2,203 research outputs found

    Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study.

    Get PDF
    The E4 allele of the ApoE gene has consistently been shown to be related to an increased risk of Alzheimer's disease (AD). The E4 allele is also associated with functional and structural grey matter (GM) changes in healthy young, middle-aged and older subjects. Here, we assess volumes of deep grey matter structures of 22 healthy younger ApoE4 carriers and 22 non-carriers (20-38 years). Volumes of the nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, thalamus and brain stem were calculated by FMRIB's Integrated Registration and Segmentation Tool (FIRST) algorithm. A significant drop in volume was found in the right hippocampus of ApoE4 carriers (ApoE4+) relative to non-carriers (ApoE4-), while there was a borderline significant decrease in the volume of the left hippocampus of ApoE4 carriers. The volumes of no other structures were found to be significantly affected by genotype. Atrophy has been found to be a sensitive marker of neurodegenerative changes, and our results show that within a healthy young population, the presence of the ApoE4+ carrier gene leads to volume reduction in a structure that is vitally important for memory formation. Our results suggest that the hippocampus may be particularly vulnerable to further degeneration in ApoE4 carriers as they enter middle and old age. Although volume reductions were noted bilaterally in the hippocampus, atrophy was more pronounced in the right hippocampus. This finding relates to previous work which has noted a compensatory increase in right hemisphere activity in ApoE4 carriers in response to preclinical declines in memory function. Possession of the ApoE4 allele may lead to greater predilection for right hemisphere atrophy even in healthy young subjects in their twenties

    Apolipoprotein E and Alzheimer’s disease: The influence of apolipoprotein E on amyloid- and other amyloidogenic proteins

    Get PDF

    Human central nervous system (CNS) ApoE isoforms are increased by age, differentially altered by amyloidosis, and relative amounts reversed in the CNS compared with plasma

    Get PDF
    The risk of Alzheimer's disease (AD) is highly dependent on apolipoprotein-E (apoE) genotype. The reasons for apoE isoform-selective risk are uncertain; however, both the amounts and structure of human apoE isoforms have been hypothesized to lead to amyloidosis increasing the risk for AD. To address the hypothesis that amounts of apoE isoforms are different in the human CNS, we developed a novel isoform-specific method to accurately quantify apoE isoforms in clinically relevant samples. The method utilizes an antibody-free enrichment step and isotope-labeled physiologically relevant lipoprotein particle standards produced by immortalized astrocytes. We applied this method to a cohort of well characterized clinical samples and observed the following findings. The apoE isoform amounts are not different in cerebrospinal fluid (CSF) from young normal controls, suggesting that the amount of apoE isoforms is not the reason for risk of amyloidosis prior to the onset of advanced age. We did, however, observe an age-related increase in both apoE isoforms. In contrast to normal aging, the presence of amyloid increased apoE3, whereas apoE4 was unchanged or decreased. Importantly, for heterozygotes, the apoE4/apoE3 isoform ratio was increased in the CNS, although the reverse was true in the periphery. Finally, CSF apoE levels, but not plasma apoE levels, correlated with CSF β-amyloid levels. Collectively, these findings support the hypothesis that CNS and peripheral apoE are separate pools and differentially regulated. Furthermore, these results suggest that apoE mechanisms for the risk of amyloidosis and AD are related to an interaction between apoE, aging, and the amount of amyloid burden

    White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines.

