
Evolving temporal association rules with genetic algorithms

MATTHEWS, Stephen G., GONGORA, Mario A. and HOPGOOD, Adrian A.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/5652/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

MATTHEWS, Stephen G., GONGORA, Mario A. and HOPGOOD, Adrian A. (2010).
Evolving temporal association rules with genetic algorithms. In: Research and
Development in Intelligent Systems. London, Springer, 107-120.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/9426553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/

Evolving Temporal Association Rules with
Genetic Algorithms

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

Abstract A novel framework for mining temporal association rules by discovering
itemsets with a genetic algorithm is introduced. Metaheuristics have been applied
to association rule mining, we show the efficacy of extendingthis to another
variant - temporal association rule mining. Our framework is an enhancement to
existing temporal association rule mining methods as it employs a genetic algorithm
to simultaneously search the rule space and temporal space.A methodology for
validating the ability of the proposed framework isolates target temporal itemsets in
synthetic datasets. The Iterative Rule Learning method successfully discovers these
targets in datasets with varying levels of difficulty.

1 Introduction

Data Mining is the process of obtaining high level knowledgeby automatically
discovering information from data in the form of rules and patterns. Data mining
seeks to discover knowledge that is accurate, comprehensible and interesting [9].
Association rule mining is a well established method of datamining that identifies
significant correlations between items in transactional data [1]. An example of this
is a rule that states “customers who purchase bread and milk also purchase cheese”.
The use of such rules provides insight into transaction datato allow businesses to
make better informed decisions. The usefulness of association rule mining extends
to many areas ranging from biomedical and environmental to social networking and
retail. With an increasing volume of information this is prevalent in time series data
as well as static problems.

However, classical association rule mining assumes the dataset to be static where
discovered rules are relevant across the entire dataset. Inmany cases this does not

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood
Centre for Computational Intelligence, De Montfort University, Leicester, UK e-mail:
sgm@dmu.ac.uk; mgongora@dmu.ac.uk; aah@dmu.ac.uk

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

reflect real-world data. Often there can be a temporal pattern behind the occurrence
of association rules. The scope is far reaching, many systems producing time series
data have underlying processes/events that are dynamic. For example, association
rules may occur more frequently in the days leading to a largesports event, or when
an unforeseen event occurs, such as network intrusions. Discovering and adapting
to changes with well-informed information is important in many domains, and
within business it is critical for success. Association rules that incorporate temporal
information have greater descriptive and inferential power [17] and can offer an
additional element of interestingness.

Existing approaches to mining temporal association rules rely on identifying
all itemsets that frequently occur throughout the dataset.With a large number of
attributes this is computationally expensive and can lead to combinatorial explosion
with classical methods. In this paper, we present an approach that incorporates
a genetic algorithm [14] to mine frequent itemsets for temporal association rules
without exhaustively searching the itemset space and temporal space. The temporal
rules sought from the itemsets are those that occur more frequently over an interval
of the dataset. They are seen as an area of greater itemset density. This research seeks
to analyse the efficacy of a genetic algorithm for mining temporal association rules,
where there has been very little research into this aspect ofassociation rule mining,
e.g. [5]. This is a challenging problem for a genetic algorithm because it involves
searching the itemset space as well as the temporal space. Searching additional
spaces other than the rule space has been shown in other variants of association
rule mining such as quantitative [19, 3] to be effective. Ourapproach offers benefits
where temporal patterns are of interest. It can be scaled up to larger problems and
can include evolving additional parameters.

This paper is organised as follows. An overview of related work covering
association rule mining and evolutionary computing methods, such as genetic
algorithms, is discussed in Section 2. In Section 3 the genetic-algorithm based
approach for mining temporal association rules is presented. An experiment to
analyse the efficacy is presented and discussed with resultsin Section 4 and we
conclude our work in Section 5.

2 Related Work

2.1 Temporal Association Rule Mining

A synopsis of preliminary work on classical association rule mining is discussed
before developing the concept further to include a temporalaspect. Association
rule mining is an exploratory and descriptive rule induction process of identifying
significant correlations between items in boolean transaction datasets [1] used for
data analysis and interpretation.

