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Evolving Temporal Association Ruleswith
Genetic Algorithms

Stephen G. Matthews, Mario A. Gongora and Adrian A. Hopgood

Abstract A novel framework for mining temporal association rules ligcdvering
itemsets with a genetic algorithm is introduced. Metatsias have been applied
to association rule mining, we show the efficacy of extendinig to another
variant - temporal association rule mining. Our framewalan enhancement to
existing temporal association rule mining methods as itleysma genetic algorithm
to simultaneously search the rule space and temporal spagethodology for
validating the ability of the proposed framework isolaget temporal itemsets in
synthetic datasets. The Iterative Rule Learning methodessfully discovers these
targets in datasets with varying levels of difficulty.

1 Introduction

Data Mining is the process of obtaining high level knowlednyeautomatically
discovering information from data in the form of rules andt@ans. Data mining
seeks to discover knowledge that is accurate, compreHeresill interesting [9].
Association rule mining is a well established method of aailaing that identifies
significant correlations between items in transaction& fiH. An example of this
is a rule that states “customers who purchase bread and Isdllparchase cheese”.
The use of such rules provides insight into transaction ttatdlow businesses to
make better informed decisions. The usefulness of asgmtiatle mining extends
to many areas ranging from biomedical and environmental¢@mbnetworking and
retail. With an increasing volume of information this is yatkent in time series data
as well as static problems.

However, classical association rule mining assumes ttasdato be static where
discovered rules are relevant across the entire datasetahy cases this does not
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reflect real-world data. Often there can be a temporal paltehind the occurrence
of association rules. The scope is far reaching, many sygspeatlucing time series
data have underlying processes/events that are dynamiexBmple, association
rules may occur more frequently in the days leading to a lapgets event, or when
an unforeseen event occurs, such as network intrusionso@isng and adapting
to changes with well-informed information is important irany domains, and
within business it is critical for success. Associatioresuthat incorporate temporal
information have greater descriptive and inferential pojt&] and can offer an
additional element of interestingness.

Existing approaches to mining temporal association ruédg on identifying
all itemsets that frequently occur throughout the dataséth a large number of
attributes this is computationally expensive and can leaimbinatorial explosion
with classical methods. In this paper, we present an apprtizat incorporates
a genetic algorithm [14] to mine frequent itemsets for terapassociation rules
without exhaustively searching the itemset space and teghppace. The temporal
rules sought from the itemsets are those that occur moradrgty over an interval
of the dataset. They are seen as an area of greater itemséydenis research seeks
to analyse the efficacy of a genetic algorithm for mining terapassociation rules,
where there has been very little research into this aspexgsufciation rule mining,
e.g. [5]. This is a challenging problem for a genetic aldoritbecause it involves
searching the itemset space as well as the temporal spaaehBeg additional
spaces other than the rule space has been shown in othemtsasfaassociation
rule mining such as quantitative [19, 3] to be effective. @pproach offers benefits
where temporal patterns are of interest. It can be scaled igyder problems and
can include evolving additional parameters.

This paper is organised as follows. An overview of relatedkwoovering
association rule mining and evolutionary computing meshaslich as genetic
algorithms, is discussed in Section 2. In Section 3 the geaddorithm based
approach for mining temporal association rules is presenmd@ experiment to
analyse the efficacy is presented and discussed with réauiection 4 and we
conclude our work in Section 5.

2 Related Work

2.1 Temporal Association Rule Mining

A synopsis of preliminary work on classical associatiorerniining is discussed
before developing the concept further to include a tempasglect. Association
rule mining is an exploratory and descriptive rule induectfirocess of identifying
significant correlations between items in boolean traimsactatasets [1] used for
data analysis and interpretation.
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The formal definitions of association rule mining are préseénas required
preliminary knowledge. We assume a set of itdmas{i4, i2,...,im} for all product
items in market basket data and a set of all transactldns {di,dy,...,dn}.
Each transactiond;, comprises a subset of items, referred to as an itemset,
from | representing a collection of items found in a customer'sppivtgy basket.
Association rules are expressed as an implication of tha fr=-Y where the
consequent and antecedent are sets of boolean items ¥hefe= 0. For example,
the rule{bread, milg = {cheesé implies that when bread and milk are purchased
cheese is also purchased. This suggests there is a stratigrniship between the
sale of bread and milk, and the sale of cheese. This is the siogle form of
association rules.

