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Abstract. High utility itemset mining (HUIM) plays an important role in the data 
mining community and in a wide range of applications. For example, in retail 
business it is used for finding sets of sold products that give high profit, low cost, 
etc. These itemsets can help improve marketing strategies, make promotions/ 
advertisements, etc. However, since HUIM only considers utility values of 
items/itemsets, it may not be sufficient to observe product-buying behavior of 
customers such as information related to “regular purchases of sets of products 
having a high profit margin”. To address this issue, the occurrence behavior of 
itemsets (in the term of regularity) simultaneously with their utility values was 
investigated. Then, the problem of mining high utility itemsets with regular 
occurrence (MHUIR) to find sets of co-occurrence items with high utility values 
and regular occurrence in a database was considered. An efficient single-pass 
algorithm, called MHUIRA, was introduced. A new modified utility-list 
structure, called NUL, was designed to efficiently maintain utility values and 
occurrence information and to increase the efficiency of computing the utility of 
itemsets. Experimental studies on real and synthetic datasets and complexity 
analyses are provided to show the efficiency of MHUIRA combined with NUL 
in terms of time and space usage for mining interesting itemsets based on 
regularity and utility constraints. 

Keywords: association rule mining; data mining; high utility itemsets; occurrence 
behavior; regularity constraint; utility-list structure. 

1 Introduction 

Association rule mining (ARM) [1,2] is a fundamental task of data mining and 
data analysis. It aims to discover a relationship between objects or events, which 
is expressed in the form of a →  rule. For example, from purchasing data of 
a retail business, ARM may discover the rule “ → 	 : 30%, : 60%	 ” 
which expresses buying behavior of customers, i.e. 30% of customers bought 

 simultaneously with  and 60% of customers who bought  
also bought  at the same time. ARM can be applied in several areas such 
as retail marketing, web clickstream analysis and DNA analysis. ARM consists 
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of two main steps: (i) frequent itemset mining – finding sets of items with the 
frequency of occurrence satisfying a user-specified frequency (support) 
threshold; and (ii) rule generation – generating interesting rules from frequent 
itemsets of Step (i) that meet a user-given confidence threshold.  

From the two steps mentioned above, frequent itemset mining is much more 
attractive than rule generation due to the explosive growth of the search space. 
Therefore, researchers have mostly focused on improving performance of 
frequent itemset mining algorithms. In addition, frequent itemset mining only 
considers the frequency of occurrence as a criterion to measure interestingness 
of itemsets, which may not be sufficient to track interesting occurrence behavior 
of itemsets. Thus, Tanbeer, et al. [3] proposed to add a regularity constraint to 
discover sets of items that frequently and regularly occur in a collection of data. 
This can help to find out about the regularity of product purchase, which can in 
turn help to manage inventory, design a marketing strategy, etc. However, the 
consideration of only frequency and/or regularity of occurrence cannot reflect 
the importance and/or utilit of items.  

Chan, et al. [4] proposed to consider the importance of items, such as profit, 
cost and other user-defined factors as well as the quantity of occurrence (e.g. 
units of a product bought by each customer). Based on these two components, 
an itemset is called a high utility itemset (HUI) if its utility (i.e. unit profit  
quantity of occurrence) is no less than a user-assigned minimum utility 
threshold ( ); otherwise, it is called a low utility itemset (LUI). Mining HUI 
has a wide range of applications, such as crossmarketing in retail, web 
clickstream analysis, biomedical applications and mobile commerce. 

Although mining HUI can discover interesting sets of items with high utility 
values, it may not be sufficient to analyze interesting buying behaviors of 
customers. For example, as shown in Table 1 (containing per-unit-profits of 
items) and Table 2 (a transactional database with quantity of occurrence), it can 
be seen that item ‘ ’ occurs in transactions 	and  with 20 and 1 pieces 
bought with a profit of 15$ per unit sold. Thus, ‘ ’ tends to be a high utility 
itemset due to its utility of 315$ (i.e.	 20 15 1 15 ). However, ‘ ’ was 
bought only twice and one purchase was a large quantity (compared with the 
other one). On the other hand, we can observe that item ‘ ’ has the highest 
profit per unit (i.e. 30$), which is really high in comparison with the other 
items. Then, item ‘ ’ and its supersets might be high utility itemsets even if ‘ ’ 
has only a small quantity and frequency of occurrence. Moreover, there are 
cases where the utility value alone cannot indicate interesting itemsets 
(patterns). Hence, it is better to consider the utility of itemsets along with their 
occurrence behavior. 
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Table 1 External utility of items (items’ unit utility). 

a b c d e f g h 
3 2 1 30 5 3 4 15 

Table 2 Transactional database with internal utilities. 

tid Items (internal utility) 
1 a(3), c(8), d(2), e(1) 
2 b(5), f(3), g(5), h(20) 
3 a(2), c(4), d(1) 
4 c(5), e(1), f(1) 
5 a(2), b(3), c(1), f(4)
6 d(1), g(5), h(1) 
7 a(5), b(1), d(1), e(2) 
8 a(3), b(1), c(4), d(1), e(1)

