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Abstract

Fault-tolerant computing is the art and science of building computer sys-
tems that continue to operate normally in the presence of faults. The fault
tolerance field covers a wide spectrum of research area ranging from com-
puter hardware to computer software. A common approach to obtain a
fault-tolerant system is using software replication. However, maintaining
the state of the replicas consistent is not an easy task, even though the un-
derstanding of the problems related to replication has significantly evolved
over the past thirty years.

Consensus is a fundamental building block to provide consistency in
any fault-tolerant distributed system. A large number of algorithms have
been proposed to solve the consensus problem in different systems. The
efficiency of several consensus algorithms has been studied theoretically and
practically. A common metric to evaluate the performance of consensus
algorithms is the number of communication steps or the number of rounds
(in round-based algorithms) for deciding. A large amount of improvements
to consensus algorithms have been proposed to reduce this number under
different assumptions, e.g., nice runs. However, the efficiency expressed in
terms of number of rounds does not predict the time it takes to decide
(including the time needed by the system to stabilize or not).

Following this idea, the thesis investigates the round model abstrac-
tion to represent consensus algorithms, with benign and Byzantine faults,
in a concise and modular way. The goal of the thesis is first to decouple
the consensus algorithm from irrelevant details of implementations, such as
synchronization, then study different possible implementations for a given
consensus algorithm, and finally propose a more general analytical analysis
for different consensus algorithms.

The first part of the thesis considers the round-based consensus algo-
rithms with benign faults. In this context, the round model allowed us
to separate the consensus algorithms from the round implementation, to
propose different round implementations, to improve existing round imple-
mentations by making them swift, and to provide quantitative analysis of
different algorithms.

The second part of the thesis considers the round-based consensus al-
gorithms with Byzantine faults. In this context, there is a gap between
theoretical consensus algorithms and practical Byzantine fault-tolerant pro-
tocols. The round model allowed us to fill the gap by better understanding
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Abstract

existing protocols, and enabled us to express existing protocols in a sim-
ple and modular way, to obtain simplified proofs, to discover new protocols
such as decentralized (non leader-based) algorithms, and finally to perform
precise timing analysis to compare different algorithms.

The last part of the thesis shows, as an example, how a round-based
consensus algorithm that tolerates benign faults can be extended to wire-
less mobile ad hoc networks using an adequate communication layer. We
have validated our implementation by running simulations in single hop and
multi-hop wireless networks.

Keywords: distributed algorithms, fault tolerance, consensus problem, par-
tial synchrony, heard-of model, round model, round-based algorithms, quan-
titative analysis, swift algorithms, Byzantine consensus, leader-based algo-
rithms, decentralized algorithms, wireless ad hoc networks.
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Résumé

La tolérance aux fautes est l’art et la science de la construction de systèmes
informatiques qui continuent à fonctionner normalement en présence de
fautes. Le champ de la tolérance aux fautes est large, et couvre différents do-
maines de recherche allant du matériel informatique au logiciel. La réplication
est une des techniques standard de tolérance aux fautes. Toutefois, main-
tenir cohérent l’état des répliques n’est pas une tâche aisée, même si la
compréhension des problèmes liés à la réplication a progressée de manière
significative durant les trentes dernières années.

Le problème du consensus est un élément fondamental pour assurer la
cohérence des données dans un système réparti tolérant aux fautes. Un
grand nombre d’algorithmes ont été proposés pour résoudre ce problème
dans différents modèles de systèmes. L’efficacité des algorithmes de con-
sensus a été étudié théoriquement et pratiquement. Une mesure commune
pour évaluer la performance de ces algorithmes est le nombre d’étapes de
communication ou le nombre de rondes (dans le cas d’algorithmes en ron-
des) pour décider. Une grande quantité d’améliorations aux algorithmes de
consensus ont été proposés pour réduire ce nombre dans le cas de différentes
hypothèses, tels par exemple les “nice runs”. Cependant, le nombre de ron-
des ne permet pas de prévoir le temps nécssaire pour décider (y compris le
temps nécessaire par le système pour stabiliser ou pas).

Motivée par cette observation, la thèse étudie le modèle de ronde pour
exprimer les algorithmes de consensus, que ce soit avec des fautes bénignes
ou Byzantines, sous une forme concise et modulaire. L’objectif de la thèse
est d’abord de découpler l’algorithme de consensus des détails de mises en
œuvre, comme la synchronisation, puis d’étudier différentes implémentations
possibles pour un algorithme de consensus donné, et enfin de proposer une
analyse analytique plus générale de différents algorithmes de consensus.

La première partie de la thèse considère les algorithmes de consensus en
rondes avec des fautes bénignes. Dans ce contexte, le modèle de ronde nous
a permis de séparer les algorithmes de consensus de la mise en œuvre des
rondes, de proposer différentes implémentations de rondes, d’améliorer les
implémentations de rondes existantes en les rendant “swift”, et de fournir
une analyse quantitative de différents algorithmes.

La deuxième partie de la thèse considère les algorithmes de consensus
en rondes avec fautes Byzantines. Dans ce contexte, il existe un écart en-
tre d’une part les algorithmes de consensus théoriques, et d’autre part les
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Résumé

protocoles pratiques tolérants les fautes Byzantines. Le modèle de ronde
nous a permis de réduire cet écart grâce à une meilleure compréhension des
protocoles pratiques existants. Il nous a permis d’exprimer des protocoles
existants de manière simple et modulaire, d’obtenir des preuves simplifiées,
de découvrir de nouveaux protocoles tels les algorithmes décentralisés (sans
leader), et enfin d’effectuer des analyses temporelles précises pour comparer
différents algorithmes.

La dernière partie de la thèse montre, à titre d’exemple, comment un
algorithme de consensus en rondes tolérant les fautes bénignes peut être
étendu aux réseaux mobiles ad hoc sans fil en utilisant une couche de com-
munication adéquate. Nous avons validé cette approche par des simulations
dans un réseau sans fil à un hop et à plusieurs hops.

Mots-clés: algorithmes distribués, tolérance aux fautes, problème de con-
sensus, système partiellement synchrone, modèle “heard-of ”, modèle en ron-
des, algorithmes en rondes, analyse quantitative, algorithmes “swift”, con-
sensus Byzantin, algorithmes avec leader, algorithmes décentralisés, réseau
ad hoc sans fil.
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as Cendrine Favez, Dr. Olivier Rütti, Dr. Richard Ekwall, and Dr. Sergio
Mena.

I warmly thank all my Swiss friends for helping me integrating in Switzer-
land and giving me a good reason to learn French, and all my Iranian friends
for all the memorable moments that we shared together.

I express my deepest gratitude to my whole family for their unconditional
support and continuous encouragement. Finally, my warmest thanks belong
to Hooman, for being such a wonderful husband, and for his patience, love,
and support. Without his encouragement and understanding it would have
been impossible for me to finish this thesis. A special thought goes to the
baby that we are eagerly expecting.

The research presented in this thesis was partly funded by the Swiss Na-
tional Science Foundation under grant number 200021-111701. I thankfully
acknowledge this support.

v



Acknowledgments

vi



Contents

1 Introduction 1

1.1 Thesis Context . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Definitions and Background 9

2.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Fault model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Communication channels . . . . . . . . . . . . . . . . 13

2.2 Heard-Of Model and Benign Faults . . . . . . . . . . . . . . . 14

2.3 Round Model and Byzantine Faults . . . . . . . . . . . . . . . 16

2.4 Agreement Problems . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Consensus problem . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Byzantine consensus . . . . . . . . . . . . . . . . . . . 17

2.4.3 Interactive consistency . . . . . . . . . . . . . . . . . . 18

2.5 Broadcast Protocols . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Consistent Broadcast . . . . . . . . . . . . . . . . . . . 18

2.5.2 Reliable Broadcast . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Atomic Broadcast . . . . . . . . . . . . . . . . . . . . 19

2.5.4 Terminating Reliable Broadcast . . . . . . . . . . . . . 19

2.6 State Machine Replication . . . . . . . . . . . . . . . . . . . . 20

Part I Benign Faults

3 Quantitative Analysis of Consensus Algorithms 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Consensus algorithms analyzed . . . . . . . . . . . . . 28

vii



Contents

3.2.2 Relation of predicates . . . . . . . . . . . . . . . . . . 32

3.2.3 Implementation of predicates . . . . . . . . . . . . . . 32

3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The Generic Protocol . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Full Synchronization . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Outline of full synchronization . . . . . . . . . . . . . 37

3.5.2 Timeout τC . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.3 Length of a good period . . . . . . . . . . . . . . . . . 39

3.6 Phase Synchronization . . . . . . . . . . . . . . . . . . . . . . 40

3.6.1 Outline of phase synchronization . . . . . . . . . . . . 40

3.6.2 Timeouts τC1, τC2, τC3 . . . . . . . . . . . . . . . . . . 41

3.6.3 Length of a good period . . . . . . . . . . . . . . . . . 43

3.6.4 Piggybacking . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Synchronization by a Coordinator . . . . . . . . . . . . . . . 44

3.8 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8.1 Impact of clock drift . . . . . . . . . . . . . . . . . . . 45

3.8.2 Analysis of the results for drift-free clocks . . . . . . . 46

3.8.3 Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Swift Algorithms for Repeated Consensus 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Swift algorithms . . . . . . . . . . . . . . . . . . . . . 54

4.3 A Non-Swift Round-based Algorithm . . . . . . . . . . . . . . 55

4.3.1 Consensus algorithm . . . . . . . . . . . . . . . . . . . 55

4.3.2 Round implementation . . . . . . . . . . . . . . . . . . 55

4.3.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 Non-swiftness . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 A Failure Detector-based Algorithm that is Swift . . . . . . . 60

4.5 A New Round Implementation that is Swift . . . . . . . . . . 63

4.5.1 Issue to address . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 New round implementation . . . . . . . . . . . . . . . 64

4.5.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.4 Swiftness . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 A Swift Round Implementation using an Adaptive Timeout . 70

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



Contents

Part II Byzantine Faults

5 Decentralized Byzantine Consensus Algorithm 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Byzantine Faults: From Synchrony to Partial Synchrony . . . 80

5.3.1 Decentralized consensus algorithm for a synchronous
system . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Decentralized Consensus Algorithm for a Partially Syn-
chronous System . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Authenticated Byzantine Faults . . . . . . . . . . . . . . . . . 97

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Timing Analysis of Leader-based and
Decentralized Byzantine Consensus Algorithms 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Consensus Algorithms . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Consensus algorithms with WIC rounds . . . . . . . . 102

6.3.2 Implementation of a WIC round . . . . . . . . . . . . 102

6.3.3 The four combinations . . . . . . . . . . . . . . . . . . 104

6.4 Round Implementation . . . . . . . . . . . . . . . . . . . . . . 104

6.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . 105

6.4.2 Timing properties of Algorithm 6.2 . . . . . . . . . . . 108

6.4.3 Parameterizations of Algorithm 6.2 . . . . . . . . . . . 108

6.4.4 Correctness Proofs of Algorithm 6.2 . . . . . . . . . . 108

6.5 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 Best case analysis . . . . . . . . . . . . . . . . . . . . 111

6.5.2 Worst case analysis . . . . . . . . . . . . . . . . . . . . 112

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Part III Wireless Networks

ix



Contents

7 Extending Paxos/LastVoting for Wireless Ad
hoc Networks 121

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Consensus problem and algorithm . . . . . . . . . . . . . . . 124

7.3.1 The Paxos/LastVoting algorithm . . . . . . . . . . . . 124
7.4 Communication layer for LastVoting . . . . . . . . . . . . . . 125

7.4.1 System model . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.3 Algorithm 7.2: the upper communication layer . . . . 127
7.4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.5 The lower communication layer: broadcast and con-

vergecast . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Conclusion 145

8.1 Thesis Assessment . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . 147

A 163

A.1 Impact of background traffic . . . . . . . . . . . . . . . . . . . 163
A.2 Impact of coordinator crash . . . . . . . . . . . . . . . . . . . 164

x



List of Figures

2.1 Heard-Of model and HO sets. . . . . . . . . . . . . . . . . . . 15

3.1 The two layers in the HO model when implementing predicates. 32

3.2 Full synchronization: timeout - Lemma 3.2. . . . . . . . . . . 38

3.3 Full synchronization: length of good period - Theorem 3.1. . 40

3.4 Phase synchronization: timeouts - Lemmas 3.3–3.5. . . . . . . 42

3.5 Phase synchronization: length of good period - Theorem 3.2. 43

4.1 Simple round implementation: timeout TO ≥ 2∆ + (2n+ 5)Φ. 57

4.2 Simple round implementation: length of good period - Theo-
rem 4.1 and Lemma 4.3. . . . . . . . . . . . . . . . . . . . . . 59

4.3 Simple solution is not correct. . . . . . . . . . . . . . . . . . . 63

4.4 Swift round implementation: timeout TO ≥ TOD + 2∆ +
(2n+ 5)Φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Swift round implementation: timeout TOA ≥ TO +∆+(2n+
1)Φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Swift round implementation: length of good period - Theo-
rem 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 An overview of the decentralized algorithm. . . . . . . . . . . 80

5.2 The tree construction. . . . . . . . . . . . . . . . . . . . . . . 82

5.3 The tree constructed by a correct process in an asynchronous
period with t = 1, n = 4. The value received from a correct
process is shown by a solid square. The value received from a
Byzantine process is shown by a dashed square. For a given
node α, the value inside the square represents val(α) and the
value beside the square represents newval(α). . . . . . . . . . 83

5.4 Illustration for agreement of A1 with t = 1, n = 6. The value
received from a correct process is shown by a square. The
value received from a Byzantine process is shown by a dashed
square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Illustration for termination of A1 with t = 1, n = 6 (v′ < v). . 88

6.1 Overview of the Byzantine consensus algorithms. . . . . . . . 101

6.2 Comparison for k = 1. The lower curve represents the fault-
free case and the higher curve represents the worst case. . . . 114

xi



List of Figures

6.3 Comparison for t = 1. The lower curve represents the fault-
free case and the higher curve represents the worst case. . . . 114

6.4 Comparison of different strategies with k = 1 and t = 1. The
lower curve represents the fault-free case and the higher curve
represents the worst case. . . . . . . . . . . . . . . . . . . . . 115

6.5 Comparing different mechanisms for timeout. . . . . . . . . . 117
6.6 Comparison of hybrid algorithm for k = 1 and strategy B.

The lower curve represents the fault-free case and the higher
curve represents the worst case. . . . . . . . . . . . . . . . . . 118

7.1 Architecture of the Paxos/LastVoting protocol. . . . . . . . . 127
7.2 Broadcast (red arrows) vs. convergecast (blue arrows). p1, p2 ∈

Contender (p2 > p1). p2 becomes the coordinator. . . . . . . 134
7.3 Square grid of size 5× 5 in network area 400× 400 m2. . . . 136
7.4 Impact of network density and jitter. . . . . . . . . . . . . . . 137
7.5 Impact of timeout in single-hop networks. . . . . . . . . . . . 138
7.6 Impact of density in single-hop networks. . . . . . . . . . . . 138
7.7 Impact of network diameter in multi-hop networks. . . . . . . 139
7.8 Impact of contenders. . . . . . . . . . . . . . . . . . . . . . . 140
7.9 Impact of message loss. . . . . . . . . . . . . . . . . . . . . . 141
7.10 Impact of mobility. . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1 Impact of background traffic on consensus throughput. . . . . 163
A.2 Impact of coordinator crash on consensus throughput. . . . . 164

xii



List of Tables

3.1 Summary of results of full, phase, and coord synchronization
for α = β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Comparing different round implementations for benign faults. 73

5.1 Summary of results for decentralized algorithms. . . . . . . . 96

6.1 Results for the combination of different algorithms. . . . . . . 104
6.2 Different strategies for timeout. . . . . . . . . . . . . . . . . . 108
6.3 Parameters for algorithms A1 and A2 in the worst case. . . . 112
6.4 Parameters for the hybrid algorithms. . . . . . . . . . . . . . 117

xiii



List of Tables

xiv



Chapter 1

Introduction

“Whatever can go wrong will go wrong at the worst possible time and in the
worst possible way.”

Murphy’s law

1.1 Thesis Context

Availability and reliability have become increasingly important in today’s
computer dependent world [Hen99]. Availability is defined as the property
that a system is ready to be used immediately. Reliability refers to the
property that a system can run continuously without failure. In many ap-
plications where computers are used, outage or malfunction is expensive
or unacceptable. Just imagine that the database system of your banking
account is not accessible when you have an important payment, or the com-
puter system in an aircraft is malfunctioning. You would certainly change
your mind about opening a banking account or taking a plane. To achieve
the needed availability and reliability, fault-tolerant systems are required.

Fault-tolerance using replication One way to implement a fault-tolerant
service is by using multiple servers that may fail independently. The state of
the service is replicated at these servers, and updates are coordinated so that
even when a subset of servers fail, the service remains available. One ap-
proach for replication management is the state machine replication or active
replication, which has no centralized control [Lam78, Lam84, Sch90, Sch93].
In this approach, replica coordination and consistency are ensured by enforc-
ing all replicas to receive and process the same sequence of requests. This
condition can be achieved by a broadcast primitive called atomic broadcast,
which guarantees that all correct processes deliver the same messages in the
same order [HT93, DSU04]. Atomic broadcast is a problem that involves
achieving some sort of agreement – namely agreement on the sequence of

1



Chapter 1. Introduction

messages delivered by correct processes – in a fault-tolerant manner, and so
has a common flavor with the consensus problem [Fis83]. Indeed, from the
solvability point of view, consensus and atomic broadcast are equivalent in
asynchronous systems with crash failures and also in asynchronous systems
with arbitrary faults [CT96].

Consensus problem In the consensus problem, each process starts with an
initial value from a fixed set V , and must eventually reach a common and
irrevocable decision from V . Consensus can be easy or difficult to achieve
depending on the communication system (synchronous or asynchronous)
and the failure assumptions. In the famous paper [FLP85], Fischer, Lynch
and Paterson showed the impossibility of deterministic consensus among two
or more processes in an asynchronous distributed system, in the presence of
crashes (so called FLP impossibility result). Since then, the consensus prob-
lem has been examined under many different synchrony and failure assump-
tions. For example, Pease, Shostak and Lamport [PSL80], among others,
showed that consensus cannot be achieved in a synchronous environment if
even one third of the processes are maliciously faulty – that is, if they act in
a way that simulates an agent that tries to make the other processors make
inconsistent decisions. Another result establishes that in a synchronous dis-
tributed system in which messages can be dropped, consensus is not possible
even if none of the processes fail [Lyn96].

Following FLP impossibility result, several system models have been
proposed, mainly the partially synchronous systems [DDS87, DLS88], and
the asynchronous system augmented with failure detectors [CT96].

The failure detector model was really successful for the limited crash-
stop model. The model allowed to identify the weakest failure detector that
can be used to solve consensus [CHT96]. However, the efforts to extend the
notion of failure detectors to more general models, such as crash-recovery
model [ACT98], and arbitrary faults [DS98], were less successful.

On the other hand, the partially synchronous model was a more general
approach, with the ability to consider process crash-recovery and arbitrary
failures, but provides too low level abstraction to express consensus algo-
rithms. It is indeed useful to provide higher level abstractions for expressing
consensus algorithms.

Few years later, Gafni [Gaf98] has extended the round-based model to
abstract away the implementation of the communication between processes,
being shared memory or message-passing. The properties of the communica-
tion mechanisms and system guarantees are captured as a whole by a single
module that is called Round by Round Failure Detector (for short RRFD)
module. The module unifies the synchrony degree and the failure model in
the same abstract entity. However, the RRFD model and its general exten-
sion GIRAF [KS06] consider process failure as with failure detectors, and

2



1.1. Thesis Context

ignore transient link failures. Santoro and Widmayer [SW89, SW05, SW07]
have introduced the transmission fault model. A transmission fault can be
due to a process failure as well as link failure.

Consensus and the HO model Following the ideas of RRFD model and
transmission faults, the recently proposed Heard-Of model (HO for short)
encapsulates the notion of faulty component (process or link) in a same
transmission fault, and proposes communication predicates that provide a
better abstraction to solve consensus [CBS09]. In the first and last part of
the thesis the HO model is used to solve the consensus problem.

The HO model handles benign failures, being static or dynamic, per-
manent or transient, in a unified framework. In fact, the model can natu-
rally represent link failures, contrary to models with failure detectors [CT96,
Gaf98]. Another feature of the HO model is that contrary to the random
model [BO83, Rab83] or the failure detector model, there is no notion of
“augmenting” asynchronous systems with external devices (oracles) that
processes may query: the communication predicate corresponding to an HO
system is an integral part of the model and should be rather seen as defining
the environment. In terms of implementation, the HO abstraction can be
supported by the messages sent by the consensus algorithm (only few addi-
tional messages are added, depending on the communication predicate).

In the HO model, the conditions that ensure the safety and the liveness of
the algorithms are expressed as predicates on rounds. The distributed con-
sensus algorithms represented in this new model are simple and elegant. The
abstraction provided with this model facilitates the proofs. An algorithm
expressed in the HO model remains the same for reliable links, unreliable
links, crash failures and send-omission failures. For solving consensus, con-
trary to the failure detector model, the HO model does not require some
property to hold forever. Using the HO model, it is possible to quantify the
time that a given algorithm takes to solve consensus. This leads to better
understanding of consensus algorithms and provides meaningful comparison
results.

Consensus and Byzantine faults Contrary to the partially synchronous
systems, failure detectors cannot handle Byzantine (arbitrary) faults. The
reason is that the definition of a Byzantine behavior is related to an algo-
rithm: It is impossible to achieve a complete separation of failure detec-
tors from the algorithm using them. To overcome this problem, the notion
of muteness detectors has been suggested [DS97, DS98, KMMS97, BHR00].
However, it is not clear what system model could allow the implementation
of muteness detectors, which is an inherent limitation of the approach.

The HO model is not limited to deal only with benign faults. It can be
extended to handle Byzantine faults [BH09] or value faults [BCBG+07] (with
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value faults messages may be corrupted, i.e., at any round r, the message
received by process q from process p may be different than the message that
p has sent to q). The algorithms presented in those papers are simple and
concise comparing to the existing protocols. However, they require strong
predicates for safety or liveness. For instance, [BH09] require (Byzantine)
processes to behave correctly for some time. Note that these algorithms are
not comparable with existing Byzantine fault-tolerant algorithms.

The second part of the thesis considers the basic round model instead of
the HO model for expressing consensus algorithms that tolerate Byzantine
faults. The round model abstraction allowed us to better understanding of
the existing Byzantine protocols, define modular abstractions and propose
simple Byzantine consensus algorithms. It also enables us to perform an ex-
act and precise analytical analysis of the algorithms, figure out the best and
worst case results, and provide a rigorous comparison of different algorithms.

Consensus and MANETs A mobile ad-hoc network (MANET) consists of
mobile hosts equipped with wireless communication devices. The transmis-
sion of a mobile host is received by all hosts within its transmission range,
due to the broadcast nature of wireless communication and omni-directional
antennae. If two wireless hosts are out of their transmission range, other
mobile hosts located between them can forward their messages. Due to the
mobility of wireless hosts, each host needs to be able to route messages;
since no statically established infrastructure or centralized administration is
available. The mobile hosts can move arbitrarily and can be turned on or off
without notifying other hosts. The mobility and autonomy introduces a dy-
namic topology. Ad hoc networks can also benefit from replicating services
across nodes in order to increase their availability.

Consensus algorithms that use failure detectors are constructed on top
of the reliable links. In fact either the system must provide reliable links,
or reliable links need to be implemented on top of the unreliable system
links. However, reliable links cannot be provided for free in all environ-
ments. For instance, providing reliable broadcast in MANETs is quite chal-
lenging [SCS02, MCS+06, KS07]. In general, most abstractions inherited
from the wired networks are usually not appropriate to MANETs.

The last part of the thesis considers consensus problem for MANETs
with benign faults. We have noticed that the HO model is an appropriate
model to extend consensus algorithms from classical networks to MANETs,
since the model can easily handle packet loss and packet collision. The
essential difference between one-hop and multi-hop algorithms can be en-
capsulated within an adequate communication layer. Finally, the required
connectivity of the network graph can be enclosed in a liveness predicate.
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1.2 Thesis Contribution

The thesis has the following main contributions:

Quantitative analysis of consensus algorithms Consensus is one of the key
problems in fault-tolerant distributed computing. A very popular model for
solving consensus with benign faults is failure detector model defined by
Chandra and Toueg. However, the failure detector model has some limita-
tions as already discussed. We consider instead the HO model, and discuss
several implementations of communication predicates in a system that al-
ternates between good periods and bad periods. This approach allows us to
quantify the required length of a good period to solve one or more instances
of consensus. With our results, we can make several interesting observations
such as the number of rounds is in general not a good prediction for the time
needed to solve consensus.

Swift algorithms for repeated consensus The classical round-based model
implementation has a main drawback. Mainly, it does not allow making
progress at the speed of the system. We introduce the notion of a swift
algorithm. Informally, an algorithm that solves a repeated problem is swift,
if in a partial synchronous run of this algorithm, eventually no timeout
expires, i.e., the algorithm execution proceeds with the actual speed of the
network. This definition differs from other efficiency criteria for partial
synchronous systems.

Furthermore, we show that the notion of swiftness explains the rea-
son why failure detector based algorithms are typically more efficient than
round-based algorithms, since the former are naturally swift while the later
are naturally non-swift. We show that this is not an inherent difference be-
tween the models, and provide a round implementation that is swift, there-
fore performing similarly to failure detector algorithms while maintaining
the advantages of the round model.

Decentralized Byzantine consensus algorithms We also consider the con-
sensus problem in a partially synchronous system with Byzantine faults. It
turns out that, in the partially synchronous system, all deterministic algo-
rithms that solve consensus with Byzantine faults are leader-based. This is
not the case of benign faults, which raises the following fundamental ques-
tion: is it possible to design a deterministic Byzantine consensus algorithm
for a partially synchronous system that is not leader-based? We give a posi-
tive answer to this question, and present a decentralized (non leader-based)
algorithm that is resilient-optimal and signature-free.

We have designed our decentralized algorithm using a methodology that
consists of extending a synchronous consensus algorithm to a partially syn-
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chronous system using an asynchronous algorithm. While the asynchronous
algorithm ensures safety in all rounds, the synchronous algorithm provides
liveness in periods of synchrony.

Timing analysis of leader-based and decentralized Byzantine consensus
algorithms We compare two leader-based and decentralized algorithms for
Byzantine consensus with strong validity in an analytical way. We show that
for the algorithms we analyzed, in most cases, the decentralized variant of
the algorithm shows a better worst-case execution time. Moreover, for the
practically relevant case t ≤ 2 (t is the maximum number of Byzantine
processes), this worst-case execution time is even at least as good as the
execution time of the leader-based algorithms in fault-free runs.

Extending Paxos/LastVoting for wireless ad hoc networks Solving con-
sensus in wireless ad hoc networks has started to be addressed in several
papers. Most of these papers adopt system models similar to those devel-
oped for wired networks. These models are focused towards node failures
while ignoring link failures, and thus are poorly suited for wireless ad hoc
networks. The recently proposed HO model does not have this drawback.
We show that an existing algorithm expressed in the HO round model can
be used for multi-hop wireless ad hoc networks, if extended with an ade-
quate communication layer. The description of the communication layer is
augmented with simulation results that validate the feasibility of our ap-
proach and provide better understanding of the behavior of the wireless
environment.

1.3 Thesis Outline

The thesis is organized as following:

Definitions and background Chapter 2 specifies the different system mod-
els considered in this thesis and defines concepts such as the HO model and
the round model used throughout the thesis. This chapter also includes
formal definitions of the problems addressed in this thesis as a background.

Benign faults The first part of the thesis considers consensus problem with
benign faults. Chapter 3 presents a quantitative analysis of different round-
based consensus algorithms. Chapter 4 shows that round-based algorithms
can also make progress at the speed of the system. It introduces the notion
of a swift algorithm and presents a round-based consensus algorithm that is
swift.
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Byzantine faults The second part of the thesis considers consensus with
Byzantine faults. Chapter 5 presents two novel decentralized deterministic
consensus algorithms that tolerates Byzantine faults, without using digital
signatures. Chapter 6 compares the two variants of the Byzantine consensus
algorithms presented in Chapter 5, leader-based variant and decentralized
variant, in an analytical way, and shows that the decentralized variant out-
performs the leader-based variant in the worst case.

Wireless networks The last part of the thesis extends a round-based con-
sensus algorithm, that tolerates benign faults, for wireless ad hoc networks
using an adequate communication layer. The algorithm is evaluated by
simulation in single-hop and multi-hop wireless networks.

Conclusion Chapter 8 summarizes the main results of this work and iden-
tifies areas for future research.
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Chapter 2

Definitions and Background

The current chapter describes precisely all the assumptions and definitions
about the system considered throughout the thesis. We start with the def-
inition of the system model and synchrony assumptions. Then we describe
the fault model, including process failure and link failure. Finally we give
the definitions for the problems addressed in this thesis as a background.

2.1 System Models

We consider a set of n processes denoted by Π = {p1, . . . , pn}, with n > 2.
Processes communicate through message passing and do not have access
to a shared memory. Each pair of processes in the system is connected
by a point-to-point communication channel, except for processes in wireless
networks (Chapter 7). All the messages sent on the network are unique
and taken from a set M, except for messages sent by a Byzantine process
(Part II of the thesis).

Communication model: Processes are connected by a communication net-
work, modeled for each process p ∈ Π by a variable bufferp , which contains
all messages that have been sent to p but not yet received by p [DLS88].
Processes proceed by making steps, where a step is either a send or receive
step:

• In a send step, a single message can be sent to another process in the
system, i.e., when process p executes send(m, p) to q, the tuple 〈m, p〉
is placed in bufferq .

• In a receive step, some messages are received, i.e., when process p
executes receive(M), a set M ⊆ bufferp is removed from bufferp , and
delivered to p. Note that M may be empty.

In each step, some computation can be done.

9



Chapter 2. Definitions and Background

Configuration: A configuration C of the system consists of the internal
state of all processes, together with the content of the buffers. A step brings
the system from one configuration C to another configuration C ′. In the
context of consensus problem, defined later in Section 2.4, the valence of
a configuration C, denoted by val(C) is the set of possible decision values
in configurations reachable from C. If |val(C)| = 1, the configuration C is
univalent. If |val(C)| = 2, the configuration C is bivalent. A configuration
is called v-valent, if v is the only possible decision value of the configura-
tion [Sch09].

2.1.1 Synchrony

Synchronous system: In a synchronous system there is (i) a known bound
∆ on the transmission delay of messages, and (ii) a known bound Φ on the
relative speed of processes:

• Bound on message delay: If a message m is sent by process p to process
q at time t, then q receives the message no later than time t+ ∆.

• Bound on the relative speed of processes: If the fastest process takes
x time units to perform some computation step, then the slowest pro-
cess does not take more than x ·Φ time units to perform the same
computation step.

Asynchronous system: In an asynchronous system there is no bound on
the transmission delay of messages and no bound on the relative speed of
processes. The consequence is that in an asynchronous system, it is never
possible to know whether a process has crashed or not. Therefore, many
problems in distributed computing like consensus, atomic broadcast, etc.
are not solvable in this model in the presence of a single crash [FLP85].

Partially synchronous system: A partially synchronous system is an asyn-
chronous system that eventually becomes synchronous. Both processes and
communication links can be partially synchronous. Partially synchronous
models are more realistic than either completely synchronous or completely
asynchronous models, since real systems typically do use some timing in-
formation. There are two definitions for partially synchronous communica-
tion [DLS88]:

• Unknown bound: There is a bound on the transmission delay of mes-
sages, and a bound on the relative process speed, but the value of ∆
and Φ are unknown (the bounds depend on the run).

• Known bounds ∆ and Φ hold eventually: There exists a known ∆ and
Φ with the following property: For every run R, there is an unknown
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time, called Global Stabilization Time (GST ), such that the transmis-
sion delay of messages is bounded by ∆, and the relative process speed
is bounded by Φ after GST . It is also assumed that channels can lose
messages before GST , but are reliable (or quasi-reliable) after GST .

Chandra and Toueg define a weaker model of partial synchrony [CT96]:

• Unknown bound holds eventually: There is a bound on the transmis-
sion delay of messages, and a bound on the relative speed of processes,
but they are unknown and hold only after some unknown time GST .

Consider an algorithm A and different runs of the algorithm. Let Rsync
denote the set of synchronous runs of the algorithm, Rpart sync denote the
set of partially synchronous runs of the algorithm, and finally Rasync denote
the set of asynchronous runs of the algorithm. Following relation holds
between different runs of algorithm A:

Rasync ⊃ Rpart sync ⊃ Rsync.

