ))PQ =
∑

{q | there exists P
a, q

−−−→ Q and q �= 0}

represents a one step transition on action a ∈ GAct in the transition sys-
tem (G,GAct , T ). Note that if there are no transitions from P to Q then
(Ma(T ))PQ = 0, as the sum over an empty set is 0. The symbol ⊕ represents
the direct sum operation defined for a given set {Mi}

k
i=1 of ni × mi matrices
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by the (
∑k

i=1 ni) × (
∑k

i=1 mi) matrix:

⊕
i

Mi =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Mk




.

For a given process P we denote by M(P ) the associated transition matrix.
This is a n × n matrix, where n is the cardinality of the set SP ⊆ G of the
processes which can be reached by a computation starting from P .

These linear operators are defined on the vector space V(G) containing all
distributions over the set of states (processes) G, which is the space of all for-
mal linear combinations of elements in G with coefficients in R. For the sake
of simplicity we assume that the set G is finite so that we can restrict our-
self, for the time being, to consider only finite-dimensional vector spaces and
finite-dimensional linear operators. The results we present can nevertheless
be extended to the general infinite case along the lines of [11].

Our aim is to re-formulate the weak probabilistic bisimulation semantics
introduced in Section 2.3 in terms of the above defined linear operators M(P )
representing the operational semantics of a process P . In order to take into
account transitions involving sequences of τ actions (the Milner “double arrow
relation”) we extend the single step operator M =

⊕
a∈GAct Ma to encode

transitions on strings σ ∈ GAct∗ of finite length as follows:

Sσ = Ma1
Ma2

. . .Man
, and Sε = I,

where ε denotes the empty sequence in GAct∗.

In order to express the condition for weak probabilistic bisimulation in
Definition 2.3 (first equation), we now need to define an operator which en-
codes probabilities of the form Prob(P, τ ∗a, C), with C an equivalence class
in a given relation R ⊆ G × G. As shown in [11], equivalence relations are in
a one-to-one correspondence with a particular class of linear operators called
classification operators: if ≈ is an equivalence relation on a set X, then there
is a classification operator K : V(X) → V(X/≈), and vice versa. Note that K
is a n×m matrix, where n is the cardinality of the set X (i.e. the dimension of
the space V(X)) and m is the number of ≈-equivalence classes in the partition
of X (i.e. the dimension of the space V(X/≈)).

By using classification matrices we can express the probability Prob(P, σ, C),
where σ ∈ GAct ∗ and C ∈ G/R for some equivalence relation represented
by K, by the operator SσK. In particular, we have that Prob(P, σ, C) =
(SσK)P,C.
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Lemma 2.2 can be rephrased, stating that the probabilities Prob(P, τ ∗a, C),
with a ∈ GAct , resolve the equation system:

(Sτ∗aK)P,C =




1 if a = τ ∧ P ∈ C

(Mτ · Sτ∗K)P,C if a = τ ∧ P �∈ C

(Mτ · Sτ∗aK)P,C + (Ma)P,C if a �= τ

For σ = a1a2 . . . an ∈ GActn, we denote by Pσ(P,KP ) the operator
S(P )σKP , where S(P )σ = M(P )a1

M(P )a2
. . .M(P )an

is the restriction of S
to the states reachable by P . The matrix KP is a restricted matrix K, where
all the rows corresponding to states which are not reachable by P have been
eliminated. So KP is a nP ×m matrix, where nP is the number of states reach-
able by P . We will also denote by Pτ∗a(P,KP ) the operator Sτ∗aK restricted
to P .

Given a n×m matrix K and n′ ≥ n we define the completion to n′, K̄, of
K as the n′ × m matrix:

K̄ = K⊕ On′−n,

where Ok indicates the k-dimensional null matrix, that is the k × k matrix
with only zero entries. We will use this operation to define a process which
operates on the same number of abstract states (or classes, represented by the
columns) as K but without any transitions between the “extra” n′ −n states.

