
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2019

Discovering E-commerce Sequential Data Sets and Sequential Discovering E-commerce Sequential Data Sets and Sequential

Patterns for Recommendation Patterns for Recommendation

Raj Bhatta
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Bhatta, Raj, "Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation"
(2019). Electronic Theses and Dissertations. 7686.
https://scholar.uwindsor.ca/etd/7686

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7686?utm_source=scholar.uwindsor.ca%2Fetd%2F7686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation

By

Raj Bhatta

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2019

© 2019 Raj Bhatta

Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation

By

Raj Bhatta

APPROVED BY:

A. Sarker

Department of Mathematics & Statistics

S. Saad

School of Computer Science

C. Ezeife, Advisor

School of Computer Science

April 5, 2019

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and part of this thesis has been

submitted to Big Data Analytics and Knowledge Discovery-DAWAK19 for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other

material from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been submitted

for a higher degree to any other University or Institution.

iv

ABSTRACT

In E-commerce recommendation system accuracy will be improved if more complex sequential

patterns of user purchase behavior are learned and included in its user-item matrix input, to make

it more informative before collaborative filtering. Existing recommendation systems that use

mining techniques with some sequences are those referred to as LiuRec09, ChoiRec12,

SuChenRec15, and HPCRec18. LiuRec09 system clusters users with similar clickstream sequence

data, then uses association rule mining and segmentation based collaborative filtering to select

Top-N neighbors from the cluster to which a target user belongs. ChoiRec12 derives a user’s

rating for an item as the percentage of the user’s total number of purchases the user’s item purchase

constitutes. SuChenRec15 system is based on clickstream sequence similarity using frequency of

purchases of items, duration of time spent and clickstream path. HPCRec18 used historical item

purchase frequency, consequential bond between clicks and purchases of items to enrich the user-

item matrix qualitatively and quantitatively. None of these systems integrates sequential patterns

of customer clicks or purchases to capture more complex sequential purchase behavior.

This thesis proposes an algorithm called HSPRec (Historical Sequential Pattern

Recommendation System), which first generates an E-Commerce sequential database from

historical purchase data using another new algorithm SHOD (Sequential Historical Periodic

Database Generation). Then, thesis mines frequent sequential purchase patterns before using these

mined sequential patterns with consequential bonds between clicks and purchases to (i) improve

the user-item matrix quantitatively, (ii) used historical purchase frequencies to further enrich

ratings qualitatively. Thirdly, the improved matrix is used as input to collaborative filtering

algorithm for better recommendations. Experimental results with mean absolute error, precision

and recall show that the proposed sequential pattern mining-based recommendation system,

HSPRec provides more accurate recommendations than the tested existing systems.

Keywords: Sequential pattern mining, collaborative filtering, historical recommendation system,

sequence product recommendation, techniques for E-commerce recommendation

v

DEDICATION

I would like to dedicate this thesis to my parents (Mr. Durga Prasad Bhatta and Mrs. Saraswoti

Bhatta), sisters (Mrs. Sajana Bhatta and Mrs. Sushila Bhatta), supervisor (Dr. Christie Ezeife) and

my friends who have helped and supported to complete my graduate study at the University of

Windsor.

vi

ACKNOWLEDGEMENT

I would like to give my sincere appreciation to my parents and sisters for their continuous

support and motivation throughout my graduate studies.

I would like to express my sincere gratitude to my advisor Prof. Dr. Chrisite Ezeife for

her continuous support throughout my graduate study. She always provided me a chance to grow

and further enhance research skills by providing a chance to participate and present a paper from

our WODD lab to Big Data Analytics and Knowledge Discovery (DAWAK 2018) conference in

Germany, Regensburg from 3rd of September 2018 to 7th of September 2018. Thank you so much

for your valuable time to read all my thesis updates and providing me financial support through

Research Assistantship (R.A.) throughout my study.

Besides my advisor, I would like to thank my thesis committee: Prof. Dr. Animesh Sarker

(external reader), Prof. Dr. Sherif Saad (internal reader) and Prof. Dr. Asish Mukhopadhyay

(Chair) for their insightful comments and encouragement.

Finally, I would express my appreciations to all my friends and colleagues at the University of

Windsor, especially Mrs. Sravya Vangala and Ms. Mahreen Nasir Butt for their support and

encouragement. Thank you all.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

DEDICATION... v

ACKNOWLEDGEMENT ... vi

LIST OF TABLES .. x

LIST OF FIGURES ... xiii

LIST OF EQUATIONS ... xiv

CHAPTER 1: INTRODUCTION .. - 1 -

1.1 Sequential Pattern ... - 2 -

1.2 Sequential database .. - 2 -

1.3 Sequential Pattern Mining .. - 3 -

1.4 E-commerce Data Types .. - 6 -

1.4.1 E-commerce historical data... - 6 -

1.4.2 E-commerce clickstream data ... - 6 -

1.5 Consequential Bond (CB) .. - 7 -

1.6 Types of E-commerce Recommendation Systems ... - 7 -

1.7 Collaborative Filtering in E-commerce .. - 8 -

1.7.1 User- based collaborative filtering .. - 9 -

1.8 Goal of E-commerce Recommender System ... - 11 -

1.9 Need of Sequential Purchase Data in E-commerce Recommendation - 12 -

1.10 Data Mining.. - 12 -

1.10.1 Clustering .. - 13 -

1.10.2 Classification... - 15 -

1.10.3 Association Rule ... - 16 -

1.11 Existing E-commerce Recommendation Systems.. - 18 -

1.11.1 Summary of some close existing E-commerce recommendation systems - 22 -

1.12 Problem Definition ... - 23 -

1.13 Thesis Contribution .. - 23 -

1.13.1 Thesis feature contributions .. - 24 -

1.12.2 Thesis procedural contributions .. - 25 -

viii

1.14 Outline of Thesis .. - 26 -

CHAPTER 2: RELATED WORK .. - 27 -

2.1 E-commerce Recommendation Systems .. - 27 -

2.1.1 E-commerce recommendation system based on navigational and behavioral

patterns by Kim, Yum, Song, & Kim, 2005 (KimRec05) ... - 27 -

2.1.2 A hybrid of sequential rules and collaborative filtering for product recommendation

by Liu, Lai, and Lee, 2009 (LiuRec09) ... - 29 -

2.1.3 A time-based approach to effective E-commerce recommender systems using

implicit feedback by Lee, Park, & Park, 2008 ... - 32 -

2.1.4 Recommender system based on click stream data using association rule mining by

Kim, & Yum, 2011 .. - 34 -

2.1.5 Combining collaborative filtering and sequential pattern mining for

recommendation by Li, Niu, Chen, & Zhang, 2011 .. - 36 -

2.1.6 Implicit rating-based collaborative filtering and sequential pattern analysis for E-

commerce recommendation by Choi, Keunho, Yoo, Kim, & Suh, 2012 (ChoiRec12) - 39 -

2.1.7 Interest before liking: Two-step recommendation approaches by Zhao, Niu &

Chen, 2013 ... - 43 -

2.1.8 Discovering e-commerce interest patterns using click-stream data by Su & Chen,

2015 (SuChenRec15) ... - 45 -

2.1.9 E-Commerce Product Recommendation Using Historical Purchases and

Clickstream Data by Xiao & Ezeife, 2018 (HPCRec18) ... - 48 -

2.2 Sequential Pattern Mining Algorithms ... - 51 -

2.2.1 GSP (Generalized sequential pattern mining) algorithm - 51 -

2.2.2 PrefixSpan (Prefix-projected sequential pattern mining) algorithm - 53 -

2.2.3 SPADE (Sequential Pattern Discovery using Equivalence classes) algorithm .. - 55 -

CHAPTER 3: PROPOSED SYSTEM TO GENERATE SEQUENCE DATASET FOR E-

COMMERCE RECOMMENDATION .. - 58 -

3.1 Problem Definition ... - 58 -

3.2 Proposed Historical Sequential Recommendation- (HSPRec) System - 58 -

3.2.1 HSPRec: Periodic Sequential Database Generation Module - 63 -

3.2.2 HSPRec: Sequential Pattern Rule (SPR) Module ... - 66 -

3.2.3 HSPRec: Click Purchase Similarity (CPS) Module.. - 67 -

3.2.4 HSPRec: Weighted Frequent Purchase Pattern Miner (WFPP) Module - 68 -

ix

3.2.5 HSPRec: User-item Matrix Normalization ... - 69 -

3.3 Architecture of Proposed System ... - 70 -

3.4 Example of HPCRec VS HSPRec system ... - 71 -

3.4.1 Xiao & Ezeife, 2018 (HPCRec18) .. - 72 -

3.4.2 Example of purposed HSPRec .. - 74 -

CHAPTER 4: EXPERIMENTAL EVALUATION AND ANALYSIS - 79 -

4.1 Historical Purchase Dataset Selection .. - 79 -

4.2 Dataset Evaluations .. - 79 -

4.2.1 Evaluation parameters ... - 80 -

4.2.2 Result evaluation and analysis .. - 82 -

4.2.3 Accuracy evaluation using precision .. - 83 -

4.3 Complexity Analysis .. - 84 -

4.3.1 Time complexity analysis of HSPRec algorithm .. - 84 -

4.4 Implementation and Coding ... - 85 -

CHAPTER 5: CONCLUSION AND FUTURE WORK ... - 86 -

REFERENCES .. - 87 -

VITA AUCTORIS .. - 92 -

x

LIST OF TABLES

Table 1.1: E-commerce historical data ... - 3 -

Table 1.2: Daily sequential database created from historical purchase - 3 -

Table 1.3: Sequence database representing customer purchase .. - 4 -

Table 1.4: Candidate set (C2) generated from L1 GSP join L1 .. - 4 -

Table 1.5: 2-frequent sequences ... - 5 -

Table 1.6: Example to demonstrate merging of two sequences in GSP - 5 -

Table 1.7: n-frequent sequences generated by GSP algorithm ... - 5 -

Table 1.8: E-commerce historical data ... - 6 -

Table 1.9: Clickstream E-commerce data ... - 7 -

Table 1.10: User-item matrix for illustration of user based collaborative filtering - 8 -

Table 1.11: Input data to clustering algorithm .. - 14 -

Table 1.12: Maximum and minimum cluster centroids .. - 14 -

Table 1.13: Table showing computation of Euclidean distance ... - 14 -

Table 1.14: Table showing update of centroid in new cluster in K-means method - 14 -

Table 1.15: Cluster created by K-means method .. - 15 -

Table 1.16: Dataset to be classified by the decision tree .. - 15 -

Table 1.17: Transactional data to mine by Apriori algorithm .. - 17 -

Table 1.18: User-item rating matrix.. - 18 -

Table 1.19: User-item purchased matrix generated from rating information - 18 -

Table 1.20: Normalized user-item frequency matrix created by Xiao & Ezeife, 2018 - 21 -

Table 1.21: E-commerce data containing consequential bond of click and purchase - 21 -

Table 1.22: Table showing existing E-commerce recommendations - 23 -

Table 2.1: E-commerce data parameters and their description ... - 27 -

Table 2.2: E-commerce transactional data .. - 29 -

Table 2.3: E-commerce data clustering using RFM value .. - 30 -

Table 2.4: transaction clustering of E-commerce data .. - 30 -

Table 2.5: Transaction sequence clustering .. - 30 -

Table 2.6: Customer transaction cluster.. - 31 -

Table 2.7: Association rules created from customer transaction cluster - 31 -

Table 2.8: Pseudo rating matrix .. - 32 -

Table 2.9:Pseudo rating matrix with temporal information .. - 33 -

Table 2.10: Pseudo rating matrix with rating function w(pi,lj) ... - 33 -

Table 2.11: Predefined rating function w ... - 33 -

Table 2.12: User-item rating matrix constructed from pseudo rating matrix - 33 -

Table 2.13: E-commerce clickstream data .. - 34 -

Table 2.14: User-item rating matrix for Niu, Chen, & Zhang, 2011 recommendation system - 36 -

Table 2.15: Mean centering user-item rating matrix .. - 36 -

Table 2.16: Item-item similarity of mean centered rating matrix 2.16 - 37 -

Table 2.17: Table showing similar item of current item ... - 37 -

xi

Table 2.18: Prediction rating matrix ... - 38 -

Table 2.19: Sequence database created by using rating value in descending order - 38 -

Table 2.20: n-frequent sequence for Li, Niu, Chen, & Zhang, 2011 recommendation - 38 -

Table 2.21: Choi, Keunho, Yoo, Kim, & Suh, 2012 historical user-item matrix - 39 -

Table 2.22: Implicit rating derived from user’s transactions .. - 40 -

Table 2.23: possible list of 2-items generated from frequent purchase (L1) - 41 -

Table 2.24: Frequent 2-item generated from candidate set (C2) ... - 41 -

Table 2.25: Table showing integration of CFPP and SPAPP ... - 42 -

Table 2.26: User-item rating matrix for Zhao, Niu & Chen, 2013 recommendation system ... - 43 -

Table 2.27: User-item matrix showing mean rating of users on items - 43 -

Table 2.28: User-item binary matrix showing rated and unrated items - 44 -

Table 2.29: Normalized user-item rating matrix... - 44 -

Table 2.30: Table showing item-item similarity ... - 44 -

Table 2.31: User-category frequency matrix .. - 46 -

Table 2.32: User spend time on category .. - 47 -

Table 2.33: User-category relative duration matrix .. - 47 -

Table 2.34: Users browsing path .. - 48 -

Table 2.35: Consequential table on left and purchase frequency table on right - 49 -

Table 2.36: Non-normalized user-item matrix on left and normalized matrix on right - 49 -

Table 2.37: Weighted transactional table of purchase set created from consequential bond ... - 50 -

Table 2.38: Weighted frequent transaction table .. - 50 -

Table 2.39: Support for item present in weighted frequent transaction table - 50 -

Table 2.40: Weight for item present in purchase pattern .. - 50 -

Table 2.41: Sequence Database representing customer purchase ... - 51 -

Table 2.42: Candidate set (C2) generated from L1 GSP join L1 .. - 52 -

Table 2.43: n-frequent sequences generated by GSP from sequence database - 52 -

Table 2.44: Sequence input database for prefixSpan .. - 53 -

Table 2.45: support for singleton sequences ... - 53 -

Table 2.46: Project database of sequence database .. - 54 -

Table 2.47: Projected database of sequence <(D)> .. - 54 -

Table 2.48: Frequencies of item presented in projected database of sequence <(D)> - 54 -

Table 2.49: project database of sequence <(D), (B)> and <(D), (C)> - 55 -

Table 2.50: Frequencies of item present in projected database of sequence <(D), (C)> - 55 -

Table 2.51: Projected database of sequence <(D), (C), (B)> .. - 55 -

Table 2.52: Input sequential database for SPADE.. - 56 -

Table 2.53: Vertical data format of sequence database .. - 56 -

Table 2.54: Frequent 1-sequence with event ID and item ID ... - 56 -

Table 2.55: Process of generating 2-frequent sequences in SPADE .. - 57 -

Table 2.56: n-frequent sequences generated by SPADE algorithms .. - 57 -

Table 3.1 :User-item purchase frequency matrix created from historical data - 60 -

xii

Table 3.2: Daily purchase sequential database ... - 60 -

Table 3.3: Enhanced user-item purchase frequency matrix .. - 61 -

Table 3.4: Consequential bond of sequence of click and purchase .. - 61 -

Table 3.5: Click sequential database ... - 62 -

Table 3.6: Weighted purchase patterns ... - 62 -

Table 3.7: Quantitatively rich user-item purchase frequency matrix - 62 -

Table 3.8: Normalized enrich user-item purchase frequency matrix .. - 63 -

Table 3.9: Historical E-commerce purchase data ... - 64 -

Table 3.10:Sequential database created from historical transactional data - 65 -

Table 3.11: Alternative representation of daily purchase sequential database - 65 -

Table 3.12: Weighted purchase pattern .. - 68 -

Table 3.13: Historical Click data .. - 71 -

Table 3.14: Historical purchase data ... - 71 -

Table 3.15: Consequential table from click and purchase historical data - 71 -

Table 3.16: User-item frequency matrix from purchase historical data - 72 -

Table 3.17: Normalized user-item frequency matrix .. - 72 -

Table 3.18: Weighted transactional table.. - 73 -

Table 3.19: Quantitatively rich normalized user-item frequency matrix - 73 -

Table 3.20: User-item frequency matrix created from historical purchase - 74 -

Table 3.21: Daily purchase sequential database created from historical transaction data - 74 -

Table 3.22: Sequential rule created from n-frequent sequences ... - 74 -

Table 3.23: Rich user-item frequency matrix created with help of sequential rule - 75 -

Table 3.24: Sequential database created from consequential table ... - 75 -

Table 3.25: Sequential rule created from n-frequent sequences ... - 76 -

Table 3.26: Recommend item for click when purchase is not happened - 76 -

Table 3.27: CPS similarity using click and purchase ... - 77 -

Table 3.28: Weighted purchase patterns ... - 77 -

Table 3.29: Support for item present in weighted purchase patterns .. - 77 -

Table 3.30: Rich user-item purchase frequency matrix .. - 78 -

Table 3.31: Quantitatively rich purchase user-item purchase frequency matrix - 78 -

Table 4.1: Actual rating and predicted rating user-item matrix .. - 80 -

Table 4.2: Confusion matrix for recommendation system.. - 80 -

Table 4.3: Precision evaluation with respect to different number of users - 83 -

xiii

LIST OF FIGURES

Figure 1.1: Decision tree for classification ... - 16 -

Figure 1.2: Improved user-item matrix on the right and traditional matrix on the left - 19 -

Figure 1.3: Historical sequential recommendation (HSPRec) .. - 24 -

Figure 2.1: Decision tree to show click and basket placement probability - 28 -

Figure 2.2: a) conventional recommendation system and b) Kim recommendation system - 28 -

Figure 3.1: Architecture of HSPRec showing modules and flow ... - 70 -

Figure 4.1: Historical purchase data (Amazon data) .. - 79 -

Figure 4.2: Function to compute mean absolute error (MAE).. - 80 -

Figure 4.3: Function to compute precision ... - 81 -

Figure 4.4: Function to compute recall ... - 82 -

Figure 4.5: Evaluation of HSPRec with respect to precision, recall and mean absolute error . - 83 -

xiv

LIST OF EQUATIONS

Equation 1.1: Formula to Compute Cosine similarity .. - 9 -

Equation 1.2: Formula to compute Pearson Correlation coefficient ... - 9 -

Equation 1.3: Equation to compute mean rating ... - 10 -

Equation 1.4: Euclidean distance formula .. - 13 -

Equation 1.5: Equation to compute support of itemset i ... - 17 -

Equation 1.6: Equation to compute confidence of itemset i ... - 17 -

Equation 2.1: Association rule to mine customer behavior in LiuRec09 - 31 -

Equation 2.2: Formula to match target user purchase in LiuRec09 .. - 32 -

Equation 2.3: Equation to count support... - 34 -

Equation 2.4: Equation to compute lift value ... - 35 -

Equation 2.5: Pearson Correlation coefficient to compute similarity - 37 -

Equation 2.6: Equation to compute predicted rating in item-item similarity - 37 -

Equation 2.7: CF-based predicted preference ... - 40 -

Equation 2.8: Formula to compute hits of user on item and category - 45 -

Equation 2.9: Formula to compute frequency of hit ... - 45 -

Equation 2.10: Cosine similarity function to compute frequency similarity - 46 -

Equation 2.11: Formula to compute relative duration .. - 46 -

Equation 2.12: Cosine similarity function to compute duration similarity - 47 -

Equation 2.13: Equation to compute path similarity .. - 48 -

Equation 2.14: Equation to compute the total similarity .. - 48 -

Equation 2.15: Unit vector formula to normalize purchase frequency - 49 -

Equation 2.16: Longest common subsequence rate .. - 49 -

Equation 2.17: Longest common sequence (LCS) ... - 50 -

Equation 3.1: Sequential Pattern Rule generated from n-frequent sequences - 66 -

Equation 3.2: Sequence similarity function .. - 67 -

Equation 3.3: Cosine similarity function .. - 67 -

Equation 3.4: Formula to compute weight in WFPPM .. - 68 -

Equation 3.5: Unit normalization function ... - 69 -

- 1 -

CHAPTER 1: INTRODUCTION

Recommendation systems provide a suggestion of items to the user in various decision-

making processes such as what item to buy, what movies to watch, what music to listen to what

online news to read (Ricci, Rokach, & Shapira, 2011). The main goal of the recommendation

system is to generate meaningful recommendations to a user for items that might interest them.

One of the important applications of recommendation systems is in the e-commerce domain.

Recommendation system in e-commerce helps to model the business process through analysis of

customer requirements or their purchase behaviors (Schafer, Frankowski, Herlocker, & Sen,

2007). Recommendation systems use data mining technologies such as classification, clustering,

association rule mining, frequent pattern mining, and sequential pattern mining to generate a

meaningful representation of user purchase data (Han, Pei, & Kamber, 2011).

Traditionally, collaborative filtering was one of the most widely used recommendation technique,

and it depends on explicit rating of items provided by users, but many users may not be ready to

provide the items ratings. To resolve the rating problem, some implicit rating techniques (Choi,

Keunho, Yoo, Kim, & Suh, 2012) derived from user behaviors (for example, purchases, clicks)

across E-commerce and clickstream data analysis techniques (Kim, Yum, Song, & Kim, 2005),

(Liu, Lai, &Lee,2009) are used. However, users purchase behaviors are always dynamic in nature

and purchase of items may be different in each purchase. So, one of the main challenges in the

field of recommendation system is to integrate sequential patterns of purchases with collaborative

filtering because collaborative filtering finds closest neighbors between users or items without

considering i) sequential purchase patterns ii) click and purchase behaviors iii) possible reasons

for changes in user purchase habits. Various recommendation techniques such as collaborative

filtering, content-based, and hybrid collaborative filtering approaches have been developed. While

Collaborative filtering (CF) does not take into account the properties of the items but uses only the

preference (rating or voting) provided by users for items, the content-based approach makes

recommendation based on the user profiles (such as age, class) and product features (such as price,

product attributes). These user or item features serve as contents that can be modeled to discover

the relationship between different items similarity values using Vector Space Model such as Term

Frequency Inverse Document Frequency (TF-IDF), or Probabilistic models such as Naïve Bayes

Classifier, Decision Trees or Neural Networks extracted from those contents. Hybrid approach

allows recommendation both collaborative filtering and content-based approach to be used for

- 2 -

recommendation and can serve to solve the cold start problem when there is no rating information

for by a user on an item. However, such approaches suffer from a major drawback because they

are not able to capture the E-commerce domain with sequential information of customer purchase

behavior. Furthermore, sequential data may be available in a historical form, clickstream form. So,

one of the main challenges in E-commerce recommendation is to generate the best

recommendation suggestions from historical or clickstream sequential data to capture customer

shopping behavior with respect to time.

1.1 Sequential Pattern

Sequential patterns are ordered set of items (events) that are occurring with respect to time

(Agrawal & Srikant, 1996). A sequential pattern is denoted in the angular bracket (< >), and each

itemset contains sets of items, where each item enclosed in parenthesis () separated by commas

represents a set of items purchased at the same time. For example, E-commerce sequential pattern

< (Bread, Milk), (Bread, Milk, Sugar), (Milk), (Tea, Sugar)> means customer bought Bread and

Milk together on first purchase, then bought Bread, Milk, and Sugar together on second purchase,

then bought Milk on third purchase, and finally, bought Tea and Sugar together on fourth purchase.

A sequential pattern with n-itemsets is called an n-events sequence. For example, if we consider

only 2-itemsets, then we will have 2-events sequence such as <(Bread), (Milk)> or < (Bread), (Tea,

Milk)>. Additionally, an item can occur at most once in an event (itemset) but can occur multiple

times in different events (itemsets) within the same sequential pattern. Thus, the number of

instances of items in a sequence is called the length of a sequence. For example, < (Bread, Milk),

(Bread, Milk, Sugar), (Milk), (Tea, Sugar)> is 4-events sequence with length 8.

1.2 Sequential database

Sequence database is composed of a collection of sequences {s1, s2,…,sn} that are arranged with

respect to time (Han, Pei & Kamber, 2011). A sequence database can be represented as a tuple

<SID, sequence-item sets>, where SID: represents the sequence identifier and sequence-item sets

specifies the sets in item enclosed in parenthesis (). For example, let us consider an example of E-

commerce historical daily purchase data of grocery store as shown in Table 1.1, which contains

CustomerID to represents a customer, PurchasedItem to represents a set of purchase items by

customers and Timestamp to represents a time when purchased occurred.

