
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2019 

Discovering E-commerce Sequential Data Sets and Sequential Discovering E-commerce Sequential Data Sets and Sequential 

Patterns for Recommendation Patterns for Recommendation 

Raj Bhatta 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Bhatta, Raj, "Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation" 
(2019). Electronic Theses and Dissertations. 7686. 
https://scholar.uwindsor.ca/etd/7686 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7686?utm_source=scholar.uwindsor.ca%2Fetd%2F7686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 
 

Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation 

By 

 

Raj Bhatta 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Thesis 

Submitted to the Faculty of Graduate Studies  

through the School of Computer Science  

in Partial Fulfillment of the Requirements for  

the Degree of Master of Science at the 

University of Windsor 

 

 

Windsor, Ontario, Canada 

 

2019 

 

 

© 2019 Raj Bhatta 

 

 

 

 



 
 

Discovering E-commerce Sequential Data Sets and Sequential Patterns for Recommendation 

By 

 

Raj Bhatta 

 

 

 

APPROVED BY: 

 

 

 

 

A. Sarker 

Department of Mathematics & Statistics 

 

 

 

S. Saad 

School of Computer Science 

 

 

 

 

C. Ezeife, Advisor 

School of Computer Science 

 

 

 

 

April 5, 2019 

 

 



iii 
 

DECLARATION OF ORIGINALITY 

I hereby certify that I am the sole author of this thesis and part of this thesis has been 

submitted to Big Data Analytics and Knowledge Discovery-DAWAK19 for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s 

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other 

material from the work of other people included in my thesis, published or otherwise, are fully 

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent 

that I have included copyrighted material that surpasses the bounds of fair dealing within the 

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the 

copyright owner(s) to include such material(s) in my thesis and have included copies of such 

copyright clearances to my appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as approved by 

my thesis committee and the Graduate Studies office, and that this thesis has not been submitted 

for a higher degree to any other University or Institution. 

  



iv 
 

ABSTRACT 

In E-commerce recommendation system accuracy will be improved if more complex sequential 

patterns of user purchase behavior are learned and included in its user-item matrix input, to make 

it more informative before collaborative filtering. Existing recommendation systems that use 

mining techniques with some sequences are those referred to as LiuRec09, ChoiRec12, 

SuChenRec15, and HPCRec18. LiuRec09 system clusters users with similar clickstream sequence 

data, then uses association rule mining and segmentation based collaborative filtering to select 

Top-N neighbors from the cluster to which a target user belongs.  ChoiRec12 derives a user’s 

rating for an item as the percentage of the user’s total number of purchases the user’s item purchase 

constitutes. SuChenRec15 system is based on clickstream sequence similarity using frequency of 

purchases of items, duration of time spent and clickstream path. HPCRec18 used historical item 

purchase frequency, consequential bond between clicks and purchases of items to enrich the user-

item matrix qualitatively and quantitatively. None of these systems integrates sequential patterns 

of customer clicks or purchases to capture more complex sequential purchase behavior. 

This thesis proposes an algorithm called HSPRec (Historical Sequential Pattern 

Recommendation System), which first generates an E-Commerce sequential database from 

historical purchase data using another new algorithm SHOD (Sequential Historical Periodic 

Database Generation). Then, thesis mines frequent sequential purchase patterns before using these 

mined sequential patterns with consequential bonds between clicks and purchases to (i) improve 

the user-item matrix quantitatively, (ii) used historical purchase frequencies to further enrich 

ratings qualitatively. Thirdly, the improved matrix is used as input to collaborative filtering 

algorithm for better recommendations.   Experimental results with mean absolute error, precision 

and recall show that the proposed sequential pattern mining-based recommendation system, 

HSPRec provides more accurate recommendations than the tested existing systems. 

 

 

Keywords: Sequential pattern mining, collaborative filtering, historical recommendation system, 

sequence product recommendation, techniques for E-commerce recommendation 
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CHAPTER 1: INTRODUCTION 

Recommendation systems provide a suggestion of items to the user in various decision-

making processes such as what item to buy, what movies to watch, what music to listen to what 

online news to read (Ricci, Rokach, & Shapira, 2011). The main goal of the recommendation 

system is to generate meaningful recommendations to a user for items that might interest them. 

One of the important applications of recommendation systems is in the e-commerce domain. 

Recommendation system in e-commerce helps to model the business process through analysis of 

customer requirements or their purchase behaviors (Schafer, Frankowski, Herlocker, & Sen, 

2007). Recommendation systems use data mining technologies such as classification, clustering, 

association rule mining, frequent pattern mining, and sequential pattern mining to generate a 

meaningful representation of user purchase data (Han, Pei, & Kamber, 2011).  

Traditionally, collaborative filtering was one of the most widely used recommendation technique, 

and it depends on explicit rating of items provided by users, but many users may not be ready to 

provide the items ratings. To resolve the rating problem, some implicit rating techniques (Choi, 

Keunho, Yoo, Kim, & Suh, 2012) derived from user behaviors (for example, purchases, clicks) 

across E-commerce and clickstream data analysis techniques (Kim, Yum, Song, & Kim, 2005), 

(Liu, Lai, &Lee,2009) are used. However, users purchase behaviors are always dynamic in nature 

and purchase of items may be different in each purchase. So, one of the main challenges in the 

field of recommendation system is to integrate sequential patterns of purchases with collaborative 

filtering because collaborative filtering finds closest neighbors between users or items without 

considering i) sequential purchase patterns ii) click and purchase behaviors iii) possible reasons 

for changes in user purchase habits. Various recommendation techniques such as collaborative 

filtering, content-based, and hybrid collaborative filtering approaches have been developed. While 

Collaborative filtering (CF) does not take into account the properties of the items but uses only the 

preference (rating or voting) provided by users for items, the content-based approach makes 

recommendation based on the user profiles (such as age, class) and product features (such as price, 

product attributes). These user or item features serve as contents that can be modeled to discover 

the relationship between different items similarity values using Vector Space Model such as Term 

Frequency Inverse Document Frequency (TF-IDF), or Probabilistic models such as Naïve Bayes 

Classifier, Decision Trees or Neural Networks extracted from those contents. Hybrid approach 

allows recommendation both collaborative filtering and content-based approach to be used for 
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recommendation and can serve to solve the cold start problem when there is no rating information 

for by a user on an item.  However, such approaches suffer from a major drawback because they 

are not able to capture the E-commerce domain with sequential information of customer purchase 

behavior. Furthermore, sequential data may be available in a historical form, clickstream form. So, 

one of the main challenges in E-commerce recommendation is to generate the best 

recommendation suggestions from historical or clickstream sequential data to capture customer 

shopping behavior with respect to time.   

1.1 Sequential Pattern 

Sequential patterns are ordered set of items (events) that are occurring with respect to time 

(Agrawal & Srikant, 1996). A sequential pattern is denoted in the angular bracket (< >), and each 

itemset contains sets of items, where each item enclosed in parenthesis ( ) separated by commas 

represents a set of items purchased at the same time. For example, E-commerce sequential pattern 

< (Bread, Milk), (Bread, Milk, Sugar), (Milk), (Tea, Sugar)> means customer bought Bread and 

Milk together on first purchase, then bought Bread, Milk, and Sugar together on second purchase, 

then bought Milk on third purchase, and finally, bought Tea and Sugar together on fourth purchase. 

A sequential pattern with n-itemsets is called an n-events sequence. For example, if we consider 

only 2-itemsets, then we will have 2-events sequence such as <(Bread), (Milk)> or < (Bread), (Tea, 

Milk)>. Additionally, an item can occur at most once in an event (itemset) but can occur multiple 

times in different events (itemsets) within the same sequential pattern. Thus, the number of 

instances of items in a sequence is called the length of a sequence. For example, < (Bread, Milk), 

(Bread, Milk, Sugar), (Milk), (Tea, Sugar)> is 4-events sequence with length 8. 

1.2 Sequential database  

Sequence database is composed of a collection of sequences {s1, s2,…,sn} that are arranged with 

respect to time (Han, Pei & Kamber, 2011). A sequence database can be represented as a tuple 

<SID, sequence-item sets>, where SID: represents the sequence identifier and sequence-item sets 

specifies the sets in item enclosed in parenthesis ( ). For example, let us consider an example of E-

commerce historical daily purchase data of grocery store as shown in Table 1.1, which contains 

CustomerID to represents a customer, PurchasedItem to represents a set of purchase items by 

customers and Timestamp to represents a time when purchased occurred.   
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CustomerID PurchasedItem Timestamp 

01 Bread, Milk 13, Dec 2018 00:48:44 

02 Bread 14, Dec 2018 1:48:44 

01 Bread, Milk, Sugar 18, Dec 2018 10:48:44 

02 Sugar, Tea 21, Dec 2018 09:48:44 

01 Milk 19, Dec 2018 00:48:44 

01 Tea, Sugar 22, Dec 2018 00:48:44 

Table 1.1: E-commerce historical data 

The daily sequential database created from historical data (Table 1.1) is present in Table 1.2, 

where SID represents the sequence identity. As we can see in Table 1.2, SID(01) contains 

<(Bread, Milk),(Bread, Milk, Sugar),(Milk),(Tea, Sugar)>, which means customer (01) first 

purchased Bread and Milk together then purchased Bread, Milk and Sugar together in second 

purchase and  Milk in third purchase. Finally, Tea and Sugar together at last purchase. 

SID Sequences 

01 <(Bread, Milk),(Bread, Milk, Sugar),(Milk),(Tea, Sugar)> 

02 <(Bread),(Sugar, Tea)> 

Table 1.2: Daily sequential database created from historical purchase 

1.3 Sequential Pattern Mining 

Sequential pattern mining algorithm (for example, Generalized Sequential Pattern (GSP) 

(Agrawal & Srikant, 1996)) discover repeating patterns (known as frequent sequences) from 

input E-commerce historical sequential database that can be used later to analyze the user purchase 

behavior by finding the association between items. In other words, it is a process of extracting 

sequential patterns whose support exceeds a predefined minimum support threshold. Formally, 

Given (i) a set of sequential records (called sequences) representing a sequential database D, (ii) a 

minimum support threshold (iii) a set of k unique items or events I = {i1, i2, . . . , ik}, the problem 

of mining sequential patterns is of finding the set of all frequent sequences S in the given sequence 

database D of items I at the given minimum support. The details of different types of sequential 

pattern mining algorithms are present in section 2.2.  

Example of sequential pattern mining using GSP algorithm 

GSP (Generalized Sequential Pattern) is an Apriori-like sequential pattern mining algorithm 

(Agrawal & Srikant, 1996) which counts supports for each k-sequence in the candidate k-

sequence (Ck) to find frequent k-sequence (Fk) after a pruning step to remove sequences not 
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meeting the Apriori property. The Apriori property is used to prune candidate sequential patterns 

whose subsets are not already frequent in earlier rounds as these patterns cannot be frequent and 

there is no need to scan the database for their support count. The GSP algorithm then generates 

candidate (k+1)-sequences from (Fk) sequences as Fk GSP-join Fk. The algorithm iterates between 

the candidate generate and prune step, and support count step until either a Cm or an Fn step 

generates an empty set.  Details about the GSP-join operation are illustrated further through an 

example.  Let us, consider daily sequential database (Table 1.3) as input, minimum support=2 

and candidate set (C1) = {A, B, C, D, E, F, G}.  

SID Sequences 

1 <(A),(B),(FG),(C),(D)> 

2 <(B),(G),(D)> 

3 <(B),(F),(G),(A,B)> 

4 <(F),(A,B),(C),(D)> 

5 <(A),(B,C),(G),(F),(D,E)> 

Table 1.3: Sequence database representing customer purchase 

Step 1: Find 1- frequent sequence (L1) to keep only sequence with occurrence or support count in 

the database greater than or equal to minimum support. For example, L1= {<(A):4>, <(B):5>, 

<(C):3>, <(D):4>, <(F):4>, <(G):4>}. 

Step 2: Generate candidate sequence (Ck=2) using L1 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L1  

To generate  larger candidate set 2, use 1-frequent sequences found in step 1, which can be written 

as L (k-1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L (k-1) and it requires every sequence (W1) found in first L (k-1) joins with other 

sequence (W2) in the second, if subsequences obtained by removal of first element of W1 and last 

element of W2 are same. In our case, the possible 2-length candidate (Ck=2) sets generated using 

𝐺𝑆𝑃𝑗𝑜𝑖𝑛 are present in Table 1.4. 

<(A),(A)> <(A),(B)> <(A),(C)> <(A),(D)> <(A),(F)> <(A),(G)> 

<(B),(A)> <(B),(B)> <(B),(C)> <(B),(D)> <(B),(F)> <(B),(G)> 

<(C),(A)> <(C),(B)> < (C),( C)> <(C ),(D)> <( C),(F)> <( C),(G)> 

<(D),(A)> <(D),(B)> <(D),(C)> <(D),(D)> <(D),(F)> <(D),(G)> 

<(F),(A)> <(F),(B)> <(F),(C)> <(F), (D)> <(F),(F)> <(F),(G)> 

<(G),(A)> <(G),(B)> <(G),(C)> <(G),(D)> <(G),(F)> <(G),(G)> 

<(A,B)> <(A,C)> <(A,D)> <(A,F)> <(A,G)> <(B,C)> 

<(B,D)> <(B,F)> <(B,G)> <(C,D)> <(C,F)> <(C,G)> 

<(D,F)> <(D,G)> <(F,G)>    

Table 1.4: Candidate set (C2) generated from L1 GSP join L1 
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Step 3: Find 2- frequent sequences (L2) by counting occurrence of 2-sequences in candidate 

sequence (C2) to keep only sequence with occurrence or support count in the database greater than 

or equal to minimum support. For example,  

 

L2= 

 

Table 1.5: 2-frequent sequences 

Step 4: Generate candidate sequence (Ck=3) using L2 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L2 

Use same candidate generation technique used in Step 2. An example of two sequences merged is 

present in Table 1.6.  

W1 Sequence W2 Sequence Merged Sequence 

<(A),(B)> <(B),(C)> <(A), (B), (C)>  

<(A), (B,C)> <(B,C), (D)> <(A), (B,C), (D)> 

Table 1.6: Example to demonstrate merging of two sequences in GSP 

Step 5: Find 3- frequent sequences (L3) to keep sequences with occurrence or support count in the 

database greater than or equal to minimum support. For example, L3= {< (F), (C), (D)>, < (B), (G), 

(D)>, < (B), (F), (D)>, < (B), (C), (D)>, < (A), (G), (D)>, < (A), (F), (D)>, < (A), (C), (D)>}. 

Step 6: Repeat process of candidate generation and pruning until result of candidate generate (Ck) 

and prune (Lk) for finding frequent sequence is an empty set. 

Output: Finally, the output frequent sequences are union of L1 U L2 U L3 U L4 

1-Frequent 

Sequences 

2-Frequent Sequences 3-Frequent Sequences 4-Frequent Sequences 

<(A)>, <(B)>, 

<(C)>, <(D)>, 

<(F)>, <(G)> 

<(A), (B)>, < (A, B)>, <(A), 

(C)>, <(A), (D)>, <(A), (F)>, 

<(A), (G)>, <(B), (C)>, <(B), 

(D)>, <(B), (F)>, <(B), (G)>, 

<(C), (D)>, <(F), (A)>, <(F), 

(B)>, <(F), (C)>, <(F), (D)>, 

<(G), (D)> 

<(F), (C), (D)> 

<(B), (G), (D)> 

<(B), (F), (D)> 

<(B), (C), (D)> 

<(A), (G), (D)> 

<(A), (F), (D)> 

<(A), (C), (D)> 

<(A), (B), (G)> 

<(A), (B), (F)> 

<(A), (B), (D)> 

<(A), (B), (G), (D)> 

<(A), (B), (F), (D)> 

Table 1.7: n-frequent sequences generated by GSP algorithm 

  

<(A), (B)> <(A, B)> <(A), (C)> <(A), (D)> <(A), (F)> <(A), (G)> 

<(B), (C)> <(B), (D)> <(B), (F)> <(B), (G)> <(C), (D)> <(F), (A)> 

<(F), (B)> <(F), (C)> <(F), (D)> <(G), (D)>   
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1.4 E-commerce Data Types 

1.4.1 E-commerce historical data 

E-commerce historical data consists of a list of items clicked and/or purchased by a user over a 

specific period of time. A fragment of E-commerce historical database data is present in Table 

1.8 with schema {Uid, Click, Clickstart, Clickend, Purchase, Purchasetime}, where Uid represents 

User identity, Click represents a set of items clicked by a user, Clickstart and Clickend represent 

the timestamp when user started clicking item and when click is terminated. Furthermore, Purchase 

contains a set of items purchased by a user and Purchasetime represents timestamp when purchase 

happened. 

Table 1.8: E-commerce historical data 

1.4.2 E-commerce clickstream data 

Clickstream data represents the visitors’ paths through E-commerce sites. A series of E-commerce 

pages visited by a user in a single visit is referred to as a session. Clickstream data in an E-

commerce environment is a collection of sessions. Clickstream data can be derived from raw page 

requests (referred to as hits) and their associated information (such as timestamp, IP address, URL, 

status, number of transferred bytes, referrer, user agent, and, sometimes, cookie data) recorded in 

Web server log files (Bucklin & Sismeiro, 2009). Analysis of clickstreams shows how an E-

commerce site is navigated and used by E-commerce users. In an E-commerce environment, 

clickstreams in online stores provide information essential to understanding the effectiveness of 

marketing and merchandising efforts, such as how customers find the store, what products they 

see, and what products they buy. Analyzing such information embedded in clickstream data is 

critical to improve the effectiveness of recommendation in online stores. An example of E-

commerce Clickstream data is present in Table 1.9. 

 

Uid Click Clickstart Clickend Purchase Purchasetime 

1 1,2,3 2014-04-04 11:25:14 2014-04-04 11:45:19 1, 2 2014-04-04 11:30:11 

1 7,5,3 2014-04-05 15:30:07 2014-04-05 15:59:36 3 2014-04-05 15:56:32 

2 1, 4 2014-04-13 4:01:11 2014-04-13 4:30:15 1, 4 2014-04-13 04:04:34 

2 1, 2,5, 6 2014-04-17 11:30:18 2014-04-17 11:50:19 1, 2,5, 6 2014-04-17 11:44:55 

3 5 2014-04-23 11:00:05 2014-04-23 11:20:15 5 2014-04-23 11:06:37 

4 6,6,7 2014-04-26 9:45:11 2014-04-26 10:20:13 6, 7 2014-04-26 10:06:37 

5 1,5 2014-04-27 16:30:25 2014-04-27 16:45:45 ?  
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Session ID Timestamp ItemID CategoryID 

*****Ef4d7 2018-08-24T22:38:13+00:00 2145456502 3 

*****Ef4d7 2018-08-24T20:38:12+00:00 21453650011 4 

*****Ef4d7 2018-08-24T23:38:10+00:00 214536503 1 

*****KM5M7 2018-08-24T22:38:14+01:00 2145775612 2 

*****KM5M7 2018-08-24T22:38:14+03:03 2146627421 4 

*****KM5M7 2018-08-24T22:38:14+04:05 214662742 6 

*****KM5M7 2018-08-24T22:38:14+05:07 214825110 3 

Table 1.9: Clickstream E-commerce data 

The clickstream data given in Table 1.9, consists of session ID (*****Ef4d7, *****KM5M7) 

which represents user identity, timestamp (2018-08-24T23:38:10+00:00) represents the time when 

item visited, ItemID (2146627421, 214662742) represents the item visited by the user and 

CategoryID represents a category (e.g., milk belongs to dairy category) where items belong.  

1.5 Consequential Bond (CB) 

E-commerce data contains information’s of clicks and purchases referred to as a consequential 

bond, and it is introduced by Xiao and Ezeife, 2018 in their HPCRec18 system. The term 

consequential bond is originated from the concept that customer who will click some items will 

ultimately purchase an item from a list of clicks in most of the cases. For example, historical data 

present in Table 1.8 shows that user 1 clicked items {1, 2, 3} and ultimately purchased {1, 2}; 

thus, there is a relationship between click and purchase. 

1.6 Types of E-commerce Recommendation Systems 

Based on how recommendations are made, recommender systems are usually classified into three 

categories: 

1. Content-based filtering (CBF): It is based on the analysis of the attributes of items to generate 

predictions (Ekstrand, Riedl & Konstan, 2011). In other words, a recommendation is made 

based on the user profiles using features extracted from the content of the items the user has 

evaluated in the past. The CBF uses different types of models to find a similarity to generate a 

meaningful recommendation. The similarity could use Vector Space Model such as Term 

Frequency Inverse Document Frequency (TF-IDF) or Probabilistic models such as Naïve 

Bayes Classifier, Decision Trees or Neural Networks to model the relationships. The major 
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disadvantage of this technique is the need to have in-depth knowledge and description of the 

features of the items in the profile.  

2. Collaborative filtering (CF): Collaborative filtering (CF) does not take into account the 

properties of the items but only the preference (rating or voting) provided by users for items 

(Aggarwal & Charu, 2016). Thus, CF predicts rating of items using either a user-based or 

item-based approach.  The user-based CF is based on the similarity between users, and items 

and item-based CF is based on the similarity between items and items. The similarity is 

computed by using one of the similarity measures such as (Cosine similarity, Pearson 

Correlation Coefficient and Jacquard similarity) then these similarity values are used to predict 

the unknown ratings of a user on an item using Top-N neighbors. The major problems of CF 

are cold start, sparsity, and scalability. 

3. Hybrid filtering: Both CF and CBF have their benefits and demerits; therefore, if we combine 

both of them together, then the benefits of both can be used to overcome the demerits of others 

(Kumar & Fan, 2015). For example, CF provides recommendations using rating matrix now 

what happens when there is no rating given by a user (new user) then in such case the contents 

of user-item (CBF filtering) can be used with CF for recommendations. 

1.7 Collaborative Filtering in E-commerce 

Collaborative filtering makes a recommendation to a target customer based on the purchase 

behavior of customers whose preference is similar to a target customer. It is one of the widely used 

recommendation technique.  Given a user-item rating matrix-R (such as Table 1.10),  

  Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Mean rating 

User A 7 6 7 4 5 4 33/6 

User B 6 7 ? 4 3 4 24/5 

User C ? 3 3 1 1 ? 8/4 

User D 1 2 2 3 3 4 15/6 

User E 1 ? 1 2 3 3 10/5 

Table 1.10: User-item matrix for illustration of user based collaborative filtering 

where a value of matrix is a rating 𝑟𝑢𝑗𝑖𝑘
, where uj represents user j as in {u1, u2, . . . , uj} and ik 

represents item k as in { i1, i2, . . . , ik}. Furthermore, the rating can be either an explicit rating or 

an implicit rating. Goal of collaborative filtering is to predict unknown rating 𝑟𝑢𝑖 of useru on itemi 

through following four major steps (Aggarwal & Charu, 2016): 
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1. Compute the mean rating for all user uj using all of their rated items. 