To address the abovementioned issues, we propose to consider a regularity 
constraint together with high utility itemset mining (also called mining high 
utility itemsets with regular occurrence, MHUIR) as in [5]. These itemsets can 
produce information related to “regular purchases of sets of products with a 
high profit margin” and can help business know customers’ demand, manage 
inventory, develop new promotions/marketing strategies, and so on. To mine 
high utility itemsets with regular occurrence (HUIRs), an efficient single-pass 
algorithm named MHUIRA is proposed. MHUIRA avoids repeatedly scanning 
the database by employing a simple list to maintain the utility information of 
each transaction. Furthermore, the concepts of transaction-weighted utility [6], 
tight over-estimated utility [7] are applied early – in order to remove low utility 
itemsets out of consideration – and a utility list, called UL, is applied for 
maintaining utility and occurrence information of each itemset (as in [5]). 
Moreover, a new modified utility list structure (also called NUL for short) was 
designed in this extended version to increase the efficiency of the computing of 
the itemsets. Experimental studies and a complexity analysis are provided to 
show the efficiency and effectiveness of MHUIRA with UL and NUL in terms of 
runtime, memory usage and number of discovered itemsets. 

The rest of this paper is organized as follows. Section 2 briefly discusses related 
works. Section 3 describes the basic notation for discovering HUIRs. The 
concept of utility list, new modified utility list and the MHUIRA algorithm are 
detailed in Section 4. Experimental results and the complexity analysis are 
discussed in Section 5. Section 6 gives the conclusion of this paper. 
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2 Related Works 

In this section, high utility itemset mining (HUIM) and frequent-regular itemset 
mining (FRIM) are reviewed briefly. 

2.1 High Utility Itemset Mining (HUIM) 

Since Chan [4] first proposed high utility itemset mining, many studies have 
been conducted to improve performance of the mining process. Liu [6] 
proposed a two-phase algorithm with an overestimated utility strategy named 
transaction-weighted utility (TWU) used for pruning the search space. A TWU 
of an itemset is an upper bound of its utility, which keeps the downward closure 
property [2]. Based on TWU, Lin [8] proposed the high utility pattern tree 
(HUP-tree) algorithm for mining high utility itemsets without candidate 
generation. In [9], a pattern growth approach named UP-growth was proposed 
for mining high utility itemsets within two scans of a database. Up-growth 
applies four effective strategies, i.e. DGU, DGN, DLU and DLN to prune 
candidates during the mining process. Liu [7] proposed the HUI-miner 
algorithm with a tight overestimated utility strategy, which can estimate utility 
values close to the actual utility of itemsets. Tight overestimated utility is used 
for reducing the search space.  

High utility itemset mining has also been extended to several other aspects. Wu 
[10] proposed three efficient algorithms to mine closed+ high utility itemsets, a 
concise representation of high utility itemsets. HUIM on incremental and 
modification databases and on data streams is proposed in [11-14]. Negative 
unit profits of items are addressed in [15,16]. To avoid difficulties in setting a 
proper utility threshold, in [17-19] attempts were done to mine a set of  
itemsets with the highest utility. Podpecan [20] and Sugunadevi [21] proposed 
to discover high utility-frequent itemsets based on consideration of utility and 
frequency of occurrence. High utility-frequent itemsets can express frequently 
sold products with high utility. However, this approach does not observe 
occurrence behavior in other aspects that may give significant and interesting 
information for further decision-making. 

2.2 Frequent-Regular Itemset Mining (FRIM) 

Tanbeer [3] has proposed the problem of frequent-regular itemset mining 
(FRIM) in order to observe occurrence behavior of itemsets in terms of 
frequency and regularity of occurrence. A set of itemsets with high frequency 
and regular occurrence that meets user-given support and regular thresholds is 
generated. FRIM can be applied in a wide range of applications, such as genetic 
and medical data analysis [22-24], manufacturing [25], behavior of moving 
objects analysis [26] and game player behavior [27]. In addition, many studies 
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have proposed to extend the framework of FRIM in several ways. We here give 
a brief review of the main related works. 

Attempts to mine frequent-regular itemsets from incremental database/data 
streams based on the use of a tree-based structure, sliding window, and/or 
vertical data format are reported in [28,29]. To avoid difficulties in setting the 
support threshold, Amphawan [30] introduced the task of top-  frequent-regular 
itemset mining. A partition and estimation technique was proposed to increase 
the efficiency of this task [31]. Furthermore, a concise representation of top-  
frequent-regular itemsets called top-  frequent-regular closed itemsets [32] has 
recently been proposed to avoid redundancy of discovered top-  frequent-
regular itemsets. Focusing on rare itemsets, Kiran [33] and Surana [34] 
proposed to dynamically specify a maximum periodic threshold for each item 
and to use multiple support and regularity thresholds for mining rare-regular 
itemsets. Lastly, frequent-regular itemset mining was applied in elderly habit 
monitoring [35]. This can help extract regular activities that elders usually 
engage in when staying at home. 