The weak probabilistic bisimulation relation introduced in [3] can now be
formulated in a linear operator setting as follows:

Definition 5.1 Let P, Q ∈ G be two processes and let nP and nQ be the
number of states reachable by P and Q respectively. Then P and Q are weak
probabilistic bisimilar iff there exists an n × m classification matrix K with
n = nP + nQ such that

P̄τ∗a(P,KP ) = P̄τ∗a(Q,KQ) for all a ∈ GAct ,

where P̄τ∗a(P,KP ) and P̄τ∗a(Q,KQ) are the completions to n of Pτ∗a(P,KP )
and Pτ∗a(Q,KQ) respectively.

This definition corresponds to (the first equation of) Definition 2.3 in the
restricted case of fully specified processes.

5.2 A Metric for Weak Probabilistic Bisimulation

In this section we show that the quantity εp̄ introduced in Section 4 as a
measure for the confinement of a given system, corresponds to the notion of
distance induced by a particular operator norm. In general, the norm of an
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operator describes the maximal “stretching factor” of normalised vectors. We
formally define it after recalling the basic definition of a vector norm:

Definition 5.2 A norm on a vector space V is a map ‖.‖ : V �→ R such that:

(i) ‖�x‖ ≥ 0 ,

(ii) ‖�x‖ = 0 ⇔ �x = �o,

(iii) ‖α�x‖ = |α|‖�x‖,

(iv) ‖�x + �y‖ ≤ ‖�x‖ + ‖�y‖,

with �o ∈ V the null vector.

Given a normed vector space V the operator norm for linear operators on
V is defined by:

‖M‖ = sup
�x∈V

‖M(�x)‖

‖�x‖
= sup

‖�x‖=1

‖M(�x)‖.

The exact numerical value of an operator norm depends, of course, on the
particular vector norm used. We will consider the supremum norm defined by

‖�x‖∞ = ‖(xi)i‖∞ = sup
i

|xi|,

and use the corresponding operator norm to define a metric on the set of linear
operators representing the semantics of our probabilistic processes.

Definition 5.3 Let S be the set

S = {L : V(G) → V(G/R) | R is an equivalence relation}.

We define the metric d on S as the metric induced by the supremum operator
norm:

d(L1,L2) = ‖L1 − L2‖∞.

This metric is particularly suited for expressing the notion of behavioural
distance introduced in Section 4. In particular, it can be used to calculate the
values of the quantity δR

p̄ of Definition 4.1, as shown in the following.

We recall that in order to verify the PNI property for a given a system
P , we check whether the two models P1 ≡ P\High and P2 ≡ P/p1

hP
1

. . . /pn

hP
n

are

weak probabilistic bisimilar for all probabilities p̄ = p1, . . . , pn. This equiva-
lence checking can be performed by comparing for each equivalence relation
R on the set S = SP1

∪ SP2
of the states reached by both P1 and P2 (or,

equivalently, for each classification matrix K on the vector space V(S)) the
operators P̄τ∗a(P1,KP1

) and P̄τ∗a(P2,KP2
), cf. Definition 5.1. If we use the

distance d of Definition 5.3 then the outcome of this comparison is a numerical
quantity which coincides with the measure εp̄.
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Proposition 5.4 Let P ∈ G, P1 ≡ P\High and P2 ≡ P/p1

hP
1

. . . /pn

hP
n
, with

p̄ = p1, . . . , pn a sequence of parameters such that pi ∈ (0, 1), 1 ≤ i ≤ n. Let

R ⊆ G × G be an equivalence relation on the set S = SP1
∪ SP2

⊆ G, and let

K be the corresponding classification matrix. Then

δR
p̄ = max

a∈GAct
d(P̄τ∗a(P1,KP1

), P̄τ∗a(P2,KP2
)),

where KP1
and KP2

are the restrictions of K to the states in SP1
and SP2

respectively.