2. Calculate the similarity between the target user (v) and all other users uj. Similarity can be 

computed with Cosine Similarity (v,uj)  or Pearson Correlation Coefficient  function. 

3. Find similar users of the target user (v) as Top-N users’. 

4. Predict rating for the target user (v) for item i using only rating of v’s Top-N peer group. 

There are two types of collaborative filtering, user based and item based collaborative filtering. 

User-based collaborative filtering takes the ratings from similar users of the target user whereas 

item-based collaborative filtering considers the ratings from similar items of the target item.  

1.7.1 User- based collaborative filtering 

User-based collaborative filtering uses ratings of similar users for making a recommendation to a 

target user.  The necessary algorithm of user-based collaborative filtering along with a running 

example is given below: 

Input: user-item rating matrix R, containing 𝑟𝑢𝑗𝑖𝑘
, where uj represents user j as in {u1, u2, . . . , uj} 

and ik represents item k as in { i1, i2, . . . , ik}. 

Output: Predicted ratings for previously unknown rating. 

Major steps of collaborative filtering using user-based neighborhood method (Aggarwal & 

Charu, 2016) are: 

1. Compute the mean rating for all user uj using all of their rated items. 

2. Calculate the similarity between the target user (v) and all other users uj. Similarity can 

be computed by Cosine Similarity or Pearson Correlation coefficient function as given in 

Equation 1.1 and Equation 1.2. 

Cosine (u, v)=  
𝑢⃗⃗ .  𝑉⃗⃗⃗ 

||𝑢||.||𝑣||
 =

𝑟𝑢1 ⋅ 𝑟𝑣1 + 𝑟𝑢2 ⋅ 𝑟𝑣2+ … +𝑟𝑢𝑛 ⋅ 𝑟𝑣𝑛

√𝑟𝑢1
2+𝑟𝑢2

2+⋯+𝑟𝑢𝑛
2  ∗ √𝑟𝑣1

2+𝑟𝑣2
2+⋯+𝑟𝑣𝑛

2
 

Equation 1.1: Formula to Compute Cosine similarity 

In Equation 1.1,  𝑟𝑢1  represents rating of user u on item 1, and 𝑟𝑣1 represents rating of user v on 

item 1 respectively.    

Pearson Correlation (u, v)= 
∑ (ruii∈I −ru⃗⃗⃗⃗ )∗(rvi−rv⃗⃗⃗⃗ )

√∑ (ruii∈I −ru⃗⃗⃗⃗ )
2
∗ √∑ (rvii∈I −rv⃗⃗⃗⃗ )

2
 

Equation 1.2: Formula to compute Pearson Correlation coefficient 

Where 𝑟𝑢𝑖 represents the rating given by user u on item i and  𝑟𝑢⃗⃗  ⃗ is mean rating of user u and 

formula to compute mean rating is present in Equation 1.3. 
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Mean rating (𝑟𝑢)⃗⃗⃗⃗  ⃗ =
∑ 𝑟𝑢𝑖𝑖∈𝐼

|𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠|
 

Equation 1.3: Equation to compute mean rating 

3. Find similar users of the target user (v) as Top-N users’. 

4. Predict rating of target user (v) for item i using only ratings of v’s Top-N peer group. 

Example of user based collaborative filtering 

Let us consider user-item rating matrix (Table 1.10) as input and our goal is to predict a rating 

of User C on Item 1 using collaborative filtering.   

Step 1: Compute the mean rating for User A, User B, User C, User D, and User E using all of their 

rated items 

For, User1= 33/6=5.5, User 2=24/5=4.8, User 3=8/4=2, User 4=15/6=2.5 and User 5=10/5=2 

Step 2: Compute similarity between User C and others users 

The similarity between User C and all others users can be computed using Cosine similarity or 

Pearson-Correlation Coefficient. In our case, we have used Cosine similarity, which is present in 

Equation 1.1. For example, SIM (User A, User C) =
6∗3+7∗3+4∗1+5∗1

√62+72+42+52∗√32+3+12+12
 = 0.956. Similarly, 

SIM (User B, User C) =0.981, SIM (User D, User C) =0.789 and SIM (User E, User C) =0.645. 

Step 3: Select the Top-N (in our case N=2) neighbor of User C by comparing similarity  

Select Top-N neighbor of User C by comparing Cosine similarity. In our case, User A and User B 

have the highest similarity with User C. So, they are selected as Top-N neighbors. 

Step 4: Compute the raw rating value using Top-N users (User A and User B) 

To compute raw rating, Top-N users rating on item are used. For example, Raw ratingUser-C, item1 is 

calculated by using rating for of User A on Item 1 and rating of User B on Item 1.  

Raw rating User-C, item 1 =  
7 ∗ 0.956+ 6 ∗ 0.981

0.956 + 0.981
 = 6.49 

Raw rating User-C, item 6= 
4 ∗ 0.956+ 4∗ 0.981

0.956 + 0.981
 = 4 

Step 5: Compute mean centric rating   

From above raw ratings, we can see that Item 1 should be prioritized over item 6 to recommend to 

User C. Furthermore, the prediction suggests that User C is likely to be interested in both Item 1 

and Item 6 to a greater degree than other items.  Thus, mean centric rating needs to be computed 

to remove this biased. The mean centric rating helps to reduce the influence caused by high and 

low rating provided by users on items. For example, mean centric rating of User A on Item 1 is 
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computed by subtracting rating of User A on Item 1 and mean rating of User A (in our case, 7-

5.5=1.5).  

Mean centric rating User-C, item 1=2+  
1.5 ∗ 0.956 + 1.2 ∗ 0.981

0.956 + 0.981
 = 3.35 

Mean centric rating User-C, item 6= 0.86 

There are some fundamental issues with collaborative filtering; they are:  

(1) Cold start: When new items or new users appear in the database, these items may not be rated 

by any users; thus, preferences of users' may be unknown. 

(2) Sparsity issue: When known rating data takes only a very small proportion in the user-item 

rating matrix, for instance, the amount of products is usually billions in the real world and most of 

the users only purchased probably hundreds of them, which leads to confusing and compromised 

recommendations. To address the sparsity issues, in this thesis, we have used sequential patterns 

of click and/or purchase to derive a rule to provide the relationship between already clicks or 

purchased items and recommended items to fill the missing rating for an item to improve the user-

item matrix quantitatively (providing possible value for the unrated item or 0 value item in user-

item matrix). 

 (3) Scalability issue: As the numbers of users and products grow rapidly, the time complexity 

and space complexity issues become more prominent. 

1.8 Goal of E-commerce Recommender System 

1) Converting browser to buyer: In an E-commerce environment, large amounts of information 

are available, so it can be hard for a user to find the product they are looking for. Thus, 

recommender systems help consumers to find products they intend to buy (Schafer, Konstan, & 

Riedl, 2010).  

2) Increasing cross-sell products: Recommender systems can improve the cross-sales product 

ratio by suggesting additional products. In general, a recommender system suggests products based 

on the customer’s cart and purchase history. 

3) Building loyality between customer and vendors: E-commerce recommender systems use 

different data sources according to different profiles. Consumers repay these sites by returning to 

the ones that best match their needs. This relation is mutually beneficial for when consumers return 

to the site, as they experience a more accurate degree of personalization, thus strengthening the 

bond between the online store and the client. 
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1.9 Need of Sequential Purchase Data in E-commerce Recommendation 

1) User purchase habit changes with time: Collaborative filtering (CF) methods make a 

recommendation to a target customer based on the purchase behavior of other customers whose 

preferences are similar to those of the target customer.  Thus, CF cannot capture the changes in 

purchase behavior of the customer over time, and integrating sequential rule in E-commerce can 

capture the customer purchase behavior over time. 

2) Integrating frequency, price factor in recommendation: Traditional collaborative filtering 

technique, only consider the rating of an item for making a recommendation. Only considering the 

rating factor cannot provide a good recommendation to users because user choice may depend on 

product quantity, price and overall profit gained from purchased.  

3) Taking care of timing factor during E-commerce recommendation generation: In E-

commerce, some users may purchase items regularly, while other users may purchase items 

irregularly. So, recommendation generation by considering irregular users may provide a wrong 

recommendation to regular users.  

1.10 Data Mining  

Data mining is a process of turning raw data into useful information. It is the process of knowledge 

discovery (KDD) from raw data (Han, Pei, & Kamber, 2011), (Fayyad, Piatetsky-Shapiro, 

Smyth, & Uthurusamy, 1996). The KDD process include 1) data selection (find necessary data), 

2) data pre-processing (which integrates target data from various sources and cleans target data by 

removing noise and inconsistent data), 3) data transformation (which summarizes or aggregates 

the pre-processed data into appropriate forms), 4) pattern evaluation and knowledge interpretation 

(representation or visualization of these interesting patterns discovered). Some of unsupervised 

data mining techniques are clustering, association rule mining (derived from frequent pattern 

mining and sequential pattern mining), and supervised data mining techniques is classification. 

Data mining is closely related to the area of statistics called exploratory data analysis and also 

related to the subareas of artificial intelligence called knowledge discovery and machine learning 

but handles much larger data in an automated fashion with more focus on database algorithms. 

Machine learning algorithms focus on classifications and clustering with more simulations but not 

including association rule techniques.  Data mining tools are built to be embedded into the business 
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data warehouse and to be understandable and usable by marketing professionals, while classic 

statistical tools cannot fulfill these objectives.  

1.10.1 Clustering 

Clustering is a process of grouping a set of related objects in such a way that objects in the same 

group are similar to each other (Jain & Dubes, 1998). It is an unsupervised data mining technique 

that can automatically divide the data into a set of clusters or groups of similar items. The K-means 

clustering (Hartigan & Wong, 1979) is one of the widely accepted clustering approaches in the 

field of data mining (Steinbach, Karypis, & Kumar, 2000).  K-means clustering is used, when 

we have data without defined categories or groups and goal of this algorithm is to find groups in 

the data, with the number of groups represented by the variable K. The algorithm works iteratively 

to assign each data point to one of K groups based on the features that are provided. The K-means 

clustering algorithm consists of four major steps: 

1. Randomly pick centroid from available objects. Let us consider, we do have n objects 

{I1, I2, I3, …., In} and their attributes as {A1, A2,….An} then, we can consider (H1, W1) 

as a centroid of objects considering height and weight as major attributes.  

2. Calculate the distance between the centroid and other objects. The distance can be 

calculated using the Euclidean distance formula (Equation 1.4). 

E. D=√(𝐀𝑯 − 𝐇𝟏)𝟐 + (𝑨𝒘 − 𝐖𝟏)𝟐
 

Equation 1.4: Euclidean distance formula 

Where, XH= Observation value of height, H1= Centroid value of cluster 1 for height, Xw= 

Observation value of height, W1= Centroid value of cluster 1 for weight 

3. Update centroid of each new cluster, by computing the average attributes of all 

object in a cluster. 

4. Repeat step 1, 2 and step 3 until the centroids stop changing. 

Example of K-means clustering 

Let’s consider input data set as given in Table 1.11 and height and weight are two major 

attributes. 
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Height Weight 

185 72 

170 56 

168 60 

179 68 

182 72 

188 77 

Table 1.11: Input data to clustering algorithm 

Step 1:  Initialize cluster centroid 

Let’s consider, two centroids one containing minimum value of Height, Weight and another 

containing maximum value of Height, Weight as given in Table 1.12. 

Cluster Initial Centroid 

Height Weight 

Cluster 1 185 72 

Cluster 2 170 56 

Table 1.12: Maximum and minimum cluster centroids 

Step 2: Select objects value from input data and calculate Euclidean Distance from centroids 

Once centroids (maximum, minimum) are fixed, select input value from input data and calculate 

Euclidean distance using Equation 1.4. Here, we are using (Height: 168, Weight: 60) as object 

value from input data.  

Euclidian Distance from Cluster 1 Euclidian Distance from Cluster 2 Chosen cluster 

√(168 − 185)2 + 60 − 722 = 20.808 

 

√(168 − 185)2 + (60 − 72)2 = 4.472 Cluster 2 

Table 1.13: Table showing computation of Euclidean distance 

From Euclidean distance, we can see that record with (168, 60) is very close to cluster 2.  

Step 3: Update centroid of each new cluster, by computing the average attributes of all objects in 

each cluster. 

Cluster Updated 

Centroid 

Height Weight 

Cluster 1 185 72 

Cluster 2 (170+168)/2=169 (56+60)/2=58 

Table 1.14: Table showing update of centroid in new cluster in K-means method 

Step 4: Repeat step 2 and step 3 until dataset is empty. The output created in our example is present 

in Table 1.15. 
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Objects Cluster  

{(185,72), (179,68), (182,72), (188,77)} Cluster 1 

{(170,56), (168,60)} Cluster 2 

Table 1.15: Cluster created by K-means method 

1.10.2 Classification 

Classification is used to classify an item in a set of predefined set of classes or groups. The 

paramount difference between classification and clustering is that classification is used in 

supervised learning technique where predefined labels are assigned to instances by properties; on 

the contrary, clustering is used in unsupervised learning, where similar instances are grouped, 

based on their features or properties (Arabie, Phipps, & Soete, 1996). The classification process 

involves the training set and testing set. The training dataset is used to train model, by pairing the 

input with expected output. Then, the same classification model is applied to the test data having 

unknown target class values, to check for its prediction accuracy. The classification by decision 

tree induction (Apté, Chidanand, & Weiss, 1997) is one of the most widely used classification 

technique. The decision tree has two types of nodes, decision node (which are internal nodes) and 

leaf node. A decision node specifies test (asks a question) on a single attribute. A leaf node 

indicates a class. To use the decision tree in testing, the tree top-down according to attribute values 

with given test instance until a leaf node.  

Example of classification by decision tree 

Let us consider the example data set as given in Table 1.16 for classification and our main goal 

is to determine, whether a user is eligible for a credit card or not using the decision tree. 

TID AGE JOB_STATUS HOUSE_STATUS CREDIT_SCORE Credit Offer 

1 Young FALSE FALSE Fair No 

2 Young FALSE FALSE Good No 

3 Young TRUE TRUE Fair Yes 

4 Middle TRUE TRUE Good Yes 

5 Middle FALSE TRUE Excellent Yes 

Table 1.16: Dataset to be classified by the decision tree 

Then, the decision tree to check credit card eligibility for this data set is present in Figure 1.1. 
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Figure 1.1: Decision tree for classification 

 

In Figure 1.1, Age is the root node, which asks the question: what is the age of the applicant? It 

has three possible answers or outcomes, which are the three possible values of Age (Young, middle 

and old).   

1.10.3 Association Rule 

Association rules analysis is an unsupervised technique to discover how items are associated with 

each other (Ma & Liu, 1998). The association rule consists of two parts the lefthand side is called 

antecedent, and the righthand side is called consequent. Association rule is represented in the form 

X-> Y, where X and Y belong to a candidate set I= {i1, i2....in} of n items. Association rule is 

performed in two stages i) finding all frequent patterns (itemsets) having support greater than or 

equal to minimum support ii) finding all rules from frequent patterns with confidence greater than 

or equal to minimum confidence. Association rule finds the relationship between the items in the 

rule. For example, Bread->Milk implies that if product Bread is bought customers also buy product 

Milk. The Apriori algorithm (Agrawal & Srikant, 1994) is a popular algorithm for association 

rule mining, and it works in two steps i) generate frequent itemsets ii) pruning the itemsets based 

on the user-defined support. Apriori algorithm takes a transactional database and output is frequent 

itemsets that satisfied minimum support. So, in the first step, support count of each item in the 

candidate set (C1) is calculated, and those items that don’t satisfy the minimum support are pruned 

and produced frequent set (L1). In the next step, the candidate set (C2) is produced by Apriori join 

method by L1 App-join L1. This process is iterative until can’t produce more candidate set. In 

Association rule, confidence and support are two major factors, which can be computed by 

Equation 1.5 and Equation 1.6. 
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Support of item i = 
(number of occurences of i)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)
 

Equation 1.5: Equation to compute support of itemset i 

Confidence of item i = 
(number of occurences of i)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑖)
 

Equation 1.6: Equation to compute confidence of itemset i 

Example of association rule 

 Let us consider transactional data as shown in Table 1.17 as input, where candidate set (C1) = {A, 

B, C, D}, minimum support=3, and our goal is to find frequent items to create possible association 

rules. 

Transaction Id (TID) Items 

T1 A,B,C,D 

T2 A,B,D 

T3 A,B 

T4 B,C,D 

T5 B,C 

T6 C,D 

T7 B,D 

Table 1.17: Transactional data to mine by Apriori algorithm 

Step 1: Find frequent item (L1) from candidate set (C1) 

The principal step in Apriori process is to find frequent item by the counting occurrence of each 

item. The items that don’t satisfy the minimum support count are pruned and produced frequent 

item (L1). In our case, frequent item (L1) = {A:3, B:6, C:4, D:5}. 

Step 2: Generate candidate set (C2) from frequent item (L1) by Apriori join (L1 App-join L1) 

We can generate a candidate set (C2) by L1 App-join L1. Frequent item (L1) can be joined only 

with an item that comes after it in frequent item (L1). Which will give candidate set (C2) = {AB, 

AC, AD, BC, BD, CD}. 

Step 3: Find frequent item (L2) from candidate set (C2) 

Frequent item (L2) is obtained by following the same procedure as in step 1. We can count the 

occurrence of each item in candidate set (C2), and infrequent items are removed to create frequent 

itemset (L2) = {AB: 3, BC: 3, BD: 4, CD: 3}. 

Step 4: Generate candidate set (C3) from frequent item (L2) by Apriori join (L2 App-join L2) 

We can apply the same process as in step 2 to generate candidate set (C3) by joining L2 with L2 

using Apriori join and it produces candidate set (C3) = {ABC, ABD, BCD}. 
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Step 5: Find frequent item (L3) from candidate set (C3) 

None of the item in candidate set (C3) satisfied minimum support. So, we need to stop here and 

join frequent item to get the final frequent item (L) =L1 U L2= {A, B, C, D, AB, BC, BD, CD}. 

1.11 Existing E-commerce Recommendation Systems  

There are different kinds of E-commerce data such as historical or clickstream. The historical data 

represents the list of an item purchased by the users over the time, which may consist of several 

attributes such as transactional ID, category ID, product ID, purchased Time, rating and many 

more. Many researchers tried to predict the users interest to items by using the rating of items 

provided by users (explicit rating - rate or vote of items within the specified range with available 

rating or voting system) as principle parameter (Sarwar, Karypis, Konstan & Riedl, 2001), 

(Herlocker, Konstan, Terveen & Riedl, 2004) in collaborative filtering. An example of explicit 

user-item rating matrix is present in Table 1.18. 

User/Item Item1 Item2 Item3 Item4 Item5 Item6 

User1 5 4 5 3 3 2 

User2 4 3 ? 2 3 2 

User3 ? 3 3 1 1 ? 

User4 1 2 2 3 3 3 

Table 1.18: User-item rating matrix 

On another side, every user may not provide the rating for the purchased items or may not purchase 

items once they clicked or placed inside a basket. So, to alleviate this problem, researcher finds a 

way of representing user-item purchased by binary information (implicit rating- rating derived 

from user’s behaviors such as click, purchase), such as 1 for purchased/rated or 0 for non-

purchased/unrated item. But, binary user-item matrix (Table 1.19) may be unable to provide 

information of click, basket placement, and purchase behavior.  

User/Item Item1 Item2 Item3 Item4 Item5 Item6 

User1 1 1 1 1 1 1 

User2 1 1 0 1 1 1 

User3 0 1 1 1 1 0 

User4 1 1 1 1 1 1 

Table 1.19: User-item purchased matrix generated from rating information 

So,  many researchers worked on the implicit rating matrix using various approaches as given 

below: 



- 19 - 
 

1) Probability based decision tree approach- KimRec05 (Kim, Yum, Song, & Kim, 2005): It 

used a binary user-item matrix to visualize the click and purchase behavior of a user and made 

a non-purchased item (0) more informative in the user-item matrix by computing the 

probability of purchase after basket placement. This approach is based on forming a decision 

tree from user’s behaviors such as searching, clicking to gives the proportion of users taking 

that path and its related probability. When new users arrive, it finds the right path based on 

basement placement probability. Finally, binary user-item rating matrix is filled with basket 

placement probability (as shown in Figure 1.2) to improve the user-item rating matrix before 

applying collaborative filtering. But KimRec05 is failed to provide: (a) Frequency of item 

purchased because a user may purchase the same item different number of times according to 

the time span (b) Unable to capture sequential purchase behavior (c) Fail to integrate E-

commerce historical data. 
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(a) Conventional Recommender System                         (b) Proposed Recommender System 

 

Figure 1.2: Improved user-item matrix on the right and traditional matrix on the left 

2) Segmentation based approach- LiuRec09 (Liu, Lai & Lee, 2009): This approach is 

based on forming a segmentation of user on the basis of Recency, Frequency, Monetary 

(RFM) using K-mean clustering method, where Recency is period since the last purchase, 

Frequency is a number of purchased and Monetary is the amount of money spent. Once the 

RFM segmentation is created, users are further segmented using transaction matrix. The 

transactions matrix captures the list of items purchased or not purchased by users over a 

monthly period in a given products list. From the transaction matrix, users’ purchases are 

further segmented into T-2, T-1, and T, where T represents the current purchase and T-1 

and T-2 represents two previous purchases. Finally, association rule mining is used to 

match and select Top-N neighbors from the cluster to which a target user belongs using 

binary choice and derive the prediction score of an item not yet purchased by the target 



- 20 - 
 

user based on the frequency count of the item scanning the purchase data of k-neighbors. 

The major drawbacks of LiuRec09 are: (a) It does not learn sequential purchase during 

user-item matrix creation (b) Utility of an item such as frequency and price are ignored 

during the recommendation generation. 