The previous approaches mentioned above usually consider only utility, 
frequency or regularity, which can provide only one aspect of information. 
Thus, in this paper, we introduce the discovery of a new kind of itemsets called 
high utility itemset with regular occurrence (HUIR). This task considers the 
utility value simultaneously with occurrence behavior (regular occurrence), 
which can increase the ability to provide a wider range of knowledge. Table 3 
illustrates the characteristics of the itemsets mentioned above. There are six 
types of itemsets based on frequency, regularity and utility measures. 

Table 3 Types of itemsets based on frequency, regularity and utility measures. 

 Frequency of 
occurrence 

Regularity of 
occurrence 

Utility of 
itemsets 

Frequent itemsets  - - 
Frequent-regular 
itemsets 

  - 

High utility itemsets - - 
Top-k high utility 
itemsets 

- -  

High utility-frequent 
itesmets 

 -  

High utility itemsets 
with regular 
occurrence1 

-   

                                                 
1 High utility itemsets with regular occurrence (HUIR) is our proposed method. 
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3 Problem Statement 

In this section we describe the basic notations used for high utility itemset and 
frequent-regular itemset mining, including the concepts of the utility and 
regularity values of an itemset. Then, the problem of mining high utility 
itemsets with regular occurrence is introduced. 

Let , , … ,  be a set of items. Each item ∈  has it own external 
utility, denoted as . The external utility of item  can be profit, cost, and 
other user-defined factors. A set 	 ⊆  is called -itemset if  contains  items. 
A transactional database , , … ,  contains  transactions in which 
each transaction ∈  is a 2-tuple containing: (i) a unique transaction 
identifier p (usually called TID for short); and (ii) an itemset 	 ⊆  where each 
∈  associates with internal utility, i.e. quantity of occurrence of  in 

transaction , denoted as , . If 	 ⊆ , it can be said that  occurs in 
transaction  or transaction  contains , denoted as . Since  can occur 
several times in , then the set of ordered TIDs of transactions containing  can 
be expressed as , … ,  where  and 1 . 

3.1 Utility of Items/Itemsets 

Definition 1. The utility value of item  in transaction  is the profit, cost, or 

other user-defined factors of  in transaction , defined as ,
	 , . 

Definition 2. The utility value of itemset  in transaction  is the summation of 
utilities of all items ∈ 	that occur in transaction , defined as ,
	∑ ,∈ , ∈	 . 

Definition 3. The utility value of itemset  in database  is the summation of 
utilities of 	that occur in transactions of , defined as 

	 ∑ ,∈	 , ∈ 	 . 

Example 1. See Tables 1 and 2 for the external utility value of items and a 
transactional database containing 8 transactions with internal utilities. The 
utility of item ‘ ’ can be calculated as 	 , , ,

, , 3 3 2 3 2 3 5 3 3 3 45.	 

Based on the three definitions above, an itemset  is a high utility itemset if its 
utility  is not smaller than a user-specified utility threshold ( ). The 
problem of high utility itemset mining is the task of finding itemsets whose 
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utility is not smaller than . The main challenge of this task is the large size of 
the search space due to the downward closure property [2], which cannot be 
held, i.e. a superset of a low utility itemset can be a high-utility one. Therefore, 
the concept of Transaction-Weighted Utility (TWU) [9], an over-estimated 
utility of an itemset that meets the downward closure property, is applied, which 
is defined as follows. 

Definition 4. The utility of transaction  is the summation of utility values of 
all items  that occur in transaction , defined as 	 ∑ ,∈	 . 

Definition 5. The transaction-weighted utility of itemset  is the summation of 
the utility of transactions that contain , defined as 

	 ∑ ∈	 , ∈ 	 . 

Example 2. From Table 1 and 2, the transaction-weighted utility of item ‘a’ can 
be computed as 	 	 	 	 	 82
40 29 57 50 258. 

The value of  can be referred to as the over-estimated or the 
maximum/upper-bound utility value of itemset  and all supersets of . Then, it 
can be said that an itemset  and all supersets of  are low utility itemsets if 

. By this conclusion, the downward closure property can be held 
and we can apply the concept of  to eliminate low utility itemsets. 
However,  is a loose-over-estimated utility value. Therefore, Liu [9] 
proposed the new concept of tight over-estimated utility, which can estimate the 
utility of itemsets smaller than . The following definitions are introduced 
for this purpose. 

Definition 6. Let ≻ be the order of items in set of items . The remaining utility 
of  in the transaction  ordered by ≻ is the summation of the utility values of 
all items in  that were ordered after , defined as 

, 	 ∑ ,	∈	 , 	≻	 	 . 

Definition 7. The remaining utility of  in a database  is the summation of all 
remaining utility values of  in all transactions that contain , defined as 

	 ∑ ,	∈	 , ∈ 		 . 

Definition 8. The tight over-estimated utility of  in database  is the 
summation between the utility and the remaining utility of  in database , 
defined as 	 . 
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Example 3. For the external utility values and the transactional database in 
Tables 1 and 2, the tight over-estimated utility of itemset ‘ ’ can be 

	 189 , 	 ,
	 , 	 , 189 5 16 10	 	5 225. 

