53 research outputs found

    Design and performance study of algorithms for consensus in sparse, mobile ad-hoc networks

    Get PDF
    PhD ThesisMobile Ad-hoc Networks (MANETs) are self-organizing wireless networks that consist of mobile wireless devices (nodes). These networks operate without the aid of any form of supporting infrastructure, and thus need the participating nodes to co-operate by forwarding each other’s messages. MANETs can be deployed when urgent temporary communications are required or when installing network infrastructure is considered too costly or too slow, for example in environments such as battlefields, crisis management or space exploration. Consensus is central to several applications including collaborative ones which a MANET can facilitate for mobile users. This thesis solves the consensus problem in a sparse MANET in which a node can at times have no other node in its wireless range and useful end-to-end connectivity between nodes can just be a temporary feature that emerges at arbitrary intervals of time for any given node pair. Efficient one-to-many dissemination, essential for consensus, now becomes a challenge: enough number of destinations cannot deliver a multicast unless nodes retain the multicast message for exercising opportunistic forwarding. Seeking to keep storage and bandwidth costs low, we propose two protocols. An eventually relinquishing (}RC) protocol that does not store messages for long is used for attempting at consensus, and an eventually quiescent (}QC) one that stops forwarding messages after a while is used for concluding consensus. Use of }RC protocol poses additional challenges for consensus, when the fraction, f n, of nodes that can crash is: 1 4 f n < 1 2 . Consensus latency and packet overhead are measured through simulation indicating that they are not too high to be feasible in MANETs. They both decrease considerably even for a modest increase in network density.Damascus University

    The eventual clusterer oracle and its application to consensus in MANETs

    Get PDF
    2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Fault-Tolerant Consensus with an Abstract MAC Layer

    Get PDF
    In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms work for any number of failures, require no advance knowledge of the network participants or network size, and guarantee termination with high probability after a number of broadcasts that are polynomial in the network size. Our first algorithm satisfies the standard agreement property, while our second trades a faster termination guarantee in exchange for a looser agreement property in which most nodes agree on the same value. These are the first known fault-tolerant consensus algorithms for this model. In addition to our main upper bound results, we explore the gap between the abstract MAC layer and the standard asynchronous message passing model by proving fault-tolerant consensus is impossible in the latter in the absence of information regarding the network participants, even if we assume no faults, allow randomized solutions, and provide the algorithm a constant-factor approximation of the network size

