

Aalborg Universitet

Efficiently Mining Temporal Patterns in Time Series Using Information Theory

Ho Long, Van

DOI (link to publication from Publisher):
10.54337/aau617104352

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Ho Long, V. (2023). Efficiently Mining Temporal Patterns in Time Series Using Information Theory. Aalborg
Universitetsforlag. https://doi.org/10.54337/aau617104352

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: January 23, 2024

https://doi.org/10.54337/aau617104352
https://vbn.aau.dk/en/publications/95b8a3b4-5edb-47b1-b2ef-2f99b880a899
https://doi.org/10.54337/aau617104352

Va
n

 Lo
n

g
 H

o
Effic

ien
tly M

in
in

g
 Tem

po
r

a
l Patter

n
s in

 Time
 Ser

ies U
sin

g
 In

fo
r

m
atio

n
 The

o
r

y

Efficiently Mining Temporal
Patterns in Time Series Using

Information Theory

by
Van Long Ho

Dissertation submitted 2023

Efficiently Mining Temporal
Patterns in Time Series Using

Information Theory

Ph.D. Dissertation
Van Long Ho

Dissertation submitted August 12, 2023

Dissertation submitted:	 August 12, 2023

PhD supervisor:: 	 Professor Torben Bach Pedersen
			 Aalborg University

PhD Co-Supervisor: 	 Assistant Professor Nguyen Ho
			 Aalborg University

PhD committee: 	 Associate Professor Alvaro Torralba (chairman)
			 Aalborg University, Denmark

			 Professor Themis Palpanas
			 Université Paris Cité, France

			 Senior LecturerQuoc Viet Hung Nguyen
	 	 	 Griffith University, Australia

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-656-0

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Van Long Ho
The author has obtained the right to include the published and accepted articles in the
thesis, with a condition that they are cited and/or copyright/credits are placed promi-
nently in the references.

Printed in Denmark by Stibo Complete, 2023

Abstract

The rapid and persistent development of IoT technology has generated a mas-
sive volumeof time series data. For example, sensors are deployed in smart city
applications to collect time series on air quality, humidity, and temperature. In
energy management, IoT-enabled smart grids and smart meters contain time
series on energy consumption and distribution. In health monitoring applica-
tions, wearable devices, such as medical sensors and fitness trackers, collect
time series on sleep patterns, heart rate, and physical activity. These time series
contain hidden insights and patterns, and when they are discovered, they can
offer valuable information to support forecasting and decision-making.

Temporal pattern mining in time series is an approach that assists in ex-
tracting valuable insights. A temporal pattern has two characteristics. First,
temporal information is added to each event within a pattern. Second, the
pattern is formed by the complex temporal relations between events. The
characteristics make the temporal patterns more expressive and comprehen-
sive, enabling them to provide detailed information. However, it is worth
noting that these characteristics also increase the complexity of the mining
process due to the search space’s explosion.

In this thesis, we focus on optimization methods for temporal pattern min-
ing to enhance the efficiency of themining process. Moreover, we use informa-
tion theory-based measures, i.e., mutual information and entropy, to estimate
the correlation between time series, thereby pruning the uncorrelated time
series to reduce the search space. We solve three problems: frequent temporal
pattern mining, rare temporal pattern mining, and seasonal temporal pattern
mining.

First, we present a comprehensive process for mining frequent temporal
patterns from time series. The input of this process consists of a set of time
series, while the output comprises all the frequent temporal patterns. As part
of this process, we use a splitting strategy that converts time series into event
sequences, while preserving the underlying temporal patterns. Our proposal
includes an efficient algorithm for Frequent Temporal Pattern Mining, called
FTPM, that optimizes the mining process by utilizing efficient data structures
and pruning techniques. Additionally, we propose an approximate version of

iii

FTPM that employs mutual information to eliminate unpromising time series.
This approximation method proves the efficiency when working with large
datasets.

Second, we propose a solution to mine rare temporal patterns from time
series. The solution comprises an efficient Rare Temporal Pattern Mining
(RTPM) algorithm that incorporates a support lower bound and a support up-
per bound. These support bounds are assigned to low values that constrain a
low occurrence frequency for temporal patterns. Furthermore, we set the con-
fidence threshold to a high value to ensure that the discovered patterns exhibit
high confidence. The RTPM algorithm uses an efficient data structure, i.e.,
a variant of the hierarchical hash table, and applies two pruning techniques
based on the Apriori principle and the transitivity property to perform the
efficient mining process. Moreover, by establishing the connection between
mutual information and support as well as confidence, we put forth an ap-
proximate version of RTPM that focuses exclusively on mining rare temporal
patterns from the most promising time series, accelerating the mining process
while maintaining high accuracy.

Third, we propose the first-ever solution for mining seasonal temporal
patterns from time series. In this solution, we introduce several measures
to capture the seasonality characteristics of temporal patterns. Additionally,
we propose an efficient Seasonal Temporal Pattern Mining (STPM) algorithm
including several novelties. The first novelty is we introduce a new measure
called amaximum season, which adheres to the anti-monotonicity property. We
then use the maximum season to define the concept of a candidate seasonal tem-
poral pattern that is used to eliminate infrequent seasonal temporal patterns.
The second novelty is we use hierarchical hash tables data structures, ensur-
ing fast retrieval of candidate events and patterns, and propose two efficient
pruning techniques: Apriori-like pruning and transitivity pruning. To handle
large datasets more effectively, we introduce an approximate version of STPM
that utilizes mutual information to perform the mining on only the promising
time series, speeding up the mining process, while retaining high accuracy.

We evaluate the proposed solutions on real-world and synthetic datasets.
For real-world datasets, four smart energy datasets are from Spain, the U.S.A.,
and the U.K.; one smart city dataset is from the U.S.A.; one American Sign
Language dataset is from the U.S.A.; and two health datasets are from Japan.
For synthetic datasets, we generate a large number of sequences and time
series from each real-world dataset, adapting the generation process based on
the problem being addressed. The experimental results show that the exact
algorithms (FTPM, RTPM, and STPM) outperform the baselines in terms of
runtime and memory usage and scale well on large datasets. Moreover, the
approximate FTPM is up to two orders of magnitude, and the approximate
RTPM and STPM are up to one order of magnitude, faster than the baselines,
while maintaining a high level of accuracy.

Resumé

Den hurtige og vedvarende udvikling af IoT-teknologi har genereret enmassiv
volumen af tidsseriedata. For eksempel bliver der i smart city-applikationer
udrullet sensorer til at indsamle tidsseriedata om luftkvalitet, luftfugtighed
og temperatur. Inden for energistyring, IoT-aktiverede smart grid og smart
målere indeholder tidsseriedata om energiforbrug og distribution. I sund-
hedsmonitoreringsapplikationer indsamler bærbare enheder som medicinske
sensorer og fitness-trackere tidsseriedata om søvnmønstre, hjertefrekvens og
fysisk aktivitet. Disse tidsseriedata indeholder skjulte indsigter og mønstre,
som, når de bliver opdaget, kan give værdifuld information til at understøtte
prognoser og beslutningstagning.

Temporal mønsterudvinding i tidsserier er en tilgang, der hjælper med at
udtrække værdifuld viden. Et temporalt mønster har to karakteristika. For
det første, temporal information er tilføjet til hvert event. For det andet dannes
mønsteret af de komplekse tidsmæssige relationer mellem begivenhederne.
Disse karakteristika gør det temporale mønster mere udtryksfuldt og omfat-
tende, hvilket gør det i stand til at levere detaljeret information. Det er dog
værd at bemærke, at disse karakteristika også øger kompleksiteten af udvind-
ingsprocessen på grund af at søgeområdet eksploderer.

I denne afhandling fokuserer vi på optimeringsmetoder til temporal møn-
sterudvinding for at forbedre effektiviteten af udvindingsprocessen. Deru-
dover anvender vi informationsbaserede mål baseret på informationsteori,
f.eks. gensidig information og entropi, til at estimere korrelationen mellem
tidsserier. Dette medfører en yderligere forbedring af udvindingsprocessen,
da vi kun udfører udvindingsprocessen på de korrelerede tidsserier. Vi løser
tre problemer, udvinding af: hyppig temporal mønstre, sjælden temporal
mønstre og sæsonbetonet temporal mønstre.

Først præsenterer vi en omfattende proces til udvinding af hyppige tem-
porale mønstre fra tidsserier. Inputtet af denne proces består af en række
tidsserier, mens resultatet omfatter alle de hyppige temporalemønstre. Som en
del af denneproces anvender vi en opdelingsstrategi, der konverterer tidsserier
til begivenhedssekvenser, samtidig med at de underliggende temporale møn-
stre bevares. Vores forslag inkluderer en effektiv algoritme til Frequent Tempo-

v

ral Pattern Mining, forkortet FTPM, der optimerer udvindingsprocessen ved
at bruge effektive datastrukturer og beskæringsteknikker. Derudover fores-
lår vi en tilnærmet version af FTPM, der anvender gensidig information til at
eliminere ikke lovende tidsserier. Denne tilnærmelsesmetode viser sig at være
effektiv, når man arbejder med store datasæt.

Dernæst foreslår vi en løsning til at udvinde sjældne temporale mønstre
fra tidsserier. Løsningen omfatter en effektiv algoritme til Rare Temporal Pat-
tern Mining (RTPM), der inkorporerer en støtte nedre grænse og en støtte
øvre grænse. Disse støtte grænser er tildelt laverer værdier som begrænser
de temporale mønstre der sjælendt forkommer. Derudover anvender vi en
tærskel for konfidens for at sikre, at de opdagede mønstre har høj konfi-
dens. RTPM-algoritmen bruger en effektiv datastruktur, dvs. en variant
af de hierarkiske hash-tabeller, og anvender to beskæringsteknikker baseret
på Apriori-princippet og transitivitetsegenskaben, for at udføre den effektive
udvindingsproces. Derudover etablerer vi forbindelsen mellem gensidig in-
formation, støtte samt konfidens og præsenterer en tilnærmet version, der
fokuserer udelukkende på at udvinde sjældne temporale mønstre fra de mest
lovende tidsserier, hvilket fremskynder udvindingsprocessen samtidigmed at
der opretholdes høj nøjagtighed.

Afsluttende foreslår vi den første løsning til udvinding af sæsonbestemte
temporalemønstre fra tidsserier. I denne løsning introducerer vifleremetrikker
til at fange sæsonbestemte karakteristika fra temporale mønstre. Derudover
foreslår vi en effektiv Seasonal Temporal Pattern Mining (STPM) algoritme,
der inkluderer flere nye bidrag. Det første nye bidrag omhandler introduc-
eringen af en ny metrikker kaldet maksimumsæson, der overholder den anti-
monotoniske egenskab. Derefter bruger vi maksimumsæsonen til at definere
begrebet sæsonbestemt temporal mønsterkandidat, der bruges til at eliminere
sjældne sæsonbestemte temporale mønstre. Et andet nyt bidrag er, at vi
bruger hierarkiske hash-tabeller som datastruktur, hvilket sikrer hurtige op-
slag af kandidatbegivenheder og mønstre. Vi foreslår to effektive beskæring-
steknikker: Apriori-lignende beskæring og transitivitetsbeskæring. For at
håndtere store datasæt mere effektivt introducerer vi en tilnærmet version
af STPM, der bruger gensidig information til at udføre udvindingen kun på
de lovende tidsserier, hvilket forbedre udvindingsprocessens køretid, mens
nøjagtivheden vedligeholdes.

Vi evaluerer de foreslåede løsninger på virkelige og syntetiske datasæt.
Blandt datasættene fra den virkelige verden, stammer fire smarte energi-
datasæt fra Spanien, USA og Storbritannien; ét smart city-datasæt stammer
fra USA; ét amerikansk tegnsprog-datasæt stammer fra USA; og to sundheds-
datasæt stammer fra Japan. For syntetiske datasæt genererer vi et stort antal
sekvenser og tidsserier fra hvert virkelig datasæt og tilpasser genereringspro-
cessen baseret på det specifikke problem, der bliver adresseret. De eksperi-
mentelle resultater viser, at de nøjagtige algoritmer (FTPM, RTPM og STPM)

præsterer bedre end baseline-metoderne i forhold til køretid og hukommelses-
forbrug og skalerer godt på store datasæt. Derudover, opnår den tilnærmede
FTPM op til 2 størrelsesordner samt den tilnærmede RTPM og STPM er
op til 1 størresorden hurtigere end baselinemetoderne, samtidig med at der
opretholdes en høj nøjagtighed.

Acknowledgements

I would like to thank many people who were with me to overcome the chal-
lenges of this Ph.D. journey and achieve its completion.

First, I would like to express my gratitude to my supervisor Prof. Torben
Bach Pedersen. Under his guidance, I have gained a wealth of knowledge re-
garding scientific writing skills and researchmethods. His insightful feedback
and valuable suggestion have played a crucial role in refining my ideas and
enhancing the quality of my work. I have gained worthwhile lessons from
him, particularly in his meticulousness and pursuit of perfection. I am deeply
appreciative of his guidance and instructions throughout my Ph.D. study.

Second, I am especially grateful to my co-supervisor Asst. Prof. Nguyen
Ho. She has put so much effort in supervising me. She hold weekly meetings
with me throughout my PhD years, actively engaged in thought-provoking
discussions, suggesting appropriate approaches to solve problems that guided
me in the right direction. I have learned so much from her, from how to look
for a promising and interesting research topic, define a research problem and
find the solutions for it, to how to write a good scientific paper. I also deeply
appreciate the significant amount of time she dedicated to revise my drafts.
Further, I am truly grateful for her encouragement during the challenging
phases of my Ph.D. study, which helpedme overcome the difficulties posed by
the Corona lockdown and the inherent challenges in my research.

I am thankful to Prof. Panagiotis Papapetrou for providingmewith the op-
portunity to pursue my study at StockholmUniversity, which is a great benefit
to my research. I am grateful for the support during this study through the
funding from the Innovation Fund Denmark and the Horizon 2020 program.

Moreover, I would like to express my gratitude to all my colleagues at the
Data Engineering, Science and Systems group for fostering a warm and wel-
coming work environment. I would like to thank my friends Rudra, Bhuvan,
Suela, Carlos, Jonas, Kasper, Razvan, Tung, Fabio, Roshni, and Søren for mak-
ing my Ph.D. life happier in lonely gray days. I am grateful to Kasper Fromm
Pedersen and Theis Erik Jendal for helping me translate the abstract into Dan-
ish. I also thank HelleWestmark, Helle Schroll, Susanne Taunsig Larsen, Aage
Sørensen, and Ulla Øland for their support of AAU administrative matters.

ix

Lastly, I would like to express my gratitude to my family for their steady
support throughout my Ph.D. journey. Their love, encouragement, and un-
derstanding have been the pillars of strength that have carried me through the
challenges and accomplishments of pursuing my dreams.

Contents

Abstract iii

Resumé v

Acknowledgements ix

Thesis Details xvii

I Thesis Summary 1

1 Introduction 3
1.1 Background and Motivation . 3

1.1.1 Temporal Pattern Mining 3
1.1.2 Information Theory . 6

1.2 Objectives of the Thesis . 7
1.3 Thesis Structure . 8

2 Frequent Temporal Pattern Mining 11
2.1 Problem Motivation and Statement 11
2.2 Preliminaries . 12
2.3 Frequent Temporal PatternMining from Time Series (FTPMfTS)

process . 17
2.3.1 Data Transformation . 17
2.3.2 Frequent Temporal Pattern Mining 18

2.4 Frequent Temporal Pattern Mining (Exact FTPM) 19
2.4.1 Hierarchical lookup hash structure for FTPM 19
2.4.2 Mining Frequent Single Events 20
2.4.3 Mining Frequent 2-event Patterns 21
2.4.4 Mining Frequent k-event Patterns 22

2.5 Approximate FTPM . 23
2.5.1 Mutual Information of Symbolic Time Series 23

xi

Contents

2.5.2 Relationship between the Support of an Event Pair in
DSYB andDSEQ . 24

2.5.3 Lower Bound of the Support 24
2.5.4 Lower bound of the Confidence 25
2.5.5 Approximate FTPM . 26

2.6 Experimental Evaluation . 27
2.6.1 Experimental Design . 27
2.6.2 Experimental Results . 27

3 Rare Temporal Pattern Mining 31
3.1 Problem Motivation and Statement 31
3.2 Rare Temporal Pattern Mining Problem 32
3.3 Rare Temporal Pattern Mining (Exact RTPM) 33

3.3.1 Mining Single Events . 33
3.3.2 Mining Rare 2-event Patterns 34
3.3.3 Mining Rare k-event Patterns 34

3.4 Approximate RTPM . 35
3.4.1 Upper Bound of the Support 35
3.4.2 Approximate RTPM . 36

3.5 Generalized Temporal Pattern Mining (GTPM) 37
3.5.1 Exact Generalized Temporal PatternMining (Exact GTPM) 38
3.5.2 ApproximateGeneralizedTemporal PatternMining (Ap-

proximate GTPM) . 38
3.6 Experimental Evaluation . 39

3.6.1 Experimental Design . 39
3.6.2 Experimental Results . 39

4 Seasonal Temporal Pattern Mining 43
4.1 Problem Motivation and Statement 43
4.2 Preliminaries . 45
4.3 Seasonal Temporal Pattern Mining (Exact STPM) 50

4.3.1 Candidate Seasonal Pattern 50
4.3.2 Hierarchical lookup hash structure for STPM 52
4.3.3 Mining Seasonal Single Events 52
4.3.4 Mining Seasonal k-event Patterns 54

4.4 Approximate STPM . 55
4.4.1 Correlated symbolic time series 55
4.4.2 Lower bound of the maximum seasonal occurrence . . . 56
4.4.3 Using the Bound to Approximate STPM 57

4.5 Experimental Evaluation . 58
4.5.1 Experimental Design . 58
4.5.2 Experimental Results . 58

xii

Contents

5 Conclusion and Future Work 61
5.1 Contributions . 61
5.2 Future Work . 63

Bibliography 65
References . 65

II Papers 71

A Efficient Temporal Pattern Mining in Big Time Series Using Mutual
Information 73
A.1 Introduction . 75
A.2 Related work . 77
A.3 Preliminaries . 79

A.3.1 Temporal Event of Time Series 79
A.3.2 Relations between Temporal Events 80
A.3.3 Temporal Pattern . 81
A.3.4 Frequent Temporal Pattern 83

A.4 Frequent Temporal Pattern Mining 84
A.4.1 Data Transformation . 84
A.4.2 Frequent Temporal Patterns Mining 85
A.4.3 Mining Frequent Single Events 87
A.4.4 Mining Frequent 2-event Patterns 88
A.4.5 Mining Frequent k-event Patterns 89

A.5 Approximate HTPGM . 91
A.5.1 Correlated Symbolic Time Series 91
A.5.2 Lower Bound of the Confidence 93
A.5.3 Using the Bound to Approximate HTPGM 95

A.6 Experimental Evaluation . 97
A.6.1 Experimental Setup . 97
A.6.2 Qualitative Evaluation . 98
A.6.3 Quantitative Evaluation 98

A.7 Conclusion and Future Work . 105
References . 105

B Efficient Generalized Temporal Pattern Mining in Big Time Series
Using Mutual Information 111
B.1 Introduction . 113
B.2 Related work . 116
B.3 Preliminaries . 118

B.3.1 Temporal Event of Time Series 118
B.3.2 Relations between Temporal Events 119

xiii

Contents

B.3.3 Temporal Pattern . 120
B.3.4 Frequency and Likelihood Measures 122

B.4 Generalized Temporal Pattern Mining 123
B.4.1 Data Transformation . 124
B.4.2 Generalized Temporal Pattern Mining 125
B.4.3 Mining Single Events . 125
B.4.4 Mining 2-event Patterns 127
B.4.5 Mining k-event Patterns 129

B.5 Approximate GTPM . 131
B.5.1 Mutual Information of Symbolic Time Series 131
B.5.2 Lower Bound of the Support of an Event Pair 132
B.5.3 Lower bound of the Confidence of an Event Pair 135
B.5.4 Upper Bound of the Support of an Event Pair 136
B.5.5 Using the Bounds for Approximate GTPM 139

B.6 Experimental Evaluation . 139
B.6.1 Experimental Setup . 139
B.6.2 Qualitative Evaluation . 141
B.6.3 Quantitative Evaluation of RTPM 141
B.6.4 Quantitative Evaluation of FTPM 147

B.7 Conclusion . 149
References . 150

C Mining Seasonal Temporal Patterns in Time Series 155
C.1 Introduction . 157
C.2 Related work . 159
C.3 Preliminaries . 160

C.3.1 Time Granularity . 160
C.3.2 Symbolic Representation of Time Series 161
C.3.3 Temporal Event and Temporal Relation 162
C.3.4 Temporal Sequence Database 164
C.3.5 Frequent Seasonal Temporal Pattern 165

C.4 Frequent Seasonal Temporal Pattern Mining 167
C.4.1 Overview of FreqSTPfTS Mining Process 167
C.4.2 Candidate Seasonal Pattern 167
C.4.3 Mining Seasonal Single Events 168
C.4.4 Mining Seasonal k-event Patterns 170

C.5 Approximate STPM . 174
C.5.1 Correlated Symbolic Time Series 174
C.5.2 Lower Bound of the maxSeason 175
C.5.3 Using the Bound to Approximate STPM 176

C.6 Experimental Evaluation . 177
C.6.1 Experimental Setup . 177
C.6.2 Qualitative Evaluation . 178

xiv

Contents

C.6.3 Quantitative Evaluation 179
C.7 Conclusion and Future Work . 185
References . 185

xv

Contents

xvi

Thesis Details

Thesis Title: Efficiently Mining Temporal Patterns in Time Series
Using Information Theory

PhD Student: Van Long Ho
Aalborg University

PhD Supervisor: Prof. Torben Bach Pedersen
Aalborg University

PhD Co-Supervisor: Assistant Prof. Nguyen Ho
Aalborg University

The main body of the thesis consists of the following papers.

[A] V. L. Ho, N.Ho, and T. B. Pedersen, “Efficient Temporal PatternMining in
Big Time Series UsingMutual Information”, in Proceedings of the VLDB
Endowment (PVLDB), Volume 15, Number 3, Pages 673-685, 2021.

[B] V. L. Ho, N. Ho, T. B. Pedersen, and P. Papapetrou, “Efficient Generalized
Temporal PatternMining in Big Time Series UsingMutual Information”.
Submitted to IEEE Transactions on Knowledge and Data Engineering
(TKDE).

[C] V. L. Ho, N. Ho, and T. B. Pedersen, “Mining Seasonal Temporal Patterns
in Time Series”, in Proceedings of the IEEE International Conference on
Data Engineering (ICDE), Pages 2240-2252, 2023.

Paper B significantly extends Paper A by generalizing the temporal pattern
mining problem tomine both frequent temporal patterns (significant improve-
ments) and rare temporal patterns (a novel proposal). In addition to the above
papers, I am co-authors of the following three papers as part of my Ph.D.
studies, which are not included in the thesis.

[D] N. Ho, V. L. Ho, T. B. Pedersen, and M. Vu, “Efficient and Distributed
Temporal PatternMining”, in IEEE International Conference on Big Data
(Big Data), Pages 335-343, 2021.

[E] N. Ho, T. B. Pedersen, V. L. Ho, and M. Vu, “Efficient Search for Multi-
Scale Time Delay Correlations in Big Time Series”, in 23rd International

xvii

Thesis Details

Conference on Extending Database Technology (EDBT), Pages 37-48,
2020.

[F] N.Ho, V. L.Ho, T. B. Pedersen,M.Vu, andC. Biscio, “AUnifiedApproach
forMulti-Scale Synchronous Correlation Search in Big Time Series”. Un-
der submission.

This thesis has been submitted for assessment in partial fulfillment of the Ph.D.
degree. The thesis is based on the submitted or published scientific papers
listed above. Parts of the content of the papers in the main body of the thesis
are used directly or indirectly in the extended summary part of the thesis.
As part of the assessment, co-author statements have been made available to
the assessment committee and are also available at the Technical Faculty of
IT and Design at Aalborg University. The permission for using the published
and accepted articles in the thesis have been obtained from the corresponding
publishers with the condition that they are cited and copyrights are placed
prominently in the references.

Van Long Ho
Aalborg University, August 12, 2023

xviii

Part I

Thesis Summary

1

Chapter 1

Introduction

The thesis focuses on extracting temporal patterns from time series. Unlike
traditional sequential patterns in which occurrences of events are sequential,
temporal patterns add temporal information into patterns, making themmore
expressive and providing more information in relations between events. This
thesis will discover the different varieties of temporal patterns and propose
optimization techniques for efficient mining algorithms. This section first
introduces the background and motivation of the thesis, then outlines the
objectives of the thesis, and finally describes the thesis structure.

1.1 Background and Motivation

1.1.1 Temporal Pattern Mining
The rapid development of IoT technology has enabled the collection of exten-
sive volumes of time series data on unprecedented extent and acceleration. For
example, smart meters and smart plugs are equipped in modern residential
households, allowing for meticulous monitoring of the power consumption
of electrical appliances [17], [16], [24]. Thousands of sensors are deployed
in weather stations to observe numerous weather-related variables [67]. Ad-
ditionally, mobile devices are supplied with various sensors to record user
behaviors and track locations. These IoT-based systems generate daily ter-
abytes of time series data that contain valuable information and, when they
are explored, can provide priceless insights into specific application domains.
These insights can be utilized to support evidence-based decision-making and
optimization.

One of the first approaches for discovering hidden insights from time series
is to find and analyze patterns from them. The traditional sequential pattern
mining methods [50], [39] can detect such patterns.

3

Chapter 1. Introduction

Microwave

Toaster

Kitchen

05:30

06:00

06:45
07:00
07:10

12:00
12:15
12:30
12:40 ...

06:00

06:45
07:00
07:10

07:30

On On On

Off Off Off Off

On On On

Off Off Off Off

On On

Off Off Off

Fig. 1.1: Time series data on the energy consumption of electrical appliances

Example 1.1.1 (A sequential pattern)
Fig. 1.1 shows the energy usage of electrical devices. An interesting dis-
covery is that the electrical devices are often used together in a specific time
period of the day. A sequential pattern in Fig. 1.1 can be expressed as
{Kitchen On}⇒ {Toaster On, Microwave On}, showing that the presence of
{Toaster On, Microwave On} is linked to the presence of {Kitchen On}.

However, sequential patterns only express the occurrence of events se-
quentially. In contrast, temporal patterns add further temporal information to
events, which can express complex relations between events, such as contains
and overlaps, and provide the details of when the events happen and for how
long [51], [57], [58], [64], [10].

Example 1.1.2 (A temporal pattern)
The previous pattern in Example 1.1.1 would be expressed: ([06:00,07:00]
Kitchen On < [06:00,06:45] Toaster On) (meaning Kitchen On contains
Toaster On), ([06:00,07:00] Kitchen On → [07:00,07:10] Microwave On)
(meaning Kitchen On is followed by Microwave On), and ([06:00,06:45]
Toaster On → [07:00,07:10] Microwave On). Such insights are essential,
as they can be used in facilitating the creation of smart homes, enabling the
automation of electrical appliances.

There are different types of temporal patterns that can occur in a given spe-
cific time series dataset. Temporal patterns that occur frequently throughout
the entire dataset are called frequent temporal patterns. In contrast, temporal
patterns that rarely occur are called rare temporal patterns. While these rare
temporal patterns are very important in many application domains, they can
be easily missed if we do not have sufficient solutions to mine them.

4

1.1. Background and Motivation

Humidity

Temperature

Influenza

Jan

Jan

Jan

Feb

Feb

Feb
M
ar

M
ar

M
ar

A
pr

A
pr

A
pr

M
ay

M
ay

M
ay

Jun

Jun

Jun

Jun

Jul

Jul

Jul

A
ug

A
ug

A
ug

Sep

Sep

Sep

O
ct

O
ct

O
ct

N
ov

N
ov

N
ov

D
ec

D
ec

D
ec

2015 2016 2017 2018

Low

High

Low

High

Low

High

Low

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Fig. 1.2: Weather and Influenza time series [38]

Example 1.1.3 (A rare temporal pattern)
A rare temporal pattern would be found in smart city domain as:
([16:00,21:00] Snow < [17:30,19:30] StrongWind), ([16:00,21:00] Snow
< [18:00,19:00] HighPedestrianInjury), and ([17:30,19:30] StrongWind <
[18:00,19:10] HighPedestrianInjury). The pattern occurs infrequently but
with high confidence, assisting in warning the citizens of severe weather
conditions.

Another pattern that we also study in this thesis is called seasonal temporal
pattern. The characteristic of this pattern is that it occurs concentrated in a
particular period of time and repeats throughout the dataset periodically.

Example 1.1.4 (A seasonal temporal pattern)
Fig. 1.2 shows weather and influenza time series from Kawasaki, Japan
between 2015-2018 [12], [67]. A seasonal temporal patternwouldbe explored
as: Low Temperature overlaps High Humidity, Low Temperature is followed
by High Influenza Cases, and High Humidity is followed by High Influenza
Cases. This pattern occurs yearly in January and February. Based on the
detection of such patterns, health experts could plan disease prevention and
health protection.

Although temporal patterns are useful, there are existing gaps in discover-
ing them in the current literature. Mining the three above types of temporal
patterns is very expensive since each event has additional temporal infor-
mation, and relations between temporal events are complex. Moreover, the
current literature has several limitations when mining each type of pattern.

5

Chapter 1. Introduction

Specifically, for frequent temporal patterns, the existing algorithms cannot
scale on big datasets, i.e., numerous time series or sequences, and only op-
erate directly on pre-processed temporal events instead of time series data.
For rare temporal patterns, using traditional pattern mining algorithms leads
to an explosion of pattern candidates as the support measure has to be set
to a low value. For seasonal temporal patterns, using the support measure
is insufficient since the support does not reflect the seasonality characteristic.
Moreover, the seasonal patterns do not uphold the anti-monotonicity property,
i.e., a pattern is seasonal but its non-empty subsets may not be seasonal. Thus,
we cannot apply the pruning techniques based on the anti-monotonicity prop-
erty for seasonal temporal patterns. Motivated by these analyses, this thesis
proposes efficient algorithms to mine these three types of temporal patterns:
frequent, rare, and seasonal.

1.1.2 Information Theory
Mining temporal patterns are very expensive in real-world applications. The
thesis uses information theory-based measures to reduce the mining cost, i.e.,
improve the speedup of the mining process but still obtain high accuracy. This
section introduces fundamental concepts in information theory used in the
proposed solutions of this thesis.

Entropy. The entropy H(X) [14] of a discrete random variable X is defined
as

H(X) � −
∑
x∈X

p(x) · log p(x) (1.1)

Intuitively, the entropy measures the uncertainty of a random variable X. As
the value of H(X) increases, the uncertainty of X also increases.

Conditional Entropy. The conditional entropy H(X |Y) [14] of a discrete
random variable X, given a discrete random variable Y, is defined as

H(X |Y) � −
∑
x∈X

∑
y∈Y

p(x , y) · log
p(x , y)

p(y) (1.2)

Intuitively, the conditional entropy H(X |Y) measures the uncertainty of X,
given Y.

Mutual information. The mutual information I(X; Y) [14] of two discrete
random variables X and Y is defined as

I(X; Y) �
∑
x∈X

∑
y∈Y

p(x , y) · log
p(x , y)

p(x) · p(y) (1.3)

Intuitively, the mutual information measures the reduction of uncertainty of
one variable X, given another variable Y. The larger the value I(X; Y), the
more correlated information between X and Y.

6

1.2. Objectives of the Thesis

O1. Mine Frequent Temporal Patterns
from Time Series efficiently
 using Information Theory

O2. Mine Rare Temporal Patterns
from Time Series efficiently

using Information Theory

O3. Mine Seasonal Temporal Patterns
from Time Series efficiently

using Information Theory

The solutions for frequent
temporal pattern mining:
1. E-HTPGM (Paper A)
2. A-HTPGM (Paper A)
3. E-FTPM (Paper B)
4. A-FTPM (Paper B)

The solutions for rare
temporal pattern mining:
1. E-RTPM (Paper B)
2. A-RTPM (Paper B)

The solutions for seasonal
temporal pattern mining:
1. E-STPM (Paper C)
2. A-STPM (Paper C)

Papers A, B

Paper B

Paper C

Objectives Contributions

Efficiently Mining Temporal Patterns in Time Series Using Information Theory

Fig. 1.3: The thesis objectives and the contributions

1.2 Objectives of the Thesis
The overall objective of the thesis is to propose efficient solutions to mine three
types of temporal patterns: frequent, rare, and seasonal, directly from time
series. In order to achieve this goal, three objectives need to be fulfilled:

• O1. We can mine frequent temporal patterns from time series efficiently
and use information theory measures to further optimize the mining
process.

• O2. We can efficiently discover rare temporal patterns from time series
and enhance the mining process by incorporating information theory
measures.

• O3. We can mine seasonal temporal patterns from time series efficiently
and employ information theorymeasures to further optimize themining
process.

Fig. 1.3 shows the objectives of the thesis and the contributions of the three
papers [36–38]. The left side of the figure lists three objectives of the thesis,
and the right side is contributions to achieve the respective objectives.

ForO1, the contributions are thatwe propose solutions formining frequent
temporal patterns efficiently. The solutions are proposed in two papers, A and

7

Chapter 1. Introduction

B [36, 37]. Two algorithms for frequent temporal pattern mining, the exact
E-HTPGM and the approximate A-HTPGM, are presented in paper A [36].
E-HTPGM employs the hierarchical pattern graph structure and pruning tech-
niques based on the Apriori principle and the transitivity property to facilitate
faster mining. Moreover, based on mutual information, we derive a lower
bound of the confidence of an event pair, thereby proposing the A-HTPGM
that only mines temporal patterns on the promising time series, reducing the
search space for the mining process. We continue working on the frequent
temporal pattern mining problem on paper B [37] with several improvements.
First, the exact E-FTPM algorithm improves the exact E-HTPGM by using the
hierarchical hash tables instead of the hierarchical pattern graph [36] to enable
faster retrieval of events and patterns. Then, the approximate A-FTPM is pro-
posed by combining the lower bound of confidence in paper A and the new
lower bound of support, further improving the speedup of themining process.

For O2, the contributions are that we propose solutions for mining rare
temporal patterns efficiently in paper B [37]. The solutions contain two algo-
rithms: the exact E-RTPM and the approximate A-RTPM. The E-RTPM uses
the variant of the hierarchical hash tables data structure [38] that enables fast
retrieval of events and patterns, and applies the pruning techniques based
on the Apriori principle and the transitivity property to optimize the search
space. Moreover, the A-RTPM is proposed that uses the mutual information
to prune the uncorrelated time series, thereby scaling well on large datasets.

For O3, the contributions are that we propose the first solution for min-
ing seasonal temporal patterns efficiently in paper C [38]. In this solution,
we first introduce several measures, including the maximum period, mini-
mum density, distance interval, andminimum seasonal occurrence, to capture
the seasonality characteristic of the seasonal temporal patterns in time series.
Then, we present a new measure, called maximum season, and use it to de-
fine a new concept, called candidate seasonal pattern, used as a gatekeeper to
identify frequent seasonal patterns. The exact E-STPM algorithm is proposed
that uses the hierarchical hash tables structures to store and access the can-
didate events and patterns quickly and the pruning techniques based on the
candidate seasonal pattern to reduce the search space. Finally, we propose the
approximate A-STPM algorithm that uses the mutual information to eliminate
the unpromising time series, helping A-STPM performs efficiently on large
datasets.

1.3 Thesis Structure
The thesis focuses on achieving all the objectivesmentioned in Section 1.2. The
thesis is structured as follows.

Chapter 2 presents a solution for efficiently mining frequent temporal pat-

8

1.3. Thesis Structure

terns in time series. The solution provides: (i) a comprehensive process that
receives time series as input and produces all frequent temporal patterns as
output, (ii) an efficient frequent temporal pattern mining (FTPM) algorithm
that leverages the efficient data structure and the pruning techniques to opti-
mize the mining process, (iii) an approximate version of FTPM using mutual
information to help FTPM scale well in large datasets.

Frequent temporal patterns are significant; however, rare temporal patterns
are still very interesting and useful in many applications because of high
confidence. Based on the concepts of temporal patterns in Chapter 2, Chapter
3 proposes a solution for mining rare temporal patterns in time series. The
solution includes: (i) a concept of rare temporal pattern with low support
and high confidence, (ii) an efficient rare temporal pattern mining (RTPM)
algorithm that utilizes the efficient data structures and the pruning techniques
to optimize the mining process, (iii) an approximate version of RTPM that is
based on mutual information to prune the unpromising time series to reduce
the search space, thus, speed up the mining process.

Besides frequent and rare temporal patterns, seasonal temporal patterns are
useful with the characteristic of periodic occurrences. Based on the concepts of
temporal patterns in Chapters 2 and 3, Chapter 4 presents a solution formining
seasonal temporal patterns in time series. The key contributions are: (i) the
first solution for seasonal temporal patternmining (STPM) from time series, (ii)
an efficient STPM algorithm using the concept of candidate seasonal pattern
for pruning and the efficient data structures for rapid retrieval of events and
patterns candidates; (iii) an approximate STPM that eliminates the redundant
time series to achieve faster mining.

Chapter 5 summarizes our contributions and considers future works.

9

Chapter 1. Introduction

10

Chapter 2

Frequent Temporal Pattern
Mining

This chapter summarizes Paper A [36] and a part of Paper B [37] which provide
a significant improvement in frequent temporal pattern mining. Content from
these papers is reused in the most effective way.

2.1 ProblemMotivation and Statement
Section 1.1 shows that temporal patterns are useful in many real-world ap-
plications. However, mining frequent temporal patterns is very expensive.
The temporal information and the complex relations between temporal events
create an exponential search space with quadratic exponent in the pattern
length h, i.e., the overall complexity O(sh rh2) (s is the number of distinct
events and r is the number of temporal relations). The explanation for search
space complexity is as follows. The number of single events in the considered
database is M1 ∼ O(s). The number of event pairs is M2 ∼ O(s2). In M2,
each event pair can establish r temporal relations. Thus, the number of 2-event
patterns is M2 × r1 ∼ O(s2r1). Similarly, the number of k-event patterns is
O(sh × r

1
2 h(h−1)) ∼ O(sh rh2). Hence, the total number of temporal patterns is

O(s) + O(s2r1) + ... + O(sh rh2) ∼ O(sh rh2).
Several recent approaches have been proposed to mine frequent temporal

patterns. TPrefix [68] is proposed by Wu et al. to mine temporal patterns.
They define unambiguous temporal relations from which temporal patterns
are mined. However, TPrefix repeats database scanning many times to mine
patterns and does not apply pruning techniques to optimize the search space.
Papapetrou et al. proposeH-DFS [57] that employs different strategies, such as
the breadth-first and depth-first search, to extract frequent temporal patterns.

11

Chapter 2. Frequent Temporal Pattern Mining

H-DFS mines patterns in an enumeration tree of temporal arrangement and
uses an IDList to store event intervals in which events/patterns occur. Thus,
a dataset with many sequences or time series can deteriorate HDFS perfor-
mance. Patel et al. propose IEMiner [58] in which relations between events
are represented in an augmented hierarchical model and pruning techniques
based on the Apriori principle to explore temporal patterns. Chen et al. pro-
pose TPMiner [10] that presents the end-point and end-time representations
to handle the complex relations among events and offers several pruning tech-
niques to decrease the search space. Recently, Lee et al. propose ZMiner [51]
for a more efficient temporal pattern mining. ZMiner employs Z-Table data
structure for the event’s occurrence count and efficient candidate generation
and Z-Arrangement data structure for fast arrangements extension. However,
Z-Miner does not use any pruning techniques based on the transitivity prop-
erty of temporal relations. Thus, IEMiner, TPMiner, and ZMiner cannot scale
to big datasets. Moreover, the existing solutions for frequent temporal pat-
tern mining only operate on the pre-processed temporal sequences instead of
directly on time series.

In order to address the above limitations from existing literature, we focus
on twomain objectives formining temporal patterns: efficiency and scalability.
For the first objective, we propose an efficient frequent temporal pattern min-
ing (FTPM) algorithm. For the second objective, we propose an approximate
version of FTPM using mutual information that only mines frequent temporal
patterns on the promising time series, thereby speeding up the mining pro-
cess due to reducing the search space and helping the algorithm scale on big
datasets. In summary, our main contributions are as follows:

• We introduce a general process for frequent temporal pattern mining
from time series in which input is a set of time series, and output is all
frequent temporal patterns.

• We propose an efficient frequent temporal pattern mining (FTPM) algo-
rithm that employs efficient data structures and pruning techniques for
optimization.

• We propose an approximate version of FTPM using mutual information
to eliminate the unpromising time series that scale well on big datasets.

• We conduct extensive experiments on real-world and synthetic datasets
to evaluate the performance of the proposed algorithms.

2.2 Preliminaries
In this section, we formally define temporal patterns and present some mea-
sures for mining frequent temporal patterns. All definitions are reproduced

12

2.2. Preliminaries

Table 2.1: A Symbolic DatabaseDSYB

Time 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55

S On On On On Off Off Off On On Off Off Off Off Off Off On On On Off Off On On On On Off Off Off On On On Off On On On Off Off

T Off Off Off Off Off Off Off On On Off Off On On Off Off On On On Off Off On On On On Off Off Off On On Off Off Off On On On Off

W On On On On On On On On On Off Off On On On On On Off Off On On On On On On On On On Off Off On On On On On Off Off

I Off Off Off Off Off Off On On On Off Off Off On On Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off On On

from Paper A [36] and part of Paper B [37].

Definition 2.2.1 (Time series)
A time series X � x1 , x2 , ..., xn is a sequence of data values that measure the
same phenomenon during an observation time period, and are chronologically
ordered.

Definition 2.2.2 (Symbolic time series)
A symbolic time series XS of a time series X encodes the raw values of X into a
sequence of symbols. The finite set of permitted symbols used to encode X is
called the symbol alphabet ΣX of X.

In order to obtain XS, we use a mapping function f : X→ΣX that maps
xi ∈ X to a symbol ω ∈ ΣX .

Example 2.2.1 (A symbolic time series)
Let X = 1.8, 1.4, 1.1, 0.2, 0.0 be a time series of the energy consumption of
an electrical appliance and ΣX = {On, Off}, where On represents that the
appliance is on and operating (e.g., xi ≥ 0.5), and Off represents that the
appliance is off (e.g., xi < 0.5), the symbolic time series of X is: XS = On,
On, On, Off, Off.

Definition 2.2.3 (Symbolic database)
Given a set of time seriesX � {X1 , ...,Xn}, the set of symbolic representations
of the time series in X forms a symbolic databaseDSYB.

Example 2.2.2 (A symbolic database)
A symbolic databaseDSYB is shown in Table 2.1 . Four time series represent
the energy consumption of four electrical appliances: {Stove (S), Toaster (T),
Clothes Washer (W), Iron (I)}. All four appliances use the same symbol
alphabets: Σ = {On, Off}.

13

Chapter 2. Frequent Temporal Pattern Mining

Table 2.2: Temporal Relations between Events [36]

Follows: Ei.ei
→ E j.e j

ei

tsi tei±ε
ts j te j

e j

ei

tsi tei±ε
ts j te j

e j

tei±ε ≤ ts j

Contains: Ei.ei
< E j.e j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε

e j

ts j te j

(tsi ≤ ts j) ∧ (tei±ε ≥ te j)

Overlaps: Ei.ei
G E j.e j

eitsi tei ± ε

e j

ts j te j

do

(tsi < ts j) ∧ (tei±ε < te j) ∧ (tei − ts j ≥ do±ε)

Definition 2.2.4 (Temporal event in a symbolic time series)
A temporal event E in a symbolic time series XS is a tuple E � (ω, T) where
ω ∈ ΣX is a symbol, and T � {[tsi , tei]} is the set of time intervals duringwhich
XS is associated with the symbol ω.

A temporal event can be obtained by combining the identical continuous
symbols in XS into a time interval.

A single occurrence of the event E, i.e., e � (ω, [tsi , tei]), during [tsi , tei] is
called an instance of E, denoted as E.e .

Example 2.2.3 (A temporal event)
Let’s examine the symbolic series of S as depicted in Table 2.1. The temporal
event “Stove is On” is represented as follows: (SOn, {[10:00, 10:15], [10:35,
10:40], [11:15, 11:25], [11:40, 11:55], [12:15, 12:25], [12:35, 12:45]}). Here, (SOn,
[10:00, 10:15]) is an event instance.

Relations between Temporal Events: We define three basic temporal re-
lations between events based on Allen’s relations model [2]. Moreover, we
also add a tolerance buffer ε to the endpoints of the relations in order to limit
the absolute time mapping problem but guarantee the temporal relations are
mutually exclusive.

Table 2.2 lists the relations and their conditions, where ε is the buffer size
(ε ≥ 0) and do is the minimum duration of overlap between two instances of

14

2.2. Preliminaries

Table 2.3: A Temporal Sequence DatabaseDSEQ

ID Temporal sequences
1 (SOn, [10:00,10:15]), (TOff, [10:00,10:35]), (WOn, [10:00,10:40]),

(IOff, [10:00,10:30]), (SOff, [10:15,10:35]), (IOn, [10:30,10:40]),
(SOn, [10:35,10:40]), (TOn, [10:35,10:40])

2 (SOff, [10:45,11:15]), (TOff, [10:45,10:55]), (WOff, [10:45,10:55]),
(IOff, [10:45,11:00]), (TOn, [10:55,11:00]), (WOn, [10:55,11:15]),
(TOff, [11:00,11:15]), (IOn, [11:00,11:05]), (IOff, [11:05,11:20]),
(SOn, [11:15,11:25]), (TOn, [11:15,11:25]), (WOff, [11:15,11:25]),
(IOn, [11:20,11:25])

3 (SOff, [11:30,11:40]), (TOff, [11:30,11:40]), (WOn, [11:30,12:10]),
(IOff, [11:30,12:10]), (SOn, [11:40,11:55]), (TOn, [11:40,11:55]),
(SOff, [11:55,12:10]), (TOff, [11:55,12:10])

4 (SOn, [12:15,12:25]), (TOn, [12:15,12:20]), (WOff, [12:15,12:25]),
(IOn, [12:15,12:20]), (TOff, [12:20,12:40]), (IOff, [12:20,12:50]),
(SOff, [12:25,12:35]), (WOn, [12:25,12:45]), (SOn, [12:35,12:45]),
(TOn, [12:40,12:50]), (SOff, [12:45,12:55]), (WOff, [12:45,12:55]),
(TOff, [12:50,12:55]), (IOn, [12:50,12:55])

an event (0 ≤ ε � do).

Definition 2.2.5 (Temporal pattern)
Let<�{Follows, Contains, Overlaps} be the set of temporal relations. A tem-
poral pattern P�<(r12 , E1 , E2),...,(r(n−1)(n) , En−1 , En)> is a list of triples (rĳ,Ei ,E j),
each representing a relation rĳ ∈ < between two events Ei and E j .

We note that the relation rĳ is formed between the event instances of Ei
and E j . If the number of events in the temporal pattern P is n, P is called an
n-event pattern. We denote Ei ∈ P if the event Ei occurs in P, and P1 ⊆ P if a
pattern P1 is a sub-pattern of P.

Definition 2.2.6 (Temporal sequence)
A list of n event instances S�<e1 , ..., ei , ..., en> forms a temporal sequence if the
instances are chronologically ordered by their start times. Moreover, S has size
n, denoted as |S | � n.

A set of temporal sequences forms a temporal sequence databaseDSEQ where
each row i contains a temporal sequence Si .

Example 2.2.4 (A temporal sequence database)
Table 2.3 is an example of the temporal sequence database DSEQ that is
converted from the symbolic databaseDSYB in Table 2.1 .

15

Chapter 2. Frequent Temporal Pattern Mining

The temporal sequence S supports a temporal pattern P, denoted as P ∈ S,
iff |S | ≥ 2 ∧ ∀(rĳ , Ei , E j) ∈ P, ∃(el , em) ∈ S such that rĳ holds between Ei.el

and
E j.em . Otherwise, if P is supported by S, P can be written as P�<(r12, E1.e1 ,
E2.e2), ..., (r(n−1)(n),En−1.en−1

, En.en)>, where the relation between two events in
each triple is expressed using the event instances.

Example 2.2.5 (A temporal sequence supports a temporal patern)
Consider the sequence S �<e1=(SOn, [12:15, 12:25]), e2�(TOn, [12:15, 12:20]),
e3�(IOn, [12:50, 12:55])> at the fourth row ofDSEQ in Table 2.3 . We can see
that S supports a 3-event pattern P�<(Contains, SOn.e1 , TOn.e2), (Follows,
SOn.e1 , IOn.e3), (Follows, TOn.e2 , IOn.e3)>.

Definition 2.2.7 (Support of a temporal pattern)
The support of a pattern P is the number of sequences S ∈ DSEQ that support
P.

supp(P) � |{S ∈ DSEQ s.t. P ∈ S}| (2.1)

The support of a group of events (E1 , ..., En), denoted as supp(E1 , ..., En), is
defined similarly to that of a temporal pattern.

Intuitively, the support of an event group/ pattern shows the frequency of
occurrence of an event group/ pattern in a database.

Definition 2.2.8 (Confidence of a temporal pattern)
The confidence of a temporal pattern P inDSEQ is the fraction between supp(P)
and the support of its most frequent event:

conf(P) �
supp(P)

max1≤k≤|P |{supp(Ek)}
(2.2)

where Ek ∈ P is a temporal event.

The confidence of a group of events (E1 , ..., En), denoted as conf(E1 , ..., En),
is defined similarly to that of a temporal pattern.

Intuitively, the confidence reflects the minimum probability of an event
group/ pattern, given the probability of its most frequent event.

Problem Formulation: Frequent Temporal PatternMining fromTime Series
(FTPMfTS) [36]
Given a set of univariate time seriesX � {X1 , ...,Xn}, letDSEQ be the temporal
sequencedatabase obtained fromX, and σ and δ be the support and confidence
thresholds, respectively. The FTPMfTS problem aims to find all temporal
patternsP that have high enough support and confidence inDSEQ: supp(P) ≥ σ
∧ conf(P) ≥ δ.

16

2.3. Frequent Temporal Pattern Mining from Time Series (FTPMfTS) process

2.3 Frequent Temporal Pattern Mining from Time
Series (FTPMfTS) process

Set of Time Series X

Symbolic Time Series Representation

Temporal Sequence Database Conversion

Frequent Single Events Mining

Frequent 2-Event Patterns Mining

Frequent k-Event Patterns Mining (k > 2)

Frequent Temporal Patterns

FT
PM

fT
S
Pr
oc
es
s

D
ata

Transform
ation

Tem
poralPatterns

M
ining

(FTPM
)

DSYB

DSEQ

Fig. 2.1: The FTPMfTS process [36]

The FTPMfTS process consists of two phases, shown in Fig. 2.1. The first
phase, Data Transformation, transforms the set of time series X into the sym-
bolic time series database DSYB, then converts DSYB to the sequence database
DSEQ. The second phase, Frequent Temporal Patterns Mining, includes 3 step:
(1) Frequent Single Events Mining, (2) Frequent 2-Event Patterns Mining, and (3)
Frequent k-Event PatternsMining (k>2). The final output is all frequent temporal
patterns.

2.3.1 Data Transformation

Symbolic Time Series Representation

We use the mapping function in Def. 2.2.2 to convert each time series in X to
the symbolic time series. This step will create theDSYB database.

Temporal Sequence Database Conversion

To transform DSYB into DSEQ, we divide the symbolic series in DSYB into
sequences of equal length, with each sequence corresponding to a row in
DSEQ. Nevertheless, the process of splitting may cause a loss of temporal
patterns since a splitting point can place a pattern into different sequences.

17

Chapter 2. Frequent Temporal Pattern Mining

S1 S2

t t
SOn
TOn WOn

IOn

Fig. 2.2: Non-overlapped splitting strategy [36]

Example 2.3.1 (Non-overlapped splitting)
We split each symbolic series in Table 2.1 into 4 sequences and each sequence
will span 40minutes. Temporal events S, T,W, and I occurring between 10:00
and 10:40 will be in the first sequence S1. And temporal events S, T, W, and
I from 10:45 to 11:25 will be in the second sequence S2, similarly for S3
and S4. Fig. 2.2 shows the loss of the straightforward non-overlapped
splitting strategy. Four events, SOn, TOn, WOn, and IOn, are divided into 2
sequences. Specifically, SOn and TOn are in S1, andWOn and IOn are in S2.
This separation leads to the loss of the 4-event pattern P�<(Contains, SOn,
TOn), (Follows, SOn, WOn), (Follows, SOn, IOn), (Follows, TOn, WOn),
(Follows, TOn, IOn), (Contains, WOn, IOn)>.

In order to address the loss issue, we use an overlapping sequences strategy.
Let tov be a overlapped duration, where 0 ≤ tov ≤ tmax and tmax represents the
maximum duration of a pattern. Two consecutive sequences are overlapped
within tov.

S1 S2

tov
t

t

SOn
TOn WOn

IOn

Fig. 2.3: Overlapped splitting strategy [36]

Example 2.3.2 (Overlapped splitting)
Fig. 2.3 shows a splitting strategy using overlapping sequences. The over-
lapping between S1 and S2 ensures that the four events, SOn, TOn, WOn,
and IOn, remain together in S2, thereby preserving the pattern.

2.3.2 Frequent Temporal Pattern Mining
After the data transformation phase, we proceed to the frequent temporal
pattern mining phase. First, we find frequent single events, which is the
fundamental step for the subsequent mining process. Next, we mine frequent
2-event patterns that use the found frequent single events. Finally, we mine
frequent k-event patterns that utilize both the frequent single events and the

18

2.4. Frequent Temporal Pattern Mining (Exact FTPM)

frequent 2-eventpatterns togenerate thek-eventpatterns. Details of themining
process for each step are described in Section 2.4.

2.4 FrequentTemporalPatternMining (Exact FTPM)
In this section, we present the frequent temporal pattern mining (FTPM) al-
gorithm to mine frequent temporal patterns from DSEQ. The lemmas are
reproduced from Paper A [36] and part of Paper B [37], and detailed proofs of
the lemmas can be found in Paper A and Paper B.

2.4.1 Hierarchical lookup hash structure for FTPM
Paper A presents an algorithm for mining frequent temporal patterns, called
HTPGM, that uses Hierarchical Pattern Graph data structure to maintain fre-
quent events and patterns. Paper B improves the HTPGM algorithm by using
Hierarchical Hash Tables instead of the Hierarchical Pattern Graph, enabling
faster retrieval of events and patterns. Now, we discuss the Hierarchical Hash
Tables data structure used in FTPM.

Key Value

...

...

Key Value

Single event
hash table

Event sequence
hash table

Fig. 2.4: The HLH1 structure [37]

...

...

k-Event
hash table

Pattern
hash table

...

...

Pattern sequence
 hash table

Key Value

Key Value

Key Value

Fig. 2.5: The HLHk (k ≥ 2) structure [37]

Hierarchical lookup hash structure HLH1: The HLH1 structure is used to
store single events, illustrated in Fig. 2.4 . HLH1 includes two hash tables. The
first hash table is the single event hash table, denoted as EH, and the second hash
table is the event sequence hash table, denoted as SH. Each hash table comprises
a collection of <key, value> pairs. In the EH hash table, the key corresponds to
the symbol ω ∈ ΣX associated with the event Ei , and the corresponding value
contains the list of sequences < Si , ..., Sk > that support Ei . In the SH hash
table, the key consists of the sequence list from EH, and the value corresponds
to instances of the event Ei .

Hierarchical lookup hash structure HLHk : k-event groups and k-event
patterns are stored in the HLHk (k ≥ 2), illustrated in Fig. 2.5 . HLHk consists
of 3 hash tables. The first hash table is the k-event hash table, denoted as EHk ,
the second one is the pattern hash table, denoted as PHk , and the third one
is the pattern sequence hash table, denoted as SHk . In the EHk hash table, the

19

Chapter 2. Frequent Temporal Pattern Mining

key corresponds to the symbols list (ω1..., ωk) that represents the group of
k-events g � (E1 , ..., Ek), and the value includes 2 components: the sequence
list < Si , ..., Sk > where g occurs, and the list containing the k-event patterns
P of g. In the PHk hash table, the key corresponds to the k-event pattern P
from EHk , and the value contains the sequence list of P. In the SHk hash table,
the key is the sequence list from PHk , and the value contains the list of event
instances forming P.