Evolving Temporal Association Rules with Genetic Algorithms

The formal definitions of association rule mining are presented as required
preliminary knowledge. We assume a set of itemsI = {i1, i2, ..., iM} for all product
items in market basket data and a set of all transactionsD = {d1,d2, ...,dN}.
Each transaction,di, comprises a subset of items, referred to as an itemset,
from I representing a collection of items found in a customer’s shopping basket.
Association rules are expressed as an implication of the form X ⇒ Y where the
consequent and antecedent are sets of boolean items whereX ∩Y = /0. For example,
the rule{bread, milk} ⇒ {cheese} implies that when bread and milk are purchased
cheese is also purchased. This suggests there is a strong relationship between the
sale of bread and milk, and the sale of cheese. This is the mostsimple form of
association rules.

To extract such rules from datasets the support-confidence framework was
introduced with the Apriori algorithm in [2]. Support determines the strength of
a relationship by measuring how often the rule occurs in a dataset. Confidence
determines how frequently the items in the consequent occurin transactions
containing the antecedent, which measures the reliabilityof the inference. Support
and confidence are defined in Equations 1 and 2 respectively.

Support,s(X ⇒ Y) =
σ(X ∪Y)

N
(1)

Confidence,c(X ⇒ Y) =
σ(X ∪Y)

σ(X)
(2)

Minimum support and minimum confidence are introduced to limit the itemsets
and rules produced to those that are significant and interesting. In the general case,
a rule that occurs once in the dataset would not be consideredinteresting. Based
on this support-confidence framework, rules are extracted by the following stages.
First, the frequent itemsets are generated that have a support above the minimum
support. The rules are then identified from the frequent itemsets that satisfy the
minimum confidence constraint. This is a common approach forrule induction that
employs a level-wise, breadth-first strategy but there are other methods that use
equivalence classes, depth-first and compression techniques [21].

Association rules that have an underlying temporal behaviour can be expressed
with various temporal patterns and frameworks. A key issue of classical methods
that are based on the support-confidence framework is that temporal patterns
having low support values can escape through the minimum support threshold.
For example, consider a rule that has high support in the month of December
but for the remainder of the year it is relatively much lower.This rule may not
be discovered with classical association rule mining algorithms when there are
rules that persistently occur throughout the dataset and consequently have higher
support. Assuming that the minimum support is sufficiently low for the rule in
December to be discovered, further analysis is required to ascertain any temporal
property. One such property,lifespan, was introduced in [4] as an extension on the
Apriori algorithm [2]. This is a measure of support that is relative to the lifespan

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

of the itemset defined by a time interval, known as temporal support. So for the
example rule occurring in December, its temporal support would be relevant for a
time interval representing December.

A similar problem can be found where individual items are notpresent
throughout the entire dataset. For example, an item may be available for sale in
a supermarket only during a particular seasonal period, such as British asparagus
during summer. In [6, 15] the temporal element of individualitems is considered
rather than that of the itemsets. This variation of the problem shares the same
issue with support as seen in [4] where low-support itemsetscan be lost under
the minimum support threshold. A related area that also focuses on the analysis
of support values within a temporal framework is that of [8].Their work introduces
the concept of emerging patterns which describe itemsets asthose where support
increases significantly from one dataset to another. New trends can be identified by
itemsets that are starting to appear more frequently.

Other methods seek to identify temporal patterns with techniques that do not
directly analyse support. In [20] cyclic association rulesare defined as rules that
occur in user-defined intervals at regular periods throughout a dataset. For example,
“at weekends, customers who purchase bacon and eggs also purchase sausages”.
This is achieved by mining association rules from partitions of the dataset and
then pattern matching the rules from each partition. These are fully periodic rules
because they repeatedly occur at regular intervals. Partially periodic rules [12] relax
the regularity found in fully periodic so the cyclic behaviour is found in only some
segments of the dataset and is not always repeated regularly. Defining the temporal
intervals with calendar-based schemas is less restrictiveand reduces the requirement
of prior knowledge [18].

2.2 Association Rule Mining with Evolutionary Computation

Evolutionary computation is a subfield of computational intelligence that uses
evolutionary systems as computational processes for solving complex problems
[7]. There has been recent interest in the use of evolutionary algorithms, as
well as swarm intelligence techniques, for association rule mining [19, 22, 16].
Evolutionary algorithms are metaheuristic methods that are suitable for association
rule mining because they can search complex spaces and they address difficult
optimisation problems. We discuss applications of evolutionary computation to
association rule mining to highlight its suitability for this novel application.

