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Abstract

In Web usage mining, fuzzy association rules that have a temporal property can provide useful knowledge about when

associations occur. However, there is a problem with traditional temporal fuzzy association rule mining algorithms.

Some rules occur at the intersection of fuzzy sets’ boundaries where there is less support (lower membership), so

the rules are lost. A genetic algorithm (GA)-based solution is described that uses the flexible nature of the 2-tuple

linguistic representation to discover rules that occur at the intersection of fuzzy set boundaries. The GA-based

approach is enhanced from previous work by including a graph representation and an improved fitness function.

A comparison of the GA-based approach with a traditional approach on real-world Web log data discovered rules

that were lost with the traditional approach. The GA-based approach is recommended as complementary to existing

algorithms, because it discovers extra rules.

1. Introduction

Web usage mining is one type of Web mining [1] that

attempts to discover patterns of user behaviours that are

recorded in the logs of Web servers as users browse Web

sites [2]. In this paper, temporal fuzzy association rules

are used for Web usage mining. For example, “On a

Friday evening, visitors who viewed history.html for a

large amount of time also viewed contact-us.html for a

medium amount of time”. Such rules extend traditional

Boolean association rules [3] by incorporating temporal

and fuzzy quantitative features. The temporal feature of

the rule is on a Friday evening, and the fuzzy features

are the large and medium descriptions.

Matthews et al. [4] discovered a problem of losing

some rules when using traditional methods on synthetic

market basket data. Traditional methods follow a

two-step process of defining the linguistic labels and

membership functions of those labels first, and using

them in the mining process. However, the contex-

tual meaning of the linguistic labels can change with

events such as seasonal weather, sports games [5], or

unforeseen events, e.g., hurricanes [6]. The problem

is that although the meaning can change in a temporal

period the membership functions remain the same. For

example, a low quantity of ice cream sales in summer

has a different meaning to a low quantity in winter.

The membership function does not accurately define the

linguistic label for some temporal periods.

Matthews et al. [4] created a solution that combined

the flexibility of the 2-tuple linguistic representation [7]

with the search power of a GA. The 2-tuple linguistic

representation displaces membership functions laterally

along the universe of discourse whilst the linguistic

label remains the same. Previous work is improved

in this paper by incorporating a graph data structure

with an enhanced fitness function. The enhancements

enable the approach to work on datasets with real-world

complexity in a different domain.

This article is structured as follows: Section 2

provides an overview of related work, Section 3 de-

scribes the traditional approach and the original GA-

based algorithm, Section 4 introduces enhancements to

the GA-based algorithm that was applied to Web log

data, Section 5 presents the evaluation of our approach

compared with a traditional method, and conclusions

are made in Section 6.

2. Related work

The application of Web usage mining has been

categorised as either personalised for learning user

profiles, or unpersonalised for user navigation patterns
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[8]. In this paper, we focus on user navigation

patterns represented with fuzzy association rules. Web

usage mining can be used for the personalisation of

web content, pre-fetching and caching, enhancing Web

site design, and customer relationship management

in e-commerce [9]. Recent work has also applied

similar techniques to those in this paper. GAs have

mined sequence rules in Web log data [10] and have

also performed subgroup discovery [11]. Fuzzy sets

have been used to represent the time spent viewing

Web pages for fuzzy association rules [12] and fuzzy

sequence rules [13]. The temporal and fuzzy features

of association rules that are mined in this paper are now

reviewed.

The term temporal is ambiguous, because it can have

different interpretations in temporal data mining [14].

In this paper, a temporal association rule expresses

associations between items from the same transaction,

and that association is repeated (occurs frequently) in

multiple transactions of a subset of a dataset. For

example, a rule may be present in several transactions,

and that rule may occur more frequently on a Friday

than any other day of that week. Exhibition periods

[15] are temporal patterns that take into consideration

the time when items were introduced into the dataset,

e.g., new publications in a publications database. Cyclic

patterns [16] have rules that occur more frequently

in regular periods, such as a rule that occurs every

weekend. Temporal patterns with partial periodicity

[17] relax the regularity of cyclic patterns, so the rule

may not be present in some cycles of the temporal

pattern. These types of temporal association rules

are intra-transactional, which is different to inter-

transactional where rules contain items from several

transactions spread over a period of time, such as

sequence rules [18].