- 3 -

CustomerID PurchasedItem Timestamp

01 Bread, Milk 13, Dec 2018 00:48:44

02 Bread 14, Dec 2018 1:48:44

01 Bread, Milk, Sugar 18, Dec 2018 10:48:44

02 Sugar, Tea 21, Dec 2018 09:48:44

01 Milk 19, Dec 2018 00:48:44

01 Tea, Sugar 22, Dec 2018 00:48:44

Table 1.1: E-commerce historical data

The daily sequential database created from historical data (Table 1.1) is present in Table 1.2,

where SID represents the sequence identity. As we can see in Table 1.2, SID(01) contains

<(Bread, Milk),(Bread, Milk, Sugar),(Milk),(Tea, Sugar)>, which means customer (01) first

purchased Bread and Milk together then purchased Bread, Milk and Sugar together in second

purchase and Milk in third purchase. Finally, Tea and Sugar together at last purchase.

SID Sequences

01 <(Bread, Milk),(Bread, Milk, Sugar),(Milk),(Tea, Sugar)>

02 <(Bread),(Sugar, Tea)>

Table 1.2: Daily sequential database created from historical purchase

1.3 Sequential Pattern Mining

Sequential pattern mining algorithm (for example, Generalized Sequential Pattern (GSP)

(Agrawal & Srikant, 1996)) discover repeating patterns (known as frequent sequences) from

input E-commerce historical sequential database that can be used later to analyze the user purchase

behavior by finding the association between items. In other words, it is a process of extracting

sequential patterns whose support exceeds a predefined minimum support threshold. Formally,

Given (i) a set of sequential records (called sequences) representing a sequential database D, (ii) a

minimum support threshold (iii) a set of k unique items or events I = {i1, i2, . . . , ik}, the problem

of mining sequential patterns is of finding the set of all frequent sequences S in the given sequence

database D of items I at the given minimum support. The details of different types of sequential

pattern mining algorithms are present in section 2.2.

Example of sequential pattern mining using GSP algorithm

GSP (Generalized Sequential Pattern) is an Apriori-like sequential pattern mining algorithm

(Agrawal & Srikant, 1996) which counts supports for each k-sequence in the candidate k-

sequence (Ck) to find frequent k-sequence (Fk) after a pruning step to remove sequences not

- 4 -

meeting the Apriori property. The Apriori property is used to prune candidate sequential patterns

whose subsets are not already frequent in earlier rounds as these patterns cannot be frequent and

there is no need to scan the database for their support count. The GSP algorithm then generates

candidate (k+1)-sequences from (Fk) sequences as Fk GSP-join Fk. The algorithm iterates between

the candidate generate and prune step, and support count step until either a Cm or an Fn step

generates an empty set. Details about the GSP-join operation are illustrated further through an

example. Let us, consider daily sequential database (Table 1.3) as input, minimum support=2

and candidate set (C1) = {A, B, C, D, E, F, G}.

SID Sequences

1 <(A),(B),(FG),(C),(D)>

2 <(B),(G),(D)>

3 <(B),(F),(G),(A,B)>

4 <(F),(A,B),(C),(D)>

5 <(A),(B,C),(G),(F),(D,E)>

Table 1.3: Sequence database representing customer purchase

Step 1: Find 1- frequent sequence (L1) to keep only sequence with occurrence or support count in

the database greater than or equal to minimum support. For example, L1= {<(A):4>, <(B):5>,

<(C):3>, <(D):4>, <(F):4>, <(G):4>}.

Step 2: Generate candidate sequence (Ck=2) using L1 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L1

To generate larger candidate set 2, use 1-frequent sequences found in step 1, which can be written

as L (k-1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L (k-1) and it requires every sequence (W1) found in first L (k-1) joins with other

sequence (W2) in the second, if subsequences obtained by removal of first element of W1 and last

element of W2 are same. In our case, the possible 2-length candidate (Ck=2) sets generated using

𝐺𝑆𝑃𝑗𝑜𝑖𝑛 are present in Table 1.4.

<(A),(A)> <(A),(B)> <(A),(C)> <(A),(D)> <(A),(F)> <(A),(G)>

<(B),(A)> <(B),(B)> <(B),(C)> <(B),(D)> <(B),(F)> <(B),(G)>

<(C),(A)> <(C),(B)> < (C),(C)> <(C),(D)> <(C),(F)> <(C),(G)>

<(D),(A)> <(D),(B)> <(D),(C)> <(D),(D)> <(D),(F)> <(D),(G)>

<(F),(A)> <(F),(B)> <(F),(C)> <(F), (D)> <(F),(F)> <(F),(G)>

<(G),(A)> <(G),(B)> <(G),(C)> <(G),(D)> <(G),(F)> <(G),(G)>

<(A,B)> <(A,C)> <(A,D)> <(A,F)> <(A,G)> <(B,C)>

<(B,D)> <(B,F)> <(B,G)> <(C,D)> <(C,F)> <(C,G)>

<(D,F)> <(D,G)> <(F,G)>

Table 1.4: Candidate set (C2) generated from L1 GSP join L1

- 5 -

Step 3: Find 2- frequent sequences (L2) by counting occurrence of 2-sequences in candidate

sequence (C2) to keep only sequence with occurrence or support count in the database greater than

or equal to minimum support. For example,

L2=

Table 1.5: 2-frequent sequences

Step 4: Generate candidate sequence (Ck=3) using L2 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L2

Use same candidate generation technique used in Step 2. An example of two sequences merged is

present in Table 1.6.

W1 Sequence W2 Sequence Merged Sequence

<(A),(B)> <(B),(C)> <(A), (B), (C)>

<(A), (B,C)> <(B,C), (D)> <(A), (B,C), (D)>

Table 1.6: Example to demonstrate merging of two sequences in GSP

Step 5: Find 3- frequent sequences (L3) to keep sequences with occurrence or support count in the

database greater than or equal to minimum support. For example, L3= {< (F), (C), (D)>, < (B), (G),

(D)>, < (B), (F), (D)>, < (B), (C), (D)>, < (A), (G), (D)>, < (A), (F), (D)>, < (A), (C), (D)>}.

Step 6: Repeat process of candidate generation and pruning until result of candidate generate (Ck)

and prune (Lk) for finding frequent sequence is an empty set.

Output: Finally, the output frequent sequences are union of L1 U L2 U L3 U L4

1-Frequent

Sequences

2-Frequent Sequences 3-Frequent Sequences 4-Frequent Sequences

<(A)>, <(B)>,

<(C)>, <(D)>,

<(F)>, <(G)>

<(A), (B)>, < (A, B)>, <(A),

(C)>, <(A), (D)>, <(A), (F)>,

<(A), (G)>, <(B), (C)>, <(B),

(D)>, <(B), (F)>, <(B), (G)>,

<(C), (D)>, <(F), (A)>, <(F),

(B)>, <(F), (C)>, <(F), (D)>,

<(G), (D)>

<(F), (C), (D)>

<(B), (G), (D)>

<(B), (F), (D)>

<(B), (C), (D)>

<(A), (G), (D)>

<(A), (F), (D)>

<(A), (C), (D)>

<(A), (B), (G)>

<(A), (B), (F)>

<(A), (B), (D)>

<(A), (B), (G), (D)>

<(A), (B), (F), (D)>

Table 1.7: n-frequent sequences generated by GSP algorithm

<(A), (B)> <(A, B)> <(A), (C)> <(A), (D)> <(A), (F)> <(A), (G)>

<(B), (C)> <(B), (D)> <(B), (F)> <(B), (G)> <(C), (D)> <(F), (A)>

<(F), (B)> <(F), (C)> <(F), (D)> <(G), (D)>

- 6 -

1.4 E-commerce Data Types

1.4.1 E-commerce historical data

E-commerce historical data consists of a list of items clicked and/or purchased by a user over a

specific period of time. A fragment of E-commerce historical database data is present in Table

1.8 with schema {Uid, Click, Clickstart, Clickend, Purchase, Purchasetime}, where Uid represents

User identity, Click represents a set of items clicked by a user, Clickstart and Clickend represent

the timestamp when user started clicking item and when click is terminated. Furthermore, Purchase

contains a set of items purchased by a user and Purchasetime represents timestamp when purchase

happened.

Table 1.8: E-commerce historical data

1.4.2 E-commerce clickstream data

Clickstream data represents the visitors’ paths through E-commerce sites. A series of E-commerce

pages visited by a user in a single visit is referred to as a session. Clickstream data in an E-

commerce environment is a collection of sessions. Clickstream data can be derived from raw page

requests (referred to as hits) and their associated information (such as timestamp, IP address, URL,

status, number of transferred bytes, referrer, user agent, and, sometimes, cookie data) recorded in

Web server log files (Bucklin & Sismeiro, 2009). Analysis of clickstreams shows how an E-

commerce site is navigated and used by E-commerce users. In an E-commerce environment,

clickstreams in online stores provide information essential to understanding the effectiveness of

marketing and merchandising efforts, such as how customers find the store, what products they

see, and what products they buy. Analyzing such information embedded in clickstream data is

critical to improve the effectiveness of recommendation in online stores. An example of E-

commerce Clickstream data is present in Table 1.9.

Uid Click Clickstart Clickend Purchase Purchasetime

1 1,2,3 2014-04-04 11:25:14 2014-04-04 11:45:19 1, 2 2014-04-04 11:30:11

1 7,5,3 2014-04-05 15:30:07 2014-04-05 15:59:36 3 2014-04-05 15:56:32

2 1, 4 2014-04-13 4:01:11 2014-04-13 4:30:15 1, 4 2014-04-13 04:04:34

2 1, 2,5, 6 2014-04-17 11:30:18 2014-04-17 11:50:19 1, 2,5, 6 2014-04-17 11:44:55

3 5 2014-04-23 11:00:05 2014-04-23 11:20:15 5 2014-04-23 11:06:37

4 6,6,7 2014-04-26 9:45:11 2014-04-26 10:20:13 6, 7 2014-04-26 10:06:37

5 1,5 2014-04-27 16:30:25 2014-04-27 16:45:45 ?

- 7 -

Session ID Timestamp ItemID CategoryID

*****Ef4d7 2018-08-24T22:38:13+00:00 2145456502 3

*****Ef4d7 2018-08-24T20:38:12+00:00 21453650011 4

*****Ef4d7 2018-08-24T23:38:10+00:00 214536503 1

*****KM5M7 2018-08-24T22:38:14+01:00 2145775612 2

*****KM5M7 2018-08-24T22:38:14+03:03 2146627421 4

*****KM5M7 2018-08-24T22:38:14+04:05 214662742 6

*****KM5M7 2018-08-24T22:38:14+05:07 214825110 3

Table 1.9: Clickstream E-commerce data

The clickstream data given in Table 1.9, consists of session ID (*****Ef4d7, *****KM5M7)

which represents user identity, timestamp (2018-08-24T23:38:10+00:00) represents the time when

item visited, ItemID (2146627421, 214662742) represents the item visited by the user and

CategoryID represents a category (e.g., milk belongs to dairy category) where items belong.

1.5 Consequential Bond (CB)

E-commerce data contains information’s of clicks and purchases referred to as a consequential

bond, and it is introduced by Xiao and Ezeife, 2018 in their HPCRec18 system. The term

consequential bond is originated from the concept that customer who will click some items will

ultimately purchase an item from a list of clicks in most of the cases. For example, historical data

present in Table 1.8 shows that user 1 clicked items {1, 2, 3} and ultimately purchased {1, 2};

thus, there is a relationship between click and purchase.

1.6 Types of E-commerce Recommendation Systems

Based on how recommendations are made, recommender systems are usually classified into three

categories:

1. Content-based filtering (CBF): It is based on the analysis of the attributes of items to generate

predictions (Ekstrand, Riedl & Konstan, 2011). In other words, a recommendation is made

based on the user profiles using features extracted from the content of the items the user has

evaluated in the past. The CBF uses different types of models to find a similarity to generate a

meaningful recommendation. The similarity could use Vector Space Model such as Term

Frequency Inverse Document Frequency (TF-IDF) or Probabilistic models such as Naïve

Bayes Classifier, Decision Trees or Neural Networks to model the relationships. The major

- 8 -

disadvantage of this technique is the need to have in-depth knowledge and description of the

features of the items in the profile.

2. Collaborative filtering (CF): Collaborative filtering (CF) does not take into account the

properties of the items but only the preference (rating or voting) provided by users for items

(Aggarwal & Charu, 2016). Thus, CF predicts rating of items using either a user-based or

item-based approach. The user-based CF is based on the similarity between users, and items

and item-based CF is based on the similarity between items and items. The similarity is

computed by using one of the similarity measures such as (Cosine similarity, Pearson

Correlation Coefficient and Jacquard similarity) then these similarity values are used to predict

the unknown ratings of a user on an item using Top-N neighbors. The major problems of CF

are cold start, sparsity, and scalability.

3. Hybrid filtering: Both CF and CBF have their benefits and demerits; therefore, if we combine

both of them together, then the benefits of both can be used to overcome the demerits of others

(Kumar & Fan, 2015). For example, CF provides recommendations using rating matrix now

what happens when there is no rating given by a user (new user) then in such case the contents

of user-item (CBF filtering) can be used with CF for recommendations.

1.7 Collaborative Filtering in E-commerce

Collaborative filtering makes a recommendation to a target customer based on the purchase

behavior of customers whose preference is similar to a target customer. It is one of the widely used

recommendation technique. Given a user-item rating matrix-R (such as Table 1.10),

 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Mean rating

User A 7 6 7 4 5 4 33/6

User B 6 7 ? 4 3 4 24/5

User C ? 3 3 1 1 ? 8/4

User D 1 2 2 3 3 4 15/6

User E 1 ? 1 2 3 3 10/5

Table 1.10: User-item matrix for illustration of user based collaborative filtering

where a value of matrix is a rating 𝑟𝑢𝑗𝑖𝑘
, where uj represents user j as in {u1, u2, . . . , uj} and ik

represents item k as in { i1, i2, . . . , ik}. Furthermore, the rating can be either an explicit rating or

an implicit rating. Goal of collaborative filtering is to predict unknown rating 𝑟𝑢𝑖 of useru on itemi

through following four major steps (Aggarwal & Charu, 2016):

- 9 -

1. Compute the mean rating for all user uj using all of their rated items.

2. Calculate the similarity between the target user (v) and all other users uj. Similarity can be

computed with Cosine Similarity (v,uj) or Pearson Correlation Coefficient function.

3. Find similar users of the target user (v) as Top-N users’.

4. Predict rating for the target user (v) for item i using only rating of v’s Top-N peer group.

There are two types of collaborative filtering, user based and item based collaborative filtering.

User-based collaborative filtering takes the ratings from similar users of the target user whereas

item-based collaborative filtering considers the ratings from similar items of the target item.

1.7.1 User- based collaborative filtering

User-based collaborative filtering uses ratings of similar users for making a recommendation to a

target user. The necessary algorithm of user-based collaborative filtering along with a running

example is given below:

Input: user-item rating matrix R, containing 𝑟𝑢𝑗𝑖𝑘
, where uj represents user j as in {u1, u2, . . . , uj}

and ik represents item k as in { i1, i2, . . . , ik}.

Output: Predicted ratings for previously unknown rating.

Major steps of collaborative filtering using user-based neighborhood method (Aggarwal &

Charu, 2016) are:

1. Compute the mean rating for all user uj using all of their rated items.

2. Calculate the similarity between the target user (v) and all other users uj. Similarity can

be computed by Cosine Similarity or Pearson Correlation coefficient function as given in

Equation 1.1 and Equation 1.2.

Cosine (u, v)=
𝑢⃗⃗ . 𝑉⃗⃗⃗

||𝑢||.||𝑣||
 =

𝑟𝑢1 ⋅ 𝑟𝑣1 + 𝑟𝑢2 ⋅ 𝑟𝑣2+ … +𝑟𝑢𝑛 ⋅ 𝑟𝑣𝑛

√𝑟𝑢1
2+𝑟𝑢2

2+⋯+𝑟𝑢𝑛
2 ∗ √𝑟𝑣1

2+𝑟𝑣2
2+⋯+𝑟𝑣𝑛

2

Equation 1.1: Formula to Compute Cosine similarity

In Equation 1.1, 𝑟𝑢1 represents rating of user u on item 1, and 𝑟𝑣1 represents rating of user v on

item 1 respectively.

Pearson Correlation (u, v)=
∑ (ruii∈I −ru⃗⃗⃗⃗)∗(rvi−rv⃗⃗⃗⃗)

√∑ (ruii∈I −ru⃗⃗⃗⃗)
2
∗ √∑ (rvii∈I −rv⃗⃗⃗⃗)

2

Equation 1.2: Formula to compute Pearson Correlation coefficient

Where 𝑟𝑢𝑖 represents the rating given by user u on item i and 𝑟𝑢⃗⃗ ⃗ is mean rating of user u and

formula to compute mean rating is present in Equation 1.3.

- 10 -

Mean rating (𝑟𝑢)⃗⃗⃗⃗ ⃗ =
∑ 𝑟𝑢𝑖𝑖∈𝐼

|𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠|

Equation 1.3: Equation to compute mean rating

3. Find similar users of the target user (v) as Top-N users’.

4. Predict rating of target user (v) for item i using only ratings of v’s Top-N peer group.

Example of user based collaborative filtering

Let us consider user-item rating matrix (Table 1.10) as input and our goal is to predict a rating

of User C on Item 1 using collaborative filtering.

Step 1: Compute the mean rating for User A, User B, User C, User D, and User E using all of their

rated items

For, User1= 33/6=5.5, User 2=24/5=4.8, User 3=8/4=2, User 4=15/6=2.5 and User 5=10/5=2

Step 2: Compute similarity between User C and others users

The similarity between User C and all others users can be computed using Cosine similarity or

Pearson-Correlation Coefficient. In our case, we have used Cosine similarity, which is present in

Equation 1.1. For example, SIM (User A, User C) =
6∗3+7∗3+4∗1+5∗1

√62+72+42+52∗√32+3+12+12
 = 0.956. Similarly,

SIM (User B, User C) =0.981, SIM (User D, User C) =0.789 and SIM (User E, User C) =0.645.

Step 3: Select the Top-N (in our case N=2) neighbor of User C by comparing similarity

Select Top-N neighbor of User C by comparing Cosine similarity. In our case, User A and User B

have the highest similarity with User C. So, they are selected as Top-N neighbors.

Step 4: Compute the raw rating value using Top-N users (User A and User B)

To compute raw rating, Top-N users rating on item are used. For example, Raw ratingUser-C, item1 is

calculated by using rating for of User A on Item 1 and rating of User B on Item 1.

Raw rating User-C, item 1 =
7 ∗ 0.956+ 6 ∗ 0.981

0.956 + 0.981
 = 6.49

Raw rating User-C, item 6=
4 ∗ 0.956+ 4∗ 0.981

0.956 + 0.981
 = 4

Step 5: Compute mean centric rating

From above raw ratings, we can see that Item 1 should be prioritized over item 6 to recommend to

User C. Furthermore, the prediction suggests that User C is likely to be interested in both Item 1

and Item 6 to a greater degree than other items. Thus, mean centric rating needs to be computed

to remove this biased. The mean centric rating helps to reduce the influence caused by high and

low rating provided by users on items. For example, mean centric rating of User A on Item 1 is

- 11 -

computed by subtracting rating of User A on Item 1 and mean rating of User A (in our case, 7-

5.5=1.5).

Mean centric rating User-C, item 1=2+
1.5 ∗ 0.956 + 1.2 ∗ 0.981

0.956 + 0.981
 = 3.35

Mean centric rating User-C, item 6= 0.86

There are some fundamental issues with collaborative filtering; they are:

(1) Cold start: When new items or new users appear in the database, these items may not be rated

by any users; thus, preferences of users' may be unknown.

(2) Sparsity issue: When known rating data takes only a very small proportion in the user-item

rating matrix, for instance, the amount of products is usually billions in the real world and most of

the users only purchased probably hundreds of them, which leads to confusing and compromised

recommendations. To address the sparsity issues, in this thesis, we have used sequential patterns

of click and/or purchase to derive a rule to provide the relationship between already clicks or

purchased items and recommended items to fill the missing rating for an item to improve the user-

item matrix quantitatively (providing possible value for the unrated item or 0 value item in user-

item matrix).

 (3) Scalability issue: As the numbers of users and products grow rapidly, the time complexity

and space complexity issues become more prominent.

1.8 Goal of E-commerce Recommender System

1) Converting browser to buyer: In an E-commerce environment, large amounts of information

are available, so it can be hard for a user to find the product they are looking for. Thus,

recommender systems help consumers to find products they intend to buy (Schafer, Konstan, &

Riedl, 2010).

2) Increasing cross-sell products: Recommender systems can improve the cross-sales product

ratio by suggesting additional products. In general, a recommender system suggests products based

on the customer’s cart and purchase history.

3) Building loyality between customer and vendors: E-commerce recommender systems use

different data sources according to different profiles. Consumers repay these sites by returning to

the ones that best match their needs. This relation is mutually beneficial for when consumers return

to the site, as they experience a more accurate degree of personalization, thus strengthening the

bond between the online store and the client.

- 12 -

1.9 Need of Sequential Purchase Data in E-commerce Recommendation

1) User purchase habit changes with time: Collaborative filtering (CF) methods make a

recommendation to a target customer based on the purchase behavior of other customers whose

preferences are similar to those of the target customer. Thus, CF cannot capture the changes in

purchase behavior of the customer over time, and integrating sequential rule in E-commerce can

capture the customer purchase behavior over time.

2) Integrating frequency, price factor in recommendation: Traditional collaborative filtering

technique, only consider the rating of an item for making a recommendation. Only considering the

rating factor cannot provide a good recommendation to users because user choice may depend on

product quantity, price and overall profit gained from purchased.

3) Taking care of timing factor during E-commerce recommendation generation: In E-

commerce, some users may purchase items regularly, while other users may purchase items

irregularly. So, recommendation generation by considering irregular users may provide a wrong

recommendation to regular users.

1.10 Data Mining

Data mining is a process of turning raw data into useful information. It is the process of knowledge

discovery (KDD) from raw data (Han, Pei, & Kamber, 2011), (Fayyad, Piatetsky-Shapiro,

Smyth, & Uthurusamy, 1996). The KDD process include 1) data selection (find necessary data),

2) data pre-processing (which integrates target data from various sources and cleans target data by

removing noise and inconsistent data), 3) data transformation (which summarizes or aggregates

the pre-processed data into appropriate forms), 4) pattern evaluation and knowledge interpretation

(representation or visualization of these interesting patterns discovered). Some of unsupervised

data mining techniques are clustering, association rule mining (derived from frequent pattern

mining and sequential pattern mining), and supervised data mining techniques is classification.

Data mining is closely related to the area of statistics called exploratory data analysis and also

related to the subareas of artificial intelligence called knowledge discovery and machine learning

but handles much larger data in an automated fashion with more focus on database algorithms.

Machine learning algorithms focus on classifications and clustering with more simulations but not

including association rule techniques. Data mining tools are built to be embedded into the business

- 13 -

data warehouse and to be understandable and usable by marketing professionals, while classic

statistical tools cannot fulfill these objectives.

1.10.1 Clustering

Clustering is a process of grouping a set of related objects in such a way that objects in the same

group are similar to each other (Jain & Dubes, 1998). It is an unsupervised data mining technique

that can automatically divide the data into a set of clusters or groups of similar items. The K-means

clustering (Hartigan & Wong, 1979) is one of the widely accepted clustering approaches in the

field of data mining (Steinbach, Karypis, & Kumar, 2000). K-means clustering is used, when

we have data without defined categories or groups and goal of this algorithm is to find groups in

the data, with the number of groups represented by the variable K. The algorithm works iteratively

to assign each data point to one of K groups based on the features that are provided. The K-means

clustering algorithm consists of four major steps:

1. Randomly pick centroid from available objects. Let us consider, we do have n objects

{I1, I2, I3, …., In} and their attributes as {A1, A2,….An} then, we can consider (H1, W1)

as a centroid of objects considering height and weight as major attributes.

2. Calculate the distance between the centroid and other objects. The distance can be

calculated using the Euclidean distance formula (Equation 1.4).

E. D=√(𝐀𝑯 − 𝐇𝟏)𝟐 + (𝑨𝒘 − 𝐖𝟏)𝟐

Equation 1.4: Euclidean distance formula

Where, XH= Observation value of height, H1= Centroid value of cluster 1 for height, Xw=

Observation value of height, W1= Centroid value of cluster 1 for weight

3. Update centroid of each new cluster, by computing the average attributes of all

object in a cluster.

4. Repeat step 1, 2 and step 3 until the centroids stop changing.

Example of K-means clustering

Let’s consider input data set as given in Table 1.11 and height and weight are two major

attributes.

- 14 -

Height Weight

185 72

170 56

168 60

179 68

182 72

188 77

Table 1.11: Input data to clustering algorithm

Step 1: Initialize cluster centroid

Let’s consider, two centroids one containing minimum value of Height, Weight and another

containing maximum value of Height, Weight as given in Table 1.12.

Cluster Initial Centroid

Height Weight

Cluster 1 185 72

Cluster 2 170 56

Table 1.12: Maximum and minimum cluster centroids

Step 2: Select objects value from input data and calculate Euclidean Distance from centroids

Once centroids (maximum, minimum) are fixed, select input value from input data and calculate

Euclidean distance using Equation 1.4. Here, we are using (Height: 168, Weight: 60) as object

value from input data.