With an evolutionary approach, there are generally two mainstrategies to
encoding rules in a solution [13] that determine how rules are evolved. The
Pittsburgh approach represents each individual as a ruleset and the Michigan
approach encodes each individual as a single chromosome. Iterative Rule Learning
is based on the Michigan approach except that the best solution is chosen
after multiple runs of the genetic algorithm. The genetic cooperative-competitive
approach encodes the rules in the population which collectively forms the solution.

Evolving Temporal Association Rules with Genetic Algorithms

Considerable research has focused on the use of evolutionary algorithms for
mining quantitative association rules since these are present in many real-world
applications. These are different from boolean association rules because they
include a quantitative value describing the amount of each item. A method of
mining quantitative data requires the values to be discretised into meaningful
representations that are comprehensible, but this is a difficult task as the number
of attributes and their parameters may not be known. Evolutionary algorithms
have been shown to be capable of defining the intervals for quantitative attributes
whilst simultaneously extracting association rules [19].A recent study [3] has
demonstrated the effectiveness of several genetic algorithms based on the Michigan
and Iterative Rule Learning approaches for mining association rules and itemsets
compared with classical mining algorithms like Apriori.

Minimum support is a very influential factor affecting the results of the mining
process and it is challenging to specify a priori. Support values that are too low will
yield many rules, but support values that are too high will produce too few, if any. In
[22] a genetic algorithm is employed where fitness is determined based on relative
confidence of association rules across the entire dataset, thus no minimum support is
specified. This is shown to be suitable for both boolean and quantitative association
rules. Particle swarm optimisation is an alternative method that also achieves similar
results for the same purpose of not defining minimum support [16].

As well as mining quantitative data and removing the need forspecifying
minimum support, evolutionary computation has seen applications in only a few
temporal association rule mining tasks. In [5] the Pittsburgh approach is used to
mine association rules from partitions of a dataset. The resulting rules are then
analysed to discover changes between partitions, similar to those of [20]. Higher-
level rules are then produced from the changes in association rules to describe
the underlying temporal patterns. The changes in association rules have also been
evolved for the purposes of trading on the financial markets [10].

These approaches demonstrate the ability of evolutionary computation in
searching for association rules and/or optimising parameters of rules (membership
functions), or the induction process (support values). Ournovel approach draws
on the strengths of evolutionary algorithms for mining association rules that is
evident from recent research. The next section describes the evolutionary algorithm
approach we have adopted for mining temporal association rules.

3 Evolving Temporal Association Rules

We propose the use of a genetic algorithm to evolve temporal association rules
that have high relative support over a time interval. A genetic algorithm is
chosen because it is a promising solution for global search and it is capable
of discovering itemsets with corresponding parameters as seen in [19, 3]. Our
approach searches for itemsets occurring more frequently in an exhibition period
by optimising (maximising) the relative support over a discovered time interval.

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

This has similarities with evolutionary methods for miningattribute intervals since
we are evolving a temporal element that is also interval based.

Several test runs of the genetic algorithm were used to determine the configura-
tion of parameters. The number of iterations of the genetic algorithm is set to 15. The
genetic algorithm’s population is set at 500 individuals and it is terminated at 200
generations. Elitism accounts for 1% of the new population,copy produces 25%,
crossover produces 45% and mutation produces 39%. Descriptions of the genetic
algorithm’s configuration are now presented.

Iterative Rule Learning The Iterative Rule Learning approach is used where
each chromosome represents a single itemset and the best solution from numerous
runs of the genetic algorithm is selected. This approach relies on the stochastic
process of genetic algorithms to yield different solutions. An advantage of Iterative
Rule Learning is it produces a reduced rule set, depending onthe number of
iterations, that contains rules of significant temporal interest and that are easily
comprehensible. In the case of classical association rule mining, with no temporal
element, Iterative Rule Learning would aim to evolve a reduced rule set containing
the most frequent itemsets. We do not penalise the fitness of solutions that have
evolved in previous runs and so permit the same solution to beevolved. Doing so
gives a clear indication of the efficacy of evolving a single isolated temporal pattern
that we use as a specific target. The methodology for isolating the target is explained
in more detail in Section 4.1.