To extract such rules from datasets the support-confideramaeivork was
introduced with the Apriori algorithm in [2]. Support deteines the strength of
a relationship by measuring how often the rule occurs in asgat Confidence
determines how frequently the items in the consequent ogturansactions
containing the antecedent, which measures the relialofithe inference. Support
and confidence are defined in Equations 1 and 2 respectively.

Supports(X =Y) = w (1)
Confidencec(X = Y) = U(;(()L(J)Y) 2

Minimum support and minimum confidence are introduced tdt lihe itemsets
and rules produced to those that are significant and integes$h the general case,
a rule that occurs once in the dataset would not be considetexksting. Based
on this support-confidence framework, rules are extracyeithd following stages.
First, the frequent itemsets are generated that have a gugdpmve the minimum
support. The rules are then identified from the frequent sefs1that satisfy the
minimum confidence constraint. This is a common approachuerinduction that
employs a level-wise, breadth-first strategy but there éineromethods that use
equivalence classes, depth-first and compression teas[8(].

Association rules that have an underlying temporal behenéan be expressed
with various temporal patterns and frameworks. A key issuelassical methods
that are based on the support-confidence framework is tmapamal patterns
having low support values can escape through the minimurpastiphreshold.
For example, consider a rule that has high support in the ImohtDecember
but for the remainder of the year it is relatively much lowehis rule may not
be discovered with classical association rule mining allgors when there are
rules that persistently occur throughout the dataset andezpuently have higher
support. Assuming that the minimum support is sufficientw Ifor the rule in
December to be discovered, further analysis is requiregtertain any temporal
property. One such propertyfespan, was introduced in [4] as an extension on the
Apriori algorithm [2]. This is a measure of support that itatiwe to the lifespan
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of the itemset defined by a time interval, known as temporppett. So for the
example rule occurring in December, its temporal supporldibe relevant for a
time interval representing December.

A similar problem can be found where individual items are mpoésent
throughout the entire dataset. For example, an item may aiéable for sale in
a supermarket only during a particular seasonal periody asdBritish asparagus
during summer. In [6, 15] the temporal element of individitains is considered
rather than that of the itemsets. This variation of the moblshares the same
issue with support as seen in [4] where low-support itemesats be lost under
the minimum support threshold. A related area that alsodeswon the analysis
of support values within a temporal framework is that of [Bjeir work introduces
the concept of emerging patterns which describe itemsetisca® where support
increases significantly from one dataset to another. Nawdsrean be identified by
itemsets that are starting to appear more frequently.

Other methods seek to identify temporal patterns with teghes that do not
directly analyse support. In [20] cyclic association ruéege defined as rules that
occur in user-defined intervals at regular periods throughalataset. For example,
“at weekends, customers who purchase bacon and eggs also purchase sdusage
This is achieved by mining association rules from partiai the dataset and
then pattern matching the rules from each partition. Thesdully periodic rules
because they repeatedly occur at regular intervals. Ragiriodic rules [12] relax
the regularity found in fully periodic so the cyclic behawias found in only some
segments of the dataset and is not always repeated regieflping the temporal
intervals with calendar-based schemas is less restratislegeduces the requirement
of prior knowledge [18].

2.2 Association Rule Mining with Evolutionary Computation

Evolutionary computation is a subfield of computationakiligence that uses
evolutionary systems as computational processes forrgpleomplex problems
[7]. There has been recent interest in the use of evolutyomdgorithms, as
well as swarm intelligence technigues, for associatioe mining [19, 22, 16].
Evolutionary algorithms are metaheuristic methods thatsaitable for association
rule mining because they can search complex spaces and dadegsa difficult
optimisation problems. We discuss applications of evohdry computation to
association rule mining to highlight its suitability forismovel application.