Euclidian Distance from Cluster 1 Euclidian Distance from Cluster 2 Chosen cluster

√(168 − 185)2 + 60 − 722 = 20.808

√(168 − 185)2 + (60 − 72)2 = 4.472 Cluster 2

Table 1.13: Table showing computation of Euclidean distance

From Euclidean distance, we can see that record with (168, 60) is very close to cluster 2.

Step 3: Update centroid of each new cluster, by computing the average attributes of all objects in

each cluster.

Cluster Updated

Centroid

Height Weight

Cluster 1 185 72

Cluster 2 (170+168)/2=169 (56+60)/2=58

Table 1.14: Table showing update of centroid in new cluster in K-means method

Step 4: Repeat step 2 and step 3 until dataset is empty. The output created in our example is present

in Table 1.15.

- 15 -

Objects Cluster

{(185,72), (179,68), (182,72), (188,77)} Cluster 1

{(170,56), (168,60)} Cluster 2

Table 1.15: Cluster created by K-means method

1.10.2 Classification

Classification is used to classify an item in a set of predefined set of classes or groups. The

paramount difference between classification and clustering is that classification is used in

supervised learning technique where predefined labels are assigned to instances by properties; on

the contrary, clustering is used in unsupervised learning, where similar instances are grouped,

based on their features or properties (Arabie, Phipps, & Soete, 1996). The classification process

involves the training set and testing set. The training dataset is used to train model, by pairing the

input with expected output. Then, the same classification model is applied to the test data having

unknown target class values, to check for its prediction accuracy. The classification by decision

tree induction (Apté, Chidanand, & Weiss, 1997) is one of the most widely used classification

technique. The decision tree has two types of nodes, decision node (which are internal nodes) and

leaf node. A decision node specifies test (asks a question) on a single attribute. A leaf node

indicates a class. To use the decision tree in testing, the tree top-down according to attribute values

with given test instance until a leaf node.

Example of classification by decision tree

Let us consider the example data set as given in Table 1.16 for classification and our main goal

is to determine, whether a user is eligible for a credit card or not using the decision tree.

TID AGE JOB_STATUS HOUSE_STATUS CREDIT_SCORE Credit Offer

1 Young FALSE FALSE Fair No

2 Young FALSE FALSE Good No

3 Young TRUE TRUE Fair Yes

4 Middle TRUE TRUE Good Yes

5 Middle FALSE TRUE Excellent Yes

Table 1.16: Dataset to be classified by the decision tree

Then, the decision tree to check credit card eligibility for this data set is present in Figure 1.1.

- 16 -

Figure 1.1: Decision tree for classification

In Figure 1.1, Age is the root node, which asks the question: what is the age of the applicant? It

has three possible answers or outcomes, which are the three possible values of Age (Young, middle

and old).

1.10.3 Association Rule

Association rules analysis is an unsupervised technique to discover how items are associated with

each other (Ma & Liu, 1998). The association rule consists of two parts the lefthand side is called

antecedent, and the righthand side is called consequent. Association rule is represented in the form

X-> Y, where X and Y belong to a candidate set I= {i1, i2....in} of n items. Association rule is

performed in two stages i) finding all frequent patterns (itemsets) having support greater than or

equal to minimum support ii) finding all rules from frequent patterns with confidence greater than

or equal to minimum confidence. Association rule finds the relationship between the items in the

rule. For example, Bread->Milk implies that if product Bread is bought customers also buy product

Milk. The Apriori algorithm (Agrawal & Srikant, 1994) is a popular algorithm for association

rule mining, and it works in two steps i) generate frequent itemsets ii) pruning the itemsets based

on the user-defined support. Apriori algorithm takes a transactional database and output is frequent

itemsets that satisfied minimum support. So, in the first step, support count of each item in the

candidate set (C1) is calculated, and those items that don’t satisfy the minimum support are pruned

and produced frequent set (L1). In the next step, the candidate set (C2) is produced by Apriori join

method by L1 App-join L1. This process is iterative until can’t produce more candidate set. In

Association rule, confidence and support are two major factors, which can be computed by

Equation 1.5 and Equation 1.6.

- 17 -

Support of item i =
(number of occurences of i)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

Equation 1.5: Equation to compute support of itemset i

Confidence of item i =
(number of occurences of i)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑖)

Equation 1.6: Equation to compute confidence of itemset i

Example of association rule

 Let us consider transactional data as shown in Table 1.17 as input, where candidate set (C1) = {A,

B, C, D}, minimum support=3, and our goal is to find frequent items to create possible association

rules.

Transaction Id (TID) Items

T1 A,B,C,D

T2 A,B,D

T3 A,B

T4 B,C,D

T5 B,C

T6 C,D

T7 B,D

Table 1.17: Transactional data to mine by Apriori algorithm

Step 1: Find frequent item (L1) from candidate set (C1)

The principal step in Apriori process is to find frequent item by the counting occurrence of each

item. The items that don’t satisfy the minimum support count are pruned and produced frequent

item (L1). In our case, frequent item (L1) = {A:3, B:6, C:4, D:5}.

Step 2: Generate candidate set (C2) from frequent item (L1) by Apriori join (L1 App-join L1)

We can generate a candidate set (C2) by L1 App-join L1. Frequent item (L1) can be joined only

with an item that comes after it in frequent item (L1). Which will give candidate set (C2) = {AB,

AC, AD, BC, BD, CD}.

Step 3: Find frequent item (L2) from candidate set (C2)

Frequent item (L2) is obtained by following the same procedure as in step 1. We can count the

occurrence of each item in candidate set (C2), and infrequent items are removed to create frequent

itemset (L2) = {AB: 3, BC: 3, BD: 4, CD: 3}.

Step 4: Generate candidate set (C3) from frequent item (L2) by Apriori join (L2 App-join L2)

We can apply the same process as in step 2 to generate candidate set (C3) by joining L2 with L2

using Apriori join and it produces candidate set (C3) = {ABC, ABD, BCD}.

- 18 -

Step 5: Find frequent item (L3) from candidate set (C3)

None of the item in candidate set (C3) satisfied minimum support. So, we need to stop here and

join frequent item to get the final frequent item (L) =L1 U L2= {A, B, C, D, AB, BC, BD, CD}.

1.11 Existing E-commerce Recommendation Systems

There are different kinds of E-commerce data such as historical or clickstream. The historical data

represents the list of an item purchased by the users over the time, which may consist of several

attributes such as transactional ID, category ID, product ID, purchased Time, rating and many

more. Many researchers tried to predict the users interest to items by using the rating of items

provided by users (explicit rating - rate or vote of items within the specified range with available

rating or voting system) as principle parameter (Sarwar, Karypis, Konstan & Riedl, 2001),

(Herlocker, Konstan, Terveen & Riedl, 2004) in collaborative filtering. An example of explicit

user-item rating matrix is present in Table 1.18.

User/Item Item1 Item2 Item3 Item4 Item5 Item6

User1 5 4 5 3 3 2

User2 4 3 ? 2 3 2

User3 ? 3 3 1 1 ?

User4 1 2 2 3 3 3

Table 1.18: User-item rating matrix

On another side, every user may not provide the rating for the purchased items or may not purchase

items once they clicked or placed inside a basket. So, to alleviate this problem, researcher finds a

way of representing user-item purchased by binary information (implicit rating- rating derived

from user’s behaviors such as click, purchase), such as 1 for purchased/rated or 0 for non-

purchased/unrated item. But, binary user-item matrix (Table 1.19) may be unable to provide

information of click, basket placement, and purchase behavior.

User/Item Item1 Item2 Item3 Item4 Item5 Item6

User1 1 1 1 1 1 1

User2 1 1 0 1 1 1

User3 0 1 1 1 1 0

User4 1 1 1 1 1 1

Table 1.19: User-item purchased matrix generated from rating information

So, many researchers worked on the implicit rating matrix using various approaches as given

below:

- 19 -

1) Probability based decision tree approach- KimRec05 (Kim, Yum, Song, & Kim, 2005): It

used a binary user-item matrix to visualize the click and purchase behavior of a user and made

a non-purchased item (0) more informative in the user-item matrix by computing the

probability of purchase after basket placement. This approach is based on forming a decision

tree from user’s behaviors such as searching, clicking to gives the proportion of users taking

that path and its related probability. When new users arrive, it finds the right path based on

basement placement probability. Finally, binary user-item rating matrix is filled with basket

placement probability (as shown in Figure 1.2) to improve the user-item rating matrix before

applying collaborative filtering. But KimRec05 is failed to provide: (a) Frequency of item

purchased because a user may purchase the same item different number of times according to

the time span (b) Unable to capture sequential purchase behavior (c) Fail to integrate E-

commerce historical data.

1

10

0

0

5

4

013

0012

1011

4321

Customer

Customer

Customer

Customer

Customer

CDCDCDCD

1

144.0

15.0

82.0

5

4

15.013

44.062.012

115.011

4321

Customer

Customer

Customer

Customer

Customer

CDCDCDCD

(a) Conventional Recommender System (b) Proposed Recommender System

Figure 1.2: Improved user-item matrix on the right and traditional matrix on the left

2) Segmentation based approach- LiuRec09 (Liu, Lai & Lee, 2009): This approach is

based on forming a segmentation of user on the basis of Recency, Frequency, Monetary

(RFM) using K-mean clustering method, where Recency is period since the last purchase,

Frequency is a number of purchased and Monetary is the amount of money spent. Once the

RFM segmentation is created, users are further segmented using transaction matrix. The

transactions matrix captures the list of items purchased or not purchased by users over a

monthly period in a given products list. From the transaction matrix, users’ purchases are

further segmented into T-2, T-1, and T, where T represents the current purchase and T-1

and T-2 represents two previous purchases. Finally, association rule mining is used to

match and select Top-N neighbors from the cluster to which a target user belongs using

binary choice and derive the prediction score of an item not yet purchased by the target

- 20 -

user based on the frequency count of the item scanning the purchase data of k-neighbors.

The major drawbacks of LiuRec09 are: (a) It does not learn sequential purchase during

user-item matrix creation (b) Utility of an item such as frequency and price are ignored

during the recommendation generation.

3) User transactions based preference approach- ChoiRec12 (Choi, Keunho, Yoo, Kim,

& Suh, 2012): Users are not always willing to provide a rating or they may provide a false

rating. Thus, ChoiRec12 developed the system that derives preference ratings from a users’

transactional data by using the number of time useru purchased itemi respect to total

transactions. Once preference ratings are determined, they are used to formulate a user-

item rating matrix for collaborative filtering. To make a better recommendation, they tried

to use the purchase item but there is no evidence of sequential purchase patterns generated

using a sequential pattern mining algorithm. To recommend purchase items to a target user,

subsequences of a target user purchase items are matched with derived purchase items of

all other users. If some patterns are matched, then importance on item is added by counting

the support. Finally, items having the highest count are recommended to users. The main

limitation of ChoiRec12 are: (a) User purchase patterns are not considered during user-

item matrix creation. (b) No provision for recommending infrequent item. Thus, an

example of the user-item matrix in ChoiRec12 recommendation system is represented as:

(a) Traditional Implicit Matrix (b) ChoiRec12 user-item matrix

00013

10012

00101

4321/

User

User

User

ItemItemItemItemItemUser

0005.23

8.3009.22

004.101

4321/

User

User

User

ItemItemItemItemItemUser

4) Common interest based approach- SuChenRec15 (Su & Chen, 2015): It is based on

finding the common interest similarity (frequency, duration, and path) between purchase

patterns of users to discover the closest neighbors. For the frequency similarity, it computes

total hits occurred in an item or category with respect to a total length of users' browsing

path. For duration similarity, it computes the total time spent on each category with respect

to total time spent by users'. Finally, for path similarity, it uses the longest common

subsequence comparison. Then, CF method is used to select the Top-N neighbor from three

indicators. The major drawbacks of SuChenRec15 are: (a) It requires domain knowledge

- 21 -

for categories, and only supports category level recommendations. (b) Fails to integrate

sequential purchase pattern during formation of user-item rating matrix.

5) Historical and clickstream based recommendation- HPCRec18 (Xiao & Ezeife, 2018):

Xiao & Ezeife, 2018 proposed HPCRec18 system, which normalizes the purchase

frequency matrix to improve rating quality, and mines the session-based consequential

bond between clicks and purchases to generate potential ratings to improve the rating

quantity. Furthermore, HPCRec18 used historical purchased frequency of item and

enriched the user-item matrix from both quantity (finding the possible value for 0 rating)

and quality (finding the more precise value for 1 rating) by using normalization of user-

item purchase frequency matrix and using consequential bond between click and

purchase. The major drawbacks of HPCRec18 are: (a) User-item matrix frequency matrix

is created by neglecting sequential pattern. (b) Sequential patterns are not used in the

consequential bond.

User-item frequency matrix Normalized user-item frequency matrix Rating matrix with predicted rating

???13

3?212

?12?1

4321/ ItemUser

??13

8.0?53.027.02

?45.089.0?1

4321/

?

ItemUser

3.027.074.013

8.035.053.027.02

5.045.089.063.01

4321/ ItemUser

Table 1.20: Normalized user-item frequency matrix created by Xiao & Ezeife, 2018

SessionId Clicks Purchases

xc1csd… <4,1,2> <1,2,4>

df2nbf… <3,5,2> <5>

sd3fhs… <5,2> <2>

mk4gs… <3,4,5> <3,4>

gm5ca… <1,5> ?

Table 1.21: E-commerce data containing consequential bond of click and purchase

- 22 -

1.11.1 Summary of some close existing E-commerce recommendation systems

Existing System Methodology Input Data Limitation

LiuRec09 by Liu,

Lai, &Lee, 2009

Users are first segmented by RFM. Once RFM

segmentation is created, users are further segmented with

transaction matrix. The transactions matrix contains

binary purchase information of users over a month. From

the transaction matrix, user’s purchases are further

segmented into T-2, T-1, and T, where T denotes current

purchase and T-1 and T-2 represents two previous

purchases. Finally, the association rule is used to match

Top-N neighbors from the cluster to which a target user

belongs using binary choice and derive the prediction

score of an item not yet purchased by the target user with

a frequency count of k-neighbors.

Minimum support,

historical purchase

data, and products list.

No provision for

recommending

infrequent items.

Sequential pattern

and frequency are not

considered during

recommendation.

ChoiRec12 by Choi,

Keunho, Yoo, Kim,

&Suh, 2012

Based on preference ratings from a users’ transactional

data by using the number of time useru purchased itemi

respect to total transactions. Once preference ratings are

determined, they are used to formulate a user-item rating

matrix for collaborative filtering. To a make better

recommendation, they tried to use the purchase item, but

there is no evidence of sequential purchase pattern

generated using the sequential pattern mining algorithm.

Historical purchased,

containing purchase

date and list of

purchased items.

It did not use user

purchase sequential

patterns in a user-item

matrix. Furthermore,

no provision for

making a

recommendation to

infrequent users.

SuChenRec15 by

Su & Chen, 2015

It is based on finding the common interest similarity

(frequency, duration, and path) between purchase patterns

of users to discover the closest neighbors. Frequency

similarity is computed by counting total hits occurred in

an item or category with respect to a total length of users'

browsing path. Duration similarity is computed by

considering total time spent on each category with respect

to total time spent by users'. Finally, for path similarity is

computed by counting the longest common subsequence.

Historical data

containing the

frequency of item,

path, and duration.

It requires domain

knowledge for

categories, and only

supports category

level

recommendations.

HPCRec18 by Xiao

& Ezeife, 2018

Improved the quality of user-item matrix by normalizing

the frequency of item purchase. Furthermore, they

provided the purchase possibility of clicked but not

purchased items by analysis of consequential bond.

User-item purchase

frequency and

clickstream data that

contains information’s

of click and purchase

Unable to integrate

sequential pattern

during qualitative and

quantitative analysis

of user-item matrix.

- 23 -

Proposed HSPRec

by Bhatta, Ezeife &

Butt, 2019

HSPRec first generates an E-Commerce sequential

database from historical purchase data using SHOD

(Sequential Historical Periodic Database Generation).

Then, mines frequent sequential purchase patterns before

using these mined sequential patterns with consequential

bonds between clicks and purchases to (i) improve the

user-item matrix quantitatively, (ii) used historical

purchase frequencies to further enrich ratings

qualitatively. Thirdly, the improved matrix is used as

input to the collaborative filtering algorithm for better

recommendations.

Minimum support,

historical purchase,

and consequential

bond of historical click

and purchase

Unable to capture

multi-database. No

provision for

infrequent user.

Table 1.22: Table showing existing E-commerce recommendations

1.12 Problem Definition

Given E-commerce historical click and purchase data over a certain period of time as input, the

problem being addressed by this thesis is to find the frequent periodic (daily, weekly, monthly)

sequential purchase and click patterns in the first stage. Then, these sequential purchase and click

patterns can be used to make user-item matrix qualitatively (specifying level of interest or value

for already rated items) and quantitatively (finding possible rating for previously unknown ratings)

rich before applying collaborative filtering (CF) to improve the overall accuracy of

recommendation.

1.13 Thesis Contribution

The main limitation of existing related systems such as (HPCRec18, Xiao & Ezeife, 2018) is that

they treated the entire clicks and purchases of items equally and did not integrate frequent

sequential patterns to capture more real-life customer purchase behavior sequence patterns inside

consequential bond. Thus, in this thesis, we propose a system called Historical sequential pattern

recommendation (HSPRec (Figure 1.3)) to discover frequent historical sequential pattern from

click and purchase, so that discovered frequent sequential patterns are used to improve the

consequential bond and user-item frequency matrix to improve recommendation. The detailed

architecture of the HSPRec system is present in Figure 3.1.

- 24 -

Figure 1.3: Historical sequential recommendation (HSPRec)

1.13.1 Thesis feature contributions

1. Using sequential pattern to improve user-item rating matrix quantitatively

In E-commerce, a user-item rating is very sparse. Thus, only the normalization of user-item

frequency matrix is not sufficient to indicate the level of user-interest on an item. So, in this thesis,

we are doing the analysis of historical sequential purchase patterns of a user to provide the

relationship between already purchased items and recommended items to fill the missing rating

for an item to improve the user-item matrix quantitatively (providing possible value for the unrated

item or 0 value item in user-item matrix). The details process is provided in section 3.2.

2. Using sequential pattern to enhance consequential bond of click and purchase

In E-commerce click and purchase are two different types of events in E-commerce, and they are

not synchronous even if they contain equal numbers of items. For example, <3, 5, 2, 3> and < (3),

(5), (2, 3)> contain similar items but sequences of itemsets are different. Thus, integration of

sequential patterns in the consequential bond is necessary to make it strong. The details process is

present in section 3.2.

- 25 -

3. Discovering periodic (daily, weekly and monthly) sequential pattern

A weekly sequential pattern consists of a large number of items in itemsets compared to a daily

sequential pattern to generate complex sequential rules. Thus, in this thesis, we have developed

SHOD (Sequential Historical Periodic Database) algorithm (defined in section 3.2.1) to discover

daily, weekly and monthly sequential pattern by considering timestamp clicks and/or purchases

items to enhance user-item purchase frequency matrix.

4. Improving the recommendation accuracy

We are using sequential patterns to improve user-item matrix qualitatively and quantitatively by

processing with frequent clicks and/or purchases sequential patterns to generate a rich user-item

matrix for CF algorithm, and experimental results show that our approach HSPRec performs better

than tested existing related system.

1.12.2 Thesis procedural contributions

To make the specified feature contributions, this thesis proposes HSPRec system (Algorithm

3.1), which consists of following major steps:

1. Convert historical purchase information to user-item purchase frequency matrix by

counting the number of items purchased by each user.

2. Create purchase sequential database from historical purchase by applying sequential

historical periodic database (SHOD) algorithm present in 3.2.1.

3. Apply a purchase sequential database to Sequential Pattern Rule (SPR) module present in

3.2.2, to create frequent purchase sequences. Once frequent purchase sequences are found,

use them to generate purchase sequential rules.

4. Apply purchase sequential rule in user-item purchase frequency matrix to improve

quantity.

5. For each user, where click happened without a purchase such as for user 5 in Table 3.4,

create a click periodic sequential database (Table 3.5) by neglecting purchase from the

consequential bond. Then, input a click sequential database to Sequential Pattern Rule

(SPR) (present in 3.2.2) module to get recommended items as the predicted purchase items.

6. Once purchased items are recommended to a user, then compute click and purchase

similarity using Click and Purchase Similarity (CPS) module present in 3.2.3.

- 26 -

7. Supply value of Click Purchase Similarity (CPS) to purchase patterns including

recommended items from Sequential Pattern Rule (SPR) to create weighted purchase

pattern.

8. Call Weighted Frequent Purchase Pattern Miner (WFPPM) present in 3.2.4 and apply

weighted purchase patterns as input and compute the weight of each item present in

purchase patterns.

9. Repeat the steps 5, 6, 7, and 8 if there are users without purchase otherwise, use computed

rating to further enhance user-item purchase matrix and apply normalization function

present in 3.2.5 to enhance user-item matrix before running collaborative filtering

algorithm.

1.14 Outline of Thesis

CHAPTER 2: Discuss related E-commerce recommendation systems, different sequential pattern

mining algorithms.

CHAPTER 3: Discusses the proposed E-commerce sequential dataset and sequential

recommendation system and its related algorithms, methods.

CHAPTER 4: Discusses the experimental implementation for sequential recommendation system,

required tools and technologies.

CHAPTER 5: Discusses about the future work and conclusion.

- 27 -

CHAPTER 2: RELATED WORK

2.1 E-commerce Recommendation Systems

2.1.1 E-commerce recommendation system based on navigational and behavioral patterns by

Kim, Yum, Song, & Kim, 2005 (KimRec05)

Conventional recommendation approach represents user-item matrix using binary data (1/0) (1

represents purchased and 0 represents not purchased items) for making recommendation but Kim,

Yum, Song, & Kim, 2005 proposed clickstream approach that analyze searching, browsing,

clicking, basket placement and purchasing data captured from the navigational and behavioral

patterns of customers to estimates the preference levels of a customer for the products, which they

clicked but not purchased using decision tree. So, major steps involved in this work are:

Step 1: Gather data related to the purchase, navigational, and behavioral patterns.

Navigational patterns include browsing, searching, product click, basket placement, and actual

purchase, while behavioral patterns consist of the click ratio for a certain type of product, length

of reading time spent on a specific product, number of visits to a specific product, printing, and

bookmarking. So, data collected may be as shown in Table 2.1.

Parameters Description

Click type Binary variable: searching=1; browsing=0

Number of visits Discrete variable

Length of reading time Continuous variable (s)

Print status Binary variable: printZ1; no printZ0

Bookmarking status Binary variable: bookmarkingZ1; no bookmarkingZ0

Level 1 click ratio (genre) Continuous variable defined for each product k clicked by customer i. Let j be

the category (at Level 1) to which product k belongs. Then, Level 1 click ratio

for product, k=(Total number of products clicked by customer i that belong to

category j at Level 1)/(Total number of products clicked by customer i)

Level 2 click ratio (specific

type)

Continuous variable defined for each product k clicked by customer i. Let j be

the category (at Level 2) to which product k belongs. Then, Level 2 click ratio

for product, k=(Total number of products clicked by customer i that belong to

category j at Level 2)/(Total number of products clicked by customer i)

Basket placement status Binary variable: basket placement=1; no basket placement=0

Purchase status Binary variable: purchase=1; no purchase=0

Table 2.1: E-commerce data parameters and their description

Step 2: For each customer, the preference level of a product which is clicked but not purchased is

estimated using three steps:

1. Estimation of the probability of purchase after basket placement (p)

P=
Total number of cases in which product is purchased

Total number of cases in which product is placed in basket

- 28 -

For example, the total number of cases of product purchased is 5, and the total number of

cases of product placed in the basket is 6 then p=5/6=0.83.

2. Estimate the probability 𝑏 of placing a product after clicking it using decision tree (DT)

analysis, logistic regression (LR) analysis, or artificial neural network (ANN).

Figure 2.1: Decision tree to show click and basket placement probability

3. Determination of the preference level of a product which is clicked but not purchased by

each customer is computed by using (p*b).

For example, preference level to place clicked item on the basket is 5/6*19.5%=0.161

Step 3: CF is performed using the preference levels data as input values, and the preference levels

of a customer for the products not clicked are predicted.

Conventional recommender system that uses only the purchase status, where 0’s (no purchase) and

1’s (purchase) as input data but they are improved by integrating the probability of reaching the

point of purchase is estimated for a product clicked by a customer as shown in Figure 2.2.

Figure 2.2: a) conventional recommendation system and b) Kim recommendation system

Therefore, enhanced rating matrix consisting of more information is used as input in collaborative

filtering to provide the recommendation.