Proof. Let �x be a normalised vector in V(S). Then the vector

P̄τ∗a(P1,KP1
)�x − P̄τ∗a(P2,KP2

)�x

is the vector in V(S/R) whose components are the difference of the probabil-
ities of going from each state in S to each equivalence class via the sequence
τ ∗a, for a given a ∈ GAct . Now observe that the choice of vector �x corresponds
to the choice of the pair (P ′, P ′′) in Definition 4.1. Moreover, since GAct is
finite, the least upper bound is actually the maximal element of the set. Then
the thesis follows from the definition of the supremum operator norm.

�

If for some K this distance is zero for all sequences p̄, then we can con-
clude that P is secure (according to Definition 5.1 and the definition of PNI
property). Otherwise, we can consider the relation K which minimises the
distance d(p̄). This corresponds to the quantity εp̄ in Definition 4.2:

Corollary 5.5 Let P be a process and let R, p̄ as in Proposition 5.4. Then

εp̄ = inf
K

d(P̄τ∗a(P1,KP1
), P̄τ∗a(P2,KP2

)).

6 Conclusion and Related Work

We have introduced a formal definition of the amount of information flowing
in a system from High to Low, based on a notion of process similarity cor-
responding to an approximate probabilistic version of the weak bisimulation
of [23]. Our approach is able to detect and measure probabilistic covert chan-
nels from High to Low, by comparing the effect on the low-level view of the
absence/presence of the high-level user.

A different approach aiming to the same objective of quantifying informa-
tion flow has been proposed in [22], where the “quantity” is defined in terms of
the behaviours of the high-level user that are distinguishable from a low-level
user point of view. This approach does not consider probabilistic behaviours;
instead it relies on a worst case analysis based on all possible ways to resolve
nondeterminism.
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Another related approach is the one presented in [7], where the amount of
confidential information which may be leaked by programs written in a simple
imperative language is analysed by using Shannon’s information theory.

Desharnais et al. [10] propose an extension of [9] by defining a fixed-
point characterisation of a pseudometric for approximating weak bisimula-
tion, where zero distance corresponds to weak bisimilarity. A quantitative
meaning of such a metric is that nearby processes have nearby propensities
to leak information. The metric is defined in the context of the alternating
model for labelled concurrent Markov chains (LCMCs). In a LCMC states
are either probabilistic or nondeterministic. Transitions from probabilistic
states are not labelled and are associated with a probability distribution on
the set of reachable nondeterministic states. Transitions from nondeterminis-
tic states are labelled and finitely branching and lead to probabilistic states.
The probability of reaching a state through a weak transition is computed by
taking the supremum over all possible computations, where a computation is a
purely probabilistic transition system obtained by resolving the nondetermin-
istic choices as follows: for each nondeterministic state at most one outgoing
transition is picked up. With respect to such a framework, in our model states
can have both probabilistic and nondeterministic choices, depending on the
nature of the interactions with the environment. Then, before computing
the distance between different processes, nondeterminism is resolved through
a probabilistic scheduler rather than in a deterministic way. The notion of
pseudometric of [10] is strictly related to the notion of channel capacity from
information theory [8]. On the other hand, our notion of confinement between
processes provides a natural statistical interpretation, in terms of number of
experiments that are needed on average to distinguish confined processes [1].
Moreover, we have shown that our measure of the security degree of systems
has a formal interpretation as the metric induced by the norm of a linear
operator associated to our probabilistic processes.

Other works deal with approximate reasoning in order to obtain a relaxed
notion of truth - the goal is moving from a qualitative scenario where {0, 1} are
the unique truth values to a quantitative scenario where the interval [0, 1] is
given as the collection of the truth values. Along this line, several approaches
are investigated in [20,19,6], which are not related to information flow capacity
issues. Finally, in [21] an asymptotic notion of probabilistic equivalence is de-
fined to estimate a secrecy property. In particular, in the setting of a variant of
spi-calculus, observational equivalence is expressed in terms of indistinguisha-
bility by polynomial time statistical tests. Then, secrecy is checked by veri-
fying whether the protocol under analysis is observationally equivalent to an
idealized protocol. With respect to our framework, probabilities are intended
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as a means for a polynomial time treatment of cryptographic primitives and
do not come into play in the modelling of the protocol behaviour.
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