Quantitative association rule mining extends Boolean

association rule mining by discovering rules in quantita-

tive attributes [19]. For example, the time spent viewing

a Web page, or the quantities of items sold in a shopping

basket. Quantitative association rule mining discretises

quantitative attributes into bins. Quantitative associ-

ation rules suffer from the crisp boundary problem,

so fuzzy association rules better deal with unnatural

boundaries of crisp intervals [20] and inaccuracies with

physical measurements [21]. Fuzzy sets [22] allow the

quantities to be described with linguistic terms [23],

such as low and high.

The temporal property of not discovering rare fuzzy

itemsets [24] is different to our research, because we

focus on how the fuzzy sets are defined instead of

only the temporal property. Au and Chan [25] also

mine fuzzy association rules in temporal partitions of

the dataset, and they follow the same two-step process,

which can lose rules.

3. Temporal fuzzy association rule mining

Two approaches for mining temporal fuzzy associa-

tion rules were run on the United States Environmental

Protection Agency (EPA) dataset. The purpose is to

demonstrate how the flexibility of the 2-tuple linguistic

representation approach can help to discover rules on

real-world data that a traditional approach cannot. The

two approaches are described here, and enhancements

to the GA-based approach are explained in Section 4.

3.1. FuzzyApriori

FuzzyApriori [26] is an extension to the Apriori algo-

rithm [3] that uses a breadth-first search. FuzzyApriori

uses fuzzy sets to express quantities of items with

linguistic terms, but it does not consider any temporal

pattern. So, the dataset is partitioned according to its

temporal dimension, such as by hour, and FuzzyApriori

is executed on each dataset partition separately. The

systematic search of the temporal dimension allows for

the discovery of temporal features of fuzzy association

rules. This is similar to the first approach for mining

cyclic association rules [16] where the dataset is also

partitioned according to the temporal dimension. The

rules mined from each dataset partition are aggregated

into a final rule set, which is the end result.

Due to the static nature of membership functions in

existing approaches, not all temporal fuzzy association

rules can be discovered, hence some are lost. Au and

Chan [25] also mine fuzzy association rules in temporal

partitions of the dataset, which has been discussed in

Section 2. Au and Chan [25] use a different search

method in the two-step process, but in theory the same

problem of losing rules exists, because the fuzzy sets

are defined first and they are static. For this reason, a

method based on the seminal Apriori algorithm is only

compared, i.e., FuzzyApriori.

3.2. CHC with 2-tuple linguistic representation

The GA-based approach was first described

in Matthews et al. [4], so an overview is given

before introducing enhancements in Section 4. The

pseudocode of the algorithm is described in Appendix

A. The GA-based approach by Matthews et al. [4]

is not considered to be traditional like FuzzyApriori,

because it is not an exhaustive search method. Instead,

a stochastic search method is applied – a GA called

2



Cross-generational elitist selection, Heterogeneous

re-combination, and Cataclysmic mutation (CHC) [27].

The contextual change of meaning for linguistic labels

is modelled with the 2-tuple linguistic representation,

which is a flexible representation. The crucial

difference from other temporal fuzzy association

rule mining approaches is that Matthews et al.

simultaneously search for membership function

parameters and the items in the rule, as well as the

temporal period when the rule occurs. This overcomes

the problem of membership functions remaining the

same when there is a contextual change in the meaning

of linguistic labels. Alternative GA-based approaches

that simultaneously search for fuzzy sets and rules

do exist, but they perform different tasks, i.e., control

[28], classification [29], and fuzzy modelling [30]. The

GA-based approach uses Iterative Rule Learning (IRL)

[31]. IRL represents one rule in a chromosome. One

rule is used from the final population of a GA. More

rules are learnt by repeating the GA and penalising

previously learnt rules in the fitness function.