3) User transactions based preference approach- ChoiRec12 (Choi, Keunho, Yoo, Kim, 

& Suh, 2012): Users are not always willing to provide a rating or they may provide a false 

rating. Thus, ChoiRec12 developed the system that derives preference ratings from a users’ 

transactional data by using the number of time useru purchased itemi respect to total 

transactions. Once preference ratings are determined, they are used to formulate a user-

item rating matrix for collaborative filtering. To make a better recommendation, they tried 

to use the purchase item but there is no evidence of sequential purchase patterns generated 

using a sequential pattern mining algorithm. To recommend purchase items to a target user, 

subsequences of a target user purchase items are matched with derived purchase items of 

all other users. If some patterns are matched, then importance on item is added by counting 

the support. Finally, items having the highest count are recommended to users. The main 

limitation of ChoiRec12 are: (a) User purchase patterns are not considered during user-

item matrix creation. (b) No provision for recommending infrequent item. Thus, an 

example of the user-item matrix in ChoiRec12 recommendation system is represented as: 

(a) Traditional Implicit Matrix (b) ChoiRec12 user-item matrix 
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4) Common interest based approach- SuChenRec15 (Su & Chen, 2015): It is based on 

finding the common interest similarity (frequency, duration, and path) between purchase 

patterns of users to discover the closest neighbors. For the frequency similarity, it computes 

total hits occurred in an item or category with respect to a total length of users' browsing 

path. For duration similarity, it computes the total time spent on each category with respect 

to total time spent by users'. Finally, for path similarity, it uses the longest common 

subsequence comparison. Then, CF method is used to select the Top-N neighbor from three 

indicators. The major drawbacks of SuChenRec15 are: (a) It requires domain knowledge 
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for categories, and only supports category level recommendations. (b) Fails to integrate 

sequential purchase pattern during formation of user-item rating matrix.  

5) Historical and clickstream based recommendation- HPCRec18 (Xiao & Ezeife, 2018): 

Xiao & Ezeife, 2018 proposed HPCRec18 system, which normalizes the purchase 

frequency matrix to improve rating quality, and mines the session-based consequential 

bond between clicks and purchases to generate potential ratings to improve the rating 

quantity. Furthermore, HPCRec18 used historical purchased frequency of item and 

enriched the user-item matrix from both quantity (finding the possible value for 0 rating) 

and quality (finding the more precise value for 1 rating) by using normalization of user-

item purchase frequency matrix and using consequential bond between click and 

purchase. The major drawbacks of HPCRec18 are: (a) User-item matrix frequency matrix 

is created by neglecting sequential pattern. (b) Sequential patterns are not used in the 

consequential bond. 

User-item frequency matrix Normalized user-item frequency matrix Rating matrix with predicted rating 

???13
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?
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3.027.074.013

8.035.053.027.02

5.045.089.063.01

4321/ ItemUser

 

Table 1.20: Normalized  user-item frequency matrix created by Xiao & Ezeife, 2018  

SessionId Clicks Purchases 

xc1csd… <4,1,2> <1,2,4> 

df2nbf… <3,5,2> <5> 

sd3fhs… <5,2> <2> 

mk4gs… <3,4,5> <3,4> 

gm5ca… <1,5> ? 

Table 1.21: E-commerce data containing consequential bond of click and purchase 
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1.11.1 Summary of some close existing E-commerce recommendation systems 

Existing System Methodology Input Data Limitation 

LiuRec09 by Liu, 

Lai, &Lee, 2009 

Users are first segmented by RFM. Once RFM 

segmentation is created, users are further segmented with 

transaction matrix. The transactions matrix contains 

binary purchase information of users over a month. From 

the transaction matrix, user’s purchases are further 

segmented into T-2, T-1, and T, where T denotes current 

purchase and T-1 and T-2 represents two previous 

purchases. Finally, the association rule is used to match 

Top-N neighbors from the cluster to which a target user 

belongs using binary choice and derive the prediction 

score of an item not yet purchased by the target user with 

a frequency count of k-neighbors. 

Minimum support, 

historical purchase 

data, and products list. 

No provision for 

recommending 

infrequent items. 

Sequential pattern 

and frequency are not 

considered during 

recommendation.  

ChoiRec12 by Choi, 

Keunho, Yoo, Kim, 

&Suh, 2012 

 

Based on preference ratings from a users’ transactional 

data by using the number of time useru purchased itemi 

respect to total transactions. Once preference ratings are 

determined, they are used to formulate a user-item rating 

matrix for collaborative filtering. To a make better 

recommendation, they tried to use the purchase item, but 

there is no evidence of sequential purchase pattern 

generated using the sequential pattern mining algorithm.  

Historical purchased, 

containing purchase 

date and list of 

purchased items. 

It did not use user 

purchase sequential 

patterns in a user-item 

matrix. Furthermore, 

no provision for 

making a 

recommendation to 

infrequent users.  

SuChenRec15 by  

Su & Chen, 2015 

It is based on finding the common interest similarity 

(frequency, duration, and path) between purchase patterns 

of users to discover the closest neighbors. Frequency 

similarity is computed by counting total hits occurred in 

an item or category with respect to a total length of users' 

browsing path. Duration similarity is computed by 

considering total time spent on each category with respect 

to total time spent by users'. Finally, for path similarity is 

computed by counting the longest common subsequence. 

  

Historical data 

containing the 

frequency of item, 

path, and duration. 

It requires domain 

knowledge for 

categories, and only 

supports category 

level 

recommendations.  

HPCRec18 by Xiao 

& Ezeife, 2018 

 

Improved the quality of user-item matrix by normalizing 

the frequency of item purchase. Furthermore, they 

provided the purchase possibility of clicked but not 

purchased items by analysis of consequential bond.  

User-item purchase 

frequency and 

clickstream data that 

contains information’s 

of click and purchase  

Unable to integrate 

sequential pattern 

during qualitative and 

quantitative analysis 

of user-item matrix. 
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Proposed HSPRec 

by Bhatta, Ezeife & 

Butt, 2019 

HSPRec first generates an E-Commerce sequential 

database from historical purchase data using SHOD 

(Sequential Historical Periodic Database Generation). 

Then, mines frequent sequential purchase patterns before 

using these mined sequential patterns with consequential 

bonds between clicks and purchases to (i) improve the 

user-item matrix quantitatively, (ii) used historical 

purchase frequencies to further enrich ratings 

qualitatively. Thirdly, the improved matrix is used as 

input to the collaborative filtering algorithm for better 

recommendations. 

Minimum support, 

historical purchase, 

and consequential 

bond of historical click 

and purchase 

Unable to capture 

multi-database. No 

provision for 

infrequent user.  

 

Table 1.22: Table showing existing E-commerce recommendations  

1.12 Problem Definition 

Given E-commerce historical click and purchase data over a certain period of time as input, the 

problem being addressed by this thesis is to find the frequent periodic (daily, weekly, monthly) 

sequential purchase and click patterns in the first stage. Then, these sequential purchase and click 

patterns can be used to make user-item matrix qualitatively (specifying level of interest or value 

for already rated items) and quantitatively (finding possible rating for previously unknown ratings) 

rich before applying collaborative filtering (CF) to improve the overall accuracy of 

recommendation. 

1.13 Thesis Contribution  

The main limitation of existing related systems such as (HPCRec18, Xiao & Ezeife, 2018) is that 

they treated the entire clicks and purchases of items equally and did not integrate frequent 

sequential patterns to capture more real-life customer purchase behavior sequence patterns inside 

consequential bond. Thus, in this thesis, we propose a system called Historical sequential pattern 

recommendation (HSPRec (Figure 1.3)) to discover frequent historical sequential pattern from 

click and purchase, so that discovered frequent sequential patterns are used to improve the 

consequential bond and user-item frequency matrix to improve recommendation. The detailed 

architecture of the HSPRec system is present in Figure 3.1.   
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Figure 1.3: Historical sequential recommendation (HSPRec) 

1.13.1 Thesis feature contributions 

1. Using sequential pattern to improve user-item rating matrix quantitatively  

In E-commerce, a user-item rating is very sparse. Thus, only the normalization of user-item 

frequency matrix is not sufficient to indicate the level of user-interest on an item. So, in this thesis, 

we are doing the analysis of historical sequential purchase patterns of a user to provide the 

relationship between already purchased items and recommended items to fill the missing rating 

for an item to improve the user-item matrix quantitatively (providing possible value for the unrated 

item or 0 value item in user-item matrix). The details process is provided in section 3.2. 

2.  Using sequential pattern to enhance consequential bond of click and purchase  

In E-commerce click and purchase are two different types of events in E-commerce, and they are 

not synchronous even if they contain equal numbers of items. For example, <3, 5, 2, 3> and < (3), 

(5), (2, 3)> contain similar items but sequences of itemsets are different. Thus, integration of 

sequential patterns in the consequential bond is necessary to make it strong. The details process is 

present in section 3.2. 
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3. Discovering periodic (daily, weekly and monthly) sequential pattern  

A weekly sequential pattern consists of a large number of items in itemsets compared to a daily 

sequential pattern to generate complex sequential rules. Thus, in this thesis, we have developed 

SHOD (Sequential Historical Periodic Database) algorithm (defined in section 3.2.1) to discover 

daily, weekly and monthly sequential pattern by considering timestamp clicks and/or purchases 

items to enhance user-item purchase frequency matrix. 

4. Improving the recommendation accuracy 

We are using sequential patterns to improve user-item matrix qualitatively and quantitatively by 

processing with frequent clicks and/or purchases sequential patterns to generate a rich user-item 

matrix for CF algorithm, and experimental results show that our approach HSPRec performs better 

than tested existing related system.  

1.12.2 Thesis procedural contributions 

To make the specified feature contributions, this thesis proposes HSPRec system (Algorithm 

3.1), which consists of following major steps: 

1. Convert historical purchase information to user-item purchase frequency matrix by 

counting the number of items purchased by each user. 

2. Create purchase sequential database from historical purchase by applying sequential 

historical periodic database (SHOD) algorithm present in 3.2.1. 

3. Apply a purchase sequential database to Sequential Pattern Rule (SPR) module present in 

3.2.2, to create frequent purchase sequences. Once frequent purchase sequences are found, 

use them to generate purchase sequential rules. 

4. Apply purchase sequential rule in user-item purchase frequency matrix to improve 

quantity. 

5. For each user, where click happened without a purchase such as for user 5 in Table 3.4, 

create a click periodic sequential database (Table 3.5) by neglecting purchase from the 

consequential bond. Then, input a click sequential database to Sequential Pattern Rule 

(SPR) (present in 3.2.2) module to get recommended items as the predicted purchase items. 

6. Once purchased items are recommended to a user, then compute click and purchase 

similarity using Click and Purchase Similarity (CPS) module present in 3.2.3. 
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7. Supply value of Click Purchase Similarity (CPS) to purchase patterns including 

recommended items from Sequential Pattern Rule (SPR) to create weighted purchase 

pattern. 

8. Call Weighted Frequent Purchase Pattern Miner (WFPPM) present in 3.2.4 and apply 

weighted purchase patterns as input and compute the weight of each item present in 

purchase patterns. 

9. Repeat the steps 5, 6, 7, and 8 if there are users without purchase otherwise, use computed 

rating to further enhance user-item purchase matrix and apply normalization function 

present in 3.2.5 to enhance user-item matrix before running collaborative filtering 

algorithm.  

1.14 Outline of Thesis 

CHAPTER 2: Discuss related E-commerce recommendation systems, different sequential pattern 

mining algorithms. 

CHAPTER 3: Discusses the proposed E-commerce sequential dataset and sequential 

recommendation system and its related algorithms, methods. 

CHAPTER 4: Discusses the experimental implementation for sequential recommendation system, 

required tools and technologies.  

CHAPTER 5: Discusses about the future work and conclusion.  
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CHAPTER 2: RELATED WORK 

2.1 E-commerce Recommendation Systems 

2.1.1 E-commerce recommendation system based on navigational and behavioral patterns by 

Kim, Yum, Song, & Kim, 2005 (KimRec05) 

Conventional recommendation approach represents user-item matrix using binary data (1/0) (1 

represents purchased and 0 represents not purchased items) for making recommendation but Kim, 

Yum, Song, & Kim, 2005 proposed clickstream approach that analyze searching, browsing, 

clicking, basket placement and purchasing data captured from the navigational and behavioral 

patterns of customers to estimates the preference levels of a customer for the products, which they 

clicked but not purchased using decision tree. So, major steps involved in this work are: 

Step 1: Gather data related to the purchase, navigational, and behavioral patterns. 

Navigational patterns include browsing, searching, product click, basket placement, and actual 

purchase, while behavioral patterns consist of the click ratio for a certain type of product, length 

of reading time spent on a specific product, number of visits to a specific product, printing, and 

bookmarking. So, data collected may be as shown in Table 2.1. 

Parameters Description 

Click type Binary variable: searching=1; browsing=0 

Number of visits Discrete variable 

Length of reading time Continuous variable (s) 

Print status Binary variable: printZ1; no printZ0 

Bookmarking status Binary variable: bookmarkingZ1; no bookmarkingZ0 

Level 1 click ratio (genre) Continuous variable defined for each product k clicked by customer i. Let j be 

the category (at Level 1) to which product k belongs. Then, Level 1 click ratio 

for product, k=(Total number of products clicked by customer i that belong to 

category j at Level 1)/(Total number of products clicked by customer i) 

Level 2 click ratio (specific 

type) 

Continuous variable defined for each product k clicked by customer i. Let j be 

the category (at Level 2) to which product k belongs. Then, Level 2 click ratio 

for product, k=(Total number of products clicked by customer i that belong to 

category j at Level 2)/(Total number of products clicked by customer i) 

Basket placement status Binary variable: basket placement=1; no basket placement=0 

Purchase status Binary variable: purchase=1; no purchase=0 

Table 2.1: E-commerce data parameters and their description 

Step 2: For each customer, the preference level of a product which is clicked but not purchased is 

estimated using three steps: 

1. Estimation of the probability of purchase after basket placement (p) 

P=
Total number of cases in which product is purchased

Total number of cases in which product is placed in basket
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For example, the total number of cases of product purchased is 5, and the total number of 

cases of product placed in the basket is 6 then p=5/6=0.83. 

2. Estimate the probability 𝑏 of placing a product after clicking it using decision tree (DT) 

analysis, logistic regression (LR) analysis, or artificial neural network (ANN). 

 

Figure 2.1: Decision tree to show click and basket placement probability 

3. Determination of the preference level of a product which is clicked but not purchased by 

each customer is computed by using (p*b). 

For example, preference level to place clicked item on the basket is 5/6*19.5%=0.161 

Step 3: CF is performed using the preference levels data as input values, and the preference levels 

of a customer for the products not clicked are predicted. 

Conventional recommender system that uses only the purchase status, where 0’s (no purchase) and 

1’s (purchase) as input data but they are improved by integrating the probability of reaching the 

point of purchase is estimated for a product clicked by a customer as shown in Figure 2.2.  

 

Figure 2.2: a) conventional recommendation system and b) Kim recommendation system 

Therefore, enhanced rating matrix consisting of more information is used as input in collaborative 

filtering to provide the recommendation.   
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2.1.2 A hybrid of sequential rules and collaborative filtering for product recommendation by 

Liu, Lai, and Lee, 2009 (LiuRec09) 

The sequential rule method considers the sequence of customers’ purchase behavior over time but 

does not utilize the target customer’s purchase data for the current period. So LiuRec09 proposed 

a segmentation based method using Recency, Frequency, Monetary (RFM) segmentation using K-

mean clustering method, where R is period since the last purchase, F is a number of purchased and 

M is the amount of money spent. Once the RFM segmentation is created, users are further 

segmented using transaction matrix. The transactions matrix captures the list of items purchased 

or not purchased by users over a monthly period in a given products list. From the transaction 

matrix, the users’ purchases are further segmented into T-2, T-1, and T, where T represents the 

current purchase and T-1 and T-2 represents two previous purchases. Finally, association rule 

mining is used to select Top-N neighbors from the cluster to which a target user belongs using 

binary choice analysis and derive the prediction score of the item not purchased based on the 

frequency count of the item scanning the purchase data of k-neighbors.  

Example of LiuRec09 

Let us consider E-commerce historical data containing information of price, quantity and 

transaction time as given in Table 2.2 as input.  

Customer ID Transaction Time Product  Quantity Price 

C001 July 11 2017 Perfumes 1 $77183.60 

C001 August 17 2017 Skincares 3 $4196.01 

C001 September 14 2017 Dresses 4596 $33719.73 

C002 July 15 2017 Perfumes 199 $4090.88 

C002 August 13 2017 Shoes 59 $942.34 

C002 September 25 2017 Skincares 1 $77183.60 

C003 July 19 2017 Skincares 431 $251657.30 

C003 August 22 2017 Perfumes 337 $94330..79 

C003 September 18 2017 Kints 963 $91062.38 

C004 July 24 2017 Perfumes 277 $66653.56 

C004 September 18 2017 Dresses 5111 $65164.79 

C005 September 18 2017 Perfumes 568 $65164.79 

C005 July 13 2017 Shoes 2379 $65039.62 

Table 2.2: E-commerce transactional data 

Step 1: Customer clustering using (R) Recency, F (Frequency) and (M) Monetary value 

To create a cluster of users using RFM value, user RFM is matched with predefined RFM range 

and RFM quartile values are assigned to users. Then, a final RFM score is computed using RFM 

quartile as shown in Table 2.3.  
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CID Recency(R) Frequency(F) Monetary(M) R_quartile F_quartile M_quartile RFM Score 

1 109 5 191.85 3 4 4 344 

2 70 96 1054.43 4 4 4 444 

3 130 3 67 2 3 3 233 

4 74 1 15 4 1 1 411 

5 214 1 19.92 1 1 2 112 

Table 2.3: E-commerce data clustering using RFM value 

Step 2: Create transaction matrix  

Once RFM clusters of users are created, users’ transaction (binary) matrix is created by analyzing 

the list of items purchased by users, where 1 represents purchased items and 0 represents not 

purchased items by a user. An example of transaction matrix created from historical E-commerce 

data (Table 2.2) is present in Table 2.4. 

CID Perfumes Skincares Knits Dresses Shoes 
July Aug Sep July Aug Sep July Aug Sep July Aug Sep July Aug Sep 

001 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

002 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

003 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 

004 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

005 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

Table 2.4: transaction clustering of E-commerce data 

According transaction matrix, customer (CID001) purchased perfumes on July 2017, so value it set 

to 1 and it is set to 0 in August and so on.  In given product list P= {Perfumes, Skincare, Knits, 

Dresses, Shoes}, the transactions of customer CID001 are, July={Perfumes}, Aug.={Skincares}, 

Sep.={Dresses}. Thus, dynamic customer profile of customer CID001 from July to September 

may be represented as CID001, July = {1, 0, 0, 0, 0}, CID001, Aug= {0, 1, 0, 0, 0}, CID001, Sep = 

{0, 0, 0, 1, 0}.  

Step 4: Transaction matrix clustering  

The transaction clustering helps to locate the customer past transaction and present transaction. 

Furthermore, transaction cluster represents a group of transactions with a similar item purchased 

by users.  For example, if we take customer CID001 transaction sequence then clusters may be 

different as given in Table 2.5. 

Transaction Sequence Cluster No (Ci) 

100 Cluster 10 (C1) on the basis of RFM quantity 

010 Cluster 3  (C2) on the basis of RFM  

001 Cluster 9  (C3) on the basis of RFM 

000 Cluster 1  (C4) on the basis of RFM 

Table 2.5: Transaction sequence clustering 
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According to transaction sequence, the customer CID001 belonged to the tenth cluster in July and 

moved into the third cluster in August, thereafter reaching the ninth cluster in September. So 

behavior locus for CID001 is (10, 3, 9). 

Step 4: Mining customer behavior from transaction clusters 

To mine customer behavior according to purchase time, this work adopted association rule Rj for 

determining the most frequent pattern with confidence.  

𝑅𝑗 = 𝑟𝑗,𝑇−𝑙+1,…….,𝑟𝑗,𝑇−1 → 𝑟𝑗,𝑇(𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑗) 

Equation 2.1: Association rule to mine customer behavior in LiuRec09 

Where rule Rj indicates that, if the locus of a customer is rj,T-l+1,.,rj,T-1, then the behavior cluster for 

that customer is rj,T at time T. To illustrate this rule, let us consider the locus behavior of customer 

according to transaction sequence is as given in Table 2.6. 

CID Locus in 1st Trans(T-2) Locus change in 2nd Trans(T-1) Behavior cluster in Trans(T) 

C001 10 3 9 

C002 10 1 3 

C003 3 10 4 

C004 10 - 9 

C005 1 - 10 

C006 4 - 3 

C011 9 3 ? 

Table 2.6: Customer transaction cluster 

Thus, some of the possible association rules from customer transaction cluster (Table 2.6) are 

Rule T-2 T-1 T Association Rule (locus 

at T-2,T-1 locus at T) 

Support  Confidence 

1 10 - 9 10 9 0.28 0.5 

2 3 10 4 3,10 4 0.14 1 

3 10 3 9 10,3 9 0.14 1 

4 10 1 3 10,1 3 0.14 1 

5 1 - 10 1 10 0.14 1 

6 4 - 3 4 3 0.14 1 

Table 2.7: Association rules created from customer transaction cluster 

According to the rule 1, if customer purchase behavior in time T-2 is in cluster 10 then his/her 

behavior will be in 9 clusters at time T , where support for (10 9)= 0.28 and confidence for  

(10 9)= 0.5 

Step 5: The determination and match of the cluster sequences of target customers 

The cluster locus of a target customer is compared with the association rules derived from other 

customers’ loci, and then the best-matching locus is determined and multiplied by the support and 

confidence of the rule to derive the fitness measure using Equation 2.2. 
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 𝑀𝑦
𝑥 = ∑ 𝑀𝑦,𝑇−𝑘

𝑥 , 𝑤ℎ𝑒𝑟𝑒

𝑙−1

𝑘=1

𝑀𝑦,𝑇−𝑘
𝑥 = {

1 𝑖𝑓 𝐶𝑦.𝑇−𝑘=𝑟𝑥,𝑇−𝑘

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∗ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑥 ∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑦 

Equation 2.2: Formula to match target user purchase in LiuRec09  

Step 6: Recommendation 

Let M(r1) denote the most frequently purchased product at time T in Cluster. Similarly, M(r2) is 

ranked the next highest, and M(rN) is ranked the Nth highest. Then, the recommendation list for the 

target customer is given by M(r1), M(r2)…M(rN). 