Based on the notion of tight over-estimated utility it can be said that the 
merging of itemset  with any item  ordered after  is a low utility itemset if 
if . Thus, we can apply the concept of tight over-estimated utility 
as a criterion to stop producing larger-size itemsets from itemset , which can 
help cut down the search space. 

3.2 Regularity of Occurrence 

The concept of regularity is introduced to observe the occurrence behavior of 
itemsets in terms of regularity of occurrence. The regularity of an itemset is 
related to the gap of consecutive transactions in which the itemset does not 
occur in the database, which can be described as follows. 

Definition 9. The regularity of  before its first occurrence in transaction  is 
the gap of absence of  between the first transaction  in the database and the 
first occurrence of  in transaction , defined as 	 , . 

Definition 10. The regularity of  between two consecutive occurrences of  in 
transactions  and  is the gap of occurrence of X between  and , defined 
as , , 	 . 

Definition 11. The regularity of  after its last occurrence in transaction  is 
the gap of absence from the last occurrence of  in  to the last transaction  
of database, defined as , . 

Definition 12. The regularity value of  in a database  is the maximal gap of 
absence based on the occurrence of  in database , defined as 

, , , , , , , , … , , , , , . 

Example 4. For the transactional database in Table 2, the regularity of item ‘ ’ 
can be calculated as , , , , , , , , , , ,

, , , , 1, 2, 2, 2, 1, 1 2. 

With the regularity value of an itemset  (i.e. ), we can say that  occurs at 
least once in every  consecutive transactions or  never disappears from 
the database more than  consecutive transactions. 
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Problem Statement. Given a database , a utility threshold , and a regularity 
threshold , the task of mining high utility itemsets with regular occurrence is 
to find the complete set of itemsets: (i) whose utility values are not smaller than 

 (i.e. itemsets giving profit ); and (ii) whose regularity values are not 
greater than  (i.e. itemsets must occur at least once in  consecutive 
transactions). 

4 Proposed Method: New modified Utility List (NUL) and 
MHUIRA 

In this section, we first describe the utility-list structure concept [7] used for 
maintaining utility and occurrence information of each item/itemset, after which 
the new modified utility list, called NUL, is introduced. Details of MHUIRA 
based on the use of NUL are described. Lastly, an example of MHUIRA with 
NUL is given. 

4.1 Utility List and New Utility List Structure 

As proposed by Liu [7], a utility list of an itemset  is an ordered set of 3-tuple 
entries used for maintaining utility and occurrence information of , defined as  

1, ,
1 1

, ,
1 1

, 2, ,
2 2

, ,
2 2

, 

	… , , , , , .  

where each entry  of  contains three pieces of information, i.e. (i)  – a 
TID of transaction  that contains ; (ii) , – the utility value of  

in transaction ; and (iii) ,  – the remaining utility of  in 

transaction , respectively. 

Example 5. Let’s consider item ‘ ’ with external utility 	3 (Table 1). 
Its occurrence in the database from Table 2 is 1,3,5,7,8 . If the order 
of items is ≺ ≺ ≺ ⋯ ≺ , then the utility list of ‘ ’ can be expressed as 

1,9,73 , 3,6,34 , 5,6,19 , 7,15,42 , 8,9,41 . Each 
entry of  – for example the first entry of  is 1,9,73  – lets us know 
that: (i) ‘ ’ occurs in transaction ; (ii) the utility of ‘ ’ in  is 9; and (iii) the 
remaining utility of ‘ ’ in  (i.e. the summation of utility values of all items in 

 ordered after ‘ ’ is 73, respectively. 

From the above, the utility list can maintain occurrence information 
simultaneously with utility and remaining utility, however, the calculation of 
utility ‘ ’ from the intersection of utility lists  and  of itemsets  and 
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 cannot produce a correct utility. For example, the utility value of ,  in 
 is calculated from summation of ,  in  and ,  in  in 

which: (i) ,  is the summation of ,  and , ; and (ii) 
,  is the summation of 	 ,  and 	 , . Then, in the case 

of itemsets  and  having the same prefix (i.e. ), the 

intersection produces , , ,

, 	 , 2	 	 , , 	 , , 

which is not correct. To alleviate this difficulty, Liu [7] proposed to repeatedly 
decrease each utility value ,  in  by ,  of . 
However, this consumes computational time. 

From the above issue, we focus here on avoiding the repeated utility calculation 
process. Thus, the utility list is modified by adding a new piece of information, 
utility of prefix items, into each entry of the utility list, where each entry  of 
the new modified utility list (NUL) is in the form of 

, , , 	 , 	  where 	  is the new 

additional information that expresses the utility value of prefix items. 