    Byzantine fault-tolerant agreement protocols for wireless Ad hoc networks

    Get PDF
    Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2010.The thesis investigates the problem of fault- and intrusion-tolerant consensus in resource-constrained wireless ad hoc networks. This is a fundamental problem in distributed computing because it abstracts the need to coordinate activities among various nodes. It has been shown to be a building block for several other important distributed computing problems like state-machine replication and atomic broadcast. The thesis begins by making a thorough performance assessment of existing intrusion-tolerant consensus protocols, which shows that the performance bottlenecks of current solutions are in part related to their system modeling assumptions. Based on these results, the communication failure model is identified as a model that simultaneously captures the reality of wireless ad hoc networks and allows the design of efficient protocols. Unfortunately, the model is subject to an impossibility result stating that there is no deterministic algorithm that allows n nodes to reach agreement if more than n2 omission transmission failures can occur in a communication step. This result is valid even under strict timing assumptions (i.e., a synchronous system). The thesis applies randomization techniques in increasingly weaker variants of this model, until an efficient intrusion-tolerant consensus protocol is achieved. The first variant simplifies the problem by restricting the number of nodes that may be at the source of a transmission failure at each communication step. An algorithm is designed that tolerates f dynamic nodes at the source of faulty transmissions in a system with a total of n 3f + 1 nodes. The second variant imposes no restrictions on the pattern of transmission failures. The proposed algorithm effectively circumvents the Santoro- Widmayer impossibility result for the first time. It allows k out of n nodes to decide despite dn 2 e(nk)+k2 omission failures per communication step. This algorithm also has the interesting property of guaranteeing safety during arbitrary periods of unrestricted message loss. The final variant shares the same properties of the previous one, but relaxes the model in the sense that the system is asynchronous and that a static subset of nodes may be malicious. The obtained algorithm, called Turquois, admits f < n 3 malicious nodes, and ensures progress in communication steps where dnf 2 e(n k f) + k 2. The algorithm is subject to a comparative performance evaluation against other intrusiontolerant protocols. The results show that, as the system scales, Turquois outperforms the other protocols by more than an order of magnitude.Esta tese investiga o problema do consenso tolerante a faltas acidentais e maliciosas em redes ad hoc sem fios. Trata-se de um problema fundamental que captura a essência da coordenação em actividades envolvendo vários nós de um sistema, sendo um bloco construtor de outros importantes problemas dos sistemas distribuídos como a replicação de máquina de estados ou a difusão atómica. A tese começa por efectuar uma avaliação de desempenho a protocolos tolerantes a intrusões já existentes na literatura. Os resultados mostram que as limitações de desempenho das soluções existentes estão em parte relacionadas com o seu modelo de sistema. Baseado nestes resultados, é identificado o modelo de falhas de comunicação como um modelo que simultaneamente permite capturar o ambiente das redes ad hoc sem fios e projectar protocolos eficientes. Todavia, o modelo é restrito por um resultado de impossibilidade que afirma não existir algoritmo algum que permita a n nós chegaram a acordo num sistema que admita mais do que n2 transmissões omissas num dado passo de comunicação. Este resultado é válido mesmo sob fortes hipóteses temporais (i.e., em sistemas síncronos) A tese aplica técnicas de aleatoriedade em variantes progressivamente mais fracas do modelo até ser alcançado um protocolo eficiente e tolerante a intrusões. A primeira variante do modelo, de forma a simplificar o problema, restringe o número de nós que estão na origem de transmissões faltosas. É apresentado um algoritmo que tolera f nós dinâmicos na origem de transmissões faltosas em sistemas com um total de n 3f + 1 nós. A segunda variante do modelo não impõe quaisquer restrições no padrão de transmissões faltosas. É apresentado um algoritmo que contorna efectivamente o resultado de impossibilidade Santoro-Widmayer pela primeira vez e que permite a k de n nós efectuarem progresso nos passos de comunicação em que o número de transmissões omissas seja dn 2 e(n k) + k 2. O algoritmo possui ainda a interessante propriedade de tolerar períodos arbitrários em que o número de transmissões omissas seja superior a . A última variante do modelo partilha das mesmas características da variante anterior, mas com pressupostos mais fracos sobre o sistema. Em particular, assume-se que o sistema é assíncrono e que um subconjunto estático dos nós pode ser malicioso. O algoritmo apresentado, denominado Turquois, admite f < n 3 nós maliciosos e assegura progresso nos passos de comunicação em que dnf 2 e(n k f) + k 2. O algoritmo é sujeito a uma análise de desempenho comparativa com outros protocolos na literatura. Os resultados demonstram que, à medida que o número de nós no sistema aumenta, o desempenho do protocolo Turquois ultrapassa os restantes em mais do que uma ordem de magnitude.FC

    Distributed consensus in wireless network

    Get PDF
    Connected autonomous systems, which are powered by the synergistic integration of the Internet of Things (IoT), Artificial Intelligence (AI), and 5G technologies, predominantly rely on a central node for making mission-critical decisions. This reliance poses a significant challenge that the condition and capability of the central node largely determine the reliability and effectiveness of decision-making. Maintaining such a centralized system, especially in large-scale wireless networks, can be prohibitively expensive and encounters scalability challenges. In light of these limitations, there’s a compelling need for innovative methods to address the increasing demands of reliability and latency, especially in mission-critical networks where cooperative decision-making is paramount. One promising avenue lies in the distributed consensus protocol, a mechanism intrinsic to distributed computing systems. These protocols offer enhanced robustness, ensuring continued functionality and responsiveness in decision-making even in the face of potential node or communication failures. This thesis pivots on the idea of leveraging distributed consensus to bolster the reliability of mission-critical decision-making within wireless networks, which delves deep into the performance characteristics of wireless distributed consensus, analyzing and subsequently optimizing its attributes, specifically focusing on reliability and latency. The research begins with a fundamental model of consensus reliability in an crash fault tolerance protocol Raft. A novel metric termed ReliabilityGain is introduced to analyze the performance of distributed consensus in wireless network. This innovative concept elucidates the linear correlation between the reliability inherent to consensus-driven decision-making and the reliability of communication link transmission. An intriguing discovery made in my study is the inherent trade-off between the time latency of achieving consensus and its reliability. These two variables appear to be in contradiction, which brings further performance optimization issues. The performance of the Crash and Byzantine fault tolerance protocol is scrutinized and they are compared with original centralized consensus. This exploration becomes particularly pertinent when communication failures occur in wireless distributed consensus. The analytical results are juxtaposed with performance metrics derived from a centralized consensus mechanism. This comparative analysis illuminates the relative merits and demerits of these consensus strategies, evaluated from the dual perspectives of comprehensive consensus reliability and communication latency. In light of the insights gained from the detailed analysis of the Raft and Hotstuff BFT protocols, my thesis further ventures into the realm of optimization strategies for wireless distributed consensus. A central facet of this exploration is the introduction of a tailored communication resource allocation scheme. This scheme, rooted in maximizing the performance of consensus mechanisms, dynamically assesses the network conditions and allocates communication resources such as transmit power and bandwidth to ensure efficient and timely decision-making, which ensures that even in varied and unpredictable network conditions, consensus can be achieved with minimized latency and maximized reliability. The research introduces an adaptive protocol of distributed consensus in wireless network. This proposed adaptive protocol’s strength lies in its ability to autonomously construct consensus-enabled network even if node failures or communication disruptions occur, which ensures that the network’s decision-making process remains uninterrupted and efficient, irrespective of external challenges. The sharding mechanism, which is regarded as an effective solution to scalability issues in distributed system, does not only aid in managing vast networks more efficiently but also ensure that any disruption in one shard cannot compromise the functionality of the entire network. Therefore, this thesis shows the reliability and security analysis of sharding that implemented in wireless distributed system. In essence, these intertwined strategies, rooted in the intricate dance of communication resource allocation, adaptability, and sharding, together form the bedrock of my contributions to enhancing the performance of wireless distributed consensus