2.1.3 A time-based approach to effective E-commerce recommender systems using implicit 

feedback by Lee, Park, & Park, 2008 

Collaborative filtering is a widely used method of recommendations based on ratings of items 

provided by users. However, in e-commerce environments, it is very difficult to collect explicit 

rating. So, to alleviate the problem of explicit rating Lee, Park, & Park, 2008 developed a 

recommender system using time-based implicit rating. The main work starts with constructing a 

pseudo rating matrix. The pseudo rating matrix contains binary value 1 for purchased item and 0 

for not purchased item. After constructing a pseudo rating matrix, temporal information such as 

users purchase time, item launch time is incorporated into the pseudo rating matrix then values in 

the pseudo rating matrix are extracted from predefined rating function. In the end, the final user-

item rating matrix is applied to collaborative filtering for a recommendation. So, major steps 

involved in this work are: 

Step 1: Collect implicit feedback data  

In this step, the item purchased date and the item launch time data are collected. The main motive 

behind collecting two kinds of information are: 1) most recent purchase reflect better user 

preference 2) recently launched items appeal more to users.  

Step 2: Construct a pseudo rating matrix using temporal information 

During pseudo rating matrix construction, we can simply assign 1 as a rating value when a user u 

purchased an item i.  Let us consider pseudo rating matrix as present in Table 2.8.  

 Item1 Item 2 Item 3 Item 4 

User 1 1 0 1 1 

User 2 0 1 1 0 

User 3 1 0 0 1 

Table 2.8: Pseudo rating matrix 
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Let us consider, LTime represents item launch time and PTime represents the time when user 

purchased item. Then integrate LTime and PTime in pseudo rating matrix as given in Table 2.9.  

 Item1 

(LTime1) 

Item 2 

(LTime2) 

Item 3 

(LTime3) 

Item 4 

(LTime4) 

User 1 PTime1 0 PTime3 PTime4 

User 2 0 PTime4 PTime5 0 

User 3 PTime6 0 0 PTime7 

Table 2.9:Pseudo rating matrix with temporal information 

Then, define rating function w (pi, lj), where pi represents purchased time and lj represents launch 

time of a product. Then, convert pseudo rating matrix with temporal information is present in 

Table 2.10. 

 Item1 Item 2 Item 3 Item 4 

User 1 w(p1,l1) 0 w(p2,l3) w(p3,l2) 

User 2 0 w(p2,l2) w(p1,l3) 0 

User 3 w(p3,l1) 0 0 w(p3,l3) 

Table 2.10: Pseudo rating matrix with rating function w(pi,lj) 

Step 3: Extract value of rating function (w (pi, lj)) from predefined table 

Used predefined rating function w present in Table 2.11 to enrich pseudo rating matrix (Table 

2.10). For example, w (p1, l1) is replaced by 0.7 in pseudo rating matrix. Similarly, w (p2, l3) is 

replaced by 2.3.     

 old purchase (p1) middle purchase (p2) recent purchase (p3) 

old launch (l1) 0.7 1.7 2.7 

middle launch  (l2) 1 2 3 

recent launch (l3) 1.3 2.3 3.3 

Table 2.11: Predefined rating function w 

Step 4: Apply user-item rating matrix to collaborative filtering 

By extracting the value of rating function from step 3, construct a user-item rating matrix as present 

in Table 2.12. Then, apply collaborative filtering to predict the missing rating of user on item.  

 Item1 Item 2 Item 3 Item 4 

User 1 0.7 ? 2.3 3 

User 2 ? 2 1.3 ? 

User 3 2.3 ? ? 3.3 

Table 2.12: User-item rating matrix constructed from pseudo rating matrix 

  



- 34 - 
 

2.1.4 Recommender system based on click stream data using association rule mining by Kim, 

& Yum, 2011 

Many recommendation systems only use the purchase data of users for e-commerce 

recommendation, while navigational and behavioral pattern data were not utilized. So, Kim, Yum, 

Song, & Kim, 2005 developed a collaborative filtering technique based on navigational and 

behavioral patterns of customers. To improve the performance of the recommendation system, 

they developed a system that used association rule. In this system, they calculated the confidence 

levels between clicked products, between the products placed in the basket, and between purchased 

products, respectively, and then the preference level was estimated through the linear combination 

of the above three confidence levels. The major steps involved in this work are: 

Step 1: Data collection and preparation 

In this phase, all the navigational and behavioral patterns in e-commerce sites are collected. An 

example of this step is given in Table 2.13. The navigational patterns include browsing, 

searching, product click, basket placement, and actual purchase, while behavioral patterns consist 

of the click ratio for a certain type of product, length of reading time spent on a specific product, 

number of visits to a specific product, printing, and bookmarking to give the statics.  

Case Customer CD Clicktype Timespent No of visit Basket placement Purchase 

1 1 CDA 1 49 2 1 1 

2 1 CDB 1 15 1 1 0 

3 2 CDA 0 4 1 0 0 

4 2 CDC 0 6 1 0 0 

5 2 CDD 0 8 1 0 0 

6 2 CDE 1 12 1 1 1 

7 2 CDF 0 6 1 0 0 

Table 2.13: E-commerce clickstream data 

Step 2: Association rule mining 

1. Identify all pairwise combinations of products that simultaneously appear in a transaction. 

Let us consider the minimum support is 2%, if the ratio of the number of clicks in which 

both CDA and CDB occur to the total number of transaction is more than 2% then CDA and 

CDB becomes the candidate of association rule.  

2. For each pair (𝐶𝐷𝑖 and 𝐶𝐷𝑗, 𝑖 ≠ 𝑗) the corresponding support is calculated using 

Support= P (U∩V) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑜𝑡ℎ 𝑈 𝑎𝑛𝑑 𝑉 𝑜𝑐𝑐𝑢𝑟

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

Equation 2.3: Equation to count support 
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For example, support (CDA, CDB) =10/50 where product CDA in case 1 and product CDB 

in case 2 as given in Table 2.13. For 2.3, each pair whose support is greater or equal to a 

specified threshold (for example, 2%), calculate the lift values using following association 

rule lift. The lift of the rule ‘‘U→V’’ can be defined as: 

Lift = 
 𝑃(𝑉|𝑈)

𝑃(𝑉)
=

𝑃(𝑈∩𝑉)

𝑃(𝑈)∗𝑃(𝑉)
 

or 

Lift=
Number of transactions in which both U and V occur∗Total number of transactions

(Number of transactions in which U occurs)∗(Number of transactions in which V occurs
 

Equation 2.4: Equation to compute lift value 

For example, lift between CDA and CDB = (10*50)/ (13*15) =2.56. 

3. For each pair, whose lift is greater than a specified threshold (1 in our case) is selected for 

generating more elaborate association rules.  

4. The association rule is generated on each of the product combinations and then, three 

confidence levels between clicked products, between the products placed in the basket, 

between purchased products are calculated. 

Step 3: Confidence calculation  

In this step, find the confidence level for both basket placement and purchase and use the higher 

confidence level for preference level. 

Step 4: Making recommendation of Top-N list 

For each phase (Click, Basket placement, Purchase), find the Top-N products ranked list by 

confidence level. 
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2.1.5 Combining collaborative filtering and sequential pattern mining for recommendation by 

Li, Niu, Chen, & Zhang, 2011 

Collaborative filtering finds the similarity between users and items considering closet neighbors 

but user purchase choice is different with respect to time. Thus, collaborative filtering only is not 

sufficient to capture the time change purchase habit of users. To overcome the limitation of 

collaborative filtering and capture the sequential purchase behaviors of user Li, Niu, Chen, & 

Zhang, 2011 developed an approach of recommending items using collaborative filtering and 

sequential pattern mining. From user-item rating matrix as input, at first, compute item-item 

similarity and predict Top-K items. Once Top-k items are found, items are arranged in descending 

order of their Top-K value to create a sequence of items purchased by users. Finally, apply a 

sequential pattern mining algorithm (for example GSP) on sequences of purchases to discover 

frequent sequential patterns. 

Example 

Let us consider the user-item rating matrix as given in Table 2.14 as input.  

 Item 1 Item 2 Item 3 Item 4 Item 5 

User 1 1 ? 1 1 1 

User 2 1 2 ? ? 2 

User 3 3 ? 3 ? 3 

User 4 ? 4 ? 1 ? 

User 5 ? 5 1 2 ? 

Table 2.14: User-item rating matrix for Niu, Chen, & Zhang, 2011 recommendation system 

Step 1: Compute mean centering user-item matrix 

Mean centering of a user-item matrix helps a user with many ratings contributes less to any 

individual rating. So, mean centering user-item rating matrix (Table 2.15) is created by subtracting 

user’s individual items rating from user mean rating as present in Table 2.14. 

 Item 1 Item 2 Item 3 Item 4 Item 5 Mean rating 

User 1 0 ? 0 0 0 1 

User 2 -0.66 0.34 ? ? 0.34 1.66 

User 3 0 ? 0 ? 0 3 

User 4 ? 1.5 ? -1.5 ? 2.5 

User 5 ? 2.34 -1.66 -0.66 ? 2.66 

Table 2.15: Mean centering user-item rating matrix 

 

 

 



- 37 - 
 

Step 2: Find item-item similarity  

Once the mean center user-item rating matrix is computed, then similarities between items are 

computed using similarity function such as Cosine similarity or Pearson Correlation Coefficient. 

An equation to compute the Pearson Correlation coefficient is present in Equation 2.5. 

SIM (i, j)=
∑ (𝑟𝑢,𝑖𝑖∈𝐼 −𝑟𝑢⃗⃗⃗⃗ )∗(𝑟𝑢,𝑗−𝑟𝑢⃗⃗⃗⃗ )

√∑ (𝑟𝑢,𝑖𝑖∈𝐼 −𝑟𝑢⃗⃗⃗⃗ )2∗ √∑ (𝑟𝑢,𝑗𝑖∈𝐼 −𝑟𝑢⃗⃗⃗⃗ )2
 

Equation 2.5: Pearson Correlation coefficient to compute similarity 

Where 𝑟𝑢,𝑖 is the rating given to item i by user u, 𝑟𝑢⃗⃗  ⃗ is the mean rating of all the rating on item 

provided by user. The item-item similarity is computed with the help of Pearson Correlation 

Coefficient from user-item rating matrix (Table 2.14) is present in Table 2.16. 

 Item 1 Item 2 Item 3 Item 4 Item 5 

Item1 1.00 -0.9 0.78 -0.6 0.91 

Item 2 -0.9 1.00 -0.8 0.32 -0.8 

Item 3 0.78 -0.84 1.00 -0.3 0.51 

Item 4 -0.6 0.32 0.39 1.00 -0.7 

Item 5 0.9 -0.8 0.51 -0.7 1.00 

Table 2.16: Item-item similarity of mean centered rating matrix 2.16 

Step 3: Select items having highest similarities with the current item. 

In this step, highest similar items of current item are selected, in our case, we can see that Item1 

rating is 1.00 and other similar items to Item1 are Item3 and Item5 as present in Table 2.17.  

 Item 1 Item 2 Item 3 Item 4 Item 5 

Item1 1.00 -0.9 0.78 -0.6 0.91 

Item 2 -0.9 1.00 -0.8 0.32 -0.8 

Item 3 0.78 -0.84 1.00 -0.3 0.51 

Item 4 -0.6 0.32 0.39 1.00 -0.7 

Item 5 0.9 -0.8 0.51 -0.7 1.00 

Table 2.17: Table showing similar item of current item 

Step 4: Compute predicted rating for itemi by useru. 

 The predictions for each useru correlated with each itemi is present in Equation 2.6. 

Pu,i=
∑ (𝑆𝐼𝑀(𝑖,𝑘)𝑡∈𝑁 ∗𝑅𝑢,𝑘)

∑ (|𝑆𝐼𝑀(𝑖,𝑘)|)𝑡∈𝑁
 

Equation 2.6: Equation to compute predicted rating in item-item similarity 

Where N represents the items i similar item sets and 𝑅𝑢,𝑘 is the rating given to item k by user u 

and SIM(i,k) represents the similarity between item i and item k. In our case, predicted user-item 

rating matrix is present in Table 2.18. 
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 Item 1 Item 2 Item 3 Item 4 Item 5 

User1 0.9 0 0.8 0 0.7 

User 2 1.0 -2 1.1 1.0 0.5 

User 3 2.8 -3 2.5 -1 2.3 

User 4 0 0.5 0 2.0 0 

User 5 0 1.0 0 1.9 0.2 

Table 2.18: Prediction rating matrix 

Step 5: Create sequence database by selecting item with highest value in descending order  

Once the predicted rating is computed, all the items purchased by each user are arranged in 

descending order by considering a rating of a user on an item to create a sequence database. The 

main problem with this kind of sequences in a sequence database is the lack of actual item purchase 

order.   

 Predicted Items 

User1 <I3, I1 > 

User 2 <I3, I4 > 

User 3 <I1, I3 > 

User 4 <I2, I4> 

User 5 < I2, I4> 

Table 2.19: Sequence database created by using rating value in descending order 

Step 6: Apply GSP algorithm on sequence database 

Input: sequence database (Table 2.19), minimum support=2 and candidate set (C1) = {I1, I2, 

I3, I4} and algorithm=GSP 

1. Find 1- frequent sequence (L1) to keep the only sequence with occurrence or support count 

in the database greater than or equal to minimum support count of 2. For example, 

L1={<I1>:2, <I2>:2, <I3>:3, <I4>:3}   

2. Generate candidate sequence (Ck=2) using L (1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L(1)  

3. Pruning candidate set C (K=2) by testing the minimum support and remove infrequent items. 

4. Repeat the process of candidate generation and pruning until the result of candidate generate 

(Ck) and prune (Lk) for finding frequent sequence is an empty set. 

5. Output frequent sequence as union of L1 U L2 U…Ln .  

1-sequence 2-sequences 

<I3> <I3, I4 > 

Table 2.20: n-frequent sequence for Li, Niu, Chen, & Zhang, 2011 recommendation 

From 2-sequence <I3, I4 >, we can see that the recommendation track for U2 is to first adopt I3 and 

then I4. 

 



- 39 - 
 

2.1.6 Implicit rating-based collaborative filtering and sequential pattern analysis for E-

commerce recommendation by Choi, Keunho, Yoo, Kim, & Suh, 2012 (ChoiRec12) 

Users are not always willing to provide a rating or they may provide a false rating. Thus, 

ChoiRec12 developed the system that derives preference ratings from a users’ transactional data 

by using the number of time useru purchased itemi respect to total transactions. Once preference 

ratings are determined, they are used to formulate a user-item rating matrix for collaborative 

filtering. To make a better recommendation, they tried to use the purchase pattern but there is no 

evidence of sequential purchase pattern generated using sequential pattern mining algorithm. 

Furthermore, to recommend purchase pattern to a target user, a subsequence of target user purchase 

items are matched with derived purchase items of all other users. If some items are matched then 

importance on the item is added by counting the support. Finally, the items having the highest 

count are recommended to users.  

Example of ChoiRec12 

Let us consider the fragment of historical purchased data as given in Table 2.21, where only 

purchase time is provided as available information, and our main goal of recommendation is to 

recommend the suitable item to user T. 

 Item 1 Item 2 Item 3 Item4 Item 5 

 Date Date Date Date Date 

User 1 01/01 - 01/02 01/03 - 

User 2 01/01 - 01/02 01/03 01/04 

User 3 - 01/01 01/02 - 01/03 

User 4 01/01 01/02 01/03 - - 

User T - 01/01 01/02 01/03 - 

Table 2.21: Choi, Keunho, Yoo, Kim, & Suh, 2012 historical user-item matrix 

Step 1: Compute implicit rating of all users on items 

The implicit rating can be computed by: 𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑅𝑎𝑡𝑖𝑛𝑔(𝑢, 𝑖) = 𝑅𝑜𝑢𝑛𝑑 𝑢𝑝(5 ∗ 𝑅𝑃(𝑢, 𝑖)) 

Where, RP(u,i) is the relative preference of user u on item i and it is defined as:  

𝑅𝑃(𝑢, 𝑖) =
𝐴𝑃(𝑢, 𝑖)

(𝐴𝑃(𝑐, 𝑖))𝑐∈𝑈
𝑀𝑎𝑥  

Where AP(u,i) is the absolute preference of user u on item i and it is defined as:  

AP(u, i)= 
𝑛𝑢𝑚𝑏𝑒 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑏𝑦 𝑢𝑠𝑒𝑟 𝑢

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑢
+ 1 

In our case, user 1 purchased item 1 one time out of three transactions. Thus, AP (user1, item1) 

=1/3+1=1.3. Furthermore,  𝑅𝑃(user1, item1) =1.3/1.3=1. So, implicit rating= 𝑅𝑃 ∗ 5 = 5. 
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 In the same way, let us consider a user-item implicit rating matrix created from the historical data 

using above technique as given in Table 2.22. 

 

 

 

 

 

Table 2.22: Implicit rating derived from user’s transactions 

Step 2: Calculate mean rating and user similarity based on the implicit rating  

1. Mean rating computation: The mean rating is computed by adding all the rating of users 

on items with respect to total numbers of rating. So, 

Mean of rating User 1 = (3+1+5)/3=3, User 2 =2.5, User 3=2.3, User 4=4 and User T=3 

2. Similarity computation: Compute similarities between users’ using Cosine similarity, 

which is given as: 

𝐶𝑜𝑠𝑖𝑛𝑒(𝑇, 𝑏) =
∑ (𝑅𝑇,𝑖)(𝑅𝑏,𝑖)

𝑚
𝑖=1

√∑ (𝑅𝑇,𝑖)2𝑚
𝑖=1  √∑ (𝑅𝑏,𝑖)2𝑚

𝑖=1  
 

Where (RT,i) denote the ratings of usersT on item i similarly (Rb,i) denotes the rating of 

user b on item i. for example, similarity between Target user and User 1 is SIM (T, User1) 

= 0.793 similarly, the similarity between SIM (T, User2) = 0.966, SIM (T, User3) = 0.89 

and SIM (T, User4) = 1.  

Step 3: Find Top-N closest neighbors of target user T 

Once the similarity between the target user and other users are calculated, they are sorted based on 

similarity in descending order then Top-N users are selected as neighbors of the target user. In our 

case, the number of neighbors is set to 2, so, closest neighbors of target User T are User 2 and User 

4. 

Step 4: Calculate the CF-based predicted preference (CFPP) 

Top-N neighbors are used to predict CF-based predicted preference of target user(T) on itemi by 

the equation: 

𝐶𝐹𝑃𝑃(𝑇, 𝑖) = 𝑅𝑇  ̅̅ ̅̅ +
1

∑ |𝑠𝑖𝑚(𝑇,𝑏)|𝑘
𝑏=1

∗ ∑ 𝑇𝑜𝑝𝑁 − 𝑠𝑖𝑚(𝑇, 𝑏)𝑁
𝑏=1 ∗ (𝑅𝑏,𝑖 − 𝑅𝑏 ̅̅ ̅̅ ) 

Equation 2.7: CF-based predicted preference 

 

 Item 1 Item 2 Item 3 Item 4 Item 5 Mean Rating 

User 1 3 ? 1 5 ? 3 

User 2 4 ? 3 1 2 2.5 

User 3 ? 1 2 ? 4 2.3 

User 4 5 4 3 ? ? 4 

User T ? 4 3 2 ? 3 
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Where, N denotes the number of user a’s neighbors and sim (T, b) denotes the similarity between 

User T and User b, which is computed by cosine similarity. Finally, 𝑅𝑇 
̅̅ ̅̅ and  𝑅𝑏

̅̅̅̅  represents the 

mean rating of User T and mean rating of User b. For example,  

CFPP(T,item1)=µTUser+
(SIM(Tuser,user2)∗Ruser2,item1−µuser2+ SIM(Tuser,user4)∗Ruser4,item1−µuser4)

|𝑆𝐼𝑀(𝑇𝑢𝑠𝑒𝑟,𝑢𝑠𝑒𝑟2)+𝑆𝐼𝑀(𝑇𝑢𝑠𝑒𝑟,𝑢𝑠𝑒𝑟4)|
 

=4.74 

Similarly, CFPP (T, item2) =3.5, CFPP (T, item3) =3.2365, CFPP (T, item4) = 2 and CFPP (T, 

item5) =3 

 

Step 5: Compute purchase item based score (SPAPP) 

1. In this step, purchase information of each user placed according to purchase time except 

for target user. In our case, item purchased by each user are: User1: <Item1><Item3><Item4>, 

User2: <Item1><Item3><Item4><Item5>, User3: <Item2><Item3><Item5>, User4: 

<Item1><Item2><Item3>. 

2. Find frequent single item pattern (L1): Let us consider minimum support as 0.5 then the 

frequent purchase item (L1) are {<item1>:0.75, <item2>:0.5, <item3>:1, <item4>:0.5, <item5>:0.5} 

3. Generate larger candidate set (C2): Use L1 Apriori join L1 to create larger candidates set 

(C2) as present in Table 2.23. 

Items Count 

<item1><item2> 0.25 

<item1><item3> 0.75 

<item1><item 4> 0.5 

<item1><item5> 0.25 

<item2><item3> 0.50 

<item 2><item 5> 0.25 

<item 3><item 4> 0.50 

<item 3><item 5> 0.50 

Table 2.23: possible list of 2-items generated from frequent purchase (L1) 

4. Find 2-frequent items from C2: Test candaidate set (C2) with minimum threshold to create 

frequent L2 items. 

 

 

Frequent items (L2) = 

 

 

Table 2.24: Frequent 2-item generated from candidate set (C2) 

 

Item Count 

<item1><item3> 0.75 

<item1><item 4> 0.5 

<item2><item3> 0.50 

<item 3><item 4> 0.50 

<item 3><item 5> 0.50 
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5. Repeat the process of candidate generation (Ck) and pruning (Lk) until the candidate set is 

empty. In our case, frequent items are: <Item1> <Item3> (0.75), <Item2> <Item3> (0.5), <Item3> 

<Item4> (0.5), <Item3> <Item5> (0.5), <Item1> <Item4> (0.5), <Item1> <Item3> <Item4> (0.5) 

6. Match subsequences of a target user purchase with derived purchased items by 

enumerating target user purchase item. In our case, purchase data of the target user T are 

<Item2><Item3><Item4>, then possible subsequences can be <Item2>, <Item3>, <Item4>, 

<Item2><Item3>, <Item2><Item4>, <Item3><Item4>, and <Item2><Item3><Item4>. For example, 

since the first item <Item2> appears in the starting part of the second frequent item (C2) 

thus, <Item3> can be decided as candidate items to recommend with supports 1.  