The hierarchical lookup hash structures support quick retrieving of events
and patterns during the mining process. Next, we describe the FTPM algo-
rithm as in Algorithm 1 .
Algorithm 1: Frequent Temporal Pattern Mining [37]
Input: Temporal sequence databaseDSEQ, minimum support

threshold σ, confidence threshold δ
Output: The set of temporal patterns P satisfying σ, δ
//Mining frequent single events

1: foreach event Ei ∈ DSEQ do
2: Compute supp(Ei);
3: if supp(Ei) ≥ σ then
4: Insert Ei to 1Freq;

//Mining frequent 2-event patterns
5: EventPairs← Cartesian(1Freq,1Freq);
6: FrequentPairs← ∅;
7: foreach (Ei , E j) in EventPairs do
8: Compute supp(Ei , E j);
9: if supp(Ei , E j) ≥ σ then

10: FrequentPairs← Apply_Lemma4(Ei , E j);
11: foreach (Ei , E j) in FrequentPairs do
12: Retrieve event instances;
13: Check temporal relations against σ, δ;

//Mining frequent k-event patterns
14: Candidate1Freq← Transitivity_Filtering(1Freq);
15: kEvents← Cartesian(Candidate1Freq,(k-1)Freq);
16: FrequentkEvents← Apriori_Filtering(kEvents);
17: foreach kEvents in FrequentkEvents do
18: Retrieve relations;
19: Iteratively check relations against σ, δ;

2.4.2 Mining Frequent Single Events
The initial step of FTPM aims to look for frequent single events (Alg. 1 , lines
1-4). We calculate the support for each event Ei and determine whether the
support of Ei satisfies σ. At this step, we do not consider the confidence of

20

2.4. Frequent Temporal Pattern Mining (Exact FTPM)

single events since it is always 1.
We provide a running example in Fig. 2.6 using data in Table 2.3, with

σ � 0.7 and δ � 0.7. We have 7 frequent single events, including SOn, SOff,
WOn, TOn, TOff, IOff, and IOn.

(10:00,10:15)
(11:15,11:25)
(11:50,12:00)
(12:15,12:20)

SOn SOff TOn TOff

SOn,TOn

1
2
3

1
2
3

4

WOn IOnIOff

4

(10:35,10:40),(10:35,10:40)

(10:35,10:40)

(12:35,12:45)

(11:15,11:25),(11:15,11:25)
(11:50,12:00),(11:50,12:00)
(12:15,12:20),(12:15,12:20)

WOn,TOn

(10:35,10:40)
(11:30,11:35)
(12:15,12:20)

1
3
4 (12:50,12:55)

(10:00,10:40),(10:35,10:40)1
2
3

(10:55,11:15),(10:55,11:00)
(11:30,12:10),(11:50,12:00)

...

Fig. 2.6: An example for the hierarchical lookup hash tables

2.4.3 Mining Frequent 2-event Patterns
In order to reduce the cost of checking candidates of frequent patterns, we
propose to divide the mining process into two steps: (1) it first finds frequent
k-event groups, (2) it then determines frequent temporal patterns only from
those frequent k-event groups. Two following lemmas ensure the correctness
of this approach.

Lemma 1 Let P be a 2-event pattern formed by an event pair (Ei , E j). Then,
supp(P) ≤ supp(Ei , E j).

FromLemma 1 , we can prune infrequent event pairs safely sincewe cannot
create frequent patterns from infrequent event pairs.

Lemma 2 Let (Ei , E j) be a pair of events forming a 2-event pattern P. Then conf(P)
≤ conf(Ei , E j).

From Lemma 2 , we can prune low-confidence event pairs safely since they
cannot create high-confidence patterns. We apply Lemmas 1 and 2 to the
mining process to reduce the candidate patterns generation.

Mining frequent event pairs: Alg. 1 (lines 5-10) describes this step. First,
we generate all event pairs. Next, for each pair (Ei , E j), the set of sequencesSi j
where both events occur is retrieved, and we compute the support supp(Ei , E j)
using Si j . If (Ei , E j) has high enough support and high confidence, they are
stored in EH2 of HLH2.

Mining frequent 2-event patterns: Alg. 1 (lines 11-13) describes the min-
ing for frequent 2-event patterns. First, for each frequent event pair (Ei , E j), we
look for the temporal relations between Ei and E j using the set of sequences
Si j . Only the relations that satisfy the two constraints σ and δ are stored in
HLH2. Several relations in HLH2 are shown in Fig. 2.6 , e.g., event pair (SOn,
TOn).

21

Chapter 2. Frequent Temporal Pattern Mining

2.4.4 Mining Frequent k-event Patterns
The mining steps for frequent k-event patterns are similar to frequent 2-event
patterns, consisting of finding frequent k-event combinations and thenmining
frequent k-event patterns. Moreover, we employ the transitivity property of
temporal relations to further optimize the frequent k-event patterns mining.

Mining frequent k-event combinations: Alg. 1 (lines 14-16) describes
the mining step of frequent k-event combinations. First, we calculate the
Cartesian product between the frequent (k-1)-event combinations (k-1)Freq at
HLHk−1 and the frequent single events 1Freq: (k-1)Freq× 1Freq, to create k-event
combinations. Then, we only select the k-event combinations that satisfy the
support σ and the confidence δ.

However, we observe that not all frequent single events at HLH1 can create
frequent patterns at HLHk . For example, we consider the event IOn at HLH1
in Fig. 2.6 . Here, we can use IOn to combine with (SOn, TOn) at HLH2 to
create a 3-event combination (SOn, TOn, IOn). However, (SOn, TOn, IOn)
cannot create any frequent 3-event patterns, since IOn is not present at HLH2.
Thus, the combination (SOn, TOn, IOn) should not be created. To reduce such
redundancy, we rely on the transitivity property as follows.

Lemma 3 Let S �< e1,..., en−1 > be a temporal sequence that supports an (n-1)-event
pattern P �< (r12, E1.e1 , E2.e2),..., (r(n−2)(n−1), En−2.en−2

, En−1.en−1
) >. Let en be a

new event instance added to S to create the temporal sequence S
′
�< e1 , ..., en >.

The set of temporal relations< is transitive on S
′ : ∀ei ∈ S

′ , i < n, ∃r ∈ < s.t.
r(Ei.ei

,En.en) holds.

From Lemma 3 , a new event instance that is added to a temporal sequence
S will always form at least one temporal relation.

Lemma 4 Let Nk−1 � (E1 , ..., Ek−1) be a (k-1)-event combination and Ek be a single
event, both satisfying the σ constraint. The combination Nk � Nk−1 ∪ Ek can form
k-event temporal patterns whose support is greater than σ if ∀Ei ∈ Nk−1, ∃r ∈ < s.t.
r(Ei , Ek) is a frequent temporal relation.

From Lemma 4 , only events in HLH1 that exist in HLHk−1 should be em-
ployed to generate k-event combinations. Using Lemma 4 , we extract distinct
single events Xk−1 from HLHk−1, and intersect Xk−1 with the frequent single
events 1Freq in HLH1 to eliminate redundant events: Candidate1Freq = Xk−1 ∩
1Freq. Next, we calculate the Cartesian product (k-1)Freq × Candidate1Freq to
create k-event combinations. Finally, we only select frequent k-event combina-
tions kFreq.

Mining frequent k-event patterns: Alg. 1 (lines 17-19) describes this
step. The cost of checking temporal relations in a k-event combination (k ≥ 3)
satisfying support and confidence constraints is very expensive. Thus, we

22

2.5. Approximate FTPM

propose a more efficient method to check these temporal relations based on
the transitivity property and the Apriori principle.
Lemma 5 Let P and P

′ be two temporal patterns. If P
′ ⊆ P, then conf(P′) ≥ conf(P).

Lemma 6 LetP andP
′ be two temporal patterns. IfP

′ ⊆ P and supp(P′)
max1≤k≤|P |{supp(Ek)} Ek∈P

≤ δ, then conf(P) ≤ δ.
According to Lemma 5, the confidence of a pattern P is less than or equal

to the confidence of its sub-patterns. Lemma 6 says that if any of the sub-
patterns of a temporal pattern P have low confidence, then P cannot have high
confidence. We use Lemmas 5 and 6 as follows.

Let Mk−1 � (E1 , ..., Ek−1) be a frequent (k-1)-event combination, M1 � (Ek)
be an single event, and Mk � Mk−1∪M1 � (E1 , ..., Ek) be a k-event combination.
To determine k-event patterns for Mk , we first retrieve the set Pk−1 containing
frequent (k-1)-event patterns of Mk−1. Each pk−1 ∈ Pk−1 is a list of 1

2 (k−1)(k−2)
triples: {(r12, E1.e1 , E2.e2),...,(r(k−2)(k−1), Ek−2.ek−2

, Ek−1.ek−1
)}. We iteratively check

the possibility of pk−1 and Ek can create a frequent k-event pattern as follows.
We first check whether the triple (r(k−1)k , Ek−1.ek−1

, Ek.ek
) has high enough

support and high confidence by accessing the HLH2 table. If the triple does
not have high enough support (using Lemmas 3 and 4), or high confidence
(using Lemmas 3 , 5 , and 6), the checking process stops immediately for pk−1.
Otherwise, it continues on the triple (r(k−2)k , Ek−2.ek−2

, Ek.ek
), until it reaches

(r1k , E1.e1 , Ek.ek
).

2.5 Approximate FTPM
This section introduces an approximate version of FTPM using mutual infor-
mation to find dependent time series, and performing FTPM only on these
time series. The definitions, theorems, and corollaries are reproduced from
Paper A [36] and part of Paper B [37], and their proofs can be found in Paper
A and Paper B.

Let XS and YS be the symbolic series representing the time series X and Y,
respectively, and ΣX , ΣY be their alphabets.

2.5.1 Mutual Information of Symbolic Time Series
As mentioned in Section 1.1.2, mutual information measures how dependent
two random variables are. For approximate FTPM, we calculate the mutual
information (MI) of two symbolic time series, i.e., I(XS ,YS), and calculate the
entropy of each symbolic time series, i.e., H(XS).

However, MI has no upper bound since 0 ≤ I(XS; YS) ≤ min(H(XS),H(YS))
[14]. To scale the MI into the range [0 − 1], we use normalized mutual infor-
mation as defined below.

23

Chapter 2. Frequent Temporal Pattern Mining

Definition 2.5.1 (Normalized mutual information)
The normalized mutual information (NMI) of two symbolic time series XS and
YS, denoted as Ĩ(XS; YS), is defined as

Ĩ(XS ; YS) �
I(XS ; YS)

H(XS)
� 1 − H(XS |YS)

H(XS)
(2.3)

Based on Eq. (2.3), a pair of (XS ,YS) holds a mutual dependency if Ĩ(XS; YS)
> 0. Moreover, NMI is not symmetric, i.e., Ĩ(XS; YS) , Ĩ(YS; XS).

2.5.2 Relationship between the Support of an Event Pair in
DSYB andDSEQ

In Sections 2.5.3 and 2.5.4 , we study the relationship between mutual infor-
mation of two symbolic time series, and the support and the confidence of an
event pair. Since calculating mutual information of two symbolic time series
uses the database DSYB, and calculating the support and the confidence of an
event pair uses the database DSEQ, thus we first derive a connection between
the support of an event pair in DSYB and DSEQ, and use this connection to
prove the relationships of mutual information and the support and confidence
in Sections 2.5.3 and 2.5.4 .

Lemma 1 Let supp(X1 ,Y1)DSYB and supp(X1 ,Y1)DSEQ be the support of (X1 ,Y1) in
DSYB and DSEQ, respectively. We have the following relation: supp(X1 ,Y1)DSYB ≤
supp(X1 ,Y1)DSEQ .

Lemma 1 shows that if an event pair is frequent in DSYB then it is also
frequent inDSEQ.

2.5.3 Lower Bound of the Support
In the approximate FTPM, we use mutual information to select the depen-
dent time series and perform the mining only on these time series. Since the
FTPMfTS problem uses the support to evaluate the occurrence frequency of
events/patterns, in this section, we investigate the relationship between the
mutual information of two symbolic series and the support of an event pair
as in Theorem 1 , and use this relationship in the approximate FTPM to prune
the unpromising time series, help reduce the search space of the mining.

Theorem 1 (Lower bound of the support)
Let µ be the minimum mutual information threshold. If Ĩ(XS;YS) ≥ µ, then the lower
bound of the support of (X1 ,Y1) inDSEQ is:

supp(X1 ,Y1)DSEQ ≥ λ2 · e
W

(
log λ1−µ

1 ·ln2
λ2

)
(2.4)

24

2.5. Approximate FTPM

where λ1 is the minimum support of Xi ∈ XS, λ2 is the support of Y1 ∈ YS, and W
is the Lambert function [13].

Using Theorem 1 , µ is derived such that supp(X1 ,Y1) is at least σ.

Corollary 1.1 The support of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at least
σ if Ĩ(XS; YS) is at least µ, where:

µ ≥


1 − λ2
e ·ln 2·log 1

λ1
, if 0 ≤ σ

λ2
≤ 1

e

1 −
σ·log σ

λ2
ln 2·log λ1

, otherwise
(2.5)

Interpretation: Theorem 1 states that if two series, namely XS and YS,
exhibit mutual dependence on the value µ, then the support of an event pair
in (XS, YS) is not less than the specified lower bound as presented in Eq. (2.4).
By applying both Theorem 1 and Lemma 1, if the support of an event pair of
(XS,YS) is less than the specified bound in Eq. (2.4), any pattern formed by that
event pair will also have a support value lower than the established bound.

2.5.4 Lower bound of the Confidence
The FTPMfTS problem uses the confidence to evaluate the likelihood of an
events group/ pattern. Besides that, mutual information is used to select
the dependent time series in the approximate FTPM. Thus, we investigate the
relationship between the mutual information of two symbolic series and the
confidence of an event pair as in Theorem 2 , and combine this relationship
with the result of Theorem 1 to prune the unpromising time series in the
approximate FTPM, reducing the search space of the mining.

Theorem 2 (Lower bound of the confidence)
Let σ and µ be the minimum support and minimum mutual information thresholds,
respectively. Assume that supp(X1 ,Y1)DSEQ ≥ σ. If the NMI Ĩ(XS;YS) ≥ µ, then the
lower bound of the confidence of (X1 ,Y1) inDSEQ is:

conf(X1 ,Y1)DSEQ ≥ σ · λ
1−µ
σ

1 ·
(

nx − 1
1 − σ

) λ3
σ

(2.6)

where nx is the number of symbols in ΣX , λ1 is the minimum support of Xi ∈ XS,
and λ3 is the support of (Xi ,Yj) ∈ (XS ,YS) such that p(Xi |Yj) is minimal, ∀(i , 1
∧ j , 1).

From Theorem 2 , µ can be derived such that conf(X1 ,Y1) is at least δ.

25

Chapter 2. Frequent Temporal Pattern Mining

Corollary 2.1 The confidence of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at
least δ if Ĩ(XS; YS) is at least µ, where:

µ ≥ 1 − σ · logλ1

©­« δσ ·
(

1 − σ
nx − 1

) λ3
σ ª®¬ (2.7)

Interpretation: From Theorem 2, if two symbolic time series, namely XS
and YS, are mutually dependent, then the confidence of an event pair in (XS,
YS) is not less than the confidence lower bound in Eq. (2.6). Applying Theorem
2 and Lemma 2 , if the confidence of an event pair (X1 ,Y1) of (XS,YS) is less
than the bound in Eq. (2.6), then any pattern created by (X1 ,Y1) also has a
confidence value lower than the established bound.

2.5.5 Approximate FTPM
This section describes the approximate FTPM algorithm. We first present how
to determine the value of µ for selecting the dependent time series. We then
explain the approximate FTPM algorithm in detail.

Setting the value of µ: FTPM uses two pre-defined parameters, the mini-
mum support σ and the minimum confidence δ, to extract frequent temporal
patterns. To identify patterns that adhere to both the σ and δ constraints, we
choose a value µ that ensures both Eqs. (2.5) and (2.7) hold.
Algorithm 2: Approximate FTPM using Mutual Information [37]
Input: A set of time series X, a minimum support threshold σ, a minimum

confidence threshold δ
Output: The set of frequent temporal patterns P

1: Convert X toDSYB andDSEQ;
2: ScanDSYB to compute the probability of each event and event pair;
3: foreach pair of symbolic time series (XS ,YS) ∈ DSYB do
4: Compute Ĩ(XS ; YS) and Ĩ(YS ; XS);
5: Compute µ using Eqs. (2.5) and (2.7);
6: if min{Ĩ(XS ; YS), Ĩ(YS ; XS)} ≥ µ then
7: Insert XS and YS into XC ;
8: foreach XS ∈ XC do
9: Mine frequent single events from XS ;
10: foreach (XS ,YS) ∈ XC do
11: Mine frequent 2-event patterns from (XS ,YS) ;
12: if k ≥ 3 then
13: Mine frequent k-event patterns similar to the exact FTPM ;

Approximate FTPM: The approximate FTPM is described as in Alg. 2.
The approximate FTPM only mines on the set of mutually dependent symbolic
series XC ∈ X with the minimum threshold µ. We first scan DSYB to calculate
the probability associated with each event and each pair of events (line 2).

26

2.6. Experimental Evaluation

Subsequently, for each pair of symbolic series, NMI and µ values are calculated
(lines 3-5). The pairs of symbolic series whose min{Ĩ(XS; YS), Ĩ(YS; XS)} is at
least µ are added to XC (lines 6-7). Next, we proceed to iterate through each
series within XC in order to extract frequent single events (lines 8-9). Following
this, each pair of events within the respective series of XC is utilized to look for
frequent 2-event patterns (lines 10-11). When dealing with frequent k-event
patterns (k ≥ 3), the mining process resembles the exact FTPM (lines 12-13).

2.6 Experimental Evaluation
We assess the performance of both the exact and approximate versions of
FTPM on real-world datasets originating from diverse application domains:
energy, smart city, sign language, and health. Moreover, we generate synthetic
datasets with 10 times more sequences and 1000 time series from real-world
datasets to assess the scalability.

2.6.1 Experimental Design
Datasets: We use six real-world datasets, i.e., NIST [24], UKDALE [44], Dat-
aPort [16], Smart City (SC) [11], American Sign Language (ASL) [55], and
Influenza (INF) [12]. Three energy datasets, such as NIST, UKDALE, and Dat-
aPort, measure the energy usage of electrical applicances in households. The
SC dataset is collected from NYC Open Data Portal. The ASL dataset contains
annotated videos of signs and gestures in America. The INF dataset contains
the influenza data from Kawasaki, Japan.
Baseline methods: The exact FTPM version is denoted as E-FTPM, and the
approximate version as A-FTPM. Four baselines are used in the experiment:
Z-Miner [51], TPMiner [10], IEMiner [58], and H-DFS [57].

2.6.2 Experimental Results
We only report the most important resuts here, the other results can be found
in [37].
Qualitative Evaluation: Table 2.4 lists several interesting frequent patterns
from the energy datasets and ASL. Patterns P1 - P7 pertain to the energy
datasets, which reveal how citizens interact with electrical appliances in their
homes. For instance, P3 indicates that the citizens might turn on the light
at the hall entry in the late afternoon, suggesting that the citizens may have
just come home. They then start preparing dinner around 18:00 by turning
on the light and device plugs in the kitchen, then a few minutes later with
the microwave. These patterns provide insights into citizens’ living habits,
enabling action for power optimization, such as pre-heating water for showers
when surplus electricity from wind is redundant at night.

27

Chapter 2. Frequent Temporal Pattern Mining

We obtain patterns P8 - P10 from the ASL dataset that depict the associ-
ations between various linguistic gestures and signs. These patterns serve a
practical purpose, enabling automated translation from recorded video to text.
As an example, P8 shows that a negation sign would encompass a leftward
head tilt and a downward movement of the eyebrows gesture. P10 shows a
Wh-question would involve a low movement of the eyebrows followed by a
rapid opening and closing of the eyes.

Table 2.4: Summary of Interesting Frequent Patterns [37]

Patterns σ (%) δ (%)
(P1) ([05:58, 08:24] First Floor Lights) < ([05:58, 06:59]Upstairs BathroomLights) < ([05:59, 06:06]Microwave) 20 30
(P2) ([18:00, 18:30] Lights Dining Room) → ([18:31, 20:16] Children Room Plugs) G ([19:00, 22:31] Lights
Living Room)

20 20

(P3) ([15:59, 16:05] Hallway Lights) → ([17:58, 18:29] Kitchen Lights < ([18:00, 18:18] Plug In Kitchen) <
([18:08, 18:15] Microwave)

20 25

(P4) ([06:02, 06:19] Kitchen Lights)→ ([06:05, 06:12] Microwave) G ([06:09, 06:11] Kettle) 20 35
(P5) ([16:45, 17:30] Washer)→ ([17:40,18:55] Dryer)→ ([19:05, 20:10] Dining Room Lights) < ([19:10, 19:30]
Cooktop)

10 30

(P6) ([06:10, 07:00] Kitchen Lights) < ([06:10, 06:15] Kettle) → ([06:30, 06:40] Toaster) → ([06:45, 06:48]
Microwave)

25 40

(P7) ([18:00, 18:25] Kitchen Lights) < ([18:00, 18:05] Kettle)→ ([18:05, 18:10] Microwave)→ ([19:35, 20:50]
Washer)

20 40

(P8) [2.12 seconds] Negation < [0.27 seconds] Lowered Eye-brows 10 10
(P9) [2.04 seconds] Negation < [0.52 seconds] Rapid Shake-head 10 10
(P10) [1.53 seconds] Wh-question < [0.36 seconds] Lowered Eye-brows → [0.05 seconds] Blinking Eye-
aperture

10 15

Quantitative evaluation with baselines comparison on real-world datasets:
We compare our algorithms with the baselines on real-world datasets. Figs.
2.7 , 2.8 , 2.9 , and 2.10 show the experimental results on NIST and SC datasets.

In terms of runtime, Figs. 2.7 and 2.8 show that among all the methods,
A-FTPM exhibits the fastest runtime, while E-FTPM shows a runtime faster
than the baselines. Compared with other methods, the range and average
speedups of A-FTPM are [1.5-6.1] and 2.7 (E-FTPM), [4.2-356.1] and 45.8 (all
baselines). Compared with the baselines, the range and average speedup of
E-FTPM are [2.6-130.4] and 24.7.

20 40 60 80 10010−1
100
101
102
103
104
105

σ (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σ

20 40 60 80 10010−1
100
101
102
103
104
105

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ
A-FTPM E-FTPM Z-Miner TPMiner IEMiner H-DFS

Fig. 2.7: Runtime Comparison on NIST
(real-world) [37]

20 40 60 80 10010−1
100
101
102
103
104

σ (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σ

20 40 60 80 10010−1
100
101
102
103
104

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ
A-FTPM E-FTPM Z-Miner TPMiner IEMiner H-DFS

Fig. 2.8: Runtime Comparison on SC
(real-world) [37]

In memory consumption, Figs. 2.9 and 2.10 show that A-FTPM consumes
the least memory, while E-FTPM consumes less memory than the baselines.

28

2.6. Experimental Evaluation

20 40 60 80 100101

102

103

104

105

σ (%)

M
em

or
y
U
sa
ge

(M
B)

(a) Varying σ

20 40 60 80 100101

102

103

104

105

δ (%)

M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ
A-FTPM E-FTPM Z-Miner TPMiner IEMiner H-DFS

Fig. 2.9: Memory Usage Comparison on
NIST (real-world) [37]

20 40 60 80 100101

102

103

104

σ (%)

M
em

or
y
U
sa
ge

(M
B)

(a) Varying σ

20 40 60 80 100101

102

103

104

δ (%)

M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ
A-FTPM E-FTPM Z-Miner TPMiner IEMiner H-DFS

Fig. 2.10: Memory Usage Comparison on
SC (real-world) [37]

In average, A-FTPM consumes 1.9 times less memory than E-FTPM, and 15.4
times less memory than the baselines. E-FTPM consumes 5.8 times less mem-
ory than the baselines in average.
Scalability evaluation on synthetic datasets: To further evaluation the per-
formance of our algorithms, we conduct the experiment on synthetic datasets.
We generated a collection of 1, 000 synthetic time series for each real-world
dataset. We compare our algorithms with the baselines by increasing the
number of time series, as shown Figs. 2.11 and 2.12 . As a result, A-FTPM has
higher speedup when with the number of time series is large. The speedups
of A-FTPM are: [2.4-6.1] and 3.2 on avg. (E-FTPM), [5.3-78.1] and 35.8 on avg.
(all baselines), and of E-FTPM is: [2.6-27.4] and 14.7 on avg. (all baselines).

In Figs. 2.11 and 2.12 , an bar chart for A-FTPM is added, with the top red
bar being the time to compute MI and µ. The bar is only for comparison, and
is not actually used. Moreover, the baselines fail for the large configurations,
e.g., Z-Miner, TPMiner, IEMiner and H-DFS when the number of time series
grows up to 1000 (Fig. 2.11a). We can see that A-FTPM and E-FTPM can scale
well on big datasets, unlike the baselines.

2 4 6 8 10103

104

105

106

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(a) σ=20%, δ=20%

2 4 6 8 10103

104

105

106

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(b) σ=50%, δ=50%

2 4 6 8 10103

104

105

106

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(c) σ=80%, δ=80%

A-FTPM E-FTPM Z-Miner TPMiner IEMiner H-DFS

Fig. 2.11: Varying # of time series on NIST
(synthetic) [37]

2 4 6 8 10103

104

105

106

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(a) σ=20%, δ=20%

2 4 6 8 10103

104

105

106

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(b) σ=50%, δ=50%

2 4 6 8 10103

104

105

106

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(c) σ=80%, δ=80%

A-FTPM E-FTPM Z-Miner TPMiner IEMiner H-DFS

Fig. 2.12: Varying # of time series on SC
(synthetic) [37]

29

Chapter 2. Frequent Temporal Pattern Mining

Table 2.5: The Accuracy of A-FTPM (%) [37]

σ (%)
δ (%)

NIST SC
10 20 50 80 10 20 50 80

10 87 89 91 94 78 83 98 100
20 96 89 91 94 83 83 98 100
50 100 100 96 94 99 99 98 100
80 100 100 100 100 100 100 100 100

Accuracy evaluation of A-FTPM: We evaluate the accuracy of A-FTPM by
comparing the patterns extracted by A-FTPM and E-FTPM. Table 2.5 shows
the accuracy of A-FTPM. A-FTPM achieves a high level of accuracy (≥ 78%)
when the values of σ and δ are low, such as σ � δ � 10%. It achieves a very
high accuracy (≥ 95%) when σ and δ are high, such as σ � δ � 50%.

30

Chapter 3

Rare Temporal Pattern
Mining

This chapter gives an overall summarization of the rare temporal pattern min-
ing problem presented in Paper B [37]. The chapter uses content from the
paper in the most effective way.

3.1 ProblemMotivation and Statement
Appearing with infrequent occurrence but with high confidence in a given
database, rare temporal patterns still hold substantial interest and usefulness.
However, there are two challenges when mining rare temporal patterns. First,
it is a costly process due to the inclusion of temporal information for each
event and the complex relations between events, resulting in a huge search
space. Second, setting a low support threshold to identify rare patterns causes
a combinatorial explosion of the search space. Consequently, the development
of an efficient approach for mining rare temporal patterns becomes crucial.

The exploration of finding rare patterns has gained attention in recent years.
Such techniques have been proposed in [5, 20, 68] for identifying rare motifs
in time series. However, these approaches focus on repeated time series sub-
sequences without considering temporal events; thus, they are insufficient for
mining rare temporal patterns. Alternative methods such as rare association
rules [1, 6–9, 15, 19, 42, 52, 59] and rare sequential patterns [40, 56, 61–63, 70]
have been explored, but they do not consider temporal events and the tem-
poral relationships between them. To the best of our knowledge, no existing
research has explicitly addressed the mining of rare temporal patterns.

We focus on addressing the above problem with three proposals. First,
we present an algorithm for rare temporal pattern mining efficiently (RTPM).

31

Chapter 3. Rare Temporal Pattern Mining

Second, we introduce an approximate version of RTPM that leverages mutual
information to retain the most promising time series, thereby reducing the
overall search space. Third, we propose a generalized algorithm that can mine
both frequent and rare temporal patterns. Our main contributions include the
following:

• We introduced the first solution for rare temporal patternmining (STPM)
that leverages an efficient data structure and pruning techniques to re-
duce the search space.

• Additionally, we developed an approximate version of STPM that uti-
lizes mutual information to mine rare temporal patterns solely from the
most promising time series, thus enhancing the scalability of the mining
process.

• We proposed the efficient generalized temporal pattern mining (GTPM)
to mine both frequent and rare temporal patterns.

• Extensive experiment evaluations are performed to assess the proposed
algorithms.

3.2 Rare Temporal Pattern Mining Problem
The difference between frequent temporal pattern and rare temporal pattern.
Both frequent temporal patterns and rare temporal patterns use the support and
confidence measures to assess the frequency and the likelihood of a temporal
pattern. However, the utilization of these measures varies for each pattern
type. Let’s consider a temporal pattern P, where the support is denoted as
σ � supp(P) and the confidence as δ � conf(P). If both σ and δ are high,
indicating a large presence of P in the database, P is classified as a frequent
temporal pattern. On the other hand, if σ is low and δ is high, suggesting rare
occurrences but with high confidence, P is considered a rare temporal pattern.
The characteristic of the rare pattern is that its support is low. Thus, we
use σmax as the upper bound for the support, and only find the rare temporal
patterns such that σ ≤ σmax. We assign σmax � ∞ if wemine frequent temporal
patterns.

Problem Formulation: Rare Temporal Pattern Mining from Time Series
(RTPMfTS) [37]
Given a set of univariate time seriesX � {X1 , ...,Xn}, letDSEQ be the temporal
sequence database obtained from X, and σmin, σmax, and δ be the minimum
support, maximum support, and minimum confidence thresholds, respec-
tively. TheRTPMfTSproblemaims tofindall temporal patternsP that have low
support and high confidence inDSEQ: σmin ≤ supp(P) ≤ σmax ∧ conf(P) ≥ δ.

32

3.3. Rare Temporal Pattern Mining (Exact RTPM)

(10:00,10:15)
(11:15,11:25)
(12:15,12:55)

SOn

SOn,TOn

1
2

1
2

4

IOn

4

(10:35,10:40),(10:35,10:40)

(10:35,10:40)

(11:15,11:25),(11:15,11:25)
(12:15,12:55),(12:15,12:55)

WOn,TOn

(10:30,10:40)

(12:15,12:20)

1
2
4 (12:50,12:55)

(10:00,10:40),(10:35,10:40)1
2
4

(11:05,11:25),(11:15,11:25)
(12:15,12:55),(12:15,12:55)

...

(11:00,11:05) (11:20,11:25)
SOff TOn TOffWOn IOff

Fig. 3.1: An example of a hierarchical hash tables [37]

3.3 Rare Temporal Pattern Mining (Exact RTPM)
This section proposes a solution for mining rare temporal patterns. The lem-
mas are reproduced from Paper B [37], and detailed proofs of the lemmas can
be found in Paper B.

There are two phases in the RTPMfTS process. The first phase is Data
Transformation which converts the set of time series X to DSYB and DSEQ.
The second phase is Rare Temporal Pattern Mining which includes three steps:
Mining Single Events, Mining Rare 2-Event Patterns, andMining Rare k-Event
Patterns (k > 2).

In the rare temporal pattern mining phase, the Hierarchical Lookup Hash
structures with two types of tables (HLH1 and HLHk) mentioned in Section
2.4.1 are used to store the event/pattern candidates, i.e., the patterns satisfying
the two constraints σmin and δ. The details of using the data structure are
explained in each mining step.

3.3.1 Mining Single Events
This step finds single events that satisfy σmin. To do that, we first scan DSEQ
to compute the support of each event Ei , then compare against σmin. It is
important to note that two constraints, δ and σmax, are not considered at this
step. The confidence of an event is always 1 in this case, and we also do not
utilize σmax due to the reasoning presented in the following lemma.

Lemma 1 Let P be a temporal pattern and Ei be a single event such that Ei ∈ P.
Then supp(P) ≤ supp(Ei).

From Lemma 1 , if supp(Ei) > σmax, then Ei can still form a pattern P that
has supp(P) ≤ σmax. In order to prevent the possibility of missing out on
potential patterns, σmax will not be used at this step.

We provide a running example in Fig. 3.1 using DSEQ in [37] with σmin �

0.7, σmax � 0.9, and δ � 0.7. We have 7 events that satisfy σmin.

33

Chapter 3. Rare Temporal Pattern Mining

3.3.2 Mining Rare 2-event Patterns
We conduct two steps tomine rare 2-event patterns: (1) it first finds event pairs
that satisfy σmin and δ, (2) it then finds rare 2-event temporal patterns from the
found event pairs.

Mining event pairs with the constraints σmin and δ: First, we generate
all possible pairs of events. Then, for each pair (Ei , E j), we retrieve the set
of sequences Si j in which (Ei , E j) occurs, and calculate the support of (Ei , E j)
base on Si j . If (Ei , E j) satisfies both σmin and δ, they are kept and used to mine
rare 2-event patterns. Note that the constraint σmax is not taken into account
here to prevent the loss of rare 2-event temporal patterns (Lemma 1).

Mining rare 2-event temporal patterns: We iterate each event pair (Ei , E j)
in the above step to find the temporal relations betweenEi andE j . The relations
R satisfying both σmin and δ are stored in HLH2. Next, for each relation r in
R, we compare the support of r against σmax. If r satisfies σmax, r is a rare
pattern. We also note that HLH2 only stores patterns that satisfy only the two
constraints, σmin and δ. Fig. 3.1 provides some patterns, e.g., at event pair
(WOn,TOn).

3.3.3 Mining Rare k-event Patterns
We mine rare k-event patterns similarly to rare 2-event patterns mining, in-
cluding mining k-event combinations satisfying the constraints σmin and δ,
and mining rare k-event patterns. Moreover, we apply the transitivity prop-
erty of temporal relations to further optimize the mining.

Miningk-event combinationswith the constraints σmin and δ: Wefirst cal-
culate the Cartesian product between the (k-1)-event combinations in HLHk−1
and the single events in HLH1 to generate k-event combinations. Then, the
k-event combinations that satisfy σmin and δ are kept for mining rare k-event
patterns.

However, it has been observed that single events in HLH1 may not generate
any patterns in HLHk satisfying the σmin. For example, consider the event IOn
in HLH1 as shown in Fig. 3.1. In this case, we can combine IOn with (SOn,
TOn) in HLH2 to form a 3-event combination (SOn, TOn, IOn). However, we
see that (SOn, TOn, IOn) cannot generate any frequent 3-event patterns whose
support is at least σmin because IOn does not exist in HLH2. Therefore, it is
unnecessary to create the combination (SOn, TOn, IOn). To address this, we
utilize the transitivity property, explained as follows.

Lemma 2 Let Nk−1 � (E1 , ..., Ek−1) be a (k-1)-event combination and Ek be a single
event, both satisfying the σmin constraint. The combination Nk � Nk−1∪Ek can form
k-event temporal patterns whose support is at least σmin if ∀Ei ∈ Nk−1, ∃r ∈ < s.t.
r(Ei , Ek) satisfies σmin.

34

3.4. Approximate RTPM

From Lemma 2, we should only consider single events in HLH1 that also ap-
pear in HLHk−1 when generating combinations of k-events. Let (k-1)Events be
the set of (k-1)-event combinations in HLHk−1 and 1Events be the set of events
in HLH1. By using Lemma 2 , we retrieve distinct single events Ak−1 from
HLHk−1 and intersect them with the single events 1Events to remove redun-
dant events: Candidate1Events = Ak−1 ∩ 1Events. Subsequently, we generate
k-event combinations by calculating the Cartesian product of (k-1)Events and
Candidate1Events. Finally, we filter out only the k-event combinations which
satisfy the σmin and δ.
Mining rare k-event temporal patterns: This step mines rare k-event tem-
poral patterns. Consider Dk−1 � (E1 , ..., Ek−1) as a (k-1)-event combination,
D1 � (Ek) as a single event, and Dk � Dk−1 ∪ D1 � (E1 , ..., Ek) as a k-event
combination. To identify k-event patterns for Dk , we begin by retrieving the
set Pk−1 containing patterns for Dk−1. Each pk−1 ∈ Pk−1 is a list of triples: {(r12,
E1.e1 , E2.e2),...,(r(k−2)(k−1), Ek−2.ek−2

, Ek−1.ek−1
)}. We then perform an iterative

check to determine if pk−1 and Ek can create a rare k-event pattern as follows.
The process begins by examining the triple (r(k−1)k , Ek−1.ek−1

, Ek.ek
) to verify if it

meets the constraints of σmin and δ by referring to the HLH2. If this triple fails
to satisfy these constraints, the checking process is immediately terminated
for pk−1. Contrarily, the process continues to the next triple (r(k−2)k , Ek−2.ek−2

,
Ek.ek
), and continues in a similar manner until it reaches the final triple (r1k ,

E1.e1 , Ek.ek
). Finally, we take a further step by selecting only k-event patterns in

PHk that satisfy the constraint σmax.

3.4 Approximate RTPM
In this section, we present an approximate version of RTPM, called Approxi-
mate RTPM, that mine rare temporal patterns only from the most promising
time series. We use the normalized mutual information (NMI) defined in
Section 2.5.1 to derive an upper bound of the support of an event pair. The
theorems and corollaries are reproduced from Paper B [37], and their proofs
can be found in Paper B.

3.4.1 Upper Bound of the Support
The approximate RTPM is built on the exact RTPM algorithm that uses mutual
information to select dependent time series and then mines rare temporal pat-
terns only on these dependent time series. The RTPMfTS problem uses three
thresholds, minimum support, maximum support, and minimum confidence,
in the mining. In this section, we derive the upper bound of the support of an
event pair based on the mutual information between two symbolic series, and
combine this upper bound with the support lower bound and the confidence

35

Chapter 3. Rare Temporal Pattern Mining

lower bound in Sections 2.5.3 and 2.5.4 to prune the unpromising time series,
improve RTPM’s scalability in the approximate RTPM .

Consider two events X1 and Y1 from two symbolic time series XS and YS,
respectively. Now we derive the upper bound of the support of (X1 ,Y1) in
DSEQ.

Theorem 1 (Upper bound of the support)
Let σmin be the minimum support threshold, and µmax be the maximum mutual
information threshold, respectively. Assume that supp(X1 ,Y1)DSEQ ≥ σmin. If the
NMI Ĩ(XS;YS) ≤ µmax, then the upper bound of the support of (X1 ,Y1) inDSEQ is:

supp(X1 ,Y1)DSEQ ≤ λ2 · e

W

©­­­­­«
log

λ
1−µmax
5
λ

1−σmin
4

·ln 2

λ2

ª®®®®®¬ + ϑ (3.1)

where: λ2 is the support of Y1 ∈ YS, λ4 is the fraction between the support of
(Xi ,Yj) ∈ (XS ,YS) and the support of Yj ∈ YS such that p(Xi |Yj) is minimal, ∀i , 1
∧ j , 1, λ5 is the maximum support of Xi ∈ XS, ϑ is the difference between the
probabilities of (X1 ,Y1) inDSEQ andDSYB, and W is the Lambert function [13].

From Theorem 1 , we can derive µmax such that supp(X1 ,Y1) is at most σmax.

Corollary 1.1 The support of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at most
σmax if Ĩ(XS; YS) is at most µmax, where:

µmax ≤ 1 −
σmax−ϑ
λ2
· log σmax−ϑ

λ2
+ log λ1−σmin

4
log λ5

(3.2)

Interpretation: Theorem 1 indicates that if Ĩ(XS; YS) is at most µmax, then
the support of an event pair in (XS, YS) is at most the upper bound in Eq. (3.1).
Moreover, the support of a pattern is at most the support of the event pair
forming that pattern. Thus, it can be inferred that if an event pair in (XS,YS)
has a support value lower than the upper bound, then any pattern created by
that event pair also has support value lower than that upper bound.

3.4.2 Approximate RTPM
In this section, we will outline the approximate RTPM algorithm. Initially,
we discuss how to determine the values of µmin and µmax for choosing the
dependent time series. Subsequently, we provide a detailed explanation of the
approximate RTPM algorithm.

Setting the values of µmin and µmax: In RTPM, three user-defined parame-
ters are utilized: the minimum support σmin, the maximum support σmax, and

36

3.5. Generalized Temporal Pattern Mining (GTPM)

the minimum confidence δ. To satisfy both σmin and δ constraints, we select
µmin as described in Section 2.5.5 . To satisfy σmax constraint, we determine
µmax using Eq. (3.2) .

Approximate RTPM: Approximate RTPM focuses on mining patterns ex-
clusively within the dependent symbolic series XC ∈ X with the µmin and µmax
values. The process begins with a single pass scan of DSYB to calculate the
probabilities of single events, pair of events, and plus ϑ value. Subsequently,
NMI, µmin, and µmax are calculated for each pair of symbolic series. Series
pairs that meet the condition of having min{Ĩ(XS; YS), Ĩ(YS; XS)} at least µmin,
and min{Ĩ(XS; YS), Ĩ(YS; XS)} at most µmax are added in XC . Next, the single
events are mined from each series in XC . Following this, each event pair in XC
is employed to find rare 2-event patterns. For rare k-event patterns (k ≥ 3), the
mining process follows similar steps to that of RTPM.

3.5 Generalized Temporal Pattern Mining (GTPM)
Finally, we propose GTPM algorithm that combines both frequent and rare
temporal patterns into one single mining process. It is important to highlight
that when dealing with frequent temporal patterns, only two constraints σmin
and δ are employed.
Algorithm 3: Generalized Temporal Pattern Mining
Input: Temporal sequence databaseDSEQ, a minimum support

threshold σmin, a maximum support threshold σmax, a
minimum confidence threshold δ

Output: The set of temporal patterns P satisfying σmin, σmax, δ
//Mining single events

1: foreach event Ei ∈ DSEQ do
2: Find single events 1Events that satisfy σmin;

//Mining 2-event patterns
3: EventPairs← Cartesian(1Events,1Events);
4: foreach (Ei , E j) in EventPairs do
5: Find frequent event pairs FrequentEventPairs similarly to Sections

2.4.3 and 3.3.2 ;
6: foreach (Ei , E j) in FrequentEventPairs do
7: Find relations that satisfy σmin, σmax, and δ;

//Mining k-event patterns
8: Find frequent k-event combination kEventCombinations similarly to

Sections 2.4.4 and 3.3.3 ;
9: foreach kEvents in kEventCombinations do

10: Use iterative verification method to find temporal pattern against
σmin, σmax, δ;

37

Chapter 3. Rare Temporal Pattern Mining

3.5.1 ExactGeneralizedTemporalPatternMining (ExactGTPM)
Algorithm 3 describes the mining process in Exact GTPM algorithm. First, we
find single events that satisfy theminimum support σmin (lines 1-2). We do not
consider the constraints theminimum confidence δ and themaximum support
σmax here as in Sections 2.4.2 and 3.3.1 . Next, we mine 2-event patterns that
include two steps: frequent event pairs mining (satisfying the constraints σmin
and δ) and 2-event temporal patterns mining (lines 3-7). For mining frequent
event pairs, weproceed similarly to Sections 2.4.3 and 3.3.2 . Formining 2-event
temporal patterns, we first find frequent relations R satisfying both σmin and
δ as in the frequent temporal patterns mining. To mine rare 2-event temporal
patterns, we iterate every relation r in R and check the satisfaction of r with the
constraint σmax. Finally, we mine k-event patterns that consist of frequent k-
event combinations mining (satisfying the constraints σmin and δ) and k-event
patterns mining (lines 8-10). For mining frequent k-event combinations, we
also perform similarly to Sections 2.4.4 and 3.3.3 . For mining k-event patterns,
we use the iterative verification method that relies on the transitivity property
and theApriori property, similarly in frequent and rare k-event patternmining.
Algorithm 4: Approximate GTPM using Mutual Information
Input: A set of time series X, a minimum support threshold σmin, a maximum

support threshold σmax, a minimum confidence threshold δ
Output: The set of temporal patterns P

1: Convert X toDSYB and convertDSYB toDSEQ;
2: ScanDSYB to compute the probability of each event, event pair, and plus ϑ

value;
3: foreach pair of symbolic time series (XS ,YS) ∈ DSYB do
4: NMI←min{Ĩ(XS ; YS), Ĩ(YS ; XS)};
5: Calculate µmin, and µmax;
6: if NMI ≥ µmin then
7: if NMI ≤ µmax then
8: Add XS and YS to XC ;
9: foreach XS ∈ XC do
10: Find single events from XS are similar to Exact GTPM;
11: foreach (XS ,YS) ∈ XC do
12: Find 2-event patterns from (XS ,YS) are similar to Exact GTPM;
13: if k ≥ 3 then
14: Find k-event patterns similar to Exact GTPM;

3.5.2 ApproximateGeneralizedTemporalPatternMining (Ap-
proximate GTPM)

Similarly, we propose the approximate GTPM that integrates both frequent
and rare temporal patterns into a single mining process. Algorithm 4 de-
scribes the mining steps in the approximate GTPM. First, we scan DSYB to

38

3.6. Experimental Evaluation

compute the probability of every single event, event pairs, and plus ϑ value
(for mining rare temporal patterns). Next, we calculate NMI, µmin, and µmax
(for mining rare temporal patterns) for each symbolic series (lines 4-5). The
pairs symbolic time series whose min{Ĩ(XS; YS), Ĩ(YS; XS)} satisfies µmin and
min{Ĩ(XS; YS), Ĩ(YS; XS)} satisfies µmax (for mining rare temporal patterns) are
added to XC (lines 6-8). Then, we mine single events from symbolic series in
XC . Next, we traverse each pair of events in XC to mine the 2-event patterns.
Finally, we mine k-event patterns similar to the exact GTPM.

3.6 Experimental Evaluation
This section evaluates the exact and approximate RTPM algorithms in six real-
world datasets from different domains: energy, smart city, sign language, and
health.

3.6.1 Experimental Design
Datasets: Weutilize a total of six real-world datasets for our experiment. There
are 3 energy datasets that are NIST [24], UKDALE [44], and DataPort [16]. A
smart city dataset, SC [11], is sourced from the NewYork city. The ASL dataset
[55] comprises annotated videos in American Sign Language. Finally, the
INF dataset [12] encompasses influenza-related data obtained from Kawasaki,
Japan.
Baseline methods: Our exact RTPM version is denoted as E-RTPM and the
approximate version is denoted as A-RTPM. As this is the first work for rare
temporal pattern mining, there is no exact baseline method available for com-
parisonwith RTPM.However, we adapt an algorithmused formining frequent
temporal patterns, known as Z-Miner [51], to the task of identifying rare tem-
poral patterns. This adapted version is named ARZ-Miner.

3.6.2 Experimental Results
In this section, we present the key results, the remaining results can be found
in [37].
Qualitative Evaluation: Table 3.1 provides a collection of impressive rare
temporal patterns. Patterns P1-P5 pertain to the SC dataset, while P6-P8 are
derived from the INF dataset. Analyzing these patterns can uncover un-
common yet noteworthy relationships between temporal events. Specifically,
P1-P5 reveal the association between extreme weather conditions and a high
number of accidents. For instance, in P5, there is a notable pedestrian injury
during heavy snowfall, which warrants significant attention despite its infre-
quent occurrence. On the other hand, P6-P8 highlight the correlation between

39

Chapter 3. Rare Temporal Pattern Mining

weather conditions and influenza cases. As an example, P6 demonstrates a
rise in influenza cases when the temperature is freezing and snowfall is high,
both of which are uncommon circumstances. The detection of such patterns
contributes to disease prevention efforts in the initial phase.

Table 3.1: Summary of Interesting Rare Patterns [37]

Patterns σmin (%) δ (%) σmax (%)
(P1) Heavy Rain < Unclear Visibility < Overcast Cloudiness→ High Motorist Injury 5 30 9
(P2) Heavy Rain G Strong Wind→ High Motorist Injury 2 40 6
(P3) Very Strong Wind→ High Motorist Injury 5 40 9
(P4) Strong Wind G High Pedestrian Injury 4 30 8
(P5) Extremely Unclear Visibility < High Snow < High Pedestrian Injury 3 45 7
(P6) Frost Temperature G High Snow < High Influenza 1 42 6
(P7) Low Temperature <High Influenza 1 42 6
(P8) Heavy Rain < High Influenza 3 35 8

Quantitative evaluation with baselines comparison on real-world datasets:
Figs. 3.2 , 3.3 , 3.4 , and 3.5 are the results on NIST and SC datasets. Figs. 3.2
and 3.3 showA-RTPM demonstrates the most efficient performance among all
the methods, while E-RTPM is faster than the baseline. The speedup achieved
by A-RTPM in comparison to other methods is: [1.9-7.2] (on average 3.4)
when compared to E-RTPM, and [5.4-48.9] (on average 16.5) when compared
to ARZ-Miner. Additionally, the speedup of E-RTPM is [2.9-24.7] (on average
7.4) when compared to ARZ-Miner.

1 3 6 9 12101

102

103

104

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

60 70 80 90 10010−1
100
101
102
103
104

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ
15 20 25 30 35101

102

103

104

σmax (%)

Ru
nt
im

e
(s
ec
)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. 3.2: Runtime Comparison on NIST
(real-world) [37]

1 3 6 9 1210−1

100

101

102

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

60 70 80 90 10010−1

100

101

102

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ
15 20 25 30 3510−1

100

101

102

σmax (%)

Ru
nt
im

e
(s
ec
)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. 3.3: Runtime Comparison on SC
(real-world) [37]

1 3 6 9 12102

103

104

σmin (%)M
em

or
y
U
sa
ge

(M
B)

(a) Varying σmin

60 70 80 90 100101

102

103

104

δ (%)M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ
15 20 25 30 35102

103

104

σmax (%)M
em

or
y
U
sa
ge

(M
B)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. 3.4: Memory Usage Comparison on
NIST (real-world) [37]

1 3 6 9 12101

102

103

σmin (%)M
em

or
y
U
sa
ge

(M
B)

(a) Varying σmin

60 70 80 90 100101

102

103

δ (%)M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ
15 20 25 30 35101

102

103

σmax (%)M
em

or
y
U
sa
ge

(M
B)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. 3.5: Memory Usage Comparison on
SC (real-world) [37]

Figs. 3.4 and 3.5 are the memory usage comparison among the different
methods. It shows that A-RTPM has the least memory usage, followed by

40

3.6. Experimental Evaluation

E-RTPM which consumes less memory than ARZ-Miner. A-RTPM achieves
a memory reduction of [1.6-3.9] times (on average 2.1) compared to E-RTPM,
and [7.2-120.6] times (on average 24.1) compared to ARZ-Miner. Furthermore,
E-RTPM demonstrates a memory reduction of [4.6-61.8] times (on average
14.7) compared to ARZ-Miner.
Scalability evaluation on synthetic datasets: In order to further evaluate the
performance of our algorithms, we proceed with extensive experiments on
synthetic datasets. From each real-world dataset, we generate a collection of
1, 000 synthetic time series for each corresponding dataset. Figures 3.6 and 3.7
show a comparison of the runtimes between the methods when varying the
time series number. The speedup ranges and average speedups of A-RTPM
are [3.5-7.4] and 4.6 (compared to E-RTPM), [7.2-24.8] and 15.2 (compared to
ARZ-Miner), while the speedup range and average speedup of E-RTPM are
[3.6-9.5] and 6.4 (compared to ARZ-Miner).

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(a) σmin=1%,
σmax=20%, δ=60%

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(b) σmin=3%,
σmax=15%, δ=70%

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(c) σmin=6%,
σmax=10%, δ=80%

A-RTPM E-RTPM ARZ-Miner

Fig. 3.6: Varying # of time series on NIST
(synthetic) [37]

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(a) σmin=1%,
σmax=20%, δ=60%

2 4 6 8 10
103

104

105

Time Series (×102)
Ru

nt
im

e
(s
ec
)

(b) σmin=3%,
σmax=15%, δ=70%

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(c) σmin=6%,
σmax=10%, δ=80%

A-RTPM E-RTPM ARZ-Miner

Fig. 3.7: Varying # of time series on SC
(synthetic) [37]

Table 3.2: RTPM Accuracy (%) [37]

σmax (%)
σmin (%) - δ (%)

NIST SC
1-60 3-70 6-80 1-60 3-70 6-80

10 93 96 100 91 93 100
15 86 92 95 86 91 100
20 84 92 92 83 87 90

Accuracy evaluationofA-STPM: In order to evaluate the accuracy ofA-RTPM,
we compare the extracted patterns fromA-RTPM and E-RTPM. The accuracies
of A-RTPM for different values of σmin, δ, and σmax on the real-world datasets
are presented in Table 3.2. A-RTPM achieves high accuracy (at least 83%) with
the lowest values of σmin and δ, and the highest value of σmax, e.g., σmin � 1%,
δ � 60%, and σmax � 20%. A-RTPM achieves a very high accuracy (at least
93%)with higher values of σmin and δ, and lower value of σmax, e.g., σmin � 3%,
δ � 70%, σmax � 10%.

41

Chapter 3. Rare Temporal Pattern Mining

42

Chapter 4

Seasonal Temporal Pattern
Mining

This chapter gives a comprehensive overview of Paper C [38]. Content from
the paper is reused in the most effective way.

4.1 ProblemMotivation and Statement
The characteristic of a seasonal temporal pattern is that it occurs during a
particular period of time and repeats periodically. This characteristic results
in three challenges when mining seasonal temporal patterns. First, tradi-
tional pattern mining methods often use the support measure to assess the
frequency of a pattern. However, the support counts the occurrence of the
pattern throughout the entire dataset. Thus, it cannot be used to detect the
seasonality feature of seasonal patterns. Second, mining seasonal temporal
patterns from time series is very expensive since temporal relations between
events create an exponential search space, i.e., O(nh3h2) (n is the number of
events and h is the length of temporal patterns). Third, the anti-monotonicity
property is frequently used inminingmethods [57] to reduce the search space,
which cannot be applied to seasonal temporal patterns since this property is
not upheld in the case of seasonal patterns, i.e., subsets of a seasonal temporal
pattern may not necessarily exhibit seasonality. It is necessary to have a more
correct and efficient approach to mining seasonal temporal patterns.

Various techniques have beendeveloped to identify periodic sub-sequences
in time series by treating seasonality as recurring occurrences. These tech-
niques, initially introduced by Han et al. in [22, 23], and subsequently
expanded upon by [4, 43, 53, 54, 69], are commonly referred to as motif
discovery techniques. However, motif discovery only focuses on identify-

43

Chapter 4. Seasonal Temporal Pattern Mining

ing similar sub-sequences in time series, which means it can only uncover
recurring time series sub-sequences rather than capturing periodic tempo-
ral patterns. Another approach in this field focuses on periodic association
rules [3, 18, 21, 25–34, 41, 45–49, 65, 66]. However, these techniques aim to only
discover seasonal associations among itemsets. To the best of our knowledge,
there is currently no prior research that addresses the mining of seasonal tem-
poral patterns, specifically targeting the identification of seasonal occurrences
of temporal patterns.

Our research aims to address two key objectives. First, designing an effi-
cient algorithm for seasonal temporal patternmining (STPM). Second, propos-
ing an approximate version of STPM that incorporates mutual information to
improve the scalability of the miningmethod. This approximate version selec-
tively focuses on mining seasonal temporal patterns from the most promising
time series, resulting in a notable speedup of the mining process. Our key
contributions in this chapter are:

• We propose the first solution to mine seasonal temporal patterns from
time series. To achieve this, several measures, including maximum pe-
riod, minimum density, distance interval, and minimum seasonal oc-
currence, are introduced to evaluate the seasonality characteristics of
temporal patterns.

• We propose an efficient Seasonal Temporal Pattern Mining (STPM) al-
gorithm that introduces several novel aspects. First, STPM utilizes hi-
erarchical hash tables, enabling rapid retrieval of candidate events and
patterns throughout the mining process. Second, we introduce a novel
measure called maximum season, which adheres to the anti-monotonicity
property. This measure is subsequently utilized to establish the concept
of a candidate seasonal temporal pattern, effectively eliminating infre-
quent seasonal temporal patterns. Additionally, we design two efficient
pruning techniques: Apriori-like pruning and transitivity pruning, to
accelerate the mining.

• To enhance the scalability on large datasets, we introduce an approxi-
mate version of STPM that utilizes mutual information. This approach
effectively eliminates unpromising time series, improving the scalability
of the mining process.

• We evaluate the performance of the proposed algorithms by conducting
experiments on both real-world and synthetic datasets.

44

4.2. Preliminaries

...

... ...

...

... ...

...

 Granularity G
(5-Minutes)

 Granularity H
(15-Minutes)

 Granularity K
(30-Minutes)

Fig. 4.1: Time granularity hierarchyH [38]

4.2 Preliminaries
In this section, we present several measures to capture the seasonality char-
acteristics of seasonal temporal patterns. All definitions are reproduced from
Paper C [38].

Definition 4.2.1 (Time granularity)
Given a time domain T , a time granularity G is a complete and non-overlapping
equal partitioning of T , i.e., T is divided into non-overlapping equal partitions.

Each non-empty partition Gi ∈ G is called a (time) granule. The position
of a granule Gi in G, denoted as p(Gi), is identified by counting the number
of granules which appear before and up to (including) Gi . The period between
two granules Gi and G j in granularity G measures the time duration between
Gi and G j , and is computed as: prĳ � |p(Gi) − p(G j)|, where p(Gi) and p(G j)
are the positions of Gi and G j , respectively.

Example 4.2.1 (Time granularity and period of two granules)
Consider a time domain T which is a sequential collection of minutes.
Within this domain, there are various levels of time granularity, including
Minute, 5-Minutes, and even larger units such as Hour, Day, and Year.
When considering the Minute granularity, the period between the granules
Minute2 and Minute5 can be determined as: |p(Minute5) − p(Minute2)| � 3.