- 29 -

2.1.2 A hybrid of sequential rules and collaborative filtering for product recommendation by

Liu, Lai, and Lee, 2009 (LiuRec09)

The sequential rule method considers the sequence of customers’ purchase behavior over time but

does not utilize the target customer’s purchase data for the current period. So LiuRec09 proposed

a segmentation based method using Recency, Frequency, Monetary (RFM) segmentation using K-

mean clustering method, where R is period since the last purchase, F is a number of purchased and

M is the amount of money spent. Once the RFM segmentation is created, users are further

segmented using transaction matrix. The transactions matrix captures the list of items purchased

or not purchased by users over a monthly period in a given products list. From the transaction

matrix, the users’ purchases are further segmented into T-2, T-1, and T, where T represents the

current purchase and T-1 and T-2 represents two previous purchases. Finally, association rule

mining is used to select Top-N neighbors from the cluster to which a target user belongs using

binary choice analysis and derive the prediction score of the item not purchased based on the

frequency count of the item scanning the purchase data of k-neighbors.

Example of LiuRec09

Let us consider E-commerce historical data containing information of price, quantity and

transaction time as given in Table 2.2 as input.

Customer ID Transaction Time Product Quantity Price

C001 July 11 2017 Perfumes 1 $77183.60

C001 August 17 2017 Skincares 3 $4196.01

C001 September 14 2017 Dresses 4596 $33719.73

C002 July 15 2017 Perfumes 199 $4090.88

C002 August 13 2017 Shoes 59 $942.34

C002 September 25 2017 Skincares 1 $77183.60

C003 July 19 2017 Skincares 431 $251657.30

C003 August 22 2017 Perfumes 337 $94330..79

C003 September 18 2017 Kints 963 $91062.38

C004 July 24 2017 Perfumes 277 $66653.56

C004 September 18 2017 Dresses 5111 $65164.79

C005 September 18 2017 Perfumes 568 $65164.79

C005 July 13 2017 Shoes 2379 $65039.62

Table 2.2: E-commerce transactional data

Step 1: Customer clustering using (R) Recency, F (Frequency) and (M) Monetary value

To create a cluster of users using RFM value, user RFM is matched with predefined RFM range

and RFM quartile values are assigned to users. Then, a final RFM score is computed using RFM

quartile as shown in Table 2.3.

- 30 -

CID Recency(R) Frequency(F) Monetary(M) R_quartile F_quartile M_quartile RFM Score

1 109 5 191.85 3 4 4 344

2 70 96 1054.43 4 4 4 444

3 130 3 67 2 3 3 233

4 74 1 15 4 1 1 411

5 214 1 19.92 1 1 2 112

Table 2.3: E-commerce data clustering using RFM value

Step 2: Create transaction matrix

Once RFM clusters of users are created, users’ transaction (binary) matrix is created by analyzing

the list of items purchased by users, where 1 represents purchased items and 0 represents not

purchased items by a user. An example of transaction matrix created from historical E-commerce

data (Table 2.2) is present in Table 2.4.

CID Perfumes Skincares Knits Dresses Shoes
July Aug Sep July Aug Sep July Aug Sep July Aug Sep July Aug Sep

001 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

002 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

003 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

004 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

005 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

Table 2.4: transaction clustering of E-commerce data

According transaction matrix, customer (CID001) purchased perfumes on July 2017, so value it set

to 1 and it is set to 0 in August and so on. In given product list P= {Perfumes, Skincare, Knits,

Dresses, Shoes}, the transactions of customer CID001 are, July={Perfumes}, Aug.={Skincares},

Sep.={Dresses}. Thus, dynamic customer profile of customer CID001 from July to September

may be represented as CID001, July = {1, 0, 0, 0, 0}, CID001, Aug= {0, 1, 0, 0, 0}, CID001, Sep =

{0, 0, 0, 1, 0}.

Step 4: Transaction matrix clustering

The transaction clustering helps to locate the customer past transaction and present transaction.

Furthermore, transaction cluster represents a group of transactions with a similar item purchased

by users. For example, if we take customer CID001 transaction sequence then clusters may be

different as given in Table 2.5.

Transaction Sequence Cluster No (Ci)

100 Cluster 10 (C1) on the basis of RFM quantity

010 Cluster 3 (C2) on the basis of RFM

001 Cluster 9 (C3) on the basis of RFM

000 Cluster 1 (C4) on the basis of RFM

Table 2.5: Transaction sequence clustering

- 31 -

According to transaction sequence, the customer CID001 belonged to the tenth cluster in July and

moved into the third cluster in August, thereafter reaching the ninth cluster in September. So

behavior locus for CID001 is (10, 3, 9).

Step 4: Mining customer behavior from transaction clusters

To mine customer behavior according to purchase time, this work adopted association rule Rj for

determining the most frequent pattern with confidence.

𝑅𝑗 = 𝑟𝑗,𝑇−𝑙+1,…….,𝑟𝑗,𝑇−1 → 𝑟𝑗,𝑇(𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑗)

Equation 2.1: Association rule to mine customer behavior in LiuRec09

Where rule Rj indicates that, if the locus of a customer is rj,T-l+1,.,rj,T-1, then the behavior cluster for

that customer is rj,T at time T. To illustrate this rule, let us consider the locus behavior of customer

according to transaction sequence is as given in Table 2.6.

CID Locus in 1st Trans(T-2) Locus change in 2nd Trans(T-1) Behavior cluster in Trans(T)

C001 10 3 9

C002 10 1 3

C003 3 10 4

C004 10 - 9

C005 1 - 10

C006 4 - 3

C011 9 3 ?

Table 2.6: Customer transaction cluster

Thus, some of the possible association rules from customer transaction cluster (Table 2.6) are

Rule T-2 T-1 T Association Rule (locus

at T-2,T-1 locus at T)

Support Confidence

1 10 - 9 10 9 0.28 0.5

2 3 10 4 3,10 4 0.14 1

3 10 3 9 10,3 9 0.14 1

4 10 1 3 10,1 3 0.14 1

5 1 - 10 1 10 0.14 1

6 4 - 3 4 3 0.14 1

Table 2.7: Association rules created from customer transaction cluster

According to the rule 1, if customer purchase behavior in time T-2 is in cluster 10 then his/her

behavior will be in 9 clusters at time T , where support for (10 9)= 0.28 and confidence for

(10 9)= 0.5

Step 5: The determination and match of the cluster sequences of target customers

The cluster locus of a target customer is compared with the association rules derived from other

customers’ loci, and then the best-matching locus is determined and multiplied by the support and

confidence of the rule to derive the fitness measure using Equation 2.2.

- 32 -

 𝑀𝑦
𝑥 = ∑ 𝑀𝑦,𝑇−𝑘

𝑥 , 𝑤ℎ𝑒𝑟𝑒

𝑙−1

𝑘=1

𝑀𝑦,𝑇−𝑘
𝑥 = {

1 𝑖𝑓 𝐶𝑦.𝑇−𝑘=𝑟𝑥,𝑇−𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∗ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑥 ∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑦

Equation 2.2: Formula to match target user purchase in LiuRec09

Step 6: Recommendation

Let M(r1) denote the most frequently purchased product at time T in Cluster. Similarly, M(r2) is

ranked the next highest, and M(rN) is ranked the Nth highest. Then, the recommendation list for the

target customer is given by M(r1), M(r2)…M(rN).

2.1.3 A time-based approach to effective E-commerce recommender systems using implicit

feedback by Lee, Park, & Park, 2008

Collaborative filtering is a widely used method of recommendations based on ratings of items

provided by users. However, in e-commerce environments, it is very difficult to collect explicit

rating. So, to alleviate the problem of explicit rating Lee, Park, & Park, 2008 developed a

recommender system using time-based implicit rating. The main work starts with constructing a

pseudo rating matrix. The pseudo rating matrix contains binary value 1 for purchased item and 0

for not purchased item. After constructing a pseudo rating matrix, temporal information such as

users purchase time, item launch time is incorporated into the pseudo rating matrix then values in

the pseudo rating matrix are extracted from predefined rating function. In the end, the final user-

item rating matrix is applied to collaborative filtering for a recommendation. So, major steps

involved in this work are:

Step 1: Collect implicit feedback data

In this step, the item purchased date and the item launch time data are collected. The main motive

behind collecting two kinds of information are: 1) most recent purchase reflect better user

preference 2) recently launched items appeal more to users.

Step 2: Construct a pseudo rating matrix using temporal information

During pseudo rating matrix construction, we can simply assign 1 as a rating value when a user u

purchased an item i. Let us consider pseudo rating matrix as present in Table 2.8.

 Item1 Item 2 Item 3 Item 4

User 1 1 0 1 1

User 2 0 1 1 0

User 3 1 0 0 1

Table 2.8: Pseudo rating matrix

- 33 -

Let us consider, LTime represents item launch time and PTime represents the time when user

purchased item. Then integrate LTime and PTime in pseudo rating matrix as given in Table 2.9.

 Item1

(LTime1)

Item 2

(LTime2)

Item 3

(LTime3)

Item 4

(LTime4)

User 1 PTime1 0 PTime3 PTime4

User 2 0 PTime4 PTime5 0

User 3 PTime6 0 0 PTime7

Table 2.9:Pseudo rating matrix with temporal information

Then, define rating function w (pi, lj), where pi represents purchased time and lj represents launch

time of a product. Then, convert pseudo rating matrix with temporal information is present in

Table 2.10.

 Item1 Item 2 Item 3 Item 4

User 1 w(p1,l1) 0 w(p2,l3) w(p3,l2)

User 2 0 w(p2,l2) w(p1,l3) 0

User 3 w(p3,l1) 0 0 w(p3,l3)

Table 2.10: Pseudo rating matrix with rating function w(pi,lj)

Step 3: Extract value of rating function (w (pi, lj)) from predefined table

Used predefined rating function w present in Table 2.11 to enrich pseudo rating matrix (Table

2.10). For example, w (p1, l1) is replaced by 0.7 in pseudo rating matrix. Similarly, w (p2, l3) is

replaced by 2.3.

 old purchase (p1) middle purchase (p2) recent purchase (p3)

old launch (l1) 0.7 1.7 2.7

middle launch (l2) 1 2 3

recent launch (l3) 1.3 2.3 3.3

Table 2.11: Predefined rating function w

Step 4: Apply user-item rating matrix to collaborative filtering

By extracting the value of rating function from step 3, construct a user-item rating matrix as present

in Table 2.12. Then, apply collaborative filtering to predict the missing rating of user on item.

 Item1 Item 2 Item 3 Item 4

User 1 0.7 ? 2.3 3

User 2 ? 2 1.3 ?

User 3 2.3 ? ? 3.3

Table 2.12: User-item rating matrix constructed from pseudo rating matrix

- 34 -

2.1.4 Recommender system based on click stream data using association rule mining by Kim,

& Yum, 2011

Many recommendation systems only use the purchase data of users for e-commerce

recommendation, while navigational and behavioral pattern data were not utilized. So, Kim, Yum,

Song, & Kim, 2005 developed a collaborative filtering technique based on navigational and

behavioral patterns of customers. To improve the performance of the recommendation system,

they developed a system that used association rule. In this system, they calculated the confidence

levels between clicked products, between the products placed in the basket, and between purchased

products, respectively, and then the preference level was estimated through the linear combination

of the above three confidence levels. The major steps involved in this work are:

Step 1: Data collection and preparation

In this phase, all the navigational and behavioral patterns in e-commerce sites are collected. An

example of this step is given in Table 2.13. The navigational patterns include browsing,

searching, product click, basket placement, and actual purchase, while behavioral patterns consist

of the click ratio for a certain type of product, length of reading time spent on a specific product,

number of visits to a specific product, printing, and bookmarking to give the statics.

Case Customer CD Clicktype Timespent No of visit Basket placement Purchase

1 1 CDA 1 49 2 1 1

2 1 CDB 1 15 1 1 0

3 2 CDA 0 4 1 0 0

4 2 CDC 0 6 1 0 0

5 2 CDD 0 8 1 0 0

6 2 CDE 1 12 1 1 1

7 2 CDF 0 6 1 0 0

Table 2.13: E-commerce clickstream data

Step 2: Association rule mining

1. Identify all pairwise combinations of products that simultaneously appear in a transaction.

Let us consider the minimum support is 2%, if the ratio of the number of clicks in which

both CDA and CDB occur to the total number of transaction is more than 2% then CDA and

CDB becomes the candidate of association rule.

2. For each pair (𝐶𝐷𝑖 and 𝐶𝐷𝑗, 𝑖 ≠ 𝑗) the corresponding support is calculated using

Support= P (U∩V) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑜𝑡ℎ 𝑈 𝑎𝑛𝑑 𝑉 𝑜𝑐𝑐𝑢𝑟

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

Equation 2.3: Equation to count support

- 35 -

For example, support (CDA, CDB) =10/50 where product CDA in case 1 and product CDB

in case 2 as given in Table 2.13. For 2.3, each pair whose support is greater or equal to a

specified threshold (for example, 2%), calculate the lift values using following association

rule lift. The lift of the rule ‘‘U→V’’ can be defined as:

Lift =
 𝑃(𝑉|𝑈)

𝑃(𝑉)
=

𝑃(𝑈∩𝑉)

𝑃(𝑈)∗𝑃(𝑉)

or

Lift=
Number of transactions in which both U and V occur∗Total number of transactions

(Number of transactions in which U occurs)∗(Number of transactions in which V occurs

Equation 2.4: Equation to compute lift value

For example, lift between CDA and CDB = (10*50)/ (13*15) =2.56.

3. For each pair, whose lift is greater than a specified threshold (1 in our case) is selected for

generating more elaborate association rules.

4. The association rule is generated on each of the product combinations and then, three

confidence levels between clicked products, between the products placed in the basket,

between purchased products are calculated.

Step 3: Confidence calculation

In this step, find the confidence level for both basket placement and purchase and use the higher

confidence level for preference level.

Step 4: Making recommendation of Top-N list

For each phase (Click, Basket placement, Purchase), find the Top-N products ranked list by

confidence level.

- 36 -

2.1.5 Combining collaborative filtering and sequential pattern mining for recommendation by

Li, Niu, Chen, & Zhang, 2011

Collaborative filtering finds the similarity between users and items considering closet neighbors

but user purchase choice is different with respect to time. Thus, collaborative filtering only is not

sufficient to capture the time change purchase habit of users. To overcome the limitation of

collaborative filtering and capture the sequential purchase behaviors of user Li, Niu, Chen, &

Zhang, 2011 developed an approach of recommending items using collaborative filtering and

sequential pattern mining. From user-item rating matrix as input, at first, compute item-item

similarity and predict Top-K items. Once Top-k items are found, items are arranged in descending

order of their Top-K value to create a sequence of items purchased by users. Finally, apply a

sequential pattern mining algorithm (for example GSP) on sequences of purchases to discover

frequent sequential patterns.

Example

Let us consider the user-item rating matrix as given in Table 2.14 as input.

 Item 1 Item 2 Item 3 Item 4 Item 5

User 1 1 ? 1 1 1

User 2 1 2 ? ? 2

User 3 3 ? 3 ? 3

User 4 ? 4 ? 1 ?

User 5 ? 5 1 2 ?

Table 2.14: User-item rating matrix for Niu, Chen, & Zhang, 2011 recommendation system

Step 1: Compute mean centering user-item matrix

Mean centering of a user-item matrix helps a user with many ratings contributes less to any

individual rating. So, mean centering user-item rating matrix (Table 2.15) is created by subtracting

user’s individual items rating from user mean rating as present in Table 2.14.

 Item 1 Item 2 Item 3 Item 4 Item 5 Mean rating

User 1 0 ? 0 0 0 1

User 2 -0.66 0.34 ? ? 0.34 1.66

User 3 0 ? 0 ? 0 3

User 4 ? 1.5 ? -1.5 ? 2.5

User 5 ? 2.34 -1.66 -0.66 ? 2.66

Table 2.15: Mean centering user-item rating matrix

- 37 -

Step 2: Find item-item similarity

Once the mean center user-item rating matrix is computed, then similarities between items are

computed using similarity function such as Cosine similarity or Pearson Correlation Coefficient.

An equation to compute the Pearson Correlation coefficient is present in Equation 2.5.

SIM (i, j)=
∑ (𝑟𝑢,𝑖𝑖∈𝐼 −𝑟𝑢⃗⃗⃗⃗)∗(𝑟𝑢,𝑗−𝑟𝑢⃗⃗⃗⃗)

√∑ (𝑟𝑢,𝑖𝑖∈𝐼 −𝑟𝑢⃗⃗⃗⃗)2∗ √∑ (𝑟𝑢,𝑗𝑖∈𝐼 −𝑟𝑢⃗⃗⃗⃗)2

Equation 2.5: Pearson Correlation coefficient to compute similarity

Where 𝑟𝑢,𝑖 is the rating given to item i by user u, 𝑟𝑢⃗⃗ ⃗ is the mean rating of all the rating on item

provided by user. The item-item similarity is computed with the help of Pearson Correlation

Coefficient from user-item rating matrix (Table 2.14) is present in Table 2.16.

 Item 1 Item 2 Item 3 Item 4 Item 5

Item1 1.00 -0.9 0.78 -0.6 0.91

Item 2 -0.9 1.00 -0.8 0.32 -0.8

Item 3 0.78 -0.84 1.00 -0.3 0.51

Item 4 -0.6 0.32 0.39 1.00 -0.7

Item 5 0.9 -0.8 0.51 -0.7 1.00

Table 2.16: Item-item similarity of mean centered rating matrix 2.16

Step 3: Select items having highest similarities with the current item.

In this step, highest similar items of current item are selected, in our case, we can see that Item1

rating is 1.00 and other similar items to Item1 are Item3 and Item5 as present in Table 2.17.

 Item 1 Item 2 Item 3 Item 4 Item 5

Item1 1.00 -0.9 0.78 -0.6 0.91

Item 2 -0.9 1.00 -0.8 0.32 -0.8

Item 3 0.78 -0.84 1.00 -0.3 0.51

Item 4 -0.6 0.32 0.39 1.00 -0.7

Item 5 0.9 -0.8 0.51 -0.7 1.00

Table 2.17: Table showing similar item of current item

Step 4: Compute predicted rating for itemi by useru.

 The predictions for each useru correlated with each itemi is present in Equation 2.6.

Pu,i=
∑ (𝑆𝐼𝑀(𝑖,𝑘)𝑡∈𝑁 ∗𝑅𝑢,𝑘)

∑ (|𝑆𝐼𝑀(𝑖,𝑘)|)𝑡∈𝑁

Equation 2.6: Equation to compute predicted rating in item-item similarity

Where N represents the items i similar item sets and 𝑅𝑢,𝑘 is the rating given to item k by user u

and SIM(i,k) represents the similarity between item i and item k. In our case, predicted user-item

rating matrix is present in Table 2.18.

- 38 -

 Item 1 Item 2 Item 3 Item 4 Item 5

User1 0.9 0 0.8 0 0.7

User 2 1.0 -2 1.1 1.0 0.5

User 3 2.8 -3 2.5 -1 2.3

User 4 0 0.5 0 2.0 0

User 5 0 1.0 0 1.9 0.2

Table 2.18: Prediction rating matrix

Step 5: Create sequence database by selecting item with highest value in descending order

Once the predicted rating is computed, all the items purchased by each user are arranged in

descending order by considering a rating of a user on an item to create a sequence database. The

main problem with this kind of sequences in a sequence database is the lack of actual item purchase

order.

 Predicted Items

User1 <I3, I1 >

User 2 <I3, I4 >

User 3 <I1, I3 >

User 4 <I2, I4>

User 5 < I2, I4>

Table 2.19: Sequence database created by using rating value in descending order

Step 6: Apply GSP algorithm on sequence database

Input: sequence database (Table 2.19), minimum support=2 and candidate set (C1) = {I1, I2,

I3, I4} and algorithm=GSP

1. Find 1- frequent sequence (L1) to keep the only sequence with occurrence or support count

in the database greater than or equal to minimum support count of 2. For example,

L1={<I1>:2, <I2>:2, <I3>:3, <I4>:3}

2. Generate candidate sequence (Ck=2) using L (1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L(1)

3. Pruning candidate set C (K=2) by testing the minimum support and remove infrequent items.

4. Repeat the process of candidate generation and pruning until the result of candidate generate

(Ck) and prune (Lk) for finding frequent sequence is an empty set.

5. Output frequent sequence as union of L1 U L2 U…Ln .

1-sequence 2-sequences

<I3> <I3, I4 >

Table 2.20: n-frequent sequence for Li, Niu, Chen, & Zhang, 2011 recommendation

From 2-sequence <I3, I4 >, we can see that the recommendation track for U2 is to first adopt I3 and

then I4.

- 39 -

2.1.6 Implicit rating-based collaborative filtering and sequential pattern analysis for E-

commerce recommendation by Choi, Keunho, Yoo, Kim, & Suh, 2012 (ChoiRec12)

Users are not always willing to provide a rating or they may provide a false rating. Thus,

ChoiRec12 developed the system that derives preference ratings from a users’ transactional data

by using the number of time useru purchased itemi respect to total transactions. Once preference

ratings are determined, they are used to formulate a user-item rating matrix for collaborative

filtering. To make a better recommendation, they tried to use the purchase pattern but there is no

evidence of sequential purchase pattern generated using sequential pattern mining algorithm.

Furthermore, to recommend purchase pattern to a target user, a subsequence of target user purchase

items are matched with derived purchase items of all other users. If some items are matched then

importance on the item is added by counting the support. Finally, the items having the highest

count are recommended to users.

Example of ChoiRec12

Let us consider the fragment of historical purchased data as given in Table 2.21, where only

purchase time is provided as available information, and our main goal of recommendation is to

recommend the suitable item to user T.

 Item 1 Item 2 Item 3 Item4 Item 5

 Date Date Date Date Date

User 1 01/01 - 01/02 01/03 -

User 2 01/01 - 01/02 01/03 01/04

User 3 - 01/01 01/02 - 01/03

User 4 01/01 01/02 01/03 - -

User T - 01/01 01/02 01/03 -

Table 2.21: Choi, Keunho, Yoo, Kim, & Suh, 2012 historical user-item matrix

Step 1: Compute implicit rating of all users on items

The implicit rating can be computed by: 𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑅𝑎𝑡𝑖𝑛𝑔(𝑢, 𝑖) = 𝑅𝑜𝑢𝑛𝑑 𝑢𝑝(5 ∗ 𝑅𝑃(𝑢, 𝑖))

Where, RP(u,i) is the relative preference of user u on item i and it is defined as:

𝑅𝑃(𝑢, 𝑖) =
𝐴𝑃(𝑢, 𝑖)

(𝐴𝑃(𝑐, 𝑖))𝑐∈𝑈
𝑀𝑎𝑥

Where AP(u,i) is the absolute preference of user u on item i and it is defined as:

AP(u, i)=
𝑛𝑢𝑚𝑏𝑒 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑏𝑦 𝑢𝑠𝑒𝑟 𝑢

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑢
+ 1

In our case, user 1 purchased item 1 one time out of three transactions. Thus, AP (user1, item1)

=1/3+1=1.3. Furthermore, 𝑅𝑃(user1, item1) =1.3/1.3=1. So, implicit rating= 𝑅𝑃 ∗ 5 = 5.

- 40 -

 In the same way, let us consider a user-item implicit rating matrix created from the historical data

using above technique as given in Table 2.22.

Table 2.22: Implicit rating derived from user’s transactions

Step 2: Calculate mean rating and user similarity based on the implicit rating

1. Mean rating computation: The mean rating is computed by adding all the rating of users

on items with respect to total numbers of rating. So,

Mean of rating User 1 = (3+1+5)/3=3, User 2 =2.5, User 3=2.3, User 4=4 and User T=3

2. Similarity computation: Compute similarities between users’ using Cosine similarity,

which is given as:

𝐶𝑜𝑠𝑖𝑛𝑒(𝑇, 𝑏) =
∑ (𝑅𝑇,𝑖)(𝑅𝑏,𝑖)

𝑚
𝑖=1

√∑ (𝑅𝑇,𝑖)2𝑚
𝑖=1 √∑ (𝑅𝑏,𝑖)2𝑚

𝑖=1

Where (RT,i) denote the ratings of usersT on item i similarly (Rb,i) denotes the rating of

user b on item i. for example, similarity between Target user and User 1 is SIM (T, User1)

= 0.793 similarly, the similarity between SIM (T, User2) = 0.966, SIM (T, User3) = 0.89

and SIM (T, User4) = 1.

Step 3: Find Top-N closest neighbors of target user T

Once the similarity between the target user and other users are calculated, they are sorted based on

similarity in descending order then Top-N users are selected as neighbors of the target user. In our

case, the number of neighbors is set to 2, so, closest neighbors of target User T are User 2 and User

4.