Chromosome Figure 1 shows the configuration of genes in the chromosome.
An integer representation encodes each item,xi, where the ordering of items is
unimportant. Lower and upper endpoints,t0 andt1 respectively, define the edges of
the interval in which the itemset occurs most frequently. The chromosome length is
fixed allowing only a specified itemset length to evolve on each run. The itemsets are
evolved first because the measure (temporal support) used for identifying patterns
evaluates itemsets only. The association rules are then generated from the itemsets
by calculating the confidence measure after the genetic algorithm has executed.

x0 x1 ... xn t0 t1

Fig. 1 Chromosome

Population Initialisation The initial population is randomly generated using the
Mersenne Twister pseudorandom number generator. Setting different random seeds
for each run ensures the experiment is repeatable. Upon randomly generating an
item in a chromosome, it is checked against other items already generated in the
same chromosome and if the item is present a new number is randomly generated
until it is unique. This is repeated for each item in the chromosome to ensure
all items are unique. The number of items in the dataset (e.g.inventory) must
be greater than the itemset size otherwise this will result in chromosomes where

Evolving Temporal Association Rules with Genetic Algorithms

the only difference is the ordering of items. The lower and upper endpoints are
randomly generated using the same method of repeating the number generation until
the solution is feasible. The constraint on the endpoints isthe minimum temporal
support in Equation 3, this is discussed further with the fitness evaluation.

t1− t0 >= min temp sup (3)

Fitness Evaluation Fitness is evaluated using the relative support of the itemset
over its lifespan. Equation 4 is the temporal support metricdefined in [4].

s(X , lX) =
σ(X)

lX
(4)

We introducel as a time interval i.e.lX = [t0, t1] wheret0 is the lower endpoint
andt1 is the upper endpoint. The genetic algorithm maximises temporal support. A
minimum temporal support [4] is used to prevent evolving solutions to a minimal
lifespan that only cover one transaction. For example, a lifespan of 1 covers a single
transaction, this produces a support of 100% for any itemseti.e. maximum fitness.

Selection Fitness proportionate selection is used to select individuals from a
population for copying across to a new population or applying genetic operators.
A method based on roulette wheel selection is employed. A random float value
is generated between 0 and the sum of all fitness values. The fitness values are
then accumulated until the accumulation is greater than therandom float value. The
individual selected is that which pushes the accumulation above the random number.

Genetic Operators Elitism is used to automatically copy over the best individuals
from the current population to the next population without selection. A percentage
of individuals are also selected and copied into the next generation.

Uniform crossover is adapted to ensure that only feasible solutions are produced,
i.e. combinations of integers without duplicates. The method for crossing over only
the itemsets is presented in Algorithm 1 and the stages are now briefly described.
The advantage of this method is that the ordering of items remains unless a duplicate
is present in the itemset.

Stage 1 (lines1 - 4) Merge the chromosomes from two selected parents into an
intermediate array so that no two items from the same parent are adjacent.

Stage 2 (lines 5 - 11) Check each item in the array for duplicate values against
the remaining items. If a duplicate is found the duplicate item is swapped with
the next item. The result is that all duplicate items are now adjacent and the items
can now be selected from the intermediate array to form an offspring.

Stage 3 (lines 12 - 18) Select items from the intermediate array by iterating over
every even index value. A random integer from[0,1] is added to the index and
the indexed item is added to the offspring. If a 0 is generated, it is checked for
duplicates with the preceding item and if a duplicate is found it adds 1 to the
index otherwise it adds 0.

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

A random integer from[0,1] determines whether the genes representing the lower
and upper endpoints are copied from a single parent or they are crossed over from
two parents. If they are crossed over then the feasibility ofoffspring is ensured by
satisfying the constraint in Equation 3.

Algorithm 1 Algorithm for performing crossover on itemsets
Require: Parent1.length ≡ Parent2.length
1: for i = 0 to Parent1.length−1 do
2: Auxiliary[2i] = Parent1[i]
3: Auxiliary[2i+1] = Parent2[i]
4: end for
5: for i = 0 to Auxiliary.length−1 do
6: for j = i+2 to Auxiliary.length−1 do
7: if Auxiliary[i]≡ Auxiliary[j] then
8: exchangeAuxiliary[j] with Auxiliary[i+1]
9: end if

10: end for
11: end for
12: for i = 0 to Parent1.length−1 do
13: if i > 1 andAuxiliary[2i−1]≡ Auxiliary[2i] then
14: Child[i] = Auxiliary[2i+1]
15: else
16: Child[i] = Auxiliary[2i+RANDOM(0,1)]
17: end if
18: end for

To produce a mutated individual, a chromosome is selected and a randomly
chosen gene is replaced with a randomly created value that isfeasible. For the genes
forming the itemset, the value must be unique and the genes for the endpoints must
satisfy Equation 3.