Definition 4.2.2 (Time granularity hierarchy)
A time granularity G is finer than a time granularity H if and only if for every
granule H j ∈ H, there exists m adjacent granules Gi+1 , ...,Gi+m ∈ G such that
H j � Gi+1 ∪ ... ∪ Gi+m where m ≥ 1. We call G is m-Finer than H, denoted as
G Em H.

Given a time domain T , the different time granularities of T form a time
granularity hierarchy H where each level in H represents one specific granu-
larity, with the lower levels in the hierarchy having finer granularity than the
higher levels.

45

Chapter 4. Seasonal Temporal Pattern Mining

Table 4.1: A Symbolic DatabaseDSYB [38]
Granules in G G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39 G40 G41 G42

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Time
series

C 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0

D 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0

F 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1

M 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

N 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Example 4.2.2 (A time granularity hierarchy)
An example of the hierarchy of time granularities is shown in Fig. 4.1. As-
suming that the finest granularity G contains granules of 5 minutes, granu-
larity H contains granules of 15 minutes and G E3 H.

Definition 4.2.3 (Time series)
A time series X � x1 , x2 , ..., xn in the time domain T is a chronologically
ordered sequence of data values measuring the same phenomenon during an
observation time period in T . We say that X has granularity G if X is sampled
at every time instant ti in T .

The mapping function f : X→ΣX is employed to transform each value
xi ∈ X into a symbol ω ∈ ΣX , thereby producing a sequence of symbols,
called a symbolic time series XS of X [35]. The symbol alphabet ΣX is a finite
collection of symbols utilized to encode X. As f establishes a one-to-one
mapping between X and XS, XS maintains the same granularity G as X.

Example 4.2.3 (A symbolic time series)
LetΣX = {1, 0} (1 representingONand 0 representingOFF), the energy usage
time series of an electrical appliance X, consisting of the values 1.9, 1.5, 0.2,
0.1, and 0.0. We have XS = 1, 1, 0, 0, 0.

Definition 4.2.4 (Symbolic database)
The set of symbolic representations of a given set of time seriesX � {X1 , ...,Xn}
forms a symbolic databaseDSYB.

Example 4.2.4 (A symbolic database)
A symbolic database DSYB is shown in Table 4.1. 5 time series: {C, D, F, M,
N} use the same symbol alphabet Σ = {0, 1}.

46

4.2. Preliminaries

Definition 4.2.5 (Temporal event)
A temporal event E in a symbolic time series XS is a tuple E � (ω, T). Here,
ω ∈ ΣX is a symbol, and T � {[tsi , tei]} is the set of time intervals duringwhich
XS has the value ω. Each time interval has tsi as the start time, and tei as the
end time.

The tuple e � (ω, [tsi , tei]) is called an instance of the temporal event E,
denoted as E.e .

Example 4.2.5 (A temporal event and an event instance)
Let’s examine the symbolic series D presented in Table 4.1.
In this context, (D:1) is an event of D that consists of the
time intervals, i.e., (D:1, {[G1 ,G1], [G4 ,G4], [G7 ,G8], [G10 ,G11], [G19 ,G24],
[G31 ,G31], [G34 ,G34], [G37 ,G38], [G40 ,G41]}). And (D:1, [G1 ,G1]) is an event
instance of (D:1). For simplicity, we utilize granules to signify the start and
end times of the time intervals, as we can track the corresponding times-
tamps for each granule.

Relations between temporal events: Similar to frequent temporal patterns,
we define 3 temporal relations among two events, including Follows, Contains,
and Overlaps. The conditions of these 3 relations can be referred to [38].

Definition 4.2.6 (Temporal pattern)
Assume the set of temporal relations to be<�{Follows, Contains, Overlaps}.
A temporal pattern P � <(r12 , E1 , E2),...,(r(n−1)(n) , En−1 , En)> contains triples
(rĳ , Ei , E j), each represents a temporal relation rĳ ∈ < between Ei and E j .

Definition 4.2.7 (Temporal sequence of a symbolic time series)
Let XS be a symbolic time series at the granularity G, a granularity H belonging
toH , and G Em H.

We define a sequence mapping function g : XS →m H groups m consecu-
tive symbols from XS into a single granule Hi ∈ H.

Let <ω1 , ..., ωm> be a symbolic sequence at granule Hi in H, obtained by
performing a sequence mapping g: XS →m H. A temporal sequence Seqi �<
e1 , ..., en > is a list of n event instances, each is obtained by grouping consecu-
tive and identical symbols ω in Hi into an event instance e � (ω, [ts , te]).

Consider a symbolic databaseDSYB including a set of symbolic time series
{XS}. We use g : XS →m H to map each XS in DSYB to sequences. The set of
temporal sequences obtained from g create a temporal sequence databaseDSEQ.

47

Chapter 4. Seasonal Temporal Pattern Mining

Table 4.2: A Temporal Sequence DatabaseDSEQ [38]

Granules Position Temporal sequences
H1={G1,G2,G3} 1 (C:1,[G1 ,G2]), (C:0,[G3 ,G3]), (D:1,[G1 ,G1]), (D:0,[G2 ,G3]), (F:0,[G1 ,G2]), (F:1,[G3 ,G3]),

(M:1,[G1 ,G3]), (N:1,[G1 ,G2]), (N:0,[G3 ,G3])
H2={G4,G5,G6} 2 (C:1,[G4 ,G4]), (C:0,[G5 ,G6]), (D:1,[G4 ,G4]), (D:0,[G5 ,G6]), (F:0,[G4 ,G4]), (F:1,[G5 ,G6]),

(M:1,[G4 ,G4]), (M:0,[G5 ,G6]), (N:1,[G4 ,G6])
H3={G7,G8,G9} 3 (C:1,[G7 ,G8]), (C:0,[G9 ,G9]), (D:1,[G7 ,G8]), (D:0,[G9 ,G9]), (F:0,[G7 ,G8]), (F:1,[G9 ,G9]),

(M:1,[G7 ,G9]), (N:1,[G7 ,G9])
H4={G10,G11,G12} 4 (C:0,[G10 ,G12]), (D:1,[G10 ,G11]), (D:0,[G12 ,G12]), (F:0,[G10 ,G11]), (F:1,[G12 ,G12]),

(M:1,[G10 ,G11]), (M:0,[G12 ,G12]), (N:1,[G10 ,G11]), (N:0,[G12 ,G12])
H5={G13,G14,G15} 5 (C:0,[G13 ,G15]), (D:0,[G13 ,G15]), (F:1,[G13 ,G15]), (M:1,[G13 ,G15]), (N:1,[G13 ,G15])
H6={G16,G17,G18} 6 (C:0,[G16 ,G18]), (D:0,[G16 ,G18]), (F:0,[G16 ,G18]), (M:1,[G16 ,G18]), (N:1,[G16 ,G18])
H7={G19,G20,G21} 7 (C:1,[G19 ,G21]), (D:1,[G19 ,G21]), (F:0,[G19 ,G21]), (M:0,[G19 ,G21]), (N:0,[G19 ,G21])
H8={G22,G23,G24} 8 (C:1,[G22 ,G24]), (D:1,[G22 ,G24]), (F:0,[G22 ,G24]), (M:1,[G22 ,G24]), (N:0,[G22 ,G24])
H9={G25,G26,G27} 9 (C:0,[G25 ,G27]), (D:0,[G25 ,G27]), (F:1,[G25 ,G27]), (M:1,[G25 ,G27]), (N:1,[G25 ,G27])
H10={G28,G29,G30} 10 (C:0,[G28 ,G30]), (D:0,[G28 ,G30]), (F:1,[G28 ,G30]), (M:1,[G28 ,G30]), (N:1,[G28 ,G30])
H11={G31,G32,G33} 11 (C:1,[G31 ,G31]), (C:0,[G32 ,G33]), (D:1,[G31 ,G31]), (D:0,[G32 ,G33]), (F:0,[G31 ,G32]),

(F:1,[G33 ,G33]), (M:1,[G31 ,G33]), (N:1,[G31 ,G33])
H12={G34,G35,G36} 12 (C:1,[G34 ,G35]), (C:0,[G36 ,G36]), (D:1,[G34 ,G34]), (D:0,[G35 ,G36]), (F:0,[G34 ,G35]),

(F:1,[G36 ,G36]), (M:0,[G34 ,G36]), (N:1,[G34 ,G36])
H13={G37,G38,G39} 13 (C:0,[G37 ,G39]), (D:1,[G37 ,G38]), (D:0,[G39 ,G39]), (F:0,[G37 ,G38]), (F:1,[G39 ,G39]),

(M:1,[G37 ,G39]), (N:1,[G37 ,G39])
H14={G40,G41,G42} 14 (C:1,[G40 ,G41]), (C:0,[G42 ,G42]), (D:1,[G40 ,G41]), (D:0,[G42 ,G42]), (F:0,[G40 ,G41]),

(F:1,[G42 ,G42]), (M:0,[G40 ,G42]), (N:0,[G40 ,G42])

Example 4.2.6 (Temporal sequences)
Consider the symbolic seriesD inTable 4.1. A sequencemapping g: D →3 H
creates the granularity H containing the granules: H1: <D:1, D:0, D:0>, H2:
<D:1, D:0, D:0>, H3: <D:1, D:1, D:0>, and so forth. The temporal sequences
at each granule in H are: Seq1 = <(D:1, [G1 ,G1]), (D:0, [G2 ,G3])> at H1,
Seq2 = <(D:1, [G4 ,G4]), (D:0, [G5 ,G6])> at H2, Seq3 = <(D:1, [G7 ,G8]), (D:0,
[G9 ,G9])> at H3, and so forth. An example of DSEQ is shown in Table 4.2,
obtained fromDSYB in Table 4.1 using the mapping g : XS →3 H.

Definition 4.2.8 (Support set of a temporal pattern)
Let DSEQ be a temporal sequence database with a granularity level of H, P be
a temporal pattern. The set of granules Hi in DSEQ where P occurs, arranged
in an increasing order, is called the support set of temporal pattern P and is
denoted as SUPP

� {HP
l , ...,H

P
r }. The granule Hi at which event P occurs is

denoted as HP
i . The support set of a group of events, denoted as SUP(Ei ,...,Ek),

is defined similarly to that of a temporal pattern.

Definition 4.2.9 (Near support set of a temporal pattern)
Let SUPP

� {HP
l , ...,H

P
r } be the support set of a pattern P, maxPeriod be

the maximum period threshold that represents the predefined maximal period
between any two consecutive granules in SUPP . The set SUPP is called a near
support set of P if ∀(HP

o ,HP
p) ∈ SUPP : (HP

o and HP
p are consecutive) ∧ |p(HP

o) −
p(HP

p)| ≤ maxPeriod, where p(HP
o) and p(HP

p) are the positions of HP
o and HP

p

in granularity H. We denote the near support set of pattern P as NearSUPP .

48

4.2. Preliminaries

In an intuitive sense, the near support set of a pattern P contains a set of
occurrences of P where they are closely positioned in time. Furthermore, a
near support set NearSUPP is maximal if it does not have any other superset
besides itself that exists as a near support set. Similarly, the near support set
of an event is defined in a similar manner as that of a pattern.

1 41 1 3 1 2

Fig. 4.2: Near support sets of pattern P = (Contains, C:1, D:1) [38]

Example 4.2.7 (A near support set)
Let’s examine the pattern P = (Contains, C:1, D:1) from Table 4.2,
and assume that the value of maxPeriod is 2. We have: SUPP =
{H1 ,H2 ,H3 ,H7 ,H8 ,H11 ,H12 ,H14}. Three maximal near support sets of P
are: NearSUPP

1 � {H1 ,H2 ,H3}, NearSUPP
2 � {H7 ,H8}, and NearSUPP

3 �

{H11 ,H12 ,H14}, as illustrated in Fig. 4.2.

Definition 4.2.10 (Season of a temporal pattern))
Let NearSUPP be a near support set of a pattern P and minDensity be a pre-
defined minimum density threshold. Then NearSUPP is called a season of P
if den(NearSUPP) ≥ minDensity, where den(NearSUPP) � |NearSUPP | is the
number of granules in NearSUPP , called the density of NearSUPP .

Example 4.2.8 (Density of a near support set)
In Example 4.2.7, den(NearSUPP

1) � 3, den(NearSUPP
2) � 2, and

den(NearSUPP
3) � 3.

When P’s occurrences are densely distributed, NearSUPP becomes a season
of P. Intuitively, a season of a temporal pattern represents a concentrated period
of occurrences, followed by a long gap periodwith little to no occurrences, before
the next season begins. The definition of a season for an event is defined in a
similar manner as it is for a pattern.

The distance between two seasons NearSUPP
i = {HP

k , ...,H
P
n } andNearSUPP

j

= {HP
r , ...,HP

u } is calculated as: dist(NearSUPP
i ,NearSUPP

j) = |p(HP
n) − p(HP

r)|.

49

Chapter 4. Seasonal Temporal Pattern Mining

Definition 4.2.11 (Frequent seasonal temporal pattern)
Let PS =

{
NearSUPP}

be the set of seasons of a temporal pattern P,minSeason
be theminimumseasonal occurrence threshold, and distInterval= [distmin , distmax]
be the distance intervalwhere distmin is theminimumdistance and distmax is the
maximum distance. A temporal pattern P is called a frequent seasonal temporal
pattern iff seasons(P) � |PS| ≥ minSeason ∧ ∀(NearSUPP

i , NearSUPP
j) ∈ PS:

they are consecutive and distmin ≤ dist(NearSUPP
i ,NearSUPP

j) ≤ distmax.

Intuitively, a pattern P is considered seasonal when the gap between two
consecutive seasons falls within a predefined distance range. Furthermore,
a seasonal temporal pattern is deemed frequent if it occurs more frequently
than a specified threshold as the minimum seasonal occurrence. The number of
seasons of a pattern P is calculated as seasons(P) �| PS |.

Problem Formulation: Mining Frequent Seasonal Temporal Patterns from
Time Series (FreqSTPfTS) [38]
Let DSEQ be the temporal sequence database of granularity H ∈ H ob-
tained from a given set of n time series X � {X1 , ...,Xn} of granularity GX .
Let maxPeriod, minDensity, distInterval, and minSeason be the maximum pe-
riod, minimum density, distance interval, and minimum seasonal occurrence
thresholds, respectively. The FreqSTPfTS problem aims to find all frequent
seasonal temporal patterns P in DSEQ that satisfy the maxPeriod, minDensity,
distInterval, and minSeason constraints.

4.3 SeasonalTemporalPatternMining (ExactSTPM)
This section presents a solution for mining seasonal temporal patterns. The
definitions and lemmas are reproduced from Paper C [38], and detailed proofs
of the lemmas can be found in Paper C.

The FreqSTPfTS process consists of two phases: Data Conversion and Sea-
sonal Temporal Pattern Mining (STPM). In the Data Conversion phase, a set of
time series is converted into a symbolic database DSYB using the mapping
function in Def. 4.2.3 , thenDSYB is converted into a sequence databaseDSEQ.
In the Seasonal Temporal PatternMining phase, we conduct twomining steps:
Seasonal Single Event Mining and Seasonal k-Event Pattern Mining (k ≥ 2). Now,
we introduce candidate seasonal pattern concept used for Apriori-like pruning
in STPM.

4.3.1 Candidate Seasonal Pattern
In traditional miningmethods, the supportmeasure is used to prune the search
space since it adheres the the anti-monotonicity property [57]. Assume that an
event Ei is not frequent, then a pattern P formed by Ei is also not frequent,

50

4.3. Seasonal Temporal Pattern Mining (Exact STPM)

since support(Ei) ≥ support(P). Thus, Ei can be pruned safely along with its
combinations from the search space, while still maintaining the completeness
of the algorithm. However, seasonal temporal patterns do not adhere to this
property.

Example 4.3.1 (Violation of the anti-monotonicity of seasonal patterns)
Let’s examine an event E = M:1 and a 2-event pattern P = M:1 < N:1
(or (Contains,M:1,N:1)) as presented in Table 4.2 . Assume the fol-
lowing threshold values: maxPeriod = 2, minDensity = 3, distInterval =
[4, 10], and minSeason = 2. E has the season: PSE = {NearSUPE

1 } =
{H1 ,H2 ,H3 ,H4 ,H5 ,H6 ,H8 ,H9 ,H10 ,H11 ,H13}, and P has the seasons: PSP

= {{NearSUPP
1 } = {H1 ,H3 ,H4 ,H5 ,H6}, {NearSUPP

2 } = {H10 ,H11 ,H13}}.
Hence, the number of seasons of E is: |PSE |�1 and of P is: |PSP |�2.
As a result of the minSeason constraint, event E does not qualify as a fre-
quent seasonal event, while pattern P does. This demonstrates that seasonal
temporal patterns do not comply with the anti-monotonic property.

To enhance the performance of STPM,we introduce a novelmeasure, called
maxSeason, which estimates the maximum seasonal occurrence of a pattern and
adheres to the anti-monotonicity property.

Definition 4.3.1 (Maximum seasonal occurrence)
Themaximum seasonal occurrence of a temporal pattern P is the ratio between
the number of granules in the support set SUPP of P, and the minDensity
threshold:

maxSeason(P) � |SUPP |
minDensity

(4.1)

If a pattern P
′ is a subset of the pattern P, then |SUPP

′
| ≥ |SUPP |.

Hence: maxSeason(P′) ≥ maxSeason(P). Thus, maxSeason upholds the anti-
monotonicity property. Moreover, from Eq. (4.1), maxSeason represents an
upper limit of the number of seasons of a pattern.

The maximum seasonal occurrence of a group of events (Ei , ..., Ek) is
defined similarly to that of a temporal pattern. Assume that a pattern P
is created by (Ei , ..., Ek). Then: maxSeason(Ei , ..., Ek) ≥ maxSeason(P) since
|SUP(Ei ,...,Ek) | ≥ |SUPP |.

Now we use maxSeason to define the concept candidate pattern that is used
to prune infrequent seasonal patterns.

Definition 4.3.2 (Candidate seasonal pattern)
A temporal patternP is a candidate seasonal pattern ifmaxSeason(P) ≥ minSeason.

51

Chapter 4. Seasonal Temporal Pattern Mining

Similarly, a candidate seasonal k-event group GE � (E1 , ..., Ek) is defined similarly
as a temporal pattern.

Intuitively, a pattern P is not frequent seasonal pattern if its maxSeason
value is lower than minSeason. As a result, P can be eliminated safely.

4.3.2 Hierarchical lookup hash structure for STPM

Key Value

...

...

Key Value

Single event
hash table

Event granule
hash table

Fig. 4.3: The HLH1 structure [38]

...

...

k-Event
hash table

Pattern
hash table

...

...

Pattern granule
 hash table

Key Value

Key Value

Key Value

Fig. 4.4: The HLHk (k ≥ 2) structure [38]

Hierarchical lookup hash structure HLH1: For storing candidate seasonal
single events, we utilize the HLH1 structure, illustrated in Fig. 4.3. The HLH1
contains 2 hash tables: the single event hash table EH, and the event granule hash
table GH. Each hash table is a collection of <key, value> pairs. In EH, the key
is ω ∈ ΣX of the candidate Ei , while the value corresponds to the granules
< Hi , ...,Hk > in SUPEi . In GH, the key is taken from values in EH, and the
value is instances of Ei .

Hierarchical lookup hash structure HLHk : For storing candidate seasonal
k-event groups and patterns, we use the HLHk structure (k ≥ 2), as illustrated
in Fig. 4.4. The HLHk comprises 3 hash tables: the k-event hash table EHk , the
pattern hash table PHk , and the pattern granule hash table GHk . In EHk , key is
the collection of symbols (ω1..., ωk) of the candidate k-event group (E1 , ..., Ek),
while value consists of two components: (1) SUP(E1 ,...,Ek), and (2) a collection
of candidate seasonal k-event patterns of (E1 , ..., Ek). In PHk , key corresponds
the candidate pattern P, and value contains the granules of P. In GHk , key is
the granules of P, and value is the collection of event instances from which P
are formed.

The hierarchical lookup hash structures facilitates retrieval of candidate
events and patterns quickly. Subsequently, we present the STPM algorithm,
outlined in Alg. 5 .

4.3.3 Mining Seasonal Single Events
First, we mine frequent seasonal single events (Alg. 5 , lines 1-9). Specifically,
we identify candidate single events, and then mine frequent seasonal events
from the found candidates.

52

4.3. Seasonal Temporal Pattern Mining (Exact STPM)

Algorithm 5: Frequent Seasonal Temporal Pattern Mining [38]
Input: Temporal sequence databaseDSEQ, the thresholds: maxPeriod,

minDensity, distInterval, minSeason
Output: All frequent seasonal temporal patterns P
// Step 2.1: Mine frequent seasonal single events

1: foreach event Ei ∈ DSEQ do
2: Find SUPEi and compute maxSeason(Ei) ;
3: if maxSeason(Ei) ≥ minSeason then
4: Insert Ei into Candidate1Event ;
5: foreach candidate Ei ∈ Candidate1Event do
6: Find NearSUPEi that satisfies maxPeriod and minDensity ;
7: Find PSEi that adheres distInterval ;
8: if |PSEi | ≥ minSeason then
9: Insert Ei into P; //Ei is a frequent seasonal event

// Step 2.2: Mine frequent seasonal k-event patterns, k ≥ 2
10: FilteredF1← Transitivity_Filtering(F1);
11: kEventGroups← Cartesian(FilteredF1, Fk−1);
12: CandidatekEvent←maxSeason_Filtering(kEventGroups);
13: foreach kEvent in CandidatekEvent do
14: (k-1)-event_patterns← Retrieve_Relations(PHk−1);
15: k-event_patterns← Iterative_Check((k-1)-event_patterns, Ek);
16: foreach P in k-event_patterns do
17: if maxSeason(P) ≥ minSeason then
18: Insert P into CandidatekPatterns;
19: foreach candidate P ∈ CandidatekPatterns do
20: Find NearSUPP satisfying maxPeriod and minDensity;
21: Identify PSP adhering to distInterval ;
22: if |PSP | ≥ minSeason then
23: Insert P into P; //P is a frequent seasonal pattern

To identify the candidate single events, we initially scan DSEQ to deter-
mine the support set SUPEi for each event Ei . From SUPEi , we calculate the
maxSeason(Ei) and check whether Ei is a candidate single event.

We continue the following steps to mine frequent seasonal events. For
each candidate event Ei , we iterate through the SUPEi and identify the near
support sets NearSUPEi satisfying the constraints ofmaxPeriod andminDensity.
By applying the distInterval constraint, we determine the set of seasons PSEi .
Next,weonly select the frequent seasonal events that have seasons(Ei) �| PSEi |
≥ minSeason.

Example 4.3.2 (Candidate single events at HLH1)
LetmaxPeriod= 2,minDensity= 3, distInterval= [4, 10], andminSeason= 2. Fig.
4.5 shows HLH1 in Table 4.2. There are 8 candidate seasonal single events
at HLH1. The event M:1 is not a frequent seasonal event (season(M:1) = 1

53

Chapter 4. Seasonal Temporal Pattern Mining

C:1 C:0 D:1 D:0 F:1 F:0 M:1 N:1

C:1,D:1 C:1,F:1

Fig. 4.5: An example of a hierarchical lookup hash tables [38]
< minSeason), but is kept in HLH1 since it might contribute to the formation
of frequent seasonal k-event patterns.

4.3.4 Mining Seasonal k-event Patterns
To address the issue of a large search space [38], we first identify candidate sea-
sonal k-event groups and use these candidates to determine frequent seasonal
k-event patterns.

Mining candidate seasonal k-event groups. Alg. 5 (lines 10-12) describes
this step. First, to generate k-event groups, we utilize the set of candidate
seasonal (k-1)-event groups Fk−1 and the set of candidate seasonal single
events F1, and take the Cartesian product of Fk−1 and F1. Next, we find
the support set SUP(E1 ,...,Ek) for each k-event group (E1 , ..., Ek). We then calcu-
late maxSeason(E1 , ..., Ek), and check if maxSeason(E1 , ..., Ek) ≥ minSeason then
(E1 , ..., Ek) is considered as a candidate group and is stored in HLHk .

Mining frequent seasonal k-event patterns. Alg. 5 (lines 13-23) describes
this mining step. Let Fk−1 � (E1 , ..., Ek−1) and F1 � (Ek) be a candidate (k-1)-
event group and a candidate single event, respectively, and Fk � Fk−1 ∪ F1 �

(E1 , ..., Ek) be a candidate k-event. We first access the EHk−1 table to take the
set Pk−1 containing the candidate (k-1)-event patterns of Fk−1. We verify that
each Pk−1 � {(r12, E1, E2),...,(r(k−2)(k−1), Ek−2, Ek−1)} ∈ Pk−1 can create a k-event
pattern Pk with Ek as follows. First, we check if (r(k−1)k , Ek−1, Ek) is not exist,
then the verification process terminates immediately. However, if it exists, we
continue the verification in a similar manner with the triple (r(k−2)k , Ek−2, Ek),
and proceed iteratively until we reach (r1k , E1, Ek). Next, we check if Pk is a
candidate k-event pattern then it is stored in HLHk . Finally, we find frequent
seasonal k-event patterns from the discovered candidates.

Using transitivity property to optimize candidate k-event groups: We
observe that using the candidate events in F1 at HLH1 to generate k-event

54

4.4. Approximate STPM

groups can result in redundancy, as some events in F1 combined with Fk−1
may not generate any frequent seasonal k-event patterns.

Example 4.3.3 (The redundancy of k-event groups generation)
Let’s consider the event F:0 in HLH1 shown in Fig. 4.5 . In this case, F:0 can
be used to combine with 2-event groups in HLH2, such as (C:1, D:1), to form
a 3-event group (C:1, D:1, F:0). However, F:0 does not exist in any candidate
2-event patterns in HLH2. Thus, there do not have any candidate seasonal
3-event patterns that can be derived from (C:1, D:1, F:0).

To address this, we employ the transitivity property of temporal relations to
minimize redundancy as follows.

Lemma 1 Let Nk−1 � (E1 , ..., Ek−1) be a candidate seasonal (k-1)-event group, and
Ek be a candidate seasonal single event. If ∀Ei ∈ Nk−1, ∃r ∈ < s.t. r(Ei , Ek) is a
candidate seasonal relation, then Nk � Nk−1∪Ek can form candidate seasonal k-event
patterns.

Based on Lemma 1, we only consider single events in HLH1 that are present
in HLHk−1 for creating k-event groups. To do that, we apply a filtering pro-
cess to F1 and obtain a new set called FilteredF1. Subsequently, we replace
the Cartesian product Fk−1 × F1 with Fk−1 × FilteredF1 to generate the k-event
groups.

4.4 Approximate STPM
In this section, we use mutual information to measure the correlation between
symbolic time series, then propose an approximate version of STPM that only
mine frequent seasonal temporal patterns on the correlated time series. The
definitions, theorems, and corollaries are reproduced from Paper C [38], and
their proofs can be found in Paper C.

Consider two time series X and Y, and their corresponding symbolic series
XS, YS.

4.4.1 Correlated symbolic time series
This section introduces the concept of correlated symbolic time series used in
the approximate STPM.

55

Chapter 4. Seasonal Temporal Pattern Mining

Definition 4.4.1 (Normalized mutual information)
The normalized mutual information (NMI) of XS and YS, denoted as Ĩ(XS; YS),
quantifies the degree of shared information between XS and YS in percentage:

Ĩ(XS; YS) �
I(XS; YS)

H(XS)
� 1 − H(XS |YS)

H(XS)
(4.2)

where I(XS; YS) is the mutual information of XS and YS and H(XS) is the
entropy of XS.

Ĩ(XS; YS) indicates the reduction (in percentage) of the uncertainty of XS due to
knowing YS. From Eq. 4.2 , if I(XS; YS) > 0 then (XS; YS) has a certain mutual
dependency. Moreover, it is important to note that NMI is not symmetric, i.e.,
Ĩ(XS; YS) , Ĩ(YS; XS).

Definition 4.4.2 (Correlated symbolic time series)
Let µwhere 0 < µ ≤ 1 be themutual information threshold. The series XS and
YS are correlated iff min{Ĩ(XS; YS), Ĩ(YS; XS)} ≥ µ, and uncorrelated otherwise.

4.4.2 Lower bound of the maximum seasonal occurrence
The approximate STPM is built on the exact STPM algorithm that uses mu-
tual information to identify the correlated time series and subsequently mine
similarly as the exact STPM on these correlated time series. Besides, the exact
STPM algorithm uses the maximum seasonal occurrence to prune infrequent
candidate seasonal patterns. Thus, this section investigates the relationship
between the mutual information of two symbolic series and the maximum
seasonal occurrence of an event pair, as in Theorem 1, and then uses this re-
lationship to prune the uncorrelated time series, reducing the search space of
the mining process.

Theorem 1 (Lower bound of the maxSeason)
Let µ be the mutual information threshold. If the NMI Ĩ(XS;YS) ≥ µ, then the
maximum seasonal occurrence of (X1 ,Y1) inDSEQ has a lower bound:

maxSeason(X1 ,Y1) ≥
λ2 · |DSEQ |
minDensity

· e
W

(
log λ1−µ

1 ·ln2
λ2

)
(4.3)

where: λ1 � min{p(Xi), ∀Xi ∈ XS} is the minimum probability of Xi ∈ XS, and
λ2 � p(Y1) is the probability of Y1 ∈ YS, and W is the Lambert function [13].

Setting the parameters: In order to calculate the lower bound of maxSea-
son(X1 ,Y1) in Equation (4.3), we need to compute several parameters: λ1, λ2,
and µ. λ1 and λ2 can be computed easily from DSYB. To determine the value
of µ, we derive the corollary from Theorem 1 as follows.

56

4.4. Approximate STPM

Corollary 1.1 Themaximumseasonal occurrence of an event pair (X1 ,Y1) ∈ (XS ,YS)
inDSEQ is at least minSeason if Ĩ(XS; YS) is at least µ, where:

µ ≥


1 − λ2
e ·ln 2·log 1

λ1
, if 0 ≤ ρ ≤ 1

e

1 − ρ·λ2 ·log ρ
ln 2·log λ1

, otherwise
,where ρ �

minSeason ·minDensity
λ2 · |DSEQ |

(4.4)

Interpretation: Theorem 1 states that if the two series XS and YS exhibit
correlation, then the maximum seasonal occurrence of an event pair in (XS,YS)
has the lower bound in Equation (4.3). Moreover, we have the maximum
seasonal occurrence of an event pair is always at least the maximum seasonal
occurrence of the 2-event pattern formed by that event pair (proved in Def.
4.3.1). Thus, we can deduce that if the event pair (X1, Y1) has a maximum
seasonal occurrence lower than the lower bound defined in Equation (4.3),
any 2-event pattern P formed by (X1, Y1) will also have a maximum seasonal
occurrence lower than the same lower bound. This is the basis for constructing
the Approximate STPM algorithm.

4.4.3 Using the Bound to Approximate STPM

Algorithm 6: Approximate STPM using Mutual Information [38]
Input: A set of time series X, the thresholds: maxPeriod, minDensit y,

distInterval, minSeason
Output: All frequent seasonal temporal patterns P

1: foreach pair of series (XS ,YS) ∈ DSYB do
2: minNMI ← min{Ĩ(XS ; YS), Ĩ(YS ; XS)};
3: Compute µ using Eq. (2.5);
4: if minNMI ≥ µ then
5: Insert XS and YS into XC ;
6: Mine frequent seasonal single events from XC ;
7: if k ≥ 2 then
8: Perform STPM using HLH1 and HLHk−1;

Algorithm 6 describes the Approximate STPM. First, we compute NMI and
µ for each pair (XS ,YS) (lines 2-3). We note that µ is calculated using Eq. 4.4.
Then, we select only the correlated pairs to insert into XC . Next, we proceed
to mine frequent seasonal single events exclusively from the series in XC (line
6). For frequent seasonal k-event patterns (k ≥ 2), we employ the exact STPM
approach (lines 7-8).

57

Chapter 4. Seasonal Temporal Pattern Mining

4.5 Experimental Evaluation
We evaluate the exact STPM and approximate STPM algorithms using real-
world datasets from three domains: renewable energy, smart city, and health.
The evaluation includes both qualitative and quantitative analyses.

4.5.1 Experimental Design
Datasets: We use four real-world datasets: RE [60], SC [11], INF [12], and
HFM [12]. The RE dataset is renewable energy from Spain. The SC dataset is
traffic data from New York City. The INF and HMF datasets are the influenza
and hand-foot-mouth data from Japan.
Baseline methods: We refer to our exact method as E-STPM and the approxi-
matemethod as A-STPM. As this is the first study on frequent seasonal tempo-
ral pattern mining, there is currently no exact baseline for comparison against
STPM. However, we adapt the PS-growth algorithm, originally designed for
recurring itemset mining [49], to discover seasonal temporal patterns. The
adapted version of PS-growth is referred to as APS-growth.

4.5.2 Experimental Results
In this summary, we present the key results, and additional results can be
found in [38].
Qualitative Evaluation: Table 4.3 provides several interesting seasonal pat-
terns discovered in the datasets. Patterns P1-P3 are found from the RE dataset,
revealing the seasonal occurrence of both high renewable energy generation
and electricity demand. For instance, P1 demonstrates that wind energy gen-
eration is high during the months of December to February, which coincides
with increased wind availability. Similarly, P2 indicates high electricity de-
mandduring this perioddue to shorter daylight hours and lower temperatures,
necessitating greater lighting and heating. These patterns suggest that wind
power can effectively supplement the energy supply during high-demandwin-
ter periods, facilitating better supply response optimization. Patterns P4-P7,
extracted from the INF and HFM datasets, capture the seasonality of specific
diseases. For example, P4 reveals a substantial rise in influenza cases during
January and February when the temperature is very low. On the other hand,
hand-foot-mouth disease cases increase during May and June when tempera-
tures are high (P6). Awareness of these patterns enables enhanced planning
and prevention strategies for diseases. Lastly, patterns P8-P11, extracted from
the SC dataset, illustrate the impact of weather conditions on traffic. Adverse
weather conditions lead to congestion, lane blockages, and flow incidents,
often observed in July and August.

58

4.5. Experimental Evaluation

Table 4.3: Summary of Interesting Seasonal Patterns [38]

Patterns minDensity (%) maxPeriod (%) # minSeason Seasonal occurrence

(P1) Strong Wind < High Wind Power Generation 0.5 0.4 12 December, January, February
(P2) Low Temperature < High Energy Consumption 0.5 0.4 12 December, January, February
(P3) Very Few Clouds < Very High Temperature G High Solar Power Generation 0.75 0.6 8 July, August
(P4) High Humidity G Very Low Temperature→ Very High Influenza Cases 0.5 0.4 12 January, February
(P5) Strong Wind < Heavy Rain < High Influenza Cases 0.5 0.4 12 January, February
(P6) Low Humidity < High Temperature < Very High Hand-Foot-Mouth Disease Cases 1.0 0.6 12 May, June
(P7) Very High Temperature < High Wind < High Hand-Foot-Mouth Disease Cases 1.0 0.6 12 May, June
(P8) High Temperature < Strong Wind→ High Congestion 0.5 0.6 8 July, August
(P9) Strong Wind < Unclear Visibility < High Congestion 0.5 0.6 8 July, August
(P10) Heavy Rain < Unclear Visibility < High Lane-Blocked 0.4 0.8 8 July, August
(P11) Heavy Rain < Strong Wind < High Flow-Incident 0.4 0.8 8 July, August

Quantitative evaluation with baselines comparison on real-world datasets:
E-STPM and A-STPM are compared with the baseline on real world datasets.
Figs. 4.6 , 4.7 , 4.8 , and 4.9 show the results. Figs. 4.6 and 4.7 are the runtime
comparisons between the algorithms. A-STPM is the fastest algorithm, while
E-STPMhas faster runtime than the baseline. The range and average speedups
of A-STPM compared with other methods are: [1.5-4.7] and 2.6 (E-STPM), and
[5.2-10.6] and 7.1 (APS-growth). Furthermore, E-STPM achieves a speedup
over the baseline within the range of [3.5-7.2] and with a speedup average of
4.3.

4 8 12 16 200
0.2
0.4
0.6
0.8

1 ·104

minSeason

Ru
nt
im

e
(s
ec
)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50
0.2
0.4
0.6
0.8

1 ·104

minDensity (%)

Ru
nt
im

e
(s
ec
)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.5

1
1.5

2
2.5 ·104

maxPeriod (%)

Ru
nt
im

e
(s
ec
)

(c) Varying maxPeriod

A-STPM E-STPM APS-growth

Fig. 4.6: Runtime Comparison on RE
(real-world) [38]

4 8 12 16 200
0.1
0.2
0.3
0.4
0.5 ·104

minSeason

Ru
nt
im

e
(s
ec
)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50
0.1
0.2
0.3
0.4
0.5 ·104

minDensity (%)

Ru
nt
im

e
(s
ec
)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.1
0.2
0.3
0.4
0.5
0.6 ·104

maxPeriod (%)

Ru
nt
im

e
(s
ec
)

(c) Varying maxPeriod

A-STPM E-STPM APS-growth

Fig. 4.7: Runtime Comparison on INF
(real-world) [38]

4 8 12 16 200

0.5

1

1.5 ·104

minSeasonM
em

or
y
U
sa
ge

(M
B)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50

0.5

1

1.5 ·104

minDensity (%)M
em

or
y
U
sa
ge

(M
B)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.5

1
1.5

2 ·104

maxPeriod (%)M
em

or
y
U
sa
ge

(M
B)

(c) Varying maxPeriod

A-STPM E-STPM APS-growth

Fig. 4.8: Memory Usage Comparison on
RE (real-world) [38]

4 8 12 16 200

0.3

0.6

0.9
·104

minSeasonM
em

or
y
U
sa
ge

(M
B)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50

0.3

0.6

0.9
·104

minDensity (%)M
em

or
y
U
sa
ge

(M
B)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.3
0.6
0.9
1.2

·104

maxPeriod (%)M
em

or
y
U
sa
ge

(M
B)

(c) Varying maxPeriod

A-STPM E-STPM APS-growth

Fig. 4.9: Memory Usage Comparison on
INF (real-world) [38]

The memory usage comparison between the algorithms is shown in Figs.
4.8 and 4.9. Among the compared methods, A-STPM consumes the lowest
memory usage, while E-STPM consumes less memory than the baseline. A-
STPM consumes [1.4-2.7] (on average 1.8) times less memory than E-STPM,
and [2.7-7.6] (on average 3.9) times less memory than APS-growth. E-STPM

59

Chapter 4. Seasonal Temporal Pattern Mining

uses [1.5-4.1] (on average 2.3) times less memory than APS-growth.
Scalability evaluationon synthetic datasets: Toassess the scalability of STPM,
we compare performance between the algorithms on synthetic datasets. For
each real-world dataset, we generated 10, 000 synthetic time series. Figs. 4.10
and 4.11 shows the results of runtime comparisonswhen changing the number
of time series. The range and average speedups of A-STPM in this scalability
test are: [1.7-3.5] and 2.3 (E-STPM), [3.8-9.5] and 5.3 (APS-growth). The range
and average speedups of E-STPM compared the baseline is [2.3-4.4] and 3.6.
Moreover, we add a bar chart for A-STPM that has two components: the
computation time (top red) for MI and µ , and the time of the mining process
(bottom blue). However, they are added for only comparison and not actually
used. We can see that the baseline fails at large configurations, e.g., when #
Time Series ≥ 8000 on the synthetic INF (Fig. 4.11a).

2 4 6 8 100
0.5

1
1.5

2
2.5

3 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(a)minSeason=12,
minDensity=0.5%

2 4 6 8 100
0.5

1
1.5

2
2.5

3 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(b)minSeason=16,
minDensity=0.75%

2 4 6 8 100
0.5

1
1.5

2
2.5

3 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(c)minSeason=20,
minDensity=1.0%

A-STPM E-STPM APS-growth

Fig. 4.10: Scalability: Varying #TimeSeries
on RE (synthetic) [38]

2 4 6 8 100
0.5

1
1.5

2 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(a) minSeason=12,
minDensity=0.5%

2 4 6 8 100
0.5

1
1.5

2 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(b)minSeason=16,
minDensity=0.75%

2 4 6 8 100
0.5

1
1.5

2 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(c)minSeason=20,
minDensity=1.0%

A-STPM E-STPM APS-growth

Fig. 4.11: Scalability: Varying #TimeSeries
on INF (synthetic) [38]

Accuracy evaluation of A-STPM:We assess the accuracy of A-STPM by com-
paring the extracted patterns from A-STPM and E-STPM. Table 4.4 shows
the results. We can see that A-STPM achieves high accuracy (≥ 81%) when
both minSeason and minDensity are low, e.g., minSeason = 8 and minDensity
= 0.5%. Additionally, A-STPM achieves very high accuracy (≥ 95%) when
both minSeason and minDensity are high, such as when minSeason = 16 and
minDensity = 0.75%.

Table 4.4: A-STPM Accuracy [38]

minSeason
minDensity (%)

RE (real) INF (real)
0.5 0.75 1 0.5 0.75 1

8 81 82 86 81 83 87
12 84 86 92 88 90 93
16 94 95 100 95 96 100
20 97 100 100 100 100 100

60

Chapter 5

Conclusion and Future Work

5.1 Contributions
The overall objective of this thesis is to propose efficient solutions to mine
temporal patterns from time series and use information theory measures to
further improve themining process. This thesis fulfills the objective by propos-
ing three different algorithms that can mine three types of temporal patterns:
frequent temporal patterns, rare temporal patterns, and seasonal temporal pat-
terns. In this thesis, we first addressed challenges of the frequent temporal
pattern mining (FTPM) problem. Current literature for FTPM has limitations
when working on big datasets, i.e., they fail on a large number of time series
and temporal sequences. We solve this problemwith the proposal of the exact
FTPM algorithm in paper A [36] and part of paper B [37] that uses the effi-
cient data structures and the pruning techniques, and the approximate FTPM
algorithm that uses mutual information to eliminate the unpromising time
series, helping FTPM scale well on big datasets. Second, we tackled challenges
of the rare temporal pattern mining problem in paper B [37]. Current litera-
ture of rare temporal pattern mining only explores rare association rules, rare
sequential patterns, and rare motifs that do not consider temporal relations
between events. We proposed the first solution to mine rare temporal patterns
(RTPM) efficiently. The exact RTPM algorithm that uses efficient data struc-
tures and different pruning techniqueswas proposed. Moreover, we presented
the approximate version of RTPM using mutual information to perform the
mining only on the promising time series, thereby reducing the search space
of the mining. Also, in paper B, we proposed a generalized temporal pattern
mining (GTPM) that combines both frequent and rare temporal patterns as a
generalized approach for mining two types of temporal patterns. Finally, we
deal with seasonal temporal pattern mining (STPM) in paper C [38]. Vari-
ous techniques, such as motif discovery and periodic association rules, have

61

Chapter 5. Conclusion and Future Work

treated seasonality as recurring occurrences without considering the season-
ality characteristic of temporal patterns. We proposed the first-ever solution
to mine seasonal temporal patterns. This solution consists of the exact STPM
algorithm that uses efficient data structures and the novel concept of candidate
seasonal temporal patterns for pruning infrequent seasonal temporal patterns.
Moreover, we introduced the approximate version of STPM using mutual in-
formation to prune redundant time series, accelerating the mining process
while maintaining highly accurate results.

The summarized results of this thesis are presented in three main papers
A [36], B [37], and C [38] that have the following key contributions:

• Paper A [36] proposes a comprehensive process for frequent temporal
pattern mining from time series (FTPMfTS). This process takes a col-
lection of time series as input and produces a complete set of frequent
temporal patterns as output. In the process, a splitting strategy is used
to transform time series into sequences of temporal events that ensure
the preservation of the patterns. FTPMfTS comprises an efficient Hierar-
chical Temporal Pattern Graph Mining (HTPGM) that uses efficient data
structures, i.e., the Hierarchical Pattern Graph, and pruning techniques,
i.e., the Apriori principle and the transitivity property of temporal rela-
tions, to enable faster mining. Furthermore, we present an approximate
version ofHTPGM that utilizesmutual information to remove unpromis-
ing time series, making it work well for large datasets.

• Paper B [37] extends paper A [36] with three main contributions. The
first contribution is that we introduce an enhanced frequent temporal
pattern mining (FTPM) algorithm that improves upon the HTPGM al-
gorithm [36]. The key improvement involves the use of Hierarchical
Hash Tables instead of the Hierarchical Pattern Graph, enabling faster
retrieval of events and patterns. Additionally, we derive the lower bound
of support and combine it with the lower bound of confidence to speed
up the mining process in the approximate FTPM version. The second
contribution is the proposal of an efficient Rare Temporal Pattern Min-
ing (RTPM) algorithm designed specifically for searching rare temporal
patterns. RTPM also employs efficient data structures and pruning tech-
niques to optimize the mining process. In addition to the exact RTPM,
we propose an approximate version that leverages mutual information
to prune unpromising time series, further enhancing the speed of the
mining process. The third contribution is that we presented the general-
ized temporal pattern mining (GTPM) that can mine both frequent and
rare temporal patterns.

• Paper C [38] proposes the first solution to mine seasonal temporal pat-
terns from time series. We first introduce several measures aimed at

62

5.2. Future Work

capturing the seasonality characteristics of temporal patterns, including
the maximum period, minimum density, distance interval, and mini-
mum seasonal occurrence. Then, an efficient algorithm called Seasonal
Temporal Pattern Mining (STPM) is proposed that has several novelties.
The first novelty is that a new measure, called the maximum season, is
presented that upholds the anti-monotonicity property. This measure
is then utilized to define the concept of a candidate seasonal temporal
pattern, serving the purpose of eliminating infrequent seasonal tempo-
ral patterns. The second novelty pertains to the use of hierarchical hash
tables data structures to ensure efficient retrieval of candidate temporal
events and temporal patterns and the use of two pruning techniques,
Apriori-like pruning and transitivity pruning, to speed up the mining
process. In order to improve the scalability of STPM on large datasets,
we introduce an approximate version of STPM that leverages mutual
information to prune unpromising time series and reduce the search
space.

5.2 Future Work
This thesis opens up multiple possibilities for future research directions. In
the thesis, we use mutual information to prune unpromising time series in the
approximate mining algorithms of three types of patterns. We have derived
the relationships between mutual information of two symbolic series and the
support, the confidence, and the maximum seasonal occurrence of an event
pair in three papers, A [36], B [37], and C [38]. Based on these relationships,
the unpromising time series are pruned. In future work, we can use mutual
information to remove unpromising temporal events at the event level show-
ing potential for improving the performance of approximate algorithms. To
do this, we need to find the relationships between temporal events and the
support, the confidence, and the maximum seasonal occurrence measures.

Additionally, the proposal of distributed solutions capable of mining var-
ious types of temporal patterns is a fascinating direction to pursue. The effi-
cient distributed temporal pattern mining algorithm, called Distributed Hier-
archical Pattern Graph Temporal Pattern Mining (DHPG-TPM), was proposed
in [27]. DHPG-TPMoutperforms the baselines and scaleswell to large datasets.
DHPG-TPM uses the distributed bitmap and the distributed Hierarchical Pat-
tern Graph to enable fast computations of support and confidence. However,
we can improve DHPG-TPM by using the distributed Hierarchical Hash Table
data structure that could accelerate further DHPG-TPM’s performance. Fur-
thermore, research on distributed algorithms for RTPM and STPM should be
considered.

Anotherpromisingdirection involves thediscoveryof high-utility temporal

63

Chapter 5. Conclusion and Future Work

patterns within time series, which could have the potential for practical appli-
cations. A temporal pattern has high utility, implying that it is very important
for users. High-utility temporal pattern mining is to find all temporal patterns
whose utility is at least the minimum utility threshold. High-utility temporal
pattern mining is very challenging due to two reasons. The first reason is that
the complex temporal relations between events create an exponential search
space. The second reason is that high-utility temporal patterns do not hold
the anti-monotonicity property, i.e., a superset of a low-utility pattern may be
a high-utility pattern. Thus, efficient solutions to mine high-utility temporal
patterns will be promising research.

The exploration of spatial-temporal co-occurring patterns can offer signifi-
cant insights with data that encompass both spatial and temporal components.
The spatial-temporal co-occurring patterns represent types of events that oc-
cur in both space and time together. To mine them, we need to consider both
spatial presentations and temporal relations. This is also an interesting future
research problem.

Clustering and classification of temporal events/patterns can also be con-
sidered for future research. Since time information is added to eachevent/pattern,
the selection of suitable distance functions becomes crucial in determining the
outcomes of clustering and classification tasks. Moreover, pruning techniques
also help further speed up the clustering and classification. The proposal of
efficient methods to address these problems holds great promise for many
real-world applications.

64

Bibliography

References
[1] E. Alipourchavary, S. M. Erfani, and C. Leckie, “Mining rare recurring events in

network traffic using second order contrast patterns,” in International Joint Confer-
ence on Neural Networks. IEEE, 2021.

[2] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of
the ACM, vol. 26, 1983.

[3] K. Amphawan, P. Lenca, and A. Surarerks, “Mining top-k periodic-frequent pat-
tern from transactional databases without support threshold,” in International
conference on advances in information technology. Springer, 2009.

[4] J. Assfalg, T. Bernecker, H.-P. Kriegel, P. Kröger, and M. Renz, “Periodic pattern
analysis in time series databases,” in International Conference on Database Systems
for Advanced Applications. Springer, 2009.

[5] N. Begum and E. Keogh, “Rare time series motif discovery from unbounded
streams,” Proceedings of the VLDB Endowment, vol. 8, no. 2, 2014.

[6] S. Biswas and K. C. Mondal, “Dynamic fp tree based rare pattern mining using
multiple item supports constraints,” in Computational Intelligence, Communications,
and Business Analytics (CICBA). Springer, 2019.

[7] A. Borah and B. Nath, “Rare association rule mining from incremental databases,”
Pattern Analysis and Applications, vol. 23, 2020.

[8] S. Bouasker, W. Inoubli, S. B. Yahia, and G. Diallo, “Pregnancy associated breast
cancer gene expressions: new insights on their regulation based on rare correlated
patterns,” Transactions on Computational Biology and Bioinformatics, vol. 18, no. 3,
2020.

[9] S. Cai, J. Chen, H. Chen, C. Zhang, Q. Li, R. N. A. Sosu, and S. Yin, “An efficient
anomaly detection method for uncertain data based on minimal rare patterns
with the consideration of anti-monotonic constraints,” Information Sciences, vol.
580, 2021.

[10] Y. Chen, W. Peng, and S. Lee, “Mining temporal patterns in time interval-based
data,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, 2015.

[11] N. Y. City. (2019) Nyc opendata. [Online]. Available: https://opendata.
cityofnewyork.us/

65

https://opendata.cityofnewyork.us/
https://opendata.cityofnewyork.us/

References

[12] K. city infectious disease surveillance system. (2021) Kidss. [Online]. Available:
https://kidss.city.kawasaki.jp/

[13] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the
lambert w function,” Advances in Computational mathematics, vol. 5, 1996.

[14] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
2012.

[15] Y. Cui, W. Gan, H. Lin, and W. Zheng, “Fri-miner: fuzzy rare itemset mining,”
Applied Intelligence, 2022.

[16] P. S. Data. (2016) Pecan street dataport. [Online]. Available: https:
//www.pecanstreet.org/dataport/

[17] Energinet. (2021) Energi data portal. [Online]. Available: https://www.
energidataservice.dk/tso-electricity/co2emis/

[18] P. Fournier-Viger, Y. Wang, P. Yang, J. C.-W. Lin, U. Yun, and R. U. Kiran, “Tspin:
Mining top-k stable periodic patterns,” Applied Intelligence, vol. 52, no. 6, 2022.

[19] P. Fournier-Viger, P. Yang, Z. Li, J. C.-W. Lin, and R. U. Kiran, “Discovering rare
correlated periodic patterns inmultiple sequences,”Data &Knowledge Engineering,
vol. 126, 2020.

[20] Y. Gao and J. Lin, “Efficient discovery of time series motifs with large length range
inmillion scale time series,” in IEEE International Conference onDataMining. IEEE,
2017.

[21] M. Gribaudo, T. T. N. Ho, B. Pernici, and G. Serazzi, “Analysis of the influence
of application deployment on energy consumption,” in International Workshop on
Energy Efficient Data Centers. Springer, 2014.

[22] J. Han, G. Dong, and Y. Yin, “Efficient mining of partial periodic patterns in time
series database,” in IEEE International Conference on Data Engineering. IEEE, 1999.

[23] J. Han, W. Gong, and Y. Yin, “Mining segment-wise periodic patterns in time-
related databases,” in Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, vol. 98, 1998.

[24] W. Healy, F. Omar, L. Ng, T. Ullah, W. Payne, B. Dougherty, and A. H. Fanney.
(2018) Net zero energy residential test facility instrumented data. [Online].
Available: https://pages.nist.gov/netzero/index.html/

[25] N. Ho, V. L. Ho, T. B. Pedersen, M. Vu, and C. A. Biscio, “A unified approach for
multi-scale synchronous correlation search in big time series–full version,” arXiv
preprint arXiv:2204.09131, 2022.

[26] N. Ho, T. B. Pedersen, M. Vu, C. A. Biscio et al., “Efficient bottom-up discovery
of multi-scale time series correlations using mutual information,” in IEEE Interna-
tional Conference on Data Engineering. IEEE, 2019.

[27] N. Ho, T. B. Pedersen, M. Vu et al., “Efficient and distributed temporal pattern
mining,” in IEEE International Conference on Big Data. IEEE, 2021.

[28] N. Ho, H. Vo, and M. Vu, “An adaptive information-theoretic approach for iden-
tifying temporal correlations in big data sets,” in IEEE International Conference on
Big Data. IEEE, 2016.

66

https://kidss.city.kawasaki.jp/
https://www.pecanstreet.org/dataport/
https://www.pecanstreet.org/dataport/
https://www.energidataservice.dk/tso-electricity/co2emis/
https://www.energidataservice.dk/tso-electricity/co2emis/
https://pages.nist.gov/netzero/index.html/

References

[29] N. Ho, H. Vo, M. Vu, and T. B. Pedersen, “Amic: An adaptive information theoretic
method to identify multi-scale temporal correlations in big time series data,” IEEE
Transactions on Big Data, vol. 7, no. 1, 2019.

[30] N. Ho, H. Vo, M. Vu, and T. B. Pedersen, “Amic: An adaptive information theoretic
method to identify multi-scale temporal correlations in big time series data –
accepted version,” arXiv preprint arXiv:1906.09995, 2019.

[31] N. T. T. Ho, T. B. Pedersen, L. Van Ho, and M. Vu, “Efficient search for multi-scale
time delay correlations in big time series,” in International Conference on Extending
Database Technology. OpenProceedings. org, 2020.

[32] N. Ho, M. Gribaudo, and B. Pernici, “Improving energy efficiency for transac-
tional workloads in cloud environments,” in Proceedings of the Eighth International
Conference on Future Energy Systems, 2017.

[33] T. T. N. Ho, M. Gribaudo, and B. Pernici, “Characterizing energy per job in cloud
applications,” Electronics, vol. 5, no. 4, 2016.

[34] T. T. N. Ho and B. Pernici, “A data-value-driven adaptation framework for en-
ergy efficiency for data intensive applications in clouds,” in IEEE conference on
technologies for sustainability. IEEE, 2015.

[35] V. L. Ho, N. Ho, and T. B. Pedersen, “Efficient temporal pattern mining in big time
series using mutual information,” arXiv preprint arXiv:2010.03653, 2020. [Online].
Available: https://arxiv.org/abs/2010.03653

[36] V. L. Ho, N. Ho, and T. B. Pedersen, “Efficient temporal pattern mining in big time
series using mutual information,” vol. 15, no. 3. VLDB Endowment, 2022.

[37] V. L. Ho, N. Ho, and T. B. Pedersen, “Efficient generalized temporal pattern
mining in big time series using mutual information,” 2023. [Online]. Available:
https://arxiv.org/abs/2010.03653

[38] V. L. Ho, N. Ho, and T. B. Pedersen, “Mining seasonal temporal patterns in time
series,” in IEEE International Conference on Data Engineering. IEEE, 2023.

[39] J.-W.Huang, C.-Y. Tseng, J.-C. Ou, andM.-S. Chen, “A generalmodel for sequential
pattern mining with a progressive database,” IEEE Transactions on Knowledge and
Data Engineering, vol. 20, no. 9, 2008.

[40] M. Iqbal, C. P. Wulandari, W. Yunanto, and G. I. P. Sari, “Mining non-zero-rare
sequential patterns on activity recognition,” Jurnal Matematika MANTIK, vol. 5,
no. 1, 2019.

[41] M. F. Javed, W. Nawaz, and K. U. Khan, “Hova-fppm: flexible periodic pattern
mining in time series databases using hashed occurrence vectors and apriori ap-
proach,” Scientific Programming, vol. 2021, 2021.

[42] Y. Ji and Y. Ohsawa, “Mining frequent and rare itemsets with weighted supports
using additive neural itemset embedding,” in International Joint Conference on Neu-
ral Networks. IEEE, 2021.

[43] L. Kegel, C. Hartmann, M. Thiele, and W. Lehner, “Season-and trend-aware sym-
bolic approximation for accurate and efficient time series matching,” Datenbank-
Spektrum, vol. 21, no. 3, 2021.