Asynchronous system augmented with unreliable failure detectors: One
way to overcome the impossibility result in asynchronous system, is aug-
menting it with the notion of failure detector [CT96]. Each process pi has
access to a local failure detector model (FDi) that it can query. Each local
module FDi monitors the processes in the system and maintains a list of
those that it currently suspects to have crashed. Moreover,

• Each local failure detector can make a mistake by erroneously adding
processes to its list of suspects (i.e., it can suspect a process that has
not crashed). In other words, the failure detectors are unreliable.

• A local failure detector can change its mind by removing a process
from its list, if it believes that suspecting a process was a mistake.

• At a given time the failure detector modules at two different processes
may have different lists of suspects.

If we do not set any constraint on the output of the failure detectors, the
model does not add anything with respect to an asynchronous system, and
the FLP impossibility result still holds. The idea is to put requirements
on the output of the failure detectors. These requirements are expressed in
terms of two abstract properties, a completeness property and an accuracy
property. Completeness defines constrains with respect to crashed processes,
while accuracy defines constrains with respect to correct processes. For
instance, we have:

• Strong completeness: Eventually every process that crashes is perma-
nently suspected by every correct process.
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• Eventual strong accuracy: There is a time after which correct processes
are not suspected by any correct processes.

A pair (completeness property, accuracy property) defines a failure detec-
tor. We will only refer to the following failure detector in this thesis (see
Chapter 4):

• Eventual perfect failure detector ♦P: satisfies strong completeness and
eventual strong accuracy.

2.1.2 Fault model

In the thesis we consider both Byzantine and benign (non-Byzantine) faults.

Benign fault: In the benign fault model, processes follow their protocol
correctly, but they can crash at any time. In the first and last part of thesis
we use the notion of transmission fault instead of faulty component, which
handles the benign faults, being static or dynamic, permanent or transient,
in a unified way.

Transmission fault: Consider process p that is supposed to send a message
to process q. With failure detectors, q waits for the message from p unless
it suspects p. If p is correct, p may never be suspected. So, to avoid q
from being blocked, the solution requires the link between p and q to be
reliable (see Section 2.1.3). As a result, the fault model is asymmetric:
processes can fail, links never fail. Moreover, if messages are not received, the
responsibility is usually put on processes (sender), not on links. This leads
to the following question: is it actually necessary to put the responsibility of
the non reception of messages on some component (process or link)? The
answer is classically “yes”, as explained in [CBS07], even though finding
a “culprit” for the fault is actually not only irrelevant when solving e.g.
consensus, but is even harmful, since it leads to reasoning about transient
faults in terms of permanent faults. Indeed, if the real source for the non
reception of a message is some component C (link or process), and C is
not permanently faulty, identifying C and labeling it as “faulty” makes no
sense: in the future C might behave correctly. The logical consequence is
that, when handling transient faults, the right approach is to abstain from
the notion of “faulty” components.

Following [SW89], we ignore such culprits by introducing transmission
faults. When p is supposed to send message m to q, and m is not received,
we say that a transmission fault has occurred. A transmission faults does
not put the blame on any component, neither on p or q, nor on the link
between p and q. This simple approach allows us to handle permanent and
transient failures, i.e., crash-stop, crash-recovery and (transient) link faults,
uniformly in the context of benign faults.
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Byzantine fault: In the Byzantine fault model, processes may exhibit a
completely unconstrained behavior. Byzantine faults model a bit flip in the
memory of process p that leads p to send a message m′ different from m
the message it should have normally sent. Byzantine faults also model a
process that deliberately tries to deceive the other processes in the system,
by sending incorrect messages.

With Byzantine faults, a faulty process can crash or behave maliciously.
A correct process is a non-faulty process. Parameter t is a bound on the
number of faulty processes.

In the context of Byzantine faults, the assumption is that the immediate
sender of any message can be identified. In other words, when p receives a
message from q, it knows that the message was sent by q, and not by some
process q′ that tries to impersonate q. This is referred as authenticated chan-
nels in the literature and can be implemented using symmetric cryptography
in practice. For example, if the channel between p and q is authenticated,
then p knows that the messages received on this channel was sent by q. It
is also assumed that messages are not corrupted during the transmission.
Lamport refers to this fault model as oral messages in [LSP82].

Authenticated Byzantine fault: There is a different model in which mes-
sages are signed (using digital signatures based on public key cryptography)
with an assumed unforgeable signature. Consider process p that receives
a message m signed by q (notation m : q). Whether p receives this mes-
sage directly from q or through another process q′, p can rely on the fact
that the message was sent by q. This model is called authenticated Byzan-
tine faults [DLS88]. Lamport refers to this fault model as written messages
in [LSP82].

2.1.3 Communication channels

With respect to links (channels) the following definitions can be considered:

• Integrity (no creation, no duplication): Process q receives a message
m from process p at most once, and only if p previously sent m.

• Reliable link: A reliable link satisfies integrity and the following prop-
erty: If p sends message m to q and q is correct, then q eventually
receives m.

• Quasi-reliable link: A quasi-reliable link satisfies integrity and the
following property: If p and q are correct and p sends message m to q,
then q eventually receives m.

• Fair link: A fair link satisfies integrity and the following property: If
p sends infinitely many messages to q and q is correct, then q receives
infinitely many messages from p.

• Lossy link: A lossy link satisfies only integrity and may lose messages.
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We have the following relation between different links:

Reliable link ⇒ Quasi-reliable link ⇒ Fair link ⇒ Lossy link.

Let process q be correct. Assuming reliable links, if p sends message m
to process q at time t, and crashes at time t + 1, then q must eventually
receive m. This is not the case with quasi-reliable links, which defines a
weaker property. The reliable link definition does not adequately model
existing transport layers (e.g., TCP). However, reliable links are useful to
prove impossibility results. Two definitions are equivalent if processes do
not crash [Sch09].

2.2 Heard-Of Model and Benign Faults

In the context of benign faults, we consider the Heard-Of model [CBS09].
The Heard-Of model (HO for short) is a computational model for distributed
systems that combines the advantages of the Round-by-Round Fault De-
tectors (RRFD) model of Gafni [Gaf98] (an extension of the round model
introduced by Dwork, Lynch, Stockmeyer [DLS88]) and the Transmission
Fault model [SW89, SW90], but avoids their drawbacks. HO model is a
round-based model in which (1) synchrony degree and failure model are en-
capsulated in the same high-level abstraction, and (2) the notion of faulty
component (process or link) has totally disappeared. As a result, the HO
model accounts for transmission faults without specifying by whom nor why
such faults occur. The HO model handles benign faults, being static or
dynamic, permanent or transient, in a unified way.

HO algorithm: A computation in the HO model evolves in rounds. An
algorithm in the HO model consists, for each round r and process p ∈ Π, of
a sending function Srp and a transition function T rp . Let sp denote the current
state of process p. For each round r and each p, the sending function Srp(sp)
determines a vector of messages to be sent, one message for each process
(null if there is no message for this process). At the end of a round r,
p makes a state transition according to T rp (~µ, sp), where ~µ is the partial
vector of messages received in round r. Rounds are communication-closed:
a message sent in round r to q and not received by q in round r is lost.

HO predicate: We denote by HO(p, r) the set of processes (including it-
self) from which p receives a message at round r: HO(p, r) is the heard of
set of p in round r. If q /∈ HO(p, r), then the message sent by q to p in
round r was subject to a transmission failure. Communication predicates
are expressed over the sets (HO(p, r))p∈Π,r>0. For example,

∃r0, ∀p, q ∈ Π : HO(p, r0) = HO(q, r0)
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Figure 2.1: Heard-Of model and HO sets.

ensures the existence of some round r0 in which all processes hear of the
same set of processes. In the thesis we refer to this round as a space uniform
round. Another example is a communication predicate that ensures that in
every round r, all processes hear of a majority of processes:

∀r > 0, ∀p ∈ Π : |HO(p, r)| > n/2.

Figure 2.1 shows the HO set of processes in round r, assuming that a pro-
cesses always hears from itself.

HO machine: Let A = 〈Srp , T rp 〉 be an HO algorithm (based on the Srp
sending function and T rp transition function) and P a communication pred-
icate over the HO sets. The tuple 〈A,P〉 specifies an HO machine that can
be used to solve a problem.

A coordinated HO machine (CHO) is an extension of an HO machine
that includes the notion of coordinator. This allows the specification of
coordinator-based algorithms, by giving predicates not only over the HO
sets but also over the current coordinator. In a CHO machine, Coord(p, r)
denotes p’s coordinator at round r. The sending function Srp and transmis-
sion function T rp take the current coordinator as an additional parameter,
reflecting the fact that the messages to be sent and the state transitions
depend also on the coordinator.

Consensus algorithms, including coordinator-based algorithms, consist
of a sequence of one or more rounds that are repeatedly executed. This
sequence of one or more rounds is called a phase. Typically, the coordinator
is changed only at the beginning of a phase. This is the case of all the
coordinated algorithms we consider in the thesis; therefore we will use the
notation Coord(p, φ) to refer to the coordinator of process p during all the
rounds of phase φ.
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2.3 Round Model and Byzantine Faults

In the context of Byzantine faults, the classical approach is to distinguish
a faulty process from a correct one and put the synchrony assumption only
on the correct processes. In [BCBG+07], the authors have extended the
HO model for the value faults, which affect only the information that is
exchanged among processes and do not affect the state of the processes.
They obtain results that are not comparable with classical results.

In this thesis, we keep the classical definition of Byzantine faults and use
the basic round model [DLS88] on top of the system model – instead of the
HO model – in order to obtain the results that match the classical results.
In the round model, processing is divided into rounds of message exchange.
To be consistent with the rest of the thesis, we use the same notation as in
the HO model but we require predicates that hold only for correct processes.
We denote the set of correct processes by C (C ⊂ Π).

The message sent by a correct process in round r is denoted by σrp;
messages received by process p in round r are denoted by ~µrp (~µrp is a vector,
with one entry per process; ~µrp[q] = ⊥ means that p received no message
from q).

A round r fulfills integrity if any message received from a correct process
q in round r was sent in r by q, or no message is received:

PInt(r) ≡ ∀p, q ∈ C : ~µrp[q] ∈ {σrq ,⊥}

Synchronous round: In a partially synchronous system it is possible to
ensure the following property: there exists some round GSR (Global Stabi-
lization Round) such that for all rounds r ≥ GSR, the message sent in round
r by a correct process q to a correct process p is received by p in round r:

PSync(r) ≡ ∀p, q ∈ C : ~µrp[q] = σrq

We say that such a round is synchronous, and assume that

∃GSR s.t. ∀r ≥ GSR : PSync(r)

A synchronous round satisfies also integrity.

Consistent round: We then define a consistent round as a round in which
all correct processes receive the same set of messages:

PCons(r) ≡ ∀p, q ∈ C : ~µrp = ~µrq

WIC round: A round in which PSync and PCons hold is called a WIC round.

PWIC(r) ≡ ∀p, q ∈ C : PSync(r) ∧ PCons(r)
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The notion of WIC (Weak Interactive Consistency) abstraction has been
introduced in [MHS09] as following:

(∀r : PInt(r)) ∧ (∃r0,PWIC(r0))

2.4 Agreement Problems

In this thesis, we concentrate on the well-known agreement problem, called
Consensus. In the first and third part of the thesis we consider the consensus
problem in the context of benign faults, while the second part considers
Byzantine consensus problem.

2.4.1 Consensus problem

Consensus is defined over the set of processes Π, where each process p ∈ Π
has an initial value vp: all processes must agree on a common value that is
the initial value of one of the processes. The problem is formally specified
by the following conditions:

• Validity: Any decision value is the initial value of some process.

• Uniform agreement: No two processes decide differently.

• Termination: All processes eventually decide.

In the case of HO model, where there is no notion of faulty process, a
process is never exempted from making a decision. The termination property
is discussed in [CBS09].

2.4.2 Byzantine consensus

With Byzantine faults the consensus problem cannot be specified in the
same way as for benign (non-Byzantine) faults. First, the uniform agreement
property does not make sense: we cannot force a Byzantine process to decide
on some value v, i.e., the Byzantine process can always decide on v′ 6= v.
Second, the validity property needs also to be adapted: we must prevent that
the decision is always on the initial value of Byzantine processes. Indeed, in
this case, correct processes would not be able to impose a decision. At least
two validity properties have been considered in the literature [DLS88]:

• Agreement: Two correct processes cannot decide differently.

• Termination: All correct processes eventually decide.

• Strong validity: If all correct processes have the same initial value v,
then a correct process can only decide v.

• Weak validity: If all processes are correct and if a (correct) process
decides v, then v is the initial value of some process.
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Weak validity allows correct processes to decide on the initial value of a
Byzantine process. With strong validity, however, this is only possible if not
all correct processes have the same initial value. Another weaker validity
property, called external validity can be found in the literature [CKPS01] for
multi-valued Byzantine agreement. In the thesis, we consider only strong va-
lidity and give algorithms that satisfy the strong validity property of Byzan-
tine consensus.

2.4.3 Interactive consistency

Byzantine consensus was first identified by Pease, Shostak and Lamport [PSL80],
formalized as the Interactive Consistency problem and solved in a syn-
chronous system. An algorithm achieves interactive consistency if it allows
the nonfaulty processes to come to a consistent view of the initial values
of all the processes, including the faulty ones. In other words, each correct
process computes a vector of values, with one element for each of the n
processes, such that:

• The correct processes compute exactly the same vector.

• The element of the vector corresponding to a given correct process is
the initial value of that process.

• The element of the vector corresponding to a given faulty process is
either some common value v or ⊥.

2.5 Broadcast Protocols

Following broadcast protocols exist in the literature [Sch09]:

2.5.1 Consistent Broadcast

Consistent broadcast [BT83, Tou84] is defined in the context of Byzantine
faults. Consider a process p that must broadcast some message: nothing
prevents p from sending a different message to the different processes. Con-
sistent broadcast is a broadcast primitive that ensures that the delivered
message is the same for all correct processes. However, it does not guar-
antee that every correct process delivers a message. It is defined by two
primitives cbcast and cdeliver :

• Validity: If a correct process cbcast(m), then all correct processes
eventually cdeliver(m).

• Consistency: If a correct process cdeliver(m) and another correct pro-
cess cdeliver(m′), then m = m′.

• Integrity: For any message m, every correct process cdeliver(m) at
most once, and only if m was previously cbcast.
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These properties are only safety properties.

2.5.2 Reliable Broadcast

Reliable broadcast [Bra84, Bra87, ST87b] is consistent broadcast that addi-
tionally ensures agreement on the delivery of the message in the sense that
either all correct processes deliver some message or none delivers any mes-
sage. It is defined by two primitives rbcast and rdeliver :

• Agreement: If a correct process rdelivers a message m, then all correct
processes eventually rdeliver m.

2.5.3 Atomic Broadcast

Atomic broadcast [HT93] is a reliable broadcast that additionally adds an
order on the delivery of the messages. It is defined by two primitives abcast
and adeliver :

• Total order: If some correct process adelivers m before m′, then every
correct process adelivers m′ only after it has adelivered m.

There are mainly two kinds of atomic broadcast protocols [DSU04]:

1. Protocols that use the consensus module to order the messages, as
shown in [CT96] for the benign faults;

2. Protocols that are sequencer based and do not rely on consensus in a
modular way, like Paxos [Lam98] and PBFT [CL02].

Both consistent and reliable broadcasts are defined for a single message,
while atomic broadcast is defined for a sequence of messages. With benign
faults, the uniform version of reliable and atomic broadcasts are well-defined.

2.5.4 Terminating Reliable Broadcast

Terminating reliable broadcast, also called Byzantine Generals’ Problem [LSP82],
is a reliable broadcast with an additional termination property and a modi-
fied integrity property. It is defined by two primitives trbcast and trdeliver :

• Integrity: If a correct process trdelivers m, then either m = ⊥ or m
was trbcast.

• Termination: Every correct process eventually trdelivers exactly one
message.

Remark I: The interactive consistency problem is a generalization of the
terminating reliable broadcast problem. Therefore, it can be used to solve
consensus.
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Remark II: Since reliable broadcast can be solved in an asynchronous sys-
tem, it is easier than the consensus problem. However, from [CT96] we know
that the terminating reliable broadcast cannot be solved even in an eventual
synchronous system; therefore it is harder than the consensus problem.

Remark III: Contrary to the consistent and reliable broadcast, the WIC
abstraction [MHS09] is defined in the round model, is an all-to-all primi-
tive, and is required to solve consensus. In asynchronous rounds, it satisfies
the properties weaker than the consistent broadcast (two correct may re-
ceive different messages from a Byzantine), while in synchronous rounds, it
satisfies the properties of the reliable broadcast.

2.6 State Machine Replication

State machine replication is a general approach to implement a fault-tolerant
service by replicating servers and coordinating client interactions with server
replicas (client requests are totally ordered). The model assumes that each
server is a deterministic finite state machine. Lamport was the first to pro-
pose state machine replication, in 1984 in his seminal paper [Lam84]. Paxos
algorithm of Lamport [Lam98,Lam01] is the most referenced fault-tolerant
algorithm in the literature and the most used in practice. The algorithm is
leader-based, tolerates a minority of crashes, and does not require reliable
links. The algorithm is originally expressed in terms of “proposers”, “accep-
tors”, and “learners” and the description of the algorithm is rather complex.
However its consensus core is not that complicated as recently presented in
the HO model by Charron-Bost and Schiper [CBS09], called LastVoting. An
implementation of the LastVoting algorithm is discussed in the thesis (see
Chapter 3 and 7).

In the context of Byzantine faults, the most widely referenced Byzantine
fault tolerant protocol in the literature is the PBFT protocol of Castro and
Liskov [CL02]. PBFT can actually be viewed as a Byzantine-fault-tolerant
version of the Paxos protocol, or of viewstamped replication [OL88]. PBFT
uses a sequencer-based approach and is rather complex. The consensus
core of the algorithm can be better understood using the round model and
the WIC abstraction presented in [MHS09], called CL. The CL consensus
algorithm can use either a leader-based implementation of WIC (as shown
in [MHS09] and Chapter 6) or a decentralized implementation of WIC (see
Chapter 5). An implementation of the CL algorithm is discussed in the
thesis (see Chapter 6).

There are a huge amount of system papers that tried to improve PBFT
in some way. One direction is the number of replicas without impacting
resiliency, addressed first in [YMV+03] and continued in [WSVS08]. An-
other direction is improving the best case performance, started by Zyzzyva
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[KAD+07] and continued in [SS08, SBD+10]. More modular BFT proto-
cols are proposed in [CKL+09, GKQV10]. However, any improvement to
the original BFT protocol may impact its main property that is Byzan-
tine fault tolerance. The problem was addresses recently in several pa-
pers [ACKL08, CWA+09, VCBL09]. One way to understand better the
PBFT protocol together with its advantages and disadvantages is extracting
its consensus core and analyzing it separately as done in this thesis.

There are other approaches to implement a Byzantine fault-tolerant
state machine replication in the literature (see [CBPE10]): (1) quorum sys-
tems [MR98,Baz00,AEMGG+05,CML+06,DBFC07,GV07]; (2) randomiza-
tion [CKS05, CP02]; (3) hybrid protocols [CML+06]. Quorum systems and
randomization are not considered in the thesis.
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Chapter 3

Quantitative Analysis of
Consensus Algorithms

In Section 2.2 we have introduced the HO model and communication pred-
icates in the context of benign faults. This chapter discusses several imple-
mentations of communication predicates in a system that alternates between
good periods and bad periods. In this context, we quantify the required
length of a good period to solve one or more instances of consensus. With
our results, we can observe several interesting issues, for example that the
number of rounds is not in general a good prediction for the time to solve
consensus.

Publication: F. Borran, M. Hutle, N. Santos and A. Schiper. Quantitative
Analysis of Consensus Algorithms. Technical Report (submitted to IEEE
Transactions on Dependable and Secure Computing (TDSC)), EPFL, 2010.
The chapter is a joint work with Nuno Santos.

3.1 Introduction

Consensus is one of the key problems in fault tolerant distributed comput-
ing. It has been shown that consensus is solvable in a partially synchronous
system with a majority of correct processes [DLS88]. Consensus is also solv-
able in an asynchronous system “augmented” with failure detectors [CT96].
Over the years failure detectors have become very popular. The model is
today widely accepted, and has become the most common model used for
expressing consensus algorithms.

However, the fact that consensus is solvable with failure detectors or in a
partially synchronous system does not close the problem: ensuring the ter-
mination property does not address the performance issue. In other words,
a quantitative analytical comparison of consensus algorithms is needed.
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The problem of analytical quantitative evaluation of consensus algo-
rithms was initially addressed in [DLS88], in the context of a partially syn-
chronous system. The authors compute upper bounds for the time needed
after GST (Global Stabilization Time) for all correct processes to decide,
for algorithms proposed in the paper. The upper bounds are computed for
different variants of a partially synchronous system. We could not compare
our results with the results of [DLS88], since we consider different consensus
algorithms (the algorithms in [DLS88] have been ignored since). After this
early work, analytical performance evaluation of consensus algorithms has
not received much attention for a while. This is probably due to the ad-
vent of failure detectors, which led to consider an asynchronous underlying
system, and to ignore timing analysis. One of the first paper to reinitiate
analytical performance study of consensus algorithms in non-synchronous
systems is [Sch97]. The paper considers failure detectors, and uses as met-
ric the minimum number of communication steps for deciding in a “nice”
run (run with no crashes, no false suspicions). Later, [DGK07], [KS06],
and [AGGT08] study the performance of consensus algorithms expressed in
a round-based computational model. The performance metric is the num-
ber of rounds needed for processes to decide once the system has become
synchronous. However, as pointed out in [KS06], the efficiency expressed
in terms of number of rounds, does not predict the time it takes to decide
after the system stabilizes. This is recognized in [KS06] as an interesting
subject for further studies. Such a timing analysis is done in [DGL05] for
a modified version of Paxos. The authors show that, with their modified
Paxos algorithm, consensus can be solved in O(δ) after the system stabilizes
(actually 17δ), where δ is the upper bound on message delivery time after
stability is reached (δ includes the time needed to process a message after
reception). Timing analysis is also done in [PLL97] for Paxos, but only for
an execution started during a good period, and leader election outside of
the Paxos algorithm (it uses a failure detector implementation in which ev-
ery process sends periodically messages to all). The Paxos algorithm, when
expressed in the failure detector model with reliable links, requires the Ω
leader oracle. [ADGFT03] shows that such a leader election service can be
implemented in a communication-efficient way, which means that there is a
time after which only one process sends message. LastVoting (the algorithm
is given in Section 3.2.1.A) with synchronization by a coordinator achieves
the same efficiency: in a good period only n messages are required in phase
4φ. However, our solution has an advantage: it only uses the “natural”
message of LastVoting, while a leader election service needs to send its own
messages in addition to the consensus algorithm messages. In other words,
our solution is even more “communication-efficient” than a solution based
on an external communication-efficient leader election service.

The goal of the chapter is to go beyond the above mentioned work, in
order to propose a more general timing analysis of some consensus algo-
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rithms. As in [DLS88], the analysis is done for algorithms expressed in a
round-based model built on top of a partially synchronous system. Round-
based models allow us to handle permanent and transient faults in a uniform
way [CBS09]. Further, such a modular approach decouples timing analysis
from irrelevant details of consensus algorithms, which allows us (i) to reuse
a given timing analysis for different algorithms, and (ii) to compare various
round implementations for the same round-based consensus algorithm. This
points to the second contribution of this chapter: in addition to the timing
analysis, the chapter proposes (and analyzes) new algorithms for implement-
ing rounds. For the purpose of the timing analysis, the chapter considers a
system that alternates between good and bad periods. The notion of good
and bad period appears in [CF99], but such a system assumption is not used
for a quantitative analysis of consensus algorithms. During a good period,
processes do not crash, the system is synchronous (with a known bound Φ
on the relative process speeds and a known bound ∆ on the transmission
delay of messages), and clocks have a bounded drift. During a bad period,
processes may crash and recover, messages may be lost and no synchrony
assumptions need to hold.

Contribution: Based on ∆, Φ, n (the number of processes), and the accu-
racy of the clock, the chapter computes the length of the good period for
two consensus algorithms (and some of its variants), and different implemen-
tations of rounds. Two extreme cases are highlighted: “short” and “long”
good periods. The chapter shows that the relative performance (i.e., the
number of consensus instances that can be solved in a given good period)
of the consensus algorithms analyzed is not the same in the two cases. The
explanation is the following: at the beginning of a good period, processes
need to synchronize to the same round, and this takes some time; only after
synchronization rounds contribute to solve consensus. If a good period is
long, the cost of synchronization is amortized among all instances of con-
sensus, and can thus be ignored. This is not the case if the good period is
short. The chapter shows that while the considered algorithms show almost
identical performance when the good periods are long, this is not the case
for short good periods. The chapter shows also that the usual performance
metric, namely the number of rounds needed for solving consensus, does not
predict our results.

Further, our results allow us to quantify the influence of the clock preci-
sion on the length of the good period. It can be seen that a large clock skew,
as it is the case when using step counting, has only limited influence for al-
gorithms that resynchronize in every round, but can become unacceptable
for algorithms that resynchronize less often.

27



Chapter 3. Quantitative Analysis of Consensus Algorithms

Roadmap: The structure of the chapter is the following: In Section 3.2
we introduce the consensus algorithms using the HO round model, together
with the communication predicates, which form the basis for our analysis.
Implementation of communication predicates is the topic of the subsequent
sections. After defining our system model for our implementations in Sec-
tion 3.3, we give an abstract algorithm that may serve as a generic implemen-
tation for many predicates, and which is used by all our implementations.
After that, in Sections 3.5 to 3.7 we describe how our predicates can be
implemented using different strategies. Different strategies lead to different
length of the good period that is necessary to guarantee the predicate, and
to different number of messages. We finally analyze our results in Section 3.8
and conclude the chapter in Section 3.9.

3.2 Background

3.2.1 Consensus algorithms analyzed

We analyze three consensus algorithms in this chapter that are safe by design
(i.e., they never violate the validity or agreement properties of consensus),
but require some predicate to ensure liveness. The fact that these algo-
rithms do not require any predicate for safety implies that they are tolerant
to transient faults. The safe algorithms are also referred as indulgent al-
gorithms [Gue00] in the context of failure detectors; i.e., algorithms that
tolerate unreliable failure detection.

3.2.1.A Variant of Paxos: LastVoting in four rounds (LV-4)

The first consensus algorithm we consider is a variant of Paxos [Lam98,
Lam01], called LastVoting [CBS09], see Algorithm 3.1. It is a variant of
Paxos in the sense that the algorithm is expressed here in a round model,
which is not the way Paxos has been expressed [Lam98]. It is also close to the
Chandra-Toueg ♦S [CT96] consensus algorithm. LastVoting is coordinator-
based, and each phase of the algorithm consists of four rounds 4φ− 3 to 4φ
(φ denotes the current phase). Coord(p, φ) denotes the coordinator of p in
phase φ.

We describe briefly how the LV-4 algorithm works: Each process p has
a timestamp tsp attached to its proposal xp. (1) In the first round of every
phase, each process sends its proposal and timestamp to its coordinator
(line 6). If the coordinator receives proposals from a majority of processes,
it sets its vote to the last proposal with the highest timestamp (line 13).
(2) In the second round, the coordinator sends its vote to all (line 18).
Every process that receives coordinator’s vote (line 20), changes its proposal
and updates its timestamp. (3) These processes send an ack message to
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the coordinator in the third round (line 26). If the coordinator receives a
majority of acks (line 28), it can decide on its vote. (4) The coordinator
sends its vote (the decision) to all processes in the last round (line 33), and
each process that receives the coordinator’s vote decides (line 36). Note
that process p is not blocked in a round: if the conditions at lines 11, 20, 28
and 35 are false in some round r for process p, then process p skips the
corresponding T rp part.

The correctness proof of the LV-4 algorithm can be found in [CBS09].
The algorithm is always safe even if there are several coordinators per phase.
Note that if two coordinators coexist in phase φ, because of line 6, the
condition of line 11 can be true for at most one coordinator, i.e., at most
one coordinator can send a proposal in phase φ at line 18. The termination
property of the algorithm is guaranteed by the existence of a phase φ such
that following predicate holds:

Plv4(φ) :: ∃Π0 ⊆ Π s.t. |Π0| > n/2,∃c ∈ Π,∀p ∈ Π0 :

Coord(p, φ)=c ∧
|HO(c, 4φ− 3)| > n/2 ∧ c ∈ HO(p, 4φ− 2) ∧
Π0 ⊆ HO(c, 4φ− 1) ∧ c ∈ HO(p, 4φ)

which ensures, loosely speaking, agreement on the coordinator c during one
phase φ, and communication between c and a majority of processes during
phase φ.

3.2.1.B Variant of Paxos: LastVoting in three rounds (LV-3)

LastVoting in three rounds is a well known variant of Paxos in which the last
two rounds of a phase are aggregated in a single round [CBS06], as shown
by Algorithm 3.2: in round 3φ all processes send their ack message directly
to all other processes, instead of via the coordinator. LV-3 terminates in a
phase φ satisfying the following predicate:

Plv3(φ) :: ∃Π0 ⊆ Π s.t. |Π0| > n/2,∃c ∈ Π,∀p ∈ Π0 :

Coord(p, φ)=c ∧ |HO(c, 3φ− 2)| > n/2 ∧
c ∈ HO(p, 3φ− 1) ∧ Π0 ⊆ HO(p, 3φ).

3.2.1.C OneThirdRule (OTR)

Contrary to LV-4 and LV-3, which are both coordinator-based algorithms,
Algorithm 3.3 does not use a coordinator (referred as a decentralized al-
gorithm in this thesis). This algorithm, called OneThirdRule (or simply
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Algorithm 3.1 LV-4: LastVoting in four rounds [CBS09]
(code of process p)
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */
3: votep ∈ V ∪ {?}, initially ?
4: commitp a Boolean, initially false

5: readyp a Boolean, initially false

6: tsp ∈ N, initially 0

7: Round r = 4φ− 3 :
8: Srp :
9: send 〈xp, tsp〉 to Coord(p, φ)

10: T rp :
11: if p = Coord(p, φ) and number of 〈ν, θ〉 received > n/2 then
12: let θ be the largest θ from 〈−, θ〉 received
13: votep := one x such that 〈x, θ〉 is received
14: commitp := true

15: Round r = 4φ− 2 :
16: Srp :
17: if p = Coord(p, φ) and commitp then
18: send 〈votep〉 to all processes
19: T rp :
20: if received 〈v〉 from Coord(p, φ) then
21: xp := v
22: tsp := φ

23: Round r = 4φ− 1 :
24: Srp :
25: if tsp = φ then
26: send 〈ack〉 to Coord(p, φ)
27: T rp :
28: if p = Coord(p, φ) and number of 〈ack〉 received > n/2 then
29: readyp := true

30: Round r = 4φ :
31: Srp :
32: if p = Coord(p, φ) and readyp then
33: send 〈votep〉 to all processes
34: T rp :
35: if received 〈v〉 from Coord(p, φ) then
36: Decide(v)
37: commitp := false

38: readyp := false

OTR), appears in [CBS09]. It has similarities with a fast round of the Fast
Paxos algorithm [Lam05]. Every round of OTR has the same sending and
transition function. Decision can be reached in one round if all initial values
are identical, otherwise decision can be reached in two rounds. For liveness,
two distinct rounds (not necessarily consecutive) that satisfy the following
predicate are needed:
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Algorithm 3.2 LV-3: LastVoting in three rounds [CBS06]
(code of process p)
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */
3: votep ∈ V ∪ {?}, initially ?
4: commitp a Boolean, initially false

5: tsp ∈ N, initially 0

Round 3φ− 2: identical to round 4φ− 3 of Algorithm 3.1.

Round 3φ− 1: identical to round 4φ− 2 of Algorithm 3.1.

6: Round r = 3φ :
7: Srp :
8: if tsp = φ then
9: send 〈ack, xp〉 to all processes

10: T rp :
11: if ∃v such that number of 〈ack, v〉 received > n/2 then
12: Decide(v)
13: commitp := false

Algorithm 3.3 The OneThirdRule algorithm [CBS09] (code of process p)
1: Initialization:
2: xp := vp /* vp is the initial value of p */

3: Round r :
4: Srp :
5: send 〈xp〉 to all processes

6: T rp :
7: if |HO(p, r)| > 2n/3 then
8: xp := the smallest most often received value
9: if more than 2n/3 values received are equal to v then

10: Decide(v)

Psu(r) :: ∃Π0 ⊆ Π s.t. |Π0| > 2n/3,∀p ∈ Π0 :

HO(p, r) = Π0.

We call such a round space uniform round with cardinality 2n/3, and
use the term space uniform round when the cardinality is clear from the
context. The predicate Potr will denote the existence of two distinct rounds
(not necessarily consecutive) that satisfy Psu( ).

