1,998 research outputs found

    Evolving temporal association rules with genetic algorithms

    Get PDF
    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty

    Market basket analysis : trend analysis of association rules in different time periods

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMMarket basket analysis (i.e. Data mining technique in the field of marketing) is the method to find the associations between the items / item sets and based on those associations we can analyze the consumer behavior. In this research we have presented the variability of time, because with the change in time the habits or behavior of the customer also changes. For example, people wear warm clothes in winter and light clothes in summer. Similarly, customers purchase behavior also changes with the change in time. We study the problem of discovering association rules that display regular cyclic variation over time. This problem will allow us to access the changing trends in the purchase behavior of customers in a retail market, and we will be able to analyze the results which will display the changing trends of the association rules. In this research we will study the interaction between association rules and time. We worked on transactional data of a Belgian retail company and analyzed the results which will help the company to build up time period specific marketing strategies, promotional strategies, etc. to increase the profit of their company

    Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation

    Get PDF
    In E-commerce recommendation system accuracy will be improved if more complex sequential patterns of user purchase behavior are learned and included in its user-item matrix input, to make it more informative before collaborative filtering. Existing recommendation systems that use mining techniques with some sequences are those referred to as LiuRec09, ChoiRec12, SuChenRec15, and HPCRec18. LiuRec09 system clusters users with similar clickstream sequence data, then uses association rule mining and segmentation based collaborative filtering to select Top-N neighbors from the cluster to which a target user belongs. ChoiRec12 derives a user’s rating for an item as the percentage of the user’s total number of purchases the user’s item purchase constitutes. SuChenRec15 system is based on clickstream sequence similarity using frequency of purchases of items, duration of time spent and clickstream path. HPCRec18 used historical item purchase frequency, consequential bond between clicks and purchases of items to enrich the user-item matrix qualitatively and quantitatively. None of these systems integrates sequential patterns of customer clicks or purchases to capture more complex sequential purchase behavior. This thesis proposes an algorithm called HSPRec (Historical Sequential Pattern Recommendation System), which first generates an E-Commerce sequential database from historical purchase data using another new algorithm SHOD (Sequential Historical Periodic Database Generation). Then, thesis mines frequent sequential purchase patterns before using these mined sequential patterns with consequential bonds between clicks and purchases to (i) improve the user-item matrix quantitatively, (ii) used historical purchase frequencies to further enrich ratings qualitatively. Thirdly, the improved matrix is used as input to collaborative filtering algorithm for better recommendations. Experimental results with mean absolute error, precision and recall show that the proposed sequential pattern mining-based recommendation system, HSPRec provides more accurate recommendations than the tested existing systems

    Periodic Pattern Mining a Algorithms and Applications

    Get PDF
    Owing to a large number of applications periodic pattern mining has been extensively studied for over a decade Periodic pattern is a pattern that repeats itself with a specific period in a give sequence Periodic patterns can be mined from datasets like biological sequences continuous and discrete time series data spatiotemporal data and social networks Periodic patterns are classified based on different criteria Periodic patterns are categorized as frequent periodic patterns and statistically significant patterns based on the frequency of occurrence Frequent periodic patterns are in turn classified as perfect and imperfect periodic patterns full and partial periodic patterns synchronous and asynchronous periodic patterns dense periodic patterns approximate periodic patterns This paper presents a survey of the state of art research on periodic pattern mining algorithms and their application areas A discussion of merits and demerits of these algorithms was given The paper also presents a brief overview of algorithms that can be applied for specific types of datasets like spatiotemporal data and social network

    Mining High Utility Itemsets with Regular Occurrence

    Get PDF
    High utility itemset mining (HUIM) plays an important role in the data mining community and in a wide range of applications. For example, in retail business it is used for finding sets of sold products that give high profit, low cost, etc. These itemsets can help improve marketing strategies, make promotions/ advertisements, etc. However, since HUIM only considers utility values of items/itemsets, it may not be sufficient to observe product-buying behavior of customers such as information related to "regular purchases of sets of products having a high profit margin". To address this issue, the occurrence behavior of itemsets (in the term of regularity) simultaneously with their utility values was investigated. Then, the problem of mining high utility itemsets with regular occurrence (MHUIR) to find sets of co-occurrence items with high utility values and regular occurrence in a database was considered. An efficient single-pass algorithm, called MHUIRA, was introduced. A new modified utility-list structure, called NUL, was designed to efficiently maintain utility values and occurrence information and to increase the efficiency of computing the utility of itemsets. Experimental studies on real and synthetic datasets and complexity analyses are provided to show the efficiency of MHUIRA combined with NUL in terms of time and space usage for mining interesting itemsets based on regularity and utility constraints

    Efficiently Mining Temporal Patterns in Time Series Using Information Theory

    Get PDF

    Web Usage Mining with Evolutionary Extraction of Temporal Fuzzy Association Rules

    Get PDF
    In Web usage mining, fuzzy association rules that have a temporal property can provide useful knowledge about when associations occur. However, there is a problem with traditional temporal fuzzy association rule mining algorithms. Some rules occur at the intersection of fuzzy sets' boundaries where there is less support (lower membership), so the rules are lost. A genetic algorithm (GA)-based solution is described that uses the flexible nature of the 2-tuple linguistic representation to discover rules that occur at the intersection of fuzzy set boundaries. The GA-based approach is enhanced from previous work by including a graph representation and an improved fitness function. A comparison of the GA-based approach with a traditional approach on real-world Web log data discovered rules that were lost with the traditional approach. The GA-based approach is recommended as complementary to existing algorithms, because it discovers extra rules. (C) 2013 Elsevier B.V. All rights reserved

    Literature Review on Efficient Algorithms for Mining High Utility Itemsets from Transactional Databases

    Get PDF
    This paper presenting a survey on finding itemsets with high utility. For finding itemsets there are many algorithms but those algorithms having a problem of producing a large number of candidate itemsets for high utility itemsets which reduces mining performance in terms of execution. Here we mainly focus on two algorithms utility pattern growth (UP-Growth) and UP-Growth+. Those algorithms are used for mining high utility itemsets, where effective methods are used for pruning candidate itemsets. Mining high utility itemsets Keep in a special data structure called UP-Tree. This, compact tree structure, UP-Tree, is used for make possible the mining performance and avoid scanning original database repeatedly. In this for generation of candidate itemsets only two scans of database. Another proposed algorithms UP Growth+ reduces the number of candidates effectively. It also has better performance than other algorithms in terms of runtime, especially when databases contain huge amount of long transactions. Utility-based data mining is a new research area which is interested in all types of utility factors in data mining processes. In which utility factors are targeted at integrate utility considerations in both predictive and descriptive data mining tasks. High utility itemset mining is a research area of utility based descriptive data mining. Utility based data mining is used for finding itemsets that contribute most to the total utility in that database
    corecore