4 Evaluation

To evaluate the efficacy of the proposed approach, several experiments have been
conducted on synthetic datasets. The aim is to ascertain whether the algorithm can
correctly identify areas where association rules occur more frequently.

Evolving Temporal Association Rules with Genetic Algorithms

4.1 Methodology and Datasets

The IBM Quest Synthetic Data Generator [11]1 has been used to generate a dataset
for experimentation. The generator produces datasets thatreplicate transactions.
This approach was first used in work that focused on a retail environment [2]. A
synthetic dataset is chosen rather than a real dataset so that a controlled experiment
can be conducted to validate the efficacy of our approach. Individual temporal
itemsets that exhibit relatively high support over an exhibition period are isolated
and used as target solutions.

A dataset has been produced with the following features: 1000 transactions, 50
items, an average size of transactions of 10 and a maximal pattern length of 4. A
maximal pattern cannot be part of any rule of greater length;it has no supersets that
are frequent. There is no guarantee that the generated dataset contains any temporal
patterns so, to include temporal information, two datasetshave been augmented
from the original dataset by the following process:

1. Run Apriori algorithm on dataset to produce frequent itemsets.
2. Select a frequent itemset with desired level of support.
3. Insert the itemset as a transaction near to the centre of the dataset. Transactions

are constructed exclusively from the entire frequent itemset with no additional
items so no unexpected correlations between items are introduced.

The itemsets with maximum support (6.8%) and midrange support (3.4%) were
selected as varying levels of difficulty for the experiment.Itemsets were inserted into
the dataset within bin sizes of 50 so that the lifespan of an itemset is of sufficient size
for identifying temporal association rules. Figure 2 showsa histogram of the original
dataset compared with augmented dataset containing the itemset{12, 21, 25, 45}
with maximum support. The horizontal axis shows the number of occurrences in
bin sizes of 50. This bin size . This shows the increased occurrence of the itemset,
the isolated target, that is to be discovered with the genetic algorithm. Figure 3
shows the original dataset against the other augmented dataset containing itemset
{8, 12, 39, 45} with midrange support. The peaks in these figures illustratethe
more frequent occurrence of itemsets over a relatively small period of time that are
target itemsets and intervals.

The itemset with midrange support (3.4%) is chosen because it is expected that
this will be a more difficult dataset for the genetic algorithm. The genetic algorithm
is more likely to follow local searches of itemsets because it is likely they have
higher relative support values over the same lengths of timeintervals. The support
measure is used to evaluate fitness because this is the metricused to augment the
dataset with significant temporal patterns.

1 This is the data generator pioneered in [2] but the original link ceases to exist
(http://www.almaden.ibm.com/cs/quest/syndata.html)

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

0

5

10

15

20

F
re

qu
en

cy

Itemset occurence in transactions

Before augmentation
After augmentation

Fig. 2 Histogram of itemset{12, 21, 25, 45} with high support

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

0

5

10

15

20

F
re

qu
en

cy

Itemset occurence in transactions

Before augmentation
After augmentation

Fig. 3 Histogram of itemset{8, 12, 39, 45} with midrange support

4.2 Results

The genetic algorithm was executed 15 times with different random seeds on
both augmented datasets for a maximum of 200 generations. Itemsets of length 4
were mined because this is the average maximal frequent itemset defined in the
parameters of the dataset generator. The minimum temporal support was chosen
based on the bin sizes used in the method for augmenting the datasets, this was
set to 50. Table 1 shows the evolved itemset from each run withits corresponding
interval and support values for the dataset augmented with the high support itemset.
The results for this dataset show the genetic algorithm is able to consistently evolve
the itemset and the endpoints for the inserted itemset in themajority of runs. The
suboptimal solutions have much lower temporal support thanthe inserted high
support itemsets. Although the termination criteria was set to 200 generations the
best individuals were evolved in far fewer generations.