Remark The algorithms and predicates given in this section ensure a deci-
sion of a majority of processes (two-thirds majority in case of OTR). How-
ever, with a small modification, all processes that are eventually reachable
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HO Algorithm

Comm. predicates

Predicate
Implementation Fault model

+ Synch.

assumptions

Figure 3.1: The two layers in the HO model when implementing predicates.

will decide: since our agreement property is a uniform property (there are
no “faulty” processes that are exempted from agreement), processes — once
they have decided — can simply communicate their decision to all other pro-
cesses. Once this communication is successful, also these processes will de-
cide.

3.2.2 Relation of predicates

Predicates can be related in terms of translations [CBS09]. Without ex-
plaining this concept in detail, it is easy to see that a sequence of space-
uniform rounds “almost” ensures Plv4 (for LV-4) and Plv3 (for LV-3): only
the election of the coordinator is missing. However, we can observe that a
space-uniform round r allows the election of a unique coordinator for round
r + 1: the coordinator can be determined through a deterministic function
on the HO sets of round r. Thus space uniformity of round 4φ0 and of
the four rounds of phase φ0 + 1 allows us to ensure Plv4. Space uniformity
of such five consecutive rounds requires eight space-uniform rounds in the
worst case (the first space-uniform round does not necessarily correspond to
the last round of a phase). Similarly, space uniformity of round 3φ0 and of
the three rounds of phase φ0+1 allows us to ensure Plv3. Space uniformity of
such four consecutive rounds requires six space-uniform rounds in the worst
case.

More generally, 2y consecutive space-uniform rounds ensure y instances
of Potr, 3y + 3 consecutive space-uniform rounds ensure y instances of Plv3,
and 4y+ 4 consecutive space-uniform rounds ensure y instances of Plv4. We
will use these results in Section 3.5.

3.2.3 Implementation of predicates

In this chapter we are interested in the question of how an HO machine
〈A,P〉, where P is some predicate, can be implemented in a “classical”
message-passing model. Fig. 3.1 illustrates how these parts work together
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in a system. The top layer, the HO Algorithm A, is defined solely in terms of
the sending function Srp and transition function T rp , and assumes some com-
munication predicate P. The communication predicate P is implemented
by the Predicate Implementation layer, which builds on top of the system
model. These two layers are independent, apart from the interface defined
by the communication predicate. This enforces a clear separation between
the high-level computational model of the HO Algorithm and the low-level
system model and allows each layer to be developed independently. In the
rest of this chapter, we give implementations for the communication predi-
cates specified above.

Given an implementation for some predicate P, we are looking for the
length of a good-period, i.e., the duration our system has to be “good” at
some arbitrary point in time in order to ensure the predicate. We specify
this in more detail in Section 3.3.

Note that for coordinator-based algorithms, the predicate implementa-
tion layer is also responsible for electing the coordinator. This is in contrast
to failure detector based solutions, in which the failure detectors (or the
leader election oracle) are provided by some external service. Such a service
typically uses heartbeat messages. No such external service is used here.
The difficulty is, during a good period, to elect a common coordinator, to
resynchronize the processes and exchange the necessary messages to ensure
the predicate, within a time as short as possible, and to use as few messages
as possible.

3.3 System Model

We describe now the system model for the implementation of the predi-
cate layer. We consider a similar model as in [DLS88], i.e., a partially
synchronous system (with known bounds that hold eventually) defined in
Section 2.1.1, with some modification to reflect good periods of bounded
length. Further, we use clocks instead of a bound on the maximum speed of
processes, a more general approach, as we explain later.

Processes proceed by making steps. Each step is a send or receive step
as described in Section 2.1. In each step, some computation can be done,
and the local clock Cp(t) of process p at real time t can be read. We assume
that local clocks are monotonically non-decreasing at any time. Real time
and the local clock take values from R.

Definition 3.1 (∆-timely message). A message m sent at time t by some
process to a process p is called ∆-timely, if it is received at the latest by the
first receive step of p at or after time t+ ∆.

Process synchrony is ensured by making steps at a minimum rate. Note
that in contrast to [DLS88], there is no restriction on the maximum speed
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of processes, since we will use clocks instead of step counting in order to
measure time.

Definition 3.2 (Φ-synchronous process in interval I). The bound Φ is said
to hold for a process p in some time interval I, if in any sub-interval of
length Φ, p takes at least one step.

Definition 3.3 (local (α, β) bounded-drift clock in interval I). A local clock
Cp(t) has a bounded-drift in a time interval I, if there are a priori known
constants α and β with 0 < α ≤ β, so that for any two times t1, t2 ∈
I s.t. 0 < t1 < t2:

Cp(t2)− Cp(t1)

t2 − t1
∈ [α, β]. (3.1)

Note that our clock definition is very general, since it includes other
assumptions like the classical bounded-drift clocks (α = 1 − ρ, β = 1 + ρ),
whereas the values α = 1/Φ, β = 1 are obtained asymptotically if step-
counting is used for measuring time (this would require a lower bound on
the duration of a step, of course).

Definition 3.4 (good period). Let Π0 ⊆ Π be a set of processes. An interval
I is a good period for Π0, if there are a priori known bounds Φ,∆ ∈ N, and
α, β ∈ R, with Φ > 0, 0 < α ≤ β, such that (i) in I all processes in Π0

are Φ-synchronous and have a local (α, β)-bounded-drift clock in I, (ii) no
process that is not in Π0 makes a step, (iii) all links between processes in Π0

are ∆-timely, and (iv) no messages from processes not in Π0 are received by
a process in Π0.

A k-good period is a good period for some arbitrary Π0 with |Π0| ≥ k.
In the sequel, when k is clear from the context we will use only the term
good period.

Note that we do not specify why processes outside Π0 do not make steps;
they might have crashed, or be just temporarily unavailable. Therefore the
notion of correct or faulty process is not suitable in our context; however,
with respect to some Π0-good period, we say a process is up in this good
period iff it is in Π0, else it is down.

The length of a good period refers to the duration of a good period that
is sufficient to satisfy some communication predicate. We will also compute
the message complexity of our implementations. This is the number of mes-
sages exchanged by processes in good periods to satisfy the communication
predicate.

When setting process timeouts, we will use the following result:

Lemma 3.1. In a good period, a time interval of length τC = βτL, measured
by some process p, corresponds to a real time interval of length greater or
equal to τL, and smaller or equal to τU = β

ατL.
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Proof. Assume w.l.o.g. that the timeout βτL starts at time 0 and expires at
some real time t, i.e., Cp(t) = βτL. Because of (3.1) we have Cp(t)/t ≤ β

and Cp(t)/t ≥ α. Thus t ≥ Cp(t)
β = τL and t ≤ Cp(t)

α = β
ατL.

We will keep the notation of τL, τC , and τU consistent within the chapter
to denote these different kind of durations.

3.4 The Generic Protocol

We give in this section a generic algorithm for the predicate layer, an al-
gorithm that is parametrized by four abstract functions. The instantiation
of these functions will allow us to devise three different algorithms for the
predicate layer that differ mainly by the message pattern and the way the
coordinator is elected. The first method is called Full Synchronization (Sec-
tion 3.5); it ensures space-uniform rounds, therefore allowing the implemen-
tation of all predicates considered in this chapter. Phase Synchronization
(Section 3.6) is an optimized implementation for Plv3, where round syn-
chronization takes place only once per phase. Finally, Synchronization by a
Coordinator (Section 3.7), where synchronization uses only messages from
coordinator process(es), is specialized for Plv4. We only present the main
idea of the last method and the results without going into the details. The
full description is given in the technical report [BHSS09].

The generic Algorithm 3.4 follows the following pattern. One iteration
of the while loop (line 6) corresponds to one round: the sending function
is called at line 9 and the transition function is called at line 20. Messages
are sent at line 14: the abstract function Dest (line 10) specifies the set of
processes a message is sent to in the current round. Message reception occurs
at line 17. The receive statement is executed repeatedly until NextRound
returns true (line 16). This typically happens when a timer has expired
or when a message from some higher round is received. Note also that
some rounds may be totally skipped (no message sent, no message received):
this happens whenever the function SkipRound (line 8) returns true, which
typically occurs if process p in round rp receives a message from some round
r′ > rp. In this case, p skips all rounds from rp to r′ − 1. Finally, function
ElectCoord specifies how a coordinator for each round is determined.

Crash-recovery Model

In order to cope with recoveries after crashes, the variables rp and sp of Al-
gorithm 3.4 are stored on stable storage. In case of a recovery, the algorithm
starts at line 16, with Rcvp and tp reinitialized to ∅ and 0, respectively. We
could express this formally as a variant of Algorithm 3.4, but abstain from
this for sake of simplicity. Note that the behavior in case of a sequence
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Algorithm 3.4 Generic algorithm of the predicate layer (code of process
p)

1: Rcvp ← ∅ /* set of messages received */
2: rp ← 1 /* round number */
3: sp ← initp /* state of the process p */
4: coordp ← ⊥ /* coordinator of process p */
5: tp ← Cp() /* timer */
6: while true do
7: coordp ← ElectCoord(p, rp, Cp()− tp, coordp,Rcvp)
8: if ¬SkipRound(p, rp, Cp()− tp, coordp,Rcvp) then
9: msgs← S

rp
p (sp, coordp)

10: for all q ∈ Dest(p, rp, Cp()− tp, coordp,Rcvp) do
11: if p = q then
12: Rcvp ← Rcvp ∪ {〈msgs[p], p, rp〉} /* local delivery */
13: else
14: send(msgs[q], rp, p) to q
15: tp ← Cp()
16: while ¬NextRound(p, rp, Cp()− tp, coordp,Rcvp) do
17: receive(S)
18: for all messages 〈x, r, q〉 ∈ S do
19: Rcvp ← Rcvp ∪ {〈x, q, r〉}
20: sp ← T

rp
p ({〈x, q〉 | 〈x, q, rp〉 ∈ Rcvp}, sp, coordp)

21: rp ← rp + 1

crash/recovery is completely transparent: although some messages might
get lost, no message for a round is sent more than once, and every transition
function is called exactly once for each round number.

Reading variables from stable storage is inefficient. The implementation
can be made more efficient by keeping a copy of the variables in main mem-
ory: a read operation reads the in memory copy, a write operation updates
the in memory and the stable storage copies. Upon recovery, the in memory
copy is reset with the value of the stable copy.

3.5 Full Synchronization

Our first implementation is given as Parametrization 3.1 for the generic
algorithm. The implementation ensures space uniform rounds in a good
period. As explained in Section 3.2.2, this is sufficient to implement Plv3

and Plv4.

With Parametrization 3.1, every process sends a message to every other
process in all rounds (see function Dest). While sending to all in all rounds
seems natural for Potr, where every process has to hear from every alive
process, this induces some overhead for Plv3 and Plv4, since these predicates
only require one-to-all or all-to-one patterns on some of their rounds. This
is shown in the following picture for predicate Plv3, where the full lines
represent messages required by the predicate and dotted lines represent the
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3.5. Full Synchronization

Parametrization 3.1 A generic parametrization using full synchronization

NextRound(p, r, τ, coord ,Rcv) :=
∨{ ∃〈−,−, r′〉 ∈ Rcv : r′ > r

τ ≥ τC

SkipRound(p, r, τ, coord ,Rcv) := ∃〈−,−, r′〉 ∈ Rcv : r′ > r

Dest(p, r, τ, coord ,Rcv) := Π

ElectCoord(p, r, τ, coord ,Rcv) :=


min(Π) : r = 1
min(ho(r − 1)) : ho(r − 1) 6= ∅
coord : else

additional messages sent by Parametrization 3.1:

p1

p2

p3

3φ− 2 3φ− 1 3φ

In the next sections, we provide implementations for Plv3 and Plv4 with
lower message complexity.

3.5.1 Outline of full synchronization

As shown by function NextRound in Parametrization 3.1, there are two ways
for a process p to leave round r: (i) by receiving a message from a higher
round r′ > r, or (ii) by expiration of a timeout (τ ≥ τC). In case (i),
the process goes directly to round r′: the function SkipRound and the first
condition of NextRound play together to achieve this. In case (ii) the timeout
τC is chosen to ensure space uniformity, i.e., Psu( ), in a good period (see
Lemma 3.2 below). As shown by the function ElectCoord , the coordinator
for some round r is the smallest process (min) in the HO set of round r− 1
(whenever this HO set is non empty). The definition of the macro ho(r) is
the following:

ho(r) := {q | 〈−, q, r〉 ∈ Rcv}.

We will also use this notation in the following sections. ElectCoord ensures
a unique coordinator in good periods where rounds are space uniform. For
non-coordinated predicates, like Psu( ), no coordinator is needed and the
function ElectCoord can be ignored.

3.5.2 Timeout τC

We first assume that a good period, which starts at some time tg, holds
forever, and show that the timeout τC = [2∆ + (2n − 1)Φ]β ensures Psu( )
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∆
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Figure 3.2: Full synchronization: timeout - Lemma 3.2.

for processes that are up in this good period. In the next subsection we
compute the length of a good period that is sufficient to ensure Psu( ).

Lemma 3.2 (Timeout τC). Consider Parametrization 3.1 with the timeout
τC = [2∆ + (2n− 1)Φ]β. Assume that a k-good period starts at time tg and
that round r0 is the highest round started by any process in Π0 by time tg.
Then every new round r > r0 started after time tg is space uniform (Psu(r))
with cardinality k.

Proof. We show that in round r, for every process p ∈ Π0, we have: (i) p
receives a message from all processes in Π0, but (ii) not from any process
not in Π0.

We start with (ii). Assume that p received a round r message from a
process q that is not in Π0. By the definition of a good period, p could not
have received this message after tg. If p had received this message before tg,
then p would have advanced to round r immediately, which contradicts our
assumption that no process in Π0 has entered round r by tg.

To prove (i), assume some process p1 is the first to finish sending its
round r messages at time ts > tg (see Fig. 3.2). These messages are ready
for reception at each process in Π0 (p2 in Fig. 3.2), the latest at ts+∆, since
messages are ∆-timely. These messages are received in the next receive step,
which occurs the latest after n − 1 send steps (in the case the process was
just starting executing send steps). Since a step takes up to Φ time, p1’s
message is received by all processes in Π0 the latest at ts + ∆ + nΦ. Each
process that receives this message jumps to round r, if not already there,
and thus, by time ts + ∆ + (2n − 1)Φ has performed n − 1 send steps and
has sent its round r message to all. This message is ready for reception by
the latest at time te = ts + 2∆ + (2n− 1)Φ.

The timeout τC = [2∆ + (2n− 1)Φ]β, together with Lemma 3.1, ensure
that no timeout of length τC started at time ts expires before te. So when
the timeout expires, all messages for round r are either received or ready
to be received. Before calling the transition function for round r, a receive
step is performed; thus in round r every process in Π0 receives a message
from every process in Π0.
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3.5.3 Length of a good period

Theorem 3.1. In any good period of length

(x+ 1)

[
β

α

(
2∆ + (2n− 1)Φ

)
+ nΦ

]
+ ∆ + nΦ

the generic algorithm with Parametrization 3.1 ensures x consecutive rounds
that fulfill Psu( ).

Proof. Assume a good period starts at time tg and at this time process p1

has the highest round number r among the processes in Π0. We distinguish
two cases: (i) tg is during these n− 1 send steps (not shown in Fig. 3.3) of
round r = 3φ. (ii) tg after these send steps (see Fig. 3.3). It can be shown
that case (ii) is worse than case (i) in terms of length of the good period,
thus we consider case (ii). Round r+1 is the first round that all processes in
Π0 start after tg. According to Lemma 3.2, round r+1, r+2, etc. are space
uniform if the good period is long enough. We compute the maximum time
it takes for any process p2 to complete round r+x. As shown by Fig. 3.3, p2

starts round r+1 at latest at time tg +τU +2nΦ+∆ (end of “initialization”
in Fig. 3.3). This expression is obtained as follows: by the definition of p1,
no message of a round larger than r is received before p1’s timer expires,
and τU = β

ατL is the time elapsed for a timeout τC = τLβ; when the timeout
expires, p1 executes a receive step (φ), moves to round r+ 1, executes n− 1
send steps ((n− 1)Φ); in the worst case the message to p2 is sent in the last
of these send steps; ∆ later the message is ready for reception on p2; at this
time p2 may be executing n send steps ((n− 1)Φ) before the reception step
(Φ) in which p1’s message is finally received; at this point p2 moves to round
r + 1.

We now show that case (i) leads to a shorter good period. Here, by time
tg + (n − 2)Φ, at least one message of round r was sent by p1. By time
tg + (n−2)Φ + ∆ +nΦ, this message is received by some process, and at the
latest (n− 1)Φ time later, this process has sent its round r messages to all.
Thus, after time tg + 2∆ + (4n− 4)Φ, every process has performed its send
steps for round r. Consequently, doing now the same analysis as in case (ii),
it cannot be the case anymore that a process is performing send steps when
the message for round r + 1 is ready for reception. This leads to the fact
that also in this case p2 starts round r+ 1 not after time tg + τU + ∆ + 2nΦ.

Process p2 needs at most nΦ + τU to complete round r+ 1 (see “regular
round” in Fig. 3.3): n − 1 send steps ((n − 1)Φ), timeout τU (in the worst
case no message of a larger round is received), one receive step (Φ).

Summing up the duration of “initialization” and of x “regular rounds”
leads to (x + 1)[τU + nΦ] + ∆ + nΦ. Replacing τU with β

ατL, and τL with
2∆ + (2n− 1)Φ (see Lemma 3.2) establishes the result.
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∆
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tg initialization regular round

Figure 3.3: Full synchronization: length of good period - Theorem 3.1.

As already stated in Section 3.2.2, for y instances of predicate Potr we
need 2y space-uniform rounds, for Plv3 we need 3y+3 space-uniform rounds,
and for Plv4 we need 4y + 4 space-uniform rounds.

3.6 Phase Synchronization

Full synchronization sends extra messages with respect to the “natural mes-
sage pattern” induced by the predicates Plv3 and Plv4. In this section, we
give an implementation for Plv3, that uses only the “natural” messages,
which are the following:

p1

p2

p3

3φ− 2 3φ− 1 3φ

Here, processes are synchronized only at round 3φ of every phase φ.
As in the case of full synchronization, round 3φ allows the election of the
coordinator for phase φ+ 1.

3.6.1 Outline of phase synchronization

The “natural” message pattern just depicted is generated by the function
Dest in Parametrization 3.2.

Round 3φ of phase φ is identical to a round in the full synchronization
case: all processes wait for the timeout before electing a new coordinator
and moving to the first round of the next phase. According to function
NextRound , only round 3φ− 2 (line 2 in NextRound) may be terminated by
the reception of messages. Rounds 3φ − 1 and 3φ terminate by expiration
of the timeout as before.

Round 3φ − 1 requires some clarification. In this round processes only
need to receive a message from the coordinator, thus it seems natural for
a process to advance to round 3φ as soon as it receives such message. But
this solution is not correct as shown by the following scenario. Consider
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Parametrization 3.2 LV-3 using phase synchronization

NextRound(p, r, τ, coord ,Rcv) :=
∨

∃〈−,−, r′〉 ∈ Rcv : r′ > r
r mod 3 = 1 ∧ (τ ≥ τC1 ∨ |ho(r)| > n/2)
r mod 3 = 2 ∧ τ ≥ τC2

r mod 3 = 0 ∧ τ ≥ τC3

SkipRound(p, r, τ, coord ,Rcv) := ∃〈−,−, r′〉 ∈ Rcv : r′ > r

Dest(p, r, τ, coord ,Rcv) :=


coord : r mod 3 = 1
Π : r mod 3 = 0 ∨ (r mod 3 = 2 ∧ p = coord)
∅ : else

ElectCoord(p, r, τ, coord ,Rcv) :=


min(Π) : r = 1
min(ho(r − 1)) : r mod 3 = 1 ∧ ho(r − 1) 6= ∅
coord : else

processes p1, p2, and pc, with pc being the coordinator. Process p1 receives
pc’s message for round 3φ − 1, advances to round 3φ, and sends its round
3φ message to all. This message is delivered quickly to p2, which receives
it before the round 3φ− 1 message from pc. If p2 advances immediately to
round 3φ, it will miss the round 3φ − 1 message from pc that arrives later.
Algorithm 3.2 avoids this problem by delaying the start of round 3φ until all
processes had time to receive the round 3φ−1 message from the coordinator.
Another solution, based on piggybacking, is described in Section 3.6.4.

3.6.2 Timeouts τC1, τC2, τC3

Lemma 3.3 (Timeout τC1). Consider Parametrization 3.2 with

τC1 = [2∆ + (2n+ 1)Φ]β + τC3

(
β
α − 1

)
.

Assume every process starts round 3(φ−1) in a
(
n+1

2

)
-good period and phase

φ has a unique coordinator. Then the coordinator hears from a majority of
processes in round 3φ− 2.

Proof. Let p3 be the first process that starts the timeout for round r =
3(φ− 1) at time ts3 (see Fig. 3.4). By time ts3 + ∆ +nΦ all other processes,
e.g., p2, are in round 3(φ− 1). After sending their round 3(φ− 1) messages,
which takes at most (n − 1)Φ time, their timeout τC3 = τL3β will expire
by time ts3 + ∆ + (2n − 1)Φ + τL3

β
α . A receive and a send step later, each

process has sent its round 3φ−2 message to the coordinator (p1 in Fig. 3.4),
which is by time ts3 + ∆ + (2n + 1)Φ + τL3

β
α . This message is ready for

reception at the coordinator ∆ time later. Thus if the coordinator executes
the receive step and the transition function for round 3φ−2 not before time
ts2 = ts3+2∆+(2n+1)Φ+τL3

β
α , the set of messages passed to the transition

function includes the messages of round 3φ− 2 from a majority.
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Figure 3.4: Phase synchronization: timeouts - Lemmas 3.3–3.5.

Because p3 is the first process to start the timeout for round 3(φ−1), no
timeout τC3 for this round expires at any process (including the coordinator)
before ts3 + τL3. Therefore, no process (including the coordinator) starts
round 3φ − 2 before ts1 = ts3 + τL3, and executes the transition function
for round 3φ − 2 before ts1 + τL1. The timeout τC1 as given by the lemma
ensures that ts1 + τL1 is not before ts2. Thus the coordinator p1 receives the
round 3φ− 2 messages from all processes in Π0.

Lemma 3.4 (Timeout τC2). Consider Parametrization 3.2 with the timeout

τC2 = [3∆ + (3n+ 1)Φ]β + τC3

(
β
α − 1

)
− τC1. Assume a phase φ with a

unique coordinator, where round 3(φ − 1) starts in a
(
n+1

2

)
-good period.

Then in round 3φ− 1, every process in Π0 hears from the coordinator.

Proof. Let p3 be the first process that starts the timeout for round r =
3(φ− 1) at time ts3. By a similar reasoning as for Lemma 3.3, each process
has sent its round 3φ−2 message to the coordinator by time ts3 +∆+(2n+
1)Φ + τL3

β
α . Then, at most ∆ + Φ later, the coordinator has received this

message from every process in Π0, thus achieved the majority condition in
line 2 of NextRound , and therefore sends its round 3φ − 1 message to all.
The latter takes at most (n− 1)Φ time, and this message will be ready for
reception ∆ time later. At this time, te = ts3 + 3∆ + (3n + 1)Φ + τL3

β
α ,

the timeout τC2 may safely expire at any process. Because p3 is the first
process that starts round 3(φ − 1), no process starts round 3φ − 1 before
ts2 = ts3 + τL3 + τL1. Thus choosing τC2 as in the lemma ensures that τC2

does not expire before time te at any process.

Lemma 3.5 (Timeout τC3). Consider Parametrization 3.2 with the timeout
τC3 = [2∆ + (2n− 1)Φ]β. Assume that a k-good period starts at time tg and
that round r0 is the highest round started by any process in Π0 by time tg.
Then every new round 3φ > r0 started after time tg is space uniform with
cardinality k.

Proof. Similar to Lemma 3.2.
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Figure 3.5: Phase synchronization: length of good period - Theorem 3.2.

Corollary 3.1. Parametrization 3.2 with the timeout τC1 = 2Φβ+ β2

α [2∆+
(2n−1)Φ], τC2 = [∆+nΦ]β, and τC3 = [2∆+(2n−1)Φ]β ensures a Plv3(φ),
if round 3(φ− 1) starts in a

(
n+1

2

)
-good period.

Proof. By Lemma 3.5, round 3(φ− 1) is space-uniform. Thus by the defini-
tion of ElectCoord , every process in Π0 has the same coordinator. Applying
the Lemmas 3.3 to 3.5 and replacing the equations for τC1, τC2, and τC3

yields the result.

3.6.3 Length of a good period

Theorem 3.2. In any good period of length

y

[(
2∆ + (2n− 1)Φ

)β2

α2
+
(

3∆ + (3n+ 1)Φ
)β
α

+ (2n+ 2)Φ

]
+

+
(

2∆ + (2n− 1)Φ
)β2

α2
+
(

5∆ + 5nΦ
)β
α

+ ∆ + 5nΦ (3.2)

the generic algorithm with Parametrization 3.2 and timeouts according to
Corollary 3.1 ensures y consecutive phases that fulfill Plv3(φ).

Proof. It can be shown that the “initialization” period (see Fig. 3.5) is the
longest in case tg starts just after the first send step of some round 3(φ−2),
and round 3(φ− 2) is not space uniform (only round 3(φ− 1) is space uni-
form). The end of round 3(φ− 1) corresponds to the end of the “initializa-
tion” period. By time tg+(2n+1)Φ+τU3+τU1+τU2 round 3(φ−1) is started
at some process p1. This round 3(φ− 1) ends for all processes in Π0 at the
latest (3n−1)Φ+τU3+∆ time later (end of “initialization” period) using the
same argument as in Theorem 3.1. By Corollary 3.1, we have Plv3(φ). Every
“regular” phase then takes at most time τU1 + τU2 + τU3 + (2n+ 2)Φ. The
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result follows by replacing the timeouts with the expressions from Corol-
lary 3.1.

3.6.4 Piggybacking

We have explained in Section 3.6.1 why we choose round 3φ−1 to terminate
by the expiration of a timeout. The other solution requires some changes to
our generic implementation. Thus we present only the overall idea and the
results.

In this approach, a process p piggybacks all the messages it received for
a round r on its message for round r + 1. If some process q receives the
round r+ 1 message from p before entering round r+ 1, q can include these
round r messages to its received set before ending round r. In some cases,
this shortens the length of a good period.

In general, this mechanism can be used if all processes wait for the same
quorum in some round, e.g., in the second round of LV-3, where all processes
wait for a single message from the same process, i.e., the coordinator. By
this optimization the length of a good period for LV-3 using phase synchro-
nization can be reduced approximately by one ∆. The expression can be
calculated by applying a similar analysis as before:

y

[(
2∆ + (2n− 1)Φ

)β
α

+ 2∆ + (2n+ 2)Φ

]
+

+
(

2∆ + (2n− 1)Φ
)β2

α2
+
(

5∆ + 5nΦ
)β
α

+ ∆ + 5nΦ (3.3)

The other benefit of piggybacking is to speed up best case scenarios,
where Π0 = Π in a good period (i.e., all processes are up; see Definition 3.4).
In this case, the implementation of the predicate does not rely on any time-
out, and the length of a good period depends only on the actual transmission
delay of messages, and no more on ∆. However, applying piggybacking in
every round induces an important overhead and can considerably increase
the effective message transmission delay.

3.7 Synchronization by a Coordinator

If we use full synchronization or phase synchronization to implement Plv4,
LV-4 will never perform better than LV-3 in terms of message complexity or
length of the good period, because LV-4 requires one more round per phase.
In this section we give another implementation that achieves a message
complexity of O(n) instead of O(n2) per regular phase during a good period,
at the cost of a slightly larger length of the good period.
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3.8. Comparison

The predicate Plv4, contrary to Plv3, does not require any round where
all processes hear from each other. Without such a round, we need to send
additional messages in some round in order to synchronize processes and
choose a coordinator, like we do for Plv3. As for Plv3 we do this only once
per phase, in the last round of a phase. This leads to the following message
pattern:

p1

p2

p3

4φ− 3 4φ− 2 4φ− 1 4φ

The messages represented by a full line are required by Plv4, while the
messages represented by a dotted line in round 4φ are only for synchroniza-
tion and election of a coordinator.

The complete description of this method is given in the technical re-
port [BHSS09] and is not formally described in this thesis.

3.8 Comparison

3.8.1 Impact of clock drift

First, we analyze the impact of the clock on the duration of a good period.
The following figure shows, for increasing β

α , the dependency of the ∆ term
on the length of a good period τgood :

1 2 3 4
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25

50

75

β
α

τgood
∆

OTR

LV-3, full

LV-3, phase

LV-4, coord

Φ� ∆

With perfect clocks (α = β = 1), the different implementations of the
LastVoting algorithm lead to almost the same result, which is no more the
case with large clock drift. Large clock skew occurs for instance when clocks
are built from step counting. We note also that algorithms that synchronize
more often (like LV-3 with full synchronization) depend less on the accuracy
of clocks.
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3.8.2 Analysis of the results for drift-free clocks

The observation in the previous section leads us to focus on drift-free clocks
(e.g., α=β=1). Table 3.1 (page 48) gives an overview of the results estab-
lished in the chapter. We can analyze these results in two extreme cases: (1)
short good periods (where the duration of a good period is approximately
the duration of “the initialization period plus one regular phase”), and (2)
long good period (where the duration of the good period is at least two
orders of magnitude greater than the duration of “the initialization period
plus one regular phase”). In case (2) the initialization period can be ignored;
in case (1) the initialization period must be taken into account.

3.8.2.A Short good periods

With short good periods, OTR is obviously the best algorithm. However,
it requires a

(
2n+1

3

)
-good period. Among the algorithms that only require

a
(
n+1

2

)
-good period, LV-3 with full synchronization performs clearly the

worst. However, the different implementations are close to each other.

If we assume Φ � ∆, then we get 7∆ for OTR and between 12∆ and
15∆ for the implementations of the LastVoting algorithms. If we compute
the ratio between these values and the number of rounds to decide in each
implementation, we get 3.5∆ per round for OTR, 4.3∆ per round for LV-3
with phase synchronization, 4∆ per round for LV-3 with piggybacking, and
3.5∆ per round for LV-4 with synchronization by a coordinator. This shows
that the number of rounds per phase is not necessarily a good performance
predictor.

3.8.2.B Long good periods

With long good periods, OTR is also the best algorithm, even though the
relative difference with the other algorithms is smaller. Among the algo-
rithms that only require a

(
n+1

2

)
-good period, LV-3 with full synchroniza-

tion performs again the worst. However, the relative difference between the
different implementation of LastVoting is larger than in the case of short
good periods.

If we assume again Φ � ∆, we obtain the following ratios between the
duration of a regular phase and the number of rounds to decide: 2∆ per
round for OTR, 1.7∆ per round for LV-3 with phase synchronization, 1.3∆
per round for LV-3 with piggybacking, and 1.5∆ per round for LV-4 with
synchronization by a coordinator. In this case, the number of rounds per
phase is even a worse performance predictor than in the case of short good
periods.

Finally, note that one algorithm requires only a linear number of mes-
sages per regular phase, namely LV-4 with synchronization by a coordinator.
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3.8.3 Lesson

Time complexity and message complexity are the metrics generally used
to measure the efficiency of (consensus) algorithms. Time complexity is
usually expressed in terms of number of communication steps, or number of
rounds per phase (which is equivalent, since one round requires usually one
communication step).

The results obtained show that the approach developed in this chapter
provides a fine analytical measure for the time complexity of consensus al-
gorithms. Moreover, the results show that the number of communication
steps is in general not a good metric for time complexity.

3.9 Conclusion

The chapter has derived the time complexity (and message complexity) for
the implementation of several consensus algorithms in a system that alter-
nates between good and bad periods. The time complexity is the duration of
the good period for one instance of consensus. For each algorithm we have
computed two expressions: one for the case of a short good period (that
includes an initialization period plus the duration for a regular phase), and
another for long good period (for which the initialization period can be ig-
nored). Our results show that OTR has always the best time complexity,
but requires a two-thirds majority of processes to be up in a good period.
Among the algorithms that require only a simple majority of processes that
are up, their time complexity is very close in the case of a short good period.
If we consider a long good period, the difference becomes relevant. For ex-
ample in the case Φ� ∆, which is typically the case in a WAN, LV-4 with
synchronization by a coordinator has a time complexity 50% higher than
LV-3 with piggybacking. However, the message complexity of the latter is
higher (n2 + 2n vs. 4n). Finally, the chapter has shown the shortcoming of
the time complexity measured in number of rounds, by computing for each
implementation the ratio of the two time complexity measures.
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Chapter 4

Swift Algorithms for Repeated
Consensus

The round implementations presented in the previous chapter for consensus
algorithms in the context of benign faults have a main drawback: they do
not allow making progress at the speed of the system. The chapter intro-
duces the notion of a swift algorithm. Informally, an algorithm that solves a
repeated problem is swift, if in a partial synchronous run of this algorithm,
eventually no timeout expires, i.e., the algorithm execution proceeds with
the actual speed of the network. This definition differs from other efficiency
criteria for partial synchronous systems.