Step 4: Calculate the CF-based predicted preference (CFPP)

Top-N neighbors are used to predict CF-based predicted preference of target user(T) on itemi by

the equation:

𝐶𝐹𝑃𝑃(𝑇, 𝑖) = 𝑅𝑇 ̅̅ ̅̅ +
1

∑ |𝑠𝑖𝑚(𝑇,𝑏)|𝑘
𝑏=1

∗ ∑ 𝑇𝑜𝑝𝑁 − 𝑠𝑖𝑚(𝑇, 𝑏)𝑁
𝑏=1 ∗ (𝑅𝑏,𝑖 − 𝑅𝑏 ̅̅ ̅̅)

Equation 2.7: CF-based predicted preference

 Item 1 Item 2 Item 3 Item 4 Item 5 Mean Rating

User 1 3 ? 1 5 ? 3

User 2 4 ? 3 1 2 2.5

User 3 ? 1 2 ? 4 2.3

User 4 5 4 3 ? ? 4

User T ? 4 3 2 ? 3

- 41 -

Where, N denotes the number of user a’s neighbors and sim (T, b) denotes the similarity between

User T and User b, which is computed by cosine similarity. Finally, 𝑅𝑇
̅̅ ̅̅ and 𝑅𝑏

̅̅̅̅ represents the

mean rating of User T and mean rating of User b. For example,

CFPP(T,item1)=µTUser+
(SIM(Tuser,user2)∗Ruser2,item1−µuser2+ SIM(Tuser,user4)∗Ruser4,item1−µuser4)

|𝑆𝐼𝑀(𝑇𝑢𝑠𝑒𝑟,𝑢𝑠𝑒𝑟2)+𝑆𝐼𝑀(𝑇𝑢𝑠𝑒𝑟,𝑢𝑠𝑒𝑟4)|

=4.74

Similarly, CFPP (T, item2) =3.5, CFPP (T, item3) =3.2365, CFPP (T, item4) = 2 and CFPP (T,

item5) =3

Step 5: Compute purchase item based score (SPAPP)

1. In this step, purchase information of each user placed according to purchase time except

for target user. In our case, item purchased by each user are: User1: <Item1><Item3><Item4>,

User2: <Item1><Item3><Item4><Item5>, User3: <Item2><Item3><Item5>, User4:

<Item1><Item2><Item3>.

2. Find frequent single item pattern (L1): Let us consider minimum support as 0.5 then the

frequent purchase item (L1) are {<item1>:0.75, <item2>:0.5, <item3>:1, <item4>:0.5, <item5>:0.5}

3. Generate larger candidate set (C2): Use L1 Apriori join L1 to create larger candidates set

(C2) as present in Table 2.23.

Items Count

<item1><item2> 0.25

<item1><item3> 0.75

<item1><item 4> 0.5

<item1><item5> 0.25

<item2><item3> 0.50

<item 2><item 5> 0.25

<item 3><item 4> 0.50

<item 3><item 5> 0.50

Table 2.23: possible list of 2-items generated from frequent purchase (L1)

4. Find 2-frequent items from C2: Test candaidate set (C2) with minimum threshold to create

frequent L2 items.

Frequent items (L2) =

Table 2.24: Frequent 2-item generated from candidate set (C2)

Item Count

<item1><item3> 0.75

<item1><item 4> 0.5

<item2><item3> 0.50

<item 3><item 4> 0.50

<item 3><item 5> 0.50

- 42 -

5. Repeat the process of candidate generation (Ck) and pruning (Lk) until the candidate set is

empty. In our case, frequent items are: <Item1> <Item3> (0.75), <Item2> <Item3> (0.5), <Item3>

<Item4> (0.5), <Item3> <Item5> (0.5), <Item1> <Item4> (0.5), <Item1> <Item3> <Item4> (0.5)

6. Match subsequences of a target user purchase with derived purchased items by

enumerating target user purchase item. In our case, purchase data of the target user T are

<Item2><Item3><Item4>, then possible subsequences can be <Item2>, <Item3>, <Item4>,

<Item2><Item3>, <Item2><Item4>, <Item3><Item4>, and <Item2><Item3><Item4>. For example,

since the first item <Item2> appears in the starting part of the second frequent item (C2)

thus, <Item3> can be decided as candidate items to recommend with supports 1.

7. Calculating the pattern analysis based predicted preference (SPAPP): Pattern based

predicted preference of userT on itemi is computed by 𝑆𝑃𝐴𝑃𝑃(𝑇, 𝑖) = ∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠
𝑖

𝑆∈𝑆𝑈𝐵 ,

Where SUB denotes the set of all subsequences of userT, and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠
𝑖 denotes the

support of itemi from a subsequence s. for example, predicted preference of Target user

on item 1. SPAPP (T, 1) = 0, similarly, SPAPP (T, 2) = 0, SPAPP (T, 3) =

0.75+0.5+0.5=1.25, SPAPP (T, 4) = 0.5+0.5+0.5=1.5, SPAPP (T, 5) = 0.5

Step 6: Integrate CFPP and SPAPP

In this step, CFPP and SPAPP are normalized to get N_CFPP and N_SPAPP, which is calculated

by: 𝐹𝑃𝑃(𝑇, 𝑖) = 𝛼 ∗ 𝑁_𝐶𝐹𝑃𝑃(𝑇, 𝑖) + (1 − 𝛼) ∗ 𝑁_𝑆𝑂𝐴𝑃𝑃(𝑇, 𝑖), Where α and 1- α are weights

given to collaborative filtering and association rule to adjust value variations.

 CFPP SPAPP N_CFPP N_SPAPP FPP Rank

Item 1 4.7455 0.7071 1 0 0.5 2

Item 2 3.5 0.9648 0.5463 0 0.273 5

Item 3 3.2365 0.8944 0.4504 0.8333 0.6419 1

Item 4 2 1 0 1 0.5 2

Item 5 3 0.333 0.3642 0.3333 0.3488 4

Table 2.25: Table showing integration of CFPP and SPAPP

Step 9: Recommend the item having highest rank

The item the having highest rank generated by adding collaborative filtering and association rule

generated value is recommended to target user T. In our case, item 2 is recommended first then

item 5.

- 43 -

2.1.7 Interest before liking: Two-step recommendation approaches by Zhao, Niu & Chen,

2013

It is based on matching user interest first then finding the high-quality item that a user will like.

First, it uses a binary user model to represent users’ interests from their rating values on an item

as a measure of interest no matter whether the value is high or low. So, this work is based on

matching users’ interests at first, and then tries to find high-quality items that users will like.

According to Zhao, Niu & Chen, 2013, a user can browse an item in the system, and can give

rating after browsing; but there are overabundant items in the system and user may not be able to

browse them all, thus, the rating behavior itself (regardless what the rating values are) is an

indication of the user’s interest, and this interest is extensible to similar items. Furthermore, the

rating values represent how the user likes the rated item, that is, the quality of the item in the user’s

point of view, and this quality indication is only applicable to the rated item. In existing item-based

CF, items with high predicted values are always recommended to users, and they try to recommend

items that users may like directly. Differently, this work ignores the rating value in order to find

items that match users’ interests first.

Example:

Input: Let us consider user-item rating matrix as given in Table 2.26, where rating available in

the range of 1-5 and ? represents the unrated rating for item by users.

User/item Item 1 Item 2 Item 3 Item 4

User 1 5 ? 3 2

User 2 ? ? 5 4

User 3 5 4 ? ?

User 4 5 5 4 ?

Table 2.26: User-item rating matrix for Zhao, Niu & Chen, 2013 recommendation system

Step 1: Compute the mean rating of user

The mean rating is computed by adding all the rating of particular users on his rated items with

respect to the total number of rating. For example, mean rating User 1 = (3+2+5)/3=3.3, for User

2 =4.5, for User 3=4.5, for User 4=4.33 as shown in table 2.27

User/item Item 1 Item 2 Item 3 Item 4 Mean rating

User 1 5 ? 3 2 3.3

User 2 ? ? 5 4 4.5

User 3 5 4 ? ? 4.5

User 4 5 5 4 ? 4.33

Table 2.27: User-item matrix showing mean rating of users on items

- 44 -

Step 2: Represent user-interest using binary

Represent user-item rating matrix by binary information, where 1 represents rated item and 0

represents the unrated item. In our case, the user-item rating matrix (Table 2.26) is represented

as a binary user-item matrix as shown in Table 2.28.

User/item Item 1 Item 2 Item 3 Item 4

User 1 1 0 1 1

User 2 0 0 1 1

User 3 1 1 0 0

User 4 1 1 1 0

Table 2.28: User-item binary matrix showing rated and unrated items

Step 3: Normalize binary user-item rating

Some users may have a rating for several items and normalizing help a user with many ratings

contributes less to any individual rating. Normalization of user rating on item can be performed as:

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔, 𝑅𝑖 =
𝑟𝑖

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

Where

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √𝑟12 + 𝑟22+𝑟32+⋯ . 𝑟𝑛2

For example, the normalized rating of user1 for item1=1/√12 + 12+12 =1/√3 =0.57. By using the

same technique, normalized rating of each user on item is computed. In our case, normalized user-

item binary rating matrix is present in Table 2.29.

Table 2.29: Normalized user-item rating matrix

Step 4: Form item-item similarity on normalized user-item matrix

Normalized user-item rating matrix is used to compute item-item similarity using Cosine similarity

function. For example, similarity between Item 1 and Item 2 is, Sim(1,2) =
0.57∗0.70+0.57∗0.70

√0.572+0.572∗√0.702+0.702
=

0.37, similarly, Sim(1,3)= 1, Sim(1,4)=1 as shown in Table 2.30.

Table 2.30: Table showing item-item similarity

User/item Item 1 Item 2 Item 3 Item 4

User 1 0.57 0 0.57 0.57

User 2 0 0 0.70 0.70

User 3 0.70 0.70 0 0

User 4 0.57 0.57 0.57 0

item/item Item 1 Item 2 Item 3 Item 4

Cosine(item1,j) 1 0.37 1 1

Cosine(item3,j) 1 0 1 1

- 45 -

Step 5: Predict rating and adjust rating of user on item using mean rating

Once item-item similarity is computed, then it is used to compute user rating on item for unrated

item such as item having 0 value then it is further adjusted by using mean rating using formula:

𝑟𝑓𝑖𝑛𝑎𝑙(𝑢, 𝑖) = 𝑟(𝑢, 𝑖) ∗ 𝑚𝑒𝑎𝑛(𝑖), where, mean(i) is mean rating computed in step 1.

2.1.8 Discovering e-commerce interest patterns using click-stream data by Su & Chen, 2015

(SuChenRec15)

This approach is based on finding the common interest similarity (frequency, duration, and path)

between purchase patterns of users to discover the closest neighbors. For the frequency similarity,

it computes total hits in item or category with respect to the total length of the user’s browsing

path. For duration similarity, it computes the total time spent on each category with respect to total

time spent by the user. Finally, for path similarity, it uses the longest common subsequence

comparing the two click sequence groups of two users. By selecting Top-N similar users from

three indicators, the CF method can use Top-N neighbor to improve the poor relationship between

users in the rating matrix.

Step 1: Compute frequency of E-commerce webpage visit (indicator 1)

1. Compute the hits on item or category: The visiting frequency is calculated by counting the

number of visits to category or item by users in a particular session. The hit consists of

two parts as given in Equation 2.8.

ℎ𝑖𝑡𝑠𝑢𝑠𝑒𝑟𝑖

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗 = 𝑐𝑜𝑢𝑛𝑡(𝑢𝑠𝑒𝑟𝑗, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗) + ∑ 𝑐𝑜𝑢𝑛𝑡(𝑢𝑠𝑒𝑟𝑖, 𝑖𝑡𝑒𝑚𝑘

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗)

𝑙

𝑘=1

Equation 2.8: Formula to compute hits of user on item and category

Where, first part represents the count of category visited by the user and the second part

represents the total items visited by the user, which belong to a particular category.

2. Utilize hits to compute frequency: Once hit count, the frequency is calculated as the ratio

of category of hits to the length of the users browsing path as given Equation 2.9.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑢𝑠𝑒𝑟𝑖

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗 =
ℎ𝑖𝑡𝑠𝑢𝑠𝑒𝑟𝑖

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗

(𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑢𝑠𝑒𝑟𝑖
)

Equation 2.9: Formula to compute frequency of hit

3. Formulate category-user frequency matrix: Once the frequency of user visit on category

is calculated, it is used to form a category-user frequency matrix. An example of a

category-user matrix with frequency characteristics is given in Table 2.31.

- 46 -

 Category1 Category 2 Category 3 Category 4

User 1 0.8 0.2 - -

User 2 - - 0.85 0.28

User 3 0.28 0.28 - 0.57

User 4 0.57 0.28 0.28 -

Table 2.31: User-category frequency matrix

4. Compute frequency similarity from user-category frequency matrix: User-based

collaborative filtering is used to compute frequency similarity of a user-category matrix.

There are many formulae available to compute similarity, some of the prominent are

Cosine similarity and Pearson Correlation Coefficient, here we are using cosine similarity,

which is given in Equation 2.10.

Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)) =
∑ (𝑅𝑢,𝑖)(𝑅𝑣,𝑖)

𝑚
𝑖=1

√∑ (𝑅𝑢,𝑖)2𝑚
𝑖=1 √∑ (𝑅𝑣,𝑖)2𝑚

𝑖=1

Equation 2.10: Cosine similarity function to compute frequency similarity

Where, (Ru,i) denotes the ratings of useru on itemi and (Rv,i) denotes the rating of userv on itemi.

Step 2: Compute duration of time spent on E-commerce webpages (Indicator 2)

1. Compute relative duration: The relative duration represent the total time spent by each user

on each category with respect to the total time a user spent on each session. The relative

duration is computed by dividing the useri spends time on category categoryj with respect

to the total time spend by users on each session by visiting different category and item.

Equation 2.11 provides formula to compute relative duration

Relative durationuser𝒊

category𝒋
=

Durationuseri

Categoryj

(time(Puseri
)

Equation 2.11: Formula to compute relative duration

Where nominator represents time spend by a user on category and denominator represents

total time spend by a user on item and category on each session. For example, let us

consider time spent by user on category as shown in Table 2.32 then total time spent by

User1 is 10+20=30 sec then relative duration of user 1 on category 1 is,

Relative durationuser1

category1 =
10

30
= 0.33

- 47 -

Table 2.32: User spend time on category

2. Formulate user-category relative duration matrix: Use relative duration to form user-

category matrix that represents a user’s spent relative duration to the corresponding

category as shown in Table 2.33.

 Category1 Category 2 Category 3 Category 4

User 1 0.33 0.66 - -

User 2 - - 0.55 0.44

User 3 0.31 0.43 - 0.25

User 4 0.07 0.42 0.5 -

Table 2.33: User-category relative duration matrix

3. Compute duration similarity between users: Use Cosine similarity function to compute the

duration similarity between users using Equation 2.12.

Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) =
∑ (𝑅𝑢,𝑖)(𝑅𝑣,𝑖)

𝑚
𝑖=1

√∑ (𝑅𝑢,𝑖)2𝑚
𝑖=1 √∑ (𝑅𝑣,𝑖)2𝑚

𝑖=1

Equation 2.12: Cosine similarity function to compute duration similarity

Where (Ru,i) denote the ratings of useru on item i similarly (Rv,i) denotes the rating of userv on

item i.

Step 3: Compute users browsing path (Indicator 3)

The browsing path Pi {url1, url2….. urln} of usersi is sequence of web pages browsed during a

particular session. The browsing path indicates the users visited categories and items in a particular

session. For example, P1{ctg1, Item1
1, ctg2, Item2

1, Item1
2} represents that user visit category

ctg1 then visit Item1
1 which belong to category 1 and after that visited category 2 and visited

Item2
1 item and finally Item2

2 visited which belong to category 2. An example of the browsing

path is shown in Table 2.34.

User Category Time in Sec

User1 Category 1 10 sec

User 1 Category 2 20 sec

User 2 Category 3 19 sec

User 2 Category 4 15 sec

User 3 Category 1 25 sec

User 3 Category 2 35 sec

User 3 Category 4 20 sec

User 4 Category 1 5 sec

User 4 Category 2 30 sec

User 4 Category 3 35 sec

- 48 -

Table 2.34: Users browsing path

1. Compute path similarity: Path similarities between two users compute the common path

length divided by the maximal length. A common path is defined if two users visit the

same categories in the same order. If there is more than one common path between two

users, the longest one is used in the path similarity. The Equation to compute path similarity

is provided in Equation 2.13.

Sim(𝑢𝑠𝑒𝑟𝑢 , 𝑢𝑠𝑒𝑟𝑣(𝑃𝑎𝑡ℎ)) = 𝑀𝑎𝑥(
𝑐𝑜𝑚𝑚𝑜𝑛(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑝, 𝑐𝑎𝑡𝑔𝑜𝑟𝑦𝑞)

𝑙𝑒𝑛𝑔ℎ𝑡(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑝 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑞)
)

Equation 2.13: Equation to compute path similarity

Step 4: Compute total similarity using path, frequency and duration

Once frequency, path and duration similarity are computed, they are used to compute total

similarity using Equation 2.14.

Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣 = α ∗ Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝑃𝑎𝑡ℎ)) + γ ∗ Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)) + В ∗ Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛))

Equation 2.14: Equation to compute the total similarity

Where В,γ,α are used to adjust the weight of path, frequency and duration such that В+γ+α=1.

2.1.9 E-Commerce Product Recommendation Using Historical Purchases and Clickstream

Data by Xiao & Ezeife, 2018 (HPCRec18)

In E-commerce, user-item rating matrices for collaborative filtering recommendation systems

are usually binary and sparse which shows whether a user has purchased an item previously or

not. Some existing recommendation system Kim, Yum, Song, & Kim, 2005 uses decision tree,

Kim, & Yum, 2011 uses association rule mining and Su & Chen,2013 use category based

measurements from clickstream data to improve recommendations, however, these

recommendation systems fail to integrate valuable information from historical purchases and

consequential bond information between session-based clicks and purchases. Thus, Xiao &

Ezeife, 2018 proposes Historical Purchase with Clickstream recommendation system

(HPCRec18), which normalizes the historical purchase frequency matrix to improve rating

quality, and mines the session-based consequential bond between clicks and purchases to

generate potential ratings to improve the rating quantity.

User Item Browsing Path Category Browsing Path

User1 P{ctg1, Item1
1,ctg2, Item2

1, Item2
2} CtgPath {ctg1,ctg2}

User 2 P{ ctg3, Item3
1, Item3

2 , Item3
3, ctg4, Item4

3} CtgPath {ctg3,ctg4}

User 3 P{ ctg4, Item4
1, Item4

2, ctg1, Item1
2 , ctg2, Item2

1} CtgPath {ctg4,ctg1,ctg2}

User 4 P{ ctg1, Item1
2, ctg2, Item2

2, Item1
1 ,ctg3, Item3

1} CtgPath {ctg1,ctg2,ctg3}

- 49 -

Example

Let’s consider frequency and the consequential table containing clicks and purchases as shown

in Table 2.35 as input, where frequency table contains the number of time product purchased

by a user, and the consequential table contains clicks and purchases on each session.

SessionId UserId Clicks Purchases

1 1 1,2 2

2 1 3,5,2,3 2,3

3 2 2,1,4 1,2,4

4 2 4,4,1,2 2,4,4

5 3 1,2,1 1

6 3 3,5,2

User\Item 1 2 3 4

1 ? 2 1 ?

2 1 2 ? 3

3 1 ? ? ?

Table 2.35: Consequential table on left and purchase frequency table on right

Step 1: Normalize the purchase frequency for each user on each item using the unit formula in a

user-item purchase frequency table. The unit normalization function takes purchase frequency

matrix as input and normalizes the frequencies into numbers between 0 and 1 using the unit

vector formula as given in Equation 2.15.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑢 𝑜𝑛 𝑖𝑡𝑒𝑚 𝑖 =
𝑖𝑡𝑒𝑚 𝑖

√𝑖𝑡𝑒𝑚1
2 + 𝑖𝑡𝑒𝑚2

2 + 𝑖𝑡𝑒𝑚3
2 + ⋯+ 𝑖𝑡𝑒𝑚𝑛

2

Equation 2.15: Unit vector formula to normalize purchase frequency

For example, for user 2, the purchase vector is <1, 2, 0, 3>, so the normalized purchase frequency

for user 2 on item 2 is 2 √12 + 22 + 02 + 32⁄ =0.53. In the same way, we can get normalize

frequency matrix as shown in Table 2.36.

Customer\Item 1 2 3 4

1 ? 2 1 ?

2 1 2 ? 3

3 1 ? ? ?

Normalized



Customer\Item 1 2 3 4

1 ? 0.89 0.45 ?

2 0.27 0.53 ? 0.8

3 1 ? ? ?

Table 2.36: Non-normalized user-item matrix on left and normalized matrix on right

Step 2: For each session without purchase in the consequential table, compute click set similarity

using Clickstream Sequence Similarity measurement (CSSM) function using the longest common

subsequence rate.

Longest common subsequence rate LCSR (x, y) = (LCS (x, y)) ⁄ (max (|x|, |y|))

Equation 2.16: Longest common subsequence rate

- 50 -

LCS(Xi, Yj) = {

∅ if i = 0 or j = 0

LCS(Xi−1, Yj−1) ∩ xi if xi = yj

longest(LCS(Xi, Yj−1), LCS(Xi−1, Yj)) if xi ≠ yj

Equation 2.17: Longest common sequence (LCS)

For example, there is no purchase information of session 6 for user 3 in the consequential table.

So, let’s compute the clickstream sequence similarity between session 6 and other session as given

below:

CSSM between session 6 and session 1(<3, 5, 2>, <1, 2>) =0.37,

CSSM between session 6 and session 2 (<3, 5, 2>, <3, 5, 2, 3>) =0.845,

CSSM between session 6 and session 3 (<3, 5, 2>, <2, 1, 4>) =0.33,

CSSM between session 6 and session 4 (<3, 5, 2>, <4, 4, 1, 2>) = 0.245,

CSSM between session 6 and session 5 (<3, 5, 2>, <1, 2, 1>) =0.295

Step 3: Form a weighted transaction table using the similarity as weight and purchases as

transaction records.

Purchase <2> <2,3> <1,2,4> <2,4,4> <1>

1 0.37 0.845 0.33 0.245 0.295

Table 2.37: Weighted transactional table of purchase set created from consequential bond

Step 4: Call TWFI (Transaction-based Weighted Frequent Item) function, which takes a weighted

transaction table, where weights are assigned to each transaction as input and returns items with

weighted support in a given threshold. For example, let’s consider minimum weighted

support=0.1, then, we will have frequent weighted transaction table as shown in Table 2.38.

Purchase(Transaction records) 2 2,3 1,2,4 2,4,4 1

Weight 0.37 0.845 0.33 0.245 0.295

Table 2.38: Weighted frequent transaction table

Step 5: Calculate support to form a distinct item from set of all the transactions

Item 1 2 3 4

Support 2 4 1 3

Table 2.39: Support for item present in weighted frequent transaction table

Step 6: Compute the average weighted support for each item using (AWS=AW*support) ,where

𝐴𝑊 = 𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡) 𝑠𝑢𝑝𝑝𝑜𝑟𝑡⁄). For example, AWS (1) =0.33+ 0.295=0.625, AWS (4) =0.33+

0.245+0.245=0.82.

Item 1 2 3 4

AWS 0.625 1.97 0.845 0.82

Table 2.40: Weight for item present in purchase pattern

- 51 -

2.2 Sequential Pattern Mining Algorithms

2.2.1 GSP (Generalized sequential pattern mining) algorithm

GSP is an Apriori-based sequential pattern mining algorithm introduced by Srikant & Agrawal,

1996. The main step in the GSP algorithm is candidate generation (Ck) and pruning (Lk). To

generate a candidate, we can use pair found in K-1th pass by merging. According to the algorithm,

first sequence W1 and second sequence W2 can be merged, if subsequences obtained by removal

of the first element of sequence W1 and last element of sequence W2 are same. In the second step,

we need to prune candidate that contains a subsequence which is infrequent in K-1 pass. We need

to iterate the process of candidate generation (Ck) and pruning (Lk) until a candidate set is empty.

Finally, frequent sequences are the union of the entire list obtained so far.

Example of GSP algorithm.

Input: sequence database (Table 2.41), minimum support=2 and candidate set (C1) = {A, B, C,

D, E, F, G} and algorithm=GSP

SID Sequences

1 <(A),(B),(FG),(C),(D)>

2 <(B),(G),(D)>

3 <(B),(F),(G),(A,B)>

4 <(F),(A,B),(C),(D)>

5 <(A),(B,C),(G),(F),(D,E)>

Table 2.41: Sequence Database representing customer purchase

Step 1: Find 1- frequent sequence (L1) satisfying minimum support: Check the minimum support

threshold of each singleton item and keep only sequences with occurrence or support count in the

database greater than or equal to the minimum support count of 2. For example, (L1) = {< (A):4>,

<(B):4>, <(C):3>, <(D):4>, <(F):4>, <(G):4>}.

Step 2: Generate candidate sequence (Ck=2) using L 1 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L1

To generate larger candidate set 2, use 1-frequent sequence (L1) found in step 1 to join itself using

GSPjoin way, which can be written as L (k-1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L (k-1) and it requires every sequence (W1)

found in first L (k-1) joins with other sequence (W2) in the second if subsequences obtained by

removal of the first element of W1 and last element of W2 are same. In our case, we are generating

sequences with candidate 2, (Ck=2), which can generate 51 types of 2-length candidate set using

Apriori algorithm as present in Table 2.42.