Evolving Temporal Association Rules with Genetic Algorithms

Seed Itemset Lower endpointUpper endpointTemporal SupportGeneration
0 {12,21,25,45} 449 502 41.5% 51
1 {12,21,38,45} 904 960 14.3% 86
2 {12,21,25,45} 449 502 41.5% 59
3 {12,21,25,45} 449 502 41.5% 72
4 {8,12,21,43} 691 752 16.4% 37
5 {12,21,25,45} 449 502 41.5% 49
6 {12,21,25,45} 449 502 41.5% 35
7 {12,21,25,45} 449 502 41.5% 45
8 {12,21,25,45} 449 502 41.5% 60
9 {12,21,45,48} 449 502 41.5% 67
10 {12,21,38,45} 904 960 14.3% 75
11 {8,12,21,43} 687 738 15.7% 38
12 {8,12,25,45} 233 283 14.0% 20
13 {12,21,25,45} 449 502 41.5% 26
14 {12,21,25,45} 449 502 41.5% 63

Table 1 Genetic algorithm results of dataset inserted with high supportitemset{12, 21, 25, 45}

The results of applying the genetic algorithm to the datasetaugmented with the
midrange support itemset are presented in Table 2. The results show the genetic
algorithm is able to evolve the inserted itemset with the corresponding endpoints
(seeds 3 and 14). However, this occurs in only a few runs of thegenetic algorithm,
many fewer than the previous dataset, suggesting it is a moredifficult dataset. The
support value across the entire dataset in Table 2 shows the genetic algorithm is
more likely to evolve temporal patterns that are generally more frequent across the
entire dataset. An itemset with high support occurs more frequently and so temporal
patterns are found of this itemset. The histogram in Figure 4shows an example
itemset from Table 2 (seeds 4, 5, 7, 12 and 13) with high support and low temporal
support (small peak in bin 800) which suggests a local optimum has evolved.

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

0

5

10

F
re

qu
en

cy

Itemset occurrence in transactions

Fig. 4 Histogram of itemset{8, 12, 25, 45} in dataset augmented with midrange support itemset

From the results of executing the genetic algorithm on both datasets we can see
the optimal solution is evolved. The repeatability of evolved solutions varies because
of the stochastic nature of genetic algorithms but it also varies considerably between

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

Seed Itemset Lower endpointUpper endpointTemporal SupportSupportGeneration
0 {12,21,38,45} 905 961 14.3% 5.7% 38
1 {1,12,21,45} 902 952 14.3% 5.0% 81
2 {8,12,21,43} 750 801 15.7% 6.1% 92
3 {8,12,39,45} 550 601 39.2% 5.1% 85
4 {8,12,25,45} 766 819 17.0% 6.2% 95
5 {8,12,25,45} 766 819 17.0% 6.2% 43
6 {8,12,21,43} 673 735 16.0% 6.1% 39
7 {8,12,25,45} 766 819 17.0% 6.2% 148
8 {8,12,21,43} 673 735 16.1% 6.1% 61
9 {10,12,21,45} 787 838 13.7% 3.5% 26
10 {12,21,38,45} 905 961 14.3% 5.7% 28
11 {8,12,21,43} 692 753 16.4% 6.1% 72
12 {8,12,25,45} 234 284 14.0% 6.2% 76
13 {8,12,25,45} 766 819 17.0% 6.2% 107
14 {8,12,39,45} 533 605 38.5% 5.1% 110

Table 2 Genetic algorithm results of dataset inserted with midrange support itemset{8, 12, 39,
45}

the two datasets. Low support items with high temporal support are more difficult
to discover.

5 Conclusion

In this paper we have presented a novel approach to mining temporal association
rules by discovering itemsets with a genetic algorithm. Thegenetic algorithm
approach is capable of discovering itemsets that occur morefrequently over a short
time interval of a transactional dataset. The genetic algorithm method is an enhanced
approach for simultaneously searching the itemset space and temporal space. The
advantage of this approach is that it does not exhaustively search the dataset or
require any prior partitioning.

Having identified this method to be capable, future work willinclude analysing
its effectiveness in terms of quality of rules produced and its scalability through
comparative analysis with other methods. We will investigate enhancing the fitness
evaluation to reduce the chances of evolving local optima. The Iterative Rule
Learning approach is a promising framework for analysing rule quality and, as
already seen, individuals can be penalised to avoid searching the same areas of the
fitness landscape. Further experiments on varying the number of transactions and
items will provide insight into scalability. Our methodology has augmented a single
temporal itemset into a synthetic dataset so future plans include using a real dataset
to identify meaningful rules.

Acknowledgements This research has been supported by an EPSRC Doctoral TrainingAccount.