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systèmes de transport intelligents (STI) seront éventuellement fournis dans un proche avenir pour la sécurité et le confort des personnes lors de leurs déplacements sur les routes. Les réseaux ad-hoc véhiculaires (VANETs) représentent l'élément clé des STI. Les VANETs sont formés par des véhicules qui communiquent entre eux et avec l'infrastructure. En effet, les véhicules pourront échanger des messages qui comprennent, par exemple, des informations sur la circulation routière, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusés par des véhicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de réagir à temps (p.ex., ralentir), les messages d'urgence doivent être diffusés de manière fiable dans un délai très court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal à pertes, les terminaux cachés, les interférences et la bande passante limitée, qui compliquent énormément la satisfaction des exigences de fiabilité et de délai des messages d'urgence. Dans cette thèse, en guise de première contribution, nous proposons un schéma de diffusion efficace à plusieurs sauts, appelé Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; à l'intérieur de la zone arrière de l'expéditeur, les partitions sont calculées de sorte qu'en moyenne chaque partition contient au moins un seul véhicule; l'objectif est de s'assurer que seul un véhicule dans la partition la plus éloignée (de l'expéditeur) est utilisé pour diffuser le message, jusqu'au saut suivant; ceci donne lieu à un délai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mécanisme d'établissement de liaison, qui utilise des tonalités occupées, est proposé pour résoudre le problème du problème de terminal caché. Dans les VANETs, la Multidiffusion, c'est-à-dire la transmission d'un message d'une source à un nombre limité de véhicules connus en tant que destinations, est très importante. Par rapport à la diffusion unique, avec Multidiffusion, la source peut simultanément prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'économiser de la bande passante et de réduire la congestion du réseau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivité de l'arbre de multidiffusion est un problème majeur. Comme deuxième contribution, nous proposons deux approches pour modéliser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la première approche considère le nombre de segments de route impliqués dans l'arbre de multidiffusion et (ii) la seconde approche considère le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposée pour chaque approche. Pour assurer la qualité de service de l'arbre de multidiffusion, des procédures efficaces sont proposées pour le suivi des destinations et la surveillance de la qualité de service des segments de route. Comme troisième contribution, nous étudions le problème de la congestion causée par le routage du trafic de données dans les VANETs. Nous proposons (1) une approche de routage basée sur l’infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient déjà les données dans les VANETs. Les nouvelles demandes de routage sont traitées de sorte qu'aucun segment de route ne soit surchargé par plusieurs chemins de routage croisés. Au lieu d'acheminer les données en utilisant des chemins de routage sur un nombre limité de segments de route, notre approche équilibre la charge des données en utilisant des chemins de routage sur l'ensemble des tronçons routiers urbains, dans le but d'empêcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basée sur le réseau défini par logiciel (SDN) pour surveiller la connectivité VANET en temps réel et les délais de transmission sur chaque segment de route. Les données de surveillance sont utilisées en entrée de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    Encounter gossip: a high coverage broadcast protocol for MANET