- 52 -

<(A),(A)> <(A),(B)> <(A),(C)> <(A),(D)> <(A),(F)> <(A),(G)>

<(B),(A)> <(B),(B)> <(B),(C)> <(B),(D)> <(B),(F)> <(B),(G)>

<(C),(A)> <(C),(B)> < (C),(C)> <(C),(D)> <(C),(F)> <(C),(G)>

<(D),(A)> <(D),(B)> <(D),(C)> <(D),(D)> <(D),(F)> <(D),(G)>

<(F),(A)> <(F),(B)> <(F),(C)> <(F), (D)> <(F),(F)> <(F),(G)>

<(G),(A)> <(G),(B)> <(G),(C)> <(G),(D)> <(G),(F)> <(G),(G)>

<(A,B)> <(A,C)> <(A,D)> <(A,F)> <(A,G)> <(B,C)>

<(B,D)> <(B,F)> <(B,G)> <(C,D)> <(C,F)> <(C,G)>

<(D,F)> <(D,G)> <(F,G)>

Table 2.42: Candidate set (C2) generated from L1 GSP join L1

Step 3: Find 2- frequent sequences (L2) by counting the occurrence of 2-sequences in candidate

sequence (C2) to keep the only sequence with occurrence or support count in the database greater

than or equal to the minimum support. For example, L2= {<(A), (B)>, <(A, B)>, <(A), (C)>, <(A), (D)>,

<(A), (F)>, <(A), (G)>, <(B), (C)>, <(B), (D)>, <(B), (F)>, <(B), (G)>, <(C), (D)>, <(F), (A)>, <(F), (B)>, <(F), (C)>,

<(F), (C)>, <(F), (D)>, <(G), (D)>}.

Step 4: Repeat process of candidate generation and pruning until the result of candidate generate

(Ck) and prune (Lk) for finding frequent sequence is an empty set.

Output: Finally, the output frequent sequences as union of L1 U L2 U L3 U L4 U … Lk

1-Frequent

Sequences

2-Frequent Sequences 3-Frequent Sequences 4-Frequent Sequences

<(A)>, <(B)>,

<(C)>, <(D)>,

<(F)>, <(G)>

<(A), (B)>, <(A, B)>, <(A),

(C)>, <(A), (D)>, <(A),

(F)>, <(A), (G)>, <(B),

(C)>, <(B), (D)>, <(B),

(F)>, <(B), (G)>, <(C),

(D)>, <(F), (A)>, <(F),

(B)>, <(F), (C)>, <(F),

(D)>, <(G), (D)>

<(F), (C), (D)>

<(F), (B, A)>

<(F), (A, B)>

<(B), (G), (D)>

<(B), (F), (D)>

<(B), (C), (D)>

<(A), (G), (D)>

<(A), (F), (D)>

<(A), (C), (D)>

<(A), (B), (G)>

<(A), (B), (F)>

<(A), (B), (D)>

<(A), (B), (G), (D)>

<(A), (B), (F), (D)>

Table 2.43: n-frequent sequences generated by GSP from sequence database

- 53 -

2.2.2 PrefixSpan (Prefix-projected sequential pattern mining) algorithm

PrefixSpan algorithm (Pei, et al, 2001) proposed a new approach for finding the sequential pattern

by avoiding generation of candidates. The algorithm is based on the creation of a projected

database; the projected database is a set of sub-pattern in the original database that is suffixes of a

pattern containing the prefix. The prefixSpan algorithm starts computing the patterns of size 1 that

fulfill the frequency threshold in the database. Later, for each pattern of size 1, prefixSpan

computes its projected database and find the patterns that fulfill the frequency threshold in the

projected database. The pattern of size 1 grows concatenating it with each element of the pattern

found in the projected database generating patterns of size 2; this process is recursive until the

projected database is empty.

Example of prefixSpan algorithm

Let us consider sequence database as shown in Table 2.44 as input, Minimum support=2,

Candidate sets={A,B,C,D,E,F}

ID Sequence

100 <(A),(A,B,C),(A,C),(D),(C,F)>

200 <(A,D),(C),(B,C),(A,E)>

300 <(E,F),(A,B),(D,F),(C), (B)>

400 <(E), (G), (A, F), (C), (B), (C) >

Table 2.44: Sequence input database for prefixSpan

Step 1: Count the support of singleton sequence

Check the minimum support threshold of each singleton item and keep only sequences with

occurrence or support count in the database greater than or equal to the minimum support count of

2. In our case, we do have support for each singleton sequences as given in Table 2.45.

<(A)> <(B)> <(C)> <(D)> <(E)> <(F)> <(G)>

4 4 4 3 3 3 1

Table 2.45: support for singleton sequences

Step 2: Prune singleton sequences with specified minimum threshold

In this step, we need to prune sequence that does not satisfy the minimum support. In our case,

minimum support is 2 and we can see that <(G)> doesn’t satisfy minimum support, so we need to

prune g from singleton sequence.

Step 3: Create a projected database by considering 1-frequent sequence from a sequential database

The next step is to divide search space into a set of projected databases according to the frequent

- 54 -

prefixes. For example, for each sequence of the sequence database (Table 2.44), the projected

database of frequent 1 sequence <(A)> would consist of all the items that appear after the sequence

<(A)> (that is) the projected database for <(A)> will consist of all the sequences with its prefix as

<(A)>. Table 2.46 gives the projected database for all the frequent 1 items.

 Prefix

<(A)>

<(A,B,C),(A,C),(D),

(C,F)>

<(_D),(C), (B,C),(A,E)>

<(_B),(D,F), (C), (B) >

<(_F), (C), (B), (C) >

<(B)>
<(_C),(A,C),(D),(C,

F)>

<(_C),(A,E)>

<(D,F), (C), (B) >

<(C)>

<(C)>
<(A,C),

(D),(C,F)>

<(B,C),(A,E)>

<(B)>

<(B,C)>

<(D)>
<(C,F)>

<(C),(B,C),(A,E)>

<(_F), (C), (B) >

<(E)>
<(_F),(A,E),(D,F),
(C), (B) >

<(A,F),(C), (B),

(C) >

<(F)>
<(A,B),(D,F),
(C), (B) >

<(C), (B), (C) >

Table 2.46: Project database of sequence database

Step 4: Find frequent sequences from the projected databases and test with minimum threshold

repeatedly until no projected database can be created

1. Find the sequence present in projected database. Let us consider projected database of

<(D)> is present in Table 2.47.

<(D)>

<(C,F>

<(C), (B,C),(A,E)>

<(_F), (C),(B) >

Table 2.47: Projected database of sequence <(D)>

2. The projected database is scanned to find the frequent items in it. In our case, let’s scan

Table 2.47 then we will find support as shown in Table 2.48. In our example, only <(B)>

and <(C)> are frequent.

<(A)> <(B)> <(C)> <(D)> <(E)> <(F)> <(_F)>

1 2 3 0 1 1 1

Table 2.48: Frequencies of item presented in projected database of sequence <(D)>

3. Now, the projected database for sequence <(D), (B)> and <(D), (C)> are constructed using

step 3. Furthermore, their respective projected databases are scanned to get the frequent

items in their projected dbs.

- 55 -

<(D)>

<(C,F)>

<(C),(B,C),(A,E)>

<(_F), (C), (B) >

<(D),(B)>

<(_C), (A,E)>

<(D),(C)>

<(B,C),(A,E)>

<(B)>

Table 2.49: project database of sequence <(D), (B)> and <(D), (C)>

4. Since item present in the projected database <(D), (B)> is infrequent. So, compute

frequency of item present in the projected database <(D), (C)> and we can see only <(B)>

is frequent.

<(B)> <(A)> <(E)> <(C)>

2 1 1 1

Table 2.50: Frequencies of item present in projected database of sequence <(D), (C)>

5. Create the projected database of <(D), (C), (B)>. Since the projected database of <(D),

(C), (B)> is empty. So, terminate the process.

<(D), (C), (B)>

ϴ

Table 2.51: Projected database of sequence <(D), (C), (B)>

2.2.3 SPADE (Sequential Pattern Discovery using Equivalence classes) algorithm

SPADE algorithm was first introduced by Zaki, 2001. This algorithm is based on mining the

subsequence by using vertical data format. The vertical data format consists of syntax: <itemset:

(Sequence_ID, event_ID)> that means for each itemset we record sequence identifier and event

identifier. The event identifier is also called as a timestamp. SPADE requires one scan to find

frequent 1-sequences. To find candidate 2-sequence, we need to join all pairs of single items when

they are frequent if they share the same sequence identifier and their event identifier follows the

same sequential ordering and pattern are grown similarly. Support of K-sequence can be

determined by joining the ID lists of K-1 sequences.

Example of SPADE

Let us consider, sequential database (Table 2.52) as input, minimum support=2 and candidate

set = {A, B, C, D, E, F, G, H}

- 56 -

Sequence ID Sequence

1 <(C,D),(A,B,C),(A,B,F) ,(A,C,D,F)>

2 <(A,B,F),(E)>

3 <(A,B,F)>

4 <(D,G,H),(B,F),(A,G,H)>

Table 2.52: Input sequential database for SPADE

Step 1: Find frequent singleton sequence

Keep only sequences with occurrence or support count in the database greater than or equal to the

minimum support count of 2. In our case, C, E G and H are infrequent. So, frequent singleton

sequences are {<A>:4, :4, <D>:2 and <F>:4}.

Step 2: Convert the sequence database into vertical data format

Vertical data format contains the item present in the sequence database by their sequence id and

events ids. The events id helps to determine the sequence of events. So, if we take one sequence

<(CD) (ABC) (ABF) (ACDF)> from sequence database Table 2.52 then we can see that CD is

considered as one event, ABC is considered as another event and so on. So, the vertical data format

of the sequential database in our case presented in Table 2.53.

Sequence ID(SID) Event ID(EID) Itemset

1 10 (C,D)

1 15 (A,B,C)

1 20 (A,B,F)

1 25 (A,C,D,F)

2 15 (A,B,F)

2 20 (E)

3 10 (A,B,F)

4 10 (D,G,H)

4 20 (B,F)

4 25 (A,G,H)

Table 2.53: Vertical data format of sequence database

Step 3: List frequent singleton sequences along with their sequence ID (SID) and event ID (EID)

List frequent singleton sequences from Table 2.53 with sequence ID (ID) and event ID (EID)

separately so that they can be used to generate the larger sequence. For example, we can see that

item A is present in event {15, 20, 25, 15, 10, 25}.

A

SID EID

1 15

1 20

1 25

2 15

3 10

4 25

B

SID EID

1 15

1 20

2 15

3 10

4 20

D

SID EID

1 10

1 25

4 10

F

SID EID

1 20

1 25

2 15

3 10

4 20

Table 2.54: Frequent 1-sequence with event ID and item ID

- 57 -

Step 4: Generate 2-frequent sequences by joining all pairs of single item from step 2

To find candidate 2 frequent sequences, we need to join all pairs of single items when they are

frequent and if they share same sequence identifier (SID) and event identifier (EID) follows a same

sequential ordering as present in Table 2.55.

B

SID EID

1 15

1 20

2 15

3 10

4 20

D

 SID EID

1 10

1 25

4 10

SID join

SID EID(D) EID(B)

1 10 15

1 10 20

4 10 20

Table 2.55: Process of generating 2-frequent sequences in SPADE

Step 5: Repeat the process of joining and pruning until frequent sequences are present in vertical

database.

Output: n-frequent are collection of {1,2….n} frequent sequences

Frequent 1-sequence Frequent 2-sequences Frequent 3-sequences Frequent 4-Sequences

Item Support

A 4

B 4

D 2

F 4

Item Support

AB 3

AF 3

B-> A 2

BF 4

D->A 2

D->B 2

D-> F 2

F->A 2

Item Support

ABF 3

BF->A 2

D->BF 2

D->B->A 2

D->F->A 2

Item Support

D->BF->A 2

Table 2.56: n-frequent sequences generated by SPADE algorithms

- 58 -

CHAPTER 3: PROPOSED SYSTEM TO GENERATE SEQUENCE DATASET FOR E-

COMMERCE RECOMMENDATION

There are many reasons for generating a sequential dataset from different E-commerce source such

as historical, clickstream. In E-commerce, historical information of products purchased online for

each online store is stored in transactional databases; sequential purchase behavior of the user

cannot be identified from transactional data without using a sequential pattern mining method. So,

without analyzing historical sequential data from E-commerce environment, we cannot provide

the proper recommendation to the user such as: finding the next possible item for user A, if user

A purchased laptop last month from BestBuy (BestBuy, 2019) or Amazon (Amazon, 2019).

Additionally, collaborative filtering finds users’ closest neighbor to generate matching

recommendations. However, what people want from recommender systems is not whether the

system can predict rating values accurately, but recommendations that match their interests

according to time span. Thus, E-commerce recommendation system accuracy will be improved if

more complex sequential patterns of users’ historical purchase behavior are learned and included

in the user-item matrix to make it quantitatively and qualitatively rich before applying

collaborative filtering.

3.1 Problem Definition

Given E-commerce historical click and purchase data over a certain period of time as input, the

problem being addressed by this thesis is to find the frequent periodic (daily, weekly, monthly)

sequential purchase and click patterns in the first stage. Then, these sequential purchase and click

patterns can be used to make user-item matrix qualitatively (specifying level of interest or value

for already rated items) and quantitatively (finding the possible rating for previously unknown

ratings) rich before applying collaborative filtering (CF) to improve the overall accuracy of

recommendation.

3.2 Proposed Historical Sequential Recommendation- (HSPRec) System

The major goal of the proposed Historical (H), Sequential (SP), Recommendation (Rec)- HSPRec

is to mine frequent sequential pattern from E-commerce historical data to enhance a user-item

rating matrix from discovered patterns. Thus, HSPRec takes minimum support, historical click and

purchase database containing consequential bond as input to generate rich user-item matrix as

output as shown in Algorithm 3.1.

- 59 -

Algorithm 1: HSPRec (Historical sequential recommendation)

Input: minimum support (s), historical user-item purchase frequency matrix (M), consequential bond

(CB), historical purchase database (DB), historical click database (CDB)

Output: user-item purchase frequency matrix (M2)

Intermediates: historical sequential purchase database (SDB), weighted purchase pattern (WP),

historical sequential click database (SCDB), rule recommended purchase items (RPI), each user u’s

rating of item i in the matrices is referred to as rui.

1. : purchase sequential database (SDB) SHOD (DB) using Algorithm 2 present in section 3.2.1.

2. : user-item purchase frequency matrix (M1)  M modified with Sequential Pattern Rule (SDB)

using section 3.2.2.

3. : for each user u do

4. : weighted purchase pattern for user u, (WPu)  null;

5. : end

6. : for each user u do

7. : if u has both click and purchase sequences then

8. : compute Click Purchase Similarity CPS (click sequence, purchase sequence) from SCDB and SDB

using section 3.2.3.

9. : weighted purchase patter for user u, (WPu)  CPS (click sequence, purchase sequence) using

section 3.2.3;

10. : else

11. : rule recommended purchase items (RPI)  Sequential Pattern Rule (SCDB) using section 3.2.1;

12. : weighted purchase patter for user u, (WPu)  CPS (click sequence, purchase sequence) using

section 3.2.3;

13. : end

14. : rating of item i by user u (rui)  weighted purchase patter for user u, (WPu);

15. : M2  M1 modified with rating rui

16. : end

Algorithm 3.1: Historical sequential recommendation (HSPRec) system

Steps in the proposed HSPRec system:

Step 1: Convert historical purchase information (present in Table 3.9) to user-item purchase

frequency (present in Table 3.1) by counting the number of each purchased by a user. For

example, User 2 purchased item 1 and item 2 twice and purchased item 3, item 4, item 5 and item

6 only once.

- 60 -

User/item 1 2 3 4 5 6 7

A2HD75EMZR8QLN

(User1)

1 1 1 ? 1 1 1

A1026QJYJTVE5T

(User2)

2 2 1 1 1 1 ?

A1026RERIHUK3C

(User3)

1 1 ? ? 1 1 ?

A0130ZI3HIT9N5V

(User4)

? 1 ? ? ? 1 1

A31ZC98HM9C4LP

(User5)

? ? ? ? ? ? ?

Table 3.1 :User-item purchase frequency matrix created from historical data

Step 2: Create a daily purchase sequential database (Table 3.2) of customer purchase (Table

3.9) by applying the sequential historical periodic database (SHOD) generation algorithm

presented in section 3.2.1.

SID Purchase sequence

1 < (1,2), (3), (6), (7), (5)>

2 <(1, 4), (3), (2), (1, 2, 5, 6)>

3 <(1), (2), (6), (5)>

4 <(2) , (6, 7)>

Table 3.2: Daily purchase sequential database

For example, User 2 daily purchase sequence is < (1, 4), (3), (2), (1, 2, 5, 6)>, which shows User

2 purchased item 1 and item 4 together on the same day and purchased item 3 on the next day then

purchased item 2 on another day and finally, purchased items 1, 2, 5 and 6 together on the next

day.

Step 3: Input daily purchase sequential database (Table 3.2) to Sequential Pattern Rule (SPR)

module present in section 3.2.2 to generate sequential rule from frequent purchase. For example,

1-frequent purchase sequences = {< (1)>, < (2)>, < (3)>, < (5)>, < (6)>, < (7)>}

Some of 2-frequent purchase sequences= {< (6), (5)>, < (3), (6)>, < (3), (5)>, < (2), (7)>, < (2), (6)>, <

(2), (5)>}

Some of 3-frequent purchase sequences= {< (2), (6), (5)>, < (1), (6), (5)>, < (1), (3), (6)>, < (1), (3),

(5)>, < (1), (2), (6)>}

Thus, some of the possible sequential purchase pattern rules based on frequent purchase sequences

are:

- 61 -

(a) 1, 5  3 , (b) 2, 6  1 , (c) 2, 6  5

Where, rule (a) states that if user purchases item 1 and item 5 together then the user will purchase

item 3 in next purchase, which will be applied in case of User 3 in user-item purchase frequency

matrix.

Step 4: Reconstruct user-item purchase frequency matrix by using purchase sequential rule

Rule (a) is applied in case of User3, rule (b) and rule c are applied in case of User4. Thus, enhanced

user-item purchase frequency matrix is present in Table 3.3.

User/item 1 2 3 4 5 6 7

User1 1 1 1 ? 1 1 1

User2 2 2 1 1 1 1 ?

User3 1 1 1 ? 1 1 ?

User4 1 1 ? ? 1 1 1

User5 ? ? ? ? ? ? ?

Table 3.3: Enhanced user-item purchase frequency matrix

As we can see from enhanced user-item purchase frequency matrix (Table 3.3), there is no

purchase information for User5. Thus, to find the purchase information of User5, we are going to

analyze the consequential bond of click and purchase by considering sequential patterns. Let us

consider, historical click and purchase as present in Table 3.4.

UID Clicks sequence Purchases sequence

1 <(1,2,3), (7,5,3), (1,6), (6), (1,5)> < (1, 2), (3), (6), (7), (5)>

2 <(1,4), (6,3), (1,2), (1,2,5,6)> <(1,4), (3), (2), (1, 2, 5, 6)>

3 <(1,5), (6,5,2), (6), (5)> <(1), (2), (6), (5)>

4 <(2,7), (6,6,7)> <(2) , (6, 7)>

5 <(1,5)> ?

Table 3.4: Consequential bond of sequence of click and purchase

Step 5: For each user, where clicks happened without purchases such as for user 5 in Table 3.4,

create a click periodic sequential database (Table 3.5) by neglecting purchase from the

consequential bond. Finally, input a click sequential database to Sequential Pattern Rule (SPR)

(present in 3.2.2) module to get the recommended item as the predicted purchase item. In our case,

we have to find the click sequential rule which will recommend purchase item when the user

purchased item 1 and item 5 together and let’s further consider item 1 and item 3 are recommend

to User 5 from Sequential Pattern Rule (SPR) (present in 3.2.2).

- 62 -

SID Click sequence

1 <(1,2,3), (7,5,3), (1,6), (6), (1,5)>

2 <(1,4), (6,3), (1,2), (1,2,5,6)>

3 <(1,5), (6,5,2), (6), (5)>

4 <(2,7), (6,6,7)>

5 <(1,5)>

Table 3.5: Click sequential database

 Step 6: Once the purchased item is recommended for a user (where, the click has happened

without purchase), compute click and purchase similarity using Click and Purchase Similarity

(CPS) module present in 3.2.3.

Step 7: Supply CPS value to purchase pattern including a recommended item from Sequential

Pattern Rule (SPR) to create weighted purchase pattern (Table 3.6).

Purchased Sequence CPS

< (1, 2), (3), (6), (7), (5)> 0.624

<(1, 4),(3), (2), (1, 2, 5, 6)> 0.834

<(1), (2), (6), (5)> 0.636

<(2) , (6, 7)> 0.67

<(1) , (3)> 0.5

Table 3.6: Weighted purchase patterns

Step 8: Input weighted purchase pattern (Table 3.6) to Weighted Frequent Purchase Pattern

Miner (WFPPM) present in section 3.2.4 to calculate the weight for each frequent individual item

based on its occurrence in weighted purchase patterns. In our case, R1= 0.68, R2=0.71, R3=0.65,

R4=0.834, R5=0.698, R6=0.691, R7=0.647.

Step 9: Repeat steps 4, 5, 6 7 and 8, if there are more users without purchase, otherwise assign

computed item weight to enhance user-item purchase frequency matrix (Table 3.3).

User/item 1 2 3 4 5 6 7

User1 1 1 1 ? 1 1 1

 User2 2 2 1 1 1 1 ?

 User3 1 1 1 ? 1 1 ?

 User4 1 1 ? ? 1 1 1

 User5 0.68 0.71 0.65 0.834 0.698 0.691 0.647

Table 3.7: Quantitatively rich user-item purchase frequency matrix

Step 9: Normalize quantitatively rich user-item purchase frequency matrix (Table 3.7) using unit

normalization formula present in section 3.2.5 to provide the level of user’s interest on item

- 63 -

between 0 and 1 as shown in Table 3.8. We can see, that normalized quantitatively rich user-item

matrix (Table 3.8) is less sparse compared to initial user-item purchase frequency matrix (Table

3.1).

User/item 1 2 3 4 5 6 7

User1 0.40 0.40 0.40 ? 0.40 0.40 0.40

 User2 0.57 0.57 0.28 0.28 0.28 0.28 ?

 User3 0.44 0.44 0.44 ? 0.44 0.44 ?

 User4 0.44 0.44 ? ? 0.44 0.44 0.44

 User5 0.37 0.39 0.35 0.45 0.38 0.38 029

Table 3.8: Normalized enrich user-item purchase frequency matrix

3.2.1 HSPRec: Periodic Sequential Database Generation Module

The proposed sequential (S), historical (H), periodic (O), database (D) - (SHOD) generation

module takes historical (click or purchase database) data as input and produce periodic (daily,

weekly, monthly) sequential (click or purchase) database as output as present in Algorithm 3.2.

Algorithm 2: SHOD (Sequential historical periodic database) System

Input: historical click and/or purchase data

Output: periodic (daily, weekly, monthly) sequential database

Intermediates: Tuserid=temporary userid, Ttimestamp=temporary timestamp, -I: end of itemset, and –

S: end of sequence

1. : historical.txt  extract userid, productid, timestamp from historical data

2. : read first line from historical.txt and store userid, timestamp into temporary variable (Tvar)

3. : for all user N ϵ historical.txt do

4. : If (userid==Tvar.userid)

5. : Tdur  timestamp - Tvar.timestamp

6. : If (Tdur <=24 hrs)

7. : add item to daily-sequence-database.txt and goto step 3

8. : Else

9. : add -I to indicate end of itemset and goto step 3

10. : If (Tdur <=168 hrs)

11. : add item to weekly-sequence-database.txt and goto step 3

12. : Else

13. : add -I to indicate end of itemset and goto step 3

14. : If (Tdur > 672 hrs)

15. : add item to monthly-sequence-database.txt and goto step 3

16. : Else

17. : add -I to indicate end of itemset and goto step 3

18. : Else (userid! =Tvar.userid)

19. : add -I and -S after item to indicate end of itemset and sequence and update Tvar.userid and goto

step 3

- 64 -

20. : End if

21. : End for

Algorithm 3.2: Algorithm to create sequential historical periodic database

Example to create daily sequence database

To explain the SHOD algorithm step by step, let us consider historical purchase data (Table 3.9)

as input, where Uid represents user identity, Productid represents product identity, Product

represents name of the product and Purchastime represents timestamp when purchased occurred.

