2,005 research outputs found

    Chaotic multi-objective optimization based design of fractional order PI{\lambda}D{\mu} controller in AVR system

    Get PDF
    In this paper, a fractional order (FO) PI{\lambda}D\mu controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI{\lambda}D\mu and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI{\lambda}D\mu controller.Comment: 30 pages, 14 figure

    Fractional Order Load-Frequency Control of Interconnected Power Systems Using Chaotic Multi-objective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fractional order proportional-integral-derivative (FOPID) controllers are designed for load frequency control (LFC) of two interconnected power systems. Conflicting time domain design objectives are considered in a multi objective optimization (MOO) based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO e.g. hypervolume indicator, moment of inertia based diversity metric, total Pareto spread, spacing metric are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers

    Performance Enhancement of Automatic Generation Control by Developing a Detailed Load Frequency Control Model and an Adaptive Performance Index Criterion

    Get PDF
    The imbalance between electrical loads and power supplied by the system generators causes the frequency deviations in a power system. Maintaining the frequency close to its nominal value as well as in its allowed deviation range is the first objective of the automatic generation control (AGC). Nowadays, in interconnected power systems, several control areas are connected to each other by tie-lines and power is transferred between control areas based on a specific schedule. The second objective of automatic generation control is to keep the tie-lines power flow close to their secluded values.;An accurate and realistic load frequency control (LFC) model is very essential to have an effective and adaptive AGC strategy. The first objective of this thesis is to present the importance of considering communication delay in LFC model missing in most of the studies investigating AGC and its performance using different methods and optimization techniques. The second objective of this thesis is to present a comprehensive LFC model, which contains all of the physical constraints such as governor dead-band, generation rate and delay of communication links. The third objective is to evaluate different controllers and performance index criteria used in conventional AGC. Finally, the last objective is to introduce an adaptive performance index criterion cable of defining settling time and overshoot which cannot be applied by other performance index criteria.;Different optimization methods have been used to optimize the performance of AGC such as genetic algorithm, fuzzy logic and neural networks. Genetic algorithm has been used widely in LFC studies so it is chosen to be employed in this study to optimize the performance of controllers in the utilized AGC scheme. Integrator controller is the most common controller employed in LFC studies because of its design simplicity, however, in this thesis proportional-integral-derivative (PID) controller is employed to obtain the best performance.;This study shows that without a precise and detailed LFC model, results of different techniques or strategies used in AGC will not be accurate and practical even when they are derived by optimization methods. Moreover, it is shown that PID controller has the best performance in comparison with other controllers used in LFC studies when physical constraints are not considered in the LFC model. Furthermore, a robust GA based control system is designed considering all of physical constraints for a three-area power system and the simulation results show that it can track the load change and restore the frequency of all control areas to the nominal value effectively. Different performance index criteria are evaluated and results show that in specific cases they cannot be completely accurate or reliable to assess the performance of AGC schemes. Finally, an effective and adaptive performance index is introduced and simulation results validate its effectiveness and reliability

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Review on load frequency control for power system stability

    Get PDF
    Power system stability is the capability of power systems to maintain load magnitude within specified limits under steady state conditions in electrical power transmission. In modern days, the electrical power systems have grown in terms of complexity due to increasing interconnected power line exchange. For that, an inherent of controllers were essential to correct the deviation in the presence of external disturbances. This paper hence aims to review the basic concepts of power system stability in load frequency control. Various control techniques were analyzed and presented. Power system stability can be classified in terms of method to improve power system stability, which are rotor angle stability, frequency stability and voltage stability. It is found that each method has different purpose and focus on solving different types of problem occurred. It is hoped that this study can contribute to clarify the different types of power system stability in terms of where it occurs, and which is the best method based on different situation

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented
    • …
    corecore