7.  Calculating the pattern analysis based predicted preference (SPAPP):  Pattern based 

predicted preference of userT on itemi is computed by 𝑆𝑃𝐴𝑃𝑃(𝑇, 𝑖) = ∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠
𝑖

𝑆∈𝑆𝑈𝐵 , 

Where SUB denotes the set of all subsequences of userT, and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠
𝑖  denotes the 

support of itemi from a subsequence s. for example, predicted preference of Target user 

on item 1. SPAPP (T, 1) = 0, similarly, SPAPP (T, 2) = 0, SPAPP (T, 3) = 

0.75+0.5+0.5=1.25, SPAPP (T, 4) = 0.5+0.5+0.5=1.5, SPAPP (T, 5) = 0.5 

Step 6: Integrate CFPP and SPAPP 

In this step, CFPP and SPAPP are normalized to get N_CFPP and N_SPAPP, which is calculated 

by: 𝐹𝑃𝑃(𝑇, 𝑖) = 𝛼 ∗ 𝑁_𝐶𝐹𝑃𝑃(𝑇, 𝑖) + (1 − 𝛼) ∗ 𝑁_𝑆𝑂𝐴𝑃𝑃(𝑇, 𝑖), Where α and 1- α are weights 

given to collaborative filtering and association rule to adjust value variations. 

 CFPP SPAPP N_CFPP N_SPAPP FPP Rank  

Item 1 4.7455 0.7071 1 0 0.5 2 

Item 2 3.5 0.9648 0.5463 0 0.273 5 

Item 3 3.2365 0.8944 0.4504 0.8333 0.6419 1 

Item 4 2 1 0 1 0.5 2 

Item 5 3 0.333 0.3642 0.3333 0.3488 4 

 

Table 2.25: Table showing integration of CFPP and SPAPP 

Step 9:  Recommend the item having highest rank 

The item the having highest rank generated by adding collaborative filtering and association rule 

generated value is recommended to target user T. In our case, item 2 is recommended first then 

item 5. 
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2.1.7 Interest before liking: Two-step recommendation approaches by Zhao, Niu & Chen, 

2013 

It is based on matching user interest first then finding the high-quality item that a user will like. 

First, it uses a binary user model to represent users’ interests from their rating values on an item 

as a measure of interest no matter whether the value is high or low. So, this work is based on 

matching users’ interests at first, and then tries to find high-quality items that users will like. 

According to Zhao, Niu & Chen, 2013, a user can browse an item in the system, and can give 

rating after browsing; but there are overabundant items in the system and user may not be able to 

browse them all, thus, the rating behavior itself (regardless what the rating values are) is an 

indication of the user’s interest, and this interest is extensible to similar items.  Furthermore, the 

rating values represent how the user likes the rated item, that is, the quality of the item in the user’s 

point of view, and this quality indication is only applicable to the rated item. In existing item-based 

CF, items with high predicted values are always recommended to users, and they try to recommend 

items that users may like directly. Differently, this work ignores the rating value in order to find 

items that match users’ interests first.  

Example: 

Input: Let us consider user-item rating matrix as given in Table 2.26, where rating available in 

the range of 1-5 and ? represents the unrated rating for item by users. 

User/item Item 1 Item 2 Item 3 Item 4 

User 1 5 ? 3 2 

User 2 ? ? 5 4 

User 3 5 4 ? ? 

User 4 5 5 4 ? 

Table 2.26: User-item rating matrix for Zhao, Niu & Chen, 2013 recommendation system 

Step 1: Compute the mean rating of user  

The mean rating is computed by adding all the rating of particular users on his rated items with 

respect to the total number of rating. For example, mean rating User 1 = (3+2+5)/3=3.3, for User 

2 =4.5, for User 3=4.5, for User 4=4.33 as shown in table 2.27 

User/item Item 1 Item 2 Item 3 Item 4 Mean rating 

User 1 5 ? 3 2 3.3 

User 2 ? ? 5 4 4.5 

User 3 5 4 ? ? 4.5 

User 4 5 5 4 ? 4.33 

Table 2.27: User-item matrix showing mean rating of users on items 
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Step 2: Represent user-interest using binary 

Represent user-item rating matrix by binary information, where 1 represents rated item and 0 

represents the unrated item. In our case, the user-item rating matrix (Table 2.26) is represented 

as a binary user-item matrix as shown in Table 2.28. 

User/item Item 1 Item 2 Item 3 Item 4 

User 1 1 0 1 1 

User 2 0 0 1 1 

User 3 1 1 0 0 

User 4 1 1 1 0 

Table 2.28: User-item binary matrix showing rated and unrated items 

Step 3: Normalize binary user-item rating 

Some users may have a rating for several items and normalizing help a user with many ratings 

contributes less to any individual rating. Normalization of user rating on item can be performed as: 

     𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔, 𝑅𝑖 =
𝑟𝑖

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
 

Where  

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √𝑟12 + 𝑟22+𝑟32+⋯ . 𝑟𝑛2 

For example, the normalized rating of user1 for item1=1/√12 + 12+12 =1/√3 =0.57. By using the 

same technique, normalized rating of each user on item is computed. In our case, normalized user-

item binary rating matrix is present in Table 2.29. 

 

 

 

 

 

Table 2.29: Normalized user-item rating matrix 

Step 4: Form item-item similarity on normalized user-item matrix 

Normalized user-item rating matrix is used to compute item-item similarity using Cosine similarity 

function. For example, similarity between Item 1 and Item 2 is, Sim(1,2) =
0.57∗0.70+0.57∗0.70

√0.572+0.572∗√0.702+0.702
= 

0.37, similarly, Sim(1,3)= 1, Sim(1,4)=1 as shown in Table 2.30. 

 

 

 

Table 2.30: Table showing item-item similarity  

 

 

 

User/item Item 1 Item 2 Item 3 Item 4 

User 1 0.57 0 0.57 0.57 

User 2 0 0 0.70 0.70 

User 3 0.70 0.70 0 0 

User 4 0.57 0.57 0.57 0 

item/item Item 1 Item 2 Item 3 Item 4 

Cosine(item1,j) 1 0.37 1 1 

Cosine(item3,j) 1 0 1 1 
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Step 5: Predict rating and adjust rating of user on item using mean rating  

Once item-item similarity is computed, then it is used to compute user rating on item for unrated 

item such as item having 0 value then it is further adjusted by using mean rating using formula: 

𝑟𝑓𝑖𝑛𝑎𝑙(𝑢, 𝑖) = 𝑟(𝑢, 𝑖) ∗ 𝑚𝑒𝑎𝑛(𝑖), where, mean(i) is mean rating computed in step 1.  

2.1.8 Discovering e-commerce interest patterns using click-stream data by Su & Chen, 2015 

(SuChenRec15) 

This approach is based on finding the common interest similarity (frequency, duration, and path) 

between purchase patterns of users to discover the closest neighbors. For the frequency similarity, 

it computes total hits in item or category with respect to the total length of the user’s browsing 

path. For duration similarity, it computes the total time spent on each category with respect to total 

time spent by the user. Finally, for path similarity, it uses the longest common subsequence 

comparing the two click sequence groups of two users. By selecting Top-N similar users from 

three indicators, the CF method can use Top-N neighbor to improve the poor relationship between 

users in the rating matrix.  

Step 1: Compute frequency of E-commerce webpage visit (indicator 1) 

1. Compute the hits on item or category: The visiting frequency is calculated by counting the 

number of visits to category or item by users in a particular session. The hit consists of 

two parts as given in Equation 2.8. 

ℎ𝑖𝑡𝑠𝑢𝑠𝑒𝑟𝑖

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗 = 𝑐𝑜𝑢𝑛𝑡(𝑢𝑠𝑒𝑟𝑗, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗) + ∑ 𝑐𝑜𝑢𝑛𝑡(𝑢𝑠𝑒𝑟𝑖, 𝑖𝑡𝑒𝑚𝑘

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗)

𝑙

𝑘=1

 

Equation 2.8: Formula to compute hits of user on item and category 

Where, first part represents the count of category visited by the user and the second part 

represents the total items visited by the user, which belong to a particular category. 

2. Utilize hits to compute frequency: Once hit count, the frequency is calculated as the ratio 

of category of hits to the length of the users browsing path as given Equation 2.9. 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑢𝑠𝑒𝑟𝑖

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗 =
ℎ𝑖𝑡𝑠𝑢𝑠𝑒𝑟𝑖

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑗 

(𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑢𝑠𝑒𝑟𝑖
)
 

Equation 2.9: Formula to compute frequency of hit  

3. Formulate category-user frequency matrix: Once the frequency of user visit on category 

is calculated, it is used to form a category-user frequency matrix. An example of a 

category-user matrix with frequency characteristics is given in Table 2.31. 
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 Category1 Category 2 Category 3 Category 4 

User 1 0.8 0.2 - - 

User 2 - - 0.85 0.28 

User 3 0.28 0.28 - 0.57 

User 4 0.57 0.28 0.28 - 

Table 2.31: User-category frequency matrix 

4. Compute frequency similarity from user-category frequency matrix: User-based 

collaborative filtering is used to compute frequency similarity of a user-category matrix. 

There are many formulae available to compute similarity, some of the prominent are 

Cosine similarity and Pearson Correlation Coefficient, here we are using cosine similarity, 

which is given in Equation 2.10. 

Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)) =
∑ (𝑅𝑢,𝑖)(𝑅𝑣,𝑖)

𝑚
𝑖=1

√∑ (𝑅𝑢,𝑖)2𝑚
𝑖=1  √∑ (𝑅𝑣,𝑖)2𝑚

𝑖=1  
 

Equation 2.10: Cosine similarity function to compute frequency similarity 

Where, (Ru,i) denotes the ratings of useru on itemi and (Rv,i) denotes the rating of userv on itemi. 

Step 2: Compute duration of time spent on E-commerce webpages (Indicator 2) 

1. Compute relative duration: The relative duration represent the total time spent by each user 

on each category with respect to the total time a user spent on each session. The relative 

duration is computed by dividing the useri spends time on category categoryj with respect 

to the total time spend by users on each session by visiting different category and item. 

Equation 2.11 provides formula to compute relative duration  

Relative durationuser𝒊

category𝒋
=

Durationuseri

Categoryj

(time(Puseri
)

 

Equation 2.11: Formula to compute relative duration  

Where nominator represents time spend by a user on category and denominator represents 

total time spend by a user on item and category on each session. For example, let us 

consider time spent by user on category as shown in Table 2.32 then total time spent by 

User1 is 10+20=30 sec then relative duration of user 1 on category 1 is,  

Relative durationuser1

category1 =
10

30 
= 0.33  
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Table 2.32: User spend time on category 

2. Formulate user-category relative duration matrix: Use relative duration to form user-

category matrix that represents a user’s spent relative duration to the corresponding 

category as shown in Table 2.33.  

 Category1 Category 2 Category 3 Category 4 

User 1 0.33 0.66 - - 

User 2 - - 0.55 0.44 

User 3 0.31 0.43 - 0.25 

User 4 0.07 0.42 0.5 - 

Table 2.33: User-category relative duration matrix 

3. Compute duration similarity between users: Use Cosine similarity function to compute the 

duration similarity between users using Equation 2.12. 

Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) =
∑ (𝑅𝑢,𝑖)(𝑅𝑣,𝑖)

𝑚
𝑖=1

√∑ (𝑅𝑢,𝑖)2𝑚
𝑖=1  √∑ (𝑅𝑣,𝑖)2𝑚

𝑖=1  
 

Equation 2.12: Cosine similarity function to compute duration similarity 

Where (Ru,i) denote the ratings of useru on item i similarly (Rv,i) denotes the rating of userv on 

item i. 

Step 3: Compute users browsing path (Indicator 3) 

The browsing path Pi {url1, url2….. urln} of usersi is sequence of web pages browsed during a 

particular session. The browsing path indicates the users visited categories and items in a particular 

session. For example, P1{ctg1, Item1
1, ctg2, Item2

1, Item1
2} represents that user visit category 

ctg1 then visit Item1
1 which belong to category 1 and after that visited category 2 and visited 

Item2
1  item and finally Item2

2 visited which belong to category 2. An example of the browsing 

path is shown in Table 2.34. 

 

User Category Time in Sec 

User1 Category 1 10 sec 

User 1 Category 2 20 sec 

User 2 Category 3 19 sec 

User 2 Category 4 15 sec 

User 3 Category 1 25 sec 

User 3 Category 2 35 sec 

User 3 Category 4 20 sec 

User 4 Category 1 5 sec 

User 4 Category 2 30 sec 

User 4 Category 3 35 sec 
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Table 2.34: Users browsing path 

1. Compute path similarity: Path similarities between two users compute the common path 

length divided by the maximal length.  A common path is defined if two users visit the 

same categories in the same order. If there is more than one common path between two 

users, the longest one is used in the path similarity. The Equation to compute path similarity 

is provided in Equation 2.13. 

Sim(𝑢𝑠𝑒𝑟𝑢 , 𝑢𝑠𝑒𝑟𝑣(𝑃𝑎𝑡ℎ)) = 𝑀𝑎𝑥(
𝑐𝑜𝑚𝑚𝑜𝑛(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑝, 𝑐𝑎𝑡𝑔𝑜𝑟𝑦𝑞)

𝑙𝑒𝑛𝑔ℎ𝑡(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑝 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑞)
) 

Equation 2.13: Equation to compute path similarity 

Step 4: Compute total similarity using path, frequency and duration 

Once frequency, path and duration similarity are computed, they are used to compute total 

similarity using Equation 2.14. 

Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣 = α ∗ Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝑃𝑎𝑡ℎ)) + γ ∗ Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)) + В ∗ Sim(𝑢𝑠𝑒𝑟𝑢, 𝑢𝑠𝑒𝑟𝑣(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) 

Equation 2.14: Equation to compute the total similarity 

Where В,γ,α are used to adjust the weight of path, frequency and duration such that В+γ+α=1.  

2.1.9 E-Commerce Product Recommendation Using Historical Purchases and Clickstream 

Data by Xiao & Ezeife, 2018 (HPCRec18) 

In E-commerce, user-item rating matrices for collaborative filtering recommendation systems 

are usually binary and sparse which shows whether a user has purchased an item previously or 

not. Some existing recommendation system Kim, Yum, Song, & Kim, 2005 uses decision tree, 

Kim, & Yum, 2011 uses association rule mining and Su & Chen,2013 use category based 

measurements from clickstream data to improve recommendations, however, these 

recommendation systems fail to integrate valuable information from historical purchases and 

consequential bond information between session-based clicks and purchases. Thus, Xiao & 

Ezeife, 2018 proposes Historical Purchase with Clickstream recommendation system 

(HPCRec18), which normalizes the historical purchase frequency matrix to improve rating 

quality, and mines the session-based consequential bond between clicks and purchases to 

generate potential ratings to improve the rating quantity.  

User Item Browsing Path Category Browsing Path 

User1 P{ctg1, Item1
1,ctg2, Item2

1, Item2
2} CtgPath {ctg1,ctg2} 

User 2 P{ ctg3, Item3
1,  Item3

2 , Item3
3, ctg4, Item4

3} CtgPath {ctg3,ctg4} 

User 3 P{ ctg4, Item4
1, Item4

2, ctg1, Item1
2 , ctg2, Item2

1} CtgPath {ctg4,ctg1,ctg2} 

User 4 P{ ctg1, Item1
2, ctg2, Item2

2, Item1
1 ,ctg3, Item3

1} CtgPath {ctg1,ctg2,ctg3} 



- 49 - 
 

Example 

Let’s consider frequency and the consequential table containing clicks and purchases as shown 

in Table 2.35 as input, where frequency table contains the number of time product purchased 

by a user, and the consequential table contains clicks and purchases on each session.  

SessionId UserId Clicks Purchases 

1 1 1,2 2 

2 1 3,5,2,3 2,3 

3 2 2,1,4 1,2,4 

4 2 4,4,1,2 2,4,4 

5 3 1,2,1 1 

6 3 3,5,2  

 

User\Item 1 2 3 4 

1 ? 2 1 ? 

2 1 2 ? 3 

3 1 ? ? ? 

  

Table 2.35: Consequential table on left and purchase frequency table on right 

Step 1: Normalize the purchase frequency for each user on each item using the unit formula in a 

user-item purchase frequency table. The unit normalization function takes purchase frequency 

matrix as input and normalizes the frequencies into numbers between 0 and 1 using the unit 

vector formula as given in Equation 2.15. 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑢 𝑜𝑛 𝑖𝑡𝑒𝑚 𝑖 =
𝑖𝑡𝑒𝑚 𝑖

√𝑖𝑡𝑒𝑚1
2 + 𝑖𝑡𝑒𝑚2

2 + 𝑖𝑡𝑒𝑚3
2 + ⋯+ 𝑖𝑡𝑒𝑚𝑛

2
 

Equation 2.15: Unit vector formula to normalize purchase frequency 
 

For example, for user 2, the purchase vector is <1, 2, 0, 3>, so the normalized purchase frequency 

for user 2 on item 2 is 2 √12 + 22 + 02 + 32⁄ =0.53. In the same way, we can get normalize 

frequency matrix as shown in Table 2.36. 

Customer\Item 1 2 3 4 

1 ? 2 1 ? 

2 1 2 ? 3 

3 1 ? ? ? 
 

 

 
Normalized 

  

Customer\Item 1 2 3 4 

1 ? 0.89 0.45 ? 

2 0.27 0.53 ? 0.8 

3 1 ? ? ? 

 

Table 2.36: Non-normalized user-item matrix on left and normalized matrix on right 

Step 2: For each session without purchase in the consequential table, compute click set similarity 

using Clickstream Sequence Similarity measurement (CSSM) function using the longest common 

subsequence rate. 

Longest common subsequence rate LCSR (x, y) = (LCS (x, y)) ⁄ (max (|x|, |y|)) 

Equation 2.16: Longest common subsequence rate 
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LCS(Xi, Yj) = {

∅ if i = 0 or j = 0

LCS(Xi−1, Yj−1) ∩ xi if xi = yj

longest(LCS(Xi, Yj−1), LCS(Xi−1, Yj)) if xi ≠ yj

 

Equation 2.17: Longest common sequence (LCS) 

For example, there is no purchase information of session 6 for user 3 in the consequential table. 

So, let’s compute the clickstream sequence similarity between session 6 and other session as given 

below: 

CSSM between session 6 and session 1(<3, 5, 2>, <1, 2>) =0.37,  

CSSM between session 6 and session 2 (<3, 5, 2>, <3, 5, 2, 3>) =0.845,  

CSSM between session 6 and session 3 (<3, 5, 2>, <2, 1, 4>) =0.33, 

CSSM between session 6 and session 4 (<3, 5, 2>, <4, 4, 1, 2>) = 0.245,  

CSSM between session 6 and session 5 (<3, 5, 2>, <1, 2, 1>) =0.295 

Step 3: Form a weighted transaction table using the similarity as weight and purchases as 

transaction records. 

Purchase <2> <2,3> <1,2,4> <2,4,4> <1> 

1 0.37 0.845 0.33 0.245 0.295 

Table 2.37: Weighted transactional table of purchase set created from consequential bond 

Step 4: Call TWFI (Transaction-based Weighted Frequent Item) function, which takes a weighted 

transaction table, where weights are assigned to each transaction as input and returns items with 

weighted support in a given threshold. For example, let’s consider minimum weighted 

support=0.1, then, we will have frequent weighted transaction table as shown in Table 2.38. 

Purchase(Transaction records) 2 2,3 1,2,4 2,4,4 1 

Weight 0.37 0.845 0.33 0.245 0.295 

Table 2.38: Weighted frequent transaction table 

Step 5: Calculate support to form a distinct item from set of all the transactions 

Item 1 2 3 4 

Support 2 4 1 3 

Table 2.39: Support for item present in weighted frequent transaction table 

Step 6: Compute the average weighted support for each item using (AWS=AW*support) ,where 

𝐴𝑊 = 𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡) 𝑠𝑢𝑝𝑝𝑜𝑟𝑡⁄ ). For example, AWS (1) =0.33+ 0.295=0.625, AWS (4) =0.33+ 

0.245+0.245=0.82. 

Item 1 2 3 4 

AWS 0.625 1.97 0.845 0.82 

Table 2.40: Weight for item present in purchase pattern 
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2.2 Sequential Pattern Mining Algorithms 

2.2.1 GSP (Generalized sequential pattern mining) algorithm 

GSP is an Apriori-based sequential pattern mining algorithm introduced by Srikant & Agrawal, 

1996. The main step in the GSP algorithm is candidate generation (Ck) and pruning (Lk). To 

generate a candidate, we can use pair found in K-1th pass by merging. According to the algorithm, 

first sequence W1 and second sequence W2 can be merged, if subsequences obtained by removal 

of the first element of sequence W1 and last element of sequence W2 are same.  In the second step, 

we need to prune candidate that contains a subsequence which is infrequent in K-1 pass. We need 

to iterate the process of candidate generation (Ck) and pruning (Lk) until a candidate set is empty. 

Finally, frequent sequences are the union of the entire list obtained so far.  

Example of GSP algorithm. 

Input: sequence database (Table 2.41), minimum support=2 and candidate set (C1) = {A, B, C, 

D, E, F, G} and algorithm=GSP 

SID Sequences 

1 <(A),(B),(FG),(C),(D)> 

2 <(B),(G),(D)> 

3 <(B),(F),(G),(A,B)> 

4 <(F),(A,B),(C),(D)> 

5 <(A),(B,C),(G),(F),(D,E)> 

Table 2.41: Sequence Database representing customer purchase 

Step 1: Find 1- frequent sequence (L1) satisfying minimum support: Check the minimum support 

threshold of each singleton item and keep only sequences with occurrence or support count in the 

database greater than or equal to the minimum support count of 2. For example, (L1) = {< (A):4>, 

<(B):4>, <(C):3>, <(D):4>, <(F):4>, <(G):4>}.  