    Get PDF
    The apolipoprotein E4 (ApoE4) is an established risk factor for Alzheimer's disease (AD). Previous work has shown that this allele is associated with functional (fMRI) changes as well structural grey matter (GM) changes in healthy young, middle-aged and older subjects. Here, we assess the diffusion characteristics and the white matter (WM) tracts of healthy young (20-38 years) ApoE4 carriers and non-carriers. No significant differences in diffusion indices were found between young carriers (ApoE4+) and non-carriers (ApoE4-). There were also no significant differences between the groups in terms of normalised GM or WM volume. A feature selection algorithm (ReliefF) was used to select the most salient voxels from the diffusion data for subsequent classification with support vector machines (SVMs). SVMs were capable of classifying ApoE4 carrier and non-carrier groups with an extremely high level of accuracy. The top 500 voxels selected by ReliefF were then used as seeds for tractography which identified a WM network that included regions of the parietal lobe, the cingulum bundle and the dorsolateral frontal lobe. There was a non-significant decrease in volume of this WM network in the ApoE4 carrier group. Our results indicate that there are subtle WM differences between healthy young ApoE4 carriers and non-carriers and that the WM network identified may be particularly vulnerable to further degeneration in ApoE4 carriers as they enter middle and old age

    Impact of genotype on EPA and DHA status and responsiveness to increased intakes

    Get PDF
    At a population level, cardioprotective and cognitive actions of the fish oil (FO) derived long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been extensively demonstrated. In addition to dietary intake, which is limited for many individuals, EPA and DHA status is dependent on the efficiency of their biosynthesis from α-linolenic acid. Gender and common gene variants have been identified as influencing the rate-limiting desaturase and elongase enzymes. Response to a particular intake or status is also highly heterogeneous and likely influenced by genetic variants which impacts on EPA and DHA metabolism and tissue partitioning, transcription factor activity, or physiological end-point regulation. Here available literature relating genotype to tissue LC n-3 PUFA status and response to FO intervention is considered. It is concluded that the available evidence is relatively limited, with much of the variability unexplained, though APOE and FADS genotypes are emerging as being important. Although numerous genotype × LC-n3 PUFA × phenotype associations have been described, few have been confirmed in independent studies. A more comprehensive understanding of the genetic, physiological and behavioural modulators of EPA and DHA status and response to intervention is needed to allow refinement of current dietary LC n-3 PUFA recommendations and stratification of advice to ‘vulnerable’ and responsive subgroups

    Brain APOE expression quantitative trait loci-based association study identified one susceptibility locus for Alzheimer\u27s disease by interacting with APOE epsilon 4

    Get PDF
    AbstractSome studies have demonstrated interactions of AD-risk single nucleotide polymorphisms (SNPs) in non-APOE regions with APOE genotype. Nevertheless, no study reported interactions of expression quantitative trait locus (eQTL) for APOE with APOE genotype. In present study, we included 9286 unrelated AD patients and 8479 normal controls from 12 cohorts of NIA Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 34 unrelated brain eQTLs for APOE were compiled from BRAINEAC and GTEx. We used multi-covariate logistic regression analysis to identify eQTLs interacted with APOE ε4. Adjusted for age and gender, substantia nigra eQTL rs438811 for APOE showed significantly strong interaction with APOE ε4 status (OR, 1.448; CI, 1.124–1.430; P-value = 7.94 × 10−6). APOE ε4-based sub-group analyses revealed that carrying one minor allele T of rs438811 can increase the opportunity of developing to AD by 26.75% in APOE ε4 carriers but not in non-carriers. We revealed substantia nigra eQTL rs438811 for APOE can interact with APOE ε4 and confers risk in APOE ε4 carriers only.</jats:p

    Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders.