4. Enhanced temporal fuzzy association rule mining

The GA-based approach is extended with an

enhanced fitness function. A weight in the fitness

function provides a preference-based multi-objective

model to overcome confidence dominating the fitness

[4]. Previous approaches also use Pareto-based multi-

objective models [32], however, selecting a single

rule from the Pareto front (for IRL) is a challenging

problem. A chromosome C has mixed types, and is

defined as C = (el, eu, i1, s1, α1, a1, . . . , ik, sk, αk, ak)

where the lower temporal endpoint is el (start of time

window), the upper temporal endpoint is eu (end

of time window), i is the uniform resource locator

(URL), s is the linguistic label expressing the page

view time for that URL (e.g., medium), α is the lateral

displacement of that linguistic label, a determines

the antecedent/consequent part, and k is the number

of URLs in a rule. For example, a chromosome

(807127200, 807130800, “/Rules.html”, “medium”,

− 0.42, antecedent, “/”, “medium”, 0.31, consequent)

represents the rule “IF view time of /Rules.html is

(medium, - 0.42) THEN view time of / is (medium,

0.31) during the period from 807127200 to 807130800”

(unixtime). A single rule is represented and extracted

from a chromosome, because the lateral displacements

of a fuzzy set are specific to each rule.

The fuzzy support count of a chromosome C in a

single transaction t j is defined from Hong et al. [26]

as

FuzSupTran(C(t j)) =
k

min
n=1
µ(sn,αn)(t

(in)

j
), (1)

where µ is the degree of membership for a linguistic

label sn and lateral displacement αn for item in with a

rule of length k and for one transaction t j where j is a

dataset transaction ID (TID). The minimum is used for

intersection of all the clauses, which is the same method

of intersection used in FuzzyApriori.

FuzSupTran is then used to calculate fuzzy support

counts across multiple transactions and the fitness is

defined as
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where C is a chromosome, X is the rule antecedent,

Y is the rule consequent, j is a dataset TID from the

el lower endpoint to the eu upper endpoint, and w is a

weight applied to the confidence measure. Hence, C
(t j)

X

and C
(t j)

Y
are the rule antecedent and the rule consequent

respectively for one transaction in the dataset. A

weight is required to avoid local minima that occur as

a result of the magnitude of confidence being higher

than the magnitude of temporal fuzzy support; a GA

produces high confidence values [4, 33] compared with

a smaller magnitude of support values. For example,

a temporal fuzzy support value of 0.001 is smaller

than a confidence value of 0.1, so the confidence value

has more influence than the temporal fuzzy support.

The weight was determined from multiple runs of

the algorithm so that the temporal fuzzy support and

weighted confidence had the same order of magnitude.

We also extend our previous work with a graph

representation to enhance the efficiency of searching for

URLs/items in a rule. Our previous approach allowed

the generation of invalid chromosomes with rules that

did not exist in the dataset. Such rules are detrimental

to the search process, and are undesirable in the final

rule set.

The dataset is transformed from rows and columns

to a cyclical undirected graph. The purpose is to ensure

that chromosomes contain valid itemsets that are present

in the dataset and also to reduce the itemset search

space. The tabular representation is used for fitness

evaluation, and the graph representation is used during

initialisation and crossover.
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An undirected graph G is a pair of finite sets (V, E)

where V is a non-empty set of vertices and E is a set of

pairs (e, t). Each pair in E consists of an edge e and

a non-empty finite set of TIDs t. Each edge e is an

unordered pair of vertices (a, b). The definition extends

regular graphs by including a set of TIDs for each edge.

An example is presented to demonstrate the con-

struction of the graph. Table 1 is a small example

of a quantitative dataset transformed into the graph of

Figure 1. Each edge represents the co-occurrence of

two items. Items are vertices. The TIDs of the co-

occurrence are also on an edge. Edges are paired with

a set of TIDs to identify the co-occurrence of items. If

there is no set of TIDs for an edge then an edge does not

exist.