Step 2: Generate candidate sequence (Ck=2) using L 1 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L1 

To generate larger candidate set 2, use 1-frequent sequence (L1) found in step 1 to join itself using 

GSPjoin way, which can be written as L (k-1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L (k-1) and it requires every sequence (W1) 

found in first L (k-1) joins with other sequence (W2) in the second if subsequences obtained by 

removal of the first element of W1 and last element of W2 are same. In our case, we are generating 

sequences with candidate 2, (Ck=2), which can generate 51 types of 2-length candidate set using 

Apriori algorithm as present in Table 2.42. 
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<(A),(A)> <(A),(B)> <(A),(C)> <(A),(D)> <(A),(F)> <(A),(G)> 

<(B),(A)> <(B),(B)> <(B),(C)> <(B),(D)> <(B),(F)> <(B),(G)> 

<(C),(A)> <(C),(B)> < (C),( C)> <(C ),(D)> <( C),(F)> <( C),(G)> 

<(D),(A)> <(D),(B)> <(D),(C)> <(D),(D)> <(D),(F)> <(D),(G)> 

<(F),(A)> <(F),(B)> <(F),(C)> <(F), (D)> <(F),(F)> <(F),(G)> 

<(G),(A)> <(G),(B)> <(G),(C)> <(G),(D)> <(G),(F)> <(G),(G)> 

<(A,B)> <(A,C)> <(A,D)> <(A,F)> <(A,G)> <(B,C)> 

<(B,D)> <(B,F)> <(B,G)> <(C,D)> <(C,F)> <(C,G)> 

<(D,F)> <(D,G)> <(F,G)>    

Table 2.42: Candidate set (C2) generated from L1 GSP join L1 

Step 3: Find 2- frequent sequences (L2) by counting the occurrence of 2-sequences in candidate 

sequence (C2) to keep the only sequence with occurrence or support count in the database greater 

than or equal to the minimum support. For example, L2= {<(A), (B)>, <(A, B)>, <(A), (C)>, <(A), (D)>, 

<(A), (F)>, <(A), (G)>, <(B), (C)>, <(B), (D)>, <(B), (F)>, <(B), (G)>, <(C), (D)>, <(F), (A)>, <(F), (B)>, <(F), (C)>, 

<(F), (C)>, <(F), (D)>, <(G), (D)>}. 

Step 4: Repeat process of candidate generation and pruning until the result of candidate generate 

(Ck) and prune (Lk) for finding frequent sequence is an empty set. 

Output: Finally, the output frequent sequences as union of L1 U L2 U L3 U L4 U … Lk 

1-Frequent 

Sequences 

2-Frequent Sequences 3-Frequent Sequences 4-Frequent Sequences 

<(A)>, <(B)>, 

<(C)>, <(D)>, 

<(F)>, <(G)> 

<(A), (B)>, <(A, B)>, <(A), 

(C)>, <(A), (D)>, <(A), 

(F)>, <(A), (G)>, <(B), 

(C)>, <(B), (D)>, <(B), 

(F)>, <(B), (G)>, <(C), 

(D)>, <(F), (A)>, <(F), 

(B)>, <(F), (C)>, <(F), 

(D)>,  <(G), (D)> 

<(F), (C), (D)> 

<(F), (B, A)> 

<(F), (A, B)> 

<(B), (G), (D)> 

<(B), (F), (D)> 

<(B), (C), (D)> 

<(A), (G), (D)> 

<(A), (F), (D)> 

<(A), (C), (D)> 

<(A), (B), (G)> 

<(A), (B), (F)> 

<(A), (B), (D)> 

<(A), (B), (G), (D)> 

<(A), (B), (F), (D)> 

Table 2.43: n-frequent sequences generated by GSP from sequence database  
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2.2.2 PrefixSpan (Prefix-projected sequential pattern mining) algorithm 

PrefixSpan algorithm (Pei, et al, 2001) proposed a new approach for finding the sequential pattern 

by avoiding generation of candidates. The algorithm is based on the creation of a projected 

database; the projected database is a set of sub-pattern in the original database that is suffixes of a 

pattern containing the prefix. The prefixSpan algorithm starts computing the patterns of size 1 that 

fulfill the frequency threshold in the database. Later, for each pattern of size 1, prefixSpan 

computes its projected database and find the patterns that fulfill the frequency threshold in the 

projected database. The pattern of size 1 grows concatenating it with each element of the pattern 

found in the projected database generating patterns of size 2; this process is recursive until the 

projected database is empty.   

Example of prefixSpan algorithm 

Let us consider sequence database as shown in Table 2.44 as input, Minimum support=2, 

Candidate sets={A,B,C,D,E,F}  

ID Sequence 

100 <(A),(A,B,C),(A,C),(D),(C,F)> 

200 <(A,D),(C),(B,C),(A,E)> 

300 <(E,F),(A,B),(D,F),(C), (B)> 

400 <(E), (G), (A, F), (C), (B), (C) > 

Table 2.44: Sequence input database for prefixSpan 

Step 1: Count the support of singleton sequence 

Check the minimum support threshold of each singleton item and keep only sequences with 

occurrence or support count in the database greater than or equal to the minimum support count of 

2. In our case, we do have support for each singleton sequences as given in Table 2.45. 

<(A)> <(B)> <(C)> <(D)> <(E)> <(F)> <(G)> 

4 4 4 3 3 3 1 

Table 2.45: support for singleton sequences  

Step 2: Prune singleton sequences with specified minimum threshold 

In this step, we need to prune sequence that does not satisfy the minimum support. In our case, 

minimum support is 2 and we can see that <(G)> doesn’t satisfy minimum support, so we need to 

prune g from singleton sequence. 

Step 3: Create a projected database by considering 1-frequent sequence from a sequential database 

The next step is to divide search space into a set of projected databases according to the frequent 
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prefixes. For example, for each sequence of the sequence database (Table 2.44), the projected 

database of frequent 1 sequence <(A)> would consist of all the items that appear after the sequence 

<(A)> (that is) the projected database for <(A)> will consist of all the sequences with its prefix as 

<(A)>. Table 2.46 gives the projected database for all the frequent 1 items. 

                                                                     Prefix 

 

 

<(A)> 

<(A,B,C),(A,C),(D), 

(C,F)> 

<(_D),(C), (B,C),(A,E)> 

<(_B),(D,F), (C), (B) > 

<(_F), (C), (B), (C) > 
 

<(B)> 
<(_C),(A,C),(D),(C,

F)> 

<(_C),(A,E)> 

<(D,F), (C), (B) > 

<(C)> 
 

<(C)> 
<(A,C), 

(D),(C,F)> 

<(B,C),(A,E)> 

<(B)> 

<(B,C)> 

 

<(D)> 
<(C,F)> 

<(C),(B,C),(A,E)> 

<(_F), (C), (B) > 
 

<(E)> 
<(_F),(A,E),(D,F),
(C), (B) > 

<(A,F),(C), (B), 

(C) > 
 

<(F)> 
<(A,B),(D,F), 
(C), (B) > 

<(C), (B), (C) > 

 

Table 2.46: Project database of sequence database  

Step 4: Find frequent sequences from the projected databases and test with minimum threshold 

repeatedly until no projected database can be created 

1. Find the sequence present in projected database. Let us consider projected database of 

<(D)> is present in Table 2.47. 

<(D)> 

<(C,F> 

<(C), (B,C),(A,E)> 

<(_F), (C),(B) > 

Table 2.47: Projected database of sequence <(D)> 

2. The projected database is scanned to find the frequent items in it. In our case, let’s scan 

Table 2.47 then we will find support as shown in Table 2.48. In our example, only <(B)> 

and <(C)> are frequent. 

<(A)> <(B)> <(C)> <(D)> <(E)> <(F)> <(_F)> 

1 2 3 0 1 1 1 

Table 2.48: Frequencies of item presented in projected database of sequence <(D)> 

3. Now, the projected database for sequence <(D), (B)> and <(D), (C)> are constructed using 

step 3. Furthermore, their respective projected databases are scanned to get the frequent 

items in their projected dbs. 
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<(D)> 

<(C,F)> 

<(C),(B,C),(A,E)> 

<(_F), (C), (B) > 

 

 

<(D),(B)> 

<(_C), (A,E)> 

 

<(D),(C)> 

<(B,C),(A,E)> 

<(B)> 

Table 2.49: project database of sequence <(D), (B)> and <(D), (C)>  

4. Since item present in the projected database <(D), (B)> is infrequent. So, compute 

frequency of item present in the projected database <(D), (C)> and we can see only <(B)> 

is frequent.  

<(B)> <(A)> <(E)> <(C)> 

2 1 1 1 

Table 2.50: Frequencies of item present in projected database of sequence <(D), (C)> 

5. Create the projected database of <(D), (C), (B)>. Since the projected database of <(D), 

(C), (B)> is empty. So, terminate the process. 

<(D), (C), (B)> 

ϴ 

Table 2.51: Projected database of sequence <(D), (C), (B)> 

2.2.3 SPADE (Sequential Pattern Discovery using Equivalence classes) algorithm  

SPADE algorithm was first introduced by Zaki, 2001. This algorithm is based on mining the 

subsequence by using vertical data format. The vertical data format consists of syntax: <itemset: 

(Sequence_ID, event_ID)> that means for each itemset we record sequence identifier and event 

identifier. The event identifier is also called as a timestamp. SPADE requires one scan to find 

frequent 1-sequences. To find candidate 2-sequence, we need to join all pairs of single items when 

they are frequent if they share the same sequence identifier and their event identifier follows the 

same sequential ordering and pattern are grown similarly. Support of K-sequence can be 

determined by joining the ID lists of K-1 sequences.   

Example of SPADE 

Let us consider, sequential database (Table 2.52) as input, minimum support=2 and candidate 

set = {A, B, C, D, E, F, G, H} 
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Sequence ID Sequence 

1 <(C,D),(A,B,C),(A,B,F) ,(A,C,D,F)> 

2 <(A,B,F),(E)> 

3 <(A,B,F)> 

4 <(D,G,H),(B,F),(A,G,H)> 

Table 2.52: Input sequential database for SPADE 

Step 1: Find frequent singleton sequence 

Keep only sequences with occurrence or support count in the database greater than or equal to the 

minimum support count of 2. In our case, C, E G and H are infrequent. So, frequent singleton 

sequences are {<A>:4, <B>:4, <D>:2 and <F>:4}. 

Step 2: Convert the sequence database into vertical data format  

Vertical data format contains the item present in the sequence database by their sequence id and 

events ids. The events id helps to determine the sequence of events. So, if we take one sequence 

<(CD) (ABC) (ABF) (ACDF)> from sequence database Table 2.52 then we can see that CD is 

considered as one event, ABC is considered as another event and so on. So, the vertical data format 

of the sequential database in our case presented in Table 2.53. 

Sequence ID(SID) Event ID(EID) Itemset 

1 10 (C,D) 

1 15 (A,B,C) 

1 20 (A,B,F) 

1 25 (A,C,D,F) 

2 15 (A,B,F) 

2 20 (E) 

3 10 (A,B,F) 

4 10 (D,G,H) 

4 20 (B,F) 

4 25 (A,G,H) 

Table 2.53: Vertical data format of sequence database  

Step 3: List frequent singleton sequences along with their sequence ID (SID) and event ID (EID) 

List frequent singleton sequences from Table 2.53 with sequence ID (ID) and event ID (EID) 

separately so that they can be used to generate the larger sequence. For example, we can see that 

item A is present in event {15, 20, 25, 15, 10, 25}.  

A 

SID EID 

1 15 

1 20 

1 25 

2 15 

3 10 

4 25 
 

 

B 

SID EID 

1 15 

1 20 

2 15 

3 10 

4 20 

 

D 

SID EID 

1 10 

1 25 

4 10 

 

F 

SID EID 

1 20 

1 25 

2 15 

3 10 

4 20 

Table 2.54: Frequent 1-sequence with event ID and item ID 

 



- 57 - 
 

Step 4: Generate 2-frequent sequences by joining all pairs of single item from step 2 

To find candidate 2 frequent sequences, we need to join all pairs of single items when they are 

frequent and if they share same sequence identifier (SID) and event identifier (EID) follows a same 

sequential ordering as present in Table 2.55. 
 

B 

SID EID 

1 15 

1 20 

2 15 

3 10 

4 20 

 

D 

  SID EID 

1 10 

1 25 

4 10 

 

 

SID join 

 

 

SID EID(D) EID(B) 

1 10 15 

1 10 20 

4 10 20 

Table 2.55: Process of generating 2-frequent sequences in SPADE 

Step 5: Repeat the process of joining and pruning until frequent sequences are present in vertical 

database.   

Output: n-frequent are collection of {1,2….n} frequent sequences 

Frequent 1-sequence Frequent 2-sequences Frequent 3-sequences Frequent 4-Sequences 

Item Support 

A 4 

B 4 

D 2 

F 4 
 

Item Support 

AB 3 

AF 3 

B-> A 2 

BF 4 

D->A 2 

D->B 2 

D-> F 2 

F->A  2 
 

Item Support 

ABF 3 

BF->A 2 

D->BF 2 

D->B->A 2 

D->F->A 2 
 

Item Support 

D->BF->A 2 
 

Table 2.56: n-frequent sequences generated by SPADE algorithms 
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CHAPTER 3: PROPOSED SYSTEM TO GENERATE SEQUENCE DATASET FOR E-

COMMERCE RECOMMENDATION 

There are many reasons for generating a sequential dataset from different E-commerce source such 

as historical, clickstream. In E-commerce, historical information of products purchased online for 

each online store is stored in transactional databases; sequential purchase behavior of the user 

cannot be identified from transactional data without using a sequential pattern mining method. So, 

without analyzing historical sequential data from E-commerce environment, we cannot provide 

the proper recommendation to the user such as: finding the next possible item for user A, if user 

A purchased laptop last month from BestBuy (BestBuy, 2019) or Amazon (Amazon, 2019). 

Additionally, collaborative filtering finds users’ closest neighbor to generate matching 

recommendations. However, what people want from recommender systems is not whether the 

system can predict rating values accurately, but recommendations that match their interests 

according to time span. Thus, E-commerce recommendation system accuracy will be improved if 

more complex sequential patterns of users’ historical purchase behavior are learned and included 

in the user-item matrix to make it quantitatively and qualitatively rich before applying 

collaborative filtering. 

3.1 Problem Definition 

Given E-commerce historical click and purchase data over a certain period of time as input, the 

problem being addressed by this thesis is to find the frequent periodic (daily, weekly, monthly) 

sequential purchase and click patterns in the first stage. Then, these sequential purchase and click 

patterns can be used to make user-item matrix qualitatively (specifying level of interest or value 

for already rated items) and quantitatively (finding the possible rating for previously unknown 

ratings) rich before applying collaborative filtering (CF) to improve the overall accuracy of 

recommendation. 

3.2 Proposed Historical Sequential Recommendation- (HSPRec) System 

The major goal of the proposed Historical (H), Sequential (SP), Recommendation (Rec)- HSPRec 

is to mine frequent sequential pattern from E-commerce historical data to enhance a user-item 

rating matrix from discovered patterns. Thus, HSPRec takes minimum support, historical click and 

purchase database containing consequential bond as input to generate rich user-item matrix as 

output as shown in Algorithm 3.1.  
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Algorithm 1: HSPRec (Historical sequential recommendation)  

Input: minimum support (s), historical user-item purchase frequency matrix (M), consequential bond 

(CB), historical purchase database (DB), historical click database (CDB) 

Output: user-item purchase frequency matrix (M2)  

Intermediates: historical sequential purchase database (SDB), weighted purchase pattern (WP), 

historical sequential click database (SCDB), rule recommended purchase items (RPI), each user u’s 

rating of item i in the matrices is referred to as rui. 

1. :  purchase sequential database (SDB) SHOD (DB) using Algorithm 2 present in section 3.2.1. 

2. :  user-item purchase frequency matrix (M1)  M modified with Sequential Pattern Rule (SDB) 

using section 3.2.2. 

3. : for each user u do  

4. :  weighted purchase pattern for user u,  (WPu)  null;   

5. : end 

6. :  for each user u do 

7. :  if u has both click and purchase sequences then 

8. : compute Click Purchase Similarity CPS (click sequence, purchase sequence) from SCDB and SDB 

using section 3.2.3. 

9. : weighted purchase patter for user u, (WPu)  CPS (click sequence, purchase sequence) using 

section 3.2.3; 

10. :  else 

11. : rule recommended purchase items (RPI)  Sequential Pattern Rule (SCDB) using section 3.2.1; 

12. : weighted purchase patter for user u, (WPu)  CPS (click sequence, purchase sequence) using 

section 3.2.3; 

13. :  end 

14. : rating of item i by user u (rui)  weighted purchase patter for user u, (WPu); 

15. : M2   M1 modified with rating rui 

16. : end 

Algorithm 3.1: Historical sequential recommendation (HSPRec) system 

Steps in the proposed HSPRec system: 

Step 1: Convert historical purchase information (present in Table 3.9)  to user-item purchase 

frequency  (present in Table 3.1) by counting the number of each purchased by a user. For 

example, User 2 purchased item 1 and item 2 twice and purchased item 3, item 4, item 5 and item 

6 only once. 
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User/item 1  2 3 4 5 6 7 

A2HD75EMZR8QLN 

(User1) 

1 1 1 ? 1 1 1 

A1026QJYJTVE5T 

(User2) 

2 2 1 1 1 1 ? 

A1026RERIHUK3C 

(User3) 

1 1 ? ? 1 1 ? 

A0130ZI3HIT9N5V 

(User4) 

? 1 ? ? ? 1 1 

A31ZC98HM9C4LP 

(User5) 

? ? ? ? ? ? ? 

Table 3.1 :User-item purchase frequency matrix created from historical data  

Step 2: Create a daily purchase sequential database (Table 3.2) of customer purchase (Table 

3.9)  by applying the sequential historical periodic database (SHOD) generation algorithm 

presented in section 3.2.1.  

SID Purchase sequence 

1 < (1,2), (3), (6), (7), (5)> 

2 <(1, 4), (3), (2), (1, 2, 5, 6)> 

3 <(1), (2), (6), (5)> 

4 <(2) , (6, 7)> 

Table 3.2: Daily purchase sequential database 

For example, User 2 daily purchase sequence is < (1, 4), (3), (2), (1, 2, 5, 6)>, which shows User 

2 purchased item 1 and item 4 together on the same day and purchased item 3 on the next day then 

purchased item 2 on another day and finally, purchased items 1, 2, 5 and 6 together on the next 

day. 

Step 3: Input daily purchase sequential database (Table 3.2) to Sequential Pattern Rule (SPR) 

module present in section 3.2.2 to generate sequential rule from frequent purchase. For example,  

1-frequent purchase sequences = {< (1)>, < (2)>, < (3)>, < (5)>, < (6)>, < (7)>} 

Some of 2-frequent purchase sequences= {< (6), (5)>, < (3), (6)>, < (3), (5)>, < (2), (7)>, < (2), (6)>, < 

(2), (5)>} 

Some of 3-frequent purchase sequences= {< (2), (6), (5)>, < (1), (6), (5)>, < (1), (3), (6)>, < (1), (3), 

(5)>, < (1), (2), (6)>} 

Thus, some of the possible sequential purchase pattern rules based on frequent purchase sequences 

are: 
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(a) 1, 5  3 , (b) 2, 6  1 , (c) 2, 6  5 

Where, rule (a) states that if user purchases item 1 and item 5 together then the user will purchase 

item 3 in next purchase, which will be applied in case of User 3 in user-item purchase frequency 

matrix.  

Step 4: Reconstruct user-item purchase frequency matrix by using purchase sequential rule  

Rule (a) is applied in case of User3, rule (b) and rule c are applied in case of User4. Thus, enhanced 

user-item purchase frequency matrix is present in Table 3.3. 

User/item 1  2  3 4  5  6 7 

User1 1 1 1 ? 1 1 1 

User2 2 2 1 1 1 1 ? 

User3 1 1 1 ? 1 1 ? 

User4 1 1 ? ? 1 1 1 

User5 ? ? ? ? ? ? ? 

Table 3.3: Enhanced user-item purchase frequency matrix  

As we can see from enhanced user-item purchase frequency matrix (Table 3.3), there is no 

purchase information for User5. Thus, to find the purchase information of User5, we are going to 

analyze the consequential bond of click and purchase by considering sequential patterns. Let us 

consider, historical click and purchase as present in Table 3.4. 

UID Clicks sequence Purchases sequence 

1 <(1,2,3), (7,5,3), (1,6), (6), (1,5)> < (1, 2), (3), (6), (7), (5)> 

2 <(1,4), (6,3), (1,2), (1,2,5,6)> <(1,4), (3), (2), (1, 2, 5, 6)> 

3 <(1,5), (6,5,2), (6), (5)> <(1), (2), (6), (5)> 

4 <(2,7), (6,6,7)> <(2) , (6, 7)> 

5 <(1,5)> ? 

Table 3.4: Consequential bond of sequence of click and purchase 

 

Step 5: For each user, where clicks happened without purchases such as for user 5 in Table 3.4, 

create a click periodic sequential database (Table 3.5) by neglecting purchase from the 

consequential bond. Finally, input a click sequential database to Sequential Pattern Rule (SPR) 

(present in 3.2.2) module to get the recommended item as the predicted purchase item. In our case, 

we have to find the click sequential rule which will recommend purchase item when the user 

purchased item 1 and item 5 together and let’s further consider item 1 and item 3 are recommend 

to User 5 from Sequential Pattern Rule (SPR) (present in 3.2.2). 
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SID Click sequence 

1 <(1,2,3), (7,5,3), (1,6), (6), (1,5)> 

2 <(1,4), (6,3), (1,2), (1,2,5,6)> 

3 <(1,5), (6,5,2), (6), (5)> 

4 <(2,7), (6,6,7)> 

5 <(1,5)> 

Table 3.5: Click sequential database  

 Step 6: Once the purchased item is recommended for a user (where, the click has happened 

without purchase), compute click and purchase similarity using Click and Purchase Similarity 

(CPS) module present in 3.2.3.  

Step 7: Supply CPS value to purchase pattern including a recommended item from Sequential 

Pattern Rule (SPR) to create weighted purchase pattern (Table 3.6).  

Purchased Sequence CPS 

< (1, 2), (3), (6), (7), (5)> 0.624 

<(1, 4),(3), (2), (1, 2, 5, 6)> 0.834 

<(1), (2), (6), (5)> 0.636 

<(2) , (6, 7)> 0.67 

<(1) , (3)> 0.5 

Table 3.6: Weighted purchase patterns 

Step 8: Input weighted purchase pattern (Table 3.6)  to Weighted Frequent Purchase Pattern 

Miner (WFPPM) present in section 3.2.4 to calculate the weight for each frequent individual item 

based on its occurrence in weighted purchase patterns. In our case, R1= 0.68, R2=0.71, R3=0.65, 

R4=0.834, R5=0.698, R6=0.691, R7=0.647. 

Step 9: Repeat steps 4, 5, 6 7 and 8, if there are more users without purchase, otherwise assign 

computed item weight to enhance user-item purchase frequency matrix (Table 3.3). 

User/item 1  2  3 4  5  6 7 

User1 1 1 1 ? 1 1 1 

 User2 2 2 1 1 1 1 ? 

 User3 1 1 1 ? 1 1 ? 