Furthermore, we show that the notion of swiftness explains the rea-
son why failure detector based algorithms are typically more efficient than
round-based algorithms, since the former are naturally swift while the later
are naturally non-swift. We show that this is not an inherent difference be-
tween the models, and provide a round implementation that is swift, there-
fore performing similarly to failure detector algorithms while maintaining
the advantages of the round model.

Publication: F. Borran and M. Hutle and N. Santos and A. Schiper. Swift
Algorithms for Repeated Consensus. To appear in the 29th IEEE Interna-
tional Symposium on Reliable Distributed Systems (SRDS 2010).
The chapter is a joint work with Nuno Santos.

4.1 Introduction

Timeouts are often required to solve certain problems in distributed com-
puting. Due to the FLP impossibility result [FLP85] and similar results for
other problems, there is a need for some minimal synchrony assumptions
for solving those problems, and timeouts are the dominant mechanism to
make use of synchrony assumptions in an algorithm. In some cases, like in
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the failure detector model, timeouts are hidden (e.g., in the failure detec-
tor implementation). Thus when speaking about an algorithm, we consider
the overall system, in the FD case the combination of the asynchronous
algorithm and the failure detector implementation that run together in a
message-passing system.

Timeouts are often chosen conservatively, so that the algorithm is cor-
rect for a large number of real-life scenarios. However, timeouts should be
used only to cope with faults, and not slow down the execution time in
good cases. As an example, when implementing communication-closed syn-
chronous rounds in a synchronous message passing system, after a process
sends its messages for a certain round it usually waits for a timeout, be-
fore it ends the round and sends its messages for the next round. However,
in many runs of the algorithm, a process might have received all messages
from other alive processes already long before that. It would be favorable to
start the next round immediately after all messages from alive processes are
received. This is, for example, the case with an algorithm that uses a ♦P
failure detector. Here, a process might wait until the FD output is accurate,
which inside the FD involves waiting for a timeout, but only once: later
rounds profit from the fact that the failure detector “remembers” informa-
tion about faults. We formally capture such a behavior by the definition of
swift, which we define in the context of repeated problems like repeated con-
sensus [DGDF+08]. The main intuition behind our definition is that swift
algorithms are more efficient than non-swift algorithms, and are therefore
preferable. A swift algorithm for a repeated problem is thus one in which
eventually all problem instances are “efficient”.

In more detail, for the definition of swift we look at partial synchronous
runs, i.e., runs where a bound ∆ on the transmission delay eventually holds
forever.1 For the good period of such a run, that is the partial run R in
which the bound ∆ holds, we can define the actual transmission delay δ(R)
as the maximum of all transmission delays in R. Such an actual transmission
delay can be much smaller than the maximum transmission delay ∆. If in
this case, the execution time for each instance of the repeated problem even-
tually depends only on δ(R) (in contrast to ∆), the algorithm is swift. This
definition thus relates application performance (namely, execution time) to
underlying system model (namely, transmission delay) metrics.

While intuitively swift algorithms progress at the speed of messages in
good periods, and non swift algorithms progress only at the speed of expi-
ration of timeouts, we refrained from calling these two classes of algorithms
message-driven and timeout driven. This is because the term message-driven
is used in [HW05, BW09] with a different meaning, namely to refer to the

1Note that such a run exists also, e.g., in an asynchronous system, and all runs of a
synchronous systems are of course also partial synchronous. The definition is thus not
limited to partial synchronous systems.
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way events are generated at a process. If processes are allowed to measure
time (e.g., with clocks or step counting), then it is possible to construct
message-driven algorithms (according to this definition) that are not swift.
On the other hand, if processes use an adaptive timeout, then the algorithm
can be swift despite timeout expiration (see Section 4.6). Thus these terms
are not suitable to precisely characterize this new class of algorithms.

Other notions of efficiency for distributed algorithms have been consid-
ered. The term fast has been used to refer to (consensus) algorithms that
solve consensus with less communication steps in favorable cases [Sch97,
HR99,MR01,Lam06]. A favorable case corresponds usually to an execution
without faults that is synchronous from the beginning. On the contrary, the
definition of swift is related to the execution time of an algorithm, in the
context of repeated problems. Further, the definition of swift considers also
runs with faults. The notion of fast is orthogonal to the notion of swift: it
is possible to design both fast algorithms that are swift and fast algorithms
that are not swift.

The same argument holds for early terminating algorithms [DRS90,
Lyn96], and algorithms with zero degradation [DG02, DS06]. Zero degra-
dation refers to the ability of the consensus algorithms to terminate in two
communication steps in every stable run (when all failures are initial crashes,
and failure detection is reliable). For early terminating consensus algo-
rithms, the number of communication steps depends on the actual number
of failures and not on the maximum number of failures.

Contribution: This chapter makes the following two contributions. The
first contribution is the definition of swift algorithms that we just discussed.
The second contribution is a new implementation of communication-closed
rounds in a partial synchronous system with crash faults. This new imple-
mentation leads to swift round-based consensus algorithms, while previous
round implementations, including those described in [DLS88,Gaf98], are not
swift. This result is highly relevant in the context of comparing advantages
and drawbacks of the failure detector approach [CT96] vs. the round-based
approach [DLS88, CBS09], in the context of solving agreement problems.
Indeed, failure detector based algorithms, despite the usage of timeouts in
the implementation of the failure detector algorithm, are naturally swift.
On the other hand, round implementations in a partial synchronous model
have some advantages over FD based round implementations [HS07]. Our
new solution thus combines the advantages of both approaches.

Roadmap: The rest of the chapter is organized as follows. In the next
section, we specify our model and give a formal definition of swift. In Sec-
tion 4.3 we start by introducing the round-based consensus algorithm as a
motivating example. Then we revisit a simple implementation of rounds
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that is not swift, and further illustrate why a naive failure detector based
solution for this problem is swift. In Section 4.5 we present our main con-
tribution, an implementation of partial synchronous rounds that is swift.
Another swift round implementation is given in Section 4.6 using an adap-
tive timeout mechanism. We conclude by discussing the different approaches
in Section 4.7.

4.2 Definitions

4.2.1 Model

We consider a system of n processes connected by a message-passing net-
work. Processes execute an algorithm by making steps, where a step can be
either a send step 〈p,Send,m〉, in which a process sends a message to an-
other process, a receive step 〈p,Receive, S〉, in which a (possibly empty) set
S of messages is received, an input step 〈p, In, I〉 in which a finite (possibly
empty) set of values is read from p’s in-queue, or an output step 〈p,Out, O〉,
in which a set of values is output to p’s out-queue.2 In each step a process
also performs a state transition.

For simplicity we assume an abstract global discrete time from T = N.
Without loss of generality, at each time t ∈ T at least one process makes a
step. A single process can make at most one step at any time. Processes have
no access to this time, however, in periods where some additional synchrony
assumptions hold, they may measure time by counting their own steps.

Messages are unique. The message-passing system fulfills the integrity
property defined in Section 2.1.3.

Let Sp denote the set of possible steps of a process p including a null
step ⊥. A run R is a function N → S1 × S2 × · · · × Sn. Processes may fail
by crashing. A process that makes an infinite number of steps in a run R
is called correct in R, else it is called faulty. Let I ⊂ N be a contiguous
interval. Then a partial run R is a function I → S1 × S2 × · · · × Sn. We
denote with |R| = |I| the length of the run measured in time. Further we
define the failure pattern of a run R as F (t) := {p : ∀t′ ≥ t, R(t′)[p] = ⊥},
that is the set of all processes that take no steps after t. We extend this
definition in a natural way, so that F (R) denotes the faulty processes in a
partial run R. Further, C(F ) denotes the set of processes that is never in F ,
and f := n − |C(F )|. Note that the distinction between correct and faulty
processes and the failure pattern are needed only for the implementation
that uses a failure detector (see Section 4.4).

For a run R, we denote with In (resp. Out) the in-queue (resp. out-
queue) of the processes in R. The queues are functions Π× T → Σ∗, where

2In repeated consensus, the in-queue contains the consensus proposals, and the out-
queue contains the consensus decisions.
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Σ is an arbitrary alphabet.

Definition 4.1 (Partial synchrony). A run R is (∆,Φ,W )-partial syn-
chronous if there is a sub-run R′ with |R′| = W , such that the process speed
bound Φ and the transmission delay bound ∆ hold in R′, and no process
crashes in R′.

We call the time interval that is specified by R′ a good period of R,
and denote it also as (∆,Φ)-good period. The classic partial synchronous
system [DLS88] is (∆,Φ,∞)-partial synchronous, since it requires a good
period that lasts forever. We say a system is (∆,Φ,W )-partial synchronous
if every run R of the system fulfills Definition 4.1.

Definition 4.2 (Actual parameters). Let R be a partial run. Then δ(R)
denotes the maximum transmission delay of R, i.e., the minimum value δ′,
such that the delay bound δ′ holds in R. Further, φ(R) denotes the minimum
value φ′, such that the process speed bound φ′ holds in R.

If R is a good period of a (∆,Φ,W )-partial synchronous system, then
δ(R) ≤ ∆ and φ(R) ≤ Φ. When R is clear from the context, we simply
write δ or φ. It should be emphasized, however, that ∆ (resp. Φ) can be
a known parameter and can be used in the code of the algorithms, while δ
(resp. φ) is a performance metric of a single run, and unknown.

4.2.2 Problems

A problem is specified by an alphabet Σ and a predicate P (In,Out , F ),
where In and Out are an in- resp. an out-queue over alphabet Σ, and F is a
failure pattern. An algorithm A solves a problem given by predicate P if, for
any run R where F is the failure pattern and In and Out are the in- resp.
out-queue of R, predicate P (In,Out , F ) holds. Moreover, we define: x ∈ Q
iff x is in queue Q at some point in time, and: x ≺ y iff x is queued in Q
before y.

Example 4.1 (Atomic broadcast). For atomic broadcast, the following needs
to hold:

(i) ∀p ∈ C(F ),∀m ∈ Inp : m ∈ Outp
(ii) ∀p, q ∈ C(F ), ∀m ∈ Outp : m ∈ Outq

(iii) ∀p ∈ C(F ),∀m ∈ Outp, ∃q ∈ Π : m ∈ Inq
(iv) ∀p, q ∈ Π2 : {m,m′} ⊆ Outp ∧ {m,m′} ⊆ Outq : m ≺ m′ ∈ Outp ⇔

m ≺ m′ ∈ Outq

In this chapter, we focus on repeated problems, like repeated consensus.
For such problems, every element in Σ is of form 〈i, v〉 where i is an instance
number (from N) and v the input/output value from a set V . Further, every
predicate P (In,Out , F ) is a predicate of the form

∧
i∈N P

′(Ini,Out i, F ),
where Ini (resp. Out i) is In (resp. Out) restricted to elements of instance i.
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Example 4.2 (Repeated consensus). In the repeated consensus problem,
for each instance i, the following needs to hold:

(i) ∀p ∈ Π, ∀〈i, v〉 ∈ Outp, ∃q ∈ Π : 〈i, v〉 ∈ Inq
(ii) ∀p, q ∈ Π2, ∀〈i, v〉 ∈ Outp, ∀〈i, v′〉 ∈ Outq : v = v′

(iii) ∀p ∈ correct(F ), ∃v : 〈i, v〉 ∈ Outp

4.2.3 Swift algorithms

Definition 4.3 (Execution time). For a run R of a repeated problem con-
sider instance i. Let tin = max{t : 〈i, v〉 is taken from Ini at some process
p at time t}. Respectively, tout = max{t : 〈i, v〉 is output to Outi at some
process p at time t}. Then the time τi(R) = tout − tin is the execution time
in R of instance i of the problem.

Let A(∆,Φ) be a collection of algorithms, with one algorithm for every
∆ and Φ.3

Definition 4.4 (Swift algorithm). A collection of algorithms A that solves a
repeated problem, is swift, if for all Φ there exist k, c ∈ N such that for every
run R of A(∆,Φ) that is (∆,Φ,∞)-partial synchronous with good period R′

and includes an infinite number of instances, there is an instance number i′

such that for all instance i ≥ i′, τi(R) ≤ kδ(R′) + c.

Informally, a swift algorithm for a repeated problem is one in which
eventually all instances of the problem have an execution time proportional
to the actual speed of the system. Note that this definition does not refer
to timeouts. Timeout expiration is a low level issue. Our definition only
depends on the relation between system properties (i.e., transmission delays)
and algorithm properties (i.e., execution time), and therefore avoids any
reference to timeout expiration.

Example 4.3. Consider the following simple implementation of reliable
broadcast (Example 4.1 without property (iv)) in an asynchronous system
with reliable links. Every process p keeps a local instance number ip. If
p wants to broadcast a message m, sends 〈ip · n + p,m〉 to all. A process
that receives this message the first time delivers this message and forwards
it to all other processes. In a partial synchronous run R, every instance i
that is started by reading the input m in the good period R′ takes at most
(n + 2)φ + δ time (n send steps, one transmission delay, one receive step,
one output step). Since τi ≤ (n + 2)φ + δ ≤ (n + 2)Φ + δ this algorithm is
swift (k = 1 and c = (n + 2)Φ, note that the constants may depend on Φ
and n, see Definition 4.4).

3Here, ∆ and Φ are just algorithm parameters. For models with known bounds on
process speed and transmission delays, ∆ and Φ intuitively represent this knowledge. For
models with unknown bounds, or asynchronous algorithms, we assume A(∆,Φ) to be a
constant function, giving a single algorithm.
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We are now also in the position to illustrate the initial example from the
introduction in more detail:

Example 4.4. Consider an implementation of FloodSet consensus algorithm
[Lyn96] in a synchronous system with Φ = 1, where each round r takes
exactly (∆ + (n+ 2)Φ) steps (one input step, n send steps, one transmission
delay ∆, and one receive step). New inputs are read only when the previous
consensus instance has finished. Any instance of consensus requires f + 1
rounds, so every instance decides after (f + 1)(∆ + (n + 2)Φ) + Φ. Since
(f +1)(∆+(n+2)Φ)+Φ = k∆+ c 6≤ kδ+ c in general, this implementation
is not swift.

Although this natural implementation of FloodSet algorithm is not swift,
our solution in Section 4.5 can be used to implement a swift version of
FloodSet.

4.3 A Non-Swift Round-based Algorithm

We now explain swiftness and non-swiftness on simple consensus algorithms
for partially synchronous systems in more details. The algorithms we con-
sider belong all to the same class of consensus algorithms, i.e., algorithms
that require f < n/3.

4.3.1 Consensus algorithm

We consider a round-based algorithm, namely the OneThirdRule (OTR)
consensus algorithm from Section 3.2, see Algorithm 4.1, expressed slightly
differently. In this representation, the state of each process consists of its
estimate xp and its decision decisionp, initially set to ⊥. In each round
r, a process sends its estimate xp to all processes (line 6) and then, after
an implicit receive step where only messages of round r may be received,
performs the state transition function (lines 8 to 11). As already discussed,
Algorithm 4.1 is always safe. For liveness, we need two space uniform rounds
(defined in Section 3.2) in which the set Π0 of alive processes (at least 2n/3)
receives all messages from processes in Π0, and only from these processes.
This can be ensured by the round implementation layer during the good
period of a partially synchronous system.

4.3.2 Round implementation

The implementation of the round structure is given by Algorithm 4.2. It is
an extension of the implementation given in [HS07] and Section 3.5, with
support for repeated instances of consensus.
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Algorithm 4.1 OneThirdRule (OTR) (code of process p)
1: State:
2: xp ∈ V
3: decisionp ∈ V ; initially ⊥

4: Round r :
5: Srp :
6: send 〈xp〉 to all processes
7: T rp :
8: if number of values received > 2n/3 then
9: xp := the smallest most often received value

10: if more than 2n/3 values received are equal to v then
11: decisionp := v

Algorithm 4.2 A simple round implementation (code of process p)
1: rp ← 1
2: next rp ← 1
3: Rcvp ← ∅ /* set of received messages */
4: ∀i ∈ N : statep[i]← ⊥ /* state of instance i */

5: while true do
6:

in
p
u
t

&
se

n
d

I ← input()
7: for all 〈i, v〉 ∈ I do
8: statep[i]← init(v) /* initialization of state with initial value v */
9: for all i : statep[i] 6= ⊥ do

10: msgs[i]← S
rp
p (statep[i])

11: for all q ∈ Π do
12: Mq ← {〈i,msgs[i][q]〉 : statep[i] 6= ⊥}
13: send(Mq, rp, p) to q

14:
re

ce
iv

e
ip ← 0

15: while next rp = rp do
16: ip ← ip + 1
17: if ip ≥ TO then
18: next rp ← rp + 1
19: receive(M)
20: Rcvp ← Rcvp ∪M
21: next rp ← max({r : 〈−, r,−〉 ∈ Rcvp} ∪ {next rp})

22:

co
m

p
.

&
o
u
tp

u
t

O ← ∅
23: for all i : statep[i] 6= ⊥ do
24: for all r ∈ [rp,next rp − 1] do
25: ∀q ∈ Π : Mr[q]← m if ∃M 〈M, r, q〉 ∈ Rcvp ∧ 〈i,m〉 ∈M , else ⊥
26: statep[i]← T rp (statep[i],Mr)
27: if ∃v 6= ⊥ s.t. decision(statep[i]) = v for the first time then
28: O ← O ∪ 〈i, v〉 /* v is the decision of instance i */
29: output(O)
30: rp ← next rp

Each iteration of the outermost loop is composed of three parts: input &
send part, receive part and comp. & output part. In the input & send part,
the process queries the input queue for new proposals (line 6), initializes
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p1

p2

r

∆

Φ Φ nΦ Φ Φ

r

Φ nΦ

∆

ts TO te

Figure 4.1: Simple round implementation: timeout TO ≥ 2∆ + (2n+ 5)Φ.

new slots on the state vector for each new proposal (line 8), calls the send
function of all active consensus instances (line 10), and sends the resulting
messages (line 13). The process then starts the receive part, where it waits
for messages until either the timeout TO expires (line 17) or it receives a
message from a higher round (line 21). Finally, in the comp. & output part,
the process calls the state transition function of each active instance (line 26),
and outputs any new decisions (line 29). Note that some rounds may be
partially skipped (no message sent, no message received, only transition
function executed): this happens whenever a message from higher round is
received.

The implementation described above is not swift. Before the formal
proof, we give the intuition why in each round at least one timeout has to
expire. A process starts a new round either if its timeout expires (lines 17-
18), or if it receives a message from a higher round (line 21). Since for
the first process entering a new round, obviously no higher round message
exists, it must do so necessarily by a timeout. Therefore, even in the good
periods, the system can only advance as fast as the timeouts of the fastest
process expire.

4.3.3 Correctness

We start by the correctness of our solution. As shown in [CBS09], Algo-
rithm 4.1 is always safe. In order to have liveness we need a good period of
a certain length:

Theorem 4.1. Consider a run of Algorithm 4.2 with TO ≥ 2∆+(2n+5)Φ
and n > 3f . Let R be a (∆,Φ,W )-partial synchronous run with good period
[tg, tg +W ] with W = 3TO + ∆ + (4n+ 8)Φ. Then every consensus instance
that starts at t decides the latest at max(t, tg) +W .

The following lemmas show that in every good period of length W , there
are two space-uniform rounds. Together with the results of [CBS09], this
proves the theorem.

Lemma 4.1. Consider Algorithm 4.2 with TO ≥ 2∆ + (2n + 5)Φ and
n > 3f . Let tr be the time the first process starts a new round r, and
assume that [tr, tr + TO + (n+ 1)Φ] is a (∆,Φ)-good period. Then round r
is space-uniform.
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Proof. (See Figure 4.1 for illustration.) Let p be the first process to finish
the input and send steps for round r, at time ts (ts ≤ tr + (n + 1)Φ). We
show that (i) all round r messages from all alive processes are ready for
reception4 by time ts + TO , and (ii) no process expires its round r timeout
before ts + TO . This implies that round r is space-uniform.

(i) By time ts + ∆ the round r message from p is ready for reception
at all processes. Every process q will make a receive step at most (n+ 2)Φ
time later (if at time ts + ∆ q was on a output step of a round r′ < r − 1,
then it must make one input step and n send steps before the next receive
step). After receiving the round r message, every process performs an output
step for its current round, advances to round r, performs one input and
n send steps. Therefore, by time ts + ∆ + (2n + 5)Φ, all processes have
finished sending their round r messages, and ∆ time later, by time, ts +
2∆ + (2n + 5)Φ = ts + TO , all round r messages are ready for reception
at all alive processes. Note that this time is still in the good period, since
ts + TO = tr + TO + (n+ 1)Φ.

(ii) Since all processes start the timeout for round r after p, the timeout
of no process will expires before ts + TO . Additionally, no process advances
to a higher round by receiving a higher round message because for a new
round to start, the timeout of round r of some process has to expire.

Lemma 4.2. Consider Algorithm 4.2. Let [tg, tg + W ] be a (∆,Φ)-good
period, with W = TO + (n+ 2)Φ. Then by time tg +W at least one process
has started a new round r0.

Proof. Let p be the process with the highest round number r among all
processes. Then the lemma is fulfilled, if p is at least in round r + 1 by the
given time. However, in a good period, p can be in round r at most for
TO + (n+ 2)Φ time, the timeout and the time for an input, an output, and
n send steps.

4.3.4 Non-swiftness

To show that the algorithm is not swift, from here on we distinguish between
the a priori known parameters ∆ and Φ, which have to hold in all runs, and
the effective values of δ(R) and φ(R), which are the maximum transmission
delay and maximum step time of the good period R. This distinction allows
us to show what part of the duration of a round or an instance is from a
timeout (terms in ∆ and Φ) and what part is from the time required to send
a message or to perform a step (expressed in δ and φ).

Lemma 4.3 (Maximum execution time). Consider Algorithm 4.2 with TO ≥
2∆ + (2n + 5)Φ, n > 3f , and a (∆,Φ,∞)-partial synchronous run with a

4We call a message ready for reception if it must be received with the next receive step
of the receiver process.
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Figure 4.2: Simple round implementation: length of good period - Theorem 4.1
and Lemma 4.3.

good period R that starts at time tg. Let r0 be the first new round that is
started after tg. Then for all instances i started in a round r ≥ r0, we have
an execution time τi ≤ 2TO + δ + (3n+ 6)φ.

Proof. (See Figure 4.2 for illustration.) Let i be an instance started in a
round r ≥ r0 by a process p. Recall that Algorithm 4.2 needs at most two
space-uniform rounds to decide. Since by Lemma 4.1 rounds r and r + 1
are space-uniform, all processes decide instance i by round r + 1 (i.e., they
output (i, x) at line 29, where x is the decision).

It remains to calculate the maximum time for rounds r and r+ 1. Let p
be the first process to start round r at time tr. Process p will finish round
r the latest at tr + TO + (n+ 2)φ, and start the send steps for round r + 1
Φ time later. By time tr + TO + δ + (2n + 3)φ, p’s round r + 1 messages
are ready for reception at all processes. At this point, all processes have
finished executing the send steps for round r (process p’s round r messages
forced them to advance) and are either executing receive steps for round r
or have entered round r + 1. Therefore, all processes will enter round r + 1
at most φ time after receiving p’s round r + 1 message. Round r + 1 will
take at most TO + (n+ 2)φ time, so by time tr + 2TO + δ + (3n+ 6)φ all
processes have finished round r + 1.

Since δ ≤ ∆ and φ ≤ Φ, Theorem 4.1 follows also from Lemma 4.3. For
the minimal value of TO , the maximum execution time is 4∆+(4n+10)Φ+
δ + (3n+ 6)φ.

We compute now also the minimum execution time, in order to show
that the solution is not swift:

Lemma 4.4 (Minimum execution time). Consider Algorithm 4.2 with TO ≥
2∆ + (2n+ 5)Φ, n > 3f , and a (∆,Φ,∞)-partial synchronous run with good
period R that starts at time tg. Let r0 be the first new round that is started
after tg. Then for all instances i started in a round r ≥ r0, we have an
execution time τi > ∆.

Proof. Assume by contradiction that for an instance i that started in a round
r ≥ r0, we have τi ≤ ∆. This means that there is a process p that stays in
round r at most ∆ time.
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Let tr and te be the time when p starts and finishes round r, respectively.
According to the code of algorithm, process pmay finish round r in two cases:
either (i) by the expiration of its timeout, or (ii) by receiving a higher round
message. In case (i) we have te − tr = TO + (n+ 2) > ∆. In case (ii) let q
be the first process that has finished round r and sent round r+ 1 messages
to all. Process q could do this only by expiration of its timeout for round r.
Therefore, q has started round r the latest by time tq = te − TO − n − 4.
Process q sent a round r message to p by time tq + (n+ 1)φ, and p received
it δ+ (n+ 2)φ later. Because in the worst case p is doing an output step for
another round. So by time tq + δ+ (2n+ 4)φ, p, after an output step, must
have entered round r, therefore tr = tq + δ + (2n + 4)φ. Expanding tr, we
obtain tr = te − TO − n− 4 + δ + (2n+ 4)φ < te −∆, that is, te − tr > ∆,
which contradicts the assumption that p remained in round r for at most
∆. Therefore, for all r ≥ r0, all processes remain in round r for more than
∆ time. A contradiction.

Theorem 4.2. The collection of algorithms A(∆,Φ) given by Algorithm 4.2
is not swift.

Proof. In case that TO < 2∆+(2n+5)Φ, the algorithm is not live. Therefore
we only consider TO ≥ 2∆ + (2n+ 5)Φ.

Assume by contradiction that the collection of algorithms A(∆,Φ) given
by Algorithm 4.2 is swift. Then, for a fixed Φ, there exist k, c ∈ N, such that
in every (∆,Φ,∞)-partial synchronous run R with a good period R′, there
is an instance iR such that, for all instances i > iR, τi(R) < kδ(R′) + c. For
a contradiction, consider A(kδ(R′) + c,Φ). By Lemma 4.4, for almost all
instances i started after GST , τi > ∆ = kδ(R′) + c. A contradiction.

4.4 A Failure Detector-based Algorithm that is
Swift

We consider now the OTR algorithm expressed with the failure detector
♦P, see Algorithm 4.3. Repeated execution of Algorithm 4.3 is expressed
by Algorithm 4.4. The box in Algorithm 4.4 corresponds to line 7 of Al-
gorithm 4.3. The algorithm is expressed in a model similar to the RRFD
model of Gafni [Gaf98]. For simplicity, we have not shown in Algorithm 4.4
the (trivial) implementation of ♦P in a partially synchronous system. We
assume that, both Algorithm 4.4 and implementation of ♦P, run concur-
rently in the following way: in every even step, Algorithm 4.4 is executed,
in every odd step, the implementation of ♦P is executed.

Intuitively it is easy to see that Algorithm 4.4 is swift. Indeed, some time
after GST , the failure detector list contains exactly the faulty processes. At
this point, by line 7, all correct processes wait only for messages from correct
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Algorithm 4.3 OTR with the failure detector ♦P (code of process p)
1: State:
2: rp ← 1 /* round number */
3: xp ∈ V
4: decisionp ∈ V

5: while true do
6: send 〈rp, xp〉 to all processes
7: wait until received values for round rp from all processes q /∈ ♦Pp
8: if number of values received > 2n/3 then
9: xp ← x smallest most often received value

10: if more than 2n/3 values received are equal to v then
11: decisionp ← v
12: rp ← rp + 1

Algorithm 4.4 Multiple instances of Algorithm 4.3 (code of process p)
1: Initialization:
2: rp ← 1
3: ∀i ∈ N : xp[i]← ⊥
4: ∀i ∈ N : decisionp[i]← ⊥

5: while true do
6: I ← input()
7: for all 〈i, v〉 ∈ I do
8: xp[i]← v
9: send 〈rp, xp, p〉 to all processes

10: while not received 〈rp, xq, q〉 from all processes q /∈ ♦Pp do
11: receive(M)
12: Rcv ← Rcv ∪M
13: O ← ∅
14: for all i : xp[i] 6= ⊥ and decisionp[i] = ⊥ do
15: if number of values received 〈rp, x′,−〉 > 2n/3 then
16: xp[i]← smallest most often value x′[i]
17: if more than 2n/3 values x′[i] are equal to v then
18: decisionp[i]← v
19: O ← O ∪ {〈i, v〉}
20: output(O)
21: rp ← rp + 1

processes, and since f < n/3, the condition of line 8 is always true. Note that
the failure detector model requires reliable links (defined in Section 2.1.3),
contrary to the solution in the previous section.5 For simplicity we will
assume that links are natively reliable in this section, although they can be
implemented from eventual reliable links with a retransmission protocol.
The correctness of Algorithm 4.4 follows from the following lemma:

Lemma 4.5. For Algorithm 4.4, there is eventually a round GSR so that
for all rounds r ≥ GSR, every correct process receives a message from every

5Consider two correct processes p and q and line 7 executed by p. If the message sent
by q is lost, and p’s failure detector never suspects q, then p is blocked forever at line 7.
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correct process in round r and receives no message from faulty processes.

Proof. By the properties of ♦P, there is a time where the FD is accurate and
complete, i.e., a process is suspected if and only if it is faulty. In every round
that is started after this time, every correct process waits for a message from
every correct process.

Theorem 4.3 proves that Algorithm 4.4 is swift, by showing that eventually
every consensus instance decides within 3δ + (6n+ 6)φ.

Theorem 4.3. For a run of Algorithm 4.4 with n > 3f and an infinite num-
ber of instances, there is an instance number i0 such that for all instances
i ≥ i0, we have an execution time τi ≤ 3δ + (6n+ 6)φ.

Proof. Let GSR be the round defined by Lemma 4.5. Since in every input
step only a finite number of instances are read, there is an input step so
that this step and all later input steps are just before a round that is after
GSR. Let i0 be the largest consensus instance started in a round before
GSR (instance i is started in the round in which the last process starts
instance i). Consider an instance i > i0. The maximum execution time of
instance i corresponds to the maximum duration of two rounds. This follows
from Lemma 4.5 and the fact that Algorithm 4.3 requires two rounds after
GSR. In this case, the algorithm decides in at most two rounds. It remains
to calculate the maximum time for two rounds after GSR.

Let t be the first time a process, say p, starts round r > GSR. Since
r − 1 ≥ GSR, p receives round r − 1 messages from all correct processes.
Every other process does so the latest at t + 2(n − 1)φ + δ (note that we
have to double the time for a step, since only every second step is of the
asynchronous algorithm). To see this, note that every process sends its
message for round r− 1 the latest by t+ 2(n− 2)φ, since p received already
this message from every correct process at time t. All other processes are
performing only receive steps at this time, thus these messages are received
by time t+ 2(n− 1)φ+ δ and all processes are in round r.

By t + 2δ + 2(2n)φ all round r messages are thus ready for reception,
and received by t + 2δ + 2(2n + 1)φ. Again by t + 2δ + 2(3n + 2)φ all
round r + 1 messages are sent, and thus round r + 1 ends the latest at
t+ 3δ + 2(3n+ 3)φ.

Failure detector based consensus algorithms require reliable links. This
has the following implication. In contrast to the round implementation of
Section 4.3, no round is skipped, i.e., processes send messages for all rounds,
and wait for the messages from all non-suspected processes. This implies
that, unlike the round implementation in the previous section, it is no more
possible to bound the time from GST until the first decision. To see this,
note that at GST , a process p might be in a round r that is arbitrarily
smaller than the highest round number rmax at that time. Since other
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Figure 4.3: Simple solution is not correct.

correct processes might wait in any round r′ (r ≤ r′ ≤ rmax) for the round
r message of process p, p cannot skip the sending of all rounds between r
and rmax. This can also not be easily solved by packing all messages into
a single one, since between the send steps p also has to perform receive
steps (to receive messages from the other correct processes). This takes an
unbounded amount of time, as rmax − r can be arbitrarily large. Further,
the failure detector based solution requires additional messages for the FD
heartbeats, and also the overhead for ensuring (quasi-)reliable links might
not be negligible.

Remark. We obtain similar results for a traditional failure detector-based
consensus algorithm instead of the RRFD-based approach. Therefore, the
advantages and disadvantages are not due to the round abstraction.