67

https://arxiv.org/abs/2010.03653
https://arxiv.org/abs/2010.03653

References

[44] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic appliance-level
electricity demand and whole-house demand from five UK homes,” Scientific
Data, 2015.

[45] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy, “Efficient discovery of periodic-
frequent patterns in very large databases,” Journal of Systems and Software, vol. 112,
2016.

[46] R. U. Kiran, C. Saideep, K. Zettsu, M. Toyoda, M. Kitsuregawa, and P. K. Reddy,
“Discovering partial periodic spatial patterns in spatiotemporal databases,” in
IEEE International Conference on Big Data. IEEE, 2019.

[47] R. U. Kiran, H. Shang, M. Toyoda, and M. Kitsuregawa, “Discovering recurring
patterns in time series,” in International Conference on ExtendingDatabase Technology,
2015.

[48] R. U. Kiran, Y. Watanobe, B. Chaudhury, K. Zettsu, M. Toyoda, and M. Kitsure-
gawa, “Discovering maximal periodic-frequent patterns in very large temporal
databases,” in InternationalConference onData Science andAdvancedAnalytics. IEEE,
2020.

[49] R. U. Kiran, A. Anirudh, C. Saideep, M. Toyoda, P. K. Reddy, and M. Kitsure-
gawa, “Finding periodic-frequent patterns in temporal databases using periodic
summaries,” Data Science and Pattern Recognition, vol. 3, no. 2, 2019.

[50] H.T. Lam, F.Mörchen,D. Fradkin, andT.Calders, “Mining compressing sequential
patterns,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 7,
no. 1, 2014.

[51] Z. Lee, T. Lindgren, and P. Papapetrou, “Z-miner: an efficient method for mining
frequent arrangements of event intervals,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020.

[52] Y. Li and S. Cai, “Detecting outliers in data streams based onminimumrare pattern
mining and pattern matching,” Information Technology and Control, vol. 51, no. 2,
2022.

[53] H. Liu, F. Han, H. Zhou, X. Yan, and K. S. Kosik, “Fast motif discovery in short
sequences,” in IEEE International Conference on Data Engineering. IEEE, 2016.

[54] Y. Mohammad and T. Nishida, “Approximately recurring motif discovery using
shift density estimation,” in International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems. Springer, 2013.

[55] C. Neidle, A. Opoku, G. Dimitriadis, and D. Metaxas, “New shared & intercon-
nected asl resources: Signstream® 3 software; dai 2 for web access to linguistically
annotated video corpora; and a sign bank,” in Workshop on the Representation and
Processing of Sign Languages: Involving the Language Community, Miyazaki, Language
Resources and Evaluation Conference, 2018.

[56] W. Ouyang, “Mining rare sequential patterns in large transaction databases,” in
International Conference on Computer Science and Electronic Technology. Atlantis
Press, 2016.

[57] P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos, “Mining frequent ar-
rangements of temporal intervals,” Knowledge and Information Systems, vol. 21,
2009.

68

References

[58] D. Patel, W. Hsu, and M. L. Lee, “Mining relationships among interval-based
events for classification,” inProceedings of the ACMSIGMOD international conference
on Management of data, 2008.

[59] S. Piri, D.Delen, T. Liu, andW.Paiva, “Development of a newmetric to identify rare
patterns in association analysis: The case of analyzing diabetes complications,”
Expert Systems with Applications, vol. 94, 2018.

[60] E.-E. T. Platform. (2019) Entso-e. [Online]. Available: https://transparency.
entsoe.eu/dashboard/show

[61] A. Rahman, “Rare sequential pattern mining of critical infrastructure control logs
for anomaly detection,” Ph.D. dissertation, Queensland University of Technology,
2019.

[62] A. Rahman, Y. Xu, K. Radke, and E. Foo, “Finding anomalies in scada logs using
rare sequential pattern mining,” in Network and System Security. Springer, 2016.

[63] A. Samet, T. Guyet, and B. Negrevergne, “Mining rare sequential patterns with
asp,” in International Conference on Inductive Logic Programming, 2017.

[64] A. K. Sharma and D. Patel, “Stipa: A memory efficient technique for interval
pattern discovery,” in IEEE International Conference on Big Data. IEEE, 2018.

[65] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, “Discovering periodic-
frequent patterns in transactional databases,” in Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining. Springer, 2009.

[66] R. Uday Kiran and P. Krishna Reddy, “Towards efficient mining of periodic-
frequent patterns in transactional databases,” in International Conference onDatabase
and Expert Systems Applications. Springer, 2010.

[67] O. Weather. (2021) Open weather. [Online]. Available: https://openweathermap.
org/

[68] S.-Y. Wu and Y.-L. Chen, “Mining nonambiguous temporal patterns for interval-
based events,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, 2007.

[69] M. Zhang, P. Wang, and W. Wang, “Efficient consensus motif discovery of all
lengths in multiple time series,” in International Conference on Database Systems for
Advanced Applications. Springer, 2022.

[70] J. Zhu, K. Wang, Y. Wu, Z. Hu, and H. Wang, “Mining user-aware rare sequential
topic patterns in document streams,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 7, 2016.

69

https://transparency.entsoe.eu/dashboard/show
https://transparency.entsoe.eu/dashboard/show
https://openweathermap.org/
https://openweathermap.org/

References

70

Part II

Papers

71

Paper A

Efficient Temporal Pattern Mining in
Big Time Series Using Mutual Infor-
mation

Van Long Ho, Nguyen Ho, and Torben Bach Pedersen

The paper has been published in the
Proceedings of the VLDB Endowment (PVLDB), Volume 15, Issue 3, Pages

673–685, November, 2021, ISSN 2150-8097, DOI:10.14778/3494124.3494147.

© 2021 VLDB Endowment
The layout has been revised.

A.1. Introduction

Abstract
Very large time series are increasingly available from an ever wider range of IoT-enabled
sensors deployed in different environments. Significant insights can be gained by
mining temporal patterns from these time series. Unlike traditional pattern mining,
temporal pattern mining (TPM) adds event time intervals into extracted patterns,
making them more expressive at the expense of increased time and space complexities.
Existing TPM methods either cannot scale to large datasets, or work only on pre-
processed temporal events rather than on time series. This paper presents our Frequent
Temporal Pattern Mining from Time Series (FTPMfTS) approach providing: (1) The
end-to-end FTPMfTS process taking time series as input and producing frequent
temporal patterns as output. (2) The efficient Hierarchical Temporal Pattern Graph
Mining (HTPGM) algorithm that uses efficient data structures for fast support and
confidence computation, and employs effective pruning techniques for significantly
faster mining. (3) An approximate version of HTPGM that uses mutual information, a
measure of data correlation, to prune unpromising time series from the search space. (4)
An extensive experimental evaluation showing thatHTPGMoutperforms the baselines
in runtime and memory consumption, and can scale to big datasets. The approximate
HTPGM is up to two orders of magnitude faster and less memory consuming than the
baselines, while retaining high accuracy.

A.1 Introduction
IoT-enabled sensors have enabled the collection of many big time series, e.g.,
from smart-meters, -plugs, and -appliances in households, weather stations,
and GPS-enabled mobile devices. Extracting patterns from these time series
can offer new domain insights for evidence-based decision making and opti-
mization. As an example, consider Fig. A.1 that shows the electricity usage of

Water Boiler
with Tank

CO2
Intensity

00:00

02:00

06:00
07:00
08:00
10:00

13:00
15:00

19:00
21:00

00:00
02:00

06:00
07:00
09:00

13:00
15:00

18:00
20:00
22:00
00:00

Low

Med

High

Med
Low

Med

High

Med

Low

Med

High

Med
Low

Med

High

Med
Low

Off

On

Off

On

Off

Day 1 Day 2

Fig. A.1: CO2 intensity and water boiler electricity usage

75

Paper A.

a water boiler with a hot water tank collected by a 20 euro wifi-enabled smart-
plug, and accurate CO2 intensity (g/kWh) forecasts of local electricity, e.g., as
supplied by the Danish Transmission SystemOperator [12]. From Fig. A.1, we
can identify several useful patterns. First, the water boiler switches On once
a day, for one hour between 6 and 8AM. This indicates that the resident takes
only one hot shower per day which starts between 5.30 and 6.30AM. Second,
all water boiler On events are contained in CO2 High events, i.e., the periods
when CO2 intensity is high. Third, between two consecutive On events of the
boiler, there is a CO2 Low event lasting for one or more hours which occurs
at most 4 hours before the hot shower (so water heated during that event will
still be hot at 6AM). Pattern mining can be used to extract the relations be-
tween CO2 intensity and water boiler events. However, traditional sequential
patterns only capture the sequential occurrence of events, e.g., that one boiler
On event follows after another, but not that there is at least 23 hours between
them; or that there is a CO2 Low event between the two boiler On events, but
not when or for how long it lasts. In contrast, temporal pattern mining (TPM)
adds temporal information into patterns, providing details on when certain
relations between events happen, and for how long. For example, TPM ex-
presses the above relations as: ([7:00 - 8:00, Day X] BoilerOn → [6:00 - 7:00,
Day X+1] BoilerOn) (meaning BoilerOn is followed by BoilerOn), ([6:00 - 10:00,
Day X] HighCO2 < [7:00 - 8:00, Day X] BoilerOn) (meaning HighCO2 contains
BoilerOn), and ([7:00 - 8:00, Day X] BoilerOn→ [0:00 - 2:00, Day X+1] LowCO2
→ [6:00 - 7:00, Day X+1] BoilerOn). As the resident is very keen on reducing
her CO2 footprint, we can rely on the above temporal patterns to automatically
(using the smart-plug) delay turning on the boiler until the CO2 intensity is
low again, saving CO2 without any loss of comfort for the resident.

Another example is in the smart city domain in which temporal patterns
extracted from vehicle GPS data [41] can reveal spatio-temporal correlations
between traffic jams. For example, if the pattern ([07:30, 08:00] SlowSpeedTun-
nel→ [08:00, 08:30] SlowSpeedMainBoulevard) is found with high frequency
and high confidence on weekdays, it can be used to advise drivers to take
another route for their morning commute.

Although temporal patterns are useful, mining them is much more ex-
pensive than sequential patterns. Not only does the temporal information add
extra computation to themining process, the complex relations between events
also add an additional exponential factor O(3h2) to the complexity O(mh) of
the search space (m is the number of events and h is the length of temporal
patterns), yielding an overall complexity of O(mh3h2) (see Lemma 1 in Section
A.4.4). Existing TPMmethods [8, 35, 36] do not scale on big datasets, i.e., many
time series and many sequences, and/or do not work directly on time series
but rather on pre-processed temporal events.

Contributions. In this paper, we present our comprehensive Frequent Tem-

76

A.2. Related work

poral PatternMining from Time Series (FTPMfTS) approach which overcomes
the above limitations. Our key contributions are: (1) We present the first
end-to-end FTPMfTS process that receives time series as input, and produces
frequent temporal patterns as output. Within this process, a splitting strategy
is proposed to convert time series into event sequences while ensuring the
preservation of temporal patterns. (2) We propose the efficient Hierarchical
Temporal PatternGraphMining (HTPGM) algorithm that employs: a) efficient
data structures, Hierarchical Pattern Graph and bitmap, to enable fast support
and confidence computation; and b) pruning techniques based on the Apriori
principle and the transitivity property of temporal relations to enable faster
mining. (3) Based on the concept of mutual information which measures
the correlation among time series, we propose a novel approximate version
of HTPGM that prunes unpromising time series to significantly reduce the
search space and can scale on big datasets, i.e., many time series and many
sequences. (4) We perform extensive experiments on synthetic and real-world
datasets which show that HTPGM outperforms the baselines in both runtime
and memory usage. The approximate HTPGM is up to two orders of magni-
tude faster and less memory consumption than the baselines while retaining
high accuracy compared to the exact HTPGM.

A.2 Related work
Temporal patternmining: Compared to sequential patternmining, TPM is rather
a new research area. One of the first papers in this area is [20] from Kam et
al. that uses a hierarchical representation to manage temporal relations, and
based on that mines temporal patterns. However, the approach in [20] suffers
from ambiguitywhen presenting temporal relations. In [39], Wu et al. develop
TPrefix to mine temporal patterns from non-ambiguous temporal relations.
However, TPrefix has several inherent limitations: it scans the database re-
peatedly, and the algorithm does not employ any pruning strategies to reduce
the search space. In [32], Moskovitch et al. design a TPM algorithm using the
transitivity property of temporal relations. They use this property to generate
candidates by inferring new relations between events. In comparison, our
HTPGM uses the transitivity property for effective pruning. In [3], Iyad et al.
propose a TPM framework to detect events in time series. However, their focus
is to find irregularities in the data. In [38], Wang et al. propose a temporal
pattern mining algorithmHUTPMiner to mine high-utility patterns. Different
from our HTPGMwhich uses support and confidence to measure the frequency
of patterns, HUTPMiner uses utility to measure the importance or profit of
an event/ pattern, thereby addresses an orthogonal problem. In [37], Amit
et al. propose STIPA which uses a Hoeppner matrix representation to com-
press temporal patterns formemory savings. However, STIPAdoes not use any

77

Paper A.

pruning/ optimization strategies and thus, despite the efficient use ofmemory,
it cannot scale to large datasets, unlike our HTPGM. Other work [4], [7] pro-
poses TPM algorithms to classify health record data. However, these methods
are very domain-specific, thus cannot generalize to other domains.

The state-of-the-art TPM methods that currently achieve the best perfor-
mance are our baselines: H-DFS [35], TPMiner [8], IEMiner [36], and Z-
Miner [28]. H-DFS is a hybrid algorithm that uses breadth-first and depth-first
search strategies to mine frequent arrangements of temporal intervals. H-
DFS uses a data structure called ID-List to transform event sequences into
vertical representations, and temporal patterns are generated by merging the
ID-Lists of different events. This means that H-DFS does not scale well when
the number of time series increases. In [36], Patel et al. design a hierar-
chical lossless representation to model event relations, and propose IEMiner
that uses Apriori-based optimizations to efficiently mine patterns from this
new representation. In [8], Chen et al. propose TPMiner that uses end-
point and endtime representations to simplify the complex relations among
events. Similar to [35], IEMiner and TPMiner do not scale to datasets with
many time series. Z-Miner [28], proposed by Lee et al., is the most recent
work addressing TPM. Z-Miner improves the mining efficiency over existing
methods by employing two data structures: a hierarchical hash-based struc-
ture called Z-Table for time-efficient candidate generation and support count,
and Z-Arrangement, a structure to efficiently store event intervals in tempo-
ral patterns for efficient memory consumption. Although using efficient data
structures, Z-Miner neither employs the transitivity property of temporal re-
lations nor mutual information for pruning. Thus, Z-Miner is less efficient
than our exact and approximate HTPGM in both runtimes and memory us-
age, and does not scale to large datasets with many sequences and many time
series (see Section A.6). Our HTPGM algorithm improves on these methods
by: (1) using efficient data structures and applying pruning techniques based
on the Apriori principle and the transitivity property of temporal relations
to enable fast mining, (2) the approximate HTPGM can handle datasets with
many time series and sequences, and (3), providing an end-to-end FTPMfTS
process to mine temporal patterns directly from time series, a feature that is
not supported by the baselines.

Using correlations in TPM: Different correlation measures such as expected
support [1], all-confidence [27], and mutual information (MI) [6, 11, 15–18, 21–
25, 40] have been used to optimize the pattern mining process. However, these
only support sequential patterns. To the best of our knowledge, our proposed
approximate HTPGM is the first that uses MI to optimize TPM.

78

A.3. Preliminaries

Table A.1: A Symbolic DatabaseDSYB

Time 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55

S On On On On Off Off Off On On Off Off Off Off Off Off On On On Off Off Off Off On On On Off Off On On Off Off On On On Off Off

T Off On On On Off Off Off On On Off Off On On Off Off On On On Off Off Off Off On On On Off Off On On Off Off Off On On On Off

M Off Off Off Off On On On Off Off On On On Off On On Off Off Off On On Off On On Off Off On On Off Off On On On Off Off On On

W Off Off Off Off On On On Off Off On On Off On On On Off Off Off On On Off On On Off Off On On Off Off On On On Off Off On On

D Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off On On Off Off

I Off Off Off Off Off Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off Off Off On On Off Off Off Off Off On On

A.3 Preliminaries
In this section, we introduce the notations and the main concepts that will be
used throughout the paper.

A.3.1 Temporal Event of Time Series
Definition 3.1 (Time series) A time series X � x1 , x2 , ..., xn is a sequence of
data values that measure the same phenomenon during an observation time
period, and are chronologically ordered.
Definition 3.2 (Symbolic time series) A symbolic time series XS of a time series
X encodes the raw values of X into a sequence of symbols. The finite set of
permitted symbols used to encode X is called the symbol alphabet of X, denoted
as ΣX .

The symbolic time seriesXS is obtainedusing amapping function f : X→ΣX
that maps each value xi ∈ X to a symbol ω ∈ ΣX . For example, let X = 1.61,
1.21, 0.41, 0.0 be a time series representing the energy usage of an electrical
device. Using the symbol alphabet ΣX = {On, Off}, where On represents that
the device is on and operating (e.g., xi ≥ 0.5), and Off that the device is off
(xi < 0.5), the symbolic representation of X is: XS = On, On, Off, Off. The
mapping function f can be defined using existing time series representation
techniques such as SAX [29] or MVQ [30].
Definition 3.3 (Symbolic database) Given a set of time seriesX � {X1 , ...,Xn},
the set of symbolic representations of the time series in X forms a symbolic
databaseDSYB.

An example of the symbolic databaseDSYB is shown in Table A.1. There are
6 time series representing the energy usage of 6 electrical appliances: {Stove,
Toaster, Microwave, Clothes Washer, Dryer, Iron}. For brevity, we name the
appliances respectively as {S, T, M, W, D, I}. All appliances have the same
alphabet Σ = {On, Off}.
Definition 3.4 (Temporal event in a symbolic time series) A temporal event E in
a symbolic time series XS is a tuple E � (ω, T) where ω ∈ ΣX is a symbol, and
T � {[tsi , tei]} is the set of time intervals during which XS is associated with
the symbol ω.

79

Paper A.

Given a time series X, a temporal event is created by first converting X into
symbolic time series XS, and then combining identical consecutive symbols in
XS into one single time interval. For example, consider the symbolic represen-
tation of S in Table A.1. By combining its consecutive On symbols, we form
the temporal event “Stove is On” as: (SOn, {[10:00, 10:15], [10:35, 10:40], [11:15,
11:25], [11:50, 12:00], [12:15, 12:20], [12:35, 12:45]}).
Definition 3.5 (Instance of a temporal event) Let E � (ω, T) be a temporal
event, and [tsi , tei] ∈ T be a time interval. The tuple e � (ω, [tsi , tei]) is called
an instance of the event E, representing a single occurrence of E during [tsi , tei].
We use the notation E.e to denote that event E has an instance e.

A.3.2 Relations between Temporal Events
We adopt the popular Allen’s relations model [2] and define three basic tem-
poral relations between events. Furthermore, to avoid the exact time mapping
problem in Allen’s relations, we adopt the buffer idea from [35], adding a tol-
erance buffer ε to the relation’s endpoints. However, we change the way ε is
used in [35] to ensure the relations are mutually exclusive (proof is in the full
paper [19]).

Consider two temporal eventsEi andE j , and their corresponding instances,
ei � (ωi , [tsi , tei]) and e j � (ω j , [ts j , te j]). Let ε be anon-negativenumber (ε ≥ 0)
representing the buffer size. The following relations can be defined between
Ei and E j through ei and e j .
Definition 3.6 (Follows) Ei and E j form a Follows relation through ei and e j ,
denoted as Follows(Ei.ei

,E j.e j
) or Ei.ei

→E j.e j
, iff tei±ε≤ts j .

Definition 3.7 (Contains) Ei and E j form a Contains relation through ei and e j ,
denoted as Contains(Ei.ei

, E j.e j
) or Ei.ei

<E j.e j
, iff (tsi ≤ ts j) ∧ (tei ± ε ≥ te j).

Definition 3.8 (Overlaps) Ei and E j form an Overlaps relation through ei and
e j , denoted as Overlaps(Ei.ei

, E j.e j
) or Ei.ei

G E j.e j
, iff (tsi < ts j) ∧ (tei ± ε < te j) ∧

(tei − ts j ≥ do ± ε), where do is the minimal overlapping duration between two
event instances, and 0 ≤ ε � do .

The Follows relation represents sequential occurrences of one event after
another. For example, Ei.ei

is followed by E j.e j
if the end time tei of ei occurs

before the start time ts j of e j . Here, the buffer ε is used as a tolerance, i.e., the
Follows relation between Ei.ei

and E j.e j
holds if (tei + ε) or (tei − ε) occurs before

ts j . On the other hand, in a Contains relation, one event occurs entirely within
the timespan of another event. Finally, in anOverlaps relation, the timespans of
the two occurrences overlap each other. Table A.2 illustrates the three temporal
relations and their conditions.

80

A.3. Preliminaries

Table A.2: Temporal Relations between Events

Follows: Ei.ei
→ E j.e j

ei

tsi tei±ε
ts j te j

e j

ei

tsi tei±ε
ts j te j

e j

tei±ε ≤ ts j

Contains: Ei.ei
< E j.e j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε

e j

ts j te j

(tsi ≤ ts j) ∧ (tei±ε ≥ te j)

Overlaps: Ei.ei
G E j.e j

eitsi tei ± ε

e j

ts j te j

do

(tsi < ts j) ∧ (tei±ε < te j) ∧ (tei − ts j ≥ do±ε)

A.3.3 Temporal Pattern
Definition 3.9 (Temporal sequence) A list of n event instances S�<e1, ... , ei , ...
, en> forms a temporal sequence if the instances are chronologically ordered by
their start times. Moreover, S has size n, denoted as |S | � n.
Definition 3.10 (Temporal sequence database) A set of temporal sequences
forms a temporal sequence database DSEQ where each row i contains a temporal
sequence Si .

Table A.3 shows the temporal sequence database DSEQ, created from the
symbolic databaseDSYB in Table A.1.

81

Paper A.

Table A.3: A Temporal Sequence DatabaseDSEQ

ID Temporal sequences
1 (SOn,[10:00,10:15]), (TOff,[10:00,10:05]), (MOff,[10:00,10:20]), (WOff,[10:00,10:20]),

(DOff,[10:00,10:40]), (IOff,[10:00,10:35]), (TOn,[10:05,10:15]), (SOff,[10:15,10:35]),
(TOff,[10:15,10:35]), (MOn,[10:20,10:30]), (WOn,[10:20,10:30]), (WOff,[10:30,10:40]),
(MOff,[10:30,10:40]), (SOn,[10:35,10:40]), (TOn,[10;35,10:40]), (IOn,[10:35,10:40])

2 (SOff,[10:45,11:15]), (TOff,[10:45,10:55]), (MOn,[10;45,10:55]), (WOn,[10:45,10:50]),
(DOn,[10:45,10:50]), (IOff,[10:45,11:25]), (WOff,[10:50,11:00]), (DOff,[10:50,11:20]),
(MOff,[10:55,11:05]), (TOn,[10:55,11:00]), (TOff,[11:00,11:15]), (WOn,[11:00,11:10]),
(MOn,[11:05,11:10]), (WOff,[11:10,11:25]), (MOff,[11:10,11:25]), (SOn,[11:15,11:25]),
(TOn,[11:15,11:25]), (DOn,[11:20,11:25])

3 (SOff,[11:30,11:50]), (TOff,[11:30,11:50]), (MOn,[11:30,11:35]), (WOn,[11:30,11:35]),
(DOff,[11:30,12:10]), (IOn,[11:30,11:35]), (IOff,[11:35,12:10]), (MOff,[11:35,11:45]),
(WOff,[11:35,11:45]), (WOn,[11:45,11:50]), (MOn,[11:45,11:50]), (SOn,[11:50,12:00]),
(MOff,[11:50,12:05]), (TOn,[11:50,12:00]), (WOff,[11:50,12:05]), (SOff,[12:00,12:10]),
(TOff,[12:00,12:10]), (MOn,[12:05,12:10]), (WOn,[12:05,12:10])

4 (SOn,[12:15,12:20]), (TOn,[12:15,12:20]), (MOff,[12:15,12:25]), (WOff,[12:15,12:25]),
(DOn,[12:15,12:20]), (IOn,[12:15,12:20]), (IOff,[12:20,12:50]), (DOff,[12:20,12:40]),
(TOff,[12:20,12:40]), (SOff,[12:20,12:35]), (WOn,[12:25,12:35]), (MOn,[12:25,12:35]),
(MOff,[12:35,12:50]), (SOn,[12:35,12:45]), (WOff,[12:35,12:50]), (TOn,[12:40,12:50]),
(DOn,[12:40,12:45]), (DOff,[12:45,12:55]), (SOff,[12:45,12:55]), (TOff,[12:50,12:55]),
(MOn,[12:50,12:55]), (WOn,[12:50,12:55]), (IOn,[12:50,12:55])

Definition 3.11 (Temporal pattern) Let <�{Follows, Contains, Overlaps} be
the set of temporal relations. A temporal pattern P�<(r12 , E1 , E2),...,(r(n−1)(n) ,
En−1 , En)> is a list of triples (rĳ,Ei ,E j), each representing a relation rĳ ∈ <
between two events Ei and E j .

Note that the relation rĳ in each triple is formed using the specific instances
of Ei and E j . A temporal pattern that has n events is called an n-event pattern.
We use Ei ∈ P to denote that the event Ei occurs in P, and P1 ⊆ P to say that a
pattern P1 is a sub-pattern of P.
Definition 3.12 (Temporal sequence supports a pattern) Let S�<e1,
...,ei ,...,en> be a temporal sequence. We say that S supports a temporal pattern
P, denoted as P ∈ S, iff |S | ≥ 2 ∧ ∀(rĳ , Ei , E j) ∈ P, ∃(el , em) ∈ S such that rĳ
holds between Ei.el

and E j.em .
If P is supported by S, P can be written as P�<(r12, E1.e1 , E2.e2), ...,

(r(n−1)(n),En−1.en−1
, En.en)>, where the relation between two events in each triple

is expressed using the event instances.
In Fig. A.1, consider the sequence S �<e1=(HighCO2, [6:00, 10:00]),

e2�(BoilerOn, [7:00, 8:00]), e3�(LowCO2, [13:00, 15:00])> representing the or-
der of CO2 intensity and boiler events. Here, S supports a 3-event pattern
P�<(Contains, HighCO2.e1 , BoilerOn.e2), (Follows, HighCO2.e1 , LowCO2.e3),
(Follows, BoilerOn.e2 , LowCO2.e3)>.

Maximal duration constraint: Let P ∈ S be a temporal pattern supported by
the sequence S. The duration between the start time of the instance e1, and the
end time of the instance en in S must not exceed the predefined maximal time
duration tmax: ten − ts1 ≤ tmax.

The maximal duration constraint guarantees that the relation between any
two events is temporally valid. This enables the pruning of invalid patterns.

82

A.3. Preliminaries

For example, under this constraint, a Follows relation between a “Washer On”
event and a “Dryer On” event in Table A.3 happening one year apart should
be considered invalid.

A.3.4 Frequent Temporal Pattern
Given a temporal sequence databaseDSEQ, we want to find patterns that occur
frequently inDSEQ. Weuse support and confidence [34] tomeasure the frequency
and the likelihood of a pattern.
Definition 3.13 (Support of a temporal event) The support of a temporal event
E in DSEQ is the number of sequences S ∈ DSEQ which contain at least one
instance e of E.

supp(E) � |{S ∈ DSEQ s.t. ∃e ∈ S : E.e }| (A.1)

The relative support of E is the fraction between supp(E) and the size ofDSEQ:

rel-supp(E) � supp(E)/|DSEQ | (A.2)

Similarly, the support of agroupof events (E1 , ..., En), denotedas supp(E1 , ..., En),
is the number of sequences S ∈ DSEQ which contain at least one instance
(e1 , ..., en) of the event group.
Definition 3.14 (Support of a temporal pattern) The support of a pattern P is
the number of sequences S ∈ DSEQ that support P.

supp(P) � |{S ∈ DSEQ s.t. P ∈ S}| (A.3)

The relative support of P inDSEQ is the fraction

rel-supp(P) � supp(P)/|DSEQ | (A.4)

Definition 3.15 (Confidence of an event pair) The confidence of an event pair
(Ei , E j) inDSEQ is the fraction between supp(Ei , E j) and the support of its most
frequent event:

conf(Ei , E j) �
supp(Ei , E j)

max{supp(Ei), supp(E j)}
(A.5)

Definition 3.16 (Confidence of a temporal pattern) The confidence of a temporal
pattern P in DSEQ is the fraction between supp(P) and the support of its most
frequent event:

conf(P) �
supp(P)

max1≤k≤|P |{supp(Ek)}
(A.6)

where Ek ∈ P is a temporal event. Since the denominator in Eq. (B.6) is the
maximum support of the events in P, the confidence computed in Eq. (B.6)
is the minimum confidence of a pattern P in DSEQ, which is also called the
all-confidence as in [34].

Note that unlike association rules, temporal patterns do not have an-
tecedents and consequents. Instead, they represent pair-wise temporal re-
lations between events based on their temporal occurrences. Thus, while the

83

Paper A.

support and relative support of event(s)/ pattern(s) defined in Eqs. (B.1) − (B.4)
follow the same intuition as the traditional support concept, indicating how
frequently an event/ pattern occurs in a given database, the confidence com-
puted in Eqs. (B.5) − (B.6) instead represents the minimum likelihood of an
event pair/ pattern, knowing the likelihood of its most frequent event.

Frequent Temporal Pattern Mining from Time Series (FTP
MfTS). Given a set of univariate time series X � {X1 , ...,Xn}, let DSEQ be the
temporal sequence database obtained fromX, and σ and δ be the support and
confidence thresholds, respectively. The FTPMfTS problem aims to find all
temporal patterns P that have high enough support and confidence in DSEQ:
supp(P) ≥ σ ∧ conf(P) ≥ δ.

A.4 Frequent Temporal Pattern Mining
Fig. A.2 gives an overview of the FTPMfTS process which consists of 2 phases.
The first phase, Data Transformation, converts a set of time series X into a
symbolic database DSYB, and then converts DSYB into a temporal sequence
database DSEQ. The second phase, Frequent Temporal Pattern Mining, mines
frequent patterns which includes 3 steps: (1) Frequent Single Event Mining, (2)
Frequent 2-Event Pattern Mining, and (3) Frequent k-Event Pattern Mining (k>2).
The final output is a set of all frequent patterns inDSEQ.

Set of Time Series X

Symbolic Time Series Representation

Temporal Sequence Database Conversion

Frequent Single Event Mining

Frequent 2-Event Pattern Mining

Frequent k-Event Pattern Mining (k > 2)

Frequent Temporal Patterns

FT
PM

fTS
Pr
oc
ess

Data
Transformation

TemporalPatterns
Mining(HTPGM)

DSYB

DSEQ

Fig. A.2: The FTPMfTS process

A.4.1 Data Transformation

Symbolic Time Series Representation

Given a set of time series X, the symbolic representation of each time series
X ∈ X is obtained by using a mapping function as in Def. 3.2.

84

A.4. Frequent Temporal Pattern Mining

Temporal Sequence Database Conversion

To convert DSYB to DSEQ, a straightforward approach is to split the symbolic
series in DSYB into equal-length sequences, each belongs to a row in DSEQ.
For example, if each symbolic series in Table A.1 is split into 4 sequences, then
each sequence will last for 40 minutes. The first sequence S1 ofDSEQ therefore
contains temporal events of S, T, M,W, D, and I from 10:00 to 10:40. The second
sequence S2 contains events from 10:45 to 11:25, and similarly for S3 and S4.

However, the splitting can lead to a potential loss of temporal patterns. The
loss happenswhen a splitting point accidentally divides a temporal pattern into
different sub-patterns, and places these into separate sequences. We explain
this situation in Fig. A.3a. Consider 2 sequences S1 and S2, each of length
t. Here, the splitting point divides a pattern of 4 events, {SOn, TOn, MOn,
WOn}, into two sub-patterns, in which SOn and TOn are placed in S1, and
MOn andWOn in S2. This results in the loss of this 4-event pattern which can
be identified only when all 4 events are in the same sequence.

To prevent such a loss, we propose a splitting strategy using overlapping
sequences. Specifically, two consecutive sequences are overlapped by a du-
ration tov: 0 ≤ tov ≤ tmax, where tmax is the maximal duration of a temporal
pattern. The value of tov decides how large the overlap between Si and Si+1
is: tov � 0 results in no overlap, i.e., no redundancy, but with a potential loss
of patterns, while tov � tmax creates large overlaps between sequences, i.e.,
high redundancy, but all patterns are preserved. As illustrated in Fig. A.3b,
the overlapping between S1 and S2 keeps the 4 events together in the same
sequence S2, and thus helps preserve the pattern.

S1 S2

t t
SOn
TOn MOn

WOn

(a) With no overlapping

S1 S2

tov
t

t

SOn
TOn MOn

WOn

(b)With overlapping

Fig. A.3: Splitting strategy

A.4.2 Frequent Temporal Patterns Mining
Wenowpresent ourmethod, calledHierarchical Temporal PatternGraphMin-
ing (HTPGM), to mine frequent temporal patterns fromDSEQ. The main nov-
elties of HTPGM are: a) the use of efficient data structures, i.e., the proposed
Hierarchical Pattern Graph and bitmap indexing, to enable fast computations of
support and confidence, and b) the proposal of two groups of pruning tech-
niques based on the Apriori principle and the temporal transitivity property

85

Paper A.

of temporal events. In Section A.5, we introduce an approximate version of
HTPGM based on mutual information to further optimize the mining process.
We first discuss the data structures used in HTPGM.

Hierarchical Pattern Graph (HPG):We use a hierarchical graph structure,
called the Hierarchical Pattern Graph, to keep track of the frequent events and
patterns found in each mining step. The HPG allows HTPGM to mine itera-
tively (e.g., 2-event patterns aremined based on frequent single events, 3-event
patterns aremined based on 2-event patterns, and so on) and perform effective
pruning. Fig. A.4 shows the HPG built from DSEQ in Table A.3: the root is
the empty set ∅, and each level Lk maintains frequent k-event patterns. As
HTPGM proceeds, HPG is constructed gradually. We explain this process for
each mining step.

... TOn,IOn

SOn SOff TOff MOn WOnMOff WOff DOff IOnTOn IOff

∅

SOn,TOn,MOn,WOn

TOn,MOn,WOnSOn,MOn,WOnSOn,TOn,WOnSOn,TOn,MOn

(10:00,10:15),(10:05,10:15),(10:20,10:30)1

0

1

1

(11:50,12:00),(11:50,12:00),(12:05,12:10)

(12:15,12:20),(12:15,12:20),(12:25,12:35)

... MOn,WOn ...

Search space

SOn,TOn SOn,MOn SOn,WOn SOn,IOn TOn,MOn TOn,WOn
1 1 1 1 1 0 1 1

(11:50,12:00)

(12:15,12:20)

1

1

1

1

(10:00,10:15)

(11:15,11:25)

(12:35,12:45)

(10:35,10:40)

(11:30,11:35)

(12:15,12:20)

1

0

1

1

(10:35,10:40)

(12:50,12:55)

Fig. A.4: A Hierarchical Pattern Graph for Table A.3

Efficient bitmap indexing: We use bitmaps to index the occurrences of
events and patterns in DSEQ, enabling fast computations of support and con-
fidence. Specifically, each event E or pattern P found in DSEQ is associated
with a bitmap indicating where E or P occurs. Each bitmap b has length |DSEQ |
(i.e., the number of sequences), and has value b[i] � 1 if E or P is present in
sequence i of DSEQ, or b[i] � 0 otherwise. An example bitmap can be seen at
L1 in Fig. A.4. The event IOn has the bitmap bIOn � [1,0,1,1], indicating that
IOn occurs in all but the second sequence ofDSEQ.

Constructing the bitmap is also done step by step. For single events in

86

A.4. Frequent Temporal Pattern Mining

Algorithm 7: Hierarchical Temporal Pattern Graph Mining
Input: Temporal sequence databaseDSEQ, a support threshold σ, a confidence

threshold δ
Output: The set of frequent temporal patterns P
// Mining frequent single events

1: foreach event Ei ∈ DSEQ do
2: supp(Ei) ← countBitmap(bEi);
3: if supp(Ei) ≥ σ then
4: Insert Ei to 1Freq;

// Mining frequent 2-event patterns
5: EventPairs← Cartesian(1Freq,1Freq);
6: FrequentPairs← ∅;
7: foreach (Ei , E j) in EventPairs do
8: bi j ← AND(bEi ,bE j);
9: supp(Ei , E j) ← countBitmap(bi j);
10: if supp(Ei , E j) ≥ σ then
11: FrequentPairs← Apply_Lemma3(Ei , E j);
12: foreach (Ei , E j) in FrequentPairs do
13: Retrieve event instances;
14: Check frequent relations;

// Mining frequent k-event patterns
15: Filtered1Freq← Transitivity_Filtering(1Freq); //Lemmas 4, 5
16: kEventCombinations← Cartesian(Filtered1Freq,(k-1)Freq);
17: FrequentkEvents← Apriori_Filtering(kEventCombinations);
18: foreach kEvents in FrequentkEvents do
19: Retrieve relations;
20: Iteratively check frequent relations; //Lemmas 4, 6, 7

DSEQ, bitmaps are built by scanningDSEQ only once. Algorithm 7 provides the
pseudo-code of HTPGM. The details are explained in each mining step.

A.4.3 Mining Frequent Single Events
The first step in HTPGM is to find frequent single events (Alg. 7, lines 1-4)
which is easily done using the bitmap. For each event Ei in DSEQ, the support
supp(Ei) is computed by counting the number of set bits in bitmap bEi , and
comparing against σ. Note that for single events, confidence is not considered
since it is always 1.

After this step, the set 1Freq containing frequent single events is created to
build L1 of HPG. We illustrate this process using Table A.3, with σ � 0.7 and
δ � 0.7. Here, 1Freq contains 11 frequent events, each belongs to one node in
L1. The event DOn is not frequent (only appears in sequences 2 and 4), and is
thus omitted. Each L1 node has a unique event name, a bitmap, and a list of
instances corresponding to that event (see SOn at L1).

87

Paper A.

Complexity: The complexityoffinding frequent single events isO(m·|DSEQ |
), where m is the number of distinct events.

Proof. Detailed proofs of all complexities, lemmas and theorems in this article can
be found in the Appendix of the full paper [19].

A.4.4 Mining Frequent 2-event Patterns

Search space of HTPGM

The next step in HTPGM is to mine frequent 2-event patterns. A straight-
forward approach would be to enumerate all possible event pairs, and check
whether each pair can form frequent patterns. However, this naive approach
is very expensive. Not only does it need to repeatedly scanDSEQ to check each
combination of events, the complex relations between events also add an extra
exponential factor 3h2 to the mh number of possible candidates, creating a very
large search space that makes the approach infeasible.

Lemma 1 Let m be the number of distinct events inDSEQ, and h be the longest length
of a temporal pattern. The total number of temporal patterns in HPG from L1 to Lh is
O(mh3h2).

Lemma 1 shows the driving factors of HTPGM’s exponential search space
(proof in [19]): the number of events (m), the max pattern length (h), and the
number of temporal relations (3). A dataset of just a few hundred events can
create a search spacewithbillions of candidatepatterns. Theoptimizations and
approximation proposed in the following sections help mitigate this problem.

Two-steps filtering approach

Given the huge set of pattern candidates, it is expensive to check their support
and confidence. We propose a filtering approach to reduce the unnecessary
candidate checking. Specifically, at any level l (l ≥ 2) in HPG, the mining
process is divided into two steps: (1) it first finds frequent nodes (i.e., remove
infrequent combinations of events), (2) it then generates temporal patterns
only from frequent nodes. The correctness of this filtering approach is based
on the Apriori-inspired lemmas below.

Lemma 2 Let P be a 2-event pattern formed by an event pair (Ei , E j). Then,
supp(P) ≤ supp(Ei , E j).

From Lemma 2, the support of a pattern is at most the support of its events.
Thus, infrequent event pairs cannot form frequent patterns and thereby, can
be safely pruned.

Lemma 3 Let (Ei , E j) be a pair of events occurring in a 2-event pattern P. Then
conf(P) ≤ conf(Ei , E j).

88

A.4. Frequent Temporal Pattern Mining

From Lemma 3, the confidence of a pattern P is always at most the con-
fidence of its events. Thus, a low-confidence event pair cannot form any
high-confidence patterns and therefore, can be safely pruned. We note that
the Apriori principle has already been used in other work, e.g., [8, 35], for
mining optimization. However, they only apply this principle to the support
(Lemma 2), while we further extend it to the confidence (Lemma 3). Ap-
plying Lemmas 2 and 3 to the first filtering step will remove infrequent or
low-confidence event pairs, reducing the candidate patterns of HTPGM. We
detail this filtering below.

Step 2.1. Mining frequent event pairs: This step finds frequent event
pairs inDSEQ, using the set 1Freq found in L1 of HPG (Alg. 7, lines 5-11). First,
HTPGMgenerates all possible event pairs by calculating the Cartesian product
1Freq × 1Freq. Next, for each pair (Ei , E j), the joint bitmap bĳ (representing
the set of sequences where both events occur) is computed by ANDing the
two individual bitmaps: bĳ � AND(bEi , bE j). Finally, HTPGM computes the
support supp(Ei , E j) by counting the set bits in bĳ, and comparing against σ.
If supp(Ei , E j) ≥ σ, (Ei , E j) has high enough support. Next, (Ei , E j) is further
filtered using Lemma 3: (Ei , E j) is selected only if its confidence is at least
δ. After this step, only frequent and high-confidence event pairs remain and
form the nodes in L2.

Step 2.2. Mining frequent 2-event patterns: This step finds frequent 2-
event patterns from the nodes in L2 (Alg. 7, lines 12-14). For each node
(Ei , E j) ∈ L2, we use the bitmap bĳ to retrieve the set of sequencesS where both
events are present. Next, for each sequence S ∈ S, the pairs of event instances
(ei , e j) are extracted, and the relations between them are verified. The sup-
port and confidence of each relation r(Ei.ei

, E j.e j
) are computed and compared

against the thresholds, after which only frequent relations are selected and
stored in the corresponding node in L2. Examples of the relations in L2 can be
seen in Fig. A.4, e.g., node (SOn, TOn).

Step 2.2 results in two different sets of nodes in L2. The first set contains
nodes that have frequent events but do not have any frequent patterns. These
nodes (colored in brown in Fig. A.4) are removed from L2. The second set
contains nodes that have both frequent events and frequent patterns (colored
in green), which remain in L2 and are used in the subsequent mining steps.

Complexity: Let m be the number of frequent single events in L1, and i be
the average number of event instances of each frequent event. The complexity
of frequent 2-event pattern mining is O(m2i2 |DSEQ |2).

A.4.5 Mining Frequent k-event Patterns
Mining frequent k-event patterns (k ≥ 3) follows a similar process as 2-event
patterns, with additional prunings based on the transitivity property of tem-
poral relations.

89

Paper A.

Step 3.1. Mining frequent k-event combinations: This step finds frequent
k-event combinations in Lk (Alg. 7, lines 15-17).

Let (k-1)Freq be the set of frequent (k-1)-event combinations found in Lk−1,
and 1Freq be the set of frequent single events in L1. To generate all k-event
combinations, the typical process is to compute the Cartesian product: (k-
1)Freq × 1Freq. However, we observe that using 1Freq to generate k-event
combinations at Lk can create redundancy, since 1Freq might contain events
that when combined with nodes in Lk−1, result in combinations that clearly
cannot form any frequent patterns. To illustrate this observation, consider
node IOn at L1 in Fig. A.4. Here, IOn is a frequent event, and thus, can be
combined with frequent nodes in L2 such as (SOn, TOn) to create a 3-event
combination (SOn, TOn, IOn). However, (SOn, TOn, IOn) cannot form any
frequent 3-event patterns, since IOn is not present in any frequent 2-event
patterns in L2. To reduce the redundancy, the combination (SOn, TOn, IOn)
should not be created in the first place. We rely on the transitivity property of
temporal relations to identify such event combinations.

Lemma 4 Let S �< e1,..., en−1 > be a temporal sequence that supports an (n-1)-event
pattern P �< (r12, E1.e1 , E2.e2),..., (r(n−2)(n−1), En−2.en−2

, En−1.en−1
) >. Let en be a

new event instance added to S to create the temporal sequence S
′
�< e1 , ..., en >.

The set of temporal relations< is transitive on S
′ : ∀ei ∈ S

′ , i < n, ∃r ∈ < s.t.
r(Ei.ei

,En.en) holds.

Lemma4 says that given a temporal sequence S, a newevent instance added
to S will always form at least one temporal relation with existing instances in
S. This is due to the temporal transitivity property, which can be used to prove
the following lemma.

Lemma 5 Let Nk−1 � (E1 , ..., Ek−1) be a frequent (k-1)-event combination, and Ek be
a frequent single event. The combination Nk � Nk−1 ∪ Ek can form frequent k-event
temporal patterns if ∀Ei ∈ Nk−1, ∃r ∈ < s.t. r(Ei , Ek) is a frequent temporal relation.

From Lemma 5, only single events in L1 that occur in Lk−1 should be used to
create k-event combinations. Using this result, a filtering on 1Freq is performed
before calculating the Cartesian product. Specifically, from the nodes in Lk−1,
we extract the distinct single events Dk−1, and intersect them with 1Freq to re-
move redundant single events: Filtered1Freq= Dk−1 ∩ 1Freq. Next, theCartesian
product (k-1)Freq× Filtered1Freq is calculated to generate k-event combinations.
Finally, we apply Lemmas 2 and 3 to select frequent and high-confidence k-
event combinations kFreq to form Lk .

Step 3.2 Mining frequent k-event patterns: This step finds frequent k-
event patterns from the nodes in Lk (Alg. 7, lines 18-20). Unlike 2-event
patterns, determining the relations in a k-event combination (k ≥ 3) is much
more expensive, as it requires to verify the frequency of 1

2 k(k − 1) triples.

90

A.5. Approximate HTPGM

To reduce the cost of relation checking, we propose an iterative verification
method that relies on the transitivity property and the Apriori principle.

Lemma 6 Let P and P
′ be two temporal patterns. If P

′ ⊆ P, then conf(P′) ≥ conf(P).

Lemma 7 LetP andP
′ be two temporal patterns. IfP

′ ⊆ P and supp(P′)
max1≤k≤|P |{supp(Ek)} Ek∈P

≤ δ, then conf(P) ≤ δ.

Lemma 6 says that, the confidence of a pattern P is always at most the con-
fidence of its sub-patterns. Consequently, from Lemma 7, a temporal pattern
P cannot be high-confidence if any of its sub-patterns are low-confidence.

Let Nk−1 � (E1 , ..., Ek−1) be a node in Lk−1, N1 � (Ek) be a node in L1, and
Nk � Nk−1 ∪ N1 � (E1 , ..., Ek) be a node in Lk . To find k-event patterns for
Nk , we first retrieve the set Pk−1 containing frequent (k-1)-event patterns in
node Nk−1. Each pk−1 ∈ Pk−1 is a list of 1

2 (k − 1)(k − 2) triples: {(r12, E1.e1 ,
E2.e2),...,(r(k−2)(k−1), Ek−2.ek−2

, Ek−1.ek−1
)}. We iteratively verify the possibility of

pk−1 forming a frequent k-event pattern with Ek as follows.
We first check whether the triple (r(k−1)k , Ek−1.ek−1

, Ek.ek
) is frequent and

high-confidence by accessing the node (Ek−1 , Ek) in L2. If the triple is not
frequent (using Lemmas 4 and 5) or high-confidence (using Lemmas 4, 6, and
7), the verifying process stops immediately for pk−1. Otherwise, it continues
on the triple (r(k−2)k , Ek−2.ek−2

, Ek.ek
), until it reaches (r1k , E1.e1 , Ek.ek

).
We note that the transitivity property of temporal relations has been ex-

ploited in [32] to generate new relations. Instead, we use this property to prune
unpromising candidates (Lemmas 4, 5, 6, 7).

Complexity: Let r be the average number of frequent (k-1)-event patterns
in Lk−1. The complexity of frequent k-event pattern mining is O(|1Freq| · |Lk−1 |
· r · k2·|DSEQ |).

HTPGM overall complexity: Throughout this section, we have seen that
HTPGMcomplexity depends on the size of the search space (O(mh3h2)) and the
complexity of the mining process itself, i.e., O(m·|DSEQ |) + O(m2i2 |DSEQ |2) +
O(|1Freq| · |Lk−1 | · r · k2·|DSEQ |). While the parameters m, h, i, r and k depend
on the number of time series, others such as |1Freq|, |Lk−1 | and |DSEQ | also
depend on the number of temporal sequences. Thus, given a dataset, HTPGM
complexity is driven by two main factors: the number of time series and the
number of temporal sequences.

A.5 Approximate HTPGM

A.5.1 Correlated Symbolic Time Series
Let XS and YS be the symbolic series representing the time series X and Y,
respectively, and ΣX , ΣY be their symbolic alphabets.

91

Paper A.

Definition 5.1 (Entropy) The entropy of XS, denoted as H(XS), is defined as

H(XS) � −
∑

x∈ΣX

p(x) · log p(x) (A.7)

Intuitively, the entropy measures the amount of information or the inherent
uncertainty in the possible outcomes of a random variable. The higher the
H(XS), the more uncertain the outcome of XS.

The conditional entropy H(XS |YS) quantifies the amount of information
needed to describe the outcome of XS, given the value of YS, and is defined as

H(XS |YS) � −
∑

x∈ΣX

∑
y∈ΣY

p(x , y) · log
p(x , y)

p(y) (A.8)

Definition 5.2 (Mutual information) The mutual information of two symbolic
series XS and YS, denoted as I(XS; YS), is defined as

I(XS ; YS) �
∑

x∈ΣX

∑
y∈ΣY

p(x , y) · log
p(x , y)

p(x) · p(y) (A.9)

TheMI represents the reduction of uncertainty of one variable (e.g., XS), given
the knowledge of another variable (e.g., YS). The larger I(XS; YS), the more
information is shared between XS and YS, and thus, the less uncertainty about
one variable given the other.

We demonstrate how to compute theMI between the symbolic series S and
T in Table A.1. We have: p(SOn)= 17

36 , p(SOff)= 19
36 , p(TOn)= 18

36 , and p(TOff)= 18
36 .

We also have the joint probabilities: p(SOn, TOn) = 15
36 , p(SOff, TOff) = 16

36 ,
p(SOn, TOff) = 2

36 , and p(SOff, TOn) = 3
36 . Applying Eq. A.9, we have I(S; T) =

0.29.
Since 0 ≤ I(XS; YS) ≤ min(H(XS),H(YS)) [10], the MI value has no upper

bound. To scale the MI into the range [0 − 1], we use normalized mutual
information as defined below.
Definition 5.3 (Normalized mutual information) The normalized mutual infor-
mation (NMI) of two symbolic time series XS and YS, denoted as Ĩ(XS; YS), is
defined as

Ĩ(XS ; YS) �
I(XS ; YS)

H(XS)
� 1 − H(XS |YS)

H(XS)
(A.10)

Ĩ(XS; YS) represents the reduction (in percentage) of the uncertainty of XS due
to knowing YS. Based on Eq. (A.10), a pair of variables (XS ,YS) holds amutual
dependency if Ĩ(XS; YS) > 0. Eq. (A.10) also shows that NMI is not symmetric,
i.e., Ĩ(XS; YS) , Ĩ(YS; XS).

Using Table A.1, we have I(S; T) � 0.29. However, we do not know what
the 0.29 reduction means in practice. Applying Eq. (A.10), we can compute
NMI Ĩ(S; T) � 0.43, which says that the uncertainty of S is reduced by 43%
given T. Moreover, we also have Ĩ(T; S) � 0.42, showing that Ĩ(S; T) , Ĩ(T; S).

92

A.5. Approximate HTPGM

Definition 5.4 (Correlated symbolic time series) Let µ (0 < µ ≤ 1) be the
mutual information threshold. We say that the two symbolic series XS and YS

are correlated iff Ĩ(XS; YS) ≥ µ ∨ Ĩ(YS; XS) ≥ µ, and uncorrelated otherwise.

A.5.2 Lower Bound of the Confidence

Derivation of the lower bound

Consider 2 symbolic series XS and YS. Let X1 be a temporal event in XS, Y1 be
a temporal event in YS, andDSYB andDSEQ be the symbolic and the sequence
databases created from XS and YS, respectively. We first study the relationship
between the support of (X1 ,Y1) inDSYB andDSEQ.

Lemma 1 Let supp(X1 ,Y1)DSYB and supp(X1 ,Y1)DSEQ be the support of (X1 ,Y1) in
DSYB and DSEQ, respectively. We have the following relation: supp(X1 ,Y1)DSYB ≤
supp(X1 ,Y1)DSEQ .

From Lemma 1, if an event pair is frequent in DSYB, it is also frequent in
DSEQ. We now investigate the connection between Ĩ(XS; YS) in DSYB, and the
confidence of (X1 ,Y1) inDSEQ.

Theorem 1 (Lower bound of the confidence) Let σ and µ be the minimum support
and mutual information thresholds, respectively. Assume that (X1 ,Y1) is frequent in
DSEQ, i.e., supp(X1 ,Y1)DSEQ ≥ σ. If the NMI Ĩ(XS;YS) ≥ µ, then the confidence of
(X1 ,Y1) inDSEQ has a lower bound:

conf(X1 ,Y1)DSEQ ≥ σ · λ
1−µ
σ

1 ·
(

nx − 1
1 − σ

) λ2
σ

(A.11)

where: nx is the number of symbols in ΣX , λ1 is the minimum support of Xi ∈ XS,
and λ2 is the support of (Xi ,Yj) ∈ (XS ,YS) such that p(Xi |Yj) is minimal, ∀(i , 1
& j , 1).

Proof (Sketch - Detailed proof in [19]). From Eq. (A.10), we have:

Ĩ(XS; YS) � 1 − H(XS |YS)
H(XS)

≥ µ (A.12)

⇒ H(XS |YS)
H(XS)

�
p(X1 ,Y1) · log p(X1 |Y1)∑

i p(Xi) · log p(Xi)

+

∑
i,1& j,1 p(Xi ,Yj) · log p(Xi ,Yj)

p(Yj)∑
i p(Xi) · log p(Xi)

≤ 1 − µ (A.13)

93

Paper A.

Let λ1 � p(Xk) such that p(Xk) � min{p(Xi)}∀i, and λ2 � p(Xm ,Yn) such that
p(Xm |Yn) � min{p(Xi |Yj)}, ∀(i , 1& j , 1). Then, by applying the min-max
inequality theorem for the sum of ratio [5] to the numerator of Eq. (A.13), we obtain:

H(XS |YS)
H(XS)

≥
p(X1 ,Y1) · log p(X1 |Y1) + λ2 · log 1−p(X1 ,Y1)

nx−p(Y1)

log λ1

≥
σ · log p(X1 ,Y1)

p(Y1) + λ2 · log 1−σ
nx−1

log λ1
(A.14)

Next, assume that supp(Y1)DSYB ≥ supp(X1)DSYB . From Eqs. (A.13), (A.14), the
confidence lower bound of (X1 ,Y1) inDSYB is derived as:

conf(X1 ,Y1)DSYB �
supp(X1 ,Y1)DSYB

supp(Y1)DSYB

≥ λ
1−µ
σ

1 ·
(

nx − 1
1 − σ

) λ2
σ

(A.15)

Since:

conf(X1 ,Y1)DSEQ ≥ σ · conf(X1 ,Y1)DSYB (A.16)

It follows that:

conf(X1 ,Y1)DSEQ ≥ σ · λ
1−µ
σ

1 ·
(

nx − 1
1 − σ

) λ2
σ

(A.17)

Interpretation of the confidence lower bound: Theorem 1 says that, given an
MI threshold µ, if the two symbolic series XS and YS are correlated, then the
confidence of a frequent event pair in (XS,YS) is at least the lower bound in
Eq. (A.11). Combining Theorem 1 and Lemma 3, we can conclude that given
(XS,YS), if its event pair has a confidence less than the lower bound, then any
pattern P formed by that event pair also has a confidence less than that lower
bound. This allows to approximate HTPGM (discussed in Section A.5.3).

Shape of the confidence lower bound

To understand how the confidence changes w.r.t. the support σ and the MI µ,
we analyze its shape, shown in Fig. A.5 (σ and µ vary between 0 and 1). First,
it can be seen that the confidence lower bound has a direct relationship with σ
and µ (one increases if the other increases and vice versa). While the direct
relationship between the confidence and σ can be explained using Eq. (B.5), it
is interesting to observe the connection between µ and the confidence. As the
MI represents the correlation between two symbolic series, the larger the value
of µ, the more correlated the two series. Thus, when the confidence increases
together with µ, it implies that patterns with high confidence are more likely
to be found in highly correlated series, and vice versa.