 User4 1 1 ? ? 1 1 1 

 User5 0.68 0.71 0.65 0.834 0.698 0.691 0.647 

Table 3.7: Quantitatively rich user-item purchase frequency matrix 

Step 9: Normalize quantitatively rich user-item purchase frequency matrix (Table 3.7) using unit 

normalization formula present in section 3.2.5 to provide the level of user’s interest on item 
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between 0 and 1 as shown in Table 3.8. We can see, that normalized quantitatively rich user-item 

matrix (Table 3.8) is less sparse compared to initial user-item purchase frequency matrix (Table 

3.1). 

User/item 1  2  3 4  5  6 7 

User1 0.40 0.40 0.40 ? 0.40 0.40 0.40 

 User2 0.57 0.57 0.28 0.28 0.28 0.28 ? 

 User3 0.44 0.44 0.44 ? 0.44 0.44 ? 

 User4 0.44 0.44 ? ? 0.44 0.44 0.44 

 User5 0.37 0.39 0.35 0.45 0.38 0.38 029 

Table 3.8: Normalized enrich user-item purchase frequency matrix 

3.2.1 HSPRec: Periodic Sequential Database Generation Module 

The proposed sequential (S), historical (H), periodic (O), database (D) - (SHOD) generation 

module takes historical (click or purchase database) data as input and produce periodic (daily, 

weekly, monthly) sequential (click or purchase) database as output as present in Algorithm 3.2.  

Algorithm 2: SHOD (Sequential historical periodic database) System  

Input: historical click and/or purchase data 

Output: periodic (daily, weekly, monthly) sequential database 

Intermediates: Tuserid=temporary userid, Ttimestamp=temporary timestamp, -I: end of itemset, and –

S: end of sequence 

1. : historical.txt  extract userid, productid, timestamp from historical data 

2. : read first line from historical.txt and store userid, timestamp into temporary variable (Tvar) 

3. : for all user N ϵ historical.txt do 

4. :  If (userid==Tvar.userid) 

5. :   Tdur  timestamp - Tvar.timestamp 

6. :    If (Tdur <=24 hrs) 

7. :     add item to daily-sequence-database.txt and goto step 3 

8. :    Else 

9. :     add -I to indicate end of itemset and goto step 3 

10. :   If (Tdur <=168 hrs) 

11. :    add item to weekly-sequence-database.txt and goto step 3 

12. :    Else 

13. :     add -I to indicate end of itemset and goto step 3 

14. :    If (Tdur > 672 hrs) 

15. :     add item to monthly-sequence-database.txt and goto step 3 

16. :   Else 

17. :     add -I to indicate end of itemset and goto step 3 

18. :    Else (userid! =Tvar.userid) 

19. :     add -I and -S after item to indicate end of itemset and sequence and update Tvar.userid and goto   

step 3 
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20. :     End if  

21. : End for 

Algorithm 3.2: Algorithm to create sequential historical periodic database 

Example to create daily sequence database 

To explain the SHOD algorithm step by step, let us consider historical purchase data (Table 3.9) 

as input, where Uid represents user identity, Productid represents product identity, Product 

represents name of the product and Purchastime represents timestamp when purchased occurred. 

Uid Productid Product Purchasetime 

A2HDEMZR8QLN B003UYU16G 1 2014-04-04 11:30:11 

A2HDEMZR8QLN B003MYU66K 2 2014-04-04 13:25:19 

A2HDEMZR8QLN B00A9NE84C 3  2014-04-05 15:56:32 

A2HDEMZR8QLN B00EG0C20G 6  2014-04-06 16:18:26 

A2HDEMZR8QLN B000SAUVC4 7  2014-04-07 18:59:21 

A2HDEMZR8QLN B000GAYQTU 5  2014-04-08 21:19:55 

A1026QJYJTVE5T B003UYU16G 1 2014-04-13 04:04:34 

A1026QJYJTVE5T B003KYK18C 4 2014-04-13 06:05:39 

A1026QJYJTVE5T B00A9NE84C 3  2014-04-15 09:34:37 

A1026QJYJTVE5T B003MYU66K 2  2014-04-17 13:54:48 

A1026QJYJTVE5T B003UYU16G 1 2014-04-17 11:44:55 

A1026QJYJTVE5T B003UYU16G 2 2014-04-17 11:45:50 

A1026QJYJTVE5T B000GAYQTU 5 2014-04-17 11:46:52 

A1026QJYJTVE5T B00EG0C20G 6 2014-04-17 11:47:54 

A1026RERIHUK3C B003UYU16G 1  2014-04-20 10:02:53 

A1026RERIHUK3C B008PF1YPW 2  2014-04-21 12:07:15 

A1026RERIHUK3C B00EG0C20G 6  2014-04-22 17:10:28 

A1026RERIHUK3C B000GAYQTU 5  2014-04-23 10:06:37 

A0130ZI3HIT9N5V B008PF1YPW 2  2014-04-25 10:06:37 

A0130ZI3HIT9N5V B00EG0C20G 6 2014-04-26 10:06:37 

A0130ZI3HIT9N5V B000SAUVC4 7 2014-04-26 11:07:38 

A31ZC98HM9C4LP ? ? ? 

Table 3.9: Historical E-commerce purchase data 

Step 1: Read the first line of record from historical purchase data (historical.txt in our case) and 

store userid, timestamp into a temporary variable. For example, let’s store first line from Table 

3.9 into variable as:   

Tuserid= A2HDEMZR8QLN, Ttimestamp=2014-04-04 11:30:11. 

Step 2: Read another line from the historical database and check recently read userid with userid 

stored in a temporary variable (Tuserid). If userid is same, compute the difference between the last 

time the same user made a purchase and the current purchase time user is making a purchase and 

goto step 3 else goto step 4. 
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Step 3:   

1. If the time difference between the two products is less than 24 hours add itemID to itemset 

in daily.txt file. In our case, the purchased time difference between two products {1, 2} 

purchased by user {Tuserid= A2HD75EMZR8QLN} is less than 24 hrs. So, add two items 

to itemset in daily.txt 

1, 2 

2. If the time difference between purchased items is more than 24 hours add –I to indicate 

the end of itemset and add itemID after -I. For example, 

1, 2 –I 3 

Step 4: If user identity is not similar, then add –I and -S after item to indicate the end of itemset 

and sequence and goto step 2 by updating temporary variable.  

Step 5: Repeat step2, Step 3 and Step 4 until the historical database is empty. In our case, the daily 

sequential database using step2, Step 3 and Step 4 is shown in Table 3.10. 

SID UID Purchase sequence 

1 A2HD75EMZR8QLN 1, 2 -I  3 -I  6 -I  7 -I  5 –I -S 

2 A1026QJYJTVE5T 1, 4 –I  3 -I  2 -I  1, 2, 5, 6 –I -S 

3 A1026RERIHUK3C 1 –I  2 –I  6 -I  5 –I -S 

4 A0130ZI3HIT9N5V 2 –I   6, 7 –I -S 

Table 3.10:Sequential database created from historical transactional data 

Which is alternatively represented as shown in Table 3.11, where angular bracket < > indicates 

sequence and ( ) contains item set purchased on same day.  

 

 

SID SID Purchase sequence 

1 A2HD75EMZR8QLN < (1, 2), (3), (6), (7), (5)> 

2 A1026QJYJTVE5T <(1,4), (3), (2), (1, 2, 5, 6)> 

3 A1026RERIHUK3C <(1), (2), (6), (5)> 

4 A0130ZI3HIT9N5V <(2) , (6, 7)> 

Table 3.11: Alternative representation of daily purchase sequential database  
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3.2.2 HSPRec: Sequential Pattern Rule (SPR) Module 

Sequential Pattern Rule (SPR) is based on the use of frequent sequential pattern created from the 

periodic sequential database. Thus, input of SPR is periodic historical sequential (click or 

purchase) database and output is recommended rule using the following major steps: 

1. Frequent sequence generation: It generates frequent sequences from sequential database 

by using GSP algorithm present in section 2.2.1. Let us consider input= Table 3.5, 

minimum support=2, candidate set (C1) = {1, 2, 3, 4, 5, 6, 7} and algorithm= GSP (as 

defined in section 2.2.1). Output: frequent sequences, here, we are including some of 

frequent sequences.  

1-frequent purchase sequences = {< (1)>, < (2)>, < (3)>, < (5)>, < (6)>} 

Some of 2-frequent purchase sequences= {< (1), (2)>, < (1), (3)>, < (3), (6)>, < (5), (6)>} 

Some of 3-frequent purchase sequences= {< (1), (2), (6)>, < (3), (1), (5)>, < (1), (5), (6)>} 

2. Rule generation: Represents frequent sequences in the form of  𝑈𝑐𝑙𝑖𝑐𝑘 → 𝑈𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒, where 

the left-hand side of rule refers to a set of clicked items, while the right-hand side refers to 

a set of recommended items for purchase. The sequential rule for recommendation is 

inspired by work done by pitman & Zankar, 2010 using sequential pattern. Furthermore, 

to verify the validity of rule, confidence of rule is defined as in Equation 3.1. 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑈𝑐𝑙𝑖𝑐𝑘 → 𝑈𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑈𝑐𝑙𝑖𝑐𝑘  ∪  𝑈𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑈𝑐𝑙𝑖𝑐𝑘)
 

Equation 3.1: Sequential Pattern Rule generated from n-frequent sequences 

Here some of the rules from frequent click sequences are: 

(a) (1,5) (3), (1)   with 50% confidence  

(b)  (1), (5) (6), (5) with 50% confidence 

3. Rule selection: Let’s say, we are only interested in rule that satisfy following criteria: 

1) At least 2 antecedents  

2) Confidence >= 50%  

3) Select one rule having highest confidence value.  

In our case, rule (a)  (1,5)  (1),(3) is selected for User 5, which states that, user is 

recommended with item 1 and item 3, when user purchased item 1 and item 5 together. 
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3.2.3 HSPRec: Click Purchase Similarity (CPS) Module 

To compute the CPS similarity between click sequence and purchase sequence of each user, we 

have used sequence similarity and frequency similarity of the two sequences.  

Sequence similarity (LCSR): It is based on using longest common subsequence rate (LCSR) (X, 

Y) = 
𝑳𝑪𝑺(𝑿,𝒀)

𝒎𝒂𝒙(|𝑿|,|𝒀|)
. In our case, X represents click sequence and Y represents purchase sequence and 

LCS is defined in Equation 3.2.  

LCS(X i, Y j) ={

∅                                                                                 𝒊𝒇 𝒊 = 𝟎 𝒐𝒓 𝒋 = 𝟎

𝑳𝑪𝑺(𝑿𝒊−𝟏, 𝒀𝒋−𝟏) ∩  𝑿𝒊                                      𝒊𝒇 𝒙𝒊 = 𝒚𝒊

𝒍𝒐𝒏𝒈𝒆𝒔𝒕 (𝑳𝑪𝑺(𝑿𝒊, 𝒀𝒋−𝟏), 𝑳𝑪𝑺(𝑿𝒊−𝟏, 𝒀𝒋))      𝒊𝒇 𝒙𝒊 ≠ 𝒚𝒊    

 

Equation 3.2: Sequence similarity function 

In our case, X represents click sequence and Y represents purchase sequence  

Frequency similarity (FS): First, form the distinct set of items from both click and purchase 

sequential patterns and count number of items occurring in each sequence to form vector 

specifying the number of times a user clicks or purchased a particular item then apply Equation 

3.3 to click and purchase vectors. 

𝑪𝒐𝒔𝒊𝒏𝒆(𝑿, 𝒀) = 
𝑿𝟏∗𝒀𝟏 + 𝑿𝟐∗𝒀𝟐+ … +𝑿𝒏∗𝒀𝒏

√𝑿𝟏
𝟐+𝑿𝟐

𝟐+⋯+𝑿𝒏
𝟐  ∗ √𝒀𝟏

𝟐+𝒀𝟐
𝟐+⋯+𝒀𝒏

𝟐
 

Equation 3.3: Cosine similarity function 

Thus, CPS(X, Y) =α*LCSR(X, Y) +β*Cosine (X,Y), where α+β=1, 0<α, β<1, where α and β are 

weight to balance the two sequence similarity and frequency similarity. 

Example of CPS (click sequence, purchase sequence) 

To compute CPS similarity between click sequence (X) = < (2, 7), (6, 6, 7)> and purchase sequence 

(Y) =< (2), (6, 7)>, we have to follow following steps: 

1. Compute the longest common subsequences, LCS(X, Y) between click and purchase 

sequence. For example, LCS (< (2, 7), (6, 6, 7)>, < (2), (6, 7)>) is 3 because of common 

subsequence (2), (6, 7). 

2. Find the maximum number of item occurring in click or purchase sequence as Max(X,Y). 

In our case, Max(X, Y) is 5. 

3. Compute sequences similarity of click (X) and purchase (Y) sequence as 

LCS(X,Y)/Max(X,Y)=3/5=0.6. 
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4. Compute the frequencies of items in click and purchase sequences. In our case, we have 

format [(item): number of occurrences]. So, frequency count of click is: [(2):1, (6):2, (7):2]. 

Similarly, frequency count of purchase is: [(2):1, (6):1, (7):1]. 

5. Then, use the Cosine similarity function in Equation 3.3 to get the frequency similarity 

between click sequence (X) and purchase sequence (Y) as Cosine(X, Y). In our case, 

Cosine(X, Y) =0.96. 

6. The Click Purchase Similarity of user click and purchase sequence 

CPS(X,Y)=0.8*0.6+0.2*0.96, where α =0.8 and β=0.2. 

This CPS(X, Y) can be used as weight or probability that user u will purchase the entire sequence 

as shown in Table 3.12. 

3.2.4 HSPRec: Weighted Frequent Purchase Pattern Miner (WFPP) Module 

Weighted Frequent Purchase Pattern Miner (WFPPM) takes weighted purchase sequences as input 

(present in Table 3.12) and generate frequent items with weight(u’s rating of item i in the matrices 

referred to as rui)  present in purchased patterns under the user specified minimum threshold as 

output. So major steps of WFPPM are: 

Purchase sequence CPS 

< (1, 2), (3), (6), (7), (5)> 0.624 

<(1, 4),(3), (2), (1, 2, 5, 6)> 0.834 

<(1), (2), (6), (5)> 0.636 

<(2) , (6, 7)> 0.67 

<(1) , (3)> 0.5 

 Table 3.12: Weighted purchase pattern 

1. Count support of item: Count the occurrence of items presented in weighted purchase 

pattern (Table 3.17). For example, {support (1): 5, support (2): 5, support (3): 3, support 

(4): 1, support (5): 3, support (6): 4, support (7): 2} 

2. Calculate the weight of individual item: Compute weight of individual item from weighted 

purchase pattern (Table 3.12) using Equation 3.4. 

𝑅𝑖𝑡𝑒𝑚 𝑖 =
∑ 𝐶𝑃𝑆 ∈  𝑖𝑡𝑒𝑚𝑖

𝑛
𝑖=1

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑖𝑡𝑒𝑚𝑖)
 

Equation 3.4: Formula to compute weight in WFPPM 

For example, 𝑅𝑖𝑡𝑒𝑚 1 =
0.624+0.834+0.834+0.636+0.5

5
 = 0.68.  
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3. Test weight with minimum support threshold: Define the minimum threshold rating, here 

in our case, minimum threshold=0.2. So, all items are frequent.  

3.2.5 HSPRec: User-item Matrix Normalization 

Normalization in the recommendation system helps to predict the level of interest of user on an 

item. Thus, the normalization function takes the user-item frequency matrix as input and provide 

the level of user interest between 0 and 1 using the unit vector formula (Equation 3.5). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑟𝑢𝑖) =
𝑟𝑢𝑖

√𝑟𝑢𝑖1
2 + 𝑟𝑢𝑖2

2 + ⋯𝑟𝑢𝑖𝑛
2

 

Equation 3.5: Unit normalization function  
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3.3 Architecture of Proposed System 

 

Figure 3.1: Architecture of HSPRec showing modules and flow   
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3.4 Example of HPCRec VS HSPRec system 

Input historical click: Let us consider the historical click table as shown in Table 3.13, which 

contains click items, click start time and click end time. 

Userid Click items Clickstart Clickend 

User 1  Cheese, Butter , Milk, Butter, Cream, Cheese 2017.06.05.13.23.30 2017.06.05.13.43.00 

User 1 Honey, Cream, Butter 2017.06.06.09.00.34 2017.06.06.09.50.20 

User 2  Cheese, Honey, Bread, Milk, Cream  2017.06.05.18.53.19 2017.06.05.19.33.14 

User 2 Milk , Cheese, Cheese, Milk 2017.06.06.19.53.19 2017.06.06.20.33.13 

User 3 Cheese, Cream, Honey, Butter 2017.06.05.19.33.14 2017.06.05.19.50.16 

User 4 Cheese, Milk 2017.06.05.19.33.14 2017.06.05.19.53.19 

Table 3.13: Historical Click data  

Input historical purchase: Let us consider the historical purchase table as shown in Table 3.14, 

which contains a list of items purchased by a user over the specified time. 

Userid Purchase items timestamp 

User1 Cream, Butter, Milk 2017.06.05.13.38.00 

User1 Honey, Butter 2017.06.06.09.40.20 

User2 Milk, Cream, Honey 2017.06.05.19.23.14 

User2 Milk, Honey, Cheese 2017.06.06.20.23.13 

User3 Butter, Cheese 2017.06.05.19.40.16 

User 3 Cheese, Honey 2017.06.06.10.40.16 

User4 ? 2017.06.05.19.43.19 

Table 3.14: Historical purchase data  

Consequential bond: Let us consider the consequential bond of clicks and purchases, which is 

created from using historical click (Table 3.13) and historical purchase (Table 3.14) as shown 

in Table 3.15. 

Userid Click Purchase 

1 Cheese, Butter , Milk, Butter, Cream, Cheese, 

Honey, Cream, Butter 

Cream, Butter, Milk Honey, Butter 

2 Cheese, Honey, Bread, Milk, Cream, Milk , 

Cheese, Cheese, Milk 

Milk, Cream, Honey, Milk, Honey, 

Cheese 

3 Cheese, Cream, Honey, Butter Butter, Cheese, Cheese, Honey 

4 Cheese, Milk ? 

Table 3.15: Consequential table from click and purchase historical data 

User-item purchase frequency matrix: Let us consider user-item purchase frequency matrix created 

from historical purchase data as present in Table 3.16, where the number indicates, the number 

of times item purchase by a user. For example, User 1 purchased butter 2 time, Honey 1 time and 

so on. 
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User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 ? 1 

User 2 2 ? ? 1 1 2 

User 3 ? ? 1 ? 2 1 

User 4 ? ? ? ? ? ? 

Table 3.16: User-item frequency matrix from purchase historical data 

3.4.1 Xiao & Ezeife, 2018 (HPCRec18)  

Step 1: Normalize the user-item frequency matrix (Table 3.16) using the normalization function.  

Then, we will get normalized user-item frequency matrix as shown in Table 3.17. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 0.37 ? 0.75 0.37 ? 0.37 

User 2 0.63 ? ? 0.31 0.31 0.63 

User 3 ? ? 0.40 ? 0.81 0.40 

User 4 ? ? ? ? ? ? 

Table 3.17: Normalized user-item frequency matrix 

Step 2: As we can see, there is no purchase information of user 4. So, select click item without 

purchases from consequential bond (Table 3.15) and compute similarity with other click using 

Clickstream Sequence Similarity Measurement (CSSM) function defined by Xiao & Ezeife, 2018 

to fill the information. For example, let’s take click X= {Cheese, Milk} performed by user4 and 

Y= {Cheese, Butter, Milk, Butter, Cream, Cheese, Honey, Cream, Butter} by user 1.  

1. Calculate LCSR(X,Y)= 
common(X,Y)

max(X,Y)
 = 

2

9
 = 0.22 

2. Calculate FS(X, Y) = 𝑐𝑜𝑠𝑖𝑛𝑒({1,1}, {1,0,2,2,1,3}) = 3/11.28=0.26; where X= {Milk:1, 

Bread:0, Cream:0, Cheese:1, Honey:0, Butter:0} and Y={Milk:1, Bread:0, Cream:2, 

Cheese:2, Honey:1, Butter:3 } are frequency of product present in X and Y 

3. Use α and β as parameters to balance the sub-sequence similarity and frequency similarity, 

where 0<α, β<1, α+β=1. α and β will be determined from the training dataset. So if set 

α=0.8, β=0.2, Sim (X, Y) =0.8*0.26+ 0.2*0.22=0.252. 

4. Assign calculated similarity weight to purchase item set for a user with whom similarity is 

computed to create a weighted transactional table and 1, Step 2 and Step 3 for other users. 

In our case, weighted transactional table is as shown in Table 3.28. 
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Userid Purchase Weight 

1 {Cream, Butter, Milk, Honey, Butter} 0.252 

2 {Milk, Cream, Honey, Milk, Honey, Cheese} 0.36 

3 {Butter, Cheese, Cheese, Honey} 0.27 

4 ?  

Table 3.18: Weighted transactional table 

Step 3: Use TWFI function defined by Xiao & Ezeife, 2018 to calculate weighted frequency for 

items.   

1. Calculate support for item present in weighted transaction table: Form a distinct item set 

from transactions weighted transactional table and find the support for each item. For 

example, <Milk:3, Cream:2, Cheese:3, Honey:4, Butter:3> 

2. Compute the Average Weighted Support (AWS) using formula: (AWS) =  
𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡
 . 

For example, AWS for Milk is=sum (0.252+0.36+0.36)/3= 0.324. Similarly, AWS 

(Cream) = 0.306, AWS (Cheese) = 0.3, AWS (Honey)=0.31, AWS (Butter) = 0.258 

3. Use minimum weighted threshold to test the Average Weighted Support (AWS). In our 

example, let us consider minimum weight=0.3 and we can see that all AWS meet 

minimum threshold. 

Step 4: Use the weight of item to fill missing information. In our case, let use for user 4 then 

user-item frequency matrix looks like as given in Table 3.19. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 0.37 ? 0.75 0.37 ? 0.37 

User 2 0.63 ? ? 0.31 0.31 0.63 

User 3 ? ? 0.40 ? 0.81 0.40 

User 4 0.324 ? 0.258 0.306 0.3 0.31 

Table 3.19: Quantitatively rich normalized user-item frequency matrix  
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3.4.2 Example of purposed HSPRec  

Step 1: Create a user-item frequency matrix from historical purchase. In our case, the user-item 

frequency matrix created from historical purchase (Table 3.14) is present in Table 3.21. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 ? 1 

User 2 2 ? ? 1 1 2 

User 3 ? ? 1 ? 2 1 

User 4 ? ? ? ? ? ? 