Evolving Temporal Association Rules with Genetic Algorithms

References

1. Agrawal, R., Imielínski, T. and Swami, A. (1993) Mining association rules between sets
of items in large databases. In: Proceedings of ACM SIGMOD international conference on
Management of data, Washington, DC, USA, pp. 206–217.

2. Agrawal, R. and Srikant, R. (1994) Fast algorithms for miningassociation rules. In:
Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile,
pp. 487–499.

3. Alcala-Fdez, J., Flugy-Pape, N., Bonarini, A. and Herrera, F. (2010) Analysis of the
Effectiveness of the Genetic Algorithms based on Extraction ofAssociation Rules.
Fundamenta Informaticae, 98(1), pp. 1–14.

4. Ale, J. and Rossi, G. (2000) An approach to discovering temporalassociation rules. In:
Proceedings of the 2000 ACM Symposium on Applied computing (SAC00) New York, NY,
USA, pp. 294–300.

5. Au, W. and Chan, K. (2002) An evolutionary approach for discovering changing patterns in
historical data. In: Proceedings Of The Society Of Photo-Optical Instrumentation Engineers
(SPIE), Orlando, FL, USA, pp. 398–409.

6. Chang, C.-Y., Chen, M.-S. and Lee, C.-H. (2002) Mining general temporal association rules
for items with different exhibition periods. In: Proceedingsof the 2002 IEEE International
Conference on Data Mining, Maebashi City, Japan, pp. 59–66.

7. De Jong, K.A. (2006) Evolutionary computation: a unified approach. MIT Press, Cambridge,
MA, USA.

8. Dong, G. and Li, J. (1999) Efficient mining of emerging patterns: discovering trends
and differences. In: Proceedings of the fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, pp. 43–52

9. Freitas, A.A. (2002) Data mining and knowledge discovery with evolutionary algorithms.
Springer-Verlag.

10. Ghandar, A., Michalewicz, Z., Schmidt, M., Tô, T.-D. and Zurbrugg, R. (2009)
Computational intelligence for evolving trading rules. IEEETransactions on Evolutionary
Computation, 13(1), pp. 71–86.

11. Giannella, C. (2003) IBM Quest Market-Basket Synthetic Data Generator.
http://www.cs.nmsu.edu/ cgiannel/assocgen.html. Cited 29 May 2009

12. Han, J., Gong, W. and Yin, Y. (1998) Mining segment-wise periodic patterns in time-related
databases. In: Proceedings of the Fourth International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA. pp. 214–218.

13. Herrera, F. (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects.
Evolutionary Intelligence, 1(1), pp. 27–46.

14. Holland, J.H. (1975) Adaptation in natural and articial systems. University of Michigan Press,
Ann Arbor.

15. Huang, J.-W., Dai, B.-R. and Chen, M.-S. (2007) Twain: Two-end association miner with
precise frequent exhibition periods. ACM Transactions on Knowledge Discovery from Data,
1(2), Article 8.

16. Kuo, R., Chao, C. and Chiu, Y. (2009) Application of particle swarm optimization to
association rule mining. Applied Soft Computing, In Press, Corrected Proof.

17. Laxman, S. and Sastry, P.S. (2006) A survey of temporal data mining. S̄adhan̄a, 31, pp. 173–
198.

18. Li, Y., Ning, P., Wang, X. S. and Jajodia, S. (2003) Discovering calendar-based temporal
association rules. Data & Knowledge Engineering, 44(2), pp. 193–218.

19. Mata, J., Alvarez, J. L. and Riquelme, J. C. (2002) An evolutionary algorithm to discover
numeric association rules. In: Proceedings of the 2002 ACM Symposium on Applied
Computing, New York, NY, USA, pp. 590–594.

20. Özden, B., Ramaswamy, S. and Silberschatz, A. (1998) Cyclic Association Rules. In:
Proceedings of the Fourteenth International Conference onData Engineering, Washington,
DC, USA, pp. 412–421.

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

21. Tan, P.-N., Steinbach, M. and Kumar, V. (2005) Introduction to Data Mining, Addison Wesley,
Boston, MA, USA.

22. Yan, X., Zhang, C. and Zhang, S. (2009) Genetic algorithm-based strategy for identifying
association rules without specifying actual minimum support. Expert Systems with
Applications, 36(2), pp. 3066–3076.