4.5 A New Round Implementation that is Swift

This section presents the main technical contribution of this chapter, which
combines the (practical) advantages of the partial synchronous round imple-
mentation with those of implementations using failure detectors. We observe
that a similar mechanism that allows the failure detector approach to be
swift, can be applied to a round-based implementation, without reintroduc-
ing any additional heartbeat messages or overhead due to the reliable link
assumption. Like in the failure detector approach, each process estimates
a set of alive processes (that is the complimentary of the set of suspected
processes) and uses this set to terminate a round earlier in good periods,
namely, as soon as it receives all messages from the alive set. Contrary to
the failure detector approach, the algorithm tolerates message loss, by using
a timeout that expires only in bad periods. Like in the round-based imple-
mentation, processes resynchronize after message-loss by skipping rounds.
Skipping rounds also allows the algorithm to decide in a bounded time after
a good period starts.
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4.5.1 Issue to address

Terminating a round upon receiving all messages from alive processes to-
gether with the resynchronization mechanism of Algorithm 4.2 introduces
problems that do not occur in the approaches presented before. Because
messages may be delivered out of (causal) order even during good periods, a
process can receive a round r+1 message before having all round r messages.
This is illustrated in Figure 4.3. In this scenario, p3’s round r message is
the last one that p2 needs to have all round r messages. Therefore, upon
receiving this message, it immediately sends its round r + 1 message to all.
But process p1 receives the round r+ 1 message from p2 before the round r
message from p3. If p1 goes directly to round r+ 1 when it receives the first
round r + 1 message, it will miss p3’s round r message, therefore breaking
space uniformity of round r. This situation may repeat in every round, thus
preventing the algorithm from deciding. In the next section, we show how
we address this problem.

4.5.2 New round implementation

Algorithm 4.5 is a round implementation that is swift. This algorithm is
an enhanced version of the round implementation from Section 4.3 with the
following additional elements:

(i) Each process p maintains an estimation of the set of alive processes in
Alivep (see line 13), and updates it every TOA steps. TOA is thus the
timeout used to detect faulty processes.

(ii) A process goes directly to the next round if it received a message from
all processes in its alive set (lines 14-15). This is the key point to make
the algorithm swift.

(iii) In any case, a process goes to the next round after TO time (lines 16-
17). TO is thus the timeout for a round in bad periods.

(iv) When a process receives a round message from the next round for
the first time, it waits another TOD steps until going into this round
(lines 21-22). To do this, each process p maintains a variable top,
initially set to TO (line 8) and adapted in line 22. This avoids the
problem described in Section 4.5.1 and Figure 4.3.

(v) When a process receives a message from a round higher than the next
round (i.e., > rp + 1), it immediately goes to this round (lines 19-20).
This ensures a fast resynchronization of the system after a bad period.

We now show correctness of this solution (Section 4.5.3), and then swiftness
(Section 4.5.4).
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Algorithm 4.5 A new round implementation that is swift (code of process
p)
1: rp ← 1
2: next rp ← 1
3: Rcvp ← ∅ /* set of received messages */
4: ∀i ∈ N : statep[i]← ⊥ /* state for instance i */

5: while true do
6: input & send /* lines 6-13 of Algorithm 4.2 */

7:

re
ce

iv
e

ip ← 0
8: top ← TO
9: while next rp = rp do

10: ip ← ip + 1
11: receive(M)
12: Rcvp ← Rcvp ∪M
13: Alivep ← {set of processes from whom

there is a message within last TOA steps}
14: if ∀q ∈ Alivep : ∃〈Mq, rp, q〉 ∈ Rcvp then
15: next rp ← rp + 1
16: if ip ≥ top then
17: next rp ← rp + 1
18: r ← max{r : 〈−, r,−〉 ∈ Rcvp}
19: if r > rp + 1 then
20: next rp ← r
21: if there is a message from round rp + 1 for the first time then
22: top ← min{ip + TOD,TO}

23: comp. & output /* lines 22-29 of Algorithm 4.2 */
24: rp ← next rp

4.5.3 Correctness

Algorithm 4.1 together with Algorithm 4.5 solves repeated consensus in a
partial synchronous system. As already discussed, Algorithm 4.1 is always
safe (with n > 3f). Before proving that the round implementation given by
Algorithm 4.5 provides liveness, we show some properties of the algorithm
after GST .

When the good period starts at GST , processes will synchronize to the
same round using the following two mechanisms: (i) when a process receives
a higher round message, it advances either immediately (line 20), or within
TOD (lines 21-22), or when the original timeout TO expires; (ii) in any
case, processes remain in a round at most TO time, starting a new round
when this timeout expires (lines 16-17 and line 22). Therefore, shortly after
GST , there will be a process p that starts a new round r that is higher than
any round started by the other alive processes. When the other processes
receive the round r message from p, they will advance to round r and send
their own messages. These messages are then received by all alive processes,
resulting in a space uniform round.
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Figure 4.4: Swift round implementation: timeout TO ≥ TOD + 2∆ + (2n+ 5)Φ.

As discussed in Section 4.5.1, a round r + 1 message may be received
before all round r messages (Figure 4.3). To address this issue, if a process p
in round r receives a message from round r+1 for the first time and it has not
received all the messages from its alive set, it does not advance immediately.
Instead, it waits either for an additional TOD or until the end of the original
timeout, whichever comes first. During the good period, all the remaining
round r messages will be received before this updated timeout expires. To
see why, notice that for a process to send a round r+1 message, it must have
received all round r messages from the alive processes, so these messages will
also be received by process p within at most TOD = ∆ + (n − 1), namely
(n−1) send steps and at most ∆ for the transmission delay. In any case, all
messages will be received before the original round timeout, so the process
only has to wait for the minimum of TOD or what is left of TO .

If a process p in round r receives a message from round r+2 or higher, it
can conclude that the good period has not yet been started, so it advances
immediately to round r + 2. To see why, consider that, inside the good
period, process q sends a round r + 2 messages. Then either (i) q received
all round r + 1 messages, including p’s message, which is not possible; or
(ii) the timeout for round r+ 1 expires, which is not possible as the timeout
is chosen in a way that processes have enough time to receive all round
messages and messages are not lost in the good period. Therefore, we are
still in the bad period.

Theorem 4.4 (Correctness). Consider a run of Algorithm 4.5 with n > 3f
and the following timeouts: TOD ≥ ∆ + (n − 1)Φ, TO ≥ TOD + 2∆ +
(2n+ 5)Φ, and TOA ≥ TO + ∆ + (2n+ 1)Φ. Let R be a (∆,Φ,W )-partial
synchronous run with good period [tg, tg + W ] with W = TOA + 2TO +
TOD + 3∆ + (6n + 15)Φ. Then every consensus instance that starts at t
decides the latest at max(t, tg) +W .

The proof is based on the following two lemmas:

Lemma 4.6 (Timeouts TO and TOD). Consider Algorithm 4.5 with n > 3f
and the following timeouts: TOD ≥ ∆+(n−1)Φ, TO ≥ TOD +2∆+(2n+
5)Φ. Let tr be the time at which the first process starts a new round r, and
assume that [tr, tr+TO +(n+1)Φ] is a (∆,Φ)-good period. Let all processes
have the same alive set in this time interval. Then round r is space-uniform.

66



4.5. A New Round Implementation that is Swift

p1

p2

r

Φ nΦ TO Φ

r+1

Φ nΦ
∆

t1 t2TOA

Figure 4.5: Swift round implementation: timeout TOA ≥ TO + ∆ + (2n+ 1)Φ.

Proof. Let p1 be the first process to finish sending its round r messages at
time ts = tr+(n+1)Φ, and starting the timeout for round r (see Figure 4.4).
These messages are ready for reception at most ∆ time later, at ts + ∆.
These messages are received in the next receive step, which occurs the latest
after (n+ 2)Φ steps (an output step followed by an input step, and n send
steps). This is because some process (p2 in Figure 4.4) might be just started
executing an output step for some round r′ < r. Therefore, p1’s message
is received by all processes the latest at time t1 = ts + ∆ + (n + 3)Φ. Any
process that receives this message in round r − 1 for the first time, might
set its timeout to t1 + TOD < TO (see lines 21-22). And start round r the
latest by time t1 + TOD + Φ, after an output step for round r− 1. By time
t2 = t1 + TOD + Φ + Φ + nΦ, any process (including p2) has performed an
input step and n send steps for round r. This message is ready for reception
the latest at time te = t2 + ∆ = ts + TOD + 2∆ + (2n+ 5)Φ. The timeout
TO = TOD + 2∆ + (2n + 5)Φ ensures that no timeout started at time ts
expires before te (see line 16). So when the timeout expires, all messages
for round r are either received or ready to be received. Before, calling the
transition function for round r (in line 23), a receive step is performed (in
line 11); thus every process in round r receives a message from every process,
and round r is space uniform.

Note that no process in round r can receive a message from round > r+1.
We prove this by contradiction. Let p be a process in round r that receives a
message from round r+2. This means that there is some process q that sent
round r+ 2 messages. This requires that either (i) q receives all round r+ 1
messages, including p’s message, which is not possible; or (ii) the timeout
for round r + 1 expires, which is not possible inside the given interval.

If a process ends round r at time t before the end of timeout TO , because
it has received all round r messages from its alive set (line 15), any other
process does so the latest by time t + (n − 1)Φ + ∆. From lines 21-22, a
process in round r that receives a message from round r + 1 for the first
time, waits until t+ TOD time before starting round r+ 1, which is enough
to receive all round r messages. By the assumption, since all processes have
the same actual alive set in the given interval, round r is also space uniform
in this case.
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Lemma 4.7 (Timeout TOA). Consider Algorithm 4.5 with n > 3f and the
following timeouts: TOD ≥ ∆ + (n − 1)Φ, TO ≥ TOD + 2∆ + (2n + 5)Φ,
and TOA ≥ TO + ∆ + (2n+ 1)Φ. Let tr be the time the first process starts
a new round r, and assume that [tr, tr + 2Φ + TOA] is a (∆,Φ)-good period.
Then by time tr + 2Φ + TOA all processes have the same alive set.

Proof. By time t1 = tr + 2Φ the first round r message can be received (see
Figure 4.5). From the code of the algorithm, every process starts a new
round the latest every TO + (n + 2)Φ steps: one input step followed by n
send steps, TO receive steps followed by an output step. From the fact that
a process sends at most one message in each step, every process p1 sends
messages to any process p2 every TO + (n+ 2)Φ + (n− 1)Φ steps. Since a
message can take at least 0 and at most ∆ time to be received, every process
receives a message every x = TO + (2n + 1)Φ + ∆ time. From the code of
the algorithm, process p2 excludes process p1 from its alive set, if it does not
receive a message within TOA steps (see line 13). Comparing TOA with x
we have TOA = x, which is sufficient to receive a message from any alive
process.

We now can prove the main theorem (i.e., Theorem 4.4):

Proof. The proof is illustrated by Figure 4.6 (page 74). We distinguish two
cases (1) t < tg, (2) t ≥ tg. In case (1) by Lemma 4.6 a new round is
started the latest at tg+TO +(n+2)Φ. From Lemma 4.7 all processes have
the same alive set by time t0 = tg + TO + TOA + (n+ 4)Φ. In case (2) by
Lemma 4.7 all processes have the same alive set by time t0 = tg+TOA+2Φ,
which is strictly smaller than tg + TO + TOA + (n+ 4)Φ. From the code of
the algorithm a process, e.g., p1, starts a new round r every TO + (n+ 2)Φ
steps, i.e., the latest by time t1 = t0 + TO + (n + 2)Φ. All processes do
so by time t2 = t1 + TOD + ∆ + (2n + 5)Φ. This means that all processes
start round r with the same alive set. From Lemma 4.6, round r is space
uniform. Furthermore, all processes receive all round r messages from their
alive set, and end round r the latest by time t3 = t2 + ∆ + (n + 2)Φ and
start round r + 1 at this time.

From the assumption, no process crashes in W , therefore, the alive set
remains the same in the interval [tg + TOA, tg + W ]. In round r + 1, all
processes send their messages to all the latest by time t3 + (n+ 1)Φ. These
messages can be received by all processes the latest by time t3+(n+1)Φ+∆.
From lines 14-15, all processes end round r + 1 the latest by time t3 + (n+
1)Φ + ∆ + Φ after an output step. This means that all processes decide the
latest by this time which is equal to t0 + TO + (TOD + 2∆ + (4n+ 9)Φ) +
(∆ + (n+ 2)Φ) or max(t, tg) + TOA + 2TO + TOD + 3∆ + (6n+ 15)Φ.
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4.5.4 Swiftness

In order to show that Algorithm 4.1 together with the round implementation
provided by Algorithm 4.5 is swift, we show that the execution time of a
consensus instance depends only on δ and not on ∆.

The main properties of the algorithm related to the swiftness, which
hold after GST , are the following. First, the Alive set becomes accurate
the latest by GST + TO + (n+ 2)Φ + TOA + 2Φ (line 13). Then, once the
alive set is accurate after GST , it no more changes and therefore no further
timeout expires. Finally, all processes finish rounds as soon as all messages
from alive processes are received and advance round by lines 14-15, making
the algorithm swift.

Theorem 4.5 (Swiftness). Consider Algorithm 4.5 with n > 3f and the
following timeouts: TOD ≥ ∆+(n−1)Φ, TO ≥ TOD+2∆+(2n+5)Φ, and
TOA ≥ TO +∆ +(2n+1)Φ. Consider a (∆,Φ,∞)-partial synchronous run
with a good period R that starts at time tg. Then every consensus instance
that is started after tg +X, with X = TOA+2TO +TOD +2δ+(5n+13)φ,
has an execution time of τi ≤ 3δ + (4n+ 7)φ.

Proof. From Lemma 4.6 a new round starts in the good period by time
tg + TO + (n + 2)Φ From Lemma 4.7 all processes have the same alive
set by time t0 + TOA + 2Φ. From the code of the algorithm a process,
e.g., p1, starts a new round r every TO + (n + 2)Φ steps, i.e., the latest
by time t1 = t0 + TOA + TO + (n + 4)Φ. All processes do so by time
t2 = t1 + TOD + δ + (2n + 5)Φ. This means that all processes start round
r with the same alive set. From Lemma 4.6, round r is space uniform.
Furthermore, all processes receive all round r messages from their alive set,
and end round r the latest by time t3 = t2 + δ + (n + 2)Φ and start round
r+1 at this time. Therefore, all processes end the first space-uniform round
the latest by time tg + TOA + TO + TOD + 2δ+ (4n+ 9)φ. This proves the
first part of the theorem with X = TOA + 2TO + TOD + 2δ + (5n+ 13)φ.

Similar to the proof of Theorem 4.3, there are instances that start after
tg +X. It remains to calculate the execution time for a consensus instance
that is started after tg + X. Since no process crashes in the (∆,Φ,∞)-
good period, the alive set remains the same (see line 13). Let t be the first
time process p1 starts a new round r. Then every other processes does so
(n−1)φ+δ+(n+4)φ time later. This is because some process p2 might send
the last round r−1 message (n−1)φ steps later to another process, e.g., p3.
And p3 will start round r the latest after (n+ 4)φ steps (an output followed
by an input, n send, one receive, and one output step). Therefore, by time
t + δ + (2n + 3)φ all processes start round r. By time t + 2δ + (3n + 4)φ,
all round r messages can be received, and round r ends after an output
step by time t + 2δ + (3n + 5)φ. Again by time t + 2δ + (4n + 6)φ all
round r+ 1 messages are sent, and thus round r+ 1 ends the latest at time
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t+ 3δ + (4n+ 7)φ.

Since δ ≤ ∆ and φ ≤ Φ, the second part of Theorem 4.4 follows from
Theorem 4.5.

4.6 A Swift Round Implementation using an
Adaptive Timeout

The idea of the swift round implementation proposed in the previous section
cannot be easily adapted to Byzantine faults. The reason is that the Alive
set never becomes accurate in the presence of Byzantine processes. In this
section we show another swift round implementation that can be adapted
for Byzantine consensus algorithms (this approach is used in Chapter 6).
It uses an adaptive timeout mechanism to find out the actual transmission
delay. For simplicity, we do not consider step counting here. We assume
that processes have access to a non-synchronized (drift-free) local clocks,
by which they can measure time. In this case δ(R) denotes the maximum
end-to-end transmission delay of run R.

The intuitive idea of the algorithm is the following: Each process starts
the first phase with an initial timeout Γ0 per round. We assume that Γ0 is
much smaller than the actual end-to-end transmission delay (i.e., Γ0 � δ).
If a process is not able to finish all started consensus instances with the given
timeout, it increases the timeout for the next phase. In order to tolerate
asynchrony periods, processes reset their timeout to Γ0 if there is no process
that needs a larger timeout.

Algorithm 4.6 is the pseudo-code of the swift round implementation using
an adaptive timeout. Each process p keeps a round number rp and a view
number vp, initially equal to 1. While the round number corresponds to the
round number of the consensus algorithm, the view number increases only
upon reconfiguration, i.e., the timeout is a function of the view number. In
addition to round number, the view number is also attached to each message
(see line 17). Each process keeps track of the start time of each consensus
instance (line 12). The algorithm is started with an initial round timeout Γ0

(line 18). Messages are received until the timeout expires (line 20). When
a process receives a message from a higher round or view, it updates its
round or view (see lines 25 and 26). The comp. & output part is the
same as previous (except the view number). We assume that the consensus
algorithm that uses the round implementation decides in α rounds in the
best case. If at the end of α rounds, there is a consensus instance in which
some process p did not decide, then p starts a new view (line 39) in which it
doubles the timeout. Once a process has decided for all started instances, it
asks to reset the timeout, as well as the view number, by sending a Reset
message (line 41). If f + 1 processes ask to reset the view number and
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Algorithm 4.6 A swift round implementation using adaptive timeout with n >

2f (code of process p)

1: rp ← 1 /* round number */
2: next rp ← 1
3: Rcvp ← ∅ /* set of received messages */
4: ∀i ∈ N : statep[i]← ⊥ /* state of instance i */
5: ∀i ∈ N : startp[i]← 0 /* starting round for instance i */
6: vp ← 1 /* view number */
7: next vp ← 1

8: while true do
9:

in
p
u
t

&
se

n
d

I ← input()
10: for all 〈i, v〉 ∈ I do
11: statep[i]← init(v) /* initialization of state with initial value v */
12: startp[i]← rp
13: for all i : statep[i] 6= ⊥ do
14: msgs[i]← S

rp
p (statep[i])

15: for all q ∈ Π do
16: Mq ← {〈i,msgs[i][q]〉 : statep[i] 6= ⊥}
17: send(Mq, vp, rp, p) to q

18:

re
ce

iv
e

timeoutp ← current time+ Γ(vp)
19: while next vp = vp and next rp = rp do
20: if current time ≥ timeoutp then
21: next rp ← rp + 1
22: receive(M)
23: Rcvp ← Rcvp ∪M
24: maxr ← max({r : 〈−,−, r,−〉 ∈ Rcvp})
25: next rp ← max(maxr,next rp)
26: next vp ← max({v : 〈−, v,maxr,−〉 ∈ Rcvp} ∪ {next vp})
27: if exists f + 1 processes q s.t. 〈Reset, 1,−, q〉 ∈ Rcvp then
28: next vp ← 1

29:

co
m

p
.

&
o
u
tp

u
t

O ← ∅
30: for all i : statep[i] 6= ⊥ do
31: for all r ∈ [rp,next rp − 1] do
32: ∀q ∈ Π : Mr[q]← m if ∃M 〈M, vp, r, q〉 ∈ Rcvp ∧ 〈i,m〉 ∈M , else ⊥
33: statep[i]← T rp (statep[i],Mr)
34: if ∃v 6= ⊥ s.t. decision(statep[i]) = v for the first time then
35: O ← O ∪ 〈i, v〉 /* v is the decision of instance i */
36: output(O)

37: if vp > next vp ∧ next rp mod α = 1 then
38: if ∃i : startp[i] ≤ next rp − α ∧ decision(statep[i]) = ⊥ then
39: next vp ← max(next vp, vp + 1)
40: if ∀i : startp[i] ≤ next rp − α ∧ decision(statep[i]) 6= ⊥ then
41: send(Reset, 1,next rp, p)
42: rp ← next rp
43: vp ← next vp

timeout, the view number will be reset to 1 (line 28) and timeout to Γ0

(line 18).
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Chapter 4. Swift Algorithms for Repeated Consensus

Properties of Algorithm 4.6: The main properties of Algorithm 4.6 are
listed below:

1. If one correct process starts round r (resp. view v > 1) at time τ ,
then all correct processes start round r (resp. view v) by time τ + δ
(lines 25-26).

2. If a correct process p starts round r (of view v) at time τ , it will start
round r + 1 the latest by time τ + Γ(v) (lines 20-21).

3. A timeout Γ(v) ≥ 2δ for round r ensures that if a correct process starts
round r (of view v) at time τ , it receives all round r messages from all
correct processes before the expiration of the timeout (by time τ+2δ).
From item 1, if a correct p starts round r (of view v) at time τ , then
all correct process start round r (of view v) by time τ + δ. The round
r (of view v) message takes another δ time. Therefore by time τ + 2δ,
all round r (of view v) messages are received.

4. If all correct processes want to reset the view number, then all correct
processes eventually reset the view number (because of line 27 and
n− f ≥ f + 1).

We assume Γ(v) = 2v−1, i.e., the timeout doubles in each new view until
2v−1Γ0 ≥ 2δ. In other words, the timeout doubles until reaching view v0

such that 2v0 ≥ 4δ
Γ0

. Therefore, we have (with α = 2 for the OTR algorithm):

τi =

v0∑
v=1

α(2v−1Γ0) = 2(2v0 − 1)Γ0 < 8δ.

This implies that the algorithm is swift, although it is not as efficient as the
previous swift round implementation.

4.7 Conclusion

In this section, we sum up the differences between the three round implemen-
tations presented in this chapter, Section 4.3-4.5 (see Table 4.1). Although
they all provide equivalent round abstractions, they are quite different in
their performance. The last round implementation (presented in Section 4.6)
uses different system model and is not comparable with other results.

The first solution, namely using a direct round implementation in the
partial synchronous model, is not swift but has some advantages over the
second one that is based on a failure detector:

• it does not require reliable links and does not suffer the overhead to
simulate reliable links.

• it does not use any heartbeat messages but only application messages,
so there is no additional message overhead.
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4.7. Conclusion

Implementation Simple [HS07] FD-based [Gaf98] Our solution
(Section 4.3) (Section 4.4) (Section 4.5)

Link assumption lossy, ♦ timely reliable, ♦ timely lossy, ♦ timely

Messages only app. msgs additional heartbeat msgs only app. msgs

Decision time bounded unbounded bounded

Execution time6 4∆ + δ +O(Φ) 3δ +O(φ) 3δ +O(φ)

Swiftness no yes yes

Table 4.1: Comparing different round implementations for benign faults.

• after a good period starts, the algorithm always decides in a known
bounded time (Decision time in Table 4.1).

The FD based solution, however, is swift without any additional effort,
while not sharing the advantages mentioned above. Our solution combines
the advantages of both approaches and gives a round implementation so that
the resulting repeated consensus algorithm is swift, while maintaining all the
advantages above. Our last solution shows a swift round implementation
that can be extended for Byzantine faults.

Note that our solution is not limited to a specific consensus algorithm.
In particular, it is also possible to use the same round implementation to-
gether with the LastVoting algorithm [CBS09], a round-based variant of
Paxos [Lam98].

6For simplicity, we omitted the constants in terms of Φ and φ.
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Byzantine Faults





Chapter 5

Decentralized Byzantine
Consensus Algorithm

The chapter considers the consensus problem in a partially synchronous
system with Byzantine faults. It turns out that, in the partially synchronous
system, all deterministic algorithms that solve consensus with Byzantine
faults are leader-based. This is not the case of benign faults, which raises
the following fundamental question: is it possible to design a deterministic
Byzantine consensus algorithm for a partially synchronous system that is
not leader-based? The chapter gives a positive answer to this question,
and presents a decentralized (non-leader-based) algorithm that is resilient-
optimal and signature-free.

Publication: F. Borran and A. Schiper. A Leader-free Byzantine Consen-
sus Algorithm. The 11th International Conference on Distributed Comput-
ing & Networking (ICDCN 2010): 67–78. Brief announcement at the 23rd
International Symposium on Distributed Computing (DISC 2009): 479-480.

5.1 Introduction

In this chapter we consider the Byzantine consensus problem in a partially
synchronous system. The consensus algorithms proposed in [DLS88] for a
partially synchronous system, for both benign and Byzantine faults, achieve
safety in all executions, while guaranteeing liveness only if there exists a
period of synchrony. Recently, several papers have considered the par-
tially synchronous system model for Byzantine fault-tolerant (BFT) pro-
tocols [CL02,ACKM06,MA06,KAD+07,ACKL08].

However, [ACKL08] points out a potential weakness of these proto-
cols, namely that they can suffer from “performance failure”. According
to [ACKL08], a performance failure occurs when messages are sent slowly by
a Byzantine leader, but without triggering protocol timeouts, and the paper
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Chapter 5. Decentralized Byzantine Consensus Algorithm

points out that the Castro-Liskov leader-based PBFT algorithm [CL02] is
vulnerable to such an attack. Similar arguments are mentioned in [CWA+09]
and in [Lam09], where Lamport suggests the use of a virtual leader. In fact,
Byzantine protocols whose progress is driven by messages from a large num-
ber of correct processes, e.g., [BO83, MNCV06], are less vulnerable to per-
formance degradation. Voting in such protocols mask performance failures,
because no collection of faulty processes can prevent the correct processes
from moving forward.

Interestingly, all deterministic Byzantine fault-tolerant algorithms for
non-synchronous systems are leader-based, e.g., [DLS88,CL02,MA06,KAD+07].
Note that these protocols use leader not only for ordering the requests during
the normal executions, but also for reaching agreement during the recovery
phase (see [MHS09] for details). Therefore, the Byzantine consensus algo-
rithms used by the existing BFT protocols are leader-based.

Indeed in PBFT, t consecutive Byzantine leaders, say l1, l2, ..., lt could
do construct the following attack. The first leader l1 is mute, the timeout
expires, the recovery protocol is activated, and the algorithm switches to the
next leader (rotating coordinator) while doubling the timeout. The same
happens for leaders l2 to lt−1 until lt becomes leader. The last leader lt
sends its message as late as possible, but not too late to remain leader. If lt
remains leader forever, then the time required for any request (instance of
consensus) is high.

Even the protocol in [ACKL08] is leader-based. However, the authors
of [ACKL08] managed to make the leader-based protocol less vulnerable
to performance failure attacks than PBFT [CL02] through a complicated
mechanism that enables non-leader processes to (i) aggressively monitor
the leader’s performance, and (ii) compute a threshold level of acceptable
performance. Note that randomized consensus algorithms such as [BO83,
Rab83] are not leader-based. This raises the following fundamental question:
is it possible to design a deterministic Byzantine consensus algorithm for
a partially synchronous system that is not leader-based? With such an
algorithm, performance failure of Byzantine processes might be harmless.

One may imagine that decentralized algorithms (algorithms that do not
use the notion of a leader) for benign faults might be extended for Byzantine
faults. A decentralized algorithm typically consists of a sequence of rounds,
where in each round all processes send messages to all, and a correct process
updates its value based on the values received. It is not difficult to design
an algorithm based on this all-to-all communication pattern that does not
violate the validity and agreement properties of consensus, even with Byzan-
tine faults. However, termination requires that in some round r all correct
processes receive exactly the same set of messages (from correct and from
faulty processes). Let us denote this property for round r by uniform(r).
Indeed, if uniform(r) holds and each correct process applies a deterministic
function to the received values, the configuration becomes univalent. Can
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we ensure the existence of a round r in which uniform(r) holds?

For benign faults, it is easy to guarantee that during the synchronous
period of the partially synchronous system, in every round r, all correct
processes receive messages from the same set of processes. This is not the
case for Byzantine faults. In round r, a Byzantine process could send a
message to some correct process, and no message to some other correct
process. If this happens, uniform(r) does not hold. Therefore one may think
that with Byzantine faults the leader is needed to ensure termination, and
conclude that no deterministic decentralized Byzantine consensus algorithm
could exist in a partially synchronous system. We show that this intuition
is wrong.

Contribution The idea of our algorithm is the following. We started from
the observation that decentralized consensus algorithms exist for the syn-
chronous system, both for benign faults (e.g., the FloodSet algorithm [Lyn96])
and for Byzantine faults (e.g., the algorithm based on interactive consis-
tency [PSL80]). However, these algorithms violate agreement if executed
during the asynchronous period of a partially synchronous system. There-
fore we combine these algorithms with a second algorithm that never violates
agreement in an asynchronous system. This methodology turned out to be
successful, and the resulting decentralized Byzantine consensus algorithm,
is presented here. The algorithm requires 3t+ 1 processes and does not rely
on digital signatures.

Although BFT protocols do not assume a round-based model as we do
in this work, the performance failure attack is possible in the case of a
leader-based protocol implemented in the round-based model, in the case
the round-based model is constructed on top of a partially synchronous
model with unknown bounds. However, we believe that this is not the case
for decentralized algorithms, i.e., performance failure attacks are not effec-
tive in this case. The intuition is that, once the timeout of a correct process
becomes large enough to receive all messages from correct processes, Byzan-
tine processes cannot introduce an attack that forces the correct process to
double its timeout. The next chapter validates this intuition analytically and
shows under which conditions decentralized algorithms outperform leader-
based algorithms.

Roadmap: The rest of the chapter is structured as follows. We define
the problem and the system model in Section 5.2. Then we present our
methodology to derive a decentralized consensus algorithm for Byzantine
faults in Section 5.3. A simpler algorithm that uses digital signatures is
proposed in Section 5.4. Finally, we conclude the chapter in Section 5.5.
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EIGByz

S

T

WIC round

S

T

Sync round

S

T

Sync round

DA

Figure 5.1: An overview of the decentralized algorithm.

5.2 System Model

We consider a set Π of n processes, among them at most t can be faulty.
We solve the Byzantine consensus problem introduced in Section 2.4.2 in a
partially synchronous system. We consider the Byzantine fault model with
and without authentication as defined in Section 2.1.2. We use a round
model abstraction on top of the system model defined in Section 2.3 which
simplifies the presentation.

5.3 Byzantine Faults: From Synchrony to Partial
Synchrony

In this section we explain our methodology to design a decentralized consen-
sus algorithm that tolerates Byzantine faults (no signatures). We start with
a decentralized consensus algorithm for Byzantine faults in a synchronous
system model, and then extend it to a decentralized consensus algorithm in
a partially synchronous system using two other algorithms.

An overview of our decentralized algorithm (DA) is depicted in Fig-
ure 5.1. It consists of 2 or 3 rounds per phase; each round has a sending
function S and a transition function T (see Section 2.2 for details). The
algorithm that solves Byzantine consensus in synchronous system (called
EIGByz ), and consists of t+ 1 rounds, is executed in the first round (WIC
round). EIGByz constructs an eventually consistent vector to be used by
the transition function of the first round of our algorithm. Other rounds
of the decentralized algorithm are normal rounds that need to be eventu-
ally synchronous (Sync round), see Section 2.3 (definition of Sync and WIC
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Algorithm 5.1 EIGByz with n > 3t (code of process p)
1: Initialization:
2: Wp := {〈λ,mp〉} /* mp is the input value of process p; valp(λ) = mp */

3: Round r : /* 1 ≤ r ≤ t+ 1 */
4: Srp :
5: send {〈α, v〉 ∈Wp : |α| = r − 1 ∧ p /∈ α ∧ v 6= ⊥} to all processes
6: T rp :
7: for all {q | 〈α, v〉 ∈Wp ∧ |α| = r − 1 ∧ q ∈ Π ∧ q /∈ α} do
8: if 〈β, v〉 is received from process q then
9: Wp := Wp ∪ {〈βq, v〉} /* valp(βq) = v */

10: else
11: Wp := Wp ∪ {〈βq,⊥〉} /* valp(βq) = ⊥ */
12: if r = t+ 1 then
13: for all 〈α, v〉 ∈Wp from |α| = t to |α| = 1 do
14: Wp := Wp \ 〈α, v〉 /* replace valp(α) . . . */
15: if ∃v′ s.t. |〈αq, v′〉 ∈Wp| ≥ n− |α| − t then
16: Wp := Wp ∪ 〈α, v′〉 /* . . . with newvalp(α) */
17: else
18: Wp := Wp ∪ 〈α,⊥〉 /* . . . with newvalp(α) */
19: for all q ∈ Π do /* level 1 of the tree */
20: ~Mp[q] := v s.t. 〈q, v〉 ∈Wp

rounds).

5.3.1 Decentralized consensus algorithm for a synchronous
system

One of the first consensus algorithms that tolerates Byzantine faults in syn-
chronous systems was proposed by Pease, Shostak and Lamport [PSL80].
It is based on an algorithm that solves the interactive consistency problem
(see Section 2.4.3).