Table 3.20: User-item frequency matrix created from historical purchase  

Step 2: Convert historical purchase to the sequential database using section 3.2.1. The sequential 

database can be constructed by considering the period of time (day, week, and month). Here in our 

case, let’s construct purchase sequential database from historical purchase information as present 

in Table 3.20. 

SID Purchase sequence 

1 < (Cream, Butter, Milk),( Honey, Butter)> 

2 <(Milk, Cream, Honey),( Milk, Honey, Cheese )> 

3 <(Butter, Cheese), (Cheese, Honey)> 

4 ? 

Table 3.21: Daily purchase sequential database created from historical transaction data 

Step 3: Create frequent sequential purchase pattern from daily sequential database using GSP 

algorithm. In our case possible purchase sequential rule from frequent purchase sequences are 

Rule No Sequential rule 

1 Milk, Butter Cheese 

2 Cream, Cheese  Milk 

3 Cheese, Honey  Cream 

4 Honey  Cream 

5 Honey  Milk 

Table 3.22: Sequential rule created from n-frequent sequences  

From rule 3, we can conclude that, user will purchase Honey if user purchased Cheese  
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Step 4: Fill purchase information in user-item frequency matrix using sequential purchase rule.  

User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 1 1 

User 2 2 ? 1 1 1 2 

User 3 1 ? 1 1 2 1 

User 4 ? ? ? ? ? ? 

Table 3.23: Rich user-item frequency matrix created with help of sequential rule 

Step 5: As we can see in Table 3.23 that there is no purchase information of user 4. To find 

purchase information of user 4, we have to analyze the relationship between click and purchase. 

Furthermore, the sequence of click and purchase play important role in product selection. So, rather 

than analyzing click pattern we have to find the relationship of click and purchase pattern 

considering their sequence using the following steps: 

1. Form click sequential database from the consequential bond. Here, we are creating a daily 

sequential database but it is also possible to create a weekly and monthly sequential 

database to create more complex click sequential rule.  

SID Click 

1 <(Cheese, Butter , Milk, Butter, Cream, Cheese), (Honey, Cream, Butter)>  

2 <(Cheese, Honey, Bread, Milk, Cream), (Milk , Cheese, Cheese, Milk)> 

3 <(Cheese, Cream, Honey, Butter)> 

4 <(Cheese, Milk )> 

Table 3.24: Sequential database created from consequential table 

2. Use sequential pattern mining algorithm on user click sequence: Create n-frequent click 

sequential pattern from click sequential database using the GSP algorithm.  In our case 

some of the n-frequent click sequences are: 

1- Sequences = {< (Milk)>, < (Cheese)>, < (Cream)>, < (Butter)>, < (Honey)>} 

2- Sequences = {< (Milk, Cheese)>, < (Butter, Cheese)>, < (Honey, Butter)>} 

3- Sequences = {< (Cheese, Cream, Milk)>, < (Cream, Cheese, Milk)>} 

3. Create sequential rule from n-frequent click sequential pattern using Sequential Pattern 

Rule (SPR) present in section 3.2.2. Here in our case possible sequential rule from n-

frequent sequences are from click sequences are 
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Rule No Sequential rule 

1 Cheese, Milk Cream 

2 Cream,  Cheese 

3 Butter  Honey 

Table 3.25: Sequential rule created from n-frequent sequences 

4.  Recommend item from the click sequential rule, where the user clicks but does not 

purchase anything. For example, there is no purchase for click sequence < (Cheese, Milk)> 

thus item < (Cream)> is recommended from the sequential rule 

Userid Click Purchase Recommend 

item 

1 <(Cheese, Butter , Milk, Butter, 

Cream, Cheese), (Honey, Cream, 

Butter)>  

<(Cream, Butter, Milk), (Honey, Butter)>  

2 <(Cheese, Honey, Bread, Milk, 

Cream), (Milk , Cheese, Cheese, 

Milk)> 

<(Milk, Cream, Honey), (Milk, Honey, 

Cheese)> 

 

3 <(Cheese, Cream, Honey, 

Butter)> 

<(Butter, Cheese), <(Cheese, Honey)>  

4 <(Butter, Bread, Cream, Cheese, 

Honey, Butter )> 

? < (Cream)> 

Table 3.26: Recommend item for click when purchase is not happened 

Step 6: Compute Click Purchase Pattern (CPS) similarity using frequency and sequence of click 

and purchase pattern using section 3.2.3. If there is no purchase along with click item, then use 

the recommended item.  For example, let’s take click (X) = {< (Cheese, Butter, Milk, Butter, 

Cream, Cheese)>, < (Honey, Cream, Butter)>} by user 1 and purchase (Y) = {< (Cream, 

Butter, Milk), (Honey, Butter)>}. 

i. Calculate LCSR(X,Y)= 
|common(X,Y)|

max(|X|,|Y|)
 = 

5

9
 = 0.55 

ii. Calculate FS(X, Y) = 𝑐𝑜𝑠𝑖𝑛𝑒({2,1,1,1}, {1,0,2,2,1,3}) = 10/10.21=0.97; where 

X= {Milk:1, Bread:0, Cream:2, Cheese:2, Honey:1, Butter:3} and Y={Milk:1, 

Bread:0, Cream:1, Cheese:0, Honey:1, Butter:2 } are frequency of product 

present in X and Y 

iii. Use α and β as parameters to balance the sub sequence similarity and frequency 

similarity, where 0<α, β<1, α+β=1. α and β will be determined from training 

dataset. So if set α=0.8, β=0.2, CPS-Sim (X, Y) =0.8*0.55+ 0.2*0.97=0.634. 
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Userid Click Purchase Recommend 

item 

CPS 

Similarity 

1 <(Cheese, Butter , Milk, Butter, 

Cream, Cheese), (Honey, Cream, 

Butter)>  

<(Cream, Butter, Milk), (Honey, 

Butter)> 

 0.634 

2 <(Cheese, Honey, Bread, Milk, 

Cream), (Milk , Cheese, Cheese, 

Milk)> 

<(Milk, Cream, Honey), (Milk, 

Honey, Cheese)> 

 0.516 

3 <(Cheese, Cream, Honey, 

Butter)> 

<(Butter, Cheese), <(Cheese, 

Honey) 

 0.562 

4 <(Butter, Bread, Cream, Cheese, 

Honey, Butter )> 

? < (Cream)> 0.198 

Table 3.27: CPS similarity using click and purchase 

Step 7: Assign Click Purchase (CPS) similarity value to the purchase patterns present in the 

consequential bond. The weighted purchase pattern in our case is present in Table 3.28.  

Purchase CPS Similarity 

<(Cream, Butter, Milk), (Honey, Butter)> 0.634 

<(Milk, Cream, Honey), (Milk, Honey, Cheese)> 0.516 

<(Butter, Cheese), <(Cheese, Honey) 0.562 

< (Cream)> 0.198 

Table 3.28: Weighted purchase patterns 

Step 8: Assign weighted purchase patterns to Weighted Frequent Purchase Pattern Miner (WFPP) 

module present in section 3.2.4 and compute a weight for item present in weighted purchase 

pattern using formula:  𝑅𝑖𝑡𝑒𝑚𝑖 =
∑ 𝐶𝑃𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑡𝑒𝑚𝑖

𝑛
𝑖=1

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑖𝑡𝑒𝑚𝑖)
  

i. Count support of item: 

Item Milk Cream Cheese Honey Butter 

Support 3 3 3 4 3 

Table 3.29: Support for item present in weighted purchase patterns 

ii. Calculate rating for individual item: 

𝑅𝑚𝑖𝑙𝑘 =
0.634+0.516+0.516

3
  =0.55 

𝑅𝐶𝑟𝑒𝑎𝑚 =
0.634+0.516+0.198

3
  =0.44 

𝑅𝐶ℎ𝑒𝑒𝑠𝑒 =
0.516+0.562+0.562

3
  =0.54 

𝑅𝐻𝑜𝑛𝑒𝑦 =
0.634+0.516+0.516+0.198

4
  =0.46 

𝑅𝐵𝑢𝑡𝑡𝑒𝑟 =
0.634+0.634+0.562

3
  =0.61 
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Step 9: Use the weight of item to make user-item matrix rich. In our case, rich user-item purchase 

frequency matrix is shown in Table 3.30.  

 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 1 1 

User 2 2 ? 1 1 1 2 

User 3 1 ? 1 1 2 1 

User 4 0.55 ? 0.61 0.44 0.54 0.46 

Table 3.30: Rich user-item purchase frequency matrix  

Step 10: Normalize rich user-item purchase frequency matrix 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 0.35 ? 0.70 0.35 0.35 0.35 

User 2 0.60 ? 0.30 0.30 0.30 0.60 

User 3 0.35 ? 0.35 0.35 0.70 0.35 

User 4 0.48 ? 0.53 0.38 0.47 0.40 

Table 3.31: Quantitatively rich purchase user-item purchase frequency matrix   
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CHAPTER 4: EXPERIMENTAL EVALUATION AND ANALYSIS 

We have used user-based collaborative filtering to evaluate the performance of recommendation 

systems. The historical data is converted into user-item matrices with (Choi12Rec, HPCRec18, 

and HSPRec) algorithms before applying collaborative filtering. We have used the Pearson 

Correlation Coefficient (PCC) to test user-based collaborative filtering, Furthermore, 80% of data 

is used in training and 20% of data is used in testing the performance. To evaluate the performance 

of the recommendation system, we have used a different number of users and nearest neighbors 

using three different evaluation parameters (a) mean absolute error (MAE) (b) precision and (c) 

recall with LibRec (Guo, Zhang, Sun, & Yorke-Smith, 2015) library available in Java. 

4.1 Historical Purchase Dataset Selection  

For historical purchase E-commerce data, we have used data available from Amazon              

(http://jmcauley.ucsd.edu/data/amazon/). The Amazon data sets consist of 23 different categories 

such as Books, Electronics, Home and Kitchen, Sports and Outdoors, Cell Phones and 

Accessories, Grocery and Gourmet Food and many more.  The Data contains 142.8 million 

transactional records spanning May 1996 - July 2014. The fragment of historical purchase Amazon 

dataset is provided in Figure 4.1. 

Data format: {userID, asin, overall, purchaseTime} 

{"userID": "A2HD75EMZR8QLN", "asin": "0700099867", "overall": 1.0, "purchaseTime": "07 9, 2012" } 

{"userID": "A3UR8NLLY1ZHCX", "asin": "0700099867","overall": 4.0, "purchaseTime": "06 30, 2013"}. 

Figure 4.1: Historical purchase data (Amazon data)  

Where, users are identified by userID and products are identified by asin and user provided rating 

on an item is represented by overall. Furthermore, purchaseTime provides timestamp when 

purchased occurred.           

4.2 Dataset Evaluations 

We used our historical dataset in user-based collaborative filtering to evaluate its performance with 

respect to MAE, precision, and recall. The data is modified into the intermediate form, which 

means when the value is larger than the minimum threshold; this value would be set to one (highest 

rating). When the value is less than the threshold, this value would be set to zero (lowest rating) 

and finally, user-item rating matrix is provided to collaborative filtering using Librec.  

 

http://jmcauley.ucsd.edu/data/amazon/
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4.2.1 Evaluation parameters  

Mean absolute error (MAE): MAE measures the average of the errors in a set of predictions. It’s 

the average over the test sample of the absolute differences between prediction and actual rating.  

𝑀𝐴𝐸 =
∑ |𝑎𝑐𝑡𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑛𝑔−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑟𝑎𝑡𝑖𝑛𝑔|𝑛

𝑖=1

𝑛
  

Thus, higher mean absolute errors mean, less efficient for accurate rating predication and lower 

mean absolute errors means highly efficient for accurate rating prediction. For example, let us take 

an example of rating and computation of mean absolute error.  

Item Actual rating Predicted rating Absolute rating error 

Item 7 2 4.9 2.9 

Item 5 5 4.5 0.5 

Item 10 4 4.3 0.3 

Item 2 2 3.6 1.6 

Item 2 3 3.4 0.4 

Item 1 4 2.3 1.7 

MAE  7.4/6=1.23 

Table 4.1: Actual rating and predicted rating user-item matrix 

In this case, mean absolute error is 1.23 and we can see the variation in actual rating and predicted 

rating. The fragment of code to implement the MAE in java for our experiment is: 

             

 

 

 

 

 

 

 

 

 

Figure 4.2: Function to compute mean absolute error (MAE) 

 

Let us consider the confusion matrix as shown in Table 4.2 

 Purchased Not purchased 

Recommended 

(relevant) 

TP (Recommended and purchased) FP (Recommended and not purchased) 

Not recommended 

(Not relevant) 

TN (Not recommended and purchased) FN (Not recommended and not purchased) 

Table 4.2: Confusion matrix for recommendation system 

public double evaluateMAE(User_item testMatrix, RecommendedList recommendedList)  

{ 

 double mae = 0.0,testSize = 0; 

 Iterator<MatrixEntry> testMatrixIter = testMatrix.iterator(); 

 Iterator<UserItemRatingEntry> recommendedEntryIter = recommendedList.entryIterator(); 

 while (testMatrixIter.hasNext()) { 

 if (recommendedEntryIter.hasNext()) { 

 MatrixEntry testMatrixEntry = testMatrixIter.next(); 

 UserItemRatingEntry userItemRatingEntry = recommendedEntryIter.next(); 

 if (testMatrixEntry.row() == userItemRatingEntry.getUserIdx() 

                        && testMatrixEntry.column() == userItemRatingEntry.getItemIdx()) { 

 double realRating = testMatrixEntry.get(); 

 double predictRating = userItemRatingEntry.getValue(); 

 mae += Math.abs(realRating - predictRating); 

                    testSize++; 

                }}} 

        return mae / testSize; 

} 
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Precision: Determines the fraction of relevant items retrieved out of all items in the 

recommendation system. Let us consider, TP represents the fraction of items that user is interested 

with and FP represents the fraction of items that user is not interested with, then precision is defined 

as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑖𝑡𝑒𝑚

𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚
 

Suppose that, our precision at the nearest neighbor (10) in a Top-10 recommendation problem is 

40%. This means that 40% of the recommendations we make are relevant to the user. For example, 

let us consider, we are recommended with item7, item5 and item10 at Top-10 neighbors from user-

item matrix (Table 4.1) and the user is interested with only item10 then precision=1/(1+2)=0.33. 

Java implementation of precision in our case is present in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Function to compute precision  

Recall: Determines the fraction of relevant items retrieved out of all relevant items in the 

recommendation system. Let us consider, TP represents the fraction of relevant items that user is 

interested with and FN represents the fraction of relevant items that user is not interested with, 

then precision is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚

𝑎𝑙𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
 

Suppose that, we computed recall at the nearest neighbor (10) and found it is 40% in our Top-10 

recommendation system. This means that 40% of the total number of the relevant items appear in 

the top-k results. For example, let us consider we are interested with an actual rating greater or equal 

to 3.5 in user-item matrix (Table 4.1) then relevant items are {item5, item10 and item1} and 

public double evaluatePrecision(User_item testMatrix, RecommendedList recommendedList) 

{ 

 double precision = 0.0, numHits = 0; 
 int userNum = testMatrix.numRows(); 

 for (int userID = 0; userID < userNum; userID++) { 

 Set<Integer> testSetByUser = testMatrix.getColumnsSet(userID); 

 if (testSetByUser.size() > 0) { 

 List<ItemEntry<Integer,Double>> recommendListByUser =                  

          

recommendedList.getItemIdxListByUserIdx(userID); 

 int topK = this.topN <= recommendListByUser.size() ? this.topN : recommendListByUser.size(); 

 for (int indexOfItem = 0; indexOfItem < topK; indexOfItem++) { 

 int itemID = recommendListByUser.get(indexOfItem).getKey(); 

 if (testSetByUser.contains(itemID)){ 

                        numHits++; 

                                    }} 

                precision += numHits / (this.topN + 0.0); 

            }} 

        return precision; 

} 
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recommended item at Top-10 neighbors are {item7, item5, item10}. Thus, intersection of 

recommended and relevant items are {item5, item10} =2. Thus, recall=2/2+1= 0.66. Java 

implementation of recall in our case is present in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Function to compute recall 

4.2.2 Result evaluation and analysis 

First, we applied user-based collaborative filtering on explicit rating available on Amazon 

historical data then we saw that performance is very low. Then, we implemented choiRec12 (Choi, 

Keunho, Yoo, Kim, & Suh, 2012) with derive implicit rating and got better result compared to 

original collaborative filtering. Furthermore, we implemented HPCRec18 (Xiao & Ezeife, 2018) 

and found a better result than choi12Rec. Finally, we implemented the historical sequential 

recommendation (HSPRec18), with the help of purchase frequency matrix at first. Then, we 

discovered frequent sequences of purchase data to create sequential rules and used sequential rules 

to enhance user-item matrix and applied to collaborative filtering and found better result compared 

to choiRec12 and HPCRec18. 

public double evaluateRecall(User_item testMatrix, RecommendedList recommendedList)  

{ 

  double totalRecall = 0.0, numHits = 0; 

  int userNum = testMatrix.numRows(); 

  int nonZeroNumUsers = 0; 

  for (int userID = 0; userID < userNum; userID++) { 

  Set<Integer> testSetByUser = testMatrix.getColumnsSet(userID); 

  if (testSetByUser.size() > 0) { 

  List<ItemEntry<Integer, Double>> recommendListByUser =      

     recommendedList.getItemIdxListByUserIdx(userID); 

 int topK = this.topN <= recommendListByUser.size() ? this.topN : recommendListByUser.size(); 

  for (int i = 0; i < topK; i++) { 

  int itemID = recommendListByUser.get(i).getKey(); 

  if (testSetByUser.contains(itemID)) { 

                        numHits++; 

                    }} 

                totalRecall +=  numHits / (testSetByUser.size() + 0.0); 

                nonZeroNumUsers++; 

            }} 

        return nonZeroNumUsers > 0 ? totalRecall / nonZeroNumUsers : 0.0d; 

} 
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Figure 4.5: Evaluation of HSPRec with respect to precision, recall and mean absolute error 

4.2.3 Accuracy evaluation using precision 

Recommendation 

system 

Top-N Neighbors Number 

of users 

Recommendation 

No 

Precision Relevant 

item 

Percentage 

ChoiRec12 10 10 2000 

4000 

6000 

8000 

2090 

3880 

5647 

7772 

0.59 

0.37 

0.33 

0.31 

1233 

1435 

1863 

    2409 

58% 

37% 

32% 

30% 

HPCRec18 10 10 2000 

4000 

6000 

8000 

2050 

4032 

5857 

8655 

0.62 

0.39 

0.35 

0.38 

1271 

1572 

2049 

3288 

62% 

38% 

34% 

37% 

HSPRec 10 10 2000 

4000 

6000 

8000 

2130 

4156 

6039 

8938 

0.65 

0.49 

0.38 

0.45 

1394 

2036 

2294 

4022 

64% 

48% 

37% 

44% 

Table 4.3: Precision evaluation with respect to different number of users 
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4.3 Complexity Analysis 

4.3.1 Time complexity analysis of HSPRec algorithm 

Our HSPRec is composed of several modules (SHOD (Sequential Historical Periodic Database), 

SPR (Sequential Pattern Rule), CPS (Click Purchase Similarity), WFPPM (Weighted Frequent 

Purchase Pattern Miner), and Matrix normalization); thus, we are going to discuss the time 

complexity of HSPRec with respect to specified modules. 

1. Time complexity analysis of SHOD algorithm  

In our case, SHOD algorithm starts with input historical.txt as the main input. But, SHOD 

algorithm is functional with the input from the relational database such as MySQL, SqlServer, and 

Oracle. So, time complexity in the worst case is, 

0(n) - Time complexity to form historical.txt database 

C- Time complexity to update temporary variable 

0(n) - Time complexity to form sequential database 

Thus, total time complexity in worst case is, 0 (n) +C+0 (n) = 0 (n) 

2. Time complexity of Click Purchase Similarity (CPS) module 

The CPS module takes the click sequence and purchase sequence of each user as input. Thus, the 

time complexity required to compute click and purchase similarity for n users is O (n2). 

3. Time complexity of Weighted Frequent Purchase Pattern Miner (WFPPM) module 

Weighted purchase pattern miner takes weighted purchase patterns (purchase sequences with 

assigned weight) as input. Thus, counting the sum of the weight of item and support of the item 

in each purchase sequence requires O (n2). 

4. Time complexity of Sequential Pattern Rule (SPR) module 

SPR module contains the General Sequential Pattern (GSP) mining algorithm. Thus, the time 

complexity of this module depends on the following factors: 

(a) Support threshold: General Sequential Pattern (GSP) mining algorithm is based on the 

minimum support threshold to generate frequent sequences. Thus, lowering the support 

threshold often results in the production of more frequent sequences.  

(b) Number of transactions: GSP algorithm makes repeated scanning of the dataset. Thus, 

run time increases with a large number of transactions. 
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(c) Average transaction width: Each transaction in the dataset contains a different number of 

items. So, the time complexity depends on the average transaction width. 

(d) Number of items: A large number of items require more space to store the support count 

of items resulting in more time complexity. 

4.4 Implementation and Coding 

 Operation system: Windows 10 Unlimited 

o RAM: 16 GB 

o CPU: 3.6 GHz 

o System type: 64-bit Operating System, x64 based processor 

 Integrated Development Environment:  

o Eclipse Java EE IDE for Web Developers 

 Version: Oxygen.1a Release (4.7.1a) 

 Build id: 20171005-1200 

o PyCharm  

 2018.3 

 Platform:  

o Java SE Development Kit 

 Version: 1.8.0_65 

o Python 

 3.7.0 

 Project manage tool: Apache Maven 

o Version: 3.5.3 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

Many recommendation system neglect sequential pattern during recommendation. Thus, to verify 

the necessity of sequential pattern in recommendation, we generated a sequential pattern from 

historical E-commerce data and feed them into collaborative filtering to make user-item matrix 

rich from quantity and quality perspective. Furthermore, after evaluation with different systems, 

we got better result with a sequential pattern based recommendation. 

Thus, some of the possible future works are:  

(a) Finding more possible way of integrating sequential pattern to collaborative filtering. 

 (b) Incorporating multiple data sources based sequential pattern with different data schema, and 

make recommendations based on the overall data set.  

(c) Finding the more possible way of integrating sequential pattern in user-item matrix from online 

data. 
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