With an evolutionary approach, there are generally two nwmategies to
encoding rules in a solution [13] that determine how rules avolved. The
Pittsburgh approach represents each individual as a tubesd the Michigan
approach encodes each individual as a single chromosocenative Rule Learning
is based on the Michigan approach except that the best @olusi chosen
after multiple runs of the genetic algorithm. The genetioperative-competitive
approach encodes the rules in the population which coliegtiorms the solution.
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Considerable research has focused on the use of evolutiahgorithms for
mining quantitative association rules since these areepteéis many real-world
applications. These are different from boolean associatides because they
include a quantitative value describing the amount of edemm.i A method of
mining quantitative data requires the values to be dismdtiinto meaningful
representations that are comprehensible, but this is auiffiask as the number
of attributes and their parameters may not be known. Evaiatiy algorithms
have been shown to be capable of defining the intervals fontdative attributes
whilst simultaneously extracting association rules [18]recent study [3] has
demonstrated the effectiveness of several genetic adigasibased on the Michigan
and lIterative Rule Learning approaches for mining associaules and itemsets
compared with classical mining algorithms like Apriori.

Minimum support is a very influential factor affecting thesuéts of the mining
process and it is challenging to specify a priori. Suppoltesthat are too low will
yield many rules, but support values that are too high wildarce too few, if any. In
[22] a genetic algorithm is employed where fithess is deteechibased on relative
confidence of association rules across the entire dathastnb minimum support is
specified. This is shown to be suitable for both boolean amahtipative association
rules. Particle swarm optimisation is an alternative methat also achieves similar
results for the same purpose of not defining minimum sup®it

As well as mining quantitative data and removing the need sfeecifying
minimum support, evolutionary computation has seen agftios in only a few
temporal association rule mining tasks. In [5] the Pittghuapproach is used to
mine association rules from partitions of a dataset. Theltiag rules are then
analysed to discover changes between partitions, sinailérdse of [20]. Higher-
level rules are then produced from the changes in assatiaties to describe
the underlying temporal patterns. The changes in associaties have also been
evolved for the purposes of trading on the financial marke@$ [

These approaches demonstrate the ability of evolutionamppatation in
searching for association rules and/or optimising paramaeif rules (membership
functions), or the induction process (support values). @awel approach draws
on the strengths of evolutionary algorithms for mining &sstion rules that is
evident from recent research. The next section descrilgesviblutionary algorithm
approach we have adopted for mining temporal associaties.ru

3 Evolving Temporal Association Rules

We propose the use of a genetic algorithm to evolve tempasbcation rules
that have high relative support over a time interval. A geneigorithm is
chosen because it is a promising solution for global searah ifiis capable
of discovering itemsets with corresponding parameterseas $n [19, 3]. Our
approach searches for itemsets occurring more frequantiyniexhibition period
by optimising (maximising) the relative support over a diggred time interval.
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This has similarities with evolutionary methods for miniaigribute intervals since
we are evolving a temporal element that is also interval thase

Several test runs of the genetic algorithm were used to mé@terthe configura-
tion of parameters. The number of iterations of the genédimrahm is set to 15. The
genetic algorithm’s population is set at 500 individualsl &nis terminated at 200
generations. Elitism accounts for 1% of the new populatemmy produces 25%,
crossover produces 45% and mutation produces 39%. Daspspif the genetic
algorithm’s configuration are now presented.

Iterative Rule Learning The Iterative Rule Learning approach is used where
each chromosome represents a single itemset and the bagbrsdtom numerous
runs of the genetic algorithm is selected. This approadesan the stochastic
process of genetic algorithms to yield different solutios advantage of Iterative
Rule Learning is it produces a reduced rule set, dependinthemumber of
iterations, that contains rules of significant temporaéiest and that are easily
comprehensible. In the case of classical association riengy with no temporal
element, Iterative Rule Learning would aim to evolve a redluile set containing
the most frequent itemsets. We do not penalise the fitnesslafians that have
evolved in previous runs and so permit the same solution tevblved. Doing so
gives a clear indication of the efficacy of evolving a singlelated temporal pattern
that we use as a specific target. The methodology for isgl#tiatarget is explained
in more detail in Section 4.1.

Chromosome Figure 1 shows the configuration of genes in the chromosome.
An integer representation encodes each itgmwhere the ordering of items is
unimportant. Lower and upper endpoirttsandt; respectively, define the edges of
the interval in which the itemset occurs most frequentlye Thromosome length is
fixed allowing only a specified itemset length to evolve orhgan. The itemsets are
evolved first because the measure (temporal support) useédefatifying patterns
evaluates itemsets only. The association rules are thegrgen from the itemsets
by calculating the confidence measure after the geneticitigphas executed.