94

A.5. Approximate HTPGM

Fig. A.5: Shape of the lower bound

S T

MW

0.49
0.420.49

0.42

0.42

0.68

Fig. A.6: Correlation graph
Fig. A.5 also shows that, when σ is low, e.g., σ < 0.1, we obtain a very low

value of the confidence lower bound regardless of µ value. This implies that
the confidence is less sensitive to µ when the support is low. The opposite
is obtained when the support is high, e.g., σ > 0.1, where we see a visible
increase of the confidence lower bound as µ increases. This indicates that the
"insensitive" area of the lower bound (when σ ≤ 0.1) is less accurate than the
"sensitive" area (σ > 0.1) when performing the approximatemining, as wewill
discuss in Section A.6.

A.5.3 Using the Bound to Approximate HTPGM

Correlation graph

Using Theorem 1, we propose to approximate HTPGM by performing the
mining only on the set of correlated symbolic series XC ⊆ X. We first define the
correlation graph.
Definition 5.5 (Correlation graph) A correlation graph is an undirected graph

GC � (V, E)where V is the set of vertices, and E is the set of edges. Each vertex
v ∈ V represents one symbolic series XS ∈ XC . There is an edge euv between
a vertex u containing XS, and a vertex v containing YS iff Ĩ(XS; YS) ≥ µ ∨
Ĩ(YS; XS) ≥ µ.

Fig. A.6 shows an example of the correlation graph GC built from DSYB in
Table A.1. Here, each node corresponds to one electrical appliance. There is
an edge between two nodes if their NMI is at least µ. The number on each
edge is the NMI between two nodes.

Constructing the correlation graph: Given a symbolic databaseDSYB, the
correlation graph GC can easily be constructed by computing the NMI for each
symbolic series pair, and comparing their NMI against the threshold µ. A
symbolic series pair is included in GC if their NMI is at least µ, and vice versa.

Setting the value of µ: While NMI can easily be computed using Eq.
(A.10), it is not trivial how to set the value for µ. Here, we propose a method
to determine µ using the lower bound in Eq. (A.11).

95

Paper A.

Recall that HTPGM relies on two user-defined parameters, the support
threshold σ and the confidence threshold δ, to look for frequent temporal
patterns. Based on the confidence lower bound in Theorem 1, we can derive µ
using σ and δ as the following.

Corollary 1.1 The confidence of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at
least δ if Ĩ(XS; YS) is at least µ, where:

µ ≥ 1 − σ · logλ1

©­« δσ ·
(

1 − σ
nx − 1

) λ2
σ ª®¬ (A.18)

Note that µ in Eq. (A.18) only ensures that the event pair (X1 ,Y1) has a
minimum confidence of δ. Thus, given (XS ,YS), µ has to be computed for
each event pair in (XS ,YS). The final chosen µ value to be compared against
Ĩ(XS; YS) is the minimum µ value among all the event pairs in (XS ,YS).

Algorithm 8: Approximate HTPGM using MI
Input: A set of time series X, an MI threshold µ, support threshold σ,

confidence threshold δ
Output: The set of frequent temporal patterns P

1: convert X toDSYB andDSEQ;
2: scanDSYB to compute the probability of each event and event pair;
3: foreach pair of symbolic time series (XS ,YS) ∈ DSYB do
4: compute Ĩ(XS ; YS) and Ĩ(YS ; XS);
5: compute µ;
6: if Ĩ(XS ;YS) ≥ µ ∨ Ĩ(YS ; XS) ≥ µ then
7: insert XS and YS into XC ;
8: create an edge between XS and YS in GC ;
9: foreach XS ∈ XC do

10: mine frequent single events from XS ;
11: foreach event pair (Ei , E j) in L1 do
12: if there is an edge between XS and YS in GC then
13: mine frequent patterns for (Ei , E j);
14: if k ≥ 3 then
15: perform HTPGM using L1 and L2;

Approximate HTPGM using the correlation graph

Using the correlation graph GC , the approximate HTPGM is described in
Algorithm 8. First, DSYB is scanned once to compute the probability of each
single event and pair of events (line 2). Next, NMI and µ are computed for each
pair of symbolic series (XS ,YS) in DSYB (lines 4-5). Then, only pairs whose
Ĩ(XS; YS) or Ĩ(YS; XS) is at least µ are inserted intoXC , and an edge between XS
and YS is created (lines 6-8). Next, at L1 of HPG, only the correlated symbolic

96

A.6. Experimental Evaluation

series in XC are used to mine frequent single events (lines 9-10). At L2, GC
is used to filter 2-event combinations: for each event pair (Ei , E j), we check
whether there is an edge between their corresponding symbolic series in GC .
If so, we proceed by verifying the support and confidence of (Ei , E j) as in the
exact HTPGM (lines 11-13). Otherwise, (Ei , E j) is eliminated from the mining
of L2. From level Lk (k ≥ 3) onwards, the exact HTPGM is used (lines 14-15).

Complexity analysis

To compute NMI and µ, we only have to scan DSYB once to calculate the
probability for each single event and pair of events. Thus, the cost of NMI
and µ computations is |DSYB |. On the other hand, the complexity of the exact
HTPGMat L1 and L2 are O(m2i2 |DSEQ |2)+O(m·|DSEQ |) (SectionA.4.4). Thus,
the approximate HTPGM is significantly faster than HTPGM.

Table A.4: Characteristics of the Datasets

NIST UKDALE DataPort Smart City ASL
sequences 1460 1520 1460 1216 1908
variables 49 24 21 26 25

distinct events 98 48 42 130 173
instances/seq. 55 190 49 162 20

A.6 Experimental Evaluation
We evaluate HTPGM (both exact and approximate), using real-world datasets
from three application domains: smart energy, smart city, and sign language.
Due to space limitations, we only present here the most important results, and
discuss other findings in [19].

A.6.1 Experimental Setup
Datasets: We use 3 smart energy datasets, NIST [14], UKDALE [26], and

DataPort [13], all of which measure the energy/power consumption of elec-
trical appliances in residential households. For the smart city, we use weather
and vehicle collision data obtained from NYC Open Data Portal [9]. For sign
language, we use the American Sign Language (ASL) datasets [33] containing
annotated video sequences of different ASL signs and gestures. Table A.4
summarizes their characteristics.

Baseline methods: Our exact method is referred to as E-HTPGM, and the
approximate one as A-HTPGM. We use 4 baselines (described in Section A.2):
Z-Miner [28], TPMiner [8], IEMiner [36], and H-DFS [35]. Since E-HTPGM
and the baselines provide the same exact solutions, we use the baselines only

97

Paper A.

for the quantitative evaluation, and compare only E-HTPGM and A-HTPGM
qualitatively.

Infrastructure: The experiments are run on virtual machines (VM) with
AMD EPYC Processor 32 cores (2GHz) CPU, 256 GB main memory, and 1 TB
storage. For scalability evaluation, we use VMs with 512 GB main memory.

Parameters: Table A.5 lists the parameters and their values used in our
experiments.

Table A.5: Parameters and values

Params Values
Support σ User-defined: σ � 0.5%, 1%, 10%, 20%, ...

Confidence δ User-defined: δ � 0.5%, 1%, 10%, 20%, ...

Overlapping
duration tov

User-defined:
tov (hours) � 0, 1, 2, 3 (NIST, UKDALE, DataPort, and Smart City)
tov (frames) � 0, 150, 300, 450 (ASL)

Tolerance
buffer ε

User-defined:
ε (mins) � 0, 1, 2, 3 (NIST, UKDALE, DataPort)
ε (mins) � 0, 5, 10, 15 (Smart City)
ε (frames) � 0, 30, 45, 60 (ASL)

A.6.2 Qualitative Evaluation
Our goal is to make sense and learn insights from extracted patterns. Table
A.6 lists some interesting patterns found in the datasets.

Patterns P1 - P9 are extracted from the energy datasets, showing how the
residents interact with electrical devices in their houses. Patterns P10 - P15
extracted from the smart city datasets, while patterns P16 - P19 are from the
ASL dataset.

A.6.3 Quantitative Evaluation

Baselines comparison on real world datasets

We compare E-HTPGM and A-HTPGM with the baselines in terms of the
runtime andmemory usage. Tables A.7 andA.8 show the experimental results
on the energy and the smart city datasets. The quantitative results of other
datasets are reported in the full paper [19].

As shown in Table A.7, A-HTPGM achieves the best runtime among all
methods, and E-HTPGM has better runtime than the baselines. On the tested
datasets, the range and average speedups of A-HTPGM compared to other
methods are: [1.21-4.82] and 2.31 (E-HTPGM), [2.52-25.86] and 7.85 (Z-Miner),
[7.43-69.68] and21.65 (TPMiner), [8.61-188.16] and40.75 (IEMiner), and [14.50-
332.98] and 61.36 (H-DFS). The speedups of E-HTPGM compared to the base-

98

A.6. Experimental Evaluation

Table A.6: Summary of Interesting Patterns

Patterns Supp. (%) Conf. (%)
(P1) ([05:58, 08:24] First Floor Lights) < ([05:58, 06:59]Upstairs BathroomLights) < ([05:59, 06:06]Microwave) 20 30
(P2) ([06:00, 07:01] Upstairs Bathroom Lights) < ([06:40, 06:46] Upstairs Bathroom Plugs) 30 55
(P3) ([18:00, 18:30] Lights Dining Room) → ([18:31, 20:16] Children Room Plugs) G ([19:00, 22:31] Lights
Living Room)

20 20

(P4) ([15:59, 16:05] Hallway Lights) → ([17:58, 18:29] Kitchen Lights < ([18:00, 18:18] Plug In Kitchen) <
([18:08, 18:15] Microwave)

20 25

(P5) ([06:02, 06:19] Kitchen Lights)→ ([06:05, 06:12] Microwave) G ([06:09, 06:11] Kettle) 20 35
(P6) ([18:10,18:15] Kitchen App)→ ([18:15,19:00] Lights Plugs) < ([18:20,18:25] Microwave)→ ([18:25,18:55]
Cooktop)

25 50

(P7) ([16:45, 17:30] Washer)→ ([17:40,18:55] Dryer)→ ([19:05, 20:10] Dining Room Lights) < ([19:10, 19:30]
Cooktop)

10 30

(P8) ([06:10, 07:00] Kitchen Lights) < ([06:10, 06:15] Kettle) → ([06:30, 06:40] Toaster) → ([06:45, 06:48]
Microwave)

25 40

(P9) ([18:00, 18:25] Kitchen Lights) < ([18:00, 18:05] Kettle)→ ([18:05, 18:10] Microwave)→ ([19:35, 20:50]
Washer)

20 40

(P10) Heavy Rain < Unclear Visibility < Overcast Cloudiness→ High Motorist Injury 5 30
(P11) Extremely Unclear Visibility < High Snow < High Motorist Injury 3 45
(P12) Very Strong Wind→ High Motorist Injury 5 40
(P13) Frost Temperature→Medium Cyclist Injury 5 20
(P14) Strong Wind→ High Pedestrian Killed 4 30
(P15) Strong Wind→ High Motorist Killed 4 10
(P16) [2.12 seconds] Negation < [0.61 seconds] Left Head Tilt-side < [0.27 seconds] Lowered Eye-brows 5 10
(P17) [1.53 seconds] Wh-question < [0.36 seconds] Lowered Eye-brows → [0.05 seconds] Blinking Eye-
aperture

10 15

(P18) [1.69 seconds]Wh-question < [0.35 seconds] Right Head Tilt-side < [0.27 seconds] Lowered Eye-brows 5 5
(P19) [1.92 seconds] Wh-question < [0.82 seconds] Squint Eye-aperture → [0.13 seconds] Forward Body
Lean

1 5

Table A.7: Runtime Comparison (seconds)

Supp. (%) Methods
Conf. (%)

NIST Smart City
20 50 80 20 50 80

20

H-DFS 73864.39 8967.15 1538.49 2516.64 223.47 10.27
IEMiner 69440.62 7965.41 622.79 1419.51 130.80 8.59
TPMiner 31445.99 7702.02 533.95 418.25 118.89 6.66
Z-Miner 19063.24 2409.22 160.19 194.86 33.60 4.85

E-HTPGM 3968.19 672.45 109.08 86.36 16.89 2.85
A-HTPGM 1174.28 262.56 55.48 37.54 8.46 0.70

50

H-DFS 6268.88 5170.72 1296.01 453.47 88.32 9.82
IEMiner 5497.78 4581.10 564.48 300.80 73.81 7.81
TPMiner 3483.02 2976.37 512.23 118.89 37.54 6.14
Z-Miner 2971.26 2061.75 149.81 92.22 21.05 1.70

E-HTPGM 573.50 365.30 80.19 23.84 8.76 0.82
A-HTPGM 309.37 207.46 47.86 3.71 1.69 0.68

80

H-DFS 1057.21 867.73 761.61 13.27 8.39 4.41
IEMiner 954.99 460.93 355.19 9.59 5.47 4.37
TPMiner 899.25 412.01 306.91 6.66 3.44 3.37
Z-Miner 241.87 170.64 139.74 3.19 1.23 1.19

E-HTPGM 143.66 93.55 63.51 1.47 0.58 0.47
A-HTPGM 63.71 51.35 41.26 0.51 0.35 0.21

lines are: [1.47-5.64] and 3.19 on average (Z-Miner), [3.59-30.97] and 9.08 on
avg. (TPMiner), [4.63-78.41] and 15.86 on avg. (IEMiner), and [5.54-118.21]
and 23.37 on avg. (H-DFS). Note that the time to compute MI and µ for the

99

Paper A.

Table A.8: Memory Usage Comparison (MB)

Supp. (%) Methods
Conf. (%)

NIST Smart City
20 50 80 20 50 80

20

H-DFS 11976.25 4382.12 1143.17 1293.28 470.49 107.89
IEMiner 7241.96 1613.96 705.51 1197.74 460.52 65.92
TPMiner 6558.48 1216.96 700.75 1002.82 254.26 61.23
Z-Miner 91875.84 17642.01 5241.76 1690.75 602.08 149.77

E-HTPGM 1748.93 732.39 571.48 510.30 140.76 40.48
A-HTPGM 875.29 674.44 562.77 161.63 85.95 32.56

50

H-DFS 3744.73 3173.70 940.48 1040.56 412.14 92.81
IEMiner 1455.14 1155.31 663.52 870.64 353.18 60.87
TPMiner 1109.89 909.38 600.73 660.66 150.68 58.98
Z-Miner 16278.14 10277.83 2153.03 1195.59 505.16 117.64

E-HTPGM 621.77 424.36 345.94 139.50 119.08 34.69
A-HTPGM 319.59 227.06 186.70 83.55 62.16 29.26

80

H-DFS 877.13 726.56 641.43 249.78 139.59 63.65
IEMiner 657.46 609.25 549.25 149.45 119.83 59.59
TPMiner 575.98 512.86 475.22 119.59 69.91 58.63
Z-Miner 1934.23 1735.01 1613.09 263.27 153.16 93.23

E-HTPGM 313.99 261.78 153.26 52.93 36.96 29.89
A-HTPGM 257.32 187.29 106.87 35.75 31.74 25.28

NIST and the smart city datasets in Table A.7 are 28.01 and 20.82 seconds,
respectively.

Moreover, A-HTPGM is most efficient, i.e., achieves highest speedup and
memory saving, when the support threshold is low, e.g., σ � 20%. This is
because typical datasets often contain many patterns with very low support
and confidence. Thus, using A-HTPGM to prune uncorrelated series early
helps save computational time and resources. However, the speedup comes at
the cost of a small loss in accuracy (discussed in Sections A.6.3 and A.6.3).

In terms of memory consumption, as shown in Table A.8, A-HTPGM is the
most efficient method, while E-HTPGM is more efficient than the baselines.
The range and the average memory consumption of A-HTPGM compared
to other methods are: [1.1-3.2] and 1.6 (E-HTPGM), [3.7-105.1] and 19.1 (Z-
Miner), [1.3-7.9] and 3.4 (TPMiner), [1.4-10.4] and 4.5 (IEMiner), and [2.1-
13.9] and 6.7 (H-DFS). The memory usage of E-HTPGM compared to the
baselines are: [2.9-52.5] and 11.4 on avg. (Z-Miner), [1.2-4.7] and 2.1 on
average (TPMiner), [1.3-6.2] and 2.7 on avg. (IEMiner), and [1.9-7.5] and 4.1
on avg. (H-DFS).

100

A.6. Experimental Evaluation

Table A.9: BuildingDSYB andDSEQ

Dataset
DSYB DSEQ

Time (sec) Storage (MB) Time (sec) Storage (MB)

NIST 24.92 10.3 21.60 4.2
UKDALE 19.88 24.1 8.95 11.4
DataPort 11.32 17.7 20.62 2.9
Smart City 17.41 21.9 13.76 7.8

ASL 14.47 5.8 10.05 1.5

Finally, in Table A.9, we provide the pre-processing times to convert the
raw time series to DSYB, and DSYB to DSEQ. We also report the sizes of DSYB
and DSEQ stored on disk. We see that while the storage costs for DSYB and
DSEQ are small, the pre-processing times are 10-25 seconds. This is a one-time
cost which can be reused for many mining runs, making it negligible in all
non-trivial cases.

Scalability evaluation on synthetic datasets

As discussed in Section A.4, the complexity of HTPGM is driven by two main
factors: (1) the number of temporal sequences, and (2) the number of time
series. The evaluation on real-world datasets has shown that E-HTPGMandA-
HTPGM outperform the baselines significantly in both runtimes and memory
usage. However, to further assess the scalability, we scale these two factors
on synthetic datasets. Specifically, starting from the real-world datasets, we
generate 10 times more sequences, and create up to 1000 synthetic time series.
We evaluate the scalability using two configurations: varying the number of
sequences, and varying the number of time series.

Figs. A.7 and A.8 show the runtimes of A-HTPGM, E-HTPGM and the
baselines when the number of sequences changes (y-axis is in log scale). The
range and average speedups of A-HTPGM w.r.t. other methods are: [1.5-3.7]
and2.5 (E-HTPGM), [3.1-13.6] and8.1 (Z-Miner), [5.1-31.2] and16.8 (TPMiner),
[6.4-45.8] and 24.9 (IEMiner), and [9.4-59.1] and 31.8 (H-DFS). In particular,
A-HTPGM obtains even higher speedup for more sequences. Similarly, the
range and average speedups of E-HTPGM are: [1.6-5.3] and 3.2 (Z-Miner),
[2.2-12.1] and 6.7 (TPMiner), [3.5-17.4] and 10.1 (IEMiner), and [4.9-22.8] and
12.9 (H-DFS).

Figs. A.9 andA.10 compare the runtimes of A-HTPGMwith othermethods
when changing the number of time series (y-axis is in log scale). It is seen that,
A-HTPGMachieves evenhigher speedupwithmore time series. The range and
average speedups of A-HTPGM are: [2.1-4.9] and 2.9 (E-HTPGM), [2.9-10.4]
and 6.8 (Z-Miner), [3.6-21.5] and 12.8 (TPMiner), [4.7-30.2] and 18.1 (IEMiner),

101

Paper A.

20 40 60 80 100103

104

105

106

Sequence (%)

Ru
nt
im

e
(s
ec
)

(a) supp=20%, conf=20%

20 40 60 80 100
103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(b) supp=50%, conf=50%

20 40 60 80 100

103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(c) supp=80%, conf=80%

A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. A.7: Varying % of sequences on NIST

20 40 60 80 100

104

105

106

Sequence (%)

Ru
nt
im

e
(s
ec
)

(a) supp=20%, conf=20%

20 40 60 80 100

104

105

106

Sequence (%)

Ru
nt
im

e
(s
ec
)

(b) supp=50%, conf=50%

20 40 60 80 100
103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(c) supp=80%, conf=80%

A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. A.8: Varying % of sequences on Smart City

200 400 600 800 1000
104

105

106

Time Series

Ru
nt
im

e
(s
ec
)

(a) supp=20%, conf=20%

200 400 600 800 1000

104

105

Time Series

Ru
nt
im

e
(s
ec
)

(b) supp=50%, conf=50%

200 400 600 800 1000103

104

105

Time Series

Ru
nt
im

e
(s
ec
)

(c) supp=80%, conf=80%

A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. A.9: Varying # of time series on NIST

200 400 600 800 1000
104

105

106

Time Series

Ru
nt
im

e
(s
ec
)

(a) supp=20%, conf=20%

200 400 600 800 1000
104

105

106

Time Series

Ru
nt
im

e
(s
ec
)

(b) supp=50%, conf=50%

200 400 600 800 1000

104

105

Time Series

Ru
nt
im

e
(s
ec
)

(c) supp=80%, conf=80%

A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. A.10: Varying # of time series on Smart City
and [6.1-39.6] and 23.2 (H-DFS), and of E-HTPGM are: [1.4-4.1] and 2.4 (Z-

102

A.6. Experimental Evaluation

Miner), [1.7-8.1] and 4.4 (TPMiner), [2.3-11.3] and 6.2 (IEMiner), and [2.7-16.3]
and 8.1 (H-DFS).

In Figs. A.9 and A.10, to illustrate the computation time of MI and µ, we
add an additional bar chart for A-HTPGM. Each bar represents the runtime of
A-HTPGMwith two separate components: the time to compute MI and µ (top
red), and the mining time (bottom blue). However, note that for each dataset,
we only need to compute MI and µ once (the computed values are used across
the mining process with different support and confidence thresholds). Thus,
the times to compute MI and µ, for example, in Figs. A.9a, A.9b, and A.9c, are
added only for comparison and are not all actually used.

Moreover, most baselines fail for the larger configurations in the scalability
study, e.g., Z-Miner on the NIST dataset when σ�δ�20% (Fig. A.7a), and Z-
Miner, TPMiner, IEMiner andH-DFSwhen the number of time series grows to
1000 (Fig. A.9a). The scalability test shows that A-HTPGM and E-HTPGM can
scale well on big datasets, both vertically (many sequences) and horizontally
(many time series), unlike the baselines.

Table A.10: Pruned Time Series and Events from A-HTPGM

Attr.

NIST Smart City
Pruned Time Series # Pruned Events # Pruned Time Series # Pruned Events
20-20 20-50 20-80 20-20 20-50 20-80 20-20 20-50 20-80 20-20 20-50 20-80

200 23 55 83 46 110 166 11 27 43 27 87 135
400 37 101 157 74 202 314 17 49 81 57 197 309
600 45 141 225 90 282 450 32 80 128 96 316 492
800 54 182 294 108 364 588 41 105 169 129 429 669
1000 83 243 383 166 486 766 51 131 211 163 543 847

Furthermore, the number of time series and events pruned by A-HTPGM
in the scalability test are provided in Table A.10. Here, we can see that high
confidence threshold leads tomore time series (events) to bepruned. This is be-
cause confidence has a direct relationship with MI, therefore, high confidence
results in higher µ, and thus, more pruned time series.

Evaluation of the pruning techniques in E-HTPGM

We compare different versions of E-HTPGM to understand how effective the
pruning techniques are: (1) NoPrune: E-HTPGMwith no pruning, (2) Apriori:
E-HTPGM with Apriori-based pruning (Lemmas 2, 3), (3) Trans: E-HTPGM
with transitivity-based pruning (Lemmas 4, 5, 6, 7), and (4) All: E-HTPGM
applied both pruning techniques.

We use 3 different configurations that vary: the number of sequences, the
confidence, and the support. Figs. A.11, A.12 show the results (the y-axis is in
log scale). It can be seen that (All)-E-HTPGM achieves the best performance
among all versions. Its speedup w.r.t. (NoPrune)-E-HTPGM ranges from 5
up to 60 depending on the configurations, showing that the proposed prun-
ings are very effective in improving E-HTPGM performance. Furthermore,

103

Paper A.

20 40 60 80 100
103.2

103.4

103.6

Sequence (%)

Ru
nt
im

e
(s
ec
)

(a) Varying % Seq.

20 40 60 80 100
100
101
102
103

Confidence (%)

Ru
nt
im

e
(s
ec
)

(b) Varying Conf.

20 40 60 80 100
10−1
100
101
102
103

Support (%)

Ru
nt
im

e
(s
ec
)

(c) Varying Supp.

NoPrune Apriori Trans All

Fig. A.11: Runtimes of E-HTPGM on NIST

20 40 60 80 100
103

104

Sequence (%)

Ru
nt
im

e
(s
ec
)

(a) Varying % Seq.

20 40 60 80 100
101
102
103
104

Confidence (%)

Ru
nt
im

e
(s
ec
)

(b) Varying Conf.

20 40 60 80 100

101
102
103
104

Support (%)

Ru
nt
im

e
(s
ec
)

(c) Varying Supp.

NoPrune Apriori Trans All

Fig. A.12: Runtimes of E-HTPGM on Smart City
(Trans)-E-HTPGM delivers larger speedup than (Apriori)-E-HTPGM. The av-
erage speedup is from 8 to 20 for (Apriori)-E-HTPGM.However, applying both
always yields better speedup than applying either of them.

Evaluation of A-HTPGM

Table A.11: The Accuracy of A-HTPGM (%)

Supp. (%)
Conf. (%)

NIST Smart City
10 20 50 80 10 20 50 80

10 87 89 91 94 78 83 98 100
20 96 89 91 94 83 83 98 100
50 100 100 96 94 99 99 98 100
80 100 100 100 100 100 100 100 100

We proceed to evaluate the accuracy of A-HTPGM and the quality of pat-
terns pruned by A-HTPGM.

To evaluate the accuracy, we compare the patterns extracted by A-HTPGM
and E-HTPGM. Table A.11 shows the accuracies of A-HTPGM for different
supports and confidences. It is seen that, A-HTPGM obtains high accuracy
(≥ 71%) when σ and δ are low, e.g., σ � δ � 10%, and very high accuracy
(≥ 95%) when σ and δ are high, e.g., σ � δ � 50%.

Next, we analyze the quality of patterns pruned by A-HTPGM. These
patterns are extracted from the uncorrelated time series. Fig. A.13 shows
the cumulative distribution of the confidences of the pruned patterns. It is

104

A.7. Conclusion and Future Work

0 20 40 60 80 1000
0.2
0.4
0.6
0.8

1

Confidence (%)

C
um

ul
at
iv
e
Pr
ob

ab
ili
ty

supp=10%
supp=20%
supp=30%
supp=40%

(a) NIST

0 20 40 60 80 1000
0.2
0.4
0.6
0.8

1

Confidence (%)

C
um

ul
at
iv
e
Pr
ob

ab
ili
ty

supp=10%
supp=20%
supp=30%
supp=40%

(b) Smart City

0.5 1 5 10 20 300
0.2
0.4
0.6
0.8

1

Confidence (%)

C
um

ul
at
iv
e
Pr
ob

ab
ili
ty

supp=0.5%
supp=1%
supp=5%
supp=10%

(c) ASL

Fig. A.13: Cumulative probability of pruned patterns
seen that most of these patterns have low confidences, and can thus safely
be pruned. For NIST and Smart City datasets, 80% of pruned patterns have
confidences less than 20% when the support is 10% and 20%, and 70% of
pruned patterns have confidences less than 30% when the support is 30%. For
the ASL dataset, 80% of pruned patterns have confidences less than 5%.

Other experiments: We analyze the effects of the tolerance buffer ε, and
the overlapping duration tov to the quality of extracted patterns. The analysis
can be seen in the full paper [19].

A.7 Conclusion and Future Work
This paper presents our comprehensive Frequent Temporal Pattern Mining
from Time Series (FTPMfTS) solution that offers: (1) an end-to-end FTPMfTS
process tomine frequent temporal patterns from time series, (2) an efficient and
exact Hierarchical Temporal PatternGraphMining (E-HTPGM) algorithm that
employs efficient data structures and multiple pruning techniques to achieve
fast mining, and (3) an approximate A-HTPGM that uses mutual information
to prune unpromising time series, allows HTPGM to scale on big datasets.
Extensive experiments conducted on real world and synthetic datasets show
that both A-HTPGM and E-HTPGM outperform the baselines, consume less
memory, and scalewell to big datasets. Compared to the baselines, the approx-
imate A-HTPGM delivers an order of magnitude speedup on large synthetic
datasets and up to 2 orders of magnitude speedup on real-world datasets. In
future work, we plan to extend HTPGM to prune at the event level to further
improve its performance.

References
[1] Akiz Uddin Ahmed, Chowdhury Farhan Ahmed, Md Samiullah, Nahim

Adnan, and Carson Kai-Sang Leung. 2016. Mining interesting patterns
from uncertain databases. Information Sciences 354 (2016).

105

References

[2] James F Allen. 1983. Maintaining knowledge about temporal intervals.
Commun. ACM 26 (1983).

[3] Iyad Batal, Dmitriy Fradkin, JamesHarrison, FabianMoerchen, andMilos
Hauskrecht. 2012. Mining recent temporal patterns for event detection in
multivariate time series data. In SIGKDD.

[4] Iyad Batal, Hamed Valizadegan, Gregory F Cooper, and Milos
Hauskrecht. 2013. A temporal pattern mining approach for classifying
electronic health record data. TIST 4 (2013).

[5] Edwin FBeckenbach, RichardBellman, andRichardErnest Bellman. 1961.
An introduction to inequalities. Technical Report. Mathematical Association
of America Washington, DC.

[6] Julien Blanchard, Fabrice Guillet, Regis Gras, and Henri Briand. 2005.
Using information-theoretic measures to assess association rule interest-
ingness. In ICDM’05.

[7] Elizabeth A Campbell, Ellen J Bass, and Aaron J Masino. 2020. Temporal
condition pattern mining in large, sparse electronic health record data: A
case study in characterizing pediatric asthma. JAMIA 27 (2020).

[8] Yi-ChengChen,Wen-Chih Peng, and Suh-Yin Lee. 2015.Mining Temporal
Patterns in Time Interval-Based Data. TKDE 27 (2015).

[9] New York City. 2019. NYC OpenData.
https://opendata.cityofnewyork.us/

[10] Thomas M Cover and Joy A Thomas. 2012. Elements of information theory.
John Wiley & Sons.

[11] Xue Cunjin, Song Wanjiao, Qin Lĳuan, Dong Qing, and Wen Xiaoyang.
2015. A mutual-information-based mining method for marine abnormal
association rules. Computers & Geosciences 76 (2015).

[12] Energi Data Portal. 2021. https://www.energidataservice.dk/tso-
electricity/co2emis/

[13] Pecan Street Data. 2016. Pecan Street Dataport.
https://www.pecanstreet.org/dataport/

[14] William Healy, Farhad Omar, Lisa Ng, Tania Ullah, William Payne, Brian
Dougherty, and A Hunter Fanney. 2018. Net zero energy residential test
facility instrumented data. https://pages.nist.gov/netzero/index.html/

106

References

[15] Nguyen Ho, Torben Bach Pedersen, Van Long Ho, and Mai Vu. 2020. Ef-
ficient Search for Multi-Scale Time Delay Correlations in Big Time Series
Data. In 23rd International Conference on Extending Database Technol-
ogy, EDBT 2020. 37–48.

[16] Nguyen Ho, Torben Bach Pedersen, Mai Vu, Christophe AN Biscio, et al.
2019. Efficient bottom-up discovery of multi-scale time series correlations
usingmutual information. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1734–1737.

[17] Nguyen Ho, Huy Vo, Mai Vu, and Torben Bach Pedersen. 2019. Amic: An
adaptive information theoretic method to identify multi-scale temporal
correlations in big time series data. IEEE Transactions on Big Data 7, 1
(2019), 128–146.

[18] Nguyen Ho, Huy Vo, and Mai Vu. An adaptive information-theoretic
approach for identifying temporal correlations in big data sets. In 2016
IEEE International Conference on Big Data (Big Data), pp. 666-675. IEEE,
2016.

[19] Van Long Ho, Nguyen Ho, and Torben Bach Pedersen. 2021. Efficient
Temporal Pattern Mining in Big Time Series Using Mutual Information.
arXiv preprint arXiv:2010.03653 (2020). https://arxiv.org/abs/2010.03653

[20] Po-shan Kam and AdaWai-Chee Fu. 2000. Discovering temporal patterns
for interval-based events. In DaWak.

[21] YipingKe, JamesCheng, andWilfredNg. 2008. Correlatedpatternmining
in quantitative databases. TODS 33 (2008).

[22] Thi Thao Nguyen Ho, and Barbara Pernici. A data-value-driven adap-
tation framework for energy efficiency for data intensive applications
in clouds. In 2015 IEEE conference on technologies for sustainability
(SusTech), pp. 47-52. IEEE, 2015.

[23] Thi Thao Nguyen Ho, Marco Gribaudo, and Barbara Pernici. "Improving
energy efficiency for transactional workloads in cloud environments." In
Proceedings of the Eighth International Conference on Future Energy
Systems, pp. 290-295. 2017.

[24] Thi Thao Nguyen Ho, Marco Gribaudo, and Barbara Pernici. "Character-
izing energy per job in cloud applications." Electronics 5, no. 4 (2016):
90.

[25] Macro Gribaudo, Thi Thao Nguyen Ho, Barbara Pernici, and Giuseppe
Serazzi. "Analysis of the influence of application deployment on energy
consumption." In International Workshop on Energy Efficient Data Cen-
ters, pp. 87-101. Springer, Cham, 2014.

107

References

[26] JackKelly andWilliamKnottenbelt. 2015. TheUK-DALEdataset, domestic
appliance-level electricity demand and whole-house demand from five
UK homes. Scientific Data (2015).

[27] Young-Koo Lee, Won-Young Kim, Y Dora Cai, and Jiawei Han. 2003.
CoMine: Efficient Mining of Correlated Patterns. In ICDM.

[28] Zed Lee, Tony Lindgren, and Panagiotis Papapetrou. 2020. Z-Miner: An
EfficientMethod forMining FrequentArrangements of Event Intervals. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 524–534.

[29] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A sym-
bolic representation of time series, with implications for streaming algo-
rithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues
in data mining and knowledge discovery. 2–11.

[30] Vasileios Megalooikonomou, Qiang Wang, Guo Li, and Christos Falout-
sos. 2005. Amultiresolution symbolic representation of time series. In 21st
International Conference on Data Engineering (ICDE’05). IEEE, 668–679.

[31] Fabian Mörchen. 2007. Unsupervised pattern mining from symbolic tem-
poral data. ACM SIGKDD Explorations Newsletter 9, 1 (2007), 41–55.

[32] Robert Moskovitch and Yuval Shahar. 2015. Fast time intervals mining
using the transitivity of temporal relations. KAIS 42 (2015).

[33] Carol Neidle, Augustine Opoku, Gregory Dimitriadis, and Dimitris
Metaxas. 2018. NEW Shared & Interconnected ASL Resources: Sign-
Stream® 3 Software; DAI 2 for Web Access to Linguistically Annotated
Video Corpora; and a Sign Bank. In 8th Workshop on the Representation and
Processing of Sign Languages: Involving the Language Community, Miyazaki,
Language Resources and Evaluation Conference 2018.

[34] Edward R Omiecinski. 2003. Alternative interest measures for mining
associations in databases. IEEE Transactions on Knowledge and Data Engi-
neering 15, 1 (2003), 57–69.

[35] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios
Gunopulos. 2009. Mining frequent arrangements of temporal intervals.
KAIS 21 (2009).

[36] Dhaval Patel, Wynne Hsu, and Mong Li Lee. 2008. Mining relationships
among interval-based events for classification. In SIGMOD.

[37] Amit Kumar Sharma and Dhaval Patel. 2018. Stipa: A memory efficient
technique for interval pattern discovery. In 2018 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 1767–1776.

108

References

[38] Jun-Zhe Wang, Yi-Cheng Chen, Wen-Yueh Shih, Lin Yang, Yu-Shao Liu,
and Jiun-Long Huang. 2020. Mining High-utility Temporal Patterns on
Time Interval–based Data. ACM Transactions on Intelligent Systems and
Technology (TIST) 11, 4 (2020), 1–31.

[39] Shin-Yi Wu and Yen-Liang Chen. 2007. Mining nonambiguous temporal
patterns for interval-based events. TKDE 19 (2007).

[40] YY Yao. 2003. Information-theoretic measures for knowledge discovery
anddatamining. InEntropymeasures, maximum entropy principle and emerg-
ing applications. 115–136.

[41] TorpK., AndersenO., ThomsenC. (2020) Travel-TimeComputation Based
onGPSData. In: KutscheRD., Zimányi E. (eds) BigDataManagement and
Analytics. eBISS 2019. Lecture Notes in Business Information Processing,
vol 390. Springer, Cham. https://doi.org/10.1007/978-3-030-61627-4_4.

109

References

110

Paper B

EfficientGeneralizedTemporal Pattern
Mining in Big Time Series Using Mu-
tual Information

Van Long Ho, Nguyen Ho, Torben Bach Pedersen, and
Panagiotis Papapetrou

The paper has been submitted in the
IEEE Transactions on Knowledge and Data Engineering (TKDE).

© 2023 IEEE
The layout has been revised.

B.1. Introduction

Abstract
Big time series are increasingly available from an ever wider range of IoT-enabled sen-
sors deployed in various environments. Significant insights can be gained by mining
temporal patterns from these time series. Temporal pattern mining (TPM) extends
traditional pattern mining by adding event time intervals into extracted patterns,
making them more expressive at the expense of increased time and space complexi-
ties. Besides frequent temporal patterns (FTPs), which occur frequently in the entire
dataset, another useful type of temporal patterns are so-called rare temporal patterns
(RTPs), which appear rarely but with high confidence. Mining rare temporal patterns
yields additional challenges. For FTP mining, the temporal information and complex
relations between events already create an exponential search space. For RTP mining,
the support measure is set very low, leading to a further combinatorial explosion and
potentially producing too many uninteresting patterns. Thus, there is a need for a gen-
eralized approach which can mine both frequent and rare temporal patterns. This paper
presents our Generalized Temporal Pattern Mining from Time Series (GTPMfTS) ap-
proach with the following specific contributions: (1) The end-to-end GTPMfTS process
taking time series as input and producing frequent/rare temporal patterns as output.
(2) The efficient Generalized Temporal Pattern Mining (GTPM) algorithm mines fre-
quent and rare temporal patterns using efficient data structures for fast retrieval of
events and patterns during the mining process, and employs effective pruning tech-
niques for significantly faster mining. (3) An approximate version of GTPM that uses
mutual information, a measure of data correlation, to prune unpromising time series
from the search space. (4) An extensive experimental evaluation of GTPM for rare
temporal pattern mining (RTPM) and frequent temporal pattern mining (FTPM),
showing that RTPM and FTPM signficantly outperform the baselines on runtime and
memory consumption, and can scale to big datasets. The approximate RTPM is up to
one order of magnitude, and the approximate FTPM up to two orders of magnitude,
faster than the baselines, while retaining high accuracy.

B.1 Introduction
IoT-enabled sensors have enabled the collection of many big time series, e.g.,
from smart-meters, -plugs, and -appliances in households, weather stations,
and GPS-enabled mobile devices. Extracting patterns from these time series
can offer new domain insights for evidence-based decision making and opti-
mization. As an example, consider Fig. B.1 that shows the electricity usage of
a water boiler with a hot water tank collected by a 20 euroWifi-enabled smart-
plug, and accurate CO2 intensity (g/kWh) forecasts of local electricity, e.g., as
supplied by the Danish Transmission System Operator [1]. From Fig. B.1, we
can identify several useful patterns. First, the water boiler switches On once
a day, for one hour between 6 and 7AM. This indicates that the resident takes

113

Paper B.

Water Boiler
with Tank

CO2
Intensity

00:00

02:00

06:00
07:00
08:00
10:00

13:00
15:00

19:00
21:00

00:00
02:00

06:00
07:00
09:00

13:00
15:00

18:00
20:00
22:00
00:00

Low

Med

High

Med
Low

Med

High

Med

Low

Med

High

Med
Low

Med

High

Med
Low

Off

On

Off

On

Off

Day 1 Day 2

Fig. B.1: CO2 intensity and water boiler electricity usage
only one hot shower per day which starts between 5.30 and 6.30AM. Second,
all water boiler On events are contained in CO2 High events, i.e., the periods
when CO2 intensity is high. Third, between two consecutive On events of the
boiler, there is a CO2 Low event lasting for one or more hours which occurs at
most 4 hours before the hot shower (so water heated during that event will still
be hot at 6AM). Pattern mining can be used to extract the relations between
CO2 intensity and water boiler events. However, traditional sequential pat-
terns only capture the sequential occurrence of events, e.g., that one boiler On
event follows after another, but not that there is at least 23 hours between them;
or that there is a CO2 Low event between the two boiler On events, but not
when or for how long it lasts. In contrast, temporal pattern mining (TPM) adds
temporal information into patterns, providing details on when certain rela-
tions between events happen, and for how long. For example, TPM expresses
the above relations as: ([7:00 - 8:00, Day X] BoilerOn→ [6:00 - 7:00, Day X+1]
BoilerOn) (meaning BoilerOn is followed by BoilerOn the next day), ([6:00 -
10:00, Day X] HighCO2 < [7:00 - 8:00, Day X] BoilerOn) (meaning HighCO2
contains BoilerOn), and ([7:00 - 8:00, Day X] BoilerOn→ [0:00 - 2:00, Day X+1]
LowCO2→ [6:00 - 7:00, Day X+1] BoilerOn) (meaning there is a LowCO2 event
between two BoilerOn events). As the resident is very keen on reducing her
CO2 footprint, we can rely on the above temporal patterns to automatically
(using the smart-plug) delay turning on the boiler until the CO2 intensity is
low again, saving CO2 without any loss of comfort for the resident. In the
smart city domain, temporal patterns extracted from vehicle GPS data [2] can
reveal spatio-temporal correlations between traffic jams, advising drivers to
take another route for their morning commute.

Finding frequent temporal patterns (FTPs) is useful; however, in many ap-
plications, some patterns appear rarely but are still very interesting and useful
due to high confidence. We call such patterns rare temporal patterns (RTPs). For
example, considering smart city applications, a rare pattern could be: ([20:00,
22:00] Snow < [20:15, 21:15] HighWind→ [21:20, 21:50] HighInjuryMotorist),

114

B.1. Introduction

which means that the coincidence of snow and strong winds leads to traffic
accidents within an hour. This pattern occurs rarely but supports transporta-
tion coordinators in warning citizens about traffic accidents. In health care,
identifying symptoms and relations among them supports health experts in
diagnosing diseases in the early phases.

Challenges of mining frequent temporal patterns. Mining temporal patterns
is much more expensive than mining sequential patterns. Not only does
the temporal information add extra computation to the mining process, the
complex relations between events also add an additional exponential factor
O(3h2) to the O(mh) search space complexity (m is the number of events and h
is the length of temporal patterns), yielding an overall complexity of O(mh3h2)
(see Lemma 1 in Section A.4.4). Existing TPM methods [3–5] do not scale to
big datasets, i.e., many time series and many sequences, and/or do not work
directly on time series but only on pre-processed temporal events.

Challenges of mining rare temporal patterns. The support measure represents
the frequency of a temporal pattern across the entire dataset. However, to
find rare temporal patterns, the support has to be set very low, which causes
a combinatorial explosion, potentially producing too many patterns that are
uninteresting to the user. Existing work proposes solutions to mine rare item-
sets [6–9] and rare sequential patterns [10–12]. However, they do not consider
the temporal aspect of items/events. Thus, addressing the explosion of rare
temporal patterns with high confidence is still an open problem.

Generalized temporal pattern mining. Since there are many joint challenges
in mining frequent and rare temporal patterns, there is a need for a generalized
approach that can mine both types of patterns efficiently.

Contributions. In this paper, we present our comprehensiveGeneralized Tem-
poral PatternMining fromTime Series (GTPMfTS) approachwhich solves the above
challenges. The paper significantly extends a previous conference paper [13].
Our key contributions are: (1) We present end-to-end GTPMfTS process that
receives time series as input, and produces frequent/rare temporal patterns
as output. Within this process, a splitting strategy is proposed to convert time
series into event sequences while ensuring the preservation of temporal pat-
terns. (2) We propose the efficient Generalized Temporal Pattern Mining (GTPM)
algorithm to mine both frequent and rare temporal patterns. The novelties of
GTPM are: a) the use of an efficient data structure, Hierarchical Hash Tables,
to enable fast retrieval of events and patterns during the mining process; and
b) pruning techniques based on theApriori principle and the transitivity prop-
erty of temporal relations to enable faster mining. (3) Based on the information
theory concept of mutual information, which measures the correlation among
time series, we propose a novel approximate version of GTPM that prunes un-
promising time series to significantly reduce the search space and can scale
on big datasets, i.e., many time series and many sequences. (4) We perform

115

Paper B.

extensive experiments on synthetic and real-world datasets for both rare tem-
poral pattern mining (RTPM) and frequent temporal pattern mining (FTPM),
showing that our RTPM and FTPM significantly outperform the baselines on
both runtime and memory usage. Compared to the baselines, the approxi-
mate RTPM has up to one order of magnitude speedup, and the approximate
FTPM up to two orders of magnitude speedup, while retaining high accuracy
compared to the exact algorithms.

Compared to the the conference version [13], this paper generalizes the
TPMproblem, to mine both frequent and (the novel proposal of) rare temporal
patterns. For FTPM, this paper usesHierarchicalHash Tables to retrieve events
and patterns quickly, a significant improvement over the Hierarchical Pattern
Graph in the conference version [13]. Moreover, we now combine the lower
bound of support and the lower bound of confidence from the conference
version [13] for the approximate FTPM to further accelerate the mining. For
RTPM, we introduce the first exact and approximate algorithms to mine rare
temporal patterns. In the present paper, we further provide a set of new
experiments to compare our algorithms with the baselines.

Paper Outline. The paper is structured as follows. Section 2 discusses the
related work. Section 3 formulates the generalized temporal pattern mining
problem. Section 4 describes the exact GTPMalgorithm. Section 5 presents the
approximateGTPMalgorithm. Section 6presents the experimental evaluation.
Finally, Section 7 concludes and points to future work.

B.2 Related work
Temporal patternmining: Compared to sequential patternmining, TPM is rather
a new research topic. One of the first papers in this area is of Kam et al. that
uses a hierarchical representation tomanage temporal relations [14], and based
on that mines temporal patterns. However, the approach in [14] suffers from
ambiguity when presenting temporal relations. For example, using the repre-
sentation in [14], it is possible to have two temporal patterns that involve the
same set of temporal events, for example, (((a overlaps b) before c) overlaps
d), and ((a overlaps b) before (c contains d)). Thus, the same set of events can
be mapped to different temporal patterns that are semantically different. Our
GTPM avoids this ambiguity by defining a temporal pattern as a set of pair-
wise temporal relations between two events. In [15], Wu et al. develop TPrefix
to mine temporal patterns from non-ambiguous temporal relations. However,
TPrefix has several inherent limitations: it scans the database repeatedly, and
the algorithm does not employ any pruning strategies to reduce the search
space. In [16], Moskovitch et al. design a TPM algorithm using the transitivity
property of temporal relations. They use this property to generate candidates
by inferring new relations between events. In comparison, our GTPM uses

116

B.2. Related work

the transitivity property for effective pruning. In [17], Iyad et al. propose a
TPM framework to detect events in time series. However, their focus is to find
irregularities in the data. In [18], Wang et al. propose a temporal pattern min-
ing algorithm HUTPMiner to mine high-utility patterns. Different from our
GTPMwhich uses support and confidence to measure the frequency of patterns,
HUTPMiner uses utility to measure the importance or profit of an event/ pat-
tern, thereby addresses an orthogonal problem. In [19], Amit et al. propose
STIPA which uses a Hoeppner matrix representation to compress temporal
patterns for memory savings. However, STIPA does not use any pruning/
optimization strategies and thus, despite the efficient use of memory, it cannot
scale to large datasets, unlike our GTPM. Other work [20], [21] proposes TPM
algorithms to classify health record data. However, these methods are very
domain-specific, thus cannot generalize to other domains.

The state-of-the-art TPM methods that currently achieve the best per-
formance are our baselines: H-DFS [5], TPMiner [3], IEMiner [4], and Z-
Miner [22]. H-DFS is a hybrid algorithm that uses breadth-first and depth-first
search strategies to mine frequent arrangements of temporal intervals. H-DFS
uses a data structure called ID-List to transform event sequences into vertical
representations, and temporal patterns are generated by merging the ID-Lists
of different events. This means that H-DFS does not scale well when the num-
ber of time series increases. In [4], Patel et al. design a hierarchical lossless rep-
resentation to model event relations, and propose IEMiner that uses Apriori-
based optimizations to efficiently mine patterns from this new representation.
In [3], Chen et al. propose TPMiner that uses endpoint and endtime represen-
tations to simplify the complex relations among events. Similar to [5], IEMiner
and TPMiner do not scale to datasets withmany time series. Z-Miner [22], pro-
posed by Lee et al., is themost recentwork addressing TPM. Z-Miner improves
the mining efficiency over existingmethods by employing two data structures:
a hierarchical hash-based structure called Z-Table for time-efficient candidate
generation and support count, and Z-Arrangement, a structure to efficiently
store event intervals in temporal patterns for efficient memory consumption.
Although using efficient data structures, Z-Miner neither employs the tran-
sitivity property of temporal relations nor mutual information for pruning.
Thus, Z-Miner is less efficient than our exact and approximate GTPM in both
runtimes and memory usage, and does not scale to large datasets with many
sequences and many time series (see Section B.6). Our GTPM algorithm im-
proves on these methods by: (1) using efficient data structures and applying
pruning techniques based on the Apriori principle and the transitivity prop-
erty of temporal relations to enable fast mining, (2) the approximate GTPM
can handle datasets with many time series and sequences, and (3), providing
an end-to-end GTPMfTS process to mine temporal patterns directly from time
series, a feature that is not supported by the baselines.

Rare pattern mining: Finding rare patterns that occur infrequently in a

117

Paper B.

given database has received some attention in recent years. Techniques to
find rare patterns in time series, often called rare motifs, are proposed in
[15, 23, 24]. However, since time series motifs are the repeated sub-sequences
of the time series, rare motif discovery techniques cannot deal with temporal
events, and thus, are insufficient for rare temporal pattern mining. A related
approach concerns rare association rules [6–9, 25–30] that find rare associations
between items in the database. However, all the mentioned work can only
discover rare association rules built among itemsets, and cannot deal with
temporal events and the complex temporal relations between them. Another
research direction studies rare sequential patterns [10–12, 31–33]. However,
rare sequential patterns only consider sequential occurrence between events,
and therefore, cannot model other complex relations such as overlapping or
containing between temporal events. To the best of our knowledge, there is
currently no existing work that studies rare temporal pattern mining which
mines rare occurrences of temporal patterns in a time series database.

Using correlations in TPM: Different correlation measures such as expected
support [34], all-confidence [35], and mutual information (MI) [36–39] have
beenused tooptimize thepatternminingprocess. However, theseonly support
sequential patterns. To the best of our knowledge, our proposed approximate
GTPM is the first that uses MI to optimize TPM.

B.3 Preliminaries
In this section, we introduce the notations and the main concepts that will be
used throughout the paper.

B.3.1 Temporal Event of Time Series
Definition 3.1 (Time series) A time series X � x1 , x2 , ..., xn is a sequence of
data values that measure the same phenomenon during an observation time
period, and are chronologically ordered.
Definition 3.2 (Symbolic time series) A symbolic time series XS of a time series
X encodes the raw values of X into a sequence of symbols. The finite set of
permitted symbols used to encode X is called the symbol alphabet ΣX of X.

The symbolic time seriesXS is obtainedusing amapping function f : X→ΣX
that maps each value xi ∈ X to a symbol ω ∈ ΣX . For example, let X = 1.61,
1.21, 0.41, 0.0 be a time series representing the energy usage of an electrical
device. Using the symbol alphabet ΣX = {On, Off}, where On represents that
the device is on and operating (e.g., xi ≥ 0.5), and Off that the device is off
(xi < 0.5), the symbolic representation of X is: XS = On, On, Off, Off. The
mapping function f can be defined using existing time series representation
techniques such as SAX [40].

118

B.3. Preliminaries

Table B.1: A Symbolic DatabaseDSYB

Time 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55

S On On On On Off Off Off On On Off Off Off Off Off Off On On On Off Off Off Off Off Off Off Off Off On On On On On On On On On

T Off Off Off Off Off Off Off On On Off Off On On Off Off On On On Off Off Off Off Off Off Off Off Off On On On On On On On On On

W On On On On On On On On On Off Off Off Off On On On On On Off Off Off Off Off Off Off Off Off On On On On On On On On On

I Off Off Off Off Off Off On On On Off Off Off On On Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off On On

Definition 3.3 (Symbolic database) Given a set of time seriesX � {X1 , ...,Xn},
the set of symbolic representations of the time series in X forms a symbolic
databaseDSYB.

An example of the symbolic database DSYB is shown in Table B.1. There
are 4 time series representing the energy usage of 4 electrical appliances:
{Stove, Toaster, Clothes Washer, Iron}. For brevity, we name the appliances
respectively as {S, T, W, I}. All appliances have the same alphabet Σ = {On,
Off}.
Definition 3.4 (Temporal event in a symbolic time series) A temporal event E in
a symbolic time series XS is a tuple E � (ω, T) where ω ∈ ΣX is a symbol, and
T � {[tsi , tei]} is the set of time intervals during which XS is associated with
the symbol ω.

Given a time series X, a temporal event is created by first converting X into
symbolic time series XS, and then combining identical consecutive symbols in
XS into one single time interval. For example, consider the symbolic represen-
tation of S in Table B.1. By combining its consecutive On symbols, we form
the temporal event “Stove is On” as: (SOn, {[10:00, 10:15], [10:35, 10:40], [11:15,
11:25], [12:15, 12:55]}).
Definition 3.5 (Instance of a temporal event) Let E � (ω, T) be a temporal
event, and [tsi , tei] ∈ T be a time interval. The tuple e � (ω, [tsi , tei]) is called
an instance of the event E, representing a single occurrence of E during [tsi , tei].
We use the notation E.e to say that event E has an instance e.

B.3.2 Relations between Temporal Events
We adopt the popular Allen’s relations model [41] and define three basic tem-
poral relations between events. Furthermore, to avoid the exact time mapping
problem in Allen’s relations, we adopt the buffer idea from [5], adding a toler-
ance buffer ε to the relation’s endpoints. However, we change the way ε is used
in [5] to ensure the relations are mutually exclusive (proof is in the electronic
appendix [42]).

Consider two temporal eventsEi andE j , and their corresponding instances,
ei � (ωi , [tsi , tei]) and e j � (ω j , [ts j , te j]). Let ε be anon-negativenumber (ε ≥ 0)
representing the buffer size. The following relations can be defined between
Ei and E j through ei and e j .
Definition 3.6 (Follows) Ei and E j form a Follows relation through ei and e j ,

119

Paper B.

Table B.2: Temporal Relations between Events

Follows: Ei.ei
→ E j.e j

ei

tsi tei±ε
ts j te j

e j

ei

tsi tei±ε
ts j te j

e j

tei±ε ≤ ts j

Contains: Ei.ei
< E j.e j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε

e j

ts j te j

(tsi ≤ ts j) ∧ (tei±ε ≥ te j)

Overlaps: Ei.ei
G E j.e j

eitsi tei ± ε

e j

ts j te j

do

(tsi < ts j) ∧ (tei±ε < te j) ∧ (tei − ts j ≥ do±ε)

denoted as Follows(Ei.ei
,E j.e j

) or Ei.ei
→E j.e j

, iff tei±ε≤ts j .
Definition 3.7 (Contains) Ei and E j form a Contains relation through ei and e j ,
denoted as Contains(Ei.ei

, E j.e j
) or Ei.ei

<E j.e j
, iff (tsi ≤ ts j) ∧ (tei ± ε ≥ te j).

Definition 3.8 (Overlaps) Ei and E j form an Overlaps relation through ei and
e j , denoted as Overlaps(Ei.ei

, E j.e j
) or Ei.ei

G E j.e j
, iff (tsi < ts j) ∧ (tei ± ε < te j) ∧

(tei − ts j ≥ do ± ε), where do is the minimal overlapping duration between two
event instances, and 0 ≤ ε � do .

The Follows relation represents sequential occurrences of one event after
another. For example, Ei.ei

is followed by E j.e j
if the end time tei of ei occurs

before the start time ts j of e j . Here, the buffer ε is used as a tolerance, i.e., the
Follows relation between Ei.ei

and E j.e j
holds if (tei + ε) or (tei − ε) occurs before

ts j . On the other hand, in a Contains relation, one event occurs entirely within
the timespan of another event. Finally, in anOverlaps relation, the timespans of
the two occurrences overlap each other. Table B.2 illustrates the three temporal
relations and their conditions.

B.3.3 Temporal Pattern
Definition 3.9 (Temporal sequence) A list of n event instances S�<e1 , ..., ei , ...,
en> forms a temporal sequence if the instances are chronologically ordered by
their start times. Moreover, S has size n, denoted as |S | � n.
Definition 3.10 (Temporal sequence database) A set of temporal sequences
forms a temporal sequence database DSEQ where each row i contains a temporal
sequence Si .