    Get PDF
    PhD ThesisMobile Ad-hoc Networks (MANETs) allow deployment of mobile wireless devices or nodes in a range of environments without any fixed infrastructure and hence at a minimal setup cost. Broadcast support that assures a high coverage (i.e., a large fraction of nodes receiving a broadcast) is essential for hosting user applications, and is also non-trivial to achieve due to the nature of devices and mobility. We propose Encounter Gossip, a novel broadcast protocol, which holds minimal state and is unaware of network topology. Coverage obtained can be made arbitrarily close to 1 at a moderate cost of extra message tra c, even in partition-prone networks. Under certain simplifying assumptions, it is shown that a high coverage is achieved by making a total of O(n ln n) broadcasts, where n is the number of nodes, and the time to propagate a message is O(ln n). The e ect of various network parameters on the protocol performance is examined. We then propose modifications to minimise the number of redundant transmissions without compromising the achieved coverage. Two approaches are pursued: timer based and history based. The e ectiveness of each of these approaches is assessed through an extensive set of simulation experiments in the context of two mobility models. Specifically, we introduce a new heuristic alpha policy which achieves significant reduction in redundancy with negligible reduction in coverage. A generalisation to multiple broadcasts proceeding in parallel is proposed and the protocol is refined to reduce problems that can occur due to the effects of high mobility when transmitting a large number of messages. Finally, we implement and validate Encounter Gossip in the context of a real-life mobile ad-hoc network. All these investigations suggest that the protocol, together with the proposed modifications and re nements, is suited to MANETs of varying degrees of node densities and speeds

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Mobile Autonomous Sensing Unit (MASU): a framework that supports distributed pervasive data sensing

    Get PDF
    Pervasive data sensing is a major issue that transverses various research areas and application domains. It allows identifying people’s behaviour and patterns without overwhelming the monitored persons. Although there are many pervasive data sensing applications, they are typically focused on addressing specific problems in a single application domain, making them difficult to generalize or reuse. On the other hand, the platforms for supporting pervasive data sensing impose restrictions to the devices and operational environments that make them unsuitable for monitoring loosely-coupled or fully distributed work. In order to help address this challenge this paper present a framework that supports distributed pervasive data sensing in a generic way. Developers can use this framework to facilitate the implementations of their applications, thus reducing complexity and effort in such an activity. The framework was evaluated using simulations and also through an empirical test, and the obtained results indicate that it is useful to support such a sensing activity in loosely-coupled or fully distributed work scenarios.Peer ReviewedPostprint (published version

    Round-Based Consensus Algorithms, Predicate Implementations and Quantitative Analysis

    Get PDF
    Fault-tolerant computing is the art and science of building computer systems that continue to operate normally in the presence of faults. The fault tolerance field covers a wide spectrum of research area ranging from computer hardware to computer software. A common approach to obtain a fault-tolerant system is using software replication. However, maintaining the state of the replicas consistent is not an easy task, even though the understanding of the problems related to replication has significantly evolved over the past thirty years. Consensus is a fundamental building block to provide consistency in any fault-tolerant distributed system. A large number of algorithms have been proposed to solve the consensus problem in different systems. The efficiency of several consensus algorithms has been studied theoretically and practically. A common metric to evaluate the performance of consensus algorithms is the number of communication steps or the number of rounds (in round-based algorithms) for deciding. A large amount of improvements to consensus algorithms have been proposed to reduce this number under different assumptions, e.g., nice runs. However, the efficiency expressed in terms of number of rounds does not predict the time it takes to decide (including the time needed by the system to stabilize or not). Following this idea, the thesis investigates the round model abstraction to represent consensus algorithms, with benign and Byzantine faults, in a concise and modular way. The goal of the thesis is first to decouple the consensus algorithm from irrelevant details of implementations, such as synchronization, then study different possible implementations for a given consensus algorithm, and finally propose a more general analytical analysis for different consensus algorithms. The first part of the thesis considers the round-based consensus algorithms with benign faults. In this context, the round model allowed us to separate the consensus algorithms from the round implementation, to propose different round implementations, to improve existing round implementations by making them swift, and to provide quantitative analysis of different algorithms. The second part of the thesis considers the round-based consensus algorithms with Byzantine faults. In this context, there is a gap between theoretical consensus algorithms and practical Byzantine fault-tolerant protocols. The round model allowed us to fill the gap by better understanding existing protocols, and enabled us to express existing protocols in a simple and modular way, to obtain simplified proofs, to discover new protocols such as decentralized (non leader-based) algorithms, and finally to perform precise timing analysis to compare different algorithms. The last part of the thesis shows, as an example, how a round-based consensus algorithm that tolerates benign faults can be extended to wireless mobile ad hoc networks using an adequate communication layer. We have validated our implementation by running simulations in single hop and multi-hop wireless networks
    corecore