Fig. 1 Chromosome

Population Initialisation The initial population is randomly generated using the
Mersenne Twister pseudorandom number generator. Setffagetit random seeds
for each run ensures the experiment is repeatable. Uporomapdjenerating an
item in a chromosome, it is checked against other items dyrganerated in the
same chromosome and if the item is present a new number ismdypdenerated
until it is unique. This is repeated for each item in the chosome to ensure
all items are unique. The number of items in the dataset (avgntory) must
be greater than the itemset size otherwise this will resulthromosomes where
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the only difference is the ordering of items. The lower angearpendpoints are
randomly generated using the same method of repeating theemngeneration until
the solution is feasible. The constraint on the endpointeésminimum temporal
support in Equation 3, this is discussed further with theefitnevaluation.

t1 —tp >= min_temp_sup 3)

Fitness Evaluation Fitness is evaluated using the relative support of the ik&éms
over its lifespan. Equation 4 is the temporal support meleitned in [4].

o(X)

S(X,|x) = |)(

(4)

We introducd as a time interval i.ex = [to,t1] wheretg is the lower endpoint
andt; is the upper endpoint. The genetic algorithm maximises teaigupport. A
minimum temporal support [4] is used to prevent evolvingiohs to a minimal
lifespan that only cover one transaction. For examplegapién of 1 covers a single
transaction, this produces a support of 100% for any iteimsanaximum fitness.

Selection Fitness proportionate selection is used to select indalgldrom a
population for copying across to a hew population or apgjygenetic operators.
A method based on roulette wheel selection is employed. Aaanfloat value
is generated between 0 and the sum of all fitness values. Tesditvalues are
then accumulated until the accumulation is greater thanathéom float value. The
individual selected is that which pushes the accumulatimvathe random number.

Genetic Operators Elitism is used to automatically copy over the best indiaidu
from the current population to the next population withaeiestion. A percentage
of individuals are also selected and copied into the nexéggion.

Uniform crossover is adapted to ensure that only feasibigisas are produced,
i.e. combinations of integers without duplicates. The rodtfor crossing over only
the itemsets is presented in Algorithm 1 and the stages avebriefly described.
The advantage of this method is that the ordering of itemsnesrunless a duplicate
is present in the itemset.

Stagel (linesl - 4) Merge the chromosomes from two selected parents into an
intermediate array so that no two items from the same parerddjacent.

Stage2 (lines5-11) Check each item in the array for duplicate values against
the remaining items. If a duplicate is found the duplicagenitis swapped with
the next item. The result is that all duplicate items are ndj@@ent and the items
can now be selected from the intermediate array to form apoffg.

Stage 3 (lines12- 18) Select items from the intermediate array by iterating over
every even index value. A random integer frgdnl] is added to the index and
the indexed item is added to the offspring. If a 0 is genetates checked for
duplicates with the preceding item and if a duplicate is fbitnadds 1 to the
index otherwise it adds 0.
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Arandom integer froni0, 1] determines whether the genes representing the lower
and upper endpoints are copied from a single parent or treegrassed over from
two parents. If they are crossed over then the feasibilitgftsipring is ensured by
satisfying the constraint in Equation 3.

Algorithm 1 Algorithm for performing crossover on itemsets

Require: Parentl.length = Parent2.length
: for i =0 toParentl.length— 1 do
Auxiliary[2i] = Parent1]i]
Auxiliary[2i + 1] = Parent2[i]
end for
. for i =0 toAuxiliary.length— 1 do
for j =i+ 2toAuxiliary.length— 1 do
if Auxiliary[i] = Auxiliary[j] then
exchangduxiliary[j] with Auxiliary[i + 1]
end if
10:  endfor
11: end for
12: for i = 0 toParentl.length— 1 do
13:  ifi > 1 andAuxiliary[2i — 1] = Auxiliary|2i] then

CoNORONE

14: Child[i] = Auxiliary[2i + 1]

15: dse

16: Child[i] = Auxiliary[2i+RANDOM(0,1)
17:  endif

18: end for

To produce a mutated individual, a chromosome is selectedaarandomly
chosen gene is replaced with a randomly created value tfestséble. For the genes
forming the itemset, the value must be unique and the gemeésd@ndpoints must
satisfy Equation 3.