120

B.3. Preliminaries

Table B.3: A Temporal Sequence DatabaseDSEQ

ID Temporal sequences

1
(SOn,[10:00,10:15]), (TOff,[10:00,10:35]), (WOn,[10:00,10:40]),
(IOff,[10:00,10:30]), (SOff,[10:15,10:35]), (IOn,[10:30,10:40]), (SOn,
[10:35,10:40]), (TOn,[10:35,10:40])

2
(SOff,[10:45,11:15]), (TOff,[10:45,10:55]), (WOff,[10:45,11:05]),
(IOff,[10:45,11:00]), (TOn,[10:55,11:00]), (TOff,[11:00,11:15]),
(IOn,[11:00,11:05]), (WOn,[11:05,11:25]), (IOff,[11:05,11:20]),
(SOn,[11:15,11:25]), (TOn,[11:15,11:25]), (IOn,[11:20,11:25])

3 (SOff,[11:30,12:10]), (TOff,[11:30,12:10]), (WOff,[11:30,12:10]),
(IOff,[11:30,12:10])

4 (SOn,[12:15,12:55]), (TOn,[12:15,12:55]), (WOn,[12:15,12:55]),
(IOn,[12:15,12:20]), IOff,[12:20,12:50]), (IOn,[12:50,12:55])

Table B.3 shows the temporal sequence database DSEQ, created from the
symbolic databaseDSYB in Table B.1.
Definition 3.11 (Temporal pattern) Let<�{Follows, Contains, Overlaps} be the
set of temporal relations. A temporal patternP =<(r12 , E1 ,E2),...,(r(n−1)(n) ,En−1 ,En)
> is a list of triples (rĳ,Ei ,E j), each representing a relation rĳ ∈ < between two
events Ei and E j .

Note that the relation rĳ in each triple is formed using the specific instances
of Ei and E j . A temporal pattern that has n events is called an n-event pattern.
We use Ei ∈ P to denote that the event Ei occurs in P, and P1 ⊆ P to say that a
pattern P1 is a sub-pattern of P.
Definition 3.12 (Temporal sequence supports a pattern) Let S�<e1,...,ei ,...,en>
be a temporal sequence. We say that S supports a temporal pattern P, denoted
as P ∈ S, iff |S | ≥ 2 ∧ ∀(rĳ , Ei , E j) ∈ P, ∃(el , em) ∈ S such that rĳ holds between
Ei.el

and E j.em .
If P is supported by S, P can be written as P�<(r12, E1.e1 , E2.e2), ...,

(r(n−1)(n),En−1.en−1
, En.en)>, where the relation between two events in each triple

is expressed using the event instances.
In Fig. A.1, consider the sequence S �<e1=(HighCO2, [6:00, 10:00]),

e2�(BoilerOn, [7:00, 8:00]), e3�(LowCO2, [13:00, 15:00])> representing the or-
der of CO2 intensity and boiler events. Here, S supports a 3-event pattern
P�<(Contains, HighCO2.e1 , BoilerOn.e2), (Follows, HighCO2.e1 , LowCO2.e3),
(Follows, BoilerOn.e2 , LowCO2.e3)>.

Maximal duration constraint: Let P ∈ S be a temporal pattern supported by
the sequence S. The duration between the start time of the instance e1, and the
end time of the instance en in S must not exceed the predefined maximal time
duration tmax: ten − ts1 ≤ tmax.

The maximal duration constraint guarantees that the relation between any
two events is temporally valid. This enables the pruning of invalid patterns.
For example, under this constraint, a Follows relation between a “Washer On”
event and a “Dryer On” event in Table B.3 happening one year apart should be

121

Paper B.

considered invalid.

B.3.4 Frequency and Likelihood Measures
Given a temporal sequence databaseDSEQ, we want to find patterns that occur
at certain frequency in DSEQ. We use support and confidence [43] to measure
the frequency and likelihood of a pattern.
Definition 3.13 (Support of a temporal event) The support of a temporal event E
in DSEQ is the number of sequences S ∈ DSEQ containing at least one instance
e of E.

supp(E) � |{S ∈ DSEQ s.t. ∃e ∈ S : E.e }| (B.1)

The relative support of E is the fraction between supp(E) and the size ofDSEQ:

rel-supp(E) � supp(E)/|DSEQ | (B.2)

Similarly, the support of a group of events (E1 , ..., En), denoted as supp(E1,
..., En), is the number of sequences S ∈ DSEQ which contain at least one instance
(e1 , ..., en) of the event group.
Definition 3.14 (Support of a temporal pattern) The support of a pattern P is
the number of sequences S ∈ DSEQ that support P.

supp(P) � |{S ∈ DSEQ s.t. P ∈ S}| (B.3)

The relative support of P inDSEQ is the fraction
rel-supp(P) � supp(P)/|DSEQ | (B.4)

Definition 3.15 (Confidence of an event pair) The confidence of an event pair
(Ei , E j) inDSEQ is the fraction between supp(Ei , E j) and the support of its most
frequent event:

conf(Ei , E j) �
supp(Ei , E j)

max{supp(Ei), supp(E j)}
(B.5)

Definition 3.16 (Confidence of a temporal pattern) The confidence of a temporal
pattern P in DSEQ is the fraction between supp(P) and the support of its most
frequent event:

conf(P) �
supp(P)

max1≤k≤|P |{supp(Ek)}
(B.6)

where Ek ∈ P is a temporal event. Since the denominator in Eq. (B.6) is the
maximum support of the events in P, the confidence computed in Eq. (B.6)
is the minimum confidence of a pattern P in DSEQ, which is also called the all-
confidence as in [43]. Note that unlike association rules, temporal patternsdonot
have antecedents and consequents. Instead, they represent pair-wise temporal
relations between events based on their temporal occurrences. Thus, while

122

B.4. Generalized Temporal Pattern Mining

the support and relative support of event(s)/ pattern(s) defined in Eqs. (B.1) −
(B.4) follow the same intuition as the traditional support concept, indicating
how frequently an event/ pattern occurs in a given database, the confidence
computed in Eqs. (B.5) − (B.6) instead represents the minimum likelihood of
an event pair/ pattern, knowing the likelihood of its most frequent event.

Frequent temporal patterns vs. Rare temporal patterns: Consider a temporal
pattern P in a temporal sequence databaseDSEQ with the support σ � supp(P)
and the confidence δ � conf(P). Pattern P is considered to be frequent in DSEQ
if both support σ and confidence δ are high, representing the presence of
pattern P in a large fraction of sequences in the database. In contrast, pattern
P is considered to be rare in DSEQ if the support σ is low and the confidence
δ is high, indicating a type of pattern that occurs only in a small fraction
of sequences but with high likelihood, given the occurrence evidence of the
involved events.

Problem Definition: Generalized Temporal Pattern Mining. Given a set
of univariate time series X � {X1 , ...,Xn}, let DSEQ be the temporal sequence
database obtained from X, and σmin, σmax and δ be the minimum support,
maximum support and minimum confidence thresholds, respectively. The
Generalized Temporal Pattern Mining from Time Series (GTPMfTS) problem
aims to find all temporal patterns P in DSEQ such that P satisfies the support
and confidence constraints, i.e., σmin ≤ supp(P) ≤ σmax ∧ conf(P) ≥ δ.

Using the three constraints σmin, σmax and δ, GTPMfTS can mine frequent
temporal patterns in DSEQ by setting σmax � ∞, and assigning σmin and δ to
high threshold values. In contrast, to mine rare temporal patterns, GTPMfTS
will assign low threshold values to σmin and σmax, constraining on a low
occurrence frequency, and a high value to δ, constraining on a high likelihood
of the patterns.

B.4 Generalized Temporal Pattern Mining
In this section, we present the Generalized Temporal Pattern Mining (GTPM)
algorithm to mine both frequent and rare temporal patterns from time series.
Fig. B.2 gives an overview of the GTPMfTS process which consists of two
phases. The first phase,Data Transformation, converts a set of time seriesX into
a symbolic database DSYB, and then converts DSYB into a temporal sequence
databaseDSEQ. The secondphase,Generalized Temporal PatternMining (GTPM),
mines both frequent and rare temporal patterns, and consists of three steps:
(1) Mining Single Events, (2) Mining 2-Event Patterns, and (3) Mining k-Event
Patterns (k>2). The final output is a set of all temporal patterns in DSEQ that
satisfy the minimum support, maximum support and minimum confidence
constraints.

123

Paper B.

Set of Time Series X

Symbolic Time Series Representation

Temporal Sequence Database Conversion

Single Events Mining

2-Event Patterns Mining

k-Event Patterns Mining (k > 2)

Temporal Patterns

GT
PM

fT
S
Pr
oc
es
s

Data
Transform

ation
Tem

poralPatterns
M
ining

(GTPM
)

DSYB

DSEQ

Fig. B.2: The GTPMfTS process

S1 S2

t t
SOn
TOn WOn

IOn

(a) With no overlapping

S1 S2

tov
t

t

SOn
TOn WOn

IOn

(b)With overlapping

Fig. B.3: Splitting strategy
B.4.1 Data Transformation

Symbolic Time Series Representation

Given a set of time series X, the symbolic representation of each time series
X ∈ X is obtained by using a mapping function as in Def. 3.2.

Temporal Sequence Database Conversion

To convert DSYB to DSEQ, a straightforward approach is to split the symbolic
series in DSYB into equal-length sequences, each belongs to a row in DSEQ.
For example, if each symbolic series in Table B.1 is split into 4 sequences, then
each sequence will last for 40 minutes. The first sequence S1 ofDSEQ therefore
contains temporal events of S, T, W, and I from 10:00 to 10:40. The second
sequence S2 contains events from 10:45 to 11:25, and similarly for S3 and S4.

However, the splitting can lead to a potential loss of temporal patterns. The
loss happenswhen a splitting point accidentally divides a temporal pattern into
different sub-patterns, and places these into separate sequences. We explain
this situation in Fig. B.3a. Consider 2 sequences S1 and S2, each of length t.
Here, the splitting point divides a pattern of 4 events, {SOn, TOn, WOn, IOn},

124

B.4. Generalized Temporal Pattern Mining

Key Value

...

...

Key Value

Single event
hash table

Event sequence
hash table

Fig. B.4: The HLH1 structure

...

...

k-Event
hash table

Pattern
hash table

...

...

Pattern sequence
 hash table

Key Value

Key Value

Key Value

Fig. B.5: The HLHk(k ≥ 2) structure
into two sub-patterns, in which SOn and TOn are placed in S1, and WOn and
IOn in S2. This results in the loss of this 4-event patternwhich can be identified
only when all 4 events are in the same sequence.

To prevent such a loss, we propose a splitting strategy using overlapping
sequences. Specifically, two consecutive sequences are overlapped by a du-
ration tov: 0 ≤ tov ≤ tmax, where tmax is the maximal duration of a temporal
pattern. The value of tov decides how large the overlap between Si and Si+1
is: tov � 0 results in no overlap, i.e., no redundancy, but with a potential loss
of patterns, while tov � tmax creates large overlaps between sequences, i.e.,
high redundancy, but all patterns are preserved. As illustrated in Fig. B.3b,
the overlapping between S1 and S2 keeps the 4 events together in the same
sequence S2, and thus helps preserve the pattern.

B.4.2 Generalized Temporal Pattern Mining
Wenowpresent the GTPMalgorithm tomine temporal patterns, both frequent
and rare, from DSEQ. We note that for frequent patterns, only two constraints
σmin and δ are used, whereas with rare patterns, all three constraints σmin,
σmax, and δ are used. In the following when presenting the GTPM algorithm,
the discussion applies to both frequent and rare patterns, with the implication
that σmax is set to∞when mining frequent patterns.

The main novelties of GTPM are: a) the use of efficient data structures,
i.e., the Hierarchical Lookup Hash (HLH) structure [44], and b) the proposal
of two groups of pruning techniques based on the Apriori principle and the
temporal transitivity property of temporal events. Particularly, instead of using
the Hierarchical Pattern Graph as in [13], we use the Hierarchical Lookup
Hash data structure to enable faster retrieval of events and patterns during
the mining process. Algorithm 9 provides the pseudo-code of our GTPM
algorithm.

B.4.3 Mining Single Events
Hierarchical lookup hash structure HLH1: We use the hierarchical lookup
hash structure HLH1, illustrated in Fig. B.4 to store single events. HLH1 is a

125

Paper B.

Algorithm 9: Generalized Temporal Pattern Mining
Input: Temporal sequence databaseDSEQ, minimum support

threshold σmin, maximum support threshold σmax, confidence
threshold δ

Output: The set of temporal patterns P satisfying σmin, σmax, δ
//Mining single events

1: foreach event Ei ∈ DSEQ do
2: Compute supp(Ei);
3: if supp(Ei) ≥ σmin then
4: Insert Ei to 1Freq;

//Mining 2-event patterns
5: EventPairs← Cartesian(1Freq,1Freq);
6: FrequentPairs← ∅;
7: foreach (Ei , E j) in EventPairs do
8: Compute supp(Ei , E j);
9: if supp(Ei , E j) ≥ σmin then

10: FrequentPairs← Apply_Lemma4(Ei , E j);
11: foreach (Ei , E j) in FrequentPairs do
12: Retrieve event instances;
13: Check temporal relations against σmin, σmax, δ;

//Mining k-event patterns
14: Filtered1Freq← Transitivity_Filtering(1Freq);
15: kEvents← Cartesian(Filtered1Freq,(k-1)Freq);
16: FrequentkEvents← Apriori_Filtering(kEvents);
17: foreach kEvents in FrequentkEvents do
18: Retrieve relations;
19: Iteratively check relations against σmin, σmax, δ;

hierarchical data structure that consists of two hash tables: the single event hash
table EH, and the event sequence hash table SH. Each hash table has a list of <key,
value> pairs. In EH, the key is the event symbolω ∈ ΣX representing the event
Ei , and the value is the set of sequences< Si , ..., Sk > (arranged in an increasing
order) that contain Ei . In SH, the key is taken from the value component of EH,
i.e., the set of sequences, while the value stores event instances of Ei that occur
in the corresponding sequence in DSEQ. The HLH1 structure enables faster
retrieval of event sequences and instances when mining k-event patterns.

Mining Single Events: The first step in GTPM is to find single events
that satisfy the minimum support constraint σmin (Alg. 9, lines 1-4). To do
that, GTPM scans DSEQ to compute the support of each event Ei , and checks
whether supp(Ei)≥ σmin. Note that for single events, we do not consider the
constraints on the confidence δ, since confidence of single events is always 1,
and on maximum support σmax because of the following lemma.

126

B.4. Generalized Temporal Pattern Mining

(10:00,10:15)
(11:15,11:25)
(12:15,12:55)

SOn

SOn,TOn

1
2

1
2

4

IOn

4

(10:35,10:40),(10:35,10:40)

(10:35,10:40)

(11:15,11:25),(11:15,11:25)
(12:15,12:55),(12:15,12:55)

WOn,TOn

(10:30,10:40)

(12:15,12:20)

1
2
4 (12:50,12:55)

(10:00,10:40),(10:35,10:40)1
2
4

(11:05,11:25),(11:15,11:25)
(12:15,12:55),(12:15,12:55)

...

(11:00,11:05) (11:20,11:25)
SOff TOn TOffWOn IOff

Fig. B.6: A hierarchical lookup hash tables for the running example
Lemma 1 Let P be a temporal pattern and Ei be a single event such that Ei ∈ P.
Then supp(P) ≤ supp(Ei).

Proof. Detailed proofs of all lemmas, theorems, and complexities in this article can be
found in the electronic appendix [42].

From Lemma 1, a single event Ei whose support supp(Ei) > σmax can form
a pattern P that has supp(P) ≤ σmax. Thus, the constraint on σmax is not
considered for single events to avoid the loss of potential temporal patterns.

We provide a running example using data in Table B.3, with σmin � 0.7,
σmax � 0.9, and δ � 0.7. The data structure HLH1, shown in Fig. B.6, stores 7
single events satisfying σmin constraint. The event WOff does not satisfy σmin
(only appears in sequences 2 and 4), and is thus omitted.

Complexity: The complexity of finding single events isO(m·|DSEQ |), where
m is the number of distinct events.

B.4.4 Mining 2-event Patterns
Search space of GTPM: The next step in GTPM is to mine 2-event patterns.
A straightforward approach would be to enumerate all possible event pairs,
and check whether each pair can form patterns that satisfy the support and
confidence constraints. However, this naive approach is very expensive. Not
only does it need to repeatedly scanDSEQ to check each combination of events,
the complex relations between events also add an extra exponential factor 3h2

to the mh number of possible candidates, creating a very large search space
that makes the approach infeasible.

Lemma 2 Let m be the number of distinct events inDSEQ, and h be the longest length
of a temporal pattern. The total number of temporal patterns is O(mh3h2).

Lemma 2 shows the driving factors of GTPM’s exponential search space (proof
in the electronic appendix [42]): the number of events (m), the max pattern
length (h), and the number of temporal relations (3). A dataset of just a few
hundred events can create a very large search space with billions of candidate
patterns. The optimizations and approximation proposed in the following
sections will help mitigate this problem.

Hierarchical lookup hash structure HLHk : We maintain k-event groups
andpatterns found byGTPMusing the HLHk (k ≥ 2)data structure, illustrated

127

Paper B.

in Fig. B.5. HLHk contains three hash tables, each has a list of <key, value>
pairs: the k-event hash table EHk , the pattern hash table PHk , and the pattern
sequence hash table SHk . For each <key, value> pair of EHk , key is the list of
symbols (ω1..., ωk) representing the k-event group (E1 , ..., Ek), and value is an
object structure which consists of two components: (1) the list of sequences
< Si , ..., Sk > (arranged in increasing order) where (E1 , ..., Ek) occurs, and
(2), a list of k-event temporal patterns P � {(r12 , E1 , E2), ..., (r(k−1)(k) , Ek−1 , Ek)}
created from the k-event group (E1 , ..., Ek). In PHk , the key takes the value
component of EHk , i.e. the k-event pattern P, while the value is the list of
sequences that support P. In SHk , the key takes the value component of PHk ,
i.e., the list of sequences that support P, while the value is the list of event
instances from which the temporal relations in P are formed. The HLHk hash
structure helps speed up the mining of k-event groups through the use of
sequences in EHk , and enables faster search for temporal relations between k
events using the information in PHk and SHk .

Two-steps filtering approach tomine 2-event patterns: Given the huge set
of pattern candidates stated in Lemma 1, it is expensive to check their support
and confidence. We propose a filtering approach to reduce the unnecessary can-
didate checking. Specifically, the mining process is divided into two steps: (1)
it first finds k-event groups that satisfy the minimum support and confidence
constraints using σmin and δ, (2) it then generates temporal patterns only from
those k-event groups. The correctness of this filtering approach is based on
the Apriori-inspired lemmas below.

Lemma 3 Let P be a 2-event pattern formed by an event pair (Ei , E j). Then,
supp(P) ≤ supp(Ei , E j).

From Lemma 3, the support of a pattern is at most the support of its events.
Thus, infrequent event pairs (those do not satisfy minimum support) cannot
form frequent patterns and thereby, can be safely pruned.

Lemma 4 Let (Ei , E j) be a pair of events forming a 2-event pattern P. Then conf(P)
≤ conf(Ei , E j).

From Lemma 4, the confidence of a pattern P is always at most the confi-
dence of its events. Thus, a low-confidence event pair cannot form any high-
confidence patterns and therefore, can be safely pruned. We note that the
Apriori principle has already been used in other work, e.g., [3, 5], for mining
optimization. However, they only apply this principle to the support (Lemma
3), while we further extend it to the confidence (Lemma 4). Applying Lemmas
3 and 4 to the event filtering step will remove infrequent or low-confidence
event pairs, reducing the candidate patterns of GTPM. Furthermore, we do
not consider the constraint on σmax in this filtering step to avoid the loss of
2-event patterns, as event pairs that do not satisfy the σmax constraint can still
form 2-event patterns satisfying σmax (Lemma 3).

128

B.4. Generalized Temporal Pattern Mining

Step 2.1. Mining event pairs considering σmin and δ: This step finds event
pairs in DSEQ satisfying σmin and δ, using the set 1Freq found in HLH1 (Alg.
9, lines 5-10). First, GTPM generates all possible event pairs by calculating
the Cartesian product 1Freq × 1Freq. Next, for each pair (Ei , E j), the set Si j
(representing the set of sequences where both events occur) is computed by
taking the intersection between the set of sequences Si of Ei and the set of
sequences Sj of E j in HLH1. Finally, we compute the support supp(Ei , E j)
using Si j , and compare against σmin. If supp(Ei , E j) ≥ σmin, (Ei , E j) has high
enough support. Next, (Ei , E j) is further filtered using Lemma 4: (Ei , E j) is
selected only if its confidence is at least δ. After this step, only event pairs
satisfying σmin and δ are kept in EH2 of HLH2.

Step 2.2. Mining 2-event patterns: This step mines 2-event patterns from
the event pairs found in step 2.1 (Alg. 9, lines 11-13), considering three con-
straints σmin, σmax, and δ. For each event pair (Ei , E j), we use the set of
sequences Si j to check the temporal relations between Ei and E j . Specifically,
for each sequence S ∈ Si j , the pairs of event instances (ei , e j) are extracted, and
the relations between them are verified. The support and confidence of each
relation r(Ei.ei

, E j.e j
) are computed and compared against σmin, and δ thresh-

olds, after which only relations satisfying the two constraints are selected and
stored in PH2, while their event instances are stored in SH2. Examples of the
relations in HLH2 can be seen in Fig. B.6, e.g., event pair (SOn, TOn). We
also emphasize that HLH2 only stores patterns that satisfy the two constraints
σmin, and δ, thus, patterns in PH2 are frequent temporal patterns. To mine
rare temporal patterns from HLH2, we take a further step by iterating through
every 2-event pattern P in PH2, and checking the satisfaction of P against the
constraint σmax.

Complexity: Let m be the number of single events in HLH1, and i be the
average number of event instances of each event. The complexity of 2-event
pattern mining is O(m2i2 |DSEQ |2).

B.4.5 Mining k-event Patterns
Mining k-event patterns (k ≥ 3) follows a similar process as 2-event patterns,
with additional prunings based on the transitivity property of temporal rela-
tions.

Step 3.1. Mining k-event combinations considering σmin and δ: This step
finds k-event combinations that satisfy the minimum support and confidence
constraints (Alg. 9, lines 14-16).

Let (k-1)Freq be the set of (k-1)-event combinations found in HLHk−1, and
1Freq be the set of single events in HLH1. To generate all k-event combina-
tions, the typical process is to compute the Cartesian product: (k-1)Freq ×
1Freq. However, we observe that using 1Freq to generate k-event combinations
at HLHk can create redundancy, since 1Freq might contain events that when

129

Paper B.

combined with (k-1)Freq, result in combinations that clearly cannot form any
patterns satisfying theminimum support constraint. To illustrate this observa-
tion, consider the event IOn in HLH1 in Fig. B.6. Here, IOn is a frequent event,
and thus, can be combined with frequent event pairs in HLH2 such as (SOn,
TOn) to create a 3-event combination (SOn, TOn, IOn). However, (SOn, TOn,
IOn) cannot form any 3-event patterns whose support is greater than σmin,
since IOn is not present in any frequent 2-event patterns in HLH2. To reduce
the redundancy, the combination (SOn, TOn, IOn) should not be created in the
first place. We rely on the transitivity property of temporal relations to identify
such event combinations.

Lemma 5 Let S �< e1,..., en−1 > be a temporal sequence that supports an (n-1)-event
pattern P �< (r12, E1.e1 , E2.e2),..., (r(n−2)(n−1), En−2.en−2

, En−1.en−1
) >. Let en be a

new event instance added to S to create the temporal sequence S
′
�< e1 , ..., en >.

The set of temporal relations< is transitive on S
′ : ∀ei ∈ S

′ , i < n, ∃r ∈ < s.t.
r(Ei.ei

,En.en) holds.

Lemma5 says that given a temporal sequence S, a newevent instance added
to S will always form at least one temporal relation with existing instances in
S. This is due to the temporal transitivity property, which can be used to prove
the following lemma.

Lemma 6 Let Nk−1 � (E1 , ..., Ek−1) be a (k-1)-event combination and Ek be a single
event, both satisfying the σmin constraint. The combination Nk � Nk−1∪Ek can form
k-event temporal patterns whose support is at least σmin if ∀Ei ∈ Nk−1, ∃r ∈ < s.t.
r(Ei , Ek) is a frequent temporal relation.

From Lemma 6, only single events in HLH1 that appear in HLHk−1 should
be used to create k-event combinations. Using this result, a filtering on 1Freq
is performed before calculating the Cartesian product. Specifically, from the
events in HLHk−1, we extract distinct single events Dk−1, and intersect Dk−1
with 1Freq to remove redundant single events: Filtered1Freq = Dk−1 ∩ 1Freq.
Next, the Cartesian product (k-1)Freq × Filtered1Freq is calculated to generate
k-event combinations. Finally, we apply Lemmas 3 and 4 to select k-event
combinations kFreq which upheld the σmin and δ constraints. Similar to step
2.1, we do not consider σmax when generating the k-event combination.

Step 3.2. Mining k-event patterns: This step mines k-event patterns that
satisfy the three constraints of σmin, σmax, and δ (Alg. 9, lines 17-19). Unlike 2-
event patterns, verifying the relations in a k-event combination (k ≥ 3) is much
more expensive, as it requires to compute the frequency of 1

2 k(k − 1) triples
of temporal relations. To reduce the cost of relation checking, we propose
an iterative verification method that relies on the transitivity property and the
Apriori principle.

Lemma 7 Let P and P
′ be two temporal patterns. If P

′ ⊆ P, then conf(P′) ≥ conf(P).

130

B.5. Approximate GTPM

Lemma 8 LetP andP
′ be two temporal patterns. IfP

′ ⊆ P and supp(P′)
max1≤k≤|P |{supp(Ek)} Ek∈P

≤ δ, then conf(P) ≤ δ.

Lemma 7 says that, the confidence of a pattern P is always at most the con-
fidence of its sub-patterns. Consequently, from Lemma 8, a temporal pattern
P cannot be high-confidence if any of its sub-patterns are low-confidence.

Let Nk−1 � (E1 , ..., Ek−1) be a (k-1)-event combination in HLHk−1, N1 �

(Ek) be an event in HLH1, and Nk � Nk−1 ∪ N1 � (E1 , ..., Ek) be a k-event
combination in HLHk . To find k-event patterns for Nk , we first retrieve the
set Pk−1 containing (k-1)-event patterns of Nk−1 by accessing the EHk−1 table.
Each pk−1 ∈ Pk−1 is a list of 1

2 (k−1)(k−2) triples: {(r12, E1.e1 , E2.e2),...,(r(k−2)(k−1),
Ek−2.ek−2

, Ek−1.ek−1
)}. We iteratively verify the possibility of pk−1 forming a k-

event pattern with Ek that can satisfy the σmin constraint as follows. We first
check whether the triple (r(k−1)k , Ek−1.ek−1

, Ek.ek
) satisfies the constraints of σmin,

σmax, and δ by accessing the HLH2 table. If the triple does not satisfy the
minimum and maximum support constraints (using Lemmas 5 and 6), or the
confidence constraint (using Lemmas 5, 7, and 8), the verifying process stops
immediately for pk−1. Otherwise, it continues on the triple (r(k−2)k , Ek−2.ek−2

,
Ek.ek
), until it reaches (r1k , E1.e1 , Ek.ek

).
We note that the transitivity property of temporal relations has been ex-

ploited in [16] to generate new relations. Instead, we use this property to prune
unpromising candidates (Lemmas 5, 6, 7, 8).

Complexity: Let r be the average number of (k-1)-event patterns inHLHk−1.
The complexity of k-event patternmining isO(|1Freq| · |(k-1)Freq| · r · k2·|DSEQ |).

GTPM overall complexity: Throughout this section, we have seen that
GTPM complexity depends on the size of the search space (O(mh3h2)) and the
complexity of the mining process itself, i.e., O(m·|DSEQ |) + O(m2i2 |DSEQ |2)
+ O(|1Freq| · |(k-1)Freq| · r · k2·|DSEQ |). While the parameters m, h, i, r and
k depend on the number of time series, others such as |1Freq|, |(k-1)Freq| and
|DSEQ | also depend on the number of temporal sequences. Thus, given a
dataset, GTPM complexity is driven by two main factors: the number of time
series and the number of temporal sequences.

B.5 Approximate GTPM

B.5.1 Mutual Information of Symbolic Time Series
Let XS and YS be the symbolic series representing the time series X and Y,
respectively, and ΣX , ΣY be their alphabets.
Definition 5.1 (Entropy) The entropy of XS, denoted as H(XS), is defined as

H(XS) � −
∑

x∈ΣX

p(x) · log p(x) (B.7)

131

Paper B.

Intuitively, the entropy measures the amount of information or the inherent
uncertainty in the possible outcomes of a random variable. The higher the
H(XS), the more uncertain the outcome of XS.

The conditional entropy H(XS |YS) quantifies the amount of information
needed to describe the outcome of XS, given the value of YS, and is defined as

H(XS |YS) � −
∑

x∈ΣX

∑
y∈ΣY

p(x , y) · log
p(x , y)

p(y) (B.8)

Definition 5.2 (Mutual information) The mutual information (MI) of two sym-
bolic series XS and YS, denoted as I(XS; YS), is defined as

I(XS ; YS) �
∑

x∈ΣX

∑
y∈ΣY

p(x , y) · log
p(x , y)

p(x) · p(y) (B.9)

TheMI represents the reduction of uncertainty of one variable (e.g., XS), given
the knowledge of another variable (e.g., YS). The larger I(XS; YS), the more
information is shared between XS and YS, and thus, the less uncertainty about
one variable given the other.

Since 0 ≤ I(XS; YS) ≤ min(H(XS),H(YS)) [45], MI has no upper bound. To
scale the MI into the range [0 − 1], we use normalized mutual information as
defined below.
Definition 5.3 (Normalized mutual information) The normalized mutual infor-
mation (NMI) of two symbolic time series XS and YS, denoted as Ĩ(XS; YS), is
defined as

Ĩ(XS ; YS) �
I(XS ; YS)

H(XS)
� 1 − H(XS |YS)

H(XS)
(B.10)

Ĩ(XS; YS) represents the reduction (in percentage) of the uncertainty of XS due
to knowing YS. Based on Eq. (A.10), a pair of variables (XS ,YS) holds amutual
dependency if Ĩ(XS; YS) > 0. Eq. (A.10) also shows that NMI is not symmetric,
i.e., Ĩ(XS; YS) , Ĩ(YS; XS).

B.5.2 Lower Bound of the Support of an Event Pair
Consider two symbolic series XS and YS. Let X1 be an event in XS, Y1 be an
event in YS, and DSYB and DSEQ be the symbolic and the sequence databases
created from XS and YS, respectively. We first study the relationship between
the support of (X1 ,Y1) inDSYB andDSEQ.

Lemma 1 Let supp(X1 ,Y1)DSYB and supp(X1 ,Y1)DSEQ be the support of (X1 ,Y1) in
DSYB andDSEQ, respectively. Then supp(X1 ,Y1)DSYB ≤ supp(X1 ,Y1)DSEQ holds.

Proof (Sketch - Detailed proof in the electronic appendix [42]). Let n be the length
of each symbolic time series in DSYB, and m be the length of each temporal sequence.
The number of temporal sequences obtained inDSEQ is: d n

m e.

132

B.5. Approximate GTPM

The support of (X1 ,Y1) inDSYB is computed as:

supp(X1 ,Y1)DSYB �

∑d n
m e

i�1
∑m

j�1 si j

n
(B.11)

where

si j �

{
1, if (X1 ,Y1) occurs in row j of the sequence si inDSYB

0, otherwise

Moreover, we have:

supp(X1 ,Y1)DSEQ �

∑d n
m e

i�1 gi

n/m �
m ·∑d n

m e
i�1 gi

n
(B.12)

where

gi �

{
1, if (X1 ,Y1) occurs in the sequence gi inDSEQ

0, otherwise

We also get:

supp(X1 ,Y1)DSEQ �
m ·∑d n

m e
i�1 gi

n
�

∑d n
m e

i�1 m · gi

n

�

∑d n
m e

i�1

(∑m
j�1 si j + ϑi

)
n

(B.13)

where si j is defined as in Eq. (B.11), and

ϑi �

{
m −∑m

j�1 si j , if
∑m

j�1 si j , 0
0, otherwise

From Eq. (B.13), we have:

supp(X1 ,Y1)DSEQ �

∑d n
m e

i�1
∑m

j�1 si j

n
+

∑d n
m e

i�1 ϑi

n
� supp(X1 ,Y1)DSYB + ϑ (B.14)

where ϑ �

∑d n
m e

i�1 ϑi

n is the difference between the probabilities of (X1 ,Y1) in DSEQ and
DSYB.
From Eq. (B.14), we have:

supp(X1 ,Y1)DSYB ≤ supp(X1 ,Y1)DSEQ (B.15)

133

Paper B.

From Lemma 1, a frequent event pair in DSYB is also frequent in DSEQ.
We now investigate the relation between Ĩ(XS; YS) in DSYB and the support of
(X1 ,Y1) inDSEQ.

Theorem 1 (Lower bound of the support) Let µmin be the minimummutual informa-
tion threshold. If the NMI Ĩ(XS;YS) ≥ µmin, then the lower bound of the support of
(X1 ,Y1) inDSEQ is:

supp(X1 ,Y1)DSEQ ≥ λ2 · e
W

(
log λ1−µmin

1 ·ln2
λ2

)
(B.16)

where λ1 is the minimum support of Xi ∈ XS, λ2 is the support of Y1 ∈ YS, and W
is the Lambert function [46].

Proof (Sketch - Detailed proof in the electronic appendix [42]). From Eq. (B.10), we
have:

Ĩ(XS; YS) � 1 − H(XS |YS)
H(XS)

≥ µmin (B.17)

⇒ H(XS |YS)
H(XS)

�
p(X1 ,Y1) · log p(X1 |Y1)∑

i p(Xi) · log p(Xi)

+

∑
i,1∧ j,1 p(Xi ,Yj) · log p(Xi ,Yj)

p(Yj)∑
i p(Xi) · log p(Xi)

≤ 1 − µmin (B.18)

Let λ1 � p(Xk) such that p(Xk) � min{p(Xi)}, ∀i, and λ2 � p(Y1). We obtain:

H(XS |YS)
H(XS)

≥
p(X1 ,Y1) · log p(X1 ,Y1)

λ2

log λ1
(B.19)

From Eqs. (B.18), (B.19), the support lower bound of (X1 ,Y1) inDSYB is derived as:

supp(X1 ,Y1)DSYB ≥ λ2 · e
W

(
log λ1−µmin

1 ·ln 2
λ2

)
(B.20)

Since:

supp(X1 ,Y1)DSEQ ≥ supp(X1 ,Y1)DSYB (B.21)

It follows that:

supp(X1 ,Y1)DSEQ ≥ λ2 · e
W

(
log λ1−µmin

1 ·ln 2
λ2

)
(B.22)

134

B.5. Approximate GTPM

From Theorem 1, we can derive the minimumMI threshold µmin such that
the support of (X1 ,Y1) is at least σmin.
Corollary 1.1 The support of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at least
σmin if Ĩ(XS; YS) is at least µmin, where:

µmin ≥


1 − λ2
e ·ln 2·log 1

λ1
, if 0 ≤ σmin

λ2
≤ 1

e

1 −
σmin ·log σmin

λ2
ln 2·log λ1

, otherwise
(B.23)

Interpretation of the support lower bound: Given two symbolic series XS
and YS, and a minimum mutual information threshold µmin. Theorem 1 says
that, if XS and YS are mutually dependent with the minimum MI value µmin,
then the support of an event pair in (XS, YS) is at least the lower bound in
Eq. (B.16). Combining Theorem 1 and Lemma 3, we can conclude that if an
event pair of (XS,YS) has a support less than the lower bound in Eq. (B.16),
then any pattern P formed by that event pair also has support less than that
lower bound. This allows us to construct an approximate version of GTPM
(discussed in Section B.5.5).

B.5.3 Lower bound of the Confidence of an Event Pair
Consider two events X1, Y1 of two symbolic series XS and YS. We derive the
confidence lower bound of (X1 ,Y1) in the sequence databaseDSEQ as follows.
Theorem 2 (Lower bound of the confidence) Let σmin and µmin be the minimum
support and minimum mutual information thresholds, respectively. Assume that
supp(X1 ,Y1)DSEQ ≥ σmin. If the NMI Ĩ(XS;YS) ≥ µmin, then the lower bound of the
confidence of (X1 ,Y1) inDSEQ is:

conf(X1 ,Y1)DSEQ ≥ σmin · λ
1−µmin
σmin

1 ·
(

nx − 1
1 − σmin

) λ3
σmin

(B.24)

where nx is the number of symbols in ΣX , λ1 is the minimum support of Xi ∈ XS,
and λ3 is the support of (Xi ,Yj) ∈ (XS ,YS) such that p(Xi |Yj) is minimal, ∀(i , 1
∧ j , 1).
Proof (Sketch - Detailed proof in the electronic appendix [42]). Let λ1 � p(Xk)
such that p(Xk) � min{p(Xi)}, ∀i, and λ3 � p(Xm ,Yn) such that p(Xm |Yn) �
min{p(Xi |Yj)} , ∀(i , 1 ∧ j , 1). Then, by applying the min-max inequality
theorem for the sum of ratio [47] to the numerator of Eq. (B.18), we obtain:

H(XS |YS)
H(XS)

≥
p(X1 ,Y1) · log p(X1 |Y1) + λ3 · log 1−p(X1 ,Y1)

nx−p(Y1)

log λ1

≥
σmin · log p(X1 ,Y1)

p(Y1) + λ3 · log 1−σmin
nx−1

log λ1
(B.25)

135

Paper B.

Next, assume that supp(Y1)DSYB ≥ supp(X1)DSYB . From Eqs. (B.18), (B.25), the
confidence lower bound of (X1 ,Y1) inDSYB is derived as:

conf(X1 ,Y1)DSYB �
supp(X1 ,Y1)DSYB

supp(Y1)DSYB

≥ λ
1−µmin
σmin

1 ·
(

nx − 1
1 − σmin

) λ3
σmin

(B.26)

Since:

conf(X1 ,Y1)DSEQ ≥ σmin · conf(X1 ,Y1)DSYB (B.27)

It follows that:

conf(X1 ,Y1)DSEQ ≥ σmin · λ
1−µmin
σmin

1 ·
(

nx − 1
1 − σmin

) λ3
σmin

(B.28)

From Theorem 2, we can derive the minimumMI threshold µmin such that
the confidence of (X1 ,Y1) is at least δ.

Corollary 2.1 The confidence of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at
least δ if Ĩ(XS; YS) is at least µmin, where:

µmin ≥ 1 − σmin · logλ1

©­« δ
σmin

·
(
1 − σmin
nx − 1

) λ3
σmin ª®¬ (B.29)

Interpretation of the confidence lower bound: Given two symbolic series
XS and YS, and a minimum mutual information threshold µmin. Theorem 2
says that, if XS and YS are mutually dependent with the minimum MI value
µmin, then the confidence of an event pair in (XS, YS) is at least the lower bound
in Eq. (B.24). Combining Theorem 2 and Lemma 4, if an event pair of (XS,YS)
has a confidence less than the lower bound in Eq. (B.24), then any pattern P
formed by that event pair also has a confidence less than that lower bound.
This allows us to construct an approximate version of GTPM (discussed in
Section B.5.5).

B.5.4 Upper Bound of the Support of an Event Pair
We derive the support upper bound of the event pair (X1 ,Y1) of XS and YS in
DSEQ as follows.

Theorem 3 (Upper bound of the support) Let σmin be theminimum support threshold,
and µmax be the maximum mutual information threshold, respectively. Assume that

136

B.5. Approximate GTPM

supp(X1 ,Y1)DSEQ ≥ σmin. If the NMI Ĩ(XS;YS) ≤ µmax, then the upper bound of the
support of (X1 ,Y1) inDSEQ is:

supp(X1 ,Y1)DSEQ ≤ λ2 · e

W

©­­­­­«
log

λ
1−µmax
5
λ

1−σmin
4

·ln 2

λ2

ª®®®®®¬ + ϑ (B.30)

where: λ2 is the support of Y1 ∈ YS, λ4 is the fraction between the support of
(Xi ,Yj) ∈ (XS ,YS) and the support of Yj ∈ YS such that p(Xi |Yj) is minimal, ∀i , 1
∧ j , 1, λ5 is the maximum support of Xi ∈ XS, and ϑ is the difference between the
probabilities of (X1 ,Y1) inDSEQ andDSYB.

Proof (Sketch - Detailed proof in the electronic appendix [42]). Let λ2 � p(Y1),
λ4 � min{p(Xi |Yj)} ∀(i , 1 ∧ j , 1), and λ5 � max{p(Xi)} ∀i. We obtain:

H(XS |YS)
H(XS)

≤
p(X1 ,Y1) · log p(X1 ,Y1)

λ2
+ (1 − σmin) · log λ4

log λ5
(B.31)

From Eqs. (B.10), we have:

Ĩ(XS; YS) � 1 − H(XS |YS)
H(XS)

≤ µmax ⇒
H(XS |YS)

H(XS)
≥ 1 − µmax (B.32)

From Eqs. (B.31) and (B.32), we have:

p(X1 ,Y1) · log p(X1 ,Y1)
λ2

+ (1 − σmin) · log λ4

log λ5
≥ 1 − µmax (B.33)

⇔ p(X1 ,Y1) ≤ λ2 · e

W

©­­­­­«
log

λ
1−µmax
5
λ

1−σmin
4

·ln 2

λ2

ª®®®®®¬ (B.34)

From Eq. (B.14), we have:

p(X1 ,Y1) � supp(X1 ,Y1)DSYB � supp(X1 ,Y1)DSEQ − ϑ (B.35)

From Eqs. (B.34) and (B.35), we have:

supp(X1 ,Y1)DSEQ ≤ λ2 · e

W

©­­­­­«
log

λ
1−µmax
5
λ

1−σmin
4

·ln 2

λ2

ª®®®®®¬ + ϑ (B.36)

From Theorem 3, we can derive the maximumMI threshold µmax such that
the support of (X1 ,Y1) is at most σmax.

137

Paper B.

Corollary 3.1 The support of an event pair (X1 ,Y1) ∈ (XS ,YS) in DSEQ is at most
σmax if Ĩ(XS; YS) is at most µmax, where:

µmax ≤ 1 −
σmax−ϑ
λ2
· log σmax−ϑ

λ2
+ log λ1−σmin

4
log λ5

(B.37)

Interpretation of the support upper bound: Given amaximumMI thresh-
old µmax, let XS and YS be two symbolic series. Theorem 3 says that, if the
NMI of XS and YS is at most µmax, then the support of an event pair in (XS, YS)
is at most the upper bound in Eq. (B.30). Combining Theorem 3 and Lemma
3, we can conclude that if an event pair in (XS,YS) has a support less than the
upper bound, then any pattern P formed by that event pair also has support
less than that upper bound.

Setting the values of µmin and µmax: GTPM uses three user-defined pa-
rameters, the minimum support σmin, the maximum support σmax, and the
minimum confidence δ to mine both frequent and rare temporal patterns
(with σmax is set to∞ in case of frequent patterns). To mine frequent patterns
that satisfy both σmin and δ constraints, we select µmin such that both Eqs.
(B.23) and (B.29) hold, i.e., the maximum value of µmin provided by the two
equations. On the other hand, to mine rare patterns that also have to satisfy
σmax constraint, µmax is chosen using Eq. (B.37).
Algorithm 10: Approximate GTPM using MI
Input: A set of time series X, a minimum support threshold σmin, a maximum

support threshold σmax, a minimum confidence threshold δ
Output: The set of temporal patterns P

1: Convert X toDSYB andDSEQ;
2: ScanDSYB to compute the probability of each event, event pair, and plus ϑ

value;
3: foreach pair of symbolic time series (XS ,YS) ∈ DSYB do
4: Compute Ĩ(XS ; YS) and Ĩ(YS ; XS);
5: Compute µmin using Eqs. (B.23) and (B.29);
6: Compute µmax using Eqs. (B.37);
7: if min{Ĩ(XS ; YS), Ĩ(YS ; XS)} ≥ µmin then
8: if min{Ĩ(XS ; YS), Ĩ(YS ; XS)} ≤ µmax then
9: Insert XS and YS into XC ;
10: foreach XS ∈ XC do
11: Mine single events from XS as in Section B.4.3;
12: foreach (XS ,YS) ∈ XC do
13: Mine 2-event patterns from (XS ,YS) as in Section B.4.4;
14: if k ≥ 3 then
15: Mine k-event patterns similar to the exact GTPM in Section B.4.5;

138

B.6. Experimental Evaluation

B.5.5 Using the Bounds for Approximate GTPM
Approximate GTPM: Approximate GTPM is based on the exact GTPM and
performs the mining only on the set of mutually dependent symbolic series XC ∈
X with minimum and maximum MI thresholds µmin and µmax. Algorithm 10
describes the approximate GTPM. First, DSYB is scanned once to compute the
probability of each single event, pair of events, and plus ϑ value (line 2). Next,
NMI, µmin, and µmax are computed for each symbolic series pair (lines 4-6).
The pairs of symbolic series whose min{Ĩ(XS; YS), Ĩ(YS; XS)} is at least µmin,
and min{Ĩ(XS; YS), Ĩ(YS; XS)} is at most µmax are inserted into XC (lines 7-9).
Then, we traverse each series in XC to mine the single events (lines 10-11).
Next, each event pair in corresponding series in XC is employed to mine the
2-event patterns (lines 12-13). For k-event pattern (k ≥ 3), the mining process
is similar to GTPM (lines 14-15).

Complexity analysis of Approximate GTPM: To compute NMI, µmin, and
µmax, we only have to scan DSYB once to calculate the probability for each
single event, pair of events, and plus ϑ value. Thus, the cost of NMI, µmin, and
µmax computations is |DSYB |. On the other hand, the complexity of the exact
GTPM at HLH1 and HLH2 are O(m2i2 |DSEQ |2) + O(m·|DSEQ |) (Sections B.4.3
and B.4.4). Thus, the approximate GTPM is significantly faster than the exact
GTPM.

B.6 Experimental Evaluation
We evaluate GTPM in two different settings: to mine rare temporal patterns,
named as RTPM, and to mine frequent temporal patterns, named as FTPM.
Note that for RTPM, all three constraints σmin, σmax and δ are used, whereas
for FTPM, only σmin and δ are used. In each setting, the performance of both
exact and approximate versions are assessed. We use real-world datasets from
four application domains: smart energy, smart city, sign language, and health.
Due to space limitations, we only present here the most important results, and
discuss other findings in the electronic appendix [42].

B.6.1 Experimental Setup
Datasets: We use three smart energy (SE) datasets, NIST [48], UKDALE [49],
andDataPort [50] thatmeasure the energy consumptionof electrical appliances
in residential households. For the smart city (SC), we use weather and vehicle
collision data obtained from NYC Open Data Portal [51]. For sign language,
we use the American Sign Language (ASL) datasets [52] containing annotated
video sequences of different ASL signs and gestures. For health, we combine
the influenza (INF) dataset [53] and weather data [54] from Kawasaki, Japan.
Table B.4 summarizes their characteristics.

139

Paper B.

Table B.4: Characteristics of the Datasets

NIST UKDALE DataPort SC ASL INF
sequences 1460 1520 1460 1216 1908 608
variables 49 24 21 26 25 25

distinct events 98 48 42 130 173 124
instances/seq. 55 190 49 162 20 48

Table B.5: Parameters and values

Params Values

Minimum support σmin
User-defined:
σmin � 0.2%, 0.4%, 0.6% 1%, 3% ...

Maximum support σmax
User-defined:
σmax � 2%, 6%, 10%, 15%, 20%, ...

Minimum confidence δ User-defined:
δ � 40%, 50%, 60%, 70%, 80%, ...

Overlapping duration tov

User-defined:
tov (hours) � 0, 1, 2, 3 (NIST, UKDALE, DataPort, SC)
tov (frames) � 0, 150, 300, 450 (ASL)
tov (days) � 0, 7, 10, 14 (INF)

Tolerance buffer ε

User-defined:
ε (mins) � 0, 1, 2, 3 (NIST, UKDALE, DataPort)
ε (mins) � 0, 5, 10, 15 (SC)
ε (frames) � 0, 30, 45, 60 (ASL)
ε (days) � 0, 1, 2, 3 (INF)

Baseline methods: Our exact RTPM version is referred to as E-RTPM, and
the approximate one as A-RTPM. Since our work is the first that studies rare
temporal pattern mining, there is not an exact baseline to compare against
RTPM. However, we adapt the state-of-the-art method for frequent temporal
pattern mining Z-Miner [22] to find rare temporal patterns. The Adapted Rare
Z-Miner is referred to as ARZ-Miner. Similarly, we denote the exact FTPM
version as E-FTPM, and the approximate one as A-FTPM. We use 4 baselines
(detailed in Section B.2) to comparewith our FTPM: Z-Miner [22], TPMiner [3],
IEMiner [4], and H-DFS [5]. Since the exact versions (E-RTPM and E-FTPM)
and the baselines provide the same exact solutions, we use the baselines only
for quantitative evaluation.

Infrastructure: We use a VM with 32 AMD EPYC cores (2GHz), 512 GB
RAM, and 1 TB storage.

Parameters: Table B.5 lists the parameters and their values used in our
experiments.

140

B.6. Experimental Evaluation

B.6.2 Qualitative Evaluation
Rare temporal patterns: Table B.6 shows several interesting rare temporal pat-
terns extracted by RTPM. Patterns P1-P5 are from SC and P6-P8 are from INF.
Analyzing these patterns can reveal some rare but interesting relations be-
tween temporal events. For example, P1-P5 show there exists an association
between extreme weather conditions and high accident numbers, such as high
pedestrian injury during a heavy snowing day, which is very important to act
on even though it occurs rarely.

Table B.6: Summary of Interesting Rare Patterns

Patterns σmin (%) δ (%) σmax (%)
(P1) Heavy Rain < Unclear Visibility < Overcast Cloudiness→ High Motorist Injury 5 30 9
(P2) Heavy Rain G Strong Wind→ High Motorist Injury 2 40 6
(P3) Very Strong Wind→ High Motorist Injury 5 40 9
(P4) Strong Wind G High Pedestrian Injury 4 30 8
(P5) Extremely Unclear Visibility < High Snow < High Pedestrian Injury 3 45 7
(P6) Frost Temperature G High Snow < High Influenza 1 42 6
(P7) Low Temperature <High Influenza 1 42 6
(P8) Heavy Rain < High Influenza 3 35 8

Frequent temporal patterns: Table B.7 lists some interesting frequent temporal
patterns extracted by FTPM. Patterns P9-P15 are from SEs and P16-P18 are
from ASL. Analyzing these patterns will reveal useful information about the
domains. For example, P9-P15 show how the residents interact with electrical
appliances in their houses. Specifically, P9 shows that a resident turns on
the light upstairs in the early morning, and goes to the bathroom. Then,
within a minute later, the microwave in the kitchen is turned on. This pattern
occurs withminimum support of 20%, reflecting a living habit of the residents.
Moreover, P9 also implies that there might be more than one person living
in the house, in which one resident is in the bathroom while the other is
downstairs preparing breakfast.

B.6.3 Quantitative Evaluation of RTPM

RTPM: Baseline comparison on real world datasets

We compare E-RTPM and A-RTPM with the adapted baseline ARZ-Miner in
terms of runtime and memory usage. Figs. B.7, B.8, B.9, and B.10 show the
comparison results on NIST and SC.

As shown in Figs. B.7 and B.8, A-RTPM achieves the best runtime among
all methods, and E-RTPM has better runtime than the baseline. The range
and average speedups of A-RTPM compared to other methods are: [1.9-7.2]
and 3.4 (E-RTPM), [5.4-48.9] and 16.5 (ARZ-Miner). The speedup of E-RTPM
compared to the baseline is [2.9-24.7] and 7.4 on average. Note that the time
to compute MI, µmin, and µmax for NIST and SC in Figs. B.7 and B.8 are 35.4
and 28.7 seconds, respectively, i.e., negligible compared to the total runtime.

141

Paper B.

Table B.7: Summary of Interesting Frequent Patterns

Patterns σmin (%) δ (%)
(P9) ([05:58, 08:24] First Floor Lights) < ([05:58, 06:59]Upstairs BathroomLights) < ([05:59, 06:06]Microwave) 20 30
(P10) ([18:00, 18:30] Lights Dining Room)→ ([18:31, 20:16] Children Room Plugs) G ([19:00, 22:31] Lights
Living Room)

20 20

(P11) ([15:59, 16:05] Hallway Lights)→ ([17:58, 18:29] Kitchen Lights < ([18:00, 18:18] Plug In Kitchen) <
([18:08, 18:15] Microwave)

20 25

(P12) ([06:02, 06:19] Kitchen Lights)→ ([06:05, 06:12] Microwave) G ([06:09, 06:11] Kettle) 20 35
(P13) ([16:45, 17:30] Washer)→ ([17:40,18:55] Dryer)→ ([19:05, 20:10] Dining Room Lights) < ([19:10, 19:30]
Cooktop)

10 30

(P14) ([06:10, 07:00] Kitchen Lights) < ([06:10, 06:15] Kettle) → ([06:30, 06:40] Toaster) → ([06:45, 06:48]
Microwave)

25 40

(P15) ([18:00, 18:25] Kitchen Lights) < ([18:00, 18:05] Kettle)→ ([18:05, 18:10] Microwave)→ ([19:35, 20:50]
Washer)

20 40

(P16) [2.12 seconds] Negation < [0.27 seconds] Lowered Eye-brows 10 10
(P17) [2.04 seconds] Negation < [0.52 seconds] Rapid Shake-head 10 10
(P18) [1.53 seconds] Wh-question < [0.36 seconds] Lowered Eye-brows → [0.05 seconds] Blinking Eye-
aperture

10 15

1 3 6 9 12101

102

103

104

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

60 70 80 90 10010−1
100
101
102
103
104

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ

15 20 25 30 35101

102

103

104

σmax (%)
Ru

nt
im

e
(s
ec
)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. B.7: RTPM-Runtime Comparison on NIST (real-world)

1 3 6 9 1210−1

100

101

102

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

60 70 80 90 10010−1

100

101

102

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ

15 20 25 30 3510−1

100

101

102

σmax (%)

Ru
nt
im

e
(s
ec
)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. B.8: RTPM-Runtime Comparison on SC (real-world)
In terms of memory consumption, as shown in Figs. B.9 and B.10, A-RTPM

uses the least memory, while E-RTPM uses less memory than the baseline.
A-RTPM consumes [1.6-3.9] (on average 2.1) times less memory than E-RTPM,
and [7.2-120.6] (on average 24.1) times less than ARZ-Miner. E-RTPM uses
[4.6-61.8] (on average 14.7) times less memory than ARZ-Miner.

142

B.6. Experimental Evaluation

1 3 6 9 12102

103

104

σmin (%)

M
em

or
y
U
sa
ge

(M
B)

(a) Varying σmin

60 70 80 90 100101

102

103

104

δ (%)

M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ

15 20 25 30 35102

103

104

σmax (%)

M
em

or
y
U
sa
ge

(M
B)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. B.9: RTPM-Memory Usage Comparison on NIST (real-world)

1 3 6 9 12101

102

103

σmin (%)

M
em

or
y
U
sa
ge

(M
B)

(a) Varying σmin

60 70 80 90 100101

102

103

δ (%)

M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ

15 20 25 30 35101

102

103

σmax (%)

M
em

or
y
U
sa
ge

(M
B)

(c) Varying σmax

A-RTPM E-RTPM ARZ-Miner

Fig. B.10: RTPM-Memory Usage Comparison on SC (real-world)
RTPM: Scalability evaluation on synthetic datasets

As discussed in Section B.4, the complexity of GTPM in general (and RTPM in
particular) is drivenby twomain factors: (1) thenumber of temporal sequences,
and (2) the number of time series. The evaluation on real-world datasets has
shown that E-RTPM and A-RTPM outperform the baseline significantly in
both runtimes and memory usage. However, to further assess the scalability
of RTPM, we scale these two factors using synthetic datasets. Specifically,
starting from the real-world datasets, we generate 10 times more sequences,
and create up to 1000 synthetic time series. We then evaluate the scalability
of RTPM in two scenarios: varying the number of sequences, and varying the
number of time series.

Figs. B.11 andB.12 showthe runtimesofA-RTPM,E-RTPMand thebaseline
when the number of sequences changes. We can see thatA-RTPMandE-RTPM
outperform and scale better than the baseline in this configuration. The range
and average speedups of A-RTPM w.r.t. other methods are: [2.3-5.7] and 3.2
(E-RTPM), [5.1-19.8] and 12.5 (ARZ-Miner). Similarly, the range and average
speedups of E-RTPM compared to ARZ-Miner are [2.7-7.6] and 5.3.

Figs. B.13 and B.14 compare the runtimes of A-RTPM with other methods
when changing the number of time series. It is seen that, A-RTPM achieves
highest speedup in this configuration. The range and average speedups of
A-RTPM are [3.5-7.4] and 4.6 (E-RTPM), [7.2-24.8] and 15.2 (ARZ-Miner), and

143

Paper B.