Table 1: Example dataset containing three items/URLs (A, B and C)

with quantities for four transactions in vertical layout

TID A B C

1 4 6 12

2 0 2 14

3 16 11 0

4 1 0 13

A

B

C

1

3

1

2

1

4

1

3

4

1

2

3

1

2

4

Figure 1: Example graph transformed from dataset in Table 1

The vertices for the example graph are

V = {A, B,C}, and the edges are E = {((A, B), {1, 3}),

((B,C), {1, 2}), ((A,C), {1, 4}), ((A, A), {1, 3, 4}), ((B, B),

{1, 2, 3}), ((C,C), {1, 2, 4})}. A loop connects a vertex to

itself. These edges are shown in Figure 1 as lines that

loop to the same vertex, i.e., TIDs {1, 3, 4} for vertex A,

TIDs {1, 2, 3} for vertex B, and TIDs {1, 2, 4} for vertex

C.

The graph representation is incorporated into initial-

isation and crossover of chromosomes. The algorithms

are defined in Appendix A. The algorithm Hybrid-

Crossover prevents crossover from producing invalid

itemsets. Potential offspring are first checked to identify

if the resulting itemsets are present in the specific

temporal partitions of the dataset. If the resulting

offspring are not present then the items are not swapped.

Algorithm CheckGraph in Appendix A uses the graph

data structure to ensure offspring are valid itemsets in a

temporal period.

5. Evaluation

The dataset and methodology for analysing the

enhanced GA-based approach are discussed and results

are then presented.

5.1. Data

A Web log dataset has both temporal and quantitative

features. The temporal feature is the timestamp of a

request made to the server, and the quantitative feature

is the page view time in seconds.

The EPA dataset1 is a collection of Hypertext Trans-

fer Protocol (HTTP) requests to a Web server collected

from a 24-hour period. The geographical location of the

Web server is Research Triangle Park, NC, USA. The

EPA dataset was recorded from 23:53:25 29th August

1995 EDT to 23:53:07 30th August 1995 EDT. The

EPA dataset has 47748 requests: 46014 GET requests,

1622 POST requests, 107 HEAD requests, and 6 invalid

requests. Table 2 shows a sample of records from the

EPA dataset before cleaning and preprocessing.

The EPA dataset was cleaned by removing all records

assumed to be the Web site’s design or a non-traversable

Web page (suffixes: gif, xbm, zip, pdf, exe, gz, wpd,

wp, dct, jpg, and imf). All records that did not

have a GET request method were removed. After

preprocessing, there were 2688 transactions and 5147

URLs. Preprocessing consisted of:

1. A 10-minute time window was used [34], which

assumes that visitors do not view the page for more

than 10 minutes.

2. Maximal forward reference transaction identifi-

cation [35] produced lists of URLs, which are

referred to as transactions.

3. Some resulting transactions contained the same

URLs next to each other. This is likely to be

caused by refreshing the Web page, so subsequent

occurrences of the same URL were removed.

1Available from The Internet Traffic Archive

(http://ita.ee.lbl.gov/)
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Table 2: The first 4 records from the EPA dataset

Host Date Request

HTTP Bytes

reply in

code reply

141.243.1.172 [29/Aug/1995:23:53:25] “GET /Software.html HTTP/1.0” 200 1497

query2.lycos.cs.cmu.edu [29/Aug/1995:23:53:36] “GET /Consumer.html HTTP/1.0” 200 1325

tanuki.twics.com [29/Aug/1995:23:53:53] “GET /News.html HTTP/1.0” 200 1014

wpbfl2-45.gate.net [29/Aug/1995:23:54:15] “GET / HTTP/1.0” 200 4889

4. Two URL requests are required to determine the

page view time of a URL by calculating the dif-

ference in timestamps. For example, history.html

accessed at 12:00:10 and contact-us.html accessed

at 12:00:30 has a view time of 20 seconds.

Transactions with 2 or fewer URLs were removed

to ensure that a page view time can be calculated.

5. For FuzzyApriori, the dataset was partitioned by

hour.

5.2. Methodology

The methodology for evaluating the approaches on

the real-world EPA dataset is described. The aim of the

evaluation is to identify whether the GA-based approach

can discover rules that the traditional approach cannot.