    Get PDF
    Apolipoprotein (apo) E was initially described as a lipid transport protein and major ligand for low density lipoprotein (LDL) receptors with a role in cholesterol metabolism and cardiovascular disease. It has since emerged as a major risk factor (causative gene) for Alzheimer's disease and other neurodegenerative disorders. Detailed understanding of the structural features of the three isoforms (apoE2, apoE3, and apoE4), which differ by only a single amino acid interchange, has elucidated their unique functions. ApoE2 and apoE4 increase the risk for heart disease: apoE2 increases atherogenic lipoprotein levels (it binds poorly to LDL receptors), and apoE4 increases LDL levels (it binds preferentially to triglyceride-rich, very low density lipoproteins, leading to downregulation of LDL receptors). ApoE4 also increases the risk for neurodegenerative diseases, decreases their age of onset, or alters their progression. ApoE4 likely causes neurodegeneration secondary to its abnormal structure, caused by an interaction between its carboxyl- and amino-terminal domains, called domain interaction. When neurons are stressed or injured, they synthesize apoE to redistribute cholesterol for neuronal repair or remodeling. However, because of its altered structure, neuronal apoE4 undergoes neuron-specific proteolysis, generating neurotoxic fragments (12-29 kDa) that escape the secretory pathway and cause mitochondrial dysfunction and cytoskeletal alterations, including tau phosphorylation. ApoE4-associated pathology can be prevented by small-molecule structure correctors that block domain interaction by converting apoE4 to a molecule that resembles apoE3 both structurally and functionally. Structure correctors are a potential therapeutic approach to reduce apoE4 pathology in both cardiovascular and neurological disorders

    Apolipoprotein E genotype, vitamin E, and Alzheimer’s disease prevention

    Get PDF
    Alzheimer’s disease (AD) is a multi-causal neurodegenerative disorder and the most common form of dementia in the elderly. Although extensively investigated, the exact underlying molecular and cellular mechanisms of AD remain to be fully elucidated. Amongst other factors, AD may be associated with increased oxidative stress and chronic inflammation. Although dietary antioxidants, in particular vitamin E, have been related to a reduction of AD risk, data from clinical studies are still contradictory. Aside from increasing age, one key risk factor for sporadic AD is the apolipoprotein E4 genotype. As major component of lipoproteins the apolipoprotein E (apoE) is of crucial importance in the distribution of cholesterol and lipids within the brain and thus, involved in neuronal membrane repair mechanisms. However, apoE4 has been associated with several altered cellular features including an impaired neuronal repair function and a higher neuronal vulnerability towards oxidative insults leading to an increased AD risk. In this context, the role of antioxidant supplementation as a primary prevention strategy for subjects at high risk including carriers of the apoε4 allele, is discussed

    Human ApoE ε2 promotes regulatory mechanisms of bioenergetic and synaptic function in female brain: a focus on V-type H+-ATPase

    Get PDF
    Humans possess three major isoforms of the apolipoprotein E (ApoE) gene encoded by three alleles: ApoE ε2 (ApoE2), ApoE ε3 (ApoE3), and ApoE ε4 (ApoE4). It is established that the three ApoE isoforms confer differential susceptibility to Alzheimer’s disease (AD); however, an in-depth molecular understanding of the underlying mechanisms is currently unavailable. In this study, we examined the cortical proteome differences among the three ApoE isoforms using 6-month-old female, human ApoE2, ApoE3, and ApoE4 gene-targeted replacement mice and two-dimensional proteomic analyses. The results reveal that the three ApoE brains differ primarily in two areas: cellular bioenergetics and synaptic transmission. Of particular significance, we show for the first time that the three ApoE brains differentially express a key component of the catalytic domain of the V-type H+-ATPase (Atp6v), a proton pump that mediates the concentration of neurotransmitters into synaptic vesicles and thus is crucial in synaptic transmission. Specifically, our data demonstrate that ApoE2 brain exhibits significantly higher levels of the B subunit of Atp6v (Atp6v1B2) when compared to both ApoE3 and ApoE4 brains, with ApoE4 brain exhibiting the lowest expression. Our additional analyses show that Atp6v1B2 is significantly impacted by aging and AD pathology and the data suggest that Atp6v1B2 deficiency could play a role in the progressive loss of synaptic integrity during early development of AD. Collectively, our findings indicate that human ApoE isoforms differentially modulate regulatory mechanisms of bioenergetic and synaptic function in female brain. A more efficient and robust status in both areas could serve as a potential mechanism contributing to the neuroprotective and cognition-favoring properties associated with the ApoE2 genotype
    • …
    corecore