20 40 60 80 100
102

103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(a) σmin=1%,
σmax=20%, δ=60%

20 40 60 80 100
102

103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(b) σmin=3%,
σmax=15%, δ=70%

20 40 60 80 100
102

103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(c) σmin=6%,
σmax=10%, δ=80%

A-RTPM E-RTPM ARZ-Miner

Fig. B.11: RTPM-Varying % of sequences on NIST (synthetic)

20 40 60 80 100
102

103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(a) σmin=1%,
σmax=20%, δ=60%

20 40 60 80 100
102

103

104

105

Sequence (%)

Ru
nt
im

e
(s
ec
)

(b) σmin=3%,
σmax=15%, δ=70%

20 40 60 80 100
102

103

104

105

Sequence (%)
Ru

nt
im

e
(s
ec
)

(c) σmin=6%,
σmax=10%, δ=80%

A-RTPM E-RTPM ARZ-Miner

Fig. B.12: RTPM-Varying % of sequences on SC (synthetic)
of E-RTPM is [3.6-9.5] and 6.4 (ARZ-Miner).

On average, E-RTPM consumes 17.2 times less memory than the baseline,
while A-RTPM uses 20.6 times less memory than E-RTPM and the baseline
in the scalability study. Furthermore, Fig. B.13a shows that A-RTPM and
E-RTPM can scale well on big datasets while the baseline cannot. Specifically,
the baseline fails for large configurations as it runs out of memory, e.g., when
Time Series ≥ 1000 on the synthetic NIST. We add an additional bar chart for
A-RTPM, including the time to compute MI, µmin, and µmax (top red) and the
mining time (bottom blue) for comparison, showing that this time is negligible.

Table B.8: Pruned Time Series and Events from A-RTPM

Attr.

σmin (%) - δ (%) - σmax (%)
NIST SC

Pruned Time Series / Events (%) Pruned Time Series (%) Pruned Events (%)
6-80-20 3-70-15 1-60-10 6-80-20 3-70-15 1-60-10 6-80-20 3-70-15 1-60-10

200 59.50 39.50 22.50 48.50 30.50 15.50 39.10 25.10 11.90
400 58.50 38.25 21.25 45.75 29.75 14.75 37.55 24.30 11.45
600 56.50 36.17 19.83 43.17 27.17 14.33 36.43 23.03 10.57
800 51.63 35.88 19.63 42.38 23.88 14.25 33.55 21.28 10.30
1000 49.70 34.10 19.40 41.30 22.70 13.80 32.94 20.14 9.96

Finally, the percentage of time series and events pruned by A-RTPM in the
scalability test are provided in Table B.8. Note that for the NIST dataset, every

144

B.6. Experimental Evaluation

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(a) σmin=1%,
σmax=20%, δ=60%

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(b) σmin=3%,
σmax=15%, δ=70%

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(c) σmin=6%,
σmax=10%, δ=80%

A-RTPM E-RTPM ARZ-Miner

Fig. B.13: RTPM-Varying # of time series on NIST (synthetic)

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(a) σmin=1%,
σmax=20%, δ=60%

2 4 6 8 10
103

104

105

Time Series (×102)

Ru
nt
im

e
(s
ec
)

(b) σmin=3%,
σmax=15%, δ=70%

2 4 6 8 10
103

104

105

Time Series (×102)
Ru

nt
im

e
(s
ec
)

(c) σmin=6%,
σmax=10%, δ=80%

A-RTPM E-RTPM ARZ-Miner

Fig. B.14: RTPM-Varying # of time series on SC (synthetic)
time series has two events, On and Off. Thus, the percentage of pruned time
series and the percentage of pruned events are the same in NIST. We can see
that the higher σmin, δ, and σmax, the more time series (events) are pruned.
This is because higher σmin and δ result in higher µmin, and higher σmax results
in lower µmax, and thus, more pruned time series.

E-RTPM: Evaluation of different pruning techniques

We evaluate the following combinations of E-RTPM pruning techniques: (1)
NoPrune: E-RTPMwith no pruning, (2) Apriori: E-RTPMwith Apriori-based
pruning (Lemmas 3, 4), (3) Trans: E-RTPM with transitivity-based pruning
(Lemmas 5, 6, 7, 8), and (4) All: E-RTPM applied both pruning techniques.

Weuse 3 different scenarios that vary: theminimumsupport, theminimum
confidence, and the maximum support. Figs. B.15, B.16 show the results. We
see that (All)-E-RTPMhas the best performance of all versions, with a speedup
over (NoPrune)-E-RTPM ranging from 15 up to 74, depending on the configu-
rations. Thus, the proposed prunings are very effective in improving E-RTPM
performance. Furthermore, (Trans)-E-RTPM delivers a larger speedup than
(Apriori)-E-RTPM, with the average speedup between 12 and 28 for (Trans)-E-
RTPM, and between 7 and 19 for (Apriori)-E-RTPM, but applying both yields

145

Paper B.

1 3 6 9 12100

101

102

103

104

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

60 70 80 90 100100

101

102

103

104

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ

15 20 25 30 35102

103

104

σmax (%)

Ru
nt
im

e
(s
ec
)

(c) Varying σmax
(NoPrune)-E-RTPM (Apriori)-E-RTPM (Trans)-E-RTPM (All)-E-RTPM

Fig. B.15: Runtimes of E-RTPM on NIST (real-world)

1 3 6 9 12100

101

102

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

60 70 80 90 100100

101

102

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ

15 20 25 30 35100

101

102

103

σmax (%)

Ru
nt
im

e
(s
ec
)

(c) Varying σmax
(NoPrune)-E-RTPM (Apriori)-E-RTPM (Trans)-E-RTPM (All)-E-RTPM

Fig. B.16: Runtimes of E-RTPM on SC (real-world)
the best speedup.

A-RTPM: Evaluation of accuracy

To evaluate A-RTPM accuracy, we compare the patterns extracted by A-RTPM
and E-RTPM. Table B.9 shows the accuracies of A-RTPM for different σmin,
δ, and σmax on the real world datasets. It is seen that A-RTPM obtains high
accuracy (≥ 83%) with lowest σmin and δ, and highest σmax, e.g., σmin � 1%,δ �

60%, σmax � 20%, and very high accuracy (≥ 93%) with higher σmin and δ, and
lower σmax, e.g., σmin � 3%, δ � 70%, σmax � 10%.

Table B.9: RTPM Accuracy (%)

σmax (%)
σmin (%) - δ (%)

NIST SC
1-60 3-70 6-80 1-60 3-70 6-80

10 93 96 100 91 93 100
15 86 92 95 86 91 100
20 84 92 92 83 87 90

146

B.6. Experimental Evaluation

20 40 60 80 10010−1
100
101
102
103
104
105

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

20 40 60 80 10010−1
100
101
102
103
104
105

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ
A-FTPM E-FTPM A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. B.17: FTPM-Runtime Comparison on NIST (real-world)

20 40 60 80 10010−1
100
101
102
103
104

σmin (%)

Ru
nt
im

e
(s
ec
)

(a) Varying σmin

20 40 60 80 10010−1
100
101
102
103
104

δ (%)

Ru
nt
im

e
(s
ec
)

(b) Varying δ
A-FTPM E-FTPM A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. B.18: FTPM-Runtime Comparison on SC (real-world)
B.6.4 Quantitative Evaluation of FTPM

FTPM: Baselines comparison on real world datasets

We compare E-FTPM and A-FTPM against the baselines in terms of runtime
and memory usage. Further, we also compare E-FTPM and A-FTPM against
E-HTPGM and A-HTPGM from the conference version [13] to assess the per-
formance improvement obtained by using the new data structure. Figs. B.17,
B.18, B.19, and B.20 show the experimental results on NIST and SC.

We can see from Figs. B.17 and B.18 that A-FTPM achieves the fastest
runtime amongallmethods, andE-FTPMhas faster runtime than the baselines.
On the tested datasets, the range and average speedups of A-FTPM compared
to E-FTPM is [1.5-6.1] and 2.7, and compared to the baselines is [4.2-356.1] and
45.8. The range and average speedup of E-FTPM compared to the baselines is
[2.6-130.4] and 24.7.

Note that the time to compute MI and µmin for NIST and SC datasets in
Figs. B.17 and B.18 are 32.6 and 26.4 seconds, respectively, making it negligible
in the total runtime. Moreover, by using the improved hierarchical hash table

147

Paper B.

20 40 60 80 100101

102

103

104

105

σmin (%)

M
em

or
y
U
sa
ge

(M
B)

(a) Varying σmin

20 40 60 80 100101

102

103

104

105

δ (%)

M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ
A-FTPM E-FTPM A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. B.19: FTPM-Memory Usage Comparison on NIST (real-world)

20 40 60 80 100101

102

103

104

σmin (%)

M
em

or
y
U
sa
ge

(M
B)

(a) Varying σmin

20 40 60 80 100101

102

103

104

δ (%)

M
em

or
y
U
sa
ge

(M
B)

(b) Varying δ
A-FTPM E-FTPM A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Fig. B.20: FTPM-Memory Usage Comparison on SC (real-world)
instead of the hierarchical pattern tree in [13], both E-FTPM and A-FTPM are
more efficient than E-HTPGM and A-HTPGM. The speedup of E-FTPM over
E-HTPGM is in the range [1.1-4.7], andA-FTPMover A-HTPGM is in the range
[1.3-5.6].

Finally, A-FTPM is most efficient, i.e., achieves highest speedup and mem-
ory saving, when the support threshold is low, e.g., σmin � 20%. This is
because typical datasets often contain many patterns with very low support
and confidence. Thus, using A-FTPM to prune uncorrelated series early helps
save computational time and resources. However, the speedup comes at the
cost of a small loss in accuracy.

In terms ofmemory consumption, as shown in Figs. B.19 andB.20, A-FTPM
uses the least memory, while E-FTPM uses less memory than the baselines.
A-FTPM consumes [1.4-3.6] (on average 1.9) times less memory than E-FTPM,
and [6.8-112.6] (on average 15.4) times less than the baselines. E-FTPM uses
[4.1-58.2] (on average 5.8) times less memory than the baselines. Compared to
E-HTPGM and A-HTPGM [13], E-FTPM and A-FTPM are both more memory
efficient. E-FTPM consumes [1.1-2.8] times less memory than E-HTPGM,

148

B.7. Conclusion

while A-FTPM uses [1.2-3.1] times less memory than A-HTPGM.
We also perform other experiments on FTPM, including scalability eval-

uation on synthetic datasets, and evaluation of different pruning techniques
on real-world datasets as in RTPM. These experiments are reported in the
electronic appendix [42].

Table B.10: The Accuracy of A-FTPM (%)

σmin (%)
δ (%)

NIST SC
10 20 50 80 10 20 50 80

10 87 89 91 94 78 83 98 100
20 96 89 91 94 83 83 98 100
50 100 100 96 94 99 99 98 100
80 100 100 100 100 100 100 100 100

A-FTPM: Evaluation of the accuracy

We proceed to evaluate the accuracy of A-FTPM by comparing the patterns
extracted byA-FTPMand E-FTPM. Table B.10 shows the accuracies of A-FTPM
for different support and confidence thresholds on the real-world datasets. It
is seen that A-FTPM obtains high accuracy (≥ 78%) when σmin and δ are low,
e.g., σmin � δ � 10%, and very high accuracy (≥ 95%) when σmin and δ are
high, e.g., σmin � δ � 50%.

Other experiments: We analyze the effects of the tolerance buffer ε, and
the overlapping duration tov to the quality of extracted patterns. The analysis
can be found in the electronic appendix [42].

B.7 Conclusion
This paper presents our comprehensive Generalized Frequent Temporal Pat-
tern Mining from Time Series (GTPMfTS) solution that offers: (1) an end-to-
end GTPMfTS process to mine both rare and frequent temporal patterns from
time series, (2) an efficient and exact Generalized Temporal Pattern Mining
(GTPM) algorithm that employs efficient data structures and multiple prun-
ing techniques to achieve fast mining, and (3) an approximate GTPM that uses
mutual information to prune unpromising time series, allows GTPM to scale
on big datasets. Extensive experiments conducted on real world and synthetic
datasets for rare temporal pattern mining (RTPM) and frequent temporal pat-
tern mining (FTPM) show that both exact and approximate algorithms for
RTPM and FTPM outperform the baselines, consume less memory, and scale
well on big datasets. Compared to the baselines, the approximate A-RTPM is
up to an order of magnitude speedup and the approximate A-FTPM delivers

149

References

two orders of magnitude speedup. In future work, we plan to extend GTPM
to prune at the event level to further improve their performance.

References
[1] Energinet. (2021) Energi data portal. [Online]. Available: https:

//www.energidataservice.dk/tso-electricity/co2emis/

[2] K. Torp, O. Andersen, and C. Thomsen, “Travel-time computation based
on gps data,” in Big Data Management and Analytics: 9th European Summer
School. Springer, 2020.

[3] Y. Chen, W. Peng, and S. Lee, “Mining temporal patterns in time interval-
based data,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 27, 2015.

[4] D. Patel, W. Hsu, and M. L. Lee, “Mining relationships among interval-
based events for classification,” in Proceedings of the ACM SIGMOD inter-
national conference on Management of data, 2008.

[5] P. Papapetrou, G.Kollios, S. Sclaroff, andD.Gunopulos, “Mining frequent
arrangements of temporal intervals,” Knowledge and Information Systems
(KAIS), vol. 21, 2009.

[6] Y. Li and S. Cai, “Detecting outliers in data streams based on minimum
rare pattern mining and pattern matching,” Information Technology and
Control, vol. 51, no. 2, 2022.

[7] Y. Cui, W. Gan, H. Lin, and W. Zheng, “Fri-miner: fuzzy rare itemset
mining,” Applied Intelligence, 2022.

[8] Y. Ji and Y. Ohsawa, “Mining frequent and rare itemsets with weighted
supports using additive neural itemset embedding,” in International Joint
Conference on Neural Networks (ĲCNN). IEEE, 2021.

[9] S. Cai, J. Chen, H. Chen, C. Zhang, Q. Li, R. N. A. Sosu, and S. Yin, “An
efficient anomaly detection method for uncertain data based on mini-
mal rare patterns with the consideration of anti-monotonic constraints,”
Information Sciences, vol. 580, 2021.

[10] A. Rahman, “Rare sequential pattern mining of critical infrastructure
control logs for anomaly detection,” Ph.D. dissertation, Queensland Uni-
versity of Technology, 2019.

[11] M. Iqbal, C. P. Wulandari, W. Yunanto, and G. I. P. Sari, “Mining non-
zero-rare sequential patterns on activity recognition,” Jurnal Matematika
MANTIK, vol. 5, no. 1, 2019.

150

https://www.energidataservice.dk/tso-electricity/co2emis/
https://www.energidataservice.dk/tso-electricity/co2emis/

References

[12] A. Samet, T. Guyet, and B. Negrevergne, “Mining rare sequential patterns
with asp,” in International Conference on Inductive Logic Programming, 2017.

[13] V. L. Ho, N. Ho, and T. B. Pedersen, “Efficient temporal pattern mining
in big time series using mutual information,” vol. 15, no. 3. VLDB
Endowment, 2022.

[14] P.-s. Kam and A. W.-C. Fu, “Discovering temporal patterns for interval-
based events,” inDataWarehousing andKnowledgeDiscovery (DaWak), 2000.

[15] S.-Y. Wu and Y.-L. Chen, “Mining nonambiguous temporal patterns for
interval-based events,”EEETransactions onKnowledge andData Engineering
(TKDE), vol. 19, 2007.

[16] R. Moskovitch and Y. Shahar, “Fast time intervals mining using the tran-
sitivity of temporal relations,” Knowledge and Information Systems, vol. 42,
2015.

[17] I. Batal, D. Fradkin, J.Harrison, F.Moerchen, andM.Hauskrecht, “Mining
recent temporal patterns for event detection in multivariate time series
data,” in Proceedings of ACM SIGKDD international conference on Knowledge
discovery and data mining, 2012.

[18] J.-Z. Wang, Y.-C. Chen, W.-Y. Shih, L. Yang, Y.-S. Liu, and J.-L. Huang,
“Mining high-utility temporal patterns on time interval–based data,”
ACMTransactions on Intelligent Systems and Technology (TIST), vol. 11, no. 4,
2020.

[19] A. K. Sharma and D. Patel, “Stipa: A memory efficient technique for
interval pattern discovery,” in IEEE International Conference on Big Data
(Big Data). IEEE, 2018.

[20] I. Batal, H. Valizadegan, G. F. Cooper, and M. Hauskrecht, “A temporal
pattern mining approach for classifying electronic health record data,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 4, 2013.

[21] E. A. Campbell, E. J. Bass, and A. J. Masino, “Temporal condition pattern
mining in large, sparse electronic health record data: A case study in
characterizing pediatric asthma,” Journal of the American Medical Informat-
ics Association, vol. 27, 2020.

[22] Z. Lee, T. Lindgren, and P. Papapetrou, “Z-miner: an efficient method
for mining frequent arrangements of event intervals,” in Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020.

151

References

[23] Y. Gao and J. Lin, “Efficient discovery of time series motifs with large
length range in million scale time series,” in IEEE International Conference
on Data Mining (ICDM). IEEE, 2017.

[24] N. Begum and E. Keogh, “Rare time series motif discovery from un-
bounded streams,” Proceedings of the VLDB Endowment, vol. 8, no. 2, 2014.

[25] E. Alipourchavary, S. M. Erfani, and C. Leckie, “Mining rare recurring
events in network traffic using second order contrast patterns,” in Inter-
national Joint Conference on Neural Networks (ĲCNN). IEEE, 2021.

[26] S. Bouasker, W. Inoubli, S. B. Yahia, and G. Diallo, “Pregnancy associated
breast cancer gene expressions: new insights on their regulation based
on rare correlated patterns,” Transactions on Computational Biology and
Bioinformatics, vol. 18, no. 3, 2020.

[27] A. Borah and B. Nath, “Rare association rule mining from incremental
databases,” Pattern Analysis and Applications, vol. 23, 2020.

[28] P. Fournier-Viger, P. Yang, Z. Li, J. C.-W. Lin, and R. U. Kiran, “Discovering
rare correlatedperiodic patterns inmultiple sequences,”Data&Knowledge
Engineering, vol. 126, 2020.

[29] S. Biswas and K. C. Mondal, “Dynamic fp tree based rare pattern mining
using multiple item supports constraints,” in Computational Intelligence,
Communications, and Business Analytics (CICBA). Springer, 2019.

[30] S. Piri, D. Delen, T. Liu, and W. Paiva, “Development of a new metric
to identify rare patterns in association analysis: The case of analyzing
diabetes complications,” Expert Systems with Applications, vol. 94, 2018.

[31] A. Rahman, Y. Xu, K. Radke, and E. Foo, “Finding anomalies in scada logs
using rare sequential pattern mining,” in Network and System Security.
Springer, 2016.

[32] J. Zhu, K. Wang, Y. Wu, Z. Hu, and H.Wang, “Mining user-aware rare se-
quential topic patterns in document streams,” IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), vol. 28, no. 7, 2016.

[33] W. Ouyang, “Mining rare sequential patterns in large transaction
databases,” in International Conference on Computer Science and Electronic
Technology. Atlantis Press, 2016.

[34] A. U. Ahmed, C. F. Ahmed, M. Samiullah, N. Adnan, and C. K.-S. Le-
ung, “Mining interesting patterns from uncertain databases,” Information
Sciences, vol. 354, 2016.

152

References

[35] Y.-K. Lee, W.-Y. Kim, Y. D. Cai, and J. Han, “Comine: Efficient mining
of correlated patterns,” in IEEE International Conference on Data Mining
(ICDM), 2003.

[36] Y. Ke, J. Cheng, and W. Ng, “Correlated pattern mining in quantitative
databases,” ACM Transactions on Database Systems (TODS), vol. 33, 2008.

[37] J. Blanchard, F. Guillet, R. Gras, and H. Briand, “Using information-
theoretic measures to assess association rule interestingness,” in IEEE
International Conference on Data Mining (ICDM), 2005.

[38] X. Cunjin, S. Wanjiao, Q. Lĳuan, D. Qing, and W. Xiaoyang, “A mutual-
information-based mining method for marine abnormal association
rules,” Computers & Geosciences, vol. 76, 2015.

[39] Y. Yao, “Information-theoretic measures for knowledge discovery and
data mining,” in Entropy measures, maximum entropy principle and emerging
applications, 2003.

[40] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proceedings of
the ACM SIGMOD workshop on Research issues in data mining and knowledge
discovery, 2003.

[41] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commu-
nications of the ACM, vol. 26, 1983.

[42] V. L. Ho, N. Ho, and T. B. Pedersen, “Appendix-efficient generalized
temporal pattern mining in big time series using mutual information,”
2023. [Online]. Available: https://arxiv.org/abs/2010.03653

[43] E. R.Omiecinski, “Alternative interestmeasures formining associations in
databases,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 15, no. 1, 2003.

[44] V. L. Ho, N. Ho, and T. B. Pedersen, “Mining seasonal temporal patterns
in time series,” in IEEE International Conference onData Engineering (ICDE).
IEEE, 2023.

[45] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley
& Sons, 2012.

[46] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On
the lambert w function,” Advances in Computational mathematics, vol. 5,
1996.

153

https://arxiv.org/abs/2010.03653

References

[47] E. F. Beckenbach, R. Bellman, and R. E. Bellman, “An introduction to in-
equalities,” Mathematical Association of America Washington, DC, Tech.
Rep., 1961.

[48] W. Healy, F. Omar, L. Ng, T. Ullah, W. Payne, B. Dougherty, and A. H.
Fanney. (2018) Net zero energy residential test facility instrumented data.
[Online]. Available: https://pages.nist.gov/netzero/index.html/

[49] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic appliance-
level electricity demand and whole-house demand from five UK homes,”
Scientific Data, 2015.

[50] P. S. Data. (2016) Pecan street dataport. [Online]. Available:
https://www.pecanstreet.org/dataport/

[51] N. Y. City. (2019) Nyc opendata. [Online]. Available: https:
//opendata.cityofnewyork.us/

[52] C. Neidle, A. Opoku, G. Dimitriadis, and D. Metaxas, “New shared &
interconnected asl resources: Signstream® 3 software; dai 2 forweb access
to linguistically annotated video corpora; and a sign bank,” inWorkshop on
the Representation and Processing of Sign Languages: Involving the Language
Community, Miyazaki, Language Resources and Evaluation Conference, 2018.

[53] K. city infectious disease surveillance system. (2021) Kidss. [Online].
Available: https://kidss.city.kawasaki.jp/

[54] O. Weather. (2021) Open weather. [Online]. Available: https:
//openweathermap.org/

154

https://pages.nist.gov/netzero/index.html/
https://www.pecanstreet.org/dataport/
https://opendata.cityofnewyork.us/
https://opendata.cityofnewyork.us/
https://kidss.city.kawasaki.jp/
https://openweathermap.org/
https://openweathermap.org/

Paper C

Mining Seasonal Temporal Patterns in
Time Series

Van Long Ho, Nguyen Ho, and Torben Bach Pedersen

The paper has been published in the
Proceedings of the IEEE 39th International Conference on Data Engineering (ICDE),

Pages 2240–2252, 2023, ISBN 979-8-3503-2227-9,
DOI:10.1109/ICDE55515.2023.00174.

© 2023 IEEE
The layout has been revised.

C.1. Introduction

Abstract
As IoT-enabled sensors become more pervasive, very large time series data are increas-
ingly generated and made available for advanced data analytics. By mining temporal
patterns from the available data, valuable insights can be extracted to support decision
making. A useful type of patterns found in many real-world applications exhibits
periodic occurrences, and is thus called seasonal temporal patterns (STP). Compared
to regular patterns, mining seasonal temporal patterns is more challenging since
traditional measures such as support and confidence do not capture the seasonality
characteristics. Further, the anti-monotonicity property does not hold for STPs, and
thus, resulting in an exponential search space. We propose a first solution for seasonal
temporal pattern mining (STPM) from time series that can mine STP at different data
granularities. We design efficient data structures and use two pruning techniques for
the STPM algorithm that downsize the search space and accelerate the mining process.
Further, based on the mutual information measure, we propose an approximate version
of STPM that only mine seasonal patterns on the promising time series. Finally, exten-
sive experiments with real-world and synthetic datasets show that STPM outperforms
the baseline in terms of runtime andmemory usage, and can scale to large datasets. The
approximate STPM is up to an order of magnitude faster and less memory-consuming
than the baseline, while maintaining high accuracy.

C.1 Introduction
The widespread of IoT systems enables the collection of big time series from
domains such as energy, transportation, climate, and healthcare. Mining such
time series can discover hidden patterns and offer new insights into the ap-
plication domains to support evidence-based decision making and planning.
Often, pattern mining methods such as sequential pattern mining (SPM) [1, 2]
and temporal pattern mining (TPM) [3, 4] are used to extract frequent (tem-
poral) relations between events. In SPM, events occur in sequential order,
whereas in TPM, events carry additional temporal information such as occur-
rence time, making relations between temporal events aremore expressive and
comprehensive. A useful type of temporal patterns found in many real-world
applications are those that exhibit periodic occurrences. Such patterns occur
concentratedwithin aparticular timeperiod, and then repeat that concentrated
occurrence periodically. They are thus called seasonal temporal patterns. Here,
the term seasonal indicates the periodic re-occurrence, while the term temporal
pattern indicates patterns that are formed by the temporal relations between
events, such as follows, contains, overlaps. Seasonal temporal patterns are
useful in revealing seasonal information of temporal events and their rela-
tions. For example, in healthcare, health experts might be interested in finding
seasonal diseases in a geographical location, as exemplified in Fig. C.1 using

157

Paper C.

Humidity

Temperature

Influenza

Jan

Jan

Jan

Feb

Feb

Feb
M
ar

M
ar

M
ar

A
pr

A
pr

A
pr

M
ay

M
ay

M
ay

Jun

Jun

Jun

Jun

Jul

Jul

Jul

A
ug

A
ug

A
ug

Sep

Sep

Sep

O
ct

O
ct

O
ct

N
ov

N
ov

N
ov

D
ec

D
ec

D
ec

2015 2016 2017 2018

Low

High

Low

High

Low

High

Low

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Fig. C.1: Weather and Influenza time series
the real-world data from Kawasaki, Japan between 2015 - 2018 [5], [6]. Here,
a seasonal temporal pattern involving weather and epidemic events can be
found: {Low Temperature overlaps High Humidity followed by High Influenza
Cases}. This pattern occurs yearly and is concentrated in January, February.
Detecting such seasonal diseaseswill support health experts in prevention and
planning. In market analysis, knowing the periodic rise of certain stocks and
their relations to other impact factors can be of interests for traders to plan bet-
ter trading strategies. In marketing, identifying the order of search keywords
that appear seasonally in the search engine can be useful to better understand
customer needs and thereby improve the marketing plans.

Challenges. Although seasonal temporal patterns are useful, mining them
is a challenging task for several reasons. First, the support measure used by
TPM is not sufficient to mine seasonal patterns, since the traditional support
represents the frequency of a pattern across the entire dataset, and thus, can-
not capture the seasonality characteristic of seasonal patterns. Second, the
many possible relations between temporal events create an exponential search
space of size O(nh3h2) (n is the number of events and h is the length of tem-
poral patterns). Finally, since seasonal temporal patterns do not uphold the
anti-monotonicity property, i.e., the non-empty subsets of a seasonal tempo-
ral pattern may not be seasonal, mining seasonal temporal patterns is more
computationally expensive as the typical pruning technique based on anti-
monotonicity property cannot be applied. This raises the need for an efficient
seasonal temporal pattern mining approach with effective prunings to tackle
the exponential search space. Existing work such as [7, 8] proposes solutions
to mine seasonal itemsets. However, they do not consider the temporal aspect
of items/ events, thus, addressing the exponential search space of seasonal
temporal patterns is still an open problem.

Contributions. In the present paper, we present our Frequent Seasonal
Temporal Pattern Mining from Time Series (FreqSTPfTS) solution that ad-
dresses all the above challenges. Specifically, our key contributions are as
follows. (1) We propose the first solution to mine seasonal temporal patterns

158

C.2. Related work

from time series. Within the process, we introduce several measures to assess
the seasonality characteristics, and use these to formally define the concept
of seasonal temporal patterns in time series. The formulation allows to flexibly
mine seasonal temporal patterns at different granularities. (2) Our Seasonal
Temporal Pattern Mining (STPM) algorithm is efficient and has several impor-
tant novelties. First, STPM employs the hierarchical hash tables to enable fast
retrieval of candidate events and patterns during the mining process. Second,
we define a newmeasuremaxSeason that upholds the anti-monotonicity prop-
erty, and design two efficient pruning techniques: Apriori-like pruning and
transitivity pruning. (3) Based on mutual information, we approximate STPM
to prune redundant time series and significantly reduce the search space, while
maintaining highly accurate results. The approximate STPM can scale tomany
time series and many sequences. (4) We perform extensive experimental eval-
uation on synthetic and real-world datasets from various domains showing
that STPM outperforms the baseline in both runtime and memory usage. The
approximate STPM achieves up to an order of magnitude speedup w.r.t. the
baseline, while obtaining high accuracy compared to the exact STPM. Artifacts
are available at: https://github.com/vanholong/STPM.

C.2 Related work
Finding seasonal patterns that represent temporal periodicity in time series
is an important research topic, and has received substantial attention in the
last decades. By considering seasonality as periodic occurrences, different
techniques have been proposed to find periodic sub-sequences in time series
data. Such techniques, first introduced by Han et al. in [9, 10], and later
extended by [11–15], are called motif discovery techniques. However, since
motifs are defined as similar time series sub-sequences, motif discovery can
only find recurrent sub-sequences rather than periodic temporal patterns.

Another research direction in this area concerns periodic association rules
[7, 8, 16–32]. Such techniques can identify seasonal associations between item-
sets, for example, market-basket analysis to reveal the seasonal occurrence of
the association {Glove⇒Winter Hat} during the winter season. To mine such
seasonal itemset patterns in transactional databases, Tanbeer et al. in [16]
proposed the PFP-growth algorithm using minSup and maxPer as seasonality
measures. In their method, a tree structure called PF-tree is used as a com-
pact representation of periodic frequent itemsets, with maxPer imposing the
periodic constraint, andminSup imposing the frequency constraint on the pat-
tern occurrences. Although PFP-growth can capture seasonality characteristic
through the maxPer measure, the use of minSup means that it cannot identify
rare seasonal patterns. Follow-up work such as [17, 18] improves different
aspects of PFP-growth, for example, Amphawan et al. [18] propose period sum-

159

Paper C.

mary to approximate the pattern periodicity to reduce the memory cost, Uday
et al. [17] use the concept of item-specific support to address the rare pattern
problem. Recently, Javed et al. [32] propose hashed occurrence vectors and
Apriori-based approach to speed up periodic itemsets mining.

In a more recent work [7], Uday et al. propose the RP-growth algorithm to
discover recurring itemset patterns in transactional databases. RP-growth uses
an RP-tree to maintain frequent itemsets, and recursively mines the RP-tree
to discover recurring ones. In their follow-up work, the same authors intro-
duce several improvements of [7]. In [33], they propose the Periodic-Frequent
Pattern-growth++ (PFP-growth++) algorithm that employs two new concepts,
local-periodicity and periodicity, to capture locally optimal and globally opti-
mal solutions of recurring patterns. This enables 2-phase pruning to improve
the runtime efficiency. In [8], the authors extend PFP-growth++ to find pe-
riodic spatial patterns in spatio-temporal databases. In [31], PFP-growth++
is extended to find maximal periodic frequent patterns. In [34], they further
improve PFP-growth++ to be memory efficient by proposing a concept called
period summary to effectively summarize the temporal occurrence information
of an itemset in a Periodic Summary-tree (PS-tree), and designing Periodic
Summary Pattern Growth algorithm (PS-growth) to find all periodic-frequent
itemset patterns from PS-tree. Nevertheless, all the mentioned work can only
discover seasonal patterns between itemsets. To the best of our knowledge,
no existing work addresses the seasonal temporal pattern mining that finds
seasonal occurrences of temporal patterns. In Section C.6, we adapt the state-
of-the-art method for periodic itemset mining PS-growth to mine seasonal
temporal patterns, and use it as an experimental baseline.

C.3 Preliminaries

C.3.1 Time Granularity
Definition 3.1 (Time domain) A time domain T consists of an ordered set of
time instants that are isomorphic to the natural numbers. The time instants in
T have a time unit, presenting how they are measured.
Definition 3.2 (Time granularity) Given a time domain T , a time granularity G
is a complete and non-overlapping equal partitioning of T , i.e., T is divided into
non-overlapping equal partitions. Each non-empty partition Gi ∈ G is called a
(time) granule. The position of a granule Gi in G, denoted as p(Gi), is identified
by counting the number of granuleswhich appear before and up to (including)
Gi . The period between two granules Gi and G j in granularity G measures the
time duration between Gi and G j , and is computed as: prĳ � |p(Gi) − p(G j)|,
where p(Gi) and p(G j) are the positions of Gi and G j , respectively.

As an example, consider a time domain T consisting of an ordered set of

160

C.3. Preliminaries

Table C.1: Frequently Used Notations

Notation Description
T ,H time domain T and time granularity hierarchyH
p(Gi) the position of the granule Gi
G Em H granularity G is m-Finer than granularity H
X, XS time series X and symbolic time series XS
E.e temporal event E has an event instance e
g: XS →m H sequence mapping from XS to granularity H
Seqi = <e1,...,en> a temporal sequence of n event instances
DSYB,DSEQ symbolic database and temporal sequence database
HE

i , HP
i event E (pattern P) occurs at granularity Hi

SUPE, SUPP support set of event E (pattern P)
NearSUPP

i near support set i of pattern P
den(NearSUPP

i) density of the near support set
dist(NearSUPP

i ,NearSUPP
j) distance between two near support sets

seasons(P) number of seasons of pattern P

minutes. The time instants minute1, minute2, etc. are isomorphically mapped
to the natural numbers, and are measured in the Minute time unit. Here,
T can have different time granularities such as Minute, 5-Minutes, or even
Hour, Day, Year. The position of granule Minute2 in the Minute granularity
is p(Minute2) � 2. The period between the Minute1 and Minute6 granules is:
|p(Minute6)−p(Minute1)| � 5, indicating that the time duration between them
is 5 minutes. We note that the period is only defined between granules of the
same granularity.
Definition 3.3 (Finer time granularity) A time granularity G is finer than a time
granularity H if and only if for every granule H j ∈ H, there exists m adjacent
granules Gi+1 , ...,Gi+m ∈ G such that H j � Gi+1 ∪ ... ∪ Gi+m where m ≥ 1. We
call G is m-Finer than H, denoted as G Em H.

In the previous example, we have the Minute granularity is 60-Finer than
the Hour granularity.
Definition 3.4 (Time granularity hierarchy) Given a time domain T , the differ-
ent time granularities of T form a time granularity hierarchyH where each level
inH represents one specific granularity, with the lower levels in the hierarchy
having finer granularity than the higher levels.

Fig. C.2 shows an example of the time granularity hierarchy. Here, to be
consistent with examples in the following sections, we assume granularity G is
5-Minutes and is the finest, whereas granularity H is 15-Minutes and G E3 H.

C.3.2 Symbolic Representation of Time Series
Consider the time domain T . Let H be the time granularity hierarchy of T ,
and G be the finest granularity inH .
Definition 3.5 (Time series [3]) A time series X � x1 , x2 , ..., xn in the time

161

Paper C.

...

... ...

...

... ...

...

 Granularity G
(5-Minutes)

 Granularity H
(15-Minutes)

 Granularity K
(30-Minutes)

Fig. C.2: Time granularity hierarchyH
domain T is a chronologically ordered sequence of data values measuring the
same phenomenon during an observation time period in T . We say that X has
granularity G if X is sampled at every time instant ti in T .

A symbolic time series XS of X uses a mapping function f : X→ΣX that maps
each value xi ∈ X into a symbol ω ∈ ΣX , results in a sequence of symbols [3].
The symbol alphabet ΣX is the finite set of symbols used for encoding X. Since
the mapping function f performs the 1-to-1 mapping from X to XS, XS has
the same granularity G as X.

As an example, a time series of the energy usage (recorded every 5minutes)
of an electrical device X = 1.82, 1.25, 0.46, 0.0 can be encoded as XS = 1, 1, 1, 0
by using ΣX = {1, 0} (1: ON, 0: OFF).
Definition 3.6 (Symbolic database [3]) The set of symbolic representations of
a given set of time series X � {X1 , ...,Xn} forms a symbolic databaseDSYB.

Table C.2 shows an example symbolic database, DSYB using Σ = {0, 1}.
There are 5 time series: {C, D, F, M, N} (C: Cooker, D: Dish Washer, F: Food
Processor, M: Microwave, N: Nespresso Coffee) representing the energy usage
of electrical devices at 5-Minutes granularity.

Table C.2: A Symbolic DatabaseDSYB (G: 5-Minutes granularity)

Granules in G G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39 G40 G41 G42

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Time
series

C 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0

D 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0

F 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1

M 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

N 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

C.3.3 Temporal Event and Temporal Relation
Definition 3.7 (Temporal event [3]) A temporal event E in a symbolic time series
XS is a tuple E � (ω, T). Here, ω ∈ ΣX is a symbol, and T � {[tsi , tei]} is the
set of time intervals during which XS has the value ω. Each time interval has
tsi as the start time, and tei as the end time.

Instance of a temporal event: An instance of the temporal event E � (ω, T)
is a tuple e � (ω, [tsi , tei]). e represents a single occurrence of E during [tsi , tei].
We use the notation E.e to denote that the event E has an instance e.

Consider the symbolic time series C in Table C.2. Then E � (C:1, {[G1 ,G2],
[G4 ,G4], [G7 ,G8], [G19 ,G24], [G31 ,G31], [G34 ,G35], [G40 ,G41]}) is an event of C,

162

C.3. Preliminaries

Table C.3: Temporal Relations between Events

Follows: Ei.ei
→ E j.e j

ei

tsi tei±ε
ts j te j

e j

ei

tsi tei±ε
ts j te j

e j

tei±ε ≤ ts j

Contains: Ei.ei
< E j.e j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε
e j

ts j te j

eitsi tei ± ε

e j

ts j te j

(tsi ≤ ts j) ∧ (tei±ε ≥ te j)

Overlaps: Ei.ei
G E j.e j

eitsi tei ± ε

e j

ts j te j

do

(tsi < ts j) ∧ (tei±ε < te j) ∧ (tei − ts j ≥ do±ε)

representing the time intervals during which C is associated with the symbol
1. The tuple (C:1, [G1 ,G2]) is an instance of E. Note that for simplicity, we use
the granules to represent the start and end times of the time intervals, as we
can trace back the timestamp associated to each granule.

Relations between temporal events: Let Ei and E j be two temporal events,
and ei � (ωi , [tsi , tei]), e j � (ω j , [ts j , te j]) be their corresponding instances. We
rely on the popular relation model of Allen [35] to define 3 basic temporal
relations between Ei and E j : Follows, Contains, and Overlaps. Furthermore, we
add a tolerance buffer ε to the relation’s endpoints for flexibility, and ensure that
the relations aremutually exclusive (proof in the technical report [36]). Table C.3
illustrates the three relations and their conditions, with ε ≥ 0 being the buffer
size, and do being the minimal overlapping duration between two instances in
an Overlaps relation.
Definition 3.8 (Temporal pattern [3]) Assume the set of temporal relations
to be <�{Follows, Contains, Overlaps}. A temporal pattern P � <(r12 , E1 ,
E2),...,(r(n−1)(n) , En−1 , En)> contains triples (rĳ , Ei , E j), each represents a tem-
poral relation rĳ ∈ < between Ei and E j .

An example of temporal pattern is shown in Fig. C.1: P = <(Overlaps, Low
Temperature, High Humidity), (Follows, Low Temperature, High Influenza
Cases), (Follows, High Humidity, High Influenza Cases)>. Here, P is a 3-event
pattern, containing pairwise temporal relations between Low Temperature,
High Humidity, and High Influenza Cases.

163

Paper C.

Table C.4: A Temporal Sequence DatabaseDSEQ (H: 15-Minutes granularity)

Granules Position Temporal sequences
H1={G1,G2,G3} 1 (C:1,[G1 ,G2]), (C:0,[G3 ,G3]), (D:1,[G1 ,G1]), (D:0,[G2 ,G3]), (F:0,[G1 ,G2]), (F:1,[G3 ,G3]),

(M:1,[G1 ,G3]), (N:1,[G1 ,G2]), (N:0,[G3 ,G3])
H2={G4,G5,G6} 2 (C:1,[G4 ,G4]), (C:0,[G5 ,G6]), (D:1,[G4 ,G4]), (D:0,[G5 ,G6]), (F:0,[G4 ,G4]), (F:1,[G5 ,G6]),

(M:1,[G4 ,G4]), (M:0,[G5 ,G6]), (N:1,[G4 ,G6])
H3={G7,G8,G9} 3 (C:1,[G7 ,G8]), (C:0,[G9 ,G9]), (D:1,[G7 ,G8]), (D:0,[G9 ,G9]), (F:0,[G7 ,G8]), (F:1,[G9 ,G9]),

(M:1,[G7 ,G9]), (N:1,[G7 ,G9])
H4={G10,G11,G12} 4 (C:0,[G10 ,G12]), (D:1,[G10 ,G11]), (D:0,[G12 ,G12]), (F:0,[G10 ,G11]), (F:1,[G12 ,G12]),

(M:1,[G10 ,G11]), (M:0,[G12 ,G12]), (N:1,[G10 ,G11]), (N:0,[G12 ,G12])
H5={G13,G14,G15} 5 (C:0,[G13 ,G15]), (D:0,[G13 ,G15]), (F:1,[G13 ,G15]), (M:1,[G13 ,G15]), (N:1,[G13 ,G15])
H6={G16,G17,G18} 6 (C:0,[G16 ,G18]), (D:0,[G16 ,G18]), (F:0,[G16 ,G18]), (M:1,[G16 ,G18]), (N:1,[G16 ,G18])
H7={G19,G20,G21} 7 (C:1,[G19 ,G21]), (D:1,[G19 ,G21]), (F:0,[G19 ,G21]), (M:0,[G19 ,G21]), (N:0,[G19 ,G21])
H8={G22,G23,G24} 8 (C:1,[G22 ,G24]), (D:1,[G22 ,G24]), (F:0,[G22 ,G24]), (M:1,[G22 ,G24]), (N:0,[G22 ,G24])
H9={G25,G26,G27} 9 (C:0,[G25 ,G27]), (D:0,[G25 ,G27]), (F:1,[G25 ,G27]), (M:1,[G25 ,G27]), (N:1,[G25 ,G27])
H10={G28,G29,G30} 10 (C:0,[G28 ,G30]), (D:0,[G28 ,G30]), (F:1,[G28 ,G30]), (M:1,[G28 ,G30]), (N:1,[G28 ,G30])
H11={G31,G32,G33} 11 (C:1,[G31 ,G31]), (C:0,[G32 ,G33]), (D:1,[G31 ,G31]), (D:0,[G32 ,G33]), (F:0,[G31 ,G32]),

(F:1,[G33 ,G33]), (M:1,[G31 ,G33]), (N:1,[G31 ,G33])
H12={G34,G35,G36} 12 (C:1,[G34 ,G35]), (C:0,[G36 ,G36]), (D:1,[G34 ,G34]), (D:0,[G35 ,G36]), (F:0,[G34 ,G35]),

(F:1,[G36 ,G36]), (M:0,[G34 ,G36]), (N:1,[G34 ,G36])
H13={G37,G38,G39} 13 (C:0,[G37 ,G39]), (D:1,[G37 ,G38]), (D:0,[G39 ,G39]), (F:0,[G37 ,G38]), (F:1,[G39 ,G39]),

(M:1,[G37 ,G39]), (N:1,[G37 ,G39])
H14={G40,G41,G42} 14 (C:1,[G40 ,G41]), (C:0,[G42 ,G42]), (D:1,[G40 ,G41]), (D:0,[G42 ,G42]), (F:0,[G40 ,G41]),

(F:1,[G42 ,G42]), (M:0,[G40 ,G42]), (N:0,[G40 ,G42])

C.3.4 Temporal Sequence Database
Definition 3.9 (Sequence mapping) Consider a symbolic time series XS of
granularity G. Let H be a granularity in H such that G Em H. A sequence
mapping g: XS →m H maps m adjacent symbols in XS into a single granule
Hi ∈ H.

For example, consider the symbolic time series C in Table C.2. Using
G E3 H, a sequence mapping g: C →3 H creates granularity H where the
granules are: H1: <C:1, C:1, C:0>, H2: <C:1, C:0, C:0>, H3: <C:1, C:1, C:0>,
and so on.
Definition 3.10 (Temporal sequence of a symbolic time series) Consider a
symbolic time series XS of granularity G. Let <ω1 , ..., ωm> be a symbolic
sequence at granule Hi in H, obtained by performing a sequence mapping g:
XS →m H. A temporal sequence Seqi �< e1 , ..., en > is a list of n event instances,
each is obtained by grouping consecutive and identical symbols ω in Hi into
an event instance e � (ω, [ts , te]).

In the previous example, the temporal sequences of the granules in H are:
Seq1 = <(C:1, [G1 ,G2]), (C:0, [G3 ,G3])> at H1, Seq2 = <(C:1, [G4 ,G4]), (C:0,
[G5 ,G6])> at H2, Seq3 = <(C:1, [G7 ,G8]), (C:0, [G9 ,G9])> at H3, and so on.
Definition 3.11 (Temporal sequence database) Consider a symbolic database
DSYB of granularity G (defined in Def 3.6) which contains a collection of sym-
bolic time series {XS}, and a granularity H ∈ H . Let g : XS →m H be a
sequence mapping applied to each symbolic time series XS inDSYB. The tem-
poral sequences obtained from themapping g form a temporal sequence database
DSEQ. Each row i in DSEQ is a set of sequences {Seqi} of the same granule
Hi ∈ H. Furthermore, the temporal sequence database DSEQ has granularity
H.

Table C.4 shows an example of DSEQ, obtained from DSYB in Table C.2

164

C.3. Preliminaries

1 41 1 3 1 2

Fig. C.3: Near support sets of pattern P = (C:1 < D:1)
using the mapping g : XS →3 H on the five symbolic time series {C, D, F, M,
N}.

Given a symbolic databaseDSYB of granularity G and a granularity hierar-
chyH , we can construct different temporal sequence databasesDSEQ of differ-
ent granularities H ∈ H by using different sequence mappings g : XS →m H.
For instance, in the previous example, using g : XS →3 H, we obtain DSEQ
at 15-Minutes granularity. Using g : XS →12 H, we obtain DSEQ at 1-Hour
granularity.

C.3.5 Frequent Seasonal Temporal Pattern
Definition 3.12 (Support set of a temporal event) Consider a temporal sequence
databaseDSEQ of granularity H, and a temporal event E. The set of granules Hi
inDSEQwhereE occurs, arranged in an increasing order, is called the support set
of event E and is denoted as SUPE

� {HE
l , ...,H

E
r }, where 1 ≤ l ≤ r ≤ |DSEQ |.

The granule Hi at which event E occurs is denoted as HE
i . The support set of

a group of events, denoted as SUP(Ei ,...,Ek), and the support set of a temporal
pattern, denoted as SUPP

� {HP
l , ...,H

P
r }, are defined similarly to that of a

temporal event.
Definition 3.13 (Near support set of a temporal pattern) Consider a pat-
tern P with the support set SUPP

� {HP
l , ...,H

P
r }. Let maxPeriod be the

maximum period threshold, representing the predefined maximal period be-
tween any two consecutive granules in SUPP . The set SUPP is called a
near support set of P if ∀(HP

o ,HP
p) ∈ SUPP : (HP

o and HP
p are consecutive) ∧

|p(HP
o) − p(HP

p)| ≤ maxPeriod, where p(HP
o) and p(HP

p) are the positions of
HP

o and HP
p in granularity H. We denote the near support set of pattern P as

NearSUPP .
Intuitively, the near support set of P is a support set where P’s occurrences

are close in time. Moreover, NearSUPP is called a maximal near support set if
NearSUPP has no other superset beside itself which is also a near support set.
The near support set of an event is defined similarly to that of a pattern.

As an example, consider the pattern P = (Contains, C:1, D:1) (or C:1 <
D:1) in Table C.4, and let maxPeriod � 2. Here, the support set of P is SUPP =
{H1 ,H2 ,H3 ,H7 ,H8 ,H11 ,H12 ,H14}. Hence, P has three maximal near support
sets: NearSUPP

1 � {H1 ,H2 ,H3}, NearSUPP
2 � {H7 ,H8}, and NearSUPP

3 �

{H11 ,H12 ,H14}. Fig. C.3 illustrates the three near support sets of P.
Definition 3.14 (Season of a temporal pattern) Let NearSUPP be a near support

165

Paper C.

set of a pattern P. Then NearSUPP is called a season of P if den(NearSUPP) �
|NearSUPP | ≥ minDensity, where den(NearSUPP) counts the number of gran-
ules in NearSUPP called the density of NearSUPP , and minDensity is a prede-
fined minimum density threshold.

For instance, in theprevious example,wehaveden(NearSUPP
1)= |NearSUPP

1 |
= 3. Similarly, den(NearSUPP

2) � 2, den(NearSUPP
3) � 3. If the occurrences of

a pattern P are dense enough, the near support set becomes a season of P.
Intuitively, a season of a temporal pattern is a concentrated occurrence period,
separated by a long gap period of no/few occurrences, before the next season
starts. The season of an event is defined similarly as for a pattern.

The distance between two seasons NearSUPP
i = {HP

k , ...,H
P
n } andNearSUPP

j

= {HP
r , ...,HP

u } is computed as: dist(NearSUPP
i ,NearSUPP

j) = |p(HP
n) − p(HP

r)|.
Based on the season concept and the distance measure, we define frequent

seasonal temporal patterns as follows.
Definition 3.15 (Frequent seasonal temporal pattern) Let PS =

{
NearSUPP}

be the set of seasons of a temporal pattern P, andminSeason be theminimum sea-
sonal occurrence threshold, distInterval = [distmin , distmax] be the distance interval
where distmin is the minimum distance and distmax is the maximum distance.
A temporal pattern P is called a frequent seasonal temporal pattern iff seasons(P)
� |PS| ≥ minSeason ∧ ∀(NearSUPP

i , NearSUPP
j) ∈ PS: they are consecutive

and distmin ≤ dist(NearSUPP
i ,NearSUPP

j) ≤ distmax.
Intuitively, a pattern P is seasonal if the distance between two consecutive

seasons is within the predefined distance interval. Moreover, a seasonal tem-
poral pattern is frequent if it occurs more often than a predefined minimum
seasonal occurrence threshold. The number of seasons of a pattern P is the size
of PS, and is computed as seasons(P) �| PS |.

Mining Frequent Seasonal Temporal Patterns from Time Series (Fre-
qSTPfTS). LetDSEQ be the temporal sequence database of granularity H ∈ H
obtained from a given set of n time series X � {X1 , ...,Xn} of granularity GX .
Let maxPeriod, minDensity, distInterval, and minSeason be the maximum pe-
riod, minimum density, distance interval, and minimum seasonal occurrence
thresholds, respectively. The FreqSTPfTS problem aims to find all frequent
seasonal temporal patterns P in DSEQ that satisfy the maxPeriod, minDensity,
distInterval, and minSeason constraints.

In Section C.6.1, we provide the guidelines on how to set the values of the
four constraints in real-life settings.

166

C.4. Frequent Seasonal Temporal Pattern Mining

C.4 Frequent Seasonal Temporal Pattern Mining

C.4.1 Overview of FreqSTPfTS Mining Process
The FreqSTPfTS mining process consists of two phases. Phase 1, Data Con-
version, transforms a set of time series X into a symbolic database DSYB by
using the mapping function defined in Def. 3.5, and then transforms DSYB
into a temporal sequence database DSEQ by applying the sequence mapping
defined in Def. 3.9. Phase 2, Seasonal Temporal Pattern Mining (STPM), consists
of two steps to mine frequent seasonal temporal patterns: Seasonal Single Event
Mining and Seasonal k-Event Pattern Mining (k ≥ 2).

Before introducing the STPM algorithm in detail, we first present candidate
seasonal pattern, a concept designed to support Apriori-like pruning in STPM.

C.4.2 Candidate Seasonal Pattern
Pattern mining methods often use the anti-monotonicity property of the support
measure to reduce the search space [37]. This property ensures that an infre-
quent event Ei cannot form a frequent 2-event pattern P, since support(Ei) ≥
support(P). Hence, if Ei is infrequent, we can safely remove Ei and any of its
combinations from the search space, and still guarantee the algorithm com-
pleteness. However, seasonal temporal patterns constrained by the maxPeriod,
minDensity, distInterval and minSeason thresholds do not uphold this property,
as illustrated below.

Consider an event E =M:1 and a 2-event pattern P =M:1 <N:1 in Table C.4.
LetmaxPeriod = 2,minDensity = 3, distInterval = [4, 10], andminSeason = 2. From
the constraints, we can identify the seasons of E and P as: PSE = {NearSUPE

1 }
= {H1 ,H2 ,H3 ,H4 ,H5 ,H6 ,H8 ,H9 ,H10 ,H11 ,H13}, and PSP = {{NearSUPP

1 } =
{H1 ,H3 ,H4 ,H5 ,H6}, {NearSUPP

2 } = {H10 ,H11 ,H13}}. Here, for the pattern P,
H2 is not present in {NearSUPP

1 } since P does not occur in H2, and H9 is not
present in {NearSUPP

2 } because of the constraint distmin = 4. Hence, we have:
|PSE |�1 and |PSP |�2. Due to the minSeason constraint, E is not a frequent
seasonal event, whereas P is. This shows that seasonal temporal patterns do
not adhere to the anti-monotonic property.

To improve STPM performance, we propose the novelmaximum seasonal oc-
currence measure, called maxSeason, that upholds the anti-monotonicity prop-
erty to prune infrequent patterns and reduce STPM search space. Indeed,
maxSeason is an upper bound on the number of seasons of a pattern.
Maximum seasonal occurrence of a temporal pattern P: is the ratio between
the number of granules in the support set SUPP of P, and the minDensity
threshold:

maxSeason(P) � |SUPP |
minDensity

(C.1)

167

Paper C.

Eq. (C.1) divides the number of granules containing P by the minimum
density of a season. Thus, it computes the maximum seasons a pattern P can
have. The maximum seasonal occurrence of a single event E, and of a group of
events (Ei , ..., Ek), are defined in a similar way. Below, we show howmaxSeason
upholds the anti-monotonicity property.

Lemma 1 Consider two patterns P and P
′ such that P

′ ⊆ P. Then maxSeason(P′) ≥
maxSeason(P).

Proof We have:
maxSeason(P′) � |SUPP

′
|

minDensity , maxSeason(P) � |SUPP |
minDensity

Since: |SUPP
′
| ≥ |SUPP | (Derived from Def. 3.12)

Hence: maxSeason(P′) ≥ maxSeason(P)

Lemma 2 Consider a k-event pattern P created by a k-event group (E1 , ..., Ek). Then,
maxSeason(P) ≤ maxSeason(E1 , ..., Ek).

Proof Derived directly from Def. 3.12, and Eq. (C.1).

From Lemmas 1 and 2, the maxSeason of a pattern P is always at most the
maxSeason of its sub-pattern P

′ , and of its events (E1 , ..., Ek). Thus, maxSeason
upholds the anti-monotonicity property, and can be used to reduce the STPM
search space. Below,wedefine the candidate pattern concept that usesmaxSeason
as a gatekeeper to identify frequent/ infrequent seasonal patterns.
Candidate seasonal pattern: A temporal pattern P is a candidate seasonal
pattern if maxSeason(P) ≥ minSeason.

Similarly, a group of k events GE � (E1 , ..., Ek) (k ≥ 1) is a candidate seasonal
k-event group if maxSeason(GE) ≥ minSeason. Intuitively, a pattern P (or k-event
group GE) is infrequent if its maxSeason is less than minSeason. Hence, P (or
GE) can be safely removed from the search space.

Next, we present our STPM algorithm and detail the two mining steps,
shown in Algorithm 11.

C.4.3 Mining Seasonal Single Events
The first step in STPM is to mine frequent seasonal single events (Alg. 11,
lines 1-9) that satisfy the constraints of maxPeriod, minDensity, distInterval and
minSeason. To do that, we first look for the candidate single events defined
in Section C.4.2, and then use only the found candidates to mine frequent
seasonal events.