Example 6. With the transactional database from Tables 1 and 2, itemset ‘ ’ has 
1,9,73,0 , 3,6,34,0 , 5,6,19,0 , 7,15, 42,0 , 8,9,

41,0  and item ‘ ’ has  as 2,10,0,0 , 5,6,13, 0 , 7,2,40,0
, 8,2,39, 0 , respectively. Since both items do not have a prefix, we can 
easily compute the utility of itemset ‘ ’ from the intersection of  and 

. The itemset ‘ ’ first occurs in transaction , then the third entry 
5,6,26,0 	of  is merged with the second entry 5,6,13, 0

	of . The first entry  of  is composed of: (i) 5; (ii) 

, 	 , 	 , , 6 6 6 0; 
(iii)	 , 	 , 13; and (iv) , 	 , 6, 
respectively. Thus, the entry  of  is 5,12,13,6 . Also, this 
computation can be applied to other occurrences of itemsets ‘ ’. Then, each 
entry of  contains the correct utility of itemset ‘ ’. With the use of 

, we can avoid repeated utility calculation for each entry as in [7], which 
can also reduce computational time.  

4.2 MHUIRA Algorithm 

As mentioned above, MHUIRA not only applies the new utility list structure in 
order to efficiently maintain occurrence information and utility values but also 
employs the concept of remaining and overestimated utilities to cut down the 
search space. MHUIRA avoids repeatedly scanning the database by creating a 
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simple list named  for storing the transaction utility of transactions in the 
database (used for computing the remaining utility of all items). MHUIRA 
consists of two steps: (i) 1-HUIRs identification – the task of database scanning 
to capture occurrence information of each item into a simple 2D list named 

, where each 1-dimension, e.g. 1 , 2 , ...,  of , is used for 
maintaining 1-itemsets, 2-itemsets, …,	 -itemsets, respectively; and (ii) Mining 
HUIRs – the process of mining a complete set of HUIRs from the itemsets 
contained in . 

1-HUIR identification. As detailed in Algorithm 1,  and 1  of  are 
first created and initialized. Each transaction  is read (line 2-6) in order to: (i) 
compute transaction utility  of transaction  and then collect  from 

; (ii) collect the occurrence information and utility value of each item  
(occurring in transaction ) into its entries of 1  (i.e. adding a new entry 

	 , , , 0,0  into ); (iii) compute and update the  of all 
items that appear in ; and (iv) compute the regularity value of each item  in 

, respectively. Then, MHUIRA removes all irregular/low-utility items out of 
1  and the transaction utilities in  related to each occurrence of each 
irregular/low-utility items are updated (line 7-11). The remaining items in 1  
are then ordered by ≻. Next, the utility and remaining utility of each item  in 
1  are calculated (line 13-18). If the utility of item  is not smaller than the 
utility threshold, MHUIRA identifies item  as 1-HUIR and then collects item  
into HUIR. At the end of 1-HUIR identification, we gain 1  contained in  
in which 1  contains items that are potentially HUIRs used for generating 
longer HUIRs. 

Algorithm 1. 1-HUIR identification 

Input.  : transactional database, : a utility threshold, : a regularity threshold 
Output. : a 2D list containing items with potentially to be HUIR in 1  

1)   create  ,  and then create and initial 1  in  for all items 
2)   for each transaction  in database  
3)      compute and collect   of transaction 	in  
4)      for each item  in transaction  

5)         compute ,  and then update  of  with , , , 0,0  
6)         compute  by  and regularity  of  by  
7)   for each item  in 1  
8)      if 	  or 	  
9)         for each entry 	 , , , 	 , 	  in  

10)          decrease utility  of transaction 	in _  by ,  of  

11)       remove entry of  out of 1  
12) sort 1  based on the order of items ≻ 

13) for each item  in 1  
14)    initial value of  and  to be 0 
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15)    for each entry 	 , , , 	 , 	  in  

16)       decrease utility  of transaction 	in  by ,  

17)       set  	  to be  of  

18)       increase  by ,  and increase  by 	     

19)    if 	 	  
20)       	 ∪  

Mining HUIRs. As described in Algorithm 2, a simple list (2 , used 
for storing 2-itemsets) is first created and initialized to be empty. Then, 
each item  in 1  with 	  is considered and merged with item  
in 1 	located after item  in order to consider	itemset . Both  
and  of item  and  are then intersected in order to compute 
regularity , utility , remaining utility value , and to 
collect  of itemset . The tight over-estimated utility of  is then 
computed by utility, remaining utility and utility of prefix items (line 5). 
If regularity  is not greater than the regularity threshol, a new entry 
of itemset  with  is created and inserted into 2 .  

Algorithm 2. Mining HUIRs 

Input. : a 2D-list of itemsets, : a utility threshold, : a regularity threshold 
Output. : a complete set of HUIRs 

1)   for each item  in 1  of  where 	  
2)      create 2  in 	 	initial 2  to be empty 
3)      for each item  in 1  of  (where ≺ ) 
4)         intersect  and  of item  and  in order to calculate  , ,   
              , and to collect 	  for further computation 
5)         calculate  as 	 	 	    
6)         if 	  
7)            create an entry of itemset  in 2  with its , , ,   and          
                  
8)            if 	 	  
9)               	 ∪  
10)    if 2  contains more than one itemsets 
11)       2,  