This is a novel approach to traditional methodologies

because the focus is on discovering lost rules on

a real-world dataset, which is a new unrecognised

problem that warrants a different methodology [4]. The

methodology for evaluation is the same as Matthews et

al. [4], but the analysis of the results is simplified to

improve clarity.

The linguistic labels and membership functions are

defined first. The traditional and GA-based approaches

were run using the same linguistic labels and member-

ship functions. The result was two sets of temporal

fuzzy association rules: one set containing the tradi-

tional fuzzy set representation, and the other containing

the 2-tuple linguistic representation. The two sets of

rules were compared to identify rules that matched and

rules that did not match.

The method of rule comparison from IRL was used

[4]. Each clause of the rule is compared. If the

items/URLs and linguistic labels of two clauses match,

then the lateral displacements are compared. The lateral

displacements are considered to be the same if the

difference in absolute values of lateral displacements is

less than a lateral displacement threshold of 0.5. For

example, for a lateral displacement threshold of 0.5 and

two lateral displacements, -0.45 and -0.05, the absolute

difference is 0.4 so the fuzzy sets are considered to be

the same.

5.3. Results

The two approaches for discovering temporal fuzzy

association rules were run and the rules were compared.

Results of the comparison and an example of a lost rule

are presented here. The algorithms were implemented

in Java within the KEEL tool (Knowledge Extraction

based on Evolutionary Learning) [36]. The experiments

were conducted on a personal computer with a 64-bit 2

GHz dual-core processor and 3 GB RAM. FuzzyApriori

had a minimum temporal fuzzy support of 0.0011 and

a minimum confidence of 0.5. Rules are discarded

because their measures fall below either the minimum

temporal fuzzy support or the minimum confidence.

The minimum confidence was not set high, so that

rules are not discarded because of low confidence when

the rules have high temporal fuzzy support. The

reason for the minimum confidence value is that the

temporal fuzzy support is a key factor in a temporal

pattern. Furthermore, the minimum confidence was

increased from 0.05 in our previous approach [4]. The

population size was 50, and the PCBLX crossover

operator parameter was 1 [4]. IRL was configured

to produce the same percentage of rule lengths as

FuzzyApriori. For example, if FuzzyApriori produced

50% with length 2 and 50% with length 3, then IRL

produced 50% with length 2 and 50% with length 3.

Initially, the GA-based approach was run once to

assess a typical run. Table 3 shows statistics of both

approaches. The GA-based approach was limited to

100 rules and the systematic search with FuzzyApriori

discovered 762 rules. The arithmetic mean of temporal

fuzzy support was higher for the GA-based approach,

but it had a lower confidence value. The differences in

distributions of both measures are shown in Figures 2

and 3. The GA-based approach takes longer, but this

is outweighed by its benefit of discovering rules with

higher temporal fuzzy support.
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Table 3: Results for FuzzyApriori and one run of CHC

Measure CHC FuzzyApriori

Number of Rules 100 782

Arithmetic mean of temporal fuzzy support (4 s.f.) 0.0039 0.0017

Arithmetic mean of confidence (4 s.f.) 0.6078 0.7918

Execution time (minutes) 1422.65 1.52

CHC

FA

0.001 0.003 0.005

Temporal Fuzzy Support

Figure 2: Boxplot of temporal fuzzy support for FuzzyApriori (FA)

and one run of CHC.

CHC

FA

0.2 0.4 0.6 0.8 1.0

Confidence

Figure 3: Boxplot of confidence for FuzzyApriori (FA) and one run

of CHC.

The evolution of the best fitness for one run of CHC

(one iteration of IRL) is shown in Figure 4. It can

be observed that the best fitness increases through the

generations. The large jumps in best fitness are likely

to be caused by a change in nominal data (e.g., item,

linguistic label) in the chromosome rather than interval

data (e.g., lateral displacement).

The method of evaluation from Matthews et al. [4],

which is stated in Section 5, is now used. The purpose

is to identify what rules the GA-based approach can

discover that a traditional approach cannot discover

in Web log data. The experiments that follow were

conducted by running the GA-based approach 30 times

and the percentages are arithmetic means of all runs.