The algorithm presented in [PSL80] is not leader-based, does not require
signatures, tolerates t < n/3 Byzantine faults, and consists of t+1 rounds of
exchange of messages. We briefly recall the principle of this algorithm which
is based on a information gathering stage followed by a reduction function
stage (see Algorithm 5.1).

Information gathering: The information maintained by each process dur-
ing the algorithm can be represented as a tree (called Exponential Informa-
tion Gathering (EIG) tree in [Lyn96, AW04]), in which each path from the
root to a leaf contains t + 2 nodes. Thus the height of the tree is t + 1.
The nodes of each tree are labeled with sequences of processes’ identities
in the following manner. The root is labeled with the empty sequence λ
(|λ| = 0). Let i be an internal node in the tree with label α = p1p2 . . . pr
(see Figure 5.2); for every q ∈ Π such that q /∈ α, node i has one child
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p1p2 . . . pr−1

α = p1p2 . . . pr

αpr+1 αpr+2 . . . αpn

. . .

Figure 5.2: The tree construction.

labeled αq. Node i with label α will be simply called “node α”. Intuitively,
valp(p1p2 . . . pr) (which denotes the value of node p1p2 . . . pr in p’s tree) rep-
resents the value v that pr told p at round r that pr−1 told pr at round r−1
that . . . that p1 told p2 at round 1 that p1’s initial value is v. Each correct
process p maintains the tree using a set Wp of pairs 〈node label , node value〉.
At the beginning of round r, each process p sends the (r − 1)th level of its
tree to all processes (line 5). When p receives a message from q in format
〈p1p2...pr, v〉, it adds 〈p1p2...prq, v〉 to its set Wp (line 9). If p fails to receive
a message it expects from process q, p simply adds 〈p1p2 . . . prq,⊥〉 to its set
Wp (line 11).

Reduction function: Information gathering as described above continues
for t + 1 rounds, until the entire tree has been filled in. At this point the
second stage of local computation starts. Every process p applies to each
subtree a recursive data reduction function to compute a new value (lines 13
to 18). The value of the reduction function on p’s subtree rooted at a node
labeled α is denoted newvalp(α). The reduction function is defined for a
node α as follows.

• If α is a leaf, its value does not change (newval(α) = val(α));

• Otherwise, if there exists v such that n− |α| − t children have value v,
then newval(α) = v, else newval(α) = ⊥ (lines 16 and 18).

The reason for a quorum of size n − |α| − t can be explained as follows.1

Each correct process, at the end of round t+ 1, has constructed a tree with
t+ 2 levels. Any node in level 0 < k < t+ 1 has n− k children and a label
α such that |α| = k. If α is a label with only correct processes, then all its
children except t (i.e., n− k − t children) have the same value.

At the end of round t+1, every correct process p constructs a vector ~Mp

of size n (corresponding to level 1 of its tree), where ~Mp[q] is the new value
of process q (line 20). EIGByz ensures that:

1Since n > 3t, this quorum can be replaced by n+t
2
− |α| (see [PSL80]).
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λ

v1 v2 v3 v4v1 ⊥ ⊥ v4

v1 v1 v′1 v2 v′2 v3 v4 v4 v4

Figure 5.3: The tree constructed by a correct process in an asynchronous period
with t = 1, n = 4. The value received from a correct process is shown by a solid
square. The value received from a Byzantine process is shown by a dashed square.
For a given node α, the value inside the square represents val(α) and the value
beside the square represents newval(α).

• The correct processes compute exactly the same vector, i.e., ∀p, q ∈
C : ~Mp = ~Mq, and

• The element of the vector corresponding to a given correct process q
is the input value of that process, i.e., ∀p, q ∈ C : ~Mp[q] = mq.

Therefore, a correct process can decide by applying a deterministic function
on its vector ~Mp.

Theorem 5.1. EIGByz algorithm solves the interactive consistency problem
for n processes with t Byzantine processes if n > 3t.

Proof. The proof is given in [PSL80,Lyn96].

Therefore the EIGByz algorithm ensures the following property:

(∀r, 1 ≤ r ≤ t+1 : PSync(r))⇒ ∀p, q ∈ C : ( ~Mp = ~Mq)∧( ~Mp[q] = mq) (5.1)

where | ~Mp| denotes the number of non-⊥ elements in vector ~Mp, and mq

denotes the input value of the correct process q. The premise holds if the sys-
tem is synchronous. Equation 5.1 is equivalent to the WIC round definition
from Section 2.3.

5.3.2 Decentralized Consensus Algorithm for a Partially Syn-
chronous System

If Algorithm 5.1 is executed in a partially synchronous system, it does not
ensure ∀p, q ∈ C : ( ~Mp = ~Mq) ∧ ( ~Mp[q] = mq). Therefore, it cannot ensure
the agreement property of Byzantine consensus. However, the following two
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properties hold for Algorithm 5.1 in synchronous as well as in asynchronous
periods (see Figure 5.3 for illustration):

∀p, q ∈ C : ~Mp[q] ∈ {mq,⊥} (5.2)

∀q ∈ Π\ C,∃v s.t. ∀p ∈ C : ~Mp[q] ∈ {v,⊥} (5.3)

wheremq is the input value of process q. The first property (5.2) is equivalent
to the property PInt defined in Section 2.3.

To ensure agreement in a partially synchronous system, we need to com-
bine Algorithm 5.1 with another algorithm. We show below two such algo-
rithms: (i) a simple algorithm (Algorithm 5.2), which requires n > 5t, see
Section 5.3.2.A, and (ii) a more complex algorithm with optimal resilience
n > 3t (Algorithm 5.3), see Section 5.3.2.B. In both cases, Algorithm 5.2 and
Algorithm 5.3 ensure agreement, while Algorithm 5.1 ensures termination.

Before presenting the algorithms, we prove the properties of EIGByz al-
gorithm. We first show two lemmas (adapted from [Lyn96] for a synchronous
system) that hold in any execution of Algorithm 5.1, both in synchronous
and asynchronous periods.

Lemma 5.1. Let q be a correct process, and p some other correct process
such that valp(αq) 6= ⊥. Then, after t + 1 rounds, for all correct processes
p′ we have valp′(αq) = valp(αq) or valp′(αq) = ⊥.

Proof. If q /∈ {p, p′}, then the result follows from the fact that, since q is
correct, it sends the same message to p and p′ at round |α|+1. If the message
sent by q to p′ gets lost, then valp′(αq) = ⊥. If q ∈ {p, p′}, then the result
follows similarly from the convention by which each process relays values to
itself.

Lemma 5.2. Let q be a correct process, and p some other correct process
such that valp(αq) 6= ⊥. Then, after t + 1 rounds we have newvalp(αq) =
valp(αq) or newvalp(αq) = ⊥.

Proof. By induction on the tree labels, working from the leaves up - that is,
from those of length t+ 1 down to those of length 1.

Basis: Suppose, αq is a leaf, that is, |αq| = t + 1. Then Lemma 5.1
implies that all correct processes p have the same valp(αq) or ⊥. Then also
newvalp(αq) = valp(αq) or newvalp(αq) = ⊥ for every correct process p, by
the definition of newval for leaves.

Inductive step: Suppose |αq| = r, 1 ≤ r ≤ t. Then Lemma 5.1 implies
that for all correct processes p, have the same valp(αq), call this v, or ⊥.
Therefore, every correct process q′ send the same value v for αq to all pro-
cesses at round r + 1, so valp(αqq

′) = v or valp(αqq
′) = ⊥ for all correct p

and q′. Then the inductive hypothesis implies that also newvalp(αqq
′) = v

or newvalp(αqq
′) = ⊥ for all correct processes p and q′.
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We now claim that newvalp(αq) = v or newvalp(αq) = ⊥. The number
of children of αq is exactly n−r which is ≥ n−t (i). At most t of the children
have labels ending with faulty processes. Since n > 3t we have n− r− t > t
(ii). From (i), (ii) and the definition of newval we have newvalp(αq) = v or
newvalp(αq) = ⊥.

Based on these two lemmas we prove the following lemmas. Lemma 5.3
proves (5.2), while Lemma 5.4 proves (5.3).

Lemma 5.3. Let q be a correct process with input value mq, and p some

other correct process. Then, after t + 1 rounds, we have ~Mp[q] = mq or
~Mp[q] = ⊥.

Proof. Assume that q is a correct process with input value mq. We have

to show that for any correct process p, ~Mp[q] ∈ {mq,⊥} or newvalp(q) ∈
{mq,⊥}. First note that from Lemma 5.1 when |α| = 0, and for some process
p, valp(q) = mq, then for all correct process p′, valp′(q) ∈ {mq,⊥}. Then
from Lemma 5.2 when |α| = 0, for some correct process p, valp(q) = mq,

then newvalp(q) ∈ {mq,⊥} or ~Mp[q] ∈ {mq,⊥}.

Lemma 5.4. Let q be a faulty process. There exists v such that after t+ 1
rounds, for all correct processes p, we have ~Mp[q] = v or ~Mp[q] = ⊥.

Proof. Assume that q is a faulty process. And some correct process p has
~Mp[q] = v or newvalp(q) = v 6= ⊥. We have to show that for all correct

processes p′, newvalp′(q) ∈ {v,⊥}. newvalp(q) = v means that the node
labeled q in the tree constructed by correct process p has at least n− 1− t
children labeled qx with newvalp(qx) = v because of the newval definition
(i). However, since node q is a faulty process, among its children, only
t − 1 of them have a label ending with faulty process (ii). We denote Q =
{q′ | newvalp(qq′) = v ∧ q′is correct}. From (i) and (ii) we have |Q| ≥
n−1− t− t+1 = n−2t. And ∀q′ ∈ Q : newvalp(qq

′) = v. From Lemma 5.2
we have ∀q′ ∈ Q : valp(qq

′) = v. From Lemma 5.1, for any correct process
p′ we have ∀q′ ∈ Q : valp′(qq

′) ∈ {v,⊥}. Again from Lemma 5.2 we have
∀q′ ∈ Q : newvalp′(qq

′) ∈ {v,⊥}. This holds for at least n − 2t of node q’s
children in tree constructed by p′. So at most 2t − 1 of node q’s children
might have newvalp′(qq

′) = v′ /∈ {v,⊥}. Since n > 3t, we have n−1− t (the
required quorum) > 2t− 1 which means that v′ cannot be a newval and for
all correct processes p′ we have ~Mp′ [q] ∈ {v,⊥}.

5.3.2.A Decentralized consensus algorithm A1 with n > 5t

We start with a simple parameterized consensus algorithm (see Algorithm 5.2).
Parametrization allows us to easily adjust the algorithm to ensure agree-
ment for different fault models. The parameterized version was first given

85



Chapter 5. Decentralized Byzantine Consensus Algorithm

Algorithm 5.2 A1 with n > 5t (code of process p)
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */

3: Round r = 2φ− 1 : /* WIC round */
4: Srp :
5: send 〈xp〉 to all processes
6: T rp :
7: if number of non-⊥ elements in ~µrp > T then
8: xp := smallest most frequent non-⊥ element in ~µrp

9: Round r = 2φ :
10: Srp :
11: send 〈xp〉 to all processes
12: T rp :
13: if more than E elements in ~µrp are equal to v 6=⊥ then
14: Decide(v)

in [BCBG+07] to tolerate “corrupted communication”. Here, since we con-
sider “Byzantine process faults” we need different values for the parameters.

The algorithm consists of a sequence of phases φ, where each phase
has two rounds 2φ − 1 and 2φ. Round 2φ is a normal round; to ensure
termination, round 2φ−1 is the round that should be eventually synchronous
and consistent, i.e., WIC round (defined in Section 2.3). Each process p has a
single variable xp, and in every round p sends xp to all processes. Parameter
T (line 7) refers to a “threshold” for updating xp, and parameter E (line 13)
refers to “enough” same values to decide.2

The algorithm was first presented in [CBS09] as OneThirdRule algo-
rithm, for T = E = 2n/3, to tolerate t < n/3 benign faults. With Byzantine
faults, A1 ensures agreement with E ≥ (n + t)/2 and T ≥ 2n − 2E + 2t.
Strong validity requires T ≥ 2t and E ≥ t. Termination, together with a
WIC round provided by EIGByz, requires n− t > T and n− t > E. Putting
all together, for the case E = T , we get T = E = 2(n+ t)/3 and n > 5t.

We will refer to A1 with T = E = n − t and n > 5t as OneFifthRule
algorithm. The algorithm of Martin and Alvisi [MA06] which is called the
Fast Byzantine Paxos can be expressed using the parameterized algorithm
with T = n− t, E = (n+ 3t)/2 and n > 5t (see [MHS09] for more details).
This version of the Martin and Alvisi algorithm is much simpler than the
original algorithm which was expressed using “proposers”, “acceptors”, and
“learners”. Moreover, it satisfies the strong validity property of Byzantine
consensus instead of the weak validity.

Proofs of A1: We first discuss agreement and strong validity of A1. Fig-
ure 5.4 illustrates how agreement holds. A correct process p receives 5

2The notation ~µrp is introduced in Section 2.3.
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Figure 5.4: Illustration for agreement of A1 with t = 1, n = 6. The value received
from a correct process is shown by a square. The value received from a Byzantine
process is shown by a dashed square.

values v in round r (1 from Byzantine process) and decides v as shown in
Figure 5.4(a). Byzantine process has sent v in round r but v′ in round r+1.
Another correct process p′ can receive 2 values equal to v′ in round r + 1
as shown in Figure 5.4(b). However, p′ cannot choose v′ as a most frequent
value after receiving 5 values.

We now give the lemmas.

Lemma 5.5. Consider A1 with Byzantine faults and E ≥ n+t
2 . If some

correct process decides v in phase φ, then some other correct process can
only decide v in phase φ.

Proof. Assume that some correct process p decides v in round r = 2φ. From
condition at line 13, p has received more than E values v in round r, i.e.,
more than n+t

2 − t correct processes have sent v in round r. This means that
at most n− n+t

2 + t = n+t
2 processes could have sent a value v′ 6= v in round

r. Since E ≥ n+t
2 , value v′ cannot be decided in round r.

Lemma 5.6. With Byzantine faults and T ≥ 2n− 2E + 2t, if some correct
process decides v in round r = 2φ of A1, every correct process q that updates
xq in round r′ > r, sets it to v.

Proof. Assume that some correct process p decides v in round r = 2φ. First
we prove by induction on r that more than E − t correct processes q have
xq = v in round r′ ≥ r.

Base step (r′ = r): Since p decides v in round r (line 14), from condition
at line 13, p receives more than E values v in round r, i.e., more than E− t
correct processes q have xq = v in round r.
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Figure 5.5: Illustration for termination of A1 with t = 1, n = 6 (v′ < v).

Induction step (from r′ = 2φ′ to r′ + 1): By induction hypothesis, more
than E − t correct processes q have xq = v in round r′ > r. Therefore,
at most n − E + t processes q′ might send xq′ = v′ 6= v in round r′ + 1.
A correct process q updates xq only in line 8, and if it receives messages
from k > T processes. From the assumption we have T ≥ 2n − 2E + 2t or
k > 2(n−E + t). Therefore, no correct process q updates xq to v′ in round
r′+ 1. This implies that more than E− t correct processes q have xq = v in
round r′ + 1.

Let q′ be some correct process that updates xq′ in some round r′ =
2φ′− 1 > r. Since more than E− t correct processes q have xq = v in round
r′, and T ≥ 2n − 2E + 2t, by same arguments as in induction step, q′ sets
xq′ to v in round r′.

Lemma 5.7. With Byzantine faults, T ≥ 2t and E ≥ t, if all correct
processes p have xp = v in round r = 2φ− 1 of A1, every correct process q
that updates xq in round r′ ≥ r, sets it to v.

Proof. Assume that all correct processes have the same initial value v. Con-
sider some correct process p so that the condition at line 7 holds. This
means that p has received more than T non-⊥ messages. From T ≥ 2t, p
has received at least 2t+ 1 non-⊥ messages. Among these messages at most
t can have a value v′ 6= v, and at least t+ 1 messages have v. Therefore, if
p updates xp at line 8, it sets xp to v.

We discuss now termination. Note that in the context of Byzantine
faults, A1 without a WIC round does not ensure termination. Figure 5.5
illustrates the problem. A Byzantine process sends v to three first processes,
and v′ to two last processes in round r = 2φ− 1. Assuming v′ < v, v is the
most frequent value for the first group and v′ is the smallest most frequent
value for the second group. This shows the need for a WIC round.

88



5.3. Byzantine Faults: From Synchrony to Partial Synchrony

For termination, it is sufficient for A1 to have one round r = 2φ − 1 in
which the following holds (where |~µrp| denotes the number of non-⊥ elements
in vector ~µrp):

∀p, q ∈ C : (~µrp = ~µrq) ∧ (|~µrp| > T ) (5.4)

and one round r + 1 = 2φ in which we have:

∀p ∈ C : |~µr+1
p | > E. (5.5)

If (5.4) holds, all correct processes set xp to some common value v0 in round
r (line 8), and if (5.5) holds all correct processes decide v0 in round r + 1
(line 14).

By comparing (5.4) and (5.5) with the definitions of Section 2.3, it is
easy to see that a WIC round ensures (5.4) and a synchronous round ensures
(5.5), if |C| > T and |C| > E (where |C| = n− t).

Therefore we have the following theorem.

Theorem 5.2. With Byzantine faults, n > 5t and T = E = 2(n + t)/3, if
round r = 2φ − 1, with r ≥ GSR, is a WIC round, then A1 ensures strong
validity, agreement and termination.

Proof. Agreement follows directly from Lemmas 5.5, 5.6. Strong validity
follows from Lemma 5.7. For termination, if (5.4) holds, all correct processes
set xp to the some common value v0 in round r (line 8), and if (5.5) holds
all correct processes decide v0 in round r+ 1. By comparing (5.4) and (5.5)
with definition of a WIC round and GSR it is easy to see that A1 ensures
(5.4) and (5.5) if |C| ≥ n− t, n− t > T , n− t > E.

Note that, the OneThirdRule algorithm (A1 with T = E = 2n/3) cannot
be used with Byzantine faults because of the agreement problem. Using a
WIC round, two correct processes cannot receive two different values from
a Byzantine process in a single round, however, this can happen in dis-
tinct rounds (see Figure 5.4) which prevents us from using OneThirdRule
algorithm.

5.3.2.B Decentralized consensus algorithm A2 with n > 3t

As A1 requires n > 5t, its resilience is not optimal. Here we show a new
algorithm, which uses mechanisms from several consensus algorithms, e.g.,
Ben-Or [BO83], and PBFT [CL02] with strong validity, and requires only
n > 3t (see Algorithm 5.3). Note that, as for A1, A2 ensures strong validity
and agreement, but not termination. As for A1 termination is ensured using
a first WIC round provided by EIGByz.

A2 consists of a sequence of phases φ, where each phase has three rounds
(3φ− 2, 3φ− 1, 3φ). Each process p has an estimate xp, a vote value votep
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Algorithm 5.3 A2 with n > 3t (code of process p)
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */
3: pre-votep := ∅
4: votep ∈ V ∪ {?}, initially ?
5: tsp := 0

6: Round r = 3φ− 2 : /* WIC round */
7: Srp :
8: send 〈xp, votep〉 to all processes
9: T rp :

10: if at least n− t elements in ~µrp are equal to 〈−, ?〉 then
11: xp := smallest most frequent element 〈x,−〉 in ~µrp
12: pre-votep := pre-votep ∪ {〈xp, φ〉}
13: if at least n− t elements in ~µrp are equal to 〈v,−〉 then
14: pre-votep := pre-votep ∪ {〈v, φ〉}

15: Round r = 3φ− 1 :
16: Srp :
17: send 〈v | 〈v, φ〉 ∈ pre-votep〉 to all processes
18: T rp :
19: if at least n− t elements in ~µrp are equal to 〈v〉 then
20: votep := v; tsp := φ; xp := v

21: Round r = 3φ :
22: Srp :
23: send 〈votep, tsp, pre-votep〉 to all processes
24: T rp :
25: if at least 2t+ 1 elements in ~µrp are equal to 〈v 6= ?, φ,−〉 then
26: Decide(v)
27: if exists 〈v 6= ?, ts,−〉 in ~µrp s.t. votep 6= v and ts > tsp then
28: if exists t + 1 elements 〈−,−, pre-vote〉 in ~µrp s.t. 〈v, ts′〉 ∈ pre-vote and

ts′ ≥ ts then
29: votep := ?; tsp := 0; xp := v
30: if votep 6= ? then xp := votep

(initially ?), a timestamp tsp attached to votep (initially 0), and a set pre-
votep of valid pairs 〈vote, ts〉 (initially ∅). The structure of the algorithm is
as follows:

• If a correct process p receives the same estimate v in round 3φ − 2
from n− t processes, then it accepts v as a valid vote and puts 〈v, φ〉
in pre-votep set. The pre-vote set is used later to detect an invalid
vote.

• If a correct process p receives the same pre-vote 〈v, φ〉 in round 3φ− 1
from n− t processes, then it votes v (i.e., votep = v) and updates its
timestamp to φ (i.e., tsp = φ).

• If a correct process p receives the same vote v with the same timestamp
φ in round 3φ from 2t+ 1 processes, it decides v.

The algorithm guarantees that (i) two correct processes do not vote for
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different values in the same phase φ; and (ii) once t + 1 correct processes
have the same vote v and the same timestamp φ, no other value can be
voted in the following phases. Before giving the formal proofs we discuss
agreement and termination.

Agreement of A2: A configuration is v-valent if (i) ∃φ such that at least
t+ 1 correct processes p have (votep, tsp) = (v, ts) with ts ≥ φ, and (ii) the
other correct processes q have (voteq, tsq) = (v′ 6= v, ts′) with ts′ < φ.

Let φ0 be the smallest round in which some correct process decides v
(line 26). By line 25 at least t+1 correct processes p have votep = v, tsp = φ0,
and xp = v from line 20; the other correct processes q with voteq 6= v have
tsq < φ0 from line 19. Therefore the v-valent definition holds. We denote
the former set by Π=φ0 , and the latter by Π<φ0 . Processes in Π=φ0 keep
xp = votep = v from phase φ0 onward, and processes in Π<φ0 can only
update votep to ? or v, as we explain now. This ensures agreement.

First, by lines 10 and 13, it is impossible for a correct process to have two
different values with the same timestamp in its pre-vote set. By lines 27-30,
in phase φ0, processes in Π<φ0 can only update votep to ?; processes in Π=φ0

do not update neither votep, nor xp to some value 6= v. By lines 10-14, in
phase φ0 + 1, correct processes can only update xp to v and can only add
(v, φ0 + 1) to pre-votep. Therefore in round 3(φ0 + 1)− 1, correct processes
can only update votep to v, i.e., only v can be decided in phase φ0 + 1. The
same reasoning can be repeated for all phases after phase φ0 + 1.

Termination of A2: We explain intuitively termination by considering the
smallest phase φ such that 3φ− 2 ≥ GSR. We distinguish two cases: (i) at
the beginning of round 3φ− 2, all correct processes have votep = ?, and (ii)
at the beginning of round 3φ− 2 at least one correct process has votep 6= ?.

Case (i): Consider round 3φ− 2. A WIC round ensures that all correct

processes p receive the same set ~µ3φ−2
p of messages with |~µ3φ−2

p | ≥ |C|, i.e.,
all correct processes p set xp to the same common value v (line 11), and add
the pair 〈v, φ〉 to pre-votep (line 12). It follows that, in round 3φ − 1, all
correct processes p set votep to v (line 20), and all correct processes decide
v in round 3φ (line 26).

Case (ii): This case is more complex to expose. Consider round 3φ, and
let q be a correct process with the highest timestamp tsq and voteq = v 6= ?
at the beginning of round 3φ. Line 19 ensures that for any other correct
process q′ with tsq′ = tsq, we have voteq = voteq′ . Since 3φ > GSR, all
correct processes p with votep 6= v execute lines 27-29. Therefore, at the
end of round 3φ all correct processes p have xp = v and votep ∈ {v, ?}, i.e.,
all correct processes p start round 3φ + 1 = 3(φ + 1) − 2 with xp = v. If
the condition of line 10 holds, then the most frequent pair received is 〈v,−〉,
i.e., 〈v, φ + 1〉 is added to pre-votep (line 12). The condition of line 13
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necessary holds at each correct process, i.e., 〈v, φ+ 1〉 is added to pre-votep
(line 14). Therefore, at the end of round 3φ+ 1, all correct processes p only
have 〈y, φ+ 1〉 with y = v in pre-votep. It follows that, in round 3φ+ 2, all
correct processes p set votep to v (line 20), and all correct processes decide
v in round 3φ+ 3 (line 26).

Note that inA2, the set pre-votep can be bounded, based on the following
observation. If 〈v, φ〉 ∈ pre-votep and p wants to add 〈v, φ′〉 into its pre-vote
with φ′ > φ, then 〈v, φ〉 becomes obsolete.

Proofs of A2:

Lemma 5.8. Assume n > 2t. For all phases φ, and all correct processes p,
there is at most one pair 〈−, φ〉 in pre-votep.

Proof. Consider round 3φ − 2. Assume that some correct process p adds
〈v, φ〉 to pre-votep at line 14. By line 13, p received n− t messages equal to
〈v,−〉. Assume for a contradiction that p has added 〈v′, φ〉, with v′ 6= v, to
pre-votep at line 12. By line 11, this is only possible if p has received n− t
messages 〈v′, ?〉. In this case, p has received (n−t)+(n−t) messages in round
3φ− 2. However, if n > 2t, then (n− t) + (n− t) > n, a contradiction.

We define Pagree(3φ − 1, v) as the following predicate: ∃ts such that at
the end of round 3φ − 1, (i) for at least t + 1 correct processes p we have
xp = votep = v and tsp ≥ ts, and (ii) for other correct processes q, if
〈v′, ts′〉 ∈ pre-voteq s.t. v′ 6= v, then ts′ ≤ ts.

Lemma 5.9. Assume n > 2t. If ∃φ, v such that Pagree(3φ − 1, v) holds,
then for all φ′ ≥ φ, Pagree(3φ′ − 1, v) also holds.

Proof. The proof is by induction on φ.
Base step (φ′ = φ): Pagree(3φ−1, v) holds trivially from the assumption.
Induction step (from φ′ to φ′+1): By induction hypothesis, Pagree(3φ′−

1, v) holds. By the definition of Pagree(3φ′−1, v), at the end of round 3φ′−1,
(i) for at least t+1 correct processes p we have xp = votep = v and tsp ≥ ts,
and (ii) for all other correct processes q, if 〈v′, ts′〉 ∈ pre-voteq s.t. v′ 6= v,
then ts′ ≤ ts. From (i) and (ii), no correct process p with xp = votep = v
executes line 29 in round 3φ′.

Therefore Pagree(3φ, v) holds, i.e., at least t + 1 correct processes start
round 3φ′ + 1 with xp = votep = v. As a consequence, in round 3φ′ + 1 =
3(φ′+1) − 2, for correct processes, (i) the condition of line 10 cannot hold
and (ii) the condition of line 13 can only hold for value v. It follows that no
correct process p adds 〈v′, φ′+1〉 (v′ 6= v) to pre-votep, and Pagree(3φ+1, v)
holds.

In round 3φ′ + 2 = 3(φ′+1) − 1, since no correct process sends v′ and
n− t > t (since n > 2t), no correct process sets votep to v′ 6= v. Therefore,
Pagree(3φ′ + 2, v) holds.
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Lemma 5.10. If some correct process p decides v in round 3φ, then Pagree(3φ−
1, v) holds.

Proof. From line 25, at the end of round 3φ−1, at least t+1 correct processes
q have voteq = v, tsq = φ, and thus xq = v (from line 20). From lines 12
and 14, in round 3φ − 2, no correct process adds 〈−, x〉, with x > φ, to
pre-votep. Therefore Pagree(3φ− 1, v) holds.

Proposition 5.1 (Agreement). Assume n > 2t. If some correct process p
decides v in phase φ, then no correct process decides v′ 6= v in phase φ′ ≥ φ.

Proof. From Lemma 5.10, if some correct process p decides v in phase φ,
then Pagree(3φ− 1, v) holds. By Lemma 5.9, Pagree(3φ′ − 1, v) holds for all
φ′ ≥ φ. This means that, for all φ′ ≥ φ, at the end of round 3φ′ − 1, for at
least t + 1 correct processes p we have xp = votep = v. Therefore, at least
t + 1 correct processes p have 〈v,−〉 ∈ pre-votep in round 3φ′ − 1. From
this and Lemma 5.8, at most n − t − 1 processes q may have xq = v′ and
〈v′,−〉 ∈ pre-voteq in round 3φ′ − 1. This means that no correct process q
sets voteq to v′ in round 3φ′ − 1. Therefore, in round 3φ′ the condition of
line 25 cannot hold for v′ 6= v.

Lemma 5.11. Assume n > 3t. In all rounds r = 3φ − 1, if some correct
process p sets votep to v 6= ?, and some other correct process q sets voteq to
v′ 6= ?, then v = v′.

Proof. Assume by contradiction that v 6= v′. By line 19, p receives n − t
messages v in round r and q receives n − t messages v′ in round r. From
n > 3t, we have (n−t)+(n−t) = 2n−2t > n+t, or (n−t)+(n−t) ≥ n+t+1.
Therefore, t+1 processes have sent v to p and v′ to q, i.e., one correct process
has sent v to p and v′ to q. A contradiction with Lemma 5.8.

Lemma 5.12. Assume n > 3t. Let φ be the smallest phase such that round
r = 3φ is after GSR. Let q be a correct process with the highest timestamp
tsq and voteq = v 6= ? at the beginning of round r. Then at the end of round
r all correct processes p have xp = v and votep ∈ {v, ?}.

Proof. At the beginning of round r, for any correct process p three cases are
possible: (i) votep = v, or (ii) votep = v′ 6= v, or (iii) votep = ?.

In case (i), process p does not execute line 29 in round r, but executes
line 30, and sets xp to v.

In case (ii), from Lemma 5.11, since votep 6= voteq, tsp 6= tsq. By
assumption tsq is the highest timestamp, and so we have tsp < tsq. By
line 19, at least n − 2t correct processes have 〈v, tsq〉 in their pre-vote. If
n > 3t, then n − 2t ≥ t + 1. Since round r is executed after GSR, all
messages sent in round r are received by all correct processes. Therefore, p
executes line 29 in round r, and sets votep to ?, xp to v.
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In case (iii), process p has tsp = 0 < tsq and for the same reason as case
(ii) executes line 29 in round r, and sets xp to v, votep to ?.

Therefore, at the end of round r, all correct processes p have xp = v and
votep ∈ {v, ?}.

Proposition 5.2 (Termination). Assume n > 3t. If round 3φ − 2 ≥ GSR
of A2 is a WIC round, then A2 ensures termination.

Proof. Let round r = 3φ − 2 ≥ GSR be a WIC round. This implies that
all correct processes receive the same set of messages in round r. Two cases
are possible at the beginning of round r: (i) all correct processes p have
votep = ?, or (ii) some correct process p has votep 6= ?.

In case (i), all correct processes p choose the same value v by line 11.
and add 〈v, φ〉 to pre-votep in round r. By Lemma 5.8 no other pair is added
to pre-votep in round r. In round r + 1 = 3φ− 1, all correct processes send
v, receive at least n − t messages v and set votep = v, tsp = φ. Finally in
round r + 2 = 3φ, all correct processes send 〈v, φ,−〉, receive at least n− t
messages 〈v, φ,−〉 and decide v.

In case (ii), from Lemma 5.12, all correct processes p have xp = v and
votep ∈ {v, ?} at the end of round r + 2 = 3φ. All correct processes start
round r + 3 = 3φ+ 1 with xp = v. In round 3φ+ 1, for any correct process
p, if the condition of line 10 becomes true, xp is updated to v because
n− 2t > t. And the condition of line 13 cannot be true for 〈v′ 6= v,−〉 since
n− t > t. Therefore, no correct process p adds 〈v′ 6= v, φ+ 1〉 to pre-votep.
By arguments similar to those of case (i), all correct processes decide v by
round r + 5 = 3(φ+ 1).

To prove strong validity, we define Pval(3φ− 1, v) as the following pred-
icate: at the end of round 3φ − 1, (i) all correct processes p have xp = v,
votep ∈ {v, ?}, and (ii) @v′ 6= v s.t. 〈v′,−〉 ∈ pre-votep.

Lemma 5.13. Assume n > 3t. If ∃φ, v such that Pval(3φ−1, v) holds, then
for all φ′ ≥ φ, Pval(3φ′ − 1, v) also holds.