Uid Productid Product Purchasetime

A2HDEMZR8QLN B003UYU16G 1 2014-04-04 11:30:11

A2HDEMZR8QLN B003MYU66K 2 2014-04-04 13:25:19

A2HDEMZR8QLN B00A9NE84C 3 2014-04-05 15:56:32

A2HDEMZR8QLN B00EG0C20G 6 2014-04-06 16:18:26

A2HDEMZR8QLN B000SAUVC4 7 2014-04-07 18:59:21

A2HDEMZR8QLN B000GAYQTU 5 2014-04-08 21:19:55

A1026QJYJTVE5T B003UYU16G 1 2014-04-13 04:04:34

A1026QJYJTVE5T B003KYK18C 4 2014-04-13 06:05:39

A1026QJYJTVE5T B00A9NE84C 3 2014-04-15 09:34:37

A1026QJYJTVE5T B003MYU66K 2 2014-04-17 13:54:48

A1026QJYJTVE5T B003UYU16G 1 2014-04-17 11:44:55

A1026QJYJTVE5T B003UYU16G 2 2014-04-17 11:45:50

A1026QJYJTVE5T B000GAYQTU 5 2014-04-17 11:46:52

A1026QJYJTVE5T B00EG0C20G 6 2014-04-17 11:47:54

A1026RERIHUK3C B003UYU16G 1 2014-04-20 10:02:53

A1026RERIHUK3C B008PF1YPW 2 2014-04-21 12:07:15

A1026RERIHUK3C B00EG0C20G 6 2014-04-22 17:10:28

A1026RERIHUK3C B000GAYQTU 5 2014-04-23 10:06:37

A0130ZI3HIT9N5V B008PF1YPW 2 2014-04-25 10:06:37

A0130ZI3HIT9N5V B00EG0C20G 6 2014-04-26 10:06:37

A0130ZI3HIT9N5V B000SAUVC4 7 2014-04-26 11:07:38

A31ZC98HM9C4LP ? ? ?

Table 3.9: Historical E-commerce purchase data

Step 1: Read the first line of record from historical purchase data (historical.txt in our case) and

store userid, timestamp into a temporary variable. For example, let’s store first line from Table

3.9 into variable as:

Tuserid= A2HDEMZR8QLN, Ttimestamp=2014-04-04 11:30:11.

Step 2: Read another line from the historical database and check recently read userid with userid

stored in a temporary variable (Tuserid). If userid is same, compute the difference between the last

time the same user made a purchase and the current purchase time user is making a purchase and

goto step 3 else goto step 4.

- 65 -

Step 3:

1. If the time difference between the two products is less than 24 hours add itemID to itemset

in daily.txt file. In our case, the purchased time difference between two products {1, 2}

purchased by user {Tuserid= A2HD75EMZR8QLN} is less than 24 hrs. So, add two items

to itemset in daily.txt

1, 2

2. If the time difference between purchased items is more than 24 hours add –I to indicate

the end of itemset and add itemID after -I. For example,

1, 2 –I 3

Step 4: If user identity is not similar, then add –I and -S after item to indicate the end of itemset

and sequence and goto step 2 by updating temporary variable.

Step 5: Repeat step2, Step 3 and Step 4 until the historical database is empty. In our case, the daily

sequential database using step2, Step 3 and Step 4 is shown in Table 3.10.

SID UID Purchase sequence

1 A2HD75EMZR8QLN 1, 2 -I 3 -I 6 -I 7 -I 5 –I -S

2 A1026QJYJTVE5T 1, 4 –I 3 -I 2 -I 1, 2, 5, 6 –I -S

3 A1026RERIHUK3C 1 –I 2 –I 6 -I 5 –I -S

4 A0130ZI3HIT9N5V 2 –I 6, 7 –I -S

Table 3.10:Sequential database created from historical transactional data

Which is alternatively represented as shown in Table 3.11, where angular bracket < > indicates

sequence and () contains item set purchased on same day.

SID SID Purchase sequence

1 A2HD75EMZR8QLN < (1, 2), (3), (6), (7), (5)>

2 A1026QJYJTVE5T <(1,4), (3), (2), (1, 2, 5, 6)>

3 A1026RERIHUK3C <(1), (2), (6), (5)>

4 A0130ZI3HIT9N5V <(2) , (6, 7)>

Table 3.11: Alternative representation of daily purchase sequential database

- 66 -

3.2.2 HSPRec: Sequential Pattern Rule (SPR) Module

Sequential Pattern Rule (SPR) is based on the use of frequent sequential pattern created from the

periodic sequential database. Thus, input of SPR is periodic historical sequential (click or

purchase) database and output is recommended rule using the following major steps:

1. Frequent sequence generation: It generates frequent sequences from sequential database

by using GSP algorithm present in section 2.2.1. Let us consider input= Table 3.5,

minimum support=2, candidate set (C1) = {1, 2, 3, 4, 5, 6, 7} and algorithm= GSP (as

defined in section 2.2.1). Output: frequent sequences, here, we are including some of

frequent sequences.

1-frequent purchase sequences = {< (1)>, < (2)>, < (3)>, < (5)>, < (6)>}

Some of 2-frequent purchase sequences= {< (1), (2)>, < (1), (3)>, < (3), (6)>, < (5), (6)>}

Some of 3-frequent purchase sequences= {< (1), (2), (6)>, < (3), (1), (5)>, < (1), (5), (6)>}

2. Rule generation: Represents frequent sequences in the form of 𝑈𝑐𝑙𝑖𝑐𝑘 → 𝑈𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒, where

the left-hand side of rule refers to a set of clicked items, while the right-hand side refers to

a set of recommended items for purchase. The sequential rule for recommendation is

inspired by work done by pitman & Zankar, 2010 using sequential pattern. Furthermore,

to verify the validity of rule, confidence of rule is defined as in Equation 3.1.

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑈𝑐𝑙𝑖𝑐𝑘 → 𝑈𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑈𝑐𝑙𝑖𝑐𝑘 ∪ 𝑈𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑈𝑐𝑙𝑖𝑐𝑘)

Equation 3.1: Sequential Pattern Rule generated from n-frequent sequences

Here some of the rules from frequent click sequences are:

(a) (1,5) (3), (1) with 50% confidence

(b) (1), (5) (6), (5) with 50% confidence

3. Rule selection: Let’s say, we are only interested in rule that satisfy following criteria:

1) At least 2 antecedents

2) Confidence >= 50%

3) Select one rule having highest confidence value.

In our case, rule (a) (1,5)  (1),(3) is selected for User 5, which states that, user is

recommended with item 1 and item 3, when user purchased item 1 and item 5 together.

- 67 -

3.2.3 HSPRec: Click Purchase Similarity (CPS) Module

To compute the CPS similarity between click sequence and purchase sequence of each user, we

have used sequence similarity and frequency similarity of the two sequences.

Sequence similarity (LCSR): It is based on using longest common subsequence rate (LCSR) (X,

Y) =
𝑳𝑪𝑺(𝑿,𝒀)

𝒎𝒂𝒙(|𝑿|,|𝒀|)
. In our case, X represents click sequence and Y represents purchase sequence and

LCS is defined in Equation 3.2.

LCS(X i, Y j) ={

∅ 𝒊𝒇 𝒊 = 𝟎 𝒐𝒓 𝒋 = 𝟎

𝑳𝑪𝑺(𝑿𝒊−𝟏, 𝒀𝒋−𝟏) ∩ 𝑿𝒊 𝒊𝒇 𝒙𝒊 = 𝒚𝒊

𝒍𝒐𝒏𝒈𝒆𝒔𝒕 (𝑳𝑪𝑺(𝑿𝒊, 𝒀𝒋−𝟏), 𝑳𝑪𝑺(𝑿𝒊−𝟏, 𝒀𝒋)) 𝒊𝒇 𝒙𝒊 ≠ 𝒚𝒊

Equation 3.2: Sequence similarity function

In our case, X represents click sequence and Y represents purchase sequence

Frequency similarity (FS): First, form the distinct set of items from both click and purchase

sequential patterns and count number of items occurring in each sequence to form vector

specifying the number of times a user clicks or purchased a particular item then apply Equation

3.3 to click and purchase vectors.

𝑪𝒐𝒔𝒊𝒏𝒆(𝑿, 𝒀) =
𝑿𝟏∗𝒀𝟏 + 𝑿𝟐∗𝒀𝟐+ … +𝑿𝒏∗𝒀𝒏

√𝑿𝟏
𝟐+𝑿𝟐

𝟐+⋯+𝑿𝒏
𝟐 ∗ √𝒀𝟏

𝟐+𝒀𝟐
𝟐+⋯+𝒀𝒏

𝟐

Equation 3.3: Cosine similarity function

Thus, CPS(X, Y) =α*LCSR(X, Y) +β*Cosine (X,Y), where α+β=1, 0<α, β<1, where α and β are

weight to balance the two sequence similarity and frequency similarity.

Example of CPS (click sequence, purchase sequence)

To compute CPS similarity between click sequence (X) = < (2, 7), (6, 6, 7)> and purchase sequence

(Y) =< (2), (6, 7)>, we have to follow following steps:

1. Compute the longest common subsequences, LCS(X, Y) between click and purchase

sequence. For example, LCS (< (2, 7), (6, 6, 7)>, < (2), (6, 7)>) is 3 because of common

subsequence (2), (6, 7).

2. Find the maximum number of item occurring in click or purchase sequence as Max(X,Y).

In our case, Max(X, Y) is 5.

3. Compute sequences similarity of click (X) and purchase (Y) sequence as

LCS(X,Y)/Max(X,Y)=3/5=0.6.

- 68 -

4. Compute the frequencies of items in click and purchase sequences. In our case, we have

format [(item): number of occurrences]. So, frequency count of click is: [(2):1, (6):2, (7):2].

Similarly, frequency count of purchase is: [(2):1, (6):1, (7):1].

5. Then, use the Cosine similarity function in Equation 3.3 to get the frequency similarity

between click sequence (X) and purchase sequence (Y) as Cosine(X, Y). In our case,

Cosine(X, Y) =0.96.

6. The Click Purchase Similarity of user click and purchase sequence

CPS(X,Y)=0.8*0.6+0.2*0.96, where α =0.8 and β=0.2.

This CPS(X, Y) can be used as weight or probability that user u will purchase the entire sequence

as shown in Table 3.12.

3.2.4 HSPRec: Weighted Frequent Purchase Pattern Miner (WFPP) Module

Weighted Frequent Purchase Pattern Miner (WFPPM) takes weighted purchase sequences as input

(present in Table 3.12) and generate frequent items with weight(u’s rating of item i in the matrices

referred to as rui) present in purchased patterns under the user specified minimum threshold as

output. So major steps of WFPPM are:

Purchase sequence CPS

< (1, 2), (3), (6), (7), (5)> 0.624

<(1, 4),(3), (2), (1, 2, 5, 6)> 0.834

<(1), (2), (6), (5)> 0.636

<(2) , (6, 7)> 0.67

<(1) , (3)> 0.5

 Table 3.12: Weighted purchase pattern

1. Count support of item: Count the occurrence of items presented in weighted purchase

pattern (Table 3.17). For example, {support (1): 5, support (2): 5, support (3): 3, support

(4): 1, support (5): 3, support (6): 4, support (7): 2}

2. Calculate the weight of individual item: Compute weight of individual item from weighted

purchase pattern (Table 3.12) using Equation 3.4.

𝑅𝑖𝑡𝑒𝑚 𝑖 =
∑ 𝐶𝑃𝑆 ∈ 𝑖𝑡𝑒𝑚𝑖

𝑛
𝑖=1

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑖𝑡𝑒𝑚𝑖)

Equation 3.4: Formula to compute weight in WFPPM

For example, 𝑅𝑖𝑡𝑒𝑚 1 =
0.624+0.834+0.834+0.636+0.5

5
 = 0.68.

- 69 -

3. Test weight with minimum support threshold: Define the minimum threshold rating, here

in our case, minimum threshold=0.2. So, all items are frequent.

3.2.5 HSPRec: User-item Matrix Normalization

Normalization in the recommendation system helps to predict the level of interest of user on an

item. Thus, the normalization function takes the user-item frequency matrix as input and provide

the level of user interest between 0 and 1 using the unit vector formula (Equation 3.5).

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑟𝑢𝑖) =
𝑟𝑢𝑖

√𝑟𝑢𝑖1
2 + 𝑟𝑢𝑖2

2 + ⋯𝑟𝑢𝑖𝑛
2

Equation 3.5: Unit normalization function

- 70 -

3.3 Architecture of Proposed System

Figure 3.1: Architecture of HSPRec showing modules and flow

- 71 -

3.4 Example of HPCRec VS HSPRec system

Input historical click: Let us consider the historical click table as shown in Table 3.13, which

contains click items, click start time and click end time.

Userid Click items Clickstart Clickend

User 1 Cheese, Butter , Milk, Butter, Cream, Cheese 2017.06.05.13.23.30 2017.06.05.13.43.00

User 1 Honey, Cream, Butter 2017.06.06.09.00.34 2017.06.06.09.50.20

User 2 Cheese, Honey, Bread, Milk, Cream 2017.06.05.18.53.19 2017.06.05.19.33.14

User 2 Milk , Cheese, Cheese, Milk 2017.06.06.19.53.19 2017.06.06.20.33.13

User 3 Cheese, Cream, Honey, Butter 2017.06.05.19.33.14 2017.06.05.19.50.16

User 4 Cheese, Milk 2017.06.05.19.33.14 2017.06.05.19.53.19

Table 3.13: Historical Click data

Input historical purchase: Let us consider the historical purchase table as shown in Table 3.14,

which contains a list of items purchased by a user over the specified time.

Userid Purchase items timestamp

User1 Cream, Butter, Milk 2017.06.05.13.38.00

User1 Honey, Butter 2017.06.06.09.40.20

User2 Milk, Cream, Honey 2017.06.05.19.23.14

User2 Milk, Honey, Cheese 2017.06.06.20.23.13

User3 Butter, Cheese 2017.06.05.19.40.16

User 3 Cheese, Honey 2017.06.06.10.40.16

User4 ? 2017.06.05.19.43.19

Table 3.14: Historical purchase data

Consequential bond: Let us consider the consequential bond of clicks and purchases, which is

created from using historical click (Table 3.13) and historical purchase (Table 3.14) as shown

in Table 3.15.

Userid Click Purchase

1 Cheese, Butter , Milk, Butter, Cream, Cheese,

Honey, Cream, Butter

Cream, Butter, Milk Honey, Butter

2 Cheese, Honey, Bread, Milk, Cream, Milk ,

Cheese, Cheese, Milk

Milk, Cream, Honey, Milk, Honey,

Cheese

3 Cheese, Cream, Honey, Butter Butter, Cheese, Cheese, Honey

4 Cheese, Milk ?

Table 3.15: Consequential table from click and purchase historical data

User-item purchase frequency matrix: Let us consider user-item purchase frequency matrix created

from historical purchase data as present in Table 3.16, where the number indicates, the number

of times item purchase by a user. For example, User 1 purchased butter 2 time, Honey 1 time and

so on.

- 72 -

User/item Milk Bread Butter Cream Cheese Honey

User 1 1 ? 2 1 ? 1

User 2 2 ? ? 1 1 2

User 3 ? ? 1 ? 2 1

User 4 ? ? ? ? ? ?

Table 3.16: User-item frequency matrix from purchase historical data

3.4.1 Xiao & Ezeife, 2018 (HPCRec18)

Step 1: Normalize the user-item frequency matrix (Table 3.16) using the normalization function.

Then, we will get normalized user-item frequency matrix as shown in Table 3.17.

User/item Milk Bread Butter Cream Cheese Honey

User 1 0.37 ? 0.75 0.37 ? 0.37

User 2 0.63 ? ? 0.31 0.31 0.63

User 3 ? ? 0.40 ? 0.81 0.40

User 4 ? ? ? ? ? ?

Table 3.17: Normalized user-item frequency matrix

Step 2: As we can see, there is no purchase information of user 4. So, select click item without

purchases from consequential bond (Table 3.15) and compute similarity with other click using

Clickstream Sequence Similarity Measurement (CSSM) function defined by Xiao & Ezeife, 2018

to fill the information. For example, let’s take click X= {Cheese, Milk} performed by user4 and

Y= {Cheese, Butter, Milk, Butter, Cream, Cheese, Honey, Cream, Butter} by user 1.

1. Calculate LCSR(X,Y)=
common(X,Y)

max(X,Y)
 =

2

9
 = 0.22

2. Calculate FS(X, Y) = 𝑐𝑜𝑠𝑖𝑛𝑒({1,1}, {1,0,2,2,1,3}) = 3/11.28=0.26; where X= {Milk:1,

Bread:0, Cream:0, Cheese:1, Honey:0, Butter:0} and Y={Milk:1, Bread:0, Cream:2,

Cheese:2, Honey:1, Butter:3 } are frequency of product present in X and Y

3. Use α and β as parameters to balance the sub-sequence similarity and frequency similarity,

where 0<α, β<1, α+β=1. α and β will be determined from the training dataset. So if set

α=0.8, β=0.2, Sim (X, Y) =0.8*0.26+ 0.2*0.22=0.252.

4. Assign calculated similarity weight to purchase item set for a user with whom similarity is

computed to create a weighted transactional table and 1, Step 2 and Step 3 for other users.

In our case, weighted transactional table is as shown in Table 3.28.

- 73 -

Userid Purchase Weight

1 {Cream, Butter, Milk, Honey, Butter} 0.252

2 {Milk, Cream, Honey, Milk, Honey, Cheese} 0.36

3 {Butter, Cheese, Cheese, Honey} 0.27

4 ?

Table 3.18: Weighted transactional table

Step 3: Use TWFI function defined by Xiao & Ezeife, 2018 to calculate weighted frequency for

items.

1. Calculate support for item present in weighted transaction table: Form a distinct item set

from transactions weighted transactional table and find the support for each item. For

example, <Milk:3, Cream:2, Cheese:3, Honey:4, Butter:3>

2. Compute the Average Weighted Support (AWS) using formula: (AWS) =
𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡
 .

For example, AWS for Milk is=sum (0.252+0.36+0.36)/3= 0.324. Similarly, AWS

(Cream) = 0.306, AWS (Cheese) = 0.3, AWS (Honey)=0.31, AWS (Butter) = 0.258

3. Use minimum weighted threshold to test the Average Weighted Support (AWS). In our

example, let us consider minimum weight=0.3 and we can see that all AWS meet

minimum threshold.

Step 4: Use the weight of item to fill missing information. In our case, let use for user 4 then

user-item frequency matrix looks like as given in Table 3.19.

User/item Milk Bread Butter Cream Cheese Honey

User 1 0.37 ? 0.75 0.37 ? 0.37

User 2 0.63 ? ? 0.31 0.31 0.63

User 3 ? ? 0.40 ? 0.81 0.40

User 4 0.324 ? 0.258 0.306 0.3 0.31

Table 3.19: Quantitatively rich normalized user-item frequency matrix

- 74 -

3.4.2 Example of purposed HSPRec

Step 1: Create a user-item frequency matrix from historical purchase. In our case, the user-item

frequency matrix created from historical purchase (Table 3.14) is present in Table 3.21.

User/item Milk Bread Butter Cream Cheese Honey

User 1 1 ? 2 1 ? 1

User 2 2 ? ? 1 1 2

User 3 ? ? 1 ? 2 1

User 4 ? ? ? ? ? ?

Table 3.20: User-item frequency matrix created from historical purchase

Step 2: Convert historical purchase to the sequential database using section 3.2.1. The sequential

database can be constructed by considering the period of time (day, week, and month). Here in our

case, let’s construct purchase sequential database from historical purchase information as present

in Table 3.20.

SID Purchase sequence

1 < (Cream, Butter, Milk),(Honey, Butter)>

2 <(Milk, Cream, Honey),(Milk, Honey, Cheese)>

3 <(Butter, Cheese), (Cheese, Honey)>

4 ?

Table 3.21: Daily purchase sequential database created from historical transaction data

Step 3: Create frequent sequential purchase pattern from daily sequential database using GSP

algorithm. In our case possible purchase sequential rule from frequent purchase sequences are

Rule No Sequential rule

1 Milk, Butter Cheese

2 Cream, Cheese  Milk

3 Cheese, Honey  Cream

4 Honey  Cream

5 Honey  Milk

Table 3.22: Sequential rule created from n-frequent sequences

From rule 3, we can conclude that, user will purchase Honey if user purchased Cheese

- 75 -

Step 4: Fill purchase information in user-item frequency matrix using sequential purchase rule.

User/item Milk Bread Butter Cream Cheese Honey

User 1 1 ? 2 1 1 1

User 2 2 ? 1 1 1 2

User 3 1 ? 1 1 2 1

User 4 ? ? ? ? ? ?

Table 3.23: Rich user-item frequency matrix created with help of sequential rule

Step 5: As we can see in Table 3.23 that there is no purchase information of user 4. To find

purchase information of user 4, we have to analyze the relationship between click and purchase.

Furthermore, the sequence of click and purchase play important role in product selection. So, rather

than analyzing click pattern we have to find the relationship of click and purchase pattern

considering their sequence using the following steps:

1. Form click sequential database from the consequential bond. Here, we are creating a daily

sequential database but it is also possible to create a weekly and monthly sequential

database to create more complex click sequential rule.

SID Click

1 <(Cheese, Butter , Milk, Butter, Cream, Cheese), (Honey, Cream, Butter)>

2 <(Cheese, Honey, Bread, Milk, Cream), (Milk , Cheese, Cheese, Milk)>

3 <(Cheese, Cream, Honey, Butter)>

4 <(Cheese, Milk)>

Table 3.24: Sequential database created from consequential table

2. Use sequential pattern mining algorithm on user click sequence: Create n-frequent click

sequential pattern from click sequential database using the GSP algorithm. In our case

some of the n-frequent click sequences are:

1- Sequences = {< (Milk)>, < (Cheese)>, < (Cream)>, < (Butter)>, < (Honey)>}

2- Sequences = {< (Milk, Cheese)>, < (Butter, Cheese)>, < (Honey, Butter)>}

3- Sequences = {< (Cheese, Cream, Milk)>, < (Cream, Cheese, Milk)>}

3. Create sequential rule from n-frequent click sequential pattern using Sequential Pattern

Rule (SPR) present in section 3.2.2. Here in our case possible sequential rule from n-

frequent sequences are from click sequences are

- 76 -

Rule No Sequential rule

1 Cheese, Milk Cream

2 Cream,  Cheese

3 Butter  Honey

Table 3.25: Sequential rule created from n-frequent sequences

4. Recommend item from the click sequential rule, where the user clicks but does not

purchase anything. For example, there is no purchase for click sequence < (Cheese, Milk)>

thus item < (Cream)> is recommended from the sequential rule

Userid Click Purchase Recommend

item

1 <(Cheese, Butter , Milk, Butter,

Cream, Cheese), (Honey, Cream,

Butter)>

<(Cream, Butter, Milk), (Honey, Butter)>

2 <(Cheese, Honey, Bread, Milk,

Cream), (Milk , Cheese, Cheese,

Milk)>

<(Milk, Cream, Honey), (Milk, Honey,

Cheese)>

3 <(Cheese, Cream, Honey,

Butter)>

<(Butter, Cheese), <(Cheese, Honey)>

4 <(Butter, Bread, Cream, Cheese,

Honey, Butter)>

? < (Cream)>

Table 3.26: Recommend item for click when purchase is not happened

Step 6: Compute Click Purchase Pattern (CPS) similarity using frequency and sequence of click

and purchase pattern using section 3.2.3. If there is no purchase along with click item, then use

the recommended item. For example, let’s take click (X) = {< (Cheese, Butter, Milk, Butter,

Cream, Cheese)>, < (Honey, Cream, Butter)>} by user 1 and purchase (Y) = {< (Cream,

Butter, Milk), (Honey, Butter)>}.

i. Calculate LCSR(X,Y)=
|common(X,Y)|

max(|X|,|Y|)
 =

5

9
 = 0.55

ii. Calculate FS(X, Y) = 𝑐𝑜𝑠𝑖𝑛𝑒({2,1,1,1}, {1,0,2,2,1,3}) = 10/10.21=0.97; where

X= {Milk:1, Bread:0, Cream:2, Cheese:2, Honey:1, Butter:3} and Y={Milk:1,

Bread:0, Cream:1, Cheese:0, Honey:1, Butter:2 } are frequency of product

present in X and Y

iii. Use α and β as parameters to balance the sub sequence similarity and frequency

similarity, where 0<α, β<1, α+β=1. α and β will be determined from training

dataset. So if set α=0.8, β=0.2, CPS-Sim (X, Y) =0.8*0.55+ 0.2*0.97=0.634.

- 77 -

Userid Click Purchase Recommend

item

CPS

Similarity

1 <(Cheese, Butter , Milk, Butter,

Cream, Cheese), (Honey, Cream,

Butter)>

<(Cream, Butter, Milk), (Honey,

Butter)>

 0.634

2 <(Cheese, Honey, Bread, Milk,

Cream), (Milk , Cheese, Cheese,

Milk)>

<(Milk, Cream, Honey), (Milk,

Honey, Cheese)>

 0.516

3 <(Cheese, Cream, Honey,

Butter)>

<(Butter, Cheese), <(Cheese,

Honey)

 0.562

4 <(Butter, Bread, Cream, Cheese,

Honey, Butter)>

? < (Cream)> 0.198

Table 3.27: CPS similarity using click and purchase

Step 7: Assign Click Purchase (CPS) similarity value to the purchase patterns present in the

consequential bond. The weighted purchase pattern in our case is present in Table 3.28.