Tables 4 and 5 show that 49.23% of the 100 rules

discovered with the GA-based approach were also

discovered with FuzzyApriori. Of those 49.23% from

the GA-based approach, 2.93% had a reduction in

temporal fuzzy support and 46.30% had an increase in

0 200 400 600 800 1000
1

2

3

4

·10−3

Number of generations

B
es

t
fi

tn
es

s

Figure 4: Best fitness during one run of CHC.

temporal fuzzy support. When analysing confidence

of the same 49.23% of rules, 9.20% had a reduction,

0.30% did not change and 39.73% had an increase.

The GA-based approach has rediscovered 49.23% of

rules that were already discovered by FuzzyApriori.

However, the quality increased significantly for the

majority of these rules. Over half the rules (50.77%)

were only discovered with the GA-based approach.

These 50.77% were not discovered by FuzzyApriori

because they fell below one or both thresholds.

Table 4: Analysis of temporal fuzzy support for rules discovered in

CHC and FuzzyApriori (FA). Percentages show how the GA-based

approach changed the measure with a decrease (-ve(%)), no change

(0(%)), and an increase (+ve(%)).

Arithmetic mean of change in

Temporal Fuzzy Support

-ve(%) 0(%) +ve(%) Total(%)

CHC and FA 2.93 0.00 46.30 49.23

CHC only 0.00 0.00 50.77 50.77

It is important to understand which of the 50.77%

rules in the EPA dataset are now above the thresholds.

When a rule is above both thresholds, it is deemed to

be significant. Table 6 shows the percentage of rules

that were below the threshold(s), and the percentage of

rules now above the threshold(s). Rules now above the

6



Table 5: Analysis of confidence for rules discovered in CHC and

FuzzyApriori (FA). Percentages show how the GA-based approach

changed the measure with a decrease (-ve(%)), no change (0(%)), and

an increase (+ve(%)).

Arithmetic mean of change in

Confidence

-ve(%) 0(%) +ve(%) Total(%)

CHC and FA 9.20 0.30 39.73 49.23

CHC only 9.33 0.24 41.20 50.77

thresholds are significant to this research because the

GA-based approach has learnt the lateral displacement

of membership functions so that a rule is now above the

threshold(s).

The results are reported using percentage, which is

a relative measure of the 100 rules. It is important to

note that increasing the number of rules in IRL may

not discover more lost rules than those discovered in the

100 rules. In such case, the percentage would decrease.

However, lost rules are still discovered, and it may only

be one rule that is of great significance/interest to the

user.

An example of a temporal fuzzy association rule is

presented below. The rule was not discovered with

FuzzyApriori, because the temporal fuzzy support of

0.0005 was below the threshold of 0.0011, and the

confidence of 0.44 was below the threshold of 0.5.

Endpoints (unixtime): 807127200–807130800

Rule: IF view time of /Rules.html is medium

Rule: THEN view time of / is medium

Temporal Fuzzy Support: 0.0005

Confidence: 0.44

The same example rule was discovered with the GA-

based approach, as shown below, but with lateral dis-

placements from the 2-tuple linguistic representation.

The rule demonstrates knowledge that was lost with

a traditional approach, but learnt with the GA-based

approach.

Endpoints (unixtime): 807127200–807130800

Rule: IF view time of /Rules.html is (medium, -0.49)

Rule: THEN view time of / is (medium, -0.49)

Temporal Fuzzy Support: 0.004

Confidence: 0.67

Further experiments were conducted with CHC and

FuzzyApriori on a synthetic market basket dataset to

examine scalability and parameter settings. Preliminary

results showed that increasing the number of trans-

actions from 10,000 to 90,000 transactions (same as

Web site visitors) produced a constant number of lost

rules and execution time is linear. And, increasing

the number of items from 1000 to 5000 items (same

as URLs) decreased the number of lost rules and the

execution time is linear. Full experimentation and

statistical analysis on more real-world examples are

subject of our ongoing future work.