Procedure ,  
1)   for each itemset  in  of where 	  
2)      create 1  in 	 	initial 1  to be empty 
3)      for each itemset  in  of  (where ≺ ) 
4)         intersect  and  of itemset  and  in order to calculate , ,  
              , and to collect 	  for further computation 
5)         calculate  as 	 	  
6)         if 	   
7)            create an entry of itemset  in 1  with its , , ,      
                  and  
8)            if 	 	  
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9)               	 ∪  
10)    if 1  contains more than one itemset 
11)       1,  

Itemset  is then collected in the set of HUIRs if the utility of  is not smaller 
than the utility threshold. Next, MHUIRA repeats the same process of merging 
item  with another item  in 1 . At the end of the merging of item , 2  
contains 2-itemsets having: (i) item  as a prefix of itemset and (ii) regularity 
not greater than the regularity threshold, respectively. In addition, if 2  
contains more than one itemset, then 3  is created and initialized. In a similar 
manner, each itemset  in 2  is then merged with another itemset  in 2  
in order to generate 3-itemset. This process is then continued until  is 
empty or contains only one itemset. MHUIRA repeatedly considers all items in a 
similar manner as item . At the end of the mining step, we gain a set of HUIRs 
in which the regularities and utilities meet the thresholds.  

4.3 Example of MHUIRA with NU 

Let’s consider a table of items’ external utilities and a table of a transactional 
database with internal utilities (see Tables 1 and 2). Assume that the regularity 
and utility thresholds are set to be 3 and 30. The task of mining a complete set 
of HUIRs by MHUIRA with NUL is to find itemsets having regularity not 
greater than 3 and utility not smaller than 30, respectively. As shown in Fig. 1, 
MHUIRA first creates  with 8 entries for transaction 	 	and  in 
which 1  contains 8 entries for items , , … , . Next, each transaction is 
read. For the first transaction, 3 , 8 , 2 , 1 , its transaction 
utility is computed (i.e. 3 3 8 1 2 30 1 5
82) and then added into the first entry of . In addition, entries of item , 
,	 , and  in 1  are updated. Notice that each entry in 1  contains item 

name, regularity, utility, remaining utility, and NUL, respectively. For the 
second transaction, 5 , 3 , 5 , 20 , the entry of transaction  
in  is updated with 339 and the entry of items , ,	 , and  in 1  are 
updated. For the 3rd to the 8th transaction, MHUIRA performs in the same 
manner. Then, the entries of items  and  are eliminated from 1 , since their 
regularity values are greater than 3. Lastly, the remaining utility in each 
entry of NUL, total remaining utility, and total utility of each item are 
calculated (as shown in Figure 1).  

Next, HUIR mining is performed. An item ‘ ’ in 1  is first considered and 
merged together with items , , ,  and . For each merging, such as ‘ ’ 
merged with ‘ ’, 1,9,73,0 , 3,6,34,0 , 5,6,19,0 , 7,15,
42,0 , 8,9,41,0  and 2,10,0,0 , 5,6,13,0 , 7, 2,40,
0 , 8,2,39,0  are intersected together in order to compute utility, tight 
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over-estimated utility and regularity value of itemset ‘ ’ and to collect  
for further computation (i.e. 12 17 11 40, 40
13 40 39 132, 5,	and 5,12,13,6 , 7, 17,40,
15 , 8,11,39,9 ). Since regularity  is greater than  (itemset ‘ ’ 
does not regularly occur in the database), ‘ ’ should be removed out of 
consideration (based on the downward closure property of regularity [3]). Next, 
item ‘ ’ is merged with item ‘ ’ and  is intersected with 

1,8,65,0 , 3,4,30,0 , 4,5,5,0 , 5, 1,12, 0 , 8,4, 35,0  to 
compute 17 10 7 13 47, 47 65 30 12
35 189, 3	and	 1, 17, 65,9 , 3,10,30, 6 , 5,7,
12,6 , 8,13,35,9 , respectively.  

 
Figure 1 Example of 1-HUIR identification. 

Since regularity  is smaller than  and  is greater than , it can 
be concluded that itemset ‘ ’ and its supersets are potentially HUIRs. Then, an 
entry for itemset ‘ ’ is created in 2  along with its information. Also, due to 

1list 
a,2,45,0 

{<1,9,0,0>, 
<3,6,0,0>, 
<5,6,0,0>, 
<7,15,0,0>, 
<8,9,0,0>} 

b,3,20,0 
{<2,10,0,0>, 
<5,6,0,0>, 
<7,2,0,0>, 
<8,2,0,0>} 

c,3,22,0 
{<1,8,0,0>,
<3,4,0,0>, 
<4,5,0,0>, 
<5,1,0,0>, 
<8,4,0,0>}

d,3,180,0, 
{<1,60,0,0>,
<3,30,0,0>, 
<6,30,0,0>, 
<7,30,0,0>, 
<8,30,0,0>}

e,3,25,0, 
{<1,5,0,0>,
<4,5,0,0>, 
<7,10,0,0>,
<8,5,0,0>}

f,3,24,0 
{<2,9,0,0>,
<4,3,0,0>, 
<5,12,0,0>}
 

g,4,40,0 
{<2,20,0,0>,
<6,20,0,0>}

h,4,315,0 
{<2,300,0,0>, 
<6,15,0,0>} 
 
 
 