Purchase CPS Similarity

<(Cream, Butter, Milk), (Honey, Butter)> 0.634

<(Milk, Cream, Honey), (Milk, Honey, Cheese)> 0.516

<(Butter, Cheese), <(Cheese, Honey) 0.562

< (Cream)> 0.198

Table 3.28: Weighted purchase patterns

Step 8: Assign weighted purchase patterns to Weighted Frequent Purchase Pattern Miner (WFPP)

module present in section 3.2.4 and compute a weight for item present in weighted purchase

pattern using formula: 𝑅𝑖𝑡𝑒𝑚𝑖 =
∑ 𝐶𝑃𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑡𝑒𝑚𝑖

𝑛
𝑖=1

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑖𝑡𝑒𝑚𝑖)

i. Count support of item:

Item Milk Cream Cheese Honey Butter

Support 3 3 3 4 3

Table 3.29: Support for item present in weighted purchase patterns

ii. Calculate rating for individual item:

𝑅𝑚𝑖𝑙𝑘 =
0.634+0.516+0.516

3
 =0.55

𝑅𝐶𝑟𝑒𝑎𝑚 =
0.634+0.516+0.198

3
 =0.44

𝑅𝐶ℎ𝑒𝑒𝑠𝑒 =
0.516+0.562+0.562

3
 =0.54

𝑅𝐻𝑜𝑛𝑒𝑦 =
0.634+0.516+0.516+0.198

4
 =0.46

𝑅𝐵𝑢𝑡𝑡𝑒𝑟 =
0.634+0.634+0.562

3
 =0.61

- 78 -

Step 9: Use the weight of item to make user-item matrix rich. In our case, rich user-item purchase

frequency matrix is shown in Table 3.30.

User/item Milk Bread Butter Cream Cheese Honey

User 1 1 ? 2 1 1 1

User 2 2 ? 1 1 1 2

User 3 1 ? 1 1 2 1

User 4 0.55 ? 0.61 0.44 0.54 0.46

Table 3.30: Rich user-item purchase frequency matrix

Step 10: Normalize rich user-item purchase frequency matrix

User/item Milk Bread Butter Cream Cheese Honey

User 1 0.35 ? 0.70 0.35 0.35 0.35

User 2 0.60 ? 0.30 0.30 0.30 0.60

User 3 0.35 ? 0.35 0.35 0.70 0.35

User 4 0.48 ? 0.53 0.38 0.47 0.40

Table 3.31: Quantitatively rich purchase user-item purchase frequency matrix

- 79 -

CHAPTER 4: EXPERIMENTAL EVALUATION AND ANALYSIS

We have used user-based collaborative filtering to evaluate the performance of recommendation

systems. The historical data is converted into user-item matrices with (Choi12Rec, HPCRec18,

and HSPRec) algorithms before applying collaborative filtering. We have used the Pearson

Correlation Coefficient (PCC) to test user-based collaborative filtering, Furthermore, 80% of data

is used in training and 20% of data is used in testing the performance. To evaluate the performance

of the recommendation system, we have used a different number of users and nearest neighbors

using three different evaluation parameters (a) mean absolute error (MAE) (b) precision and (c)

recall with LibRec (Guo, Zhang, Sun, & Yorke-Smith, 2015) library available in Java.

4.1 Historical Purchase Dataset Selection

For historical purchase E-commerce data, we have used data available from Amazon

(http://jmcauley.ucsd.edu/data/amazon/). The Amazon data sets consist of 23 different categories

such as Books, Electronics, Home and Kitchen, Sports and Outdoors, Cell Phones and

Accessories, Grocery and Gourmet Food and many more. The Data contains 142.8 million

transactional records spanning May 1996 - July 2014. The fragment of historical purchase Amazon

dataset is provided in Figure 4.1.

Data format: {userID, asin, overall, purchaseTime}

{"userID": "A2HD75EMZR8QLN", "asin": "0700099867", "overall": 1.0, "purchaseTime": "07 9, 2012" }

{"userID": "A3UR8NLLY1ZHCX", "asin": "0700099867","overall": 4.0, "purchaseTime": "06 30, 2013"}.

Figure 4.1: Historical purchase data (Amazon data)

Where, users are identified by userID and products are identified by asin and user provided rating

on an item is represented by overall. Furthermore, purchaseTime provides timestamp when

purchased occurred.

4.2 Dataset Evaluations

We used our historical dataset in user-based collaborative filtering to evaluate its performance with

respect to MAE, precision, and recall. The data is modified into the intermediate form, which

means when the value is larger than the minimum threshold; this value would be set to one (highest

rating). When the value is less than the threshold, this value would be set to zero (lowest rating)

and finally, user-item rating matrix is provided to collaborative filtering using Librec.

http://jmcauley.ucsd.edu/data/amazon/

- 80 -

4.2.1 Evaluation parameters

Mean absolute error (MAE): MAE measures the average of the errors in a set of predictions. It’s

the average over the test sample of the absolute differences between prediction and actual rating.

𝑀𝐴𝐸 =
∑ |𝑎𝑐𝑡𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑛𝑔−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑟𝑎𝑡𝑖𝑛𝑔|𝑛

𝑖=1

𝑛

Thus, higher mean absolute errors mean, less efficient for accurate rating predication and lower

mean absolute errors means highly efficient for accurate rating prediction. For example, let us take

an example of rating and computation of mean absolute error.

Item Actual rating Predicted rating Absolute rating error

Item 7 2 4.9 2.9

Item 5 5 4.5 0.5

Item 10 4 4.3 0.3

Item 2 2 3.6 1.6

Item 2 3 3.4 0.4

Item 1 4 2.3 1.7

MAE 7.4/6=1.23

Table 4.1: Actual rating and predicted rating user-item matrix

In this case, mean absolute error is 1.23 and we can see the variation in actual rating and predicted

rating. The fragment of code to implement the MAE in java for our experiment is:

Figure 4.2: Function to compute mean absolute error (MAE)

Let us consider the confusion matrix as shown in Table 4.2

 Purchased Not purchased

Recommended

(relevant)

TP (Recommended and purchased) FP (Recommended and not purchased)

Not recommended

(Not relevant)

TN (Not recommended and purchased) FN (Not recommended and not purchased)

Table 4.2: Confusion matrix for recommendation system

public double evaluateMAE(User_item testMatrix, RecommendedList recommendedList)

{

 double mae = 0.0,testSize = 0;

 Iterator<MatrixEntry> testMatrixIter = testMatrix.iterator();

 Iterator<UserItemRatingEntry> recommendedEntryIter = recommendedList.entryIterator();

 while (testMatrixIter.hasNext()) {

 if (recommendedEntryIter.hasNext()) {

 MatrixEntry testMatrixEntry = testMatrixIter.next();

 UserItemRatingEntry userItemRatingEntry = recommendedEntryIter.next();

 if (testMatrixEntry.row() == userItemRatingEntry.getUserIdx()

 && testMatrixEntry.column() == userItemRatingEntry.getItemIdx()) {

 double realRating = testMatrixEntry.get();

 double predictRating = userItemRatingEntry.getValue();

 mae += Math.abs(realRating - predictRating);

 testSize++;

 }}}

 return mae / testSize;

}

- 81 -

Precision: Determines the fraction of relevant items retrieved out of all items in the

recommendation system. Let us consider, TP represents the fraction of items that user is interested

with and FP represents the fraction of items that user is not interested with, then precision is defined

as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑖𝑡𝑒𝑚

𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚

Suppose that, our precision at the nearest neighbor (10) in a Top-10 recommendation problem is

40%. This means that 40% of the recommendations we make are relevant to the user. For example,

let us consider, we are recommended with item7, item5 and item10 at Top-10 neighbors from user-

item matrix (Table 4.1) and the user is interested with only item10 then precision=1/(1+2)=0.33.

Java implementation of precision in our case is present in Figure 4.3.

Figure 4.3: Function to compute precision

Recall: Determines the fraction of relevant items retrieved out of all relevant items in the

recommendation system. Let us consider, TP represents the fraction of relevant items that user is

interested with and FN represents the fraction of relevant items that user is not interested with,

then precision is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚

𝑎𝑙𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

Suppose that, we computed recall at the nearest neighbor (10) and found it is 40% in our Top-10

recommendation system. This means that 40% of the total number of the relevant items appear in

the top-k results. For example, let us consider we are interested with an actual rating greater or equal

to 3.5 in user-item matrix (Table 4.1) then relevant items are {item5, item10 and item1} and

public double evaluatePrecision(User_item testMatrix, RecommendedList recommendedList)

{

 double precision = 0.0, numHits = 0;
 int userNum = testMatrix.numRows();

 for (int userID = 0; userID < userNum; userID++) {

 Set<Integer> testSetByUser = testMatrix.getColumnsSet(userID);

 if (testSetByUser.size() > 0) {

 List<ItemEntry<Integer,Double>> recommendListByUser =

recommendedList.getItemIdxListByUserIdx(userID);

 int topK = this.topN <= recommendListByUser.size() ? this.topN : recommendListByUser.size();

 for (int indexOfItem = 0; indexOfItem < topK; indexOfItem++) {

 int itemID = recommendListByUser.get(indexOfItem).getKey();

 if (testSetByUser.contains(itemID)){

 numHits++;

 }}

 precision += numHits / (this.topN + 0.0);

 }}

 return precision;

}

- 82 -

recommended item at Top-10 neighbors are {item7, item5, item10}. Thus, intersection of

recommended and relevant items are {item5, item10} =2. Thus, recall=2/2+1= 0.66. Java

implementation of recall in our case is present in Figure 4.4.

Figure 4.4: Function to compute recall

4.2.2 Result evaluation and analysis

First, we applied user-based collaborative filtering on explicit rating available on Amazon

historical data then we saw that performance is very low. Then, we implemented choiRec12 (Choi,

Keunho, Yoo, Kim, & Suh, 2012) with derive implicit rating and got better result compared to

original collaborative filtering. Furthermore, we implemented HPCRec18 (Xiao & Ezeife, 2018)

and found a better result than choi12Rec. Finally, we implemented the historical sequential

recommendation (HSPRec18), with the help of purchase frequency matrix at first. Then, we

discovered frequent sequences of purchase data to create sequential rules and used sequential rules

to enhance user-item matrix and applied to collaborative filtering and found better result compared

to choiRec12 and HPCRec18.

public double evaluateRecall(User_item testMatrix, RecommendedList recommendedList)

{

 double totalRecall = 0.0, numHits = 0;

 int userNum = testMatrix.numRows();

 int nonZeroNumUsers = 0;

 for (int userID = 0; userID < userNum; userID++) {

 Set<Integer> testSetByUser = testMatrix.getColumnsSet(userID);

 if (testSetByUser.size() > 0) {

 List<ItemEntry<Integer, Double>> recommendListByUser =

 recommendedList.getItemIdxListByUserIdx(userID);

 int topK = this.topN <= recommendListByUser.size() ? this.topN : recommendListByUser.size();

 for (int i = 0; i < topK; i++) {

 int itemID = recommendListByUser.get(i).getKey();

 if (testSetByUser.contains(itemID)) {

 numHits++;

 }}

 totalRecall += numHits / (testSetByUser.size() + 0.0);

 nonZeroNumUsers++;

 }}

 return nonZeroNumUsers > 0 ? totalRecall / nonZeroNumUsers : 0.0d;

}

- 83 -

Figure 4.5: Evaluation of HSPRec with respect to precision, recall and mean absolute error

4.2.3 Accuracy evaluation using precision

Recommendation

system

Top-N Neighbors Number

of users

Recommendation

No

Precision Relevant

item

Percentage

ChoiRec12 10 10 2000

4000

6000

8000

2090

3880

5647

7772

0.59

0.37

0.33

0.31

1233

1435

1863

 2409

58%

37%

32%

30%

HPCRec18 10 10 2000

4000

6000

8000

2050

4032

5857

8655

0.62

0.39

0.35

0.38

1271

1572

2049

3288

62%

38%

34%

37%

HSPRec 10 10 2000

4000

6000

8000

2130

4156

6039

8938

0.65

0.49

0.38

0.45

1394

2036

2294

4022

64%

48%

37%

44%

Table 4.3: Precision evaluation with respect to different number of users

- 84 -

4.3 Complexity Analysis

4.3.1 Time complexity analysis of HSPRec algorithm

Our HSPRec is composed of several modules (SHOD (Sequential Historical Periodic Database),

SPR (Sequential Pattern Rule), CPS (Click Purchase Similarity), WFPPM (Weighted Frequent

Purchase Pattern Miner), and Matrix normalization); thus, we are going to discuss the time

complexity of HSPRec with respect to specified modules.

1. Time complexity analysis of SHOD algorithm

In our case, SHOD algorithm starts with input historical.txt as the main input. But, SHOD

algorithm is functional with the input from the relational database such as MySQL, SqlServer, and

Oracle. So, time complexity in the worst case is,

0(n) - Time complexity to form historical.txt database

C- Time complexity to update temporary variable

0(n) - Time complexity to form sequential database

Thus, total time complexity in worst case is, 0 (n) +C+0 (n) = 0 (n)

2. Time complexity of Click Purchase Similarity (CPS) module

The CPS module takes the click sequence and purchase sequence of each user as input. Thus, the

time complexity required to compute click and purchase similarity for n users is O (n2).

3. Time complexity of Weighted Frequent Purchase Pattern Miner (WFPPM) module

Weighted purchase pattern miner takes weighted purchase patterns (purchase sequences with

assigned weight) as input. Thus, counting the sum of the weight of item and support of the item

in each purchase sequence requires O (n2).

4. Time complexity of Sequential Pattern Rule (SPR) module

SPR module contains the General Sequential Pattern (GSP) mining algorithm. Thus, the time

complexity of this module depends on the following factors:

(a) Support threshold: General Sequential Pattern (GSP) mining algorithm is based on the

minimum support threshold to generate frequent sequences. Thus, lowering the support

threshold often results in the production of more frequent sequences.

(b) Number of transactions: GSP algorithm makes repeated scanning of the dataset. Thus,

run time increases with a large number of transactions.

- 85 -

(c) Average transaction width: Each transaction in the dataset contains a different number of

items. So, the time complexity depends on the average transaction width.

(d) Number of items: A large number of items require more space to store the support count

of items resulting in more time complexity.

4.4 Implementation and Coding

 Operation system: Windows 10 Unlimited

o RAM: 16 GB

o CPU: 3.6 GHz

o System type: 64-bit Operating System, x64 based processor

 Integrated Development Environment:

o Eclipse Java EE IDE for Web Developers

 Version: Oxygen.1a Release (4.7.1a)

 Build id: 20171005-1200

o PyCharm

 2018.3

 Platform:

o Java SE Development Kit

 Version: 1.8.0_65

o Python

 3.7.0

 Project manage tool: Apache Maven

o Version: 3.5.3

- 86 -

CHAPTER 5: CONCLUSION AND FUTURE WORK

Many recommendation system neglect sequential pattern during recommendation. Thus, to verify

the necessity of sequential pattern in recommendation, we generated a sequential pattern from

historical E-commerce data and feed them into collaborative filtering to make user-item matrix

rich from quantity and quality perspective. Furthermore, after evaluation with different systems,

we got better result with a sequential pattern based recommendation.

Thus, some of the possible future works are:

(a) Finding more possible way of integrating sequential pattern to collaborative filtering.

 (b) Incorporating multiple data sources based sequential pattern with different data schema, and

make recommendations based on the overall data set.

(c) Finding the more possible way of integrating sequential pattern in user-item matrix from online

data.

- 87 -

REFERENCES

Abdullah, N., Xu, Y., Geva, S., & Chen, J. (2010, December). Infrequent purchased product

recommendation making based on user behavior and opinions in E-commerce sites. In Data

Mining Workshops (ICDMW), 2010 IEEE International Conference on (pp. 1084-1091). IEEE.

Aggarwal, C. C. (2016). An introduction to recommender systems. In Recommender Systems (pp.

1-28). Springer.

Agrawal, R., Mehta, M., Shafer, J. C., Srikant, R., Arning, A., & Bollinger, T. (1996, August). The

Quest Data Mining System. In KDD (Vol. 96, pp. 244-249).

Agrawal.R and R. Srikant (1994) Fast algorithms for mining association rules. In Pro of the 20th

Int'l Conf. on Very Large Databases (VLDB '94), Santiago, Chile, June 1994

Agrawal, R., & Srikant, R. (1995, March). Mining sequential patterns. In Data Engineering, 1995.

Proceedings of the Eleventh International Conference on (pp. 3-14). IEEE.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression.

The American Statistician, 46(3), 175-185.

Apté, C., & Weiss, S. (1997). Data mining with decision trees and decision rules. Future

generation computer systems, 13(2-3), 197-210.

Arabie, P., & De Soete, G. (1996). Clustering and classification. World Scientific.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002, July). Sequential pattern mining using a bitmap

representation. In Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 429-435). ACM.

Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation.

Communications of the ACM, 40(3), 66-72.

Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as classification: Using social

and content-based information in recommendation. Proceedings of the 15th National

Conference on Artificial Intelligence, 714 – 720.

Bhatta, R., Ezeife, C. I., Butt, M. (2019). Mining Sequential Patterns of Historical Purchases for

E-commerce Recommendation. Submitted to International Conference on Big Data Analytics and

Knowledge Discovery.

Bucklin, R. E., & Sismeiro, C. (2009). Click here for Internet insight: Advances in clickstream

data analysis in marketing. Journal of Interactive Marketing, 23(1), 35-48.

- 88 -

Bergroth, L., Hakonen, H., & Raita, T. (2000). A survey of longest common subsequence

algorithms. In Proceedings Seventh International Symposium on String Processing and

Information Retrieval. SPIRE 2000 (pp. 39-48). IEEE.

Ben-Shimon, D., Tsikinovsky, A., Friedmann, M., Shapira, B., Rokach, L., & Hoerle, J. (2015).

Recsys challenge 2015 and the yoochoose dataset. Proceedings of the 9th ACM Conference on

Recommender Systems, (pp. 357-358).

Cho, Y. H., & Kim, J. K. (2004). Application of Web usage mining and product taxonomy to

collaborative recommendations in e-commerce. Expert systems with Applications, 26(2), 233-

246.

Choi, K., Yoo, D., Kim, G., & Suh, Y. (2012). A hybrid online-product recommendation system:

Combining implicit rating-based collaborative filtering and sequential pattern analysis. Electronic

Commerce Research and Applications, 11(4), 309-317.

Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM

Transactions on Information Systems (TOIS), 22(1), 143-177.

Ezeife, C. I., Lu, Y., & Liu, Y. (2005, August). PLWAP sequential mining: open source code. In

Proceedings of the 1st international workshop on open source data mining: frequent pattern

mining implementations (pp. 26-35). ACM.

Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative filtering recommender

systems. Foundations and Trends in Human–Computer Interaction, 4(2), 81-173.

Fayyad, Usama M., Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy.

"Advances in knowledge discovery and data mining." (1996).

Guo, G., Zhang, J., Sun, Z., & Yorke-Smith, N. (2015, June). LibRec: A Java Library for

Recommender Systems. In UMAP Workshops (Vol. 4).

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative

filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.

Herlocker, J. L., Konstan, J. A., & Riedl, J. (2000, December). Explaining collaborative filtering

recommendations. In Proceedings of the 2000 ACM conference on Computer supported

cooperative work (pp. 241-250). ACM.

- 89 -

Hoffman, T., & Puzicha, J. (1999). Latent class models for collaborative filtering. Proceedings of

the 16th International Joint Conference on Artificial Intelligence, 688 – 693.

Hu, Y., & Panda, B. (2004, March). A data mining approach for database intrusion detection. In

Proceedings of the 2004 ACM symposium on Applied computing (pp. 711-716). ACM.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data.

Kim, Y. S., Yum, B. J., Song, J., & Kim, S. M. (2005). Development of a recommender system

based on navigational and behavioral patterns of customers in e-commerce sites. Expert Systems

with Applications, 28(2), 381-393.

Kim, Y. S., & Yum, B. J. (2011). Recommender system based on click stream data using

association rule mining. Expert Systems with Applications, 38(10), 13320-13327

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997).

GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3),

77-87.

Koren, Y. (2009, June). Collaborative filtering with temporal dynamics. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447-456).

ACM.

Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations

Newsletter, 2(1), 1-15.

Kumar, N. P., & Fan, Z. (2015). Hybrid user-item based collaborative filtering. Procedia

Computer Science, 60, 1453-1461.

Lee, T. Q., Park, Y., & Park, Y. T. (2008). A time-based approach to effective recommender

systems using implicit feedback. Expert systems with applications, 34(4), 3055-3062.

Liu, D. R., Lai, C. H., & Lee, W. J. (2009). A hybrid of sequential rules and collaborative filtering

for product recommendation. Information Sciences, 179(20), 3505-3519.

Li, Y., Niu, Z., Chen, W., & Zhang, W. (2011, December). Combining collaborative filtering and

sequential pattern mining for recommendation in e-learning environment. In International

Conference on Web-Based Learning (pp. 305-313). Springer, Berlin, Heidelberg.

Lin, W., Alvarez, S. A., & Ruiz, C. (2000). Collaborative recommendation via adaptive

association rule mining. Proceedings of the WEBKDD

- 90 -

Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item

collaborative filtering. IEEE Internet computing, 7(1), 76-80.

Mabroukeh, N. R., & Ezeife, C. I. (2010). A taxonomy of sequential pattern mining algorithms.

ACM Computing Surveys (CSUR), 43(1), 3.

Ma, B. L. W. H. Y., & Liu, B. (1998, August). Integrating classification and association rule

mining. In Proceedings of the fourth international conference on knowledge discovery and data

mining.

Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for

improved recommendations. Aaai/iaai, 23, 187-192.

Montgomery, A. L., Li, S., Srinivasan, K., & Liechty, J. C. (2004). Modeling online browsing and

path analysis using clickstream data. Marketing science, 23(4), 579-595.

O’Connor, M., & Herlocker, J. (1999, August). Clustering items for collaborative filtering.

In Proceedings of the ACM SIGIR workshop on recommender systems (Vol. 128). UC Berkeley.

Pitman, A., & Zanker, M. (2010, December). Insights from applying sequential pattern mining to

e-commerce click stream data. In Data Mining Workshops (ICDMW), 2010 IEEE International

Conference on (pp. 967-975). IEEE.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2001, April).

Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In icccn (p.

0215). IEEE.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook.

In Recommender systems handbook (pp. 1-35). springer US.

Russell, S., Norvig, P., & Intelligence, A. (1995). A modern approach. Artificial Intelligence.

Prentice-Hall, Egnlewood Cliffs, 25(27), 79-80.

Siciliano, R., & Conversano, C. (2005). Decision Tree Inudction. In Encyclopedia of Data

Warehousing and Mining (pp. 353-358). IGI Global.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000, October). Analysis of recommendation

algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic commerce

(pp. 158-167). ACM.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th international conference on World Wide

Web (pp. 285-295). ACM.

- 91 -

Srikant, R., & Agrawal, R. (1996, March). Mining sequential patterns: Generalizations and

performance improvements. In International Conference on Extending Database Technology (pp.

1-17). Springer, Berlin, Heidelberg.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering

recommender systems. In The adaptive web (pp. 291-324). Springer, Berlin, Heidelberg.

Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data

mining and knowledge discovery, 5(1-2), 115-153.

Su, Q., & Chen, L. (2015). A method for discovering clusters of e-commerce interest patterns

using click-stream data. electronic commerce research and applications, 14(1), 1-13.

Steinbach, M., Karypis, G., & Kumar, V. (2000, August). A comparison of document clustering

techniques. In KDD workshop on text mining (Vol. 400, No. 1, pp. 525-526).

Xiao, Y., & Ezeife, C. I. (2018, September). E-Commerce Product Recommendation Using

Historical Purchases and Clickstream Data. In International Conference on Big Data Analytics

and Knowledge Discovery (pp. 70-82). Springer, Cham.

Yun, U., & Leggett, J. J. (2006, September). WSpan: Weighted Sequential pattern mining in large

sequence databases. In Intelligent Systems, 2006 3rd International IEEE Conference on (pp. 512-

517). IEEE.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine

learning, 42(1-2), 31-60.

Zhao, X., Niu, Z., & Chen, W. (2013). Interest before liking: Two-step recommendation

approaches. Knowledge-Based Systems, 48, 46-56.

- 92 -

VITA AUCTORIS

NAME Raj Bhatta

PLACE OF BIRTH Gorkha, Nepal

YEAR OF BIRTH 1990

EDUCATION Whitefield Higher Secondary School,

Kathmandu, Nepal (2007 - 2009)

Tribhuvan University, Kathmandu, Nepal

(2010 - 2014)

University of Windsor, Ontario, Canada

(January, 2017 – April, 2019)

	Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation
	Recommended Citation

	tmp.1560992408.pdf.OHxdT