Proof. The proof is by induction on φ.
Base step (φ′ = φ): Pval(3φ− 1, v) holds trivially from the assumption.
Induction step (from φ′ to φ′ + 1): By induction hypothesis, Pval(3φ′ −

1, v) holds. By the definition of Pval(3φ′− 1, v), at the end of round 3φ′− 1,
all correct processes p have xp = v, votep ∈ {v, ?}, and @v′ 6= v s.t. 〈v′,−〉 ∈
pre-votep. This means that in round 3φ′ no correct process executes line 29,
and Pval(3φ′, v) holds. Therefore all correct processes p start round 3φ′+1 =
3(φ′ + 1)− 2 with xp = v and votep ∈ {v, ?}.

Assume that the condition of line 10 holds at some correct process q.
In this case, q has received at least n− 2t messages from correct processes,
and at most t messages from Byzantine processes. However, n > 3t ensures
n−2t > t, which means that q can only add v to pre-voteq in line 12. Assume
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that the condition of line 13 holds at some correct process q. From n > 2t,
we have n − t > t. Since all correct processes send 〈v,−〉, the condition of
line 13 can only hold for v, which means that q can only add v to pre-voteq
in line 14. Therefore part (ii) of Pval(3φ′ + 1, v) holds, and since pre-vote
is not updated in round 3φ′ + 2 = 3(φ′ + 1)− 1, part (ii) of Pval(3φ′ + 2, v)
also holds.

Form this it follows that, in round 3φ′ + 2 = 3(φ′ + 1) − 1, all correct
processes send only v. From n > 2t, we have n − t > t. Therefore, the
condition of line 19 can only hold for v. It follows that part (i) of Pval(3φ′+
2, v) holds.

Lemma 5.14. Assume n > 3t. If all correct processes p have the same
initial value v, then Pval(2, v) holds.

Proof. Since all correct processes have xp = v and votep =? at the beginning
of round 1, and n−2t > t no correct process p adds 〈v′, 1〉 into pre-votep by
lines 12 and 14. In round 2, since no correct process sends v′ and n− t > t,
no correct process votes v′. Therefore, at the end of round 2 all correct
processes p have xp = v, votep ∈ {v, ?}, and @v′ 6= v s.t. 〈v′, 1〉 ∈ pre-votep.
This means that Pval(2, v) holds.

Proposition 5.3 (Strong validity). Assume n > 3t. If all correct processes
have the same initial value v, then no correct process decides v′ 6= v.

Proof. By Lemma 5.14, Pval(2, v) holds. By Lemma 5.13, Pval(3φ − 1, v)
holds for all φ ≥ 1. This means that, for all φ > 1, at the end of round
3φ − 1, all correct processes p have xp = v, and votep ∈ {v, ?}. Therefore,
in round 3φ the condition of line 25 cannot hold for v′ 6= v.

Therefore we have the following theorem.

Theorem 5.3. With Byzantine faults and n > 3t, if round 3φ − 2 ≥ GSR
of A2 is a WIC round, then A2 ensures strong validity, agreement and ter-
mination.

Proof. This follows from Proposition 5.1, 5.2, and 5.3.

5.3.3 Summary

Table 5.1 summarizes our results. Since both the algorithms presented in the
previous section and the EIGByz algorithm do not need any process with a
specific role of leader or coordinator, the resulting consensus algorithms are
decentralized. The second column shows the smallest number of processes
needed for each algorithm. The third and forth columns give an upper bound
on number of rounds needed for a single consensus in both best and worst
cases. The best case is when the system is synchronous form the beginning,
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# processes # rounds (best case) # rounds (worst case)

A1 5t+ 1 t+ 2 GSR + 2(t+ 2)− 1
A2 3t+ 1 t+ 3 GSR + 2(t+ 3)− 1

Table 5.1: Summary of results for decentralized algorithms.

i.e., GSR = 0. The worst case corresponds to the case where GSR is started
right after the first round of the algorithm. Both algorithms require n2

messages per round.

5.3.4 Optimizations

We describe two possible optimizations that can be applied to our decen-
tralized Byzantine consensus algorithm.

Early termination: The “early termination” optimization can be applied
to Algorithm 5.1 (EIGByz ). Algorithm 5.1 always requires t + 1 rounds,
even in executions in which no process is faulty. With early termination,
the number of rounds can be reduced in such cases.

Let f denote the actual number of faulty processes in a given execution.
Moses and Waarts in [MW88] present an early termination version of the
exponential information gathering protocol for Byzantine consensus that
requires n > 4t and terminates in min{t + 1, f + 2} rounds. The idea is
the following. Consider some node α in p’s tree. Process p may know that
a quorum (i.e., n − |α| − t) of correct children of node α store the same
value. When this happens, process p can already determine the value of
newvalp(α), and can stop at the end of the next round. The paper presents
another early termination protocol with optimal resiliency (n > 3t) that
terminates in min{t + 1, f + 3} rounds. These two optimizations can be
applied to Algorithm 5.1.

One round decision: The “one round decision” optimization is relevant to
Algorithm 5.2 (A1). One round decision means that if all correct processes
start with the same initial value, and the system is synchronous from the
beginning, then correct processes decide in one single round. Algorithm 5.2
does not achieve one round decision, because the simulation of Algorithm 5.1
(EIGByz ) appears in each phase, including phase 1. To achieve one round
decision, we simply skip round 1, and start Algorithm 5.2 with round 2. If
all correct processes start with the same initial value, and GSR = 0, then
correct processes decide in one round.

The fact that our one round decision algorithm requires “only” n > 5t is
not in contradiction with the result in [SvR08], which establishes the lower
bound n = 7t + 1 for one-step decision. The reason is that we assume for
fast decision a partially synchronous system with GSR = 0, i.e., the system
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Algorithm 5.4 Authenticated FloodSet with n > t (code of process p)
1: Initialization:
2: Wp := {mp} /* mp is the input value of process p */

3: Round r : /* 1 ≤ r ≤ t+ 1 */
4: Srp :
5: send 〈Wp : p〉 to all processes
6: T rp :
7: for all q from which the set Wq is received do
8: for all e ∈Wq do
9: if e is signed by r different processes then

10: Wp := Wp ∪ {e}
11: if r = t+ 1 then
12: for all q ∈ Π do
13: if (v : q : ... ∈Wp) and (v′ : q : ... ∈Wp) and v 6= v′ then
14: remove all elements (− : q : ...) from Wp /* eliminate inconsistent values

of q */
15: if ∃v such that (v : q : ...) ∈Wp then ~Mp[q] := v
16: else ~Mp[q] := ⊥

is initially synchronous, while [SvR08] considers a system that is initially
asynchronous.

5.4 Authenticated Byzantine Faults

In this section we show that decentralized Byzantine consensus is even sim-
pler if signatures are used (a fault model called authenticated Byzantine
faults, see Section 2.1.2). In this model, a faulty process who cheats about
its value can be detected by the correct processes. Therefore, the EIG-
Byz algorithm is not needed here. It can be replaced by a decentralized
synchronous algorithm that uses digital signatures.

We consider here a variant of the FloodSet algorithm [Lyn96] (see also
[DS83]) called Authenticated FloodSet, see Algorithm 5.4. With similar argu-
ments as in Section 5.3, the combination of Algorithm 5.2 (or Algorithm 5.3)
and Algorithm 5.4 ensures strong validity and agreement. Termination holds
from Algorithm 5.4 in a partially synchronous system (after GSR).

In Algorithm 5.4 we denote by v : p the value v signed by process p, and
by v : p1 : p2 : ... : pk the value v signed by k processes, initially by p1, then
v : p1 signed by p2, etc. In round r processes send values signed exactly
by r distinct processes, and accept only values signed exactly by r distinct
processes.

At line 5 of round r, process p sends Wp : p, which denotes the set ob-
tained by having p signing all elements in set Wp not yet signed by itself. In
round r, a process keeps only values received that are signed by r different
processes (line 9 and 10). In round t+ 1, a correct process eliminates incon-
sistent values, i.e., two different initial values signed by the same process
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(line 13 and 14). At the end, every correct process constructs a vector ~Mp

of size n, where ~Mp[q] is the initial value of process q (or ⊥ if q is faulty).

5.5 Conclusion

All previously known deterministic consensus algorithms for partially syn-
chronous systems and Byzantine faults are leader-based. However, leader-
based algorithms are vulnerable to performance degradation, which occurs
when the Byzantine leader sends messages slowly, but without triggering
timeouts. In this chapter we have proposed a deterministic (no random-
ization), decentralized Byzantine consensus algorithm in a partially syn-
chronous system. Our second algorithm is resilience-optimal (it requires
3t + 1 processes) and signature-free (it doesn’t rely on digital signatures).
To the best of our knowledge this is the first Byzantine algorithm that sat-
isfies all these characteristics. We have also presented optimizations for
the Byzantine consensus algorithm, including one-round decision. Finally,
a simpler decentralized consensus algorithm that uses digital signatures is
proposed.

We have designed our algorithms using a new methodology which con-
sists of extending a synchronous consensus algorithm to a partially syn-
chronous consensus algorithm using an asynchronous algorithm. The asyn-
chronous protocol ensures safety (i.e., agreement and strong validity), while
the synchronous algorithm provides liveness (i.e., termination) during peri-
ods of synchrony.

We believe that our methodology is quite extensible. In fact, any al-
gorithm that satisfies predicate PInt in all the rounds (including synchrony
and asynchrony periods), and satisfies predicate PCons in synchrony peri-
ods, can be extended to solve Byzantine consensus problem in a partially
synchronous system. Furthermore, the same methodology that constructs
a decentralized Byzantine consensus algorithm can be used to construct a
new consensus algorithm for benign or timing faults. For instance, one can
replace EIGByz algorithm by FloodSet algorithm and extend the FloodSet
algorithm using OneThirdRule algorithm.
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Chapter 6

Timing Analysis of
Leader-based and

Decentralized Byzantine
Consensus Algorithms

The chapter compares in an analytical way two leader-based and decentral-
ized algorithms (that is, algorithms that do not use a leader) for Byzan-
tine consensus with strong validity. We show that for the algorithms we
analyzed, in most cases, the decentralized variant of the algorithm shows
a better worst-case execution time. Moreover, for the practically relevant
case t ≤ 2 (t is the maximum number of Byzantine processes), this worst-
case execution time is even at least as good as the execution time of the
leader-based algorithms in fault-free runs.

Publication: F. Borran and M. Hutle and A. Schiper. Timing Analysis of
Leader-based and Decentralized Byzantine Consensus Algorithms. Techni-
cal Report, EPFL, 2010.

6.1 Introduction

Algorithms for solving the consensus problem can be classified into two
broad categories: leader-based algorithms, that use the notion of a (chang-
ing) leader, and decentralized algorithms, where no such dedicated process is
used. Most of the consensus algorithms proposed in early 80’s, for both syn-
chronous and asynchronous systems,1 are decentralized (e.g., [PSL80,LSP82,
BO83,Rab83]). Later a leader (or coordinator) was introduced, in order to
reduce the message complexity and/or improve the best case performance

1In asynchronous systems, using randomization to solve probabilistic consensus.
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(e.g., [DLS88, CT96, Lam98]). However, recently it has been pointed out
that the leader-based PBFT Byzantine consensus algorithm [CL02], which
assumes a partially synchronous system [DLS88], is vulnerable to perfor-
mance degradation [ACKL08, CWA+09]. According to these two papers, a
malicious leader can introduce latency into the global communication path
simply by delaying the message that it has to send. Moreover, a mali-
cious leader can manipulate the protocol timeout and slow down the system
throughput without being detected. This motivated the development of de-
centralized Byzantine consensus algorithms for partial synchronous systems
in Chapter 5. The next step, addressed here, is to compare the theoretical
execution time of decentralized and leader-based consensus algorithms. We
study the question analytically in the model considered in [CL02] for PBFT,
namely a partially synchronous system in which the end-to-end messages
transmission delay δ is unknown.

Contribution: The chapter analyzes two Byzantine consensus algorithms
for strong validity, each one with a decentralized and a leader-based variant.
One of these two algorithms is inspired by Fast Byzantine Paxos [MA06],
the other by PBFT. Our analysis shows the superiority of the decentralized
variants over the leader-based variants. First, the analysis shows that for
the decentralized variants the worst case performance and the fault-free case
performance overlap, which is not the case for the leader-based variants.
Second, it shows that the worst case of the decentralized variant of our two
algorithms is always better than the worst case of its leader-based variant.
Third, for t ≤ 2 (t is the maximum number of Byzantine processes), it shows
that the worst case execution time of our decentralized variant is never worse
than the execution time of the leader-based variant in fault-free runs. As
future work, we plan to extend our study to consensus algorithms with weak
validity, e.g., Fast Byzantine Paxos and PBFT.

Roadmap: In the next section we give the system model for our analysis.
Section 6.3 presents in a modular way the consensus algorithms under con-
sideration. In Section 6.4, we give the implementation of the round model.
Section 6.5 contains our main contribution, the analysis and comparison of
the algorithms. We end the chapter by a discussion and a conclusion.

6.2 System Model

We consider a set Π of n processes, among which at most t can be Byzantine
faulty. Processes communicate through message passing, and the system is
partially synchronous [DLS88]. Instead of separate bounds on the process
speeds and the transmission delay, we assume that in every run there is a
bound δ on the end-to-end transmission delay between correct processes,
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Consensus Algorithm
A1 (n > 5t), A2 (n > 3t)

WIC round
Implementation
L, D (n > 3t)

Sync round
Implementation (n > 3t)

Physical Network
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Srp T rp

send receive

system model
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Figure 6.1: Overview of the Byzantine consensus algorithms.

that is, the time between the sending of a message and the time where this
message is actually received (this incorporates the time for the transmission
of the message and of possibly several steps until the process makes a re-
ceive step that includes this message). This is the same model considered
in [CL02] for PBFT. We do not make use of digital signatures. However, the
communication channels are authenticated, i.e., the receiver of a message
knows the identity of the sender. In addition, we assume that processes have
access to a local (non-synchronized) clock; for simplicity we assume that this
clock is drift-free.

As in [DLS88], we consider rounds on top of the system model defined
in Section 2.3. This improves the clarity of the algorithms, makes it simpler
to change implementation options, and makes the timing analysis easier to
understand.

6.3 Consensus Algorithms

Consensus algorithms consist of a sequence of phases, where each phase con-
sists of one or more rounds. Each round is composed of a sending function
S and a transition function T (see Section 2.3 for details). Figure 6.1 rep-
resents an overview of the Byzantine algorithms presented in this thesis.
The upper layer is the round-based consensus algorithm (one of the algo-
rithms presented in Chapter 5, A1 or A2). As already shown in Chapter 5,
our consensus algorithms require eventually a phase where all rounds are
synchronous (defined in Section 2.3), and the first round is consistent (de-
fined in Section 2.3). Eventually synchronous rounds are provided by the
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implementation of the round model, which is discussed in Section 6.4 (third
layer from top in Figure 6.1). Ensuring eventually consistent rounds can be
done in a leader-based or decentralized way, and discussed in Section 6.3
(second layer from top in Figure 6.1). By combining the two consensus al-
gorithms with the two WIC implementations we get four algorithms that
will be analyzed.

In this chapter we analyze a sequence of Byzantine consensus instances.
The latency of consecutive instances of consensus is an important metric to
evaluate the performance of the consensus algorithm.

6.3.1 Consensus algorithms with WIC rounds

6.3.1.A The A1 algorithm

According to [MHS09], the A1 algorithm (Algorithm 5.2 with T = n− t and
E = (n+3t)/2) is inspired by the FaB Paxos algorithm proposed by Martin
and Alvisi [MA06], expressed using rounds, including one WIC round.2 A
phase of A1 consists of two rounds. The algorithm is safe with t < n/5.
For termination, the two rounds of a phase must eventually be synchronous,
and the first round must be a WIC round.

6.3.1.B The A2 algorithm

According to [MHS09], the A2 algorithm (Algorithm 5.3) is inspired by the
PBFT algorithm proposed by Castro and Liskov [CL02], expressed using
rounds, including one WIC round.3 A phase consists of three rounds. The
algorithm is safe with t < n/3. For termination, the three rounds of a phase
must eventually be synchronous and the first round must be a WIC round.
Actually, the analysis is the same for any algorithm that requires 3 rounds
per phase, with a first WIC round.

6.3.2 Implementation of a WIC round

We consider two implementations for a WIC round: one leader-based and
one decentralized. The implementations are also expressed using rounds, in
order to distinguish them from the “normal” rounds, we use ρ to denote
these rounds. The implementation has to be understood as follows. Let r
be a WIC round, e.g., round r = 2φ − 1 of Algorithm 5.2. The messages
sent in round r = 2φ − 1 are used as the input variable mp in the WIC
implementation (Algorithm 6.1). The resulting vector provided by the WIC

2FaB Paxos is expressed using “proposers”, “acceptors” and “learners”. A1 is expressed
without these roles. Moreover, FaB Paxos solves consensus with weak validity, while A1

solves consensus with strong validity.
3PBFT solves a sequence of consensus instances with weak validity, while A2 solves

consensus with strong validity.
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Algorithm 6.1 Leader-based implementation of a WIC round with n >
3t [MHS09] (code of process p)
1: Initialization:
2: ∀q ∈ Π : receivedp[q]← ⊥

3: Round ρ = 1 :
4: Sρp :
5: send 〈mp〉 to all
6: T ρp :
7: receivedp ← ~µρp

8: Round ρ = 2 :
9: Sρp :
10: send 〈receivedp〉 to coordp
11: T ρp :
12: if p = coordp then
13: for all q ∈ Π do
14: if |{q′ ∈ Π : ~µρp[q

′][q] = receivedp[q]}| < 2t+ 1 then
15: receivedp[q]← ⊥

16: Round ρ = 3 :
17: Sρp :
18: send 〈receivedp〉 to all
19: T ρp :
20: for all q ∈ Π do
21: if (~µρp[coordp][q] 6= ⊥) ∧ |{i ∈ Π : ~µρp[i][q] = ~µρp[coordp][q]}| ≥ t+ 1 then

22: ~Mp[q]← ~µρp[coordp][q]
23: else
24: ~Mp[q]← ⊥

implementation, denoted by ~Mp (see Algorithm 6.1) is then passed to the
transition function of round r as the reception vector.

6.3.2.A Leader-based implementation

Algorithm 6.1, which appears in [MHS09], implements WIC rounds using
a leader. If a correct process is the coordinator, all processes receive the same
set of messages from this process in round ρ = 3.

In round ρ = 2, the coordinator compares the value received from some
process p with the value indirectly received from other processes. If at least
2t + 1 same values have been received, the coordinator keeps that value,
otherwise it sets the value to ⊥. This guarantees that if the coordinator
keeps v, at least t + 1 correct processes have received v from p in round 1.
Finally, in round ρ = 3 every process sends values received in round 1 or
⊥ to all. Each process verifies whether at least t+ 1 processes validate the
value that it has received from the coordinator in round 3. Rounds 1 and 3
are thus used to verify that a faulty leader cannot forge the message from
another process (integrity).

Since a WIC round can be ensured only with a correct coordinator, we
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Algorithm # rounds # messages
best case worst case best case worst case

DA1 t+ 2 t+ 2 (t+ 2)n2 (t+ 2)n2

LA1 4 4(t+ 1) 3n2 + n (3n2 + n)(t+ 1)
DA2 t+ 3 t+ 3 (t+ 3)n2 (t+ 3)n2

LA2 5 5(t+ 1) 4n2 + n (4n2 + n)(t+ 1)

Table 6.1: Results for the combination of different algorithms.

need to ensure that the coordinator is eventually correct. In Section 7.4.3 we
do so by using a rotating coordinator. A WIC round using this leader-based
implementation needs three “normal” rounds.

6.3.2.B Decentralized implementation

The decentralized (no leader) implementation of a WIC round was intro-
duced in Chapter 5 (EIGByz algorithm). It is based on Exponential Informa-
tion Gathering (EIG) algorithm for synchronous systems proposed by Pease
et al. [PSL80]. Initially, process p has its input value mp given by round
r = 2φ − 1 of the consensus algorithm (e.g., Algorithm 5.2). Throughout
the execution, processes learn about initial values of other processes. The
information can be organized inside a tree. Process p maintains the tree
using a set Wp. After t + 1 rounds, badly-formatted messages in Wp are
dropped, and all correct processes have the same value for Wp.

Similarly to the leader-based implementation, it requires n > 3t. On
the other hand, a WIC round using this decentralized implementation needs
t+ 1 “normal” rounds.

6.3.3 The four combinations

Combining the two WIC based algorithms, namely A1 and A2 with the two
implementations of WIC rounds, namely leader-based (L) and decentralized
(D), we get four algorithms, denoted by LA1, DA1, LA2 and DA2. Phases
have the following lengths: four rounds for LA1, t + 2 rounds for DA1,
five rounds for LA2 and t + 3 rounds for DA2. Table 6.1 summarizes the
results for the best and worst cases, in terms of number of rounds (second
column) and message complexity (third column), once the actual end-to-end
transmission delay δ is reached.

6.4 Round Implementation

As already mentioned in Section 2.1, we consider a partially synchronous
system with an unknown bound δ on the end-to-end transmission delay be-
tween correct processes. The main technique to find the unknown δ in the
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literature is using an adaptive timeout, i.e., starting the first phase of an
algorithm with a small timeout Γ0 and increase it from time to time. The
timeout required for an algorithm can be calculated based on the bound δ
and the number of rounds needed by one phase of the algorithm. The ap-
proach proposed in the DLS model [DLS88] is increasing the timeout linearly,
while recent works, e.g., PBFT [CL02], increase the timeout exponentially.

The main question is when should the timeout be increased. Increasing
the timeout in every phase provides a simple solution, in which all processes
adapt the same timeout for a given phase. However, this is not an efficient
solution, since processes might increase the timeout unnecessarily. An effi-
cient solution is increasing the timeout when a correct process requires that.
This occurs typically when a correct process is unable to terminate the al-
gorithm with the current timeout. The problem with this solution is that
different processes might increase the timeout at different points in time.

For leader-based algorithms, a related question is the relationship be-
tween leader change and timeout change. Most of the existing protocols ap-
ply both timeout and leader modifications at the same time [DLS88,CL02,
MA06,KAD+07,ACKL08,CWA+09]. Our round implementation allows de-
coupling timeout modification and leader modification. We show that such
a strategy performs better than the traditional strategies in the worst case.

6.4.1 The algorithm

Algorithm 6.2 describes the round implementation. The main idea of
the algorithm is to synchronize processes into the same round (round syn-
chronization). The algorithm requires view synchronization (eventually pro-
cesses are in the same view) in addition to the round synchronization. Pro-
cesses might increase the timeout not at the same round. The view number
is thus used to synchronize the processes’ timeout.

Each process p keeps a round number rp and a view number vp, ini-
tially equal to 1. While the round number corresponds also to the round
number of the consensus algorithm, the view number increases only upon
reconfiguration (i.e., timeout modification). Thus, the leader and the time-
out are functions of the view number. The leader changes whenever the
view changes, based on the rotating leader paradigm (line 7). Note that the
value of coordp is ignored in decentralized algorithms. The timeout does not
necessarily change whenever the view changes. After line 7, a process starts
the input & send part, in which it queries the input queue for new proposals
(using a function input(), line 8), initializes new slots on the state vector for
each new proposal (line 10), calls the send function of all active consensus
instances (line 13), and sends the resulting messages (line 11). The process
then sets a timeout for the current round using a deterministic function Γ
based on its view number vp (line 17), and starts the receive part, where it
collects messages (line 22). Basically, this is done using an init/echo message
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Algorithm 6.2 A round implementation for Byzantine faults with n > 3t
(code of process p)

1: rp ← 1; next rp ← 1 /* round number */
2: vp ← 1; next vp ← 1 /* view number */
3: Rcvp ← ∅ /* set of received messages */
4: ∀i ∈ N : statep[i]← ⊥ /* state of instance i */
5: ∀i ∈ N : startp[i]← 0 /* starting round for instance i */

6: while true do
7: coordp ← p

(vp−1 mod n)+1

8:

in
p
u
t

&
se

n
d

I ← input()
9: for all 〈i, v〉 ∈ I do

10: statep[i]← init(v) /* initialization of state with initial value v */
11: startp[i]← rp
12: for all i : statep[i] 6= ⊥ do
13: msgs[i]← S

rp
p (statep[i], coordp)

14: for all q ∈ Π do
15: Mq ← {〈i,msgs[i][q]〉 : statep[i] 6= ⊥ }
16: send(Start,Mq, vp, rp, p) to q

17:

re
ce

iv
e

timeoutp ← current time+ Γ(vp)
18: while next vp = vp and next rp = rp do
19: if current time ≥ timeoutp then
20: send(Init, vp, rp + 1, p) to all
21: receive(M)
22: Rcvp ← Rcvp ∪M
23: if exists r and t+ 1 processes q s.t. 〈Init, vp, r + 1, q〉 ∈ Rcvp then
24: let r0 be the largest such r
25: if r0 ≥ rp then
26: next rp ← r0

27: send(Init, vp, r0 + 1, p) to all
28: if exists v and t+ 1 processes q s.t. 〈Init, v + 1,−, q〉 ∈ Rcvp then
29: let v0 be the largest such v
30: if v0 ≥ vp then
31: next vp ← v0

32: send(Init, v0 + 1, rp, p) to all
33: if exists 2t+ 1 processes q s.t. 〈Init, vp, rp + 1, q〉 ∈ Rcvp then
34: next rp ← max{rp + 1,next rp}
35: if exists 2t+ 1 processes q s.t. 〈Init, vp + 1,−, q〉 ∈ Rcvp then
36: next vp ← max{vp + 1,next vp}
37:

co
m

p
.

&
o
u
tp

u
t

O ← ∅
38: for all i : statep[i] 6= ⊥ do
39: for all r ∈ [rp,next rp − 1] do
40: ∀q ∈ Π : Mr[q]← m if ∃M 〈Start,M, vp, r, q〉 ∈ Rcvp ∧ 〈i,m〉 ∈M

else ⊥
41: statep[i]← T rp (Mr, statep[i], coordp)
42: if ∃v s.t. decision(statep[i]) = v for the first time then
43: O ← O ∪ 〈i, v〉 /* v is the decision of instance i */
44: output(O)

45: if vp = next vp ∧ next rp mod α = 1 then
46: if ∃i : startp[i] ≤ next rp − α ∧ decision(statep[i]) = ⊥ then
47: send(Init, vp + 1,next rp, p) to all
48: rp ← next rp
49: vp ← next vp
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scheme based on ideas that appear already in [ST87a, DLS88, HS07]. The
receive part is described later. Next, in the comp. & output part, the process
calls the state transition function of each active instance (line 41), and out-
puts any new decisions (line 44) using the function output(). Finally, a check
is done at the end of each phase, i.e., only if next rp mod α = 1 (line 45),
where α represents the number of rounds in a phase . The check may lead
to request a view change, therefore, the check is skipped if vp 6= next vp (the
view changes anyway). The check is whether all instances started at the
beginning of the phase, have decided (lines 45-46). If not, the process con-
cludes that the current view was not successful (either the current timeout
was small or the coordinator was faulty), and it expresses its intention to
start the next view by sending an Init message for view vp + 1 (line 47).

The function init(v) (line 10) gives the initial state for initial value v
of the consensus algorithm; respectively, decision(state) (line 42) gives the
decision value of the current state of the consensus algorithm, or ⊥ if the
process has not yet decided.

Receive part: To prevent a Byzantine process from increasing the round
number and view number unnecessarily, the algorithm uses two different
type of messages, Init messages and Start messages. Process p expresses
the intention to enter a new round r or new view v by sending an Init
message. For instance, when the timeout for the current round expires, the
process — instead of starting immediately the next round — sends an Init
message (line 20) and waits that enough processes timeout. If process p in
round rp and view vp receives at least 2t+ 1 Init messages for round rp + 1
(line 33), resp. view vp + 1 (line 35), it advances to round rp + 1, resp.
to view vp + 1, and sends an Start message with current round and view
(line 11). If the process receives t + 1 Init messages for round r + 1 with
r ≥ rp, it enters immediately round r (line 23), and sends an Init message
for round r+ 1. In a similar way, if the process receives t+ 1 Init messages
for view v+ 1 with v ≥ vp, it enters immediately view v (line 28), and sends
an Init message for view v + 1.

Properties of Algorithm 6.2: The correctness proofs of Algorithm 6.2 are
given in Section 6.4.4. Here we give the main properties of the algorithm:

1. If one correct process starts round r (resp. view v), then there is at
least one correct process that wants to start round r (resp. view v).
This is because at most t processes are faulty (see Lemma 6.1).

2. If all correct processes want to start round r+1 (resp. view v+1), then
all correct processes eventually start round r + 1 (resp. view v + 1).
This is because n− t ≥ 2t+ 1 (see Lemma 6.2).
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Strategy A B C

Γ(v) vΓ0 2v−1Γ0 2b
v−1
t+1 cΓ0

Table 6.2: Different strategies for timeout.

3. If one correct process starts round r (resp. view v), then all correct
processes eventually start round r (resp. view v). The proof is given
by Lemmas 6.3-6.5.

6.4.2 Timing properties of Algorithm 6.2

Algorithm 6.2 ensures the following timing properties:

1. If process p starts round r (resp. view v) at time τ , all correct processes
will start round r (resp. view v) by time τ + 2δ. Lemma 6.5 proves
the property.

2. If a correct process p starts round r (view v) at time τ , it will start
round r + 1 the latest by time τ + 3δ + Γ(v). Lemma 6.6 proves the
property.

3. A timeout Γ(v) ≥ 3δ for round r (view v) ensures that if a correct
process starts round r at time τ , it receives all round r messages from
all correct processes before the expiration of the timeout (at time τ +
3δ). Lemma 6.7 proves the property.

6.4.3 Parameterizations of Algorithm 6.2

We now discuss different adaptive strategies for the timeout value Γ(vp).
First we consider the approach of [DLS88]: increasing the timeout linearly
(whenever the view changes). We will refer to this strategy by A. Then
we consider the approach used by PBFT [CL02]: increasing the timeout
exponentially (whenever the view changes). We will refer to this strategy
by B. Finally, we propose another strategy, which consists of increasing the
timeout exponentially every t + 1 views. In the context of leader-based
algorithms, this strategy ensures that, if the timeout is large enough to
terminate the started consensus instances, then a Byzantine leader will not
be able to force correct processes to increase the timeout. We will refer to
this last strategy by C. These three strategies are summarized in Table 6.2,
where v represents the view number and Γ0 denotes the initial timeout.

6.4.4 Correctness Proofs of Algorithm 6.2

In the sequel, let τG denote the first time that the actual end-to-end trans-
mission delay δ is reached. All messages sent before τG are received the
latest by time τG + δ. Let v0 denote the largest view number such that no
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correct process has sent a Start message for view v0 by time τG, but some
correct process has sent a Start message for view v0 − 1. Let r0 denote
the largest round number such that no correct process has sent a Start
message for round r0 by time τG, but some correct process has sent a Start
message for round r0 − 1. We prove the results related to the view number,
similar results hold for round numbers:

Lemma 6.1. Let p be a correct process that sends message 〈Start,−, v,−, p〉
at some time τ0, then at least one correct process q has sent message 〈Init, v,−, q〉
at time τ ≤ τ0.

Proof. Assume by contradiction that no correct process q has sent message
〈Init, v,−, q〉. This means that a correct process can receive at most t
messages 〈Init, v,−,−〉 in line 28. Therefore, no correct process executes
line 32, and no correct process starts view v because of line 35, which is a
contradiction.

Lemma 6.2. Let all correct processes p send message 〈Init, v,−, p〉 at some
time τ0, then all correct processes p will send message 〈Start,−, v,−, p〉 by
time max{τ0, τG}+ δ.

Proof. If all correct processes p send message 〈Init, v,−, p〉 at some time
τ0, then all correct processes are in view v − 1 at time τ0 by lines 45-47. A
correct process q in view v − 1, receives at least n − t ≥ 2t + 1 messages
〈Init, v,−, p〉 by time τ0 + δ if τ0 ≥ τG, or by time τG + δ if τ0 < τG. From
lines 35 and 36, q starts view v by time max{τ0, τG}+ δ.

Lemma 6.3. Every correct process p sends message 〈Start,−, v0−1,−, p〉
by time τG + 2δ.

Proof. We assume that there is a correct process p with vp = v0− 1 at time
τG. This means that p has received at least 2t+1 messages 〈Init, v0−1,−,−〉
(line 35). Or at least t + 1 correct processes are in view v0 − 2 and have
sent a message 〈Init, v0 − 1,−,−〉. These messages will be received by all
correct processes the latest by time τG + δ. Therefore, all correct processes
in view < v0 − 1 receive at least t+ 1 messages 〈Init, v0 − 1,−,−〉 by time
τG + δ, start view v0 − 2 (line 31) and send a message 〈Init, v0 − 1,−,−〉
(line 32). These messages are received by all correct processes by time
τG + 2δ. Because n − t > 2t, all correct processes receive at least 2t + 1
messages 〈Init, v0 − 1,−,−〉 by time τG + 2δ (line 35), start view v0 − 1
(line 36), and send a message 〈Start,−, v0 − 1,−,−〉 (line 11).