tlist t1 : 82 t2 : 339 t3 : 40 t4 : 13 t5 : 25 t6 : 65 t7 : 57 t8 : 50 

a,2,45,209, 
{<1,9,73,0>, 
<3,6,34,0>, 
<5,6,19,0>, 
<7,15,42,0>, 
<8,9,41,0>} 

b,3,20,102 
{<2,10,0,0>, 
<5,6,13,0>, 
<7,2,40,0>, 
<8,2,39,0>} 
 

c,3,22,147,
{<1,8,65,0>,
<3,4,30,0>, 
<4,5,5,0>, 
<5,1,12,0>, 
<8,4,35,0>}

d,3,180,20,
{<1,60,5,0>,
<3,30,0,0>, 
<6,30,0,0>, 
<7,30,10,0>,
<8,30,5,0>}

e,3,25,0 
{<1,5,0,0>,
<4,5,0,0>, 
<7,10,0,0>,
<8,5,0,0>}

f,3,24,0 
{<2,9,0,0>,
<4,3,0,0>, 
<5,12,0,0>}
 

t1 : 82 t2 : 10 t3 : 40 t4 : 10 t5 : 25 t6 : 30 t7 : 57 tlist t8 : 50 

1list 

1list a,1,9,0 
<1,9,0,0> 

b,2,10,0 
<2,10,0,0> 

c,1,8,0, 
<1,8,0,0>

d,1,60,0, 
<1,60,0,0>

e,1,5,0, 
<1,5,0,0>

f,2,9,0 
<2,9,0,0> 

g,2,20,0 
<2,20,0,0>

tlist t1 : 82 t2 : 339 t3 : 0 t4 : 0 t5 : 0 t6 : 0 t7 : 0 t8 : 0 

h,300,0,0, 
<2,300,0,0> 

1list a,1,9,0 
<1,9,0,0> 

b,0,0,0, 
- 

c,1,8,0, 
<1,8,0,0>

d,1,60,0, 
<1,60,0,0>

e,1,5,0, 
<1,5,0,0>

f,0,0,0, 
- 

g,0,0,0, 
- 

tlist t1 : 82 t2 : 0 t3 : 0 t4 : 0 t5 : 0 t6 : 0 t7 : 0 t8 : 0 

h,0,0,0, 
- 

Scanning of t1 

Scanning of t2 

Scanning of t1 - t10 

Calculation on utility and remaining utility 
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utility  being not smaller than , MHUIRA identifies ‘ ’ as an HUIR. 
The merging and intersection process continues for itemsets ‘ ’, ‘ ’, and 
‘ ’. If at the end 2  contains only ‘ ’, then MHUIRA stops considering 
item ‘ ’ and all of its supersets, and changes its consideration to items ‘ ’, ‘ ’, 
‘ ’, ‘ ’ and ‘ ’ in the same manner as ‘ ’. 

5 Experimental Evaluation and Complexity Analysis 

In this section, we report our experimental studies to investigate the 
performance of MHUIRA with the new modified utility-list (NUL). To the best 
of our ability, we pushed the first effort to consider the regularity constraint 
together with the utility of the itemsets (as in [5]). Then, we only made a 
comparison between MHUIRA with UL (called HURI-UL in [5]) and MHUIRA 
with NUL. Moreover, we also made a modification of HUI-Miner [7] that scans 
the database twice, called HUI-Miner-reg, for mining high utility itemsets with 
regular occurrence in order to show the improvement of our proposed single-
pass algorithm compared to the two-pass algorithm of HUI-Miner. In addition, 
time and space complexity analyses of our proposed method are provided. This 
can be the baseline for future approaches. 

5.1 Experimental Setup 

For the experiments in this paper, four datasets downloaded from [36] were 
used (as detailed in Table 4). The regularity and utility thresholds were set and 
varied from 1 30% and 0.001 22%, respectively. The setting of the 
thresholds was based on the density of the data in each dataset. However, it was 
similar to previous approaches ([5,6,7,30,31,32]). MHUIRA with UL and NUL 
and HUI-Miner-reg were implemented in  and run on Xeon® 2.4 GHz with 64 
GB of memory. Three kinds of experiments were conducted to observe runtime, 
memory consumption, and number of itemsets that are discovered. Experiments 
on runtime and memory usage were done based on two settings: (i) a fixed on 
highest value of regularity threshold and a varied on utility threshold; and (ii) a 
fixed on lowest value of utility threshold and a varied on regularity threshold. 
Meanwhile, the number of discovered HUIRs in each dataset was observed 
under the lowest utility and highest regularity thresholds. 

5.2 Runtime 

The runtimes of MHUIRA with UL and NUL under a variation of regularity and 
utility thresholds are depicted in Figures 2 and 3. In both figures, the runtime of 
MHUIRA with UL and NUL and HUI-Miner-reg increases as the regularity 
threshold increases (also for the decrease of the utility threshold). The reason is 
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Figure 2 Runtime with variation of regularity threshold. 