4 Evaluation

To evaluate the efficacy of the proposed approach, sevepariexents have been
conducted on synthetic datasets. The aim is to ascertaithetihe algorithm can
correctly identify areas where association rules occurenfi@quently.
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4.1 Methodology and Datasets

The IBM Quest Synthetic Data Generator [£1as been used to generate a dataset
for experimentation. The generator produces datasetsréfpiitate transactions.
This approach was first used in work that focused on a retait@mment [2]. A
synthetic dataset is chosen rather than a real datasettsodbatrolled experiment
can be conducted to validate the efficacy of our approachvithahl temporal
itemsets that exhibit relatively high support over an eitldb period are isolated
and used as target solutions.

A dataset has been produced with the following features0 X@hsactions, 50
items, an average size of transactions of 10 and a maximirpdéength of 4. A
maximal pattern cannot be part of any rule of greater lerightgs no supersets that
are frequent. There is no guarantee that the generatecttiatertains any temporal
patterns so, to include temporal information, two databeige been augmented
from the original dataset by the following process:

1. Run Apriori algorithm on dataset to produce frequent gets.

2. Select a frequent itemset with desired level of support.

3. Insert the itemset as a transaction near to the centreeafdtaset. Transactions
are constructed exclusively from the entire frequent ietwgth no additional
items so no unexpected correlations between items arelinteal.

The itemsets with maximum support (6.8%) and midrange su§pal%) were
selected as varying levels of difficulty for the experimét@imsets were inserted into
the dataset within bin sizes of 50 so that the lifespan ofemset is of sufficient size
for identifying temporal association rules. Figure 2 shaviéstogram of the original
dataset compared with augmented dataset containing theet¢12, 21, 25, 45
with maximum support. The horizontal axis shows the numliercourrences in
bin sizes of 50. This bin size . This shows the increased oecae of the itemset,
the isolated target, that is to be discovered with the geradtorithm. Figure 3
shows the original dataset against the other augmentededatantaining itemset
{8, 12, 39, 45 with midrange support. The peaks in these figures illustia¢e
more frequent occurrence of itemsets over a relatively Igpeaiod of time that are
target itemsets and intervals.

The itemset with midrange support (3.4%) is chosen becausexpected that
this will be a more difficult dataset for the genetic algamithThe genetic algorithm
is more likely to follow local searches of itemsets becauds likely they have
higher relative support values over the same lengths of iteevals. The support
measure is used to evaluate fithess because this is the mmeddcto augment the
dataset with significant temporal patterns.

1 This is the data generator pioneered in [2] but the originak Iceases to exist
(http://www.almaden.ibm.com/cs/quest/syndata.html)
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Fig. 3 Histogram of itemsef8, 12, 39, 4% with midrange support

4.2 Results

The genetic algorithm was executed 15 times with differemtdom seeds on
both augmented datasets for a maximum of 200 generati@mséts of length 4
were mined because this is the average maximal frequenséiedefined in the
parameters of the dataset generator. The minimum tempapglost was chosen
based on the bin sizes used in the method for augmenting thseals, this was
set to 50. Table 1 shows the evolved itemset from each runitgitorresponding

interval and support values for the dataset augmented héthigh support itemset.
The results for this dataset show the genetic algorithmlistalconsistently evolve
the itemset and the endpoints for the inserted itemset imidgerity of runs. The

suboptimal solutions have much lower temporal support ti@ninserted high
support itemsets. Although the termination criteria waste®00 generations the
best individuals were evolved in far fewer generations.
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Seed Itemset [Lower endpointUpper endpoirffemporal SuppofGeneratioh
0 [{12,21,25,4% 449 502 41.5% 51
1 [{12,21,38,4% 904 960 14.3% 86
2 [{12,21,25,4% 449 502 41.5% 59
3 |{12,21,25,4% 449 502 41.5% 72
4 1{8,12,21,43 691 752 16.4% 37
5 [{12,21,25,4% 449 502 41.5% 49
6 |{12,21,25,4% 449 502 41.5% 35
7 |{12,21,25,4% 449 502 41.5% 45
8 [{12,21,25,4% 449 502 41.5% 60
9 |{12,21,45,48 449 502 41.5% 67
10 [{12,21,38,45% 904 960 14.3% 75
11 | {8,12,21,43 687 738 15.7% 38
12 | {8,12,25,45% 233 283 14.0% 20
13 |{12,21,25,4% 449 502 41.5% 26
14 [{12,21,25,45 449 502 41.5% 63