Lemma 6.4. Let p be the first (not necessarily unique) correct process that
sends message 〈Start,−, v, r, p〉 with v ≥ v0 at some time τ ≥ τG. Then no
correct process sends message 〈Start,−, v+1,−,−〉 before time τ+TO(v).
Moreover, no correct process sends message 〈Init, v + 2,−,−〉 before time
τ + TO(v).

109



Chapter 6. Timing Analysis of Byzantine Consensus Algorithms

Proof. For the Start message, assume by contradiction that process q is
the first correct process that sends message 〈Start,−, v + 1, 1, q〉 before
time τ + TO(v). Process q can send this message only if it receives 2t + 1
messages 〈Init, v+ 1,−,−〉 (line 35), This means that at least t+ 1 correct
processes are in view v and have sent 〈Init, v + 1,−,−〉. In order to send
〈Init, v + 1,−,−〉, a correct process takes at least TO(v) time in view v
(line 35). So message 〈Start,−, v + 1,−, q〉 is sent by correct process q at
the earliest by time τ + TO(v). A contradiction.

For the Init message, since no correct process starts view v + 1 before
time τ + TO(v), no correct process sends message 〈Init, v + 2,−, q〉 before
time τ + TO(v).

Lemma 6.5. Let p be the first (not necessarily unique) correct process that
sends message 〈Start,−, v,−, p〉 with v ≥ v0 at some time τ ≥ τG. Then
every correct process q sends message 〈Start,−, v,−, q〉 by time τ + 2δ.

Proof. Note that by the assumption, all view v ≥ v0 messages are sent at
or after τG, and thus they are received by all correct processes δ time later.
By Lemma 6.4, there is no message 〈Start,−, v′,−,−〉 with v′ > v in the
system before τ + TO(v). Process p sends message 〈Start,−, v,−, p〉 if it
receives 2t + 1 messages 〈Init, v,−,−〉 (line 35). This means that at least
t+1 correct processes are in view v−1 and have sent message 〈Init, v,−,−〉,
the latest by time τ . All correct processes in view < v receive at least t+ 1
messages 〈Init, v,−,−〉 the latest by time τ + δ, start view v − 1 (line 31)
and send 〈Init, v,−,−〉 (line 32) which is received at most δ time later.
Because n− t > 2t, every correct process q receives at least 2t+ 1 messages
〈Init, v,−,−〉 by time τ + 2δ (line 35), start view v (line 36), and send
message 〈Start,−, v,−, q〉 (line 11).

Following two lemmas hold for round numbers.

Lemma 6.6. If a correct process p sends message 〈Start,−, v, r, p〉 at time
τ > τG, it will send message 〈Start,−, v, r + 1, p〉 the latest by time τ +
3δ + Γ(v).

Proof. From Lemma 6.5 (similar result for round number), all correct pro-
cesses q send message 〈Start,−, v, r, q〉 the latest by time τ+2δ. Then they
wait for the timeout of round r which is Γ(v) (lines 17 and 35). Therefore,
by time τ + 2δ + Γ(v) all correct processes timeout for round r, and send
〈Init, v, r + 1, q〉 message to all (line 20), which takes δ time to be received
by all correct processes. Finally the latest by time τ + 3δ + Γ(v), process p
receives n − t ≥ 2t + 1 messages 〈Init, v, r + 1,−〉 and starts round r + 1
(line 36).

Lemma 6.7. A timeout Γ(v) ≥ 3δ for round r ensures that if a correct
process p sends message 〈Start,−, v, r, p〉 to all at time τ ≥ τG, it will
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receive all round messages 〈Start,−, v, r, q〉 from all correct processes q,
before the expiration of the timeout (at time τ + 3δ).

Proof. From Lemma 6.5 (similar result for round number), all correct pro-
cesses q send message 〈Start,−, v, r, q〉 to all the latest by time τ+2δ. The
message of round r takes an additional δ time. Therefore a timeout of at
least 3δ ensures the stated property.

Therefore, we have the following theorem:

Theorem 6.1. Algorithm 6.2 with n > 3t ensures the the existence of round
r0 such that ∀r ≥ r0 : PSync(r).

Proof. The proof holds from the previous lemmas.

6.5 Timing Analysis

In this section we analyze the impact of the strategies A, B and C on our
four consensus algorithms. We start with the analysis of the round imple-
mentation. Then we use these results to compute the execution time of
k consecutive instances of consensus using the four algorithms LA1, DA1,
LA2 and DA2.

First, for each strategy A, B, C, we compute the best case and worst-case
execution time of k instances of repeated consensus, based on two parameters
α and β: The parameter α is the one used in Algorithm 6.2. It denotes the
number of rounds per phase of an algorithm, i.e., the number of rounds
needed to decide in the best case. Thus, α gives also the length of a view
in case a process does not decide. The parameter β denotes the number of
consecutive views in which a process might not decide although the timeout
is already set to the correct value. This happens when a Byzantine process
is the leader.

6.5.1 Best case analysis

In the best case we have Γ0 = δ and there are no faults. Every round starts
at the same time at all processes and takes 2δ (δ for the timeout and δ
for the Init messages), and processes decide at the end of each phase (=α
rounds). Therefore, the decision for k consecutive instances of consensus
occurs at time 2δαk. Obviously, the algorithm with the smallest α (that is,
the leader-based or the decentralized with t ≤ 2) performs in this case the
best.
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fault-free case worst case
α β α β

DA1 t+ 2 0 t+ 2 0
LA1 4 0 4 t
DA2 t+ 3 0 t+ 3 0
LA2 5 0 5 t

Table 6.3: Parameters for algorithms A1 and A2 in the worst case.

6.5.2 Worst case analysis

We compute now τX(k, α, β), the worst-case execution time until the kth

decision when using strategy X ∈ {A,B,C}. In the worst case we have
Γ0 � δ. Based on item 3 in Section 6.4.2 (or Lemma 6.7 in Section 6.4.4),
the first decision does not occur until the round timeout is larger or equal to
3δ. We denote below with v0 the view that corresponds to the first decision
(k = 1).

Strategy A: With strategy A, the timeout is increased in each new view
by Γ0 until vΓ0 ≥ 3δ, i.e., until v = d3δ/Γ0e. Then the timeout is increased
for the next β views. Therefore, we have v0 = d3δ/Γ0e+β. To compute the
time until decision, observe that a view v lasts Γ(v) (timeout for view v)
plus the time until all Init messages are received. It is already shown that
the latter takes at most 3δ (see item 2 in Section 6.4.2 and Lemma 6.6 in
Section 6.4.4). Therefore we have for the worst case:

τA(1, α, β) =

v0∑
v=1

α(Γ(v) + 3δ) = α

v0∑
v=1

(vΓ0 + 3δ) = α

(
v0(v0 + 1)

2
Γ0 + 3δv0

)
=

= α

(
Γ0

2
(d3δ/Γ0e+ β)(d3δ/Γ0e+ β + 1) + 3δ(d3δ/Γ0e+ β)

)
(6.1)

and for k > 1,

τA(k, α, β) = τA(k − 1, α, β) + α(v0Γ0 + 3δ) =

= τA(k − 1, α, β) + α(d3δ/Γ0eΓ0 + βΓ0 + 3δ) (6.2)

Strategy B: With strategy B, the timeout doubles in each new view until
2v−1Γ0 ≥ 3δ. In other words, the timeout doubles until reaching view v =⌈
log2

6δ
Γ0

⌉
. Including β, we have v0 =

⌈
log2

6δ
Γ0

⌉
+ β, and:
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τB(1, α, β) =

v0∑
v=1

α(Γ(v) + 3δ) = α

v0∑
v=1

(2v−1Γ0 + 3δ) = α ((2v0 − 1)Γ0 + 3δv0) =

= α

((
2

⌈
log2

6δ
Γ0

⌉
+β − 1

)
Γ0 + 3δ

(⌈
log2

6δ

Γ0

⌉
+ β

))
=

= α

(
2

⌈
log2

3δ
Γ0

⌉
2β+1Γ0 − Γ0 + 3δ

⌈
log2

3δ

Γ0

⌉
+ 3δ + 3δβ

)
(6.3)

and for k > 1,

τB(k, α, β) = τB(k − 1, α, β) + α(2v0−1Γ0 + 3δ) =

= τB(k − 1, α, β) + α

(
2

⌈
log2

3δ
Γ0

⌉
2βΓ0 + 3δ

)
(6.4)

Strategy C: Finally, for strategy C, the timeout doubles in each new view

until 2
v−1
t+1 Γ0 ≥ 3δ. In other words, the timeout doubles until reaching view

v = 1 + (t + 1)
⌈
log2

3δ
Γ0

⌉
; then it remains the same for the next β views.

Therefore we have v0 = (t+ 1)
⌈
log2

3δ
Γ0

⌉
+ β + 1, and:4

τC(1, α, β) = α

(t+ 1)

v−1
t+1−1∑
l=0

(2lΓ0 + 3δ) + (β + 1)
(

2
v−1
t+1 Γ0 + 3δ

) =

= α

(
(t+ 1)

(
2
v−1
t+1 Γ0 − Γ0 + 3δ

v − 1

t+ 1

)
+ (β + 1)

(
2
v−1
t+1 Γ0 + 3δ

))
=

= α

(
(t+ 1)

(
2

⌈
log2

3δ
Γ0

⌉
Γ0 − Γ0 + 3δ

⌈
log2

3δ

Γ0

⌉)
+ (β + 1)

(
2

⌈
log2

3δ
Γ0

⌉
Γ0 + 3δ

))
(6.5)

and for k > 1,

τC(k, α, β) = τC(k − 1, α, β) + α
(

2
v−1
t+1 Γ0 + 3δ

)
(β + 1) =

= τC(k − 1, α, β) + α

(
2

⌈
log2

3δ
Γ0

⌉
Γ0 + 3δ

)
(β + 1) (6.6)

Note that strategy C makes sense only for the leader-based algorithms.

Comparison: Table 6.3 gives α and β for all algorithms we discussed. For
the worst case analysis, we distinguish two cases: the fault-free case, which
is the worst case in terms of the timing for a run without faulty process; and
the general worst-case that gives the values for a run in which t processes
are faulty.
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Figure 6.2: Comparison for k = 1. The lower curve represents the fault-free case
and the higher curve represents the worst case.
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Figure 6.3: Comparison for t = 1. The lower curve represents the fault-free case
and the higher curve represents the worst case.

We compare our results graphically in Figures 6.2-6.4. The execution
time for each algorithm and strategy is a function of k, t, and the ratio
δ/Γ0. In the sequel, we fix two of these variables and vary the third.

4Note that from v = 1 + (t+ 1)
⌈
log2

3δ
Γ0

⌉
it follows that v−1

t+1
is an integer.
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Figure 6.4: Comparison of different strategies with k = 1 and t = 1. The lower
curve represents the fault-free case and the higher curve represents the worst case.

We first focus on the first instance of consensus, that is, we fix k = 1 and
assume δ = 10Γ0 which gives dlog2(3δ/Γ0)e = 5, i.e., the transmission delay
is estimated correctly after five times doubling the timeout. The result
is depicted in Figure 6.2. We first observe, as expected, that the fault-
free case and the worst-case are the same for the decentralized versions.
For the – in real systems relevant – cases t < 3, for each strategy, the
decentralized algorithm decides even faster in the worst-case than the leader-
based version of the same algorithm in the fault-free case. For larger t, the
leader-based algorithms with strategy B are faster in the fault-free case, but
less performant in the worst-case.

Next, we look how the algorithms perform for multiple instances of con-
sensus. To this end, we depict the total time until k consecutive instances
decide in Figure 6.3, for the most relevant case t = 1. Again we assume
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δ = 10Γ0. Here, the decentralized algorithm is always superior to the leader-
based variant using the same strategy, in the sense that even in the worst
case it is faster than the corresponding algorithm in the best case. In abso-
lute terms, the decentralized algorithms with strategy B perform the best.

Finally, we analyze the impact of the choice of Γ0 on the execution time
(Figure 6.4). This is relevant only for the first decision, i.e., k = 1. We
look at the case t = 1 and vary log2

3δ
Γ0

. Again, the decentralized version is
superior for each strategy. However, it can be seen that strategy A is not a
good choice, neither with a decentralized nor with a leader-based algorithm,
if log2

3δ
Γ0

is too large.

6.6 Discussion

There are two important issues that we would like to emphasize before con-
cluding the chapter:

System model issue: The first issue is related to the round implementa-
tion. As we already mentioned, we consider a partially synchronous system
where the end-to-end transmission delay is unknown. From Section 2.1.1
we know that there are two variants in this model: (i) GST = 0, and (ii)
GST > 0. In the first case, there is no message loss, while in the second
case there might be message loss before GST . Our round implementation
(Algorithm 6.2) is correct in both system models. However, it would not be
efficient in the second model, since the timeout is increased before GST , and
is never decreased. For the timing analysis computed in Section 6.5 we have
considered the first model. To obtain a more efficient round implementation
in the second model, we suggest the following modifications (also discussed
in Section 4.6 for benign faults):

• Each correct process increases its timeout according to the timeout
strategy until it can solve the first instance of consensus.

• Once a first instance of consensus is solved, the process asks to reset
the timeout to Γ0 by sending a Reset message, because it believes
that the actual timeout 3δ is reached.

• If a correct process receives 2t+1 Reset messages, it resets the timeout
to the initial timeout, i.e., Γ0.

• If a correct process receives t + 1 Reset messages, it sends a Reset
message.

Using this protocol, the timeout is increased just enough to solve the consen-
sus instance. However, each consensus instance will require the same time
as the first instance. In other words, we have the following formula for the
worst-case execution time until the kth instance:

τX(k, α, β) = k · τX(1, α, β).
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Figure 6.5: Comparing different mechanisms for timeout.

fault-free case worst case
α β α β

HA1 4 0 t+ 6 0
HA2 5 0 t+ 8 0

Table 6.4: Parameters for the hybrid algorithms.

where τX(1, α, β) is given by the same formulas as in Section 6.5.2.

Figure 6.5 compares the previous timeout mechanism (without resetting)
with the mechanism presented here (with resetting). Assuming that GST
holds at view number 5, the former keeps a larger timeout comparing to the
latter.

Hybrid algorithm issue: The second issue is related to the leader-based
versus decentralized WIC round implementation. The leader-based version
has better performance in the best case, while the decentralized version
performs better in the worst case. By combining two approaches, we can
obtain an algorithm that performs the best in both cases. The idea is as
following, in the first phase (or view) we run the leader-based algorithm,
i.e., LA1 or LA2. If the first view was not successful, i.e., if there is view
change, then we switch to the respective decentralized algorithm, i.e., DA1

or DA2.

Table 6.4 shows the parameters for the hybrid algorithm (H refers to the
hybrid algorithm). Note that the hybrid algorithm is no more decentralized
according to our terminology. Figure 6.6 illustrates the results of the
hybrid algorithm for strategy B, and compares with the leader-based and
decentralized algorithms. The hybrid algorithm is as good as the leader-
based algorithm in the best case. In the worst case, the hybrid algorithm is
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Figure 6.6: Comparison of hybrid algorithm for k = 1 and strategy B. The lower
curve represents the fault-free case and the higher curve represents the worst case.

more efficient than the leader-based algorithm (for t ≥ 2), but not as good
as the decentralized algorithm.

6.7 Conclusion

We compared the leader-based and the decentralized variant of two typical
consensus algorithms for Byzantine faults in an analytical way.

The results show a surprisingly clear preference for the decentralized
version. While always having a better worst-cast performance, for the prac-
tically relevant cases t ≤ 2, the decentralized variant of the algorithm is at
least as good as even the fault-free case scenarios of the leader-based algo-
rithms. But also in the best case, for t ≤ 2, the decentralized solution is at
least as good as the leader-based variant.
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Chapter 7

Extending Paxos/LastVoting
for Wireless Ad hoc Networks

The chapter considers the consensus problem to tolerate benign faults in
wireless ad hoc networks. Most papers addressing consensus in wireless
ad hoc networks adopt system models similar to those developed for wired
networks. These models are focused towards node failures while ignoring
link failures, and thus are poorly suited for wireless ad hoc networks. The
recently proposed HO model does not have this drawback. The chapter
shows that an existing algorithm and the HO model can be used for multi-
hop wireless ad hoc networks, if extended with an adequate communication
layer. The description of the communication layer is augmented with simu-
lation results that validate the feasibility of our approach and provide better
understanding of the behavior of the wireless environment.

Publication: F. Borran and R. Prakash and A. Schiper.
Extending Paxos/LastVoting with an Adequate Communication Layer for
Wireless Ad Hoc Networks. The 27th International Symposium on Reliable
Distributed Systems (SRDS 2008): 227-236.

7.1 Introduction

Ad hoc networks are self-organizing wireless networks that do not rely on
a preexisting infrastructure to communicate. Nodes of such networks have
limited transmission range, and packets may need to traverse multiple nodes
before reaching their destination. Both process and link failures are possible.
Packet loss is more frequent than traditional networks due to the collisions
and channel interference. In wireless networks, an algorithm with high mes-
sage complexity may lead to a high number of collisions, i.e., a high loss
degree. In other words, it is even more important to have algorithms with
low message complexity in wireless networks.
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Consensus has been extensively studied in traditional networks with var-
ious system models. It is now well known that solving consensus determin-
istically requires some synchrony assumptions [FLP85]. One option is to
assume that the (asynchronous) system eventually becomes synchronous,
called partial synchrony [DLS88]; another option is to augment the (asyn-
chronous) system with failure detectors [CT96].

Starting from this background, some papers have considered the consen-
sus problem with benign faults in ad hoc networks. These papers essentially
adopt system models similar to those developed for wired and static net-
works (sometimes with extensions), and these adoptations are not adequate
for modeling ad hoc networks properly. Indeed, the models for wired net-
works are strongly biased towards node failures to the detriment of link
failures. This bias has its root in the FLP paper [FLP85], which assumes
process crashes and reliable links. The bias was later strengthened by the
failure detector model [CT96], which also assumes process crashes and re-
liable links. The bias is so commonly accepted that it is easily overlooked.
However, overlooking the bias results in attempts to use solutions for en-
vironments where the bias is acceptable, to environments where the bias is
unacceptable. This is the case with ad hoc networks, where assuming that
links are reliable is clearly inappropriate. One may argue that if reliable
links are required to solve a problem then there is no work-around, and
reliable links need to be implemented on top of lossy links, even if this is
expensive in ad hoc networks. But this is not the case for consensus. We
know that consensus can be solved in a model in which the distinction be-
tween faulty processes and faulty links completely disappears, namely the
HO model [CBS09,HS07,CBS07]. This model has no bias, and is, therefore,
well suited to handle transient process and link faults. Not only transient
link faults (message losses) are frequent in ad hoc networks, but transient
process faults can also occur (consider a wireless device that temporarily
becomes unavailable due to an obstacle to signal propagation).

Having said this, the goal of the chapter is to show that an existing
consensus algorithm can be used for ad hoc networks, if extended with an
adequate communication layer. As suggested above, we believe that the right
model for consensus in ad hoc networks is a model that handles process and
link faults with the same mechanism, e.g., the HO model. Several consensus
algorithms have been expressed in this model, see [CBS09]. Out of these
algorithms, only two of them genuinely tolerate message loss: the OneThir-
dRule (OTR) algorithm, and the Paxos/LastVoting algorithm (LastVoting
is basically Paxos [Lam98] expressed in the HO model). OTR is certainly
not adequate, because it is too costly in ad hoc networks (it requires all-to-
all communication pattern, i.e., in every step all processes send messages
to all). Paxos/LastVoting is based on the much more economical one-to-all
communication pattern (communication only between the coordinator and
the other processes).
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As in most papers about consensus in ad hoc networks, we assume that
the number of nodes in the network, or at least an upper bound, is known (we
comment on approaches that do not rely on this assumption in Section 7.2).
Note that such an assumption is not unreasonable. Indeed, in most real
wireless ad hoc networks nodes have to go through an admission before
becoming operational. Also, several deployments of wireless sensors are
planned deployments where a central entity makes decisions about how many
and where to deploy the nodes.

Contribution: The chapter shows that an adequate communication layer
can nicely handle the one-to-all communication pattern in multi-hop net-
works without any additional overhead for the routing of messages or for
election of the coordinator process. The description of the communication
layer is completed with simulation results that validate the feasibility of our
approach and provide better understanding of the behavior of the realistic
wireless environment.

Roadmap: The chapter is organized as follows. Section 7.2 presents an
overview of the related work. Section 7.3 presents the consensus algorithm.
Section 7.4 describes the communication layer. Simulation results are pre-
sented in Section 7.5. Section 7.6 concludes the chapter.

7.2 Related work

Several papers have addressed the consensus problem in wireless networks.
One of the earliest solution to the consensus problem for a cellular network
was proposed by Badache et al. [BHMA99]. The solution relies on a tradi-
tional fixed infrastructure of Mobile Support Stations (MSSs), and consensus
is basically solved among the MSS using the Chandra-Toueg consensus pro-
tocol with the failure detector ♦S [CT96]. The MSS then propagate the
decision to the mobile hosts. The solution does not address mobility.

Vollset et al. [VE05] propose a family of broadcast protocols to be used
for solving consensus using randomization. The communication pattern is
all-to-all. However, as pointed out in Section 7.1, the all-to-all communica-
tion pattern is not a good choice for multi-hop ad hoc networks. We believe
that our one-to-all broadcast-convergecast algorithm is much more efficient
than the general broadcast protocols proposed in [VE05].

Wu et al. [WCYR07], propose a consensus protocol for mobile ad hoc
networks based on the failure detector ♦P. Wu et al. recognize the problem
related to the reliable link assumption, but state that complicated design
changes would be needed to enable their solution to work with lossy chan-
nels. In addition to the issue of using failure detectors in ad hoc networks,
the solution has another weakness. It imposes a two-layer hierarchy on the
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network, where k “predefined” nodes act as clusterheads. Each mobile node
is associated with a clusterhead (k < n). The solution tolerates up to f
faulty nodes, where f < min(k, n/2) (f < k because the solution requires
one correct clusterhead). If clusterheads change during the execution, then
agreeing on the clusterheads involves solving consensus which leads to cir-
cularity.

Not knowing n (called CUP, Consensus with Unknown Participants)
has been considered by Cavin et al. [CSS04]. The paper assumes that the
identity and the number of the nodes participating in the consensus are
unknown, but assumes reliable channels and nodes that never crash. The
notion of participant detectors is introduced, and the paper establishes a
necessary and sufficient condition on the participant detectors for solving
consensus. Later [CSS05] relaxes the requirement of non-faulty nodes, while
Greve et al. [GT07] have extended the participant detectors of [CSS04] to
include node crashes. Channels need to be reliable.

Chockler et al. [CDG+05] developed a grid-based consensus algorithm
with locally unknown participants in wireless ad hoc networks. The network
is divided into a series of non-overlapping grid squares, where each grid
square is assumed to be populated. Every node knows a priori its location
in the grid. Single-hop consensus is first run for each grid square and, then,
all nodes gossip the local decisions. Once a node has received a value from
every grid square, it can decide by applying a deterministic function to
the set of values received (which requires that every grid square provides a
value). Contrary to this solution, we do not require any clustering algorithm,
we do not require nodes to know their position, and we do not modify the
medium access control (MAC) layer implementation. Moreover the paper
makes strong synchrony assumptions (inter-node communication delay are
bounded by known constants), nodes are assumed not to crash in the middle
of executing a broadcast instruction, and the model does not assume node
recovery after a crash. In other words a rather complex system model is
considered, in contrast to our very simple model.

7.3 Consensus problem and algorithm

We consider the consensus problem for benign faults defined in Section 2.4.1.
For solving consensus, we use the HO model defined in Section 2.2.

7.3.1 The Paxos/LastVoting algorithm

The Paxos/LastVoting algorithm [CBS09] is the most appropriate algorithm
for ad hoc networks (LastVoting is basically Paxos [Lam98] expressed in the
HO model, and is also close to the Chandra-Toueg ♦S [CT96] consensus
algorithm): its message complexity is O(n), and it tolerates rounds r in
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Algorithm 7.1 Paxos/LastVoting algorithm (code of process p).
1: Initialization:
2: same as Algorithm 3.1, page 30

3: Round r = 4φ− 3 :
4: Srp :
5: if Coord(p, φ) 6= ⊥ then
6: send 〈xp, tsp〉 to Coord(p, φ)
7: T rp :
8: same as Algorithm 3.1, page 30

9: Round r = 4φ− 2 :
10: same as Algorithm 3.1, page 30

11: Round r = 4φ− 1 :
12: same as Algorithm 3.1, page 30

13: Round r = 4φ :
14: same as Algorithm 3.1, page 30

which HO(p, r) is empty for all p (i.e., it tolerates loss of all messages).
The code (Algorithm 7.1) is similar to Algorithm 3.1 given in Chapter 3 as
LastVoting in four rounds, page 30, with one exception in line 6 (process p
sends message to Coord(p, φ) only if the latter is non-⊥). The reason for this
modification is the following. Contrary to the predicate implementations
given in Section 3.5 and 3.6, the communication layer given in Section 7.4 can
provide no coordinator for some processes at the beginning of the algorithm
(see line 4 of Algorithm 7.2). For every process p, the communication layer
provides the coordinator of p in phase φ, denoted by Coord(p, φ), and the
messages received from the set HO(p, r). From here on we call the algorithm
simply LastVoting. The liveness predicate of the LastVoting algorithm is the
same as in Chapter 3 page 29, i.e., Plv4.

7.4 Communication layer for LastVoting

The communication layer’s role is to ensure the predicate Plv4, which in-
cludes the election of a coordinator.

7.4.1 System model

Wireless network: We consider an asynchronous multi-hop wireless net-
work consisting of set of n nodes.1 We use the terms node and process
interchangeably. Each node in the network has a single wireless transceiver
through which it can communicate with other nodes. The maximum dis-
tance at which a node’s transmission can be successfully received may be

1Actually n needs only to be an upper bound of the number of nodes.
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less than the upper bound on the communication range. Moreover, this dis-
tance may change from one transmission to the next. This is different from
the unit-disk graph model, and a more realistic representation of wireless
propagation characteristics.

Unreliable links and unpredictable delays: When employing MAC layer
broadcast, the transmitter does not necessarily know the identities of all
nodes within its communication range. Nor does the transmitter know the
subset of nodes that successfully received the message. Broadcast communi-
cation satisfies the basic integrity and no-duplication properties guarantee-
ing that every received message was previously broadcast, and each message
is received at most once. However, it is inherently unreliable: the receivers
do not send any acknowledgment, and the sender does not make any retry
attempts to increase the likelihood of message delivery to neighbors. Though
MAC layer unicast is described as being reliable (uses acknowledgments),
there is no guarantee that a data frame will be forwarded to the intended
neighbor. So, we assume that the wireless links are unreliable and the mes-
sage communication delay is unpredictable: our algorithm doesn’t require
any protocol like TCP, unlike [WCYR07].

Node crashes: In addition to link failures, nodes can crash. Faults can
be transient or permanent, but a majority of nodes must remain connected
despite permanent faults. Note that this does not prevent nodes from being
temporarily disconnected.

Good period: LastVoting is always safe. To ensure liveness, we must re-
strict the asynchrony of the system. We assume that, from time to time, un-
known to the processes, the system experiences good periods, during which
messages are reliably transmitted with the end-to-end (multi-hop) transmis-
sion delay bounded by a known constant δ.2 Note that this is not in con-
tradiction with our previous assumption about unreliable links and unpre-
dictable delays. This is required to overcome FLP impossibility result. The
notion of good period is a more realistic system assumption than partially
synchronous systems, inspired from [DLS88] and already used in [HS07].

7.4.2 Architecture

Figure 7.1 shows the overall view of our architecture. The uppermost layer
corresponds to LastVoting (Algorithm 7.1). LastVoting contains two func-
tions Srp and T rp that are called by the layer beneath, namely Algorithm 7.2:3

2It would be easy to adapt the algorithm to an unknown δ value [DLS88], e.g., using
adaptive timeout.

3Actually LastVoting does not send the messages in lines 6, 18, 26, 33; it simply defines
which messages should be sent to which destinations.
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Figure 7.1: Architecture of the Paxos/LastVoting protocol.

• The sending step Srp of Algorithm 7.1 is a function Srp(sp, coordp) that
takes as input the round number r, the state sp, the coordinator
coordp, and returns the set msg of message(s) to be sent, together
with their destination(s) dst (see Algorithm 7.2, line 15).

• The state transition step T rp of Algorithm 7.1 is a function T rp (msgs, sp, coordp)
that takes as input the round number r, the set of messages received
(msgs), the state sp, the coordinator coordp, and returns the new state
nsp (see Algorithm 7.2, line 32).

Algorithm 7.2 uses Algorithm 7.3 as a simple and best-effort broadcast
and convergecast algorithm on top of the MAC sub-layer, which typically
uses a CSMA/CA-based protocol like IEEE 802.11. For sending a message,
Algorithm 7.2 calls the send function of Algorithm 7.3. Upon reception of
a message by Algorithm 7.3, the deliver function of Algorithm 7.2 is called.
Both MAC layer broadcasts and unicasts are used by Algorithm 7.3: when
a message has to be locally broadcast, the MAC layer broadcast primitive
is used.

7.4.3 Algorithm 7.2: the upper communication layer

For every process p, Algorithm 7.2 has two main roles:

• Elect the coordinator (to be used as a parameter of the Srp function).

• For every round r, construct the set of messages received by p (to be
used as a parameter of the T rp function).
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Before discussing these two issues, some general explanations are needed.
First, note that Algorithm 7.2 handles the process state sp (line 3), the phase
number φp (line 8) and the round number rp (line 14). Second, Algorithm 7.2
relies on Algorithm 7.3 for sending (and receiving) messages (e.g., line 17):
the routing implemented by Algorithm 7.3 is optimized to drop unnecessary
messages. Third, Algorithm 7.2 is designed to ensure fast phase synchro-
nization once a good period has started. Phase synchronization is needed,
since when a good period starts, processes can be in different phases (and
different rounds). Fast phase synchronization means that processes quickly
join the same phase, in order to allow processes to decide. This is done as
follows: Each process attaches its current phase number φp and round num-
ber rp to the messages it sends (e.g., line 17). Whenever a process receives
a message from some phase φ > φp, it jumps to the first round of that phase
(line 31, 12).

Coordinator election: Each process has a priority (e.g., the process iden-
tity, line 5), and the process that believes to have the highest priority for
some phase φ becomes the coordinator for that phase. To be more efficient,
the coordinator is restricted to a predefined set Contender ⊂ Π.4 Initially,
every process p ∈ Contender considers itself as a coordinator (line 4).

At the beginning of each phase φ, every process p that considers itself
to be coordinator, sends its identity and priority to all (line 11). This is
the only message that Algorithm 7.2 sends in addition to the messages of
Algorithm 7.1. Each process p ∈ Π that receives a message from phase
φ ≥ φp from some process q with higher priority (line 23, 28), updates its
coordinator to q and its priority to q’s priority.

After the beginning of a good period, let τ be the time at which the first
process starts some new phase φ0 (other processes are in earlier phases: with
smaller phase numbers). Then at time τ + 2δ there is a unique coordinator
c for all phases ≥ φ0. However, a unique coordinator c at time τ + 2δ is not
enough to ensure termination in phase φ0: multiple coordinators between τ
and τ+2δ can prevent a decision in phase φ0. So phase φ0+1 is started after
2δ in case c is still in round 4φ0− 3 (line 37); c is the unique coordinator for
the remainder of the good period.

Message reception: For every round r, Algorithm 7.2 constructs the set
of messages received by process p (to be used as a parameter of the T rp func-
tion). This is done differently whether p ∈ Contender or p /∈ Contender. If
p /∈ Contender, then p does not use a timer; if p ∈ Contender then p uses
a timer.

4The Contender set must be large enough to ensure that all its members are not
crashed at the same time.
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Algorithm 7.2 Upper communication layer: Coordinator election and mes-
sage reception (code of process p)
1: Initialization:
2: msgsp ← ∅ /* set of messages received */
3: sp ← initp /* state of process p */
4: coordp ← p for p ∈ Contender; otherwise ⊥
5: priorityp ← p’s identity for p ∈ Contender; otherwise 0
6: startPhase (1)

7: function startPhase (φ)
8: φp ← φ /* phase number */
9: if p ∈ Contender then timerp ← 0

10: if p = coordp then
11: send (〈φp,−, p, priorityp,−〉,Π) /* calls function send of Algorithm 7.3;

message used to elect coordinator; Π is the destination set */