6. Conclusions

We have demonstrated the problem of losing tem-

poral fuzzy association rules on real-world Web log

data for the first time and presented a novel solution.

Our previous approach of using a GA and the 2-

tuple linguistic representation has been improved by

transforming the dataset to a graph, which ensures

valid itemsets are discovered, and modifying the fitness

function.

The execution time of the GA-based approach is

longer, however, the contribution to knowledge is

that it can discover rules that a traditional approach

cannot, and the rules have higher temporal fuzzy

support. The GA-based approach is recommended

as complementary to existing algorithms, because it

discovers extra rules that a traditional algorithm does

not. The decision to use this complementary approach

can rely on understanding what temporal changes may

be present in the application domain (e.g., seasonal

and/or scheduled events).

It is important to note that lowering minimum sup-

port/confidence would overcome the problem of losing

rules with traditional approaches, however, the number

of rules increases, which is undesirable in association

rule mining. Further work will explore different

enhancements, and different approaches to tackle the

same problem.

Appendix A. Algorithms

Algorithm 1. IRL with CHC

Begin

While maximum number of iterations not reached

do

Generate initial population

Evaluate initial population and initialise L

While maximum number of fitness evaluations

not reached do

7



Table 6: Rules below threshold and rules above threshold

Discarded by Greater than or equal to

threshold(s) (%) threshold(s) (%)

Below min. temporal fuzzy support only 8.30 8.30

Below min. confidence only 27.03 5.90

Below both (above both) 15.43 11.13

Total 50.77 25.33

Select individuals from parents

Recombine individuals to form offspring

Evaluate offspring

Combine offspring with parents, and select

the best N individuals for the next popula-

tion.

If there are no new individuals, or the best

chromosome does not change, then L = L−1.

If L < 0 then reinitialise the population

End (While)

Add best rule to final rule set

End (While)

End

Algorithm 2. HybridCrossover

Inputs:

k ← Length of rule;

P← Two parent chromosomes;

Outputs:

O; // Two offspring chromosomes

Begin

n← 0; // Initialise loop variable to first index

O ← P; // Create offspring from identical copies of

parents;

If offspring have matching items Then

Move clauses, containing matching items, to

same loci;

End (If)

While n < k do // Loop through every index in rule

If O items are identical AND linguistic labels are

identical Then

Uniform crossover of lateral displacement

using parent centric BLX-α (PCBLX-α);

Uniform crossover of antecedent-consequent

parameter using swap;

End (If)

If O items are identical AND linguistic labels are

not identical Then

Uniform crossover of {linguistic label, lateral

displacement} using swap;

Uniform crossover of antecedent-consequent

parameter using swap;

End (If)

If O items are not identical Then

If O1 is present in endpoints of O2 using

Algorithm CheckGraph AND O2 is present

in endpoints of O1 using Algorithm Check-

Graph Then

Uniform crossover of {item, linguistic

label, lateral displacement} using swap;

Uniform crossover of antecedent-

consequent parameter using swap;

End (If)

End (If)

n← n + 1; // Increment loop variable

End (While)

End

Algorithm 3. CheckGraph

Inputs:

k ← Length of itemset to be checked;

I ← Itemset to be checked;

j ← Candidate item from itemset I that is to be

checked;

M ← Adjacency matrix of graph of dataset;

(el, eu) ← Lower and upper endpoints of temporal

period;

8



Outputs:

TRUE or FALSE

Begin

n← 0; // Initialise loop variable to first index

T ← ∅; // Initialise set of transactions to the empty

set

p← Clause index of candidate item j;

While n < k do // Loop through every index in

itemset

// If index of candidate item not equal to current

index

If n , p Then

// If T used for first time

If n = 0 OR p = 0 Then

// Initialise

T ← MIn , j that are >= el and < eu;

Else

T ← T ∩ MIn , j; // Update transaction IDs

set with transactions containing candidate

item ( j) and current item (In)

End (If)

End (If)

n← n + 1; // Increment loop variable

End (While)

If T = ∅ Then return FALSE;

Else return TRUE;

End (If)

End
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