The candidate single events are found by first scanningDSEQ to identify the
support set SUPEi for each event Ei , from which we compute the maximum
seasonal occurrence maxSeason(Ei). If maxSeason(Ei) ≥ minSeason, then Ei is
a candidate seasonal single event. Otherwise, Ei is not a candidate and is

168

C.4. Frequent Seasonal Temporal Pattern Mining

Algorithm 11: Frequent Seasonal Temporal Pattern Mining
Input: Temporal sequence databaseDSEQ, the thresholds: maxPeriod,

minDensity, distInterval, minSeason
Output: All frequent seasonal temporal patterns P
// Step 2.1: Mine frequent seasonal single events

1: foreach event Ei ∈ DSEQ do
2: Find SUPEi and compute maxSeason(Ei) ;
3: if maxSeason(Ei) ≥ minSeason then
4: Insert Ei into Candidate1Event ;
5: foreach candidate Ei ∈ Candidate1Event do
6: Find NearSUPEi that satisfies maxPeriod and minDensity ;
7: Find PSEi that adheres distInterval ;
8: if |PSEi | ≥ minSeason then
9: Insert Ei into P; //Ei is a frequent seasonal event

// Step 2.2: Mine frequent seasonal k-event patterns, k ≥ 2
10: FilteredF1← Transitivity_Filtering(F1);
11: kEventGroups← Cartesian(FilteredF1, Fk−1);
12: CandidatekEvent←maxSeason_Filtering(kEventGroups);
13: foreach kEvent in CandidatekEvent do
14: (k-1)-event_patterns← Retrieve_Relations(PHk−1);
15: k-event_patterns← Iterative_Check((k-1)-event_patterns, Ek);
16: foreach P in k-event_patterns do
17: if maxSeason(P) ≥ minSeason then
18: Insert P into CandidatekPatterns;
19: foreach candidate P ∈ CandidatekPatterns do
20: Find NearSUPP satisfying maxPeriod and minDensity;
21: Identify PSP adhering to distInterval ;
22: if |PSP | ≥ minSeason then
23: Insert P into P; //P is a frequent seasonal pattern

removed from the search space. Note that we only need to scan DSEQ once to
find all candidate events.

To mine frequent seasonal events, for each candidate event Ei , we iterate
through the support set SUPEi , and calculate the period pri j between ev-
ery two consecutive granules in SUPEi , and determine the near support sets
NearSUPEi that satisfymaxPeriod andminDensity. Next, the set of seasonsPSEi

is identified by selecting the near support sets that adhere to the distInterval
constraint. Finally, the frequent seasonal events are determined by compar-
ing the number of seasons of Ei to minSeason, selecting only those that have
seasons(Ei) �| PSEi | ≥ minSeason.

We use a hierarchical lookup hash structure HLH1 to store the candidate sea-
sonal single events. This data structure enables fast search when mining
seasonal k-events patterns (k ≥ 2). Note that wemaintain the candidate events
in HLH1 instead of the frequent seasonal events, as the maxSeason of candi-

169

Paper C.

Key Value

...

...

Key Value

Single event
hash table

Event granule
hash table

Fig. C.4: The HLH1 structure

...

...

k-Event
hash table

Pattern
hash table

...

...

Pattern granule
 hash table

Key Value

Key Value

Key Value

Fig. C.5: The HLHk(k ≥ 2) structure
date events upholds the anti-monotonicity property, and can thus be used for
pruning. We illustrate HLH1 in Fig. C.4, and describe the data structure below.

Hierarchical lookuphash structure HLH1: The HLH1 is a hierarchical data
structure that consists of two hash tables: the single event hash table EH, and
the event granule hash table GH. Each hash table has a list of <key, value> pairs.
In EH, the key is the event symbol ω ∈ ΣX representing the candidate Ei , and
the value is the list of granules < Hi , ...,Hk > in SUPEi . In GH, the key is the
list of granules shared in the value field of EH, while the value stores event
instances of Ei that appear at the corresponding granule in DSEQ. The HLH1
structure enables fast retrieval of event granules and instances when mining
candidate seasonal k-event patterns in the next step of STPM.

We provide an example of HLH1 in Fig. C.6 using data in Table C.4 with
maxPeriod = 2, minDensity = 3, distInterval = [4, 10], and minSeason = 2. Here,
out of 10 events inDSEQ, we have eight candidate seasonal single events stored
in HLH1: C:1, C:0, D:1, D:0, F:1, F:0, M:1, andN:1. Due to space limitations, we
only provide the detailed internal structure of four candidate events. Among
the eight candidates, the event M:1 does not satisfy the minSeason threshold
since season(M:1) = 1, and thus, is not a frequent seasonal event. However, M:1
is still present in HLH1 asM:1 might create frequent seasonal k-event patterns.
In contrast, N:0 andM:0 are not the candidate seasonal events because they do
not satisfy the maxSeason constraint, and are omitted from HLH1.

Complexity: The complexity of finding frequent seasonal events is O(n ·
|DSEQ |), where n is the number of events.

Proof (Sketch - Full proof in [36]). Computing maxSeason for n events takes O(n ·
|DSEQ |). Identifying the set of seasons PS of all candidate events Ei takes O(n ·
|SUPEi |). The overall complexity is thus: O(n · |DSEQ |+n · |SUPEi |) ∼ O(n · |DSEQ |).

C.4.4 Mining Seasonal k-event Patterns
STPM’s search space. Next, we mine frequent seasonal k-event patterns
(k ≥ 2). A straightforward approach is to enumerate all possible k-event
combinations, and check whether each combination can form frequent sea-
sonal patterns. However, this approach is extremely expensive because of the

170

C.4. Frequent Seasonal Temporal Pattern Mining

C:1 C:0 D:1 D:0 F:1 F:0 M:1 N:1

C:1,D:1 C:1,F:1

Fig. C.6: A hierarchical lookup hash tables for the running example
very large search space, approximately of size O(nh3h2), where n is the number
of distinct events inDSEQ, and h is the maximal length of a pattern.

Proof (Sketch - Full proof in [36]). The number of seasonal single events is: N1 �

n ∼ O(n). The number of 2-event groups is: N2 ∼ O(n2). The number of seasonal
2-event patterns is: N2 × 31 ∼ O(n231) (3 temporal relations for each pair of events).
Similarly, the number of seasonal h-event patterns is O(nh3h2). Hence, the total
number of seasonal temporal patterns is O(n)+O(n231)+ ...+O(nh3h2) ∼ O(nh3h2).

To mitigate the large search space, we use an iterative mining approach
that first finds candidate seasonal k-event groups, and then mines frequent
seasonal k-event patterns only from the candidates.

The hierarchical lookup hash structure HLHk : We use the hierarchical
lookup hash structure HLHk (k ≥ 2) to maintain candidate seasonal k-event
groups and patterns, as illustrated in Fig. C.5. The HLHk contains three
hash tables: the k-event hash table EHk , the pattern hash table PHk , and the
pattern granule hash table GHk . For each <key, value> pair of EHk , key is the
list of symbols (ω1..., ωk) representing the candidate k-event group (E1 , ..., Ek),
and value is an object which consists of two components: (1) the support set
SUP(E1 ,...,Ek), and (2) a list of candidate seasonal k-event temporal patterns. In
PHk , key is the candidate pattern P which indeed takes the value component
of EHk , while value is the list of granules that contain P. In GHk , key is the
list of granules containing P which indeed takes the value component of PHk ,
while value is the list of event instances fromwhich the temporal relations in P
are formed. The HLHk hash structure helps speed up the candidate seasonal
k-event group mining through the use of the support set in EHk , and enables
fast search for temporal relations between k events using the information in
PHk and GHk .

4.1 Mining candidate seasonal k-event groups. We first find candidate
seasonal k-event groups (Alg. 11, lines 10-12).

Let Fk−1 and F1 be the set of candidate seasonal (k-1)-event groups and
candidate seasonal single events found in HLHk−1 and HLH1, respectively. We

171

Paper C.

first generate all possible k-event groups by computing the Cartesian product
Fk−1 × F1. Next, for each k-event group (E1 , ..., Ek), we compute the support
set SUP(E1 ,...,Ek) by taking the intersection between SUP(E1 ,...,Ek−1) in EHk−1 and
SUPEk in EH. We then compute maxSeason(E1 , ..., Ek), and evaluate whether
(E1 , ..., Ek) is a candidate k-event group, i.e.,maxSeason(E1 , ..., Ek) ≥ minSeason.
If (E1 , ..., Ek) is a candidate, it is kept in EHk of HLHk .

4.2 Mining frequent seasonal k-event patterns. We use the found candi-
date k-event groups to mine frequent seasonal k-event patterns (Alg. 11, lines
13-23). We first discuss the case of 2-event patterns, and then generalize to
k-event patterns.

4.2.1 Mining frequent seasonal 2-event patterns: For each candidate 2-event
group (Ei , E j), we use the support set SUP(Ei ,E j) to retrieve the temporal se-
quences S that contain (Ei , E j). Next, for each temporal sequence S ∈ S, we
use the instances (ei , e j) to verify the temporal relation between them. We then
compute the maxSeason of the 2-event pattern P and determine if P is a can-
didate pattern, i.e., maxSeason(P) ≥ minSeason. Finally, the candidate seasonal
2-event patterns are stored in PH2, while their event instances are stored in
GH2.

Based on the set of candidate seasonal 2-event patterns P, we determine
whether P is a frequent seasonal 2-event pattern by checking the constraints of
maxPeriod,minDensity, distInterval andminSeason as in the case of single events,
using the support set SUPP retrieved from the value of PH2.

4.2.2 Mining frequent seasonal k-event patterns: Let Nk−1 � (E1 , ..., Ek−1) be a
candidate (k-1)-event group in HLHk−1, N1 � (Ek) be a candidate single event
in HLH1, and Nk � Nk−1 ∪ N1 � (E1 , ..., Ek) be a candidate k-event in HLHk .
To find k-event patterns for Nk , we first retrieve the set of candidate (k-1)-event
patterns Pk−1 by accessing the EHk−1 table. We check whether Pk−1 and Ek can
form a k-event pattern Pk as follows.

We have Pk−1 � {(r12, E1, E2),...,(r(k−2)(k−1), Ek−2, Ek−1)}. First, we start with
the triple (r(k−1)k , Ek−1, Ek). If (r(k−1)k , Ek−1, Ek) does not exist in HLH2, then
Pk is not a candidate k-event pattern, and the verification stops immediately.
Otherwise, we continue the similar verification on the triple (r(k−2)k , Ek−2, Ek),
until it reaches (r1k , E1, Ek). Next, we compute maxSeason(Pk) to determine
whether Pk is a candidate k-event pattern, i.e., maxSeason(Pk) ≥ minSeason.
The candidate k-event patterns are maintained in PHk and GHk . Finally, we
mine frequent seasonal k-event patterns from the found candidates, similar to
2-event patterns.

Using transitivity property to optimize candidate k-event groups: In
Section 4.1, when mining candidate k-event groups, we perform the Cartesian
product between Fk−1 and F1. However, using the candidate single events in
F1 to generate k-event groups can create redundancy, since events in F1 when
combinedwith Fk−1 might not formany frequent seasonal k-event patterns. For
example, consider the event F:0 in HLH1 in Fig. C.6. Here, F:0 is a candidate

172

C.4. Frequent Seasonal Temporal Pattern Mining

single event, and thus, can be combined with 2-event groups in HLH2 such
as (C:1, D:1) to create a 3-event group (C:1, D:1, F:0). However, no candidate
seasonal 3-event patterns can be formed by (C:1, D:1, F:0) since F:0 does not
exist in any candidate 2-event patterns in HLH2. We use the transitivity property
of temporal relations to reduce the redundancy as below.

Lemma 3 Let S �< e1,..., ek−1 > be a temporal sequence, P �< (r12 , E1.e1 , E2.e2)
,..., (r(k−2)(k−1) , Ek−2.ek−2

, Ek−1.ek−1
) > be a (k-1)-event pattern that occurs in S, ek be a

new event instance, S
′
�< e1,..., ek > be a new temporal sequence created by adding

ek to S, and< be the set of temporal relations. < is transitive on S
′ : ∀ei ∈ S

′ , i < k,
∃r ∈ < s.t. r(Ei.ei

,Ek.ek
) hold.

Lemma3 states the temporal transitivity property between temporal events,
and is used to prove lemma 4.

Lemma 4 Let Nk−1 � (E1 , ..., Ek−1) be a candidate seasonal (k-1)-event group, and
Ek be a candidate seasonal single event. If ∀Ei ∈ Nk−1, ∃r ∈ < s.t. r(Ei , Ek) is a
candidate seasonal relation, then Nk � Nk−1∪Ek can form candidate seasonal k-event
patterns.

From Lemma 4, only single events in HLH1 that occur in HLHk−1 should be
used to create k-event groups. We identify these single events by filtering
F1, and creating the set FilteredF1. Then, the Cartesian product Fk−1 × F1 is
replaced by Fk−1 × FilteredF1 to generate k-event groups.

Complexity: Let n be the number of seasonal events in HLH1, i be the
averagenumber of instances of each seasonal event, r be thenumber of seasonal
(k-1)-event patterns in HLHk−1, and u be the average number of granules of
each event/ temporal relation. The complexity of frequent seasonal k-event
pattern mining is O(n2i2u2) + O(|F1 | · |Fk−1 | · r · k2 · u).

Proof (Sketch - Full proof in [36]). Computing maxSeason of 2-event patterns
takes O(n2i2u2). Identifying the set of seasons PS of candidate 2-event patterns
takes O(n2u). The frequent seasonal 2-event pattern mining has the complexity: O(
n2i2u2 + n2u) ∼ O(n2i2u2). Computing maxSeason of k-event patterns (k > 2)
takes O(|F1 | · |Fk−1 | · r · k2 ·u). Identifying the set of seasons PS of candidate k-event
patterns takes O(|F1 | · |Fk−1 | · r · u). The frequent seasonal k-event pattern mining
has the complexity: O(|F1 | · |Fk−1 | · r · k2 · u + |F1 | · |Fk−1 | · r · u) ∼ O(|F1 | · |Fk−1 | ·
r · k2 · u). Thus, the total time complexity is O(n2i2u2) + O(|F1 | · |Fk−1 | · r · k2 · u).

STPMoverall complexity: The space complexity of STPM is O(nh3h2). The
time complexity of STPM depends on the size of the search space O(nh3h2),
i.e., STPM scales exponentially with quadratic exponent in the pattern length
h, and on the complexity of the mining process itself, i.e., O(n · |DSEQ |) +
O(n2i2u2) + O(|F1 | · |Fk−1 | · r · k2 · u). While the parameters |F1 |, |Fk−1 | and u
depend on the number of temporal sequences, others such as n, h, i, r and k

173

Paper C.

depend on the number of time series. Thus, STPM space and time complexities
are driven by the sizes ofDSEQ andDSYB.

C.5 Approximate STPM

C.5.1 Correlated Symbolic Time Series
Consider two time series X and Y, and their corresponding symbolic series
XS, YS, and symbolic alphabets ΣX and ΣY .
Definition 5.1 (Entropy [3]) The entropy H(XS) of XS measures the uncertain
degree of the outcomes of XS [38], and is computed as

H(XS) � −
∑

x∈ΣX

p(x) · log p(x) (C.2)

where p(x) is the probability of XS.
The conditional entropy H(XS |YS) is defined as

H(XS |YS) � −
∑

x∈ΣX

∑
y∈ΣY

p(x , y) · log
p(x , y)

p(y) (C.3)

where p(x , y) is the joint probability of (XS ,YS), and p(y) is the probability of
YS.
Definition 5.2 (Mutual information [3]) The mutual information (MI) I(XS; YS)
of XS and YS represents the amount of shared information between XS and
YS, and is defined as

I(XS; YS) �
∑

x∈ΣX

∑
y∈ΣY

p(x , y) · log
p(x , y)

p(x) · p(y) (C.4)

Since 0 ≤ I(XS; YS) ≤ min{H(XS),H(YS)} [38], the MI upper bound does not
exist. We normalize MI to scale it into the range [0, 1].
Definition 5.3 (Normalized mutual information [3]) The normalized mutual
information (NMI) Ĩ(XS; YS) of XS and YS represents the percentage of shared
information between XS and YS, and is defined as

Ĩ(XS; YS) �
I(XS; YS)

H(XS)
� 1 − H(XS |YS)

H(XS)
(C.5)

Based on Eq. (C.5), XS and YS are dependent if Ĩ(XS; YS) > 0. Moreover, Eq.
(C.5) also shows that NMI is not symmetric, i.e., Ĩ(XS; YS) , Ĩ(YS; XS).
Definition 5.4 (Correlated symbolic time series [3]) Let µ where 0 < µ ≤ 1 be
theMI threshold. The seriesXS andYS are correlated iffmin{Ĩ(XS; YS), Ĩ(YS; XS)}
≥ µ, and uncorrelated otherwise.

174

C.5. Approximate STPM

C.5.2 Lower Bound of the maxSeason
Let XS and YS be two symbolic series, X1 be a temporal event in XS, Y1
be a temporal event in YS, DSYB and DSEQ be the symbolic and the sequence
databases created from XS and YS, respectively. The relation between Ĩ(XS; YS)
inDSYB, and maxSeason(X1 ,Y1) inDSEQ is established as follows.

Theorem 1 (Lower bound of the maximum seasonal occurrence) Let µ be the mu-
tual information threshold. If the NMI Ĩ(XS;YS) ≥ µ, then the maximum seasonal
occurrence of (X1 ,Y1) inDSEQ has a lower bound:

maxSeason(X1 ,Y1) ≥
λ2 · |DSEQ |
minDensity

· e
W

(
log λ1−µ

1 ·ln2
λ2

)
(C.6)

where: λ1 � min{p(Xi), ∀Xi ∈ XS} is the minimum probability of Xi ∈ XS, and
λ2 � p(Y1) is the probability of Y1 ∈ YS, and W is the Lambert function [39].

Proof (Sketch - Full proof in [36]). From Eq. (C.5), we have:

Ĩ(XS; YS) � 1 − H(XS |YS)
H(XS)

≥ µ (C.7)

⇒ H(XS |YS)
H(XS)

�
p(X1 ,Y1) · log p(X1 |Y1)∑

i p(Xi) · log p(Xi)

+

∑
i,1& j,1 p(Xi ,Yj) · log p(Xi ,Yj)

p(Yj)∑
i p(Xi) · log p(Xi)

≤ 1 − µ (C.8)

Let: λ1 � min{p(Xi), ∀i}, λ2 � p(Y1).

H(XS |YS)
H(XS)

≥
p(X1 ,Y1) · log p(X1 ,Y1)

λ2

log λ1
(C.9)

From Eqs. (C.8), (C.9), we derive: p(X1 ,Y1) ≥ λ2 · e
W

(
log λ1−µ

1 ·ln 2
λ2

)
Since: ��SUP(X1 ,Y1)

��
|DSEQ |

≥ p(X1 ,Y1) ≥ λ2 · e
W

(
log λ1−µ

1 ·ln 2
λ2

)

Thus:

maxSeason(X1 ,Y1) ≥
λ2 · |DSEQ |
minDensity

· e
W

(
log λ1−µ

1 ·ln 2
λ2

)
(C.10)

175

Paper C.

Algorithm 12: Approximate STPM using MI
Input: A set of time series X, the thresholds: maxPeriod, minDensit y,

distInterval, minSeason
Output: All frequent seasonal temporal patterns P

1: foreach pair of series (XS ,YS) ∈ DSYB do
2: minNMI ← min{Ĩ(XS ; YS), Ĩ(YS ; XS)};
3: Compute µ using Eq. (C.11);
4: if minNMI ≥ µ then
5: Insert XS and YS into XC ;
6: Mine frequent seasonal single events from XC ;
7: foreach (XS ,YS) ∈ XC do
8: Mine frequent seasonal 2-event patterns from (XS ,YS);
9: if k ≥ 3 then
10: Perform STPM using HLH1 and HLHk−1;

Setting the parameters: To compute the lower bound ofmaxSeason(X1 ,Y1)
in Eq. (C.6), several parameters need to be defined: λ1, λ2, and µ. Given
DSYB, λ1 and λ2 can easily be determined since λ1 is the minimum probability
among all events Xi ∈ XS, and λ2 is the probability of Y1 ∈ YS. To set the value
of µ, we use the lower bound ofmaxSeason in Theorem 1 to derive µ as follows.

Corollary 1.1 Themaximumseasonal occurrence of an event pair (X1 ,Y1) ∈ (XS ,YS)
inDSEQ is at least minSeason if Ĩ(XS; YS) is at least µ, where:

µ ≥


1 − λ2
e ·ln 2·log 1

λ1
, if 0 ≤ ρ ≤ 1

e

1 − ρ·λ2 ·log ρ
ln 2·log λ1

, otherwise
,where ρ �

minSeason ·minDensity
λ2 · |DSEQ |

(C.11)

Interpretation of the lower bound of the maximum seasonal occurrence:
Theorem 1 says that, given a mutual information threshold µ, if the two series
XS and YS are correlated, i.e., Ĩ(XS; YS) ≥ µ, then the maximum seasonal
occurrence of an event pair in (XS,YS) is at least the lower bound in Eq. (C.6).
Combining Theorem 1 and Lemma 2, we can conclude that given a pair of
symbolic series (XS,YS), if its event pair (X1, Y1) has a maximum seasonal
occurrence less than the lower bound in Eq. (C.6), then any 2-event pattern
P formed by that event pair also has a maximum seasonal occurrence less
than that lower bound. This allows us to construct the approximate STPM
algorithm, discussed in the next section.

C.5.3 Using the Bound to Approximate STPM
Approximate STPM: We construct an approximate version of STPM using The-
orem 1. Specifically, using the STPM thresholds minSeason and minDensity,
we derive µ (Eq. C.11) and use it to identify correlated symbolic series (defined
in Def. 5.4). Next, the approximate STPM performs the mining only on the

176

C.6. Experimental Evaluation

set of correlated symbolic series XC ⊆ X. Algorithm 12 outlines the approximate
STPM.

First, NMI and µ for each pair (XS ,YS) in DSYB are computed (lines 2-3).
Then,wefilter and select only thepairs that havemin{Ĩ(XS; YS), Ĩ(YS; XS)} ≥ µ.
The selected pairs are inserted into XC . Next, we use only the series in XC to
mine frequent seasonal single events (line 6). For frequent seasonal 2-event
patterns, wemine frequent seasonal patterns only from event pairs inXC (lines
7-8). For frequent seasonal k-event patterns (k ≥ 3), the exact STPM is used
(lines 9-10).

Complexity analysis of approximate STPM: The approximate STPM dif-
fers from STPM in two mining steps, the seasonal single events at HLH1 and
the seasonal 2-event patterns at HLH2 by mining those only from correlated
time series. The approximate STPM only scanDSYB once to calculate the prob-
ability for single events and event pairs and compute NMI and µ. Hence, the
cost of computing NMI and µ is O(|DSYB |). In contrast, the complexities of
the exact STPM at HLH1 and HLH2 are O(n · |DSEQ |) + O(n2i2u2) (Sections
C.4.3 and C.4.4). Thus, the more time series are pruned, the faster and less
memory usage of the approximate STPM. However, overall, the approximate
STPM still scales exponentially with quadratic exponent in the pattern length
h as in STPM.

Table C.5: Characteristics of the Datasets

Datasets #seq. #time series #events #ins./seq.
RE (real) 1,460 21 102 93
SC (real) 1,249 14 56 55
INF (real) 608 25 124 48
HFM (real) 730 24 115 40
RE (syn.) 1,460 ×103 104 48,500 38,012
SC (syn.) 1,249 ×103 104 40,020 37,106
INF (syn.) 608 ×103 104 49,600 40,623
HFM (syn.) 730 ×103 104 47,825 41,241

C.6 Experimental Evaluation

C.6.1 Experimental Setup
Datasets: We use three real-world datasets from three application domains:
renewable energy, smart city, and health. For renewable energy (RE), we use
energy data [40] and weather data [6] from Spain. For smart city (SC), we use
traffic and weather datasets [41] from New York City. For health, we combine
the influenza (INF) and hand-foot-mouth (HFM) datasets [5] andweather data [6]

177

Paper C.

Table C.6: Parameters and values

Params Values (User-defined)
maxPeriod 0.2%, 0.4%, 0.6%, 0.8%, 1.0%
minDensity 0.5%, 0.75%, 1.0%, 1.25%, 1.5%
minSeason 4, 8, 12, 16, 20
distInterval [90, 270] (RE, SC), [30, 90] (INF, HFM)

from Kawasaki, Japan. Besides real-world datasets, we also generate synthetic
data for the scalability evaluation. Specifically, starting from each real-world
dataset, we generate 1, 000 times more sequences and 10, 000 synthetic time series
for each of them. Table C.5 summarizes the dataset characteristics.
Baseline method: Our exact method is denoted E-STPM, and the approxi-
mate one is denoted A-STPM. Since our work is the first that studies frequent
seasonal temporal pattern mining, there does not exist an exact baseline to
compare against STPM. However, we adapt the state-of-the-art method for
recurring itemset mining PS-growth [34] to find seasonal temporal patterns.
Specifically, the adaptation is done through 2-phase process: (1) PS-growth
is applied to find frequent recurring events, and (2), mine temporal patterns
from extracted events. The adapted PS-growth is referred to as APS-growth.
Infrastructure: We use a VMwith 32 AMD EPYC cores (2GHz), 512 GB RAM,
and 1 TB storage.
Parameters: Table C.6 shows the parameters and their values used in our
experiments, wheremaxPeriod andminDensity are expressed as the percentage
of DSEQ. While the four parameters in Table C.6 are user-defined, we also
provide the intuition of how to set them. maxPeriod determines how close
the patterns should occur within the same season. The smaller the maxPeriod,
the closer the occurred patterns should be and vice versa. minDensity decides
how dense a season should be. Combining these two, a small maxPeriod and
a large minDensity will find dense seasons with close-by pattern occurrences.
In contrast, a large maxPeriod and a small minDensity will find sparse seasons.
On the other hand, minSeason and distInterval values often depend on the
granularity ofDSEQ. For example, ifDSEQ has month granularity, we then can
look for patterns with yearly seasonality. Thus, distInterval is often between 3
and 9 months, and minSeason is the minimum number of years the patterns
should have occurred seasonally.

C.6.2 Qualitative Evaluation
Table C.7 shows some seasonal patterns mined from the datasets. Patterns P1-
P3 are extracted from RE, showing that high renewable energy generation and
high electricity demand occur seasonally and often at specific season through-
out the year. Patterns P4-P7 are extracted from INF and HFM, showing the
detection of seasonal diseases. Finally, how weather affects traffic is shown in
patterns P8-P11 extracted from SC.

178

C.6. Experimental Evaluation

Table C.7: Summary of Interesting Seasonal Patterns

Patterns minDensity (%) maxPeriod (%) # minSeason Seasonal occurrence

(P1) Strong Wind < High Wind Power Generation 0.5 0.4 12 December, January, February
(P2) Low Temperature < High Energy Consumption 0.5 0.4 12 December, January, February
(P3) Very Few Clouds < Very High Temperature G High Solar Power Generation 0.75 0.6 8 July, August
(P4) High Humidity G Very Low Temperature→ Very High Influenza Cases 0.5 0.4 12 January, February
(P5) Strong Wind < Heavy Rain < High Influenza Cases 0.5 0.4 12 January, February
(P6) Low Humidity < High Temperature < Very High Hand-Foot-Mouth Disease Cases 1.0 0.6 12 May, June
(P7) Very High Temperature < High Wind < High Hand-Foot-Mouth Disease Cases 1.0 0.6 12 May, June
(P8) High Temperature < Strong Wind→ High Congestion 0.5 0.6 8 July, August
(P9) Strong Wind < Unclear Visibility < High Congestion 0.5 0.6 8 July, August
(P10) Heavy Rain < Unclear Visibility < High Lane-Blocked 0.4 0.8 8 July, August
(P11) Heavy Rain < Strong Wind < High Flow-Incident 0.4 0.8 8 July, August

Table C.8: The Number of Seasonal Patterns on RE

maxPeriod (%) minSeason (#) - minDensity (%)
8-0.5 8-0.75 8-1.0 12-0.5 12-0.75 12-1.0 16-0.5 16-0.75 16-1.0

0.2 35626 20427 11339 21309 12941 6935 8045 4218 3018
0.4 41462 29729 14281 25207 17381 7294 10261 7480 5483
0.6 48651 35018 16247 31860 24627 9826 14061 9738 7409

Table C.9: The Number of Seasonal Patterns on INF

maxPeriod (%) minSeason (#) - minDensity (%)
8-0.5 8-0.75 8-1.0 12-0.5 12-0.75 12-1.0 16-0.5 16-0.75 16-1.0

0.2 7812 5704 4285 5159 3163 2157 3521 2105 1284
0.4 10581 8294 6535 7952 5863 4068 5293 4618 2690
0.6 12084 9618 8260 11850 8591 6028 6809 5073 3529

Tables C.8 and C.9 list the number of seasonal patterns found in the RE
and INF datasets. It can be seen that high minSeason leads to less generated
patterns, as many have few seasonal occurrences. Moreover, high minDensity
also generates fewer patterns since only few patterns have high occurrence
density. Finally, high maxPeriod results in more generated patterns, since high
maxPeriod allows more temporal relations to be formed, thus increasing the
number of patterns.

C.6.3 Quantitative Evaluation

Comparison with baseline on real-world datasets

We compare the runtime andmemory usage of E-STPM and A-STPMwith the
baseline. Figs. C.7, C.8, C.9 and C.10 show the comparison on RE and INF
datasets.

As shown in Figs. C.7 and C.8, A-STPM is the fastest of all methods, and
E-STPM is faster than the baseline. The range and average speedups of A-
STPM over the other methods are: [1.5-4.7] and 2.6 (E-STPM), and [5.2-10.6]
and 7.1 (APS-growth). The speedup of E-STPM over the baseline is [3.5-7.2]

179

Paper C.

4 8 12 16 200
0.2
0.4
0.6
0.8

1 ·104

minSeason

Ru
nt
im

e
(s
ec
)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50
0.2
0.4
0.6
0.8

1 ·104

minDensity (%)

Ru
nt
im

e
(s
ec
)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.5

1
1.5

2
2.5 ·104

maxPeriod (%)

Ru
nt
im

e
(s
ec
)

(c) Varying maxPeriod
A-STPM E-STPM APS-growth

Fig. C.7: Runtime Comparison on RE (real-world)

4 8 12 16 200
0.1
0.2
0.3
0.4
0.5 ·104

minSeason

Ru
nt
im

e
(s
ec
)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50
0.1
0.2
0.3
0.4
0.5 ·104

minDensity (%)

Ru
nt
im

e
(s
ec
)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.1
0.2
0.3
0.4
0.5
0.6 ·104

maxPeriod (%)

Ru
nt
im

e
(s
ec
)

(c) Varying maxPeriod
A-STPM E-STPM APS-growth

Fig. C.8: Runtime Comparison on INF (real-world)
and 4.3 on average. Note that the times to compute MI and µ for RE and INF
in Figs. C.7 and C.8 are only 2.6 and 1.4 seconds, respectively. Moreover,
A-STPM is the most efficient, with the highest speedup and memory saving,
when theminSeason threshold is low, e.g.,minSeason � 4. This is because there
are typically many patterns with few seasonal occurrences. Thus, A-STPM’s
early pruning of uncorrelated time series saves both memory and runtime.
This speedup however incurs a slightly lower accuracy (discussed in Section
“Evaluation of A-STPM”).

As shown in Figs. C.9 and C.10, A-STPM uses the least memory, while E-
STPMuses lessmemory than the baseline. The range and average of A-STPM’s
memory consumption compared to other methods are: [1.4-2.7] and 1.8 (E-
STPM), and [2.7-7.6] and 3.9 (APS-growth). The memory usage of E-STPM
compared to the baseline is [1.5-4.1] and 2.3 on average.

Scalability on synthetic datasets

As discussed in Section C.4, STPM complexity is driven by two main factors,
namely the number of temporal sequences and time series, respectively. Thus,
to further evaluate STPM scalability, we scale these two factors on synthetic
datasets (reported in Table C.5). Specifically, we vary the number of sequences
and time series separately.

Figs. C.11 andC.12 show the runtimes ofA-STPM,E-STPMand thebaseline

180

C.6. Experimental Evaluation

4 8 12 16 200

0.5

1

1.5 ·104

minSeasonM
em

or
y
U
sa
ge

(M
B)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50

0.5

1

1.5 ·104

minDensity (%)M
em

or
y
U
sa
ge

(M
B)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.5

1
1.5

2 ·104

maxPeriod (%)M
em

or
y
U
sa
ge

(M
B)

(c) Varying maxPeriod
A-STPM E-STPM APS-growth

Fig. C.9: Memory Usage Comparison on RE (real-world)

4 8 12 16 200

0.3

0.6

0.9
·104

minSeasonM
em

or
y
U
sa
ge

(M
B)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50

0.3

0.6

0.9
·104

minDensity (%)M
em

or
y
U
sa
ge

(M
B)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.3
0.6
0.9
1.2

·104

maxPeriod (%)M
em

or
y
U
sa
ge

(M
B)

(c) Varying maxPeriod
A-STPM E-STPM APS-growth

Fig. C.10: Memory Usage Comparison on INF (real-world)
when the number of sequences changes. We obtain the range and average
speedups of A-STPM are: [1.6-3.2] and 2.2 (E-STPM), and [3.1-6.4] and 4.6
(APS-growth). Similarly, the range and average speedup of E-STPM compared
to APS-growth is [1.9-4.3] and 3.2. We note that the baseline fails for larger
configurations because ofmemory in this scalability study, i.e., on the synthetic
RE at 60% sequences (≈ 8× 105) (Fig. C.11a) and on the synthetic INF at 100%
sequences (≈ 6 × 105) (Fig. C.12a), showing that A-STPM and E-STPM can
scale well on big datasets while the baseline cannot.

Figs. C.13 and C.14 compare the runtimes of A-STPM, E-STPM and APS-
growth when changing the number of time series. We obtain the range and
average speedups of A-STPM are: [1.7-3.5] and 2.3 (E-STPM), and [3.8-9.5]
and 5.3 (APS-growth), and of E-STPM is [2.3-4.4] and 3.6 (APS-growth). The
baseline also fails at large configurations in this study, i.e., when # Time Series
≥ 6000 on the synthetic RE (Fig. C.13a), and ≥ 8000 on the synthetic INF (Fig.
C.14a).

Furthermore, we provide the computation time of MI and µ in Figs. C.13
and C.14 by adding an additional bar chart for A-STPM. Each bar has two
separate components: theMIand µ computation time (top red), and themining
time (bottom blue). We only need to compute MI once for each dataset, (the
computedMIs are used across differentminSeason andminDensity thresholds),
while the computation of µ is negligible (in milliseconds using Eq. (C.11)).

181

Paper C.

20 40 60 80 1000
0.5

1
1.5

2 ·105

Sequences (%)

Ru
nt
im

e
(s
ec
)

(a) minSeason=12,
minDensity=0.5%

20 40 60 80 1000
0.5

1
1.5

2 ·105

Sequences (%)

Ru
nt
im

e
(s
ec
)

(b) minSeason=16,
minDensity=0.75%

20 40 60 80 1000

0.5

1

1.5 ·105

Sequences (%)

Ru
nt
im

e
(s
ec
)

(c) minSeason=20,
minDensity=1.0%

A-STPM E-STPM APS-growth

Fig. C.11: Scalability: Varying #Sequences on RE (synthetic)

20 40 60 80 1000
0.5

1
1.5

2 ·105

Sequences (%)

Ru
nt
im

e
(s
ec
)

(a) minSeason=12,
minDensity=0.5%

20 40 60 80 1000

0.5

1

1.5 ·105

Sequences (%)

Ru
nt
im

e
(s
ec
)

(b) minSeason=16,
minDensity=0.75%

20 40 60 80 1000
0.2
0.4
0.6
0.8

1 ·105

Sequences (%)

Ru
nt
im

e
(s
ec
)

(c) minSeason=20,
minDensity=1.0%

A-STPM E-STPM APS-growth

Fig. C.12: Scalability: Varying #Sequences on INF (synthetic)
Thus, the MI and µ computation times, for example, in Figs. C.13a, C.13b, and
C.13c, are not all actually used and added for comparison only.

Table C.10: Pruned Time Series and Events from A-STPM

Attr.
RE INF

Pruned Time Series (%) Pruned Events (%) Pruned Time Series (%) Pruned Events (%)
12-0.5% 16-0.75% 20-1.0% 12-0.5% 16-0.75% 20-1.0% 12-0.5% 16-0.75% 20-1.0% 12-0.5% 16-0.75% 20-1.0%

2000 35.20 32.10 26.80 27.22 23.53 19.03 42.60 36.75 29.70 28.63 26.12 22.10
4000 33.05 29.15 22.05 25.24 22.41 17.95 35.70 31.03 24.80 27.35 25.77 22.01
6000 30.25 26.32 19.55 24.75 21.60 17.28 33.22 28.78 22.13 26.98 25.29 20.81
8000 29.48 25.38 19.15 24.70 21.12 16.96 31.75 28.51 21.58 26.74 24.52 20.74
10000 28.59 24.87 18.91 24.50 21.07 16.69 31.06 26.48 21.15 26.61 24.36 20.27

Finally, we provide the percentage of events and time series pruned by A-
STPM in the scalability test in Table C.10. We see that more time series (events)
are pruned for lowminSeason andminDensity, sinceminSeason andminDensity
have an inverse relationship with µ, therefore, low minSeason and minDensity
result in higher µ, and thus, more pruned time series.

Evaluation of the pruning techniques in E-STPM

We now compare different E-STPM versions to understand how effective each
of the proposed pruning techniques are: (1) NoPrune: E-STPM with no prun-
ing, (2) Apriori: E-STPM with Apriori-liked pruning (Lemmas 1, 2), (3) Trans:

182

C.6. Experimental Evaluation

2 4 6 8 100
0.5

1
1.5

2
2.5

3 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(a) minSeason=12,
minDensity=0.5%

2 4 6 8 100
0.5

1
1.5

2
2.5

3 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(b) minSeason=16,
minDensity=0.75%

2 4 6 8 100
0.5

1
1.5

2
2.5

3 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(c) minSeason=20,
minDensity=1.0%

A-STPM E-STPM APS-growth

Fig. C.13: Scalability: Varying #TimeSeries on RE (synthetic)

2 4 6 8 100
0.5

1
1.5

2 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(a) minSeason=12,
minDensity=0.5%

2 4 6 8 100
0.5

1
1.5

2 ·105

Time Series (×103)

Ru
nt
im

e
(s
ec
)

(b) minSeason=16,
minDensity=0.75%

2 4 6 8 100
0.5

1
1.5

2 ·105

Time Series (×103)
Ru

nt
im

e
(s
ec
)

(c) minSeason=20,
minDensity=1.0%

A-STPM E-STPM APS-growth

Fig. C.14: Scalability: Varying #TimeSeries on INF (synthetic)
E-STPM with transitivity-based pruning (Lemmas 3, 4), and (4) All: E-STPM
applied both pruning techniques.

Figs. C.15, C.16 show the results. We see that (All)-E-STPM has the best
performance of all versions, with a speedup over (NoPrune)-E-STPM ranging
from 3 up to 6, depending on the exact configuration. Thus, the proposed
prunings improve E-STPM performance significantly. Specifically, (Trans)-E-
STPM yields larger speedup than (Apriori)-E-STPM, with average speedups
between 2 to 5 for (Trans)-E-STPM, and between 1.5 to 4 for (Apriori)-E-STPM,
but applying both yields the best speedup.

Evaluation of A-STPM

We now evaluate the accuracy of A-STPM by comparing the patterns extracted
by A-STPM and E-STPM. Table C.11 shows the accuracies of A-STPM for
different minSeason and minDensity on the real-world datasets. It is seen that,
A-STPM obtains high accuracy (≥ 81%) when minSeason and minDensity are
low, e.g., minSeason � 8 and minDensity � 0.5%, and very high accuracy
(≥ 95%) when minSeason and minDensity are high, e.g., minSeason � 16 and
minDensity � 0.75%.

Similarly, Table C.12 shows the accuracies of A-STPM on the synthetic
datasets: very high accuracy (≥ 96%) when minSeason and minDensity are

183

Paper C.

4 8 12 16 200
1.5

3
4.5

6
7.5 ·103

minSeason

Ru
nt
im

e
(s
ec
)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50
1
2
3
4
5 ·103

minDensity (%)

Ru
nt
im

e
(s
ec
)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
1.5

3
4.5

6 ·103

maxPeriod (%)

Ru
nt
im

e
(s
ec
)

(c) Varying maxPeriod
NoPrune Apriori Trans All

Fig. C.15: Pruning Techniques of E-STPM on RE (real-world)

4 8 12 16 200
0.5

1
1.5

2
2.5

3
3.5 ·103

minSeason

Ru
nt
im

e
(s
ec
)

(a) Varying minSeason

0.5 0.75 1 1.25 1.50
0.5

1
1.5

2
2.5 ·103

minDensity (%)

Ru
nt
im

e
(s
ec
)

(b) Varying minDensity

0.2 0.4 0.6 0.8 10
0.5

1
1.5

2
2.5 ·103

maxPeriod (%)

Ru
nt
im

e
(s
ec
)

(c) Varying maxPeriod
NoPrune Apriori Trans All

Fig. C.16: Pruning Techniques of E-STPM on INF (real-world)

Table C.11: A-STPM Accuracy

minSeason
minDensity (%)

RE (real) INF (real)
0.5 0.75 1 0.5 0.75 1

8 81 82 86 81 83 87
12 84 86 92 88 90 93
16 94 95 100 95 96 100
20 97 100 100 100 100 100

Table C.12: The Accuracy of A-STPM on Syn. Data

Attr.
RE INF

Accuracy (%) Accuracy (%)
12-0.5% 16-0.75% 20-1.0% 12-0.5% 16-0.75% 20-1.0%

2000 85 96 100 89 96 100
4000 86 96 100 90 98 100
6000 86 96 100 91 98 100
8000 88 97 100 93 98 100
10000 89 98 100 93 98 100

high, e.g., minSeason � 16 and minDensity � 0.75%.

184

C.7. Conclusion and Future Work

C.7 Conclusion and Future Work
This paper presents our efficient Frequent Seasonal Temporal Pattern Mining
from Time Series (FreqSTPfTS) approach that offers: (1) the first solution for
Seasonal Temporal Pattern Mining (STPM), (2) the exact Seasonal Temporal
Pattern Mining (E-STPM) algorithm which employs efficient pruning tech-
niques and data structures, and (3) the approximate A-STPM which prunes
unpromising time series using mutual information, making STPM scale on
big datasets. Our comprehensive experimental evaluation on real-world and
synthetic datasets shows that A-STPM and E-STPM outperform the baseline,
consuming less memory and scaling well. The approximate A-STPM delivers
up to an order of magnitude speedup over the baseline. In future work, STPM
will be extended to do event-level pruning.

References
[1] H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders, “Mining compressing

sequential patterns,” Statistical Analysis and Data Mining: The ASA Data
Science Journal, vol. 7, no. 1, pp. 34–52, 2014.

[2] J.-W. Huang, C.-Y. Tseng, J.-C. Ou, and M.-S. Chen, “A general model for
sequential pattern mining with a progressive database,” TKDE, vol. 20,
no. 9, pp. 1153–1167, 2008.

[3] V. L. Ho, N. Ho, and T. B. Pedersen, “Efficient temporal pattern mining in
big time series using mutual information,” in PVLDB, vol. 15, no. 3, 2021.

[4] Z. Lee, T. Lindgren, and P. Papapetrou, “Z-miner: an efficient method
for mining frequent arrangements of event intervals,” in Proceedings of the
26th ACM SIGKDD, 2020, pp. 524–534.

[5] K. city infectious disease surveillance system. (2021) Kidss. [Online].
Available: https://kidss.city.kawasaki.jp/

[6] O. Weather. (2021) Open weather. [Online]. Available: https:
//openweathermap.org/

[7] R. U. Kiran, H. Shang, M. Toyoda, and M. Kitsuregawa, “Discovering
recurring patterns in time series,” in EDBT, 2015, pp. 97–108.

[8] R. U. Kiran, C. Saideep, K. Zettsu, M. Toyoda, M. Kitsuregawa, and P. K.
Reddy, “Discovering partial periodic spatial patterns in spatiotemporal
databases,” in Big Data. IEEE, 2019, pp. 233–238.

[9] J. Han, W. Gong, and Y. Yin, “Mining segment-wise periodic patterns in
time-related databases.” in KDD, vol. 98, 1998, pp. 214–218.

185

https://kidss.city.kawasaki.jp/
https://openweathermap.org/
https://openweathermap.org/

References

[10] J. Han, G. Dong, and Y. Yin, “Efficient mining of partial periodic patterns
in time series database,” in ICDE. IEEE, 1999, pp. 106–115.

[11] J. Assfalg, T. Bernecker, H.-P. Kriegel, P. Kröger, and M. Renz, “Periodic
pattern analysis in time series databases,” in DASFAA. Springer, 2009,
pp. 354–368.

[12] M. Zhang, P. Wang, and W. Wang, “Efficient consensus motif discovery
of all lengths in multiple time series,” in DASFAA. Springer, 2022, pp.
540–555.

[13] H. Liu, F. Han, H. Zhou, X. Yan, and K. S. Kosik, “Fast motif discovery
in short sequences,” in 2016 IEEE 32nd International Conference on Data
Engineering (ICDE). IEEE, 2016, pp. 1158–1169.

[14] Y. Mohammad and T. Nishida, “Approximately recurringmotif discovery
using shift density estimation,” in International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems. Springer,
2013, pp. 141–150.

[15] L. Kegel, C. Hartmann, M. Thiele, and W. Lehner, “Season-and trend-
aware symbolic approximation for accurate and efficient time series
matching,” Datenbank-Spektrum, vol. 21, no. 3, pp. 225–236, 2021.

[16] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, “Discover-
ing periodic-frequent patterns in transactional databases,” in PAKDD.
Springer, 2009, pp. 242–253.

[17] R. Uday Kiran and P. Krishna Reddy, “Towards efficient mining of
periodic-frequent patterns in transactional databases,” in International
Conference on Database and Expert Systems Applications. Springer, 2010,
pp. 194–208.

[18] K. Amphawan, P. Lenca, and A. Surarerks, “Mining top-k periodic-
frequent pattern from transactional databases without support thresh-
old,” in International conference on advances in information technology.
Springer, 2009, pp. 18–29.

[19] T. T. N. Ho and B. Pernici, “A data-value-driven adaptation framework
for energy efficiency for data intensive applications in clouds,” in 2015
IEEE conference on technologies for sustainability (SusTech). IEEE, 2015, pp.
47–52.

[20] N. Ho, H. Vo, M. Vu, and T. B. Pedersen, “Amic: An adaptive information
theoretic method to identify multi-scale temporal correlations in big time
series data,” IEEE Transactions on Big Data, vol. 7, no. 1, pp. 128–146, 2019.

186

References

[21] N. Ho, H. Vo, and M. Vu, “An adaptive information-theoretic approach
for identifying temporal correlations in big data sets,” in 2016 IEEE Inter-
national Conference on Big Data. IEEE, 2016, pp. 666–675.

[22] T. T. N. Ho, M. Gribaudo, and B. Pernici, “Characterizing energy per job
in cloud applications,” Electronics, vol. 5, no. 4, p. 90, 2016.

[23] M. Gribaudo, T. T. N. Ho, B. Pernici, and G. Serazzi, “Analysis of the influ-
ence of application deployment on energy consumption,” in International
Workshop on Energy Efficient Data Centers. Springer, 2014, pp. 87–101.

[24] N. Ho, T. B. Pedersen, M. Vu, C. A. Biscio et al., “Efficient bottom-up
discovery of multi-scale time series correlations using mutual informa-
tion,” in 2019 IEEE35th International Conference onData Engineering (ICDE).
IEEE, 2019, pp. 1734–1737.

[25] N. Ho, M. Gribaudo, and B. Pernici, “Improving energy efficiency for
transactional workloads in cloud environments,” in Proceedings of the
Eighth International Conference on Future Energy Systems, 2017, pp. 290–295.

[26] N. Ho, T. B. Pedersen, M. Vu et al., “Efficient and distributed temporal
pattern mining,” in 2021 IEEE International Conference on Big Data (Big
Data). IEEE, 2021, pp. 335–343.

[27] N. Ho, V. L. Ho, T. B. Pedersen, M. Vu, and C. A. Biscio, “A unified ap-
proach for multi-scale synchronous correlation search in big time series–
full version,” arXiv preprint arXiv:2204.09131, 2022.

[28] N. Ho, H. Vo, M. Vu, and T. B. Pedersen, “Amic: An adaptive information
theoretic method to identify multi-scale temporal correlations in big time
series data – accepted version,” arXiv preprint arXiv:1906.09995, 2019.

[29] N. T. T. Ho, T. B. Pedersen, L. Van Ho, and M. Vu, “Efficient search for
multi-scale time delay correlations in big time series,” in 23rd International
Conference on Extending Database Technology, EDBT 2020. OpenProceed-
ings. org, 2020, pp. 37–48.

[30] P. Fournier-Viger, Y. Wang, P. Yang, J. C.-W. Lin, U. Yun, and R. U. Kiran,
“Tspin: Mining top-k stable periodic patterns,”Applied Intelligence, vol. 52,
no. 6, pp. 6917–6938, 2022.

[31] R. U. Kiran, Y.Watanobe, B. Chaudhury, K. Zettsu,M. Toyoda, andM.Kit-
suregawa, “Discoveringmaximal periodic-frequent patterns in very large
temporal databases,” in 2020 7th International Conference on Data Science
and Advanced Analytics. IEEE, 2020, pp. 11–20.

187

References

[32] M. F. Javed, W. Nawaz, and K. U. Khan, “Hova-fppm: flexible periodic
pattern mining in time series databases using hashed occurrence vectors
and apriori approach,” Scientific Programming, vol. 2021, 2021.

[33] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy, “Efficient discovery of
periodic-frequent patterns in very large databases,” Journal of Systems and
Software, vol. 112, pp. 110–121, 2016.

[34] R. U. Kiran, A. Anirudh, C. Saideep, M. Toyoda, P. K. Reddy, and M. Kit-
suregawa, “Finding periodic-frequent patterns in temporal databases us-
ing periodic summaries,”Data Science and Pattern Recognition, vol. 3, no. 2,
pp. 24–46, 2019.

[35] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commu-
nications of the ACM, vol. 26, 1983.

[36] V. L. Ho, N. Ho, and T. B. Pedersen, “Mining seasonal temporal patterns
in time series,” arXiv preprint arXiv:2206.14604, 2022. [Online]. Available:
https://arxiv.org/abs/2206.14604

[37] P. Papapetrou, G.Kollios, S. Sclaroff, andD.Gunopulos, “Mining frequent
arrangements of temporal intervals,” KAIS, vol. 21, 2009.

[38] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley
& Sons, 2012.

[39] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the lambertw function,”Advances in Computational mathematics, vol. 5,
no. 1, pp. 329–359, 1996.

[40] E.-E. T. Platform. (2019) Entso-e. [Online]. Available: https:
//transparency.entsoe.eu/dashboard/show

[41] S. Moosavi, M. H. Samavatian, A. Nandi, S. Parthasarathy, and R. Ram-
nath, “Short and long-term pattern discovery over large-scale geo-
spatiotemporal data,” in ACM SIGKDD, 2019, pp. 2905–2913.

188

https://arxiv.org/abs/2206.14604
https://transparency.entsoe.eu/dashboard/show
https://transparency.entsoe.eu/dashboard/show

Va
n

 Lo
n

g
 H

o
Effic

ien
tly M

in
in

g
 Tem

po
r

a
l Patter

n
s in

 Time
 Ser

ies U
sin

g
 In

fo
r

m
atio

n
 The

o
r

y

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-656-0

	Omslag_VHL.pdf
	Kolofon_VHL.pdf
	PHD_Thesis_VanLongHo (1).pdf
	Front page
	Abstract
	Resumé
	Acknowledgements
	Contents
	Thesis Details
	I Thesis Summary
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Temporal Pattern Mining
	1.1.2 Information Theory

	1.2 Objectives of the Thesis
	1.3 Thesis Structure

	2 Frequent Temporal Pattern Mining
	2.1 Problem Motivation and Statement
	2.2 Preliminaries
	2.3 Frequent Temporal Pattern Mining from Time Series (FTPMfTS) process
	2.3.1 Data Transformation
	2.3.2 Frequent Temporal Pattern Mining

	2.4 Frequent Temporal Pattern Mining (Exact FTPM)
	2.4.1 Hierarchical lookup hash structure for FTPM
	2.4.2 Mining Frequent Single Events
	2.4.3 Mining Frequent 2-event Patterns
	2.4.4 Mining Frequent k-event Patterns

	2.5 Approximate FTPM
	2.5.1 Mutual Information of Symbolic Time Series
	2.5.2 Relationship between the Support of an Event Pair in DSYB and DSEQ
	2.5.3 Lower Bound of the Support
	2.5.4 Lower bound of the Confidence
	2.5.5 Approximate FTPM

	2.6 Experimental Evaluation
	2.6.1 Experimental Design
	2.6.2 Experimental Results

	3 Rare Temporal Pattern Mining
	3.1 Problem Motivation and Statement
	3.2 Rare Temporal Pattern Mining Problem
	3.3 Rare Temporal Pattern Mining (Exact RTPM)
	3.3.1 Mining Single Events
	3.3.2 Mining Rare 2-event Patterns
	3.3.3 Mining Rare k-event Patterns

	3.4 Approximate RTPM
	3.4.1 Upper Bound of the Support
	3.4.2 Approximate RTPM

	3.5 Generalized Temporal Pattern Mining (GTPM)
	3.5.1 Exact Generalized Temporal Pattern Mining (Exact GTPM)
	3.5.2 Approximate Generalized Temporal Pattern Mining (Approximate GTPM)

	3.6 Experimental Evaluation
	3.6.1 Experimental Design
	3.6.2 Experimental Results

	4 Seasonal Temporal Pattern Mining
	4.1 Problem Motivation and Statement
	4.2 Preliminaries
	4.3 Seasonal Temporal Pattern Mining (Exact STPM)
	4.3.1 Candidate Seasonal Pattern
	4.3.2 Hierarchical lookup hash structure for STPM
	4.3.3 Mining Seasonal Single Events
	4.3.4 Mining Seasonal k-event Patterns

	4.4 Approximate STPM
	4.4.1 Correlated symbolic time series
	4.4.2 Lower bound of the maximum seasonal occurrence
	4.4.3 Using the Bound to Approximate STPM

	4.5 Experimental Evaluation
	4.5.1 Experimental Design
	4.5.2 Experimental Results

	5 Conclusion and Future Work
	5.1 Contributions
	5.2 Future Work

	Bibliography
	References

	II Papers
	A Efficient Temporal Pattern Mining in Big Time Series Using Mutual Information
	A.1 Introduction
	A.2 Related work
	A.3 Preliminaries
	A.3.1 Temporal Event of Time Series
	A.3.2 Relations between Temporal Events
	A.3.3 Temporal Pattern
	A.3.4 Frequent Temporal Pattern

	A.4 Frequent Temporal Pattern Mining
	A.4.1 Data Transformation
	A.4.2 Frequent Temporal Patterns Mining
	A.4.3 Mining Frequent Single Events
	A.4.4 Mining Frequent 2-event Patterns
	A.4.5 Mining Frequent k-event Patterns

	A.5 Approximate HTPGM
	A.5.1 Correlated Symbolic Time Series
	A.5.2 Lower Bound of the Confidence
	A.5.3 Using the Bound to Approximate HTPGM

	A.6 Experimental Evaluation
	A.6.1 Experimental Setup
	A.6.2 Qualitative Evaluation
	A.6.3 Quantitative Evaluation

	A.7 Conclusion and Future Work
	References

	B Efficient Generalized Temporal Pattern Mining in Big Time Series Using Mutual Information
	B.1 Introduction
	B.2 Related work
	B.3 Preliminaries
	B.3.1 Temporal Event of Time Series
	B.3.2 Relations between Temporal Events
	B.3.3 Temporal Pattern
	B.3.4 Frequency and Likelihood Measures

	B.4 Generalized Temporal Pattern Mining
	B.4.1 Data Transformation
	B.4.2 Generalized Temporal Pattern Mining
	B.4.3 Mining Single Events
	B.4.4 Mining 2-event Patterns
	B.4.5 Mining k-event Patterns

	B.5 Approximate GTPM
	B.5.1 Mutual Information of Symbolic Time Series
	B.5.2 Lower Bound of the Support of an Event Pair
	B.5.3 Lower bound of the Confidence of an Event Pair
	B.5.4 Upper Bound of the Support of an Event Pair
	B.5.5 Using the Bounds for Approximate GTPM

	B.6 Experimental Evaluation
	B.6.1 Experimental Setup
	B.6.2 Qualitative Evaluation
	B.6.3 Quantitative Evaluation of RTPM
	B.6.4 Quantitative Evaluation of FTPM

	B.7 Conclusion
	References

	C Mining Seasonal Temporal Patterns in Time Series
	C.1 Introduction
	C.2 Related work
	C.3 Preliminaries
	C.3.1 Time Granularity
	C.3.2 Symbolic Representation of Time Series
	C.3.3 Temporal Event and Temporal Relation
	C.3.4 Temporal Sequence Database
	C.3.5 Frequent Seasonal Temporal Pattern

	C.4 Frequent Seasonal Temporal Pattern Mining
	C.4.1 Overview of FreqSTPfTS Mining Process
	C.4.2 Candidate Seasonal Pattern
	C.4.3 Mining Seasonal Single Events
	C.4.4 Mining Seasonal k-event Patterns

	C.5 Approximate STPM
	C.5.1 Correlated Symbolic Time Series
	C.5.2 Lower Bound of the maxSeason
	C.5.3 Using the Bound to Approximate STPM

	C.6 Experimental Evaluation
	C.6.1 Experimental Setup
	C.6.2 Qualitative Evaluation
	C.6.3 Quantitative Evaluation

	C.7 Conclusion and Future Work
	References

	Omslag_VHL
	Blank Page
	Blank Page
	Blank Page