Table1 Genetic algorithm results of dataset inserted with high supgriset{12, 21, 25, 4%

The results of applying the genetic algorithm to the datasgmented with the
midrange support itemset are presented in Table 2. Thetsesubw the genetic
algorithm is able to evolve the inserted itemset with theesgonding endpoints
(seeds 3 and 14). However, this occurs in only a few runs ofjgmetic algorithm,
many fewer than the previous dataset, suggesting it is a diffieult dataset. The
support value across the entire dataset in Table 2 showsethetig algorithm is
more likely to evolve temporal patterns that are generallyarirequent across the
entire dataset. An itemset with high support occurs moweatly and so temporal
patterns are found of this itemset. The histogram in Figushdws an example
itemset from Table 2 (seeds 4, 5, 7, 12 and 13) with high sumwat low temporal
support (small peak in bin 800) which suggests a local ogtirhas evolved.
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Fig. 4 Histogram of itemse{8, 12, 25, 4% in dataset augmented with midrange support itemset

From the results of executing the genetic algorithm on batiagkts we can see
the optimal solution is evolved. The repeatability of em\solutions varies because
of the stochastic nature of genetic algorithms but it alseegaconsiderably between
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Seed Itemset [Lower endpointUpper endpoirffemporal Suppof[SupporfGeneratioh
0 [{12,21,38,45% 905 961 14.3% 5.7% 38
1 [{1,12,21,4% 902 952 14.3% 5.0% 81
2 [{8,12,21,43 750 801 15.7% 6.1% 92
3 |{8,12,39,4% 550 601 39.2% 5.1% 85
4 |{8,12,25,4% 766 819 17.0% 6.2% 95
5 |{8,12,25,45 766 819 17.0% 6.2% 43
6 |{8,12,21,43 673 735 16.0% 6.1% 39
7 1{8,12,25,45 766 819 17.0% 6.2% 148
8 |{8,12,21,43 673 735 16.1% 6.1% 61
9 [{10,12,21,4% 787 838 13.7% 3.5% 26
10 [{12,21,38,45% 905 961 14.3% 5.7% 28
11 | {8,12,21,43 692 753 16.4% 6.1% 72
12 | {8,12,25,45% 234 284 14.0% 6.2% 76
13 | {8,12,25,45% 766 819 17.0% 6.2% 107
14 | {8,12,39,45% 533 605 38.5% 5.1% 110

Table 2 Genetic algorithm results of dataset inserted with midrangestiiiemset{8, 12, 39,
45}

the two datasets. Low support items with high temporal stpgre more difficult
to discover.

5 Conclusion

In this paper we have presented a novel approach to miningaerhassociation
rules by discovering itemsets with a genetic algorithm. Demetic algorithm
approach is capable of discovering itemsets that occur fregeently over a short
time interval of a transactional dataset. The genetic @&lgormethod is an enhanced
approach for simultaneously searching the itemset spateéeamporal space. The
advantage of this approach is that it does not exhaustivedych the dataset or
require any prior partitioning.

Having identified this method to be capable, future work witlude analysing
its effectiveness in terms of quality of rules produced asdscalability through
comparative analysis with other methods. We will inveggganhancing the fitness
evaluation to reduce the chances of evolving local optinfze Tterative Rule
Learning approach is a promising framework for analysinig quality and, as
already seen, individuals can be penalised to avoid se®ythe same areas of the
fithess landscape. Further experiments on varying the nuoflteansactions and
items will provide insight into scalability. Our methodglphas augmented a single
temporal itemset into a synthetic dataset so future plasigde using a real dataset
to identify meaningful rules.
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