Figure 3 Runtime with variation of utility threshold. 
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that with a higher regularity threshold (lower utility threshold), items/itemsets 
have more chance to meet the threshold. Then, the three algorithms have to 
spend more time to consider items/itemsets with a high regularity (low utility). 
In most cases, MHUIRA with UL and NUL are faster than HUI-Miner-reg since 
they can take advantage from avoiding repeatedly scanning the database. 
Moreover, MHUIRA with NUL is faster than MHUIRA with UL, since it can 
take advantage from NUL, which can help to avoid repeated calculation of 
utility. The percentage that runtime is faster is between 0 and 23%. 

Table 4 Database characteristics. 

Database #items 
Avg. transaction 

length 
#transactions type 

Chess 75 37 3,196 dense 
Foodmart2000 1,559 11 36,869 sparse 
Mushroom 119 23 8,124 dense 
Retail 16,469 10.3 88,162 sparse 

5.3 Memory Usage 

In Figures 4 and 5 the peak memory usage of the MHUIRA with UL and NUL 
with variation of the regularity and utility thresholds are illustrated. To do that 
for Figure 4, the regularity threshold was set to the highest value and the utility 
threshold was varied. On the other hand, the utility threshold was set to the 
lowest value of our consideration and the regularity threshold was varied (for 
Figure 5).  
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Figure 4 Memory usage with variation of regularity threshold. 

With these lowest or highest thresholds, MHUIRA tends to produce a large 
amount of HUIRs, which lets us easily observe the highest memory usage of 
MHUIRA. From the figures it is obvious that in most cases the memory 
consumption of using NUL is higher than when using UL. This is because NUL 
stores additional information in each entry (i.e. the utility of the prefix itemset 
in a transaction). However, the amount of increase is between 0 and 15% of UL, 
which is a very small amount in megabytes and is not significant for computers 
in this era. 

Figure 5 Memory usage with variation of utility threshold. 
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5.4 Number of Discovered Itemsets 

To assess the potential of MHUIRA to discover HUIRs, experiments were 
conducted (in the same way as for the runtime investigation) to observe the 
number of discovered itemsets. Figure 6 shows the number of discovered 
itemsets with variation of the regularity threshold and the fixed value of the 
highest utility threshold. Meanwhile, Figure 7 indicates the number of 
discovered itemsets with a different variation. From both figures it can be seen 
that a high regularity threshold enables MHUIRA to generate more results than a 
low one. With a high regularity threshold there are thousands of itemsets that 
can meet the threshold. Meanwhile, a high utility threshold results in MHUIRA 
generating less itemsets than a low one (the reason is the contrast with the 
regularity threshold value). 

 
Figure 6 Number of HUIRs discovered by MHUIRA with variation of 
regularity threshold. 

 

Figure 7 Number of HUIRs discovered by MHUIRA with variation of utility 
threshold. 
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5.5 Complexity Analysis 

Lemma 1. Time complexity of MHUIRA is 2  where  is the 
number of items in set  and  is the number of transactions in database . 

Proof. As described in Algorithm 1, MHUIRA scans all transactions once, 
where each transaction may contain at most  items. Then, the time complexity 
of scanning the database is . For mining all HUIRs, each item/itemset is 
merged with other items/itemsets having the same prefix. Then, the total 
number of itemsets to be regarded is 2n. Also, each item/itemset may contain at 
most  entries of . Thus, the number of intersections to calculate the utility 
value of itemsets (the main computation of MHUIRA) is 2 . Lastly, with 
the 2 main steps of MHUIRA, total computation of MHUIRA is equal to 

2 . 

Lemma 2. Space complexity of MHUIRA is  of NUL’s entries, where  
is the number of items in set  and  is the number of transactions in database 

. 

Proof. As described in Algorithm 1, 1  is created for maintaining all single 
items with their corresponding NUL. Then, 1-List can contain at most  
entries of NUL. Also, for mining HUIRs with Algorithm 2, each item/itemset is 
considered and merged with previous items/itemsets (based on the ordered ≻ of 
items). Thus, each  is created to maintain -itemsets with their 
corresponding utility list. If the maximum size of an itemset is  (i.e. the 
number of all single items), then MHUIRA creates  lists, where each list 
contains at most  itemsets with  elements of the utility entry. Thus, the 
maximum space usage of MHUIRA is equal to  elements of the utility 
entry. 

6 Conclusion 

In this paper, we have proposed to add a regularity constraint to high utility 
itemset mining. Then, the problem of mining high utility itemsets with regular 
occurrence (MHUIR) was introduced. This can give information about “regular 
purchases by customers of high-profit products”. To find such itemsets, an 
efficient single-pass algorithm named MHUIRA and a new modified utility-list 
structure (called NUL, used for maintaining utility and occurrence information) 
were presented. Experiments were conducted on both real and synthetic datasets 
and complexity analyses were also given to indicate the efficiency and 
effectiveness of MHUIRA and NUL. In the future, we will extend MHUIR by 
focusing on: (i) difficulties on assigning appropriate thresholds; (ii) redundancy 
of HUIRs; and (iii) finding HUIRs in different kinds of databases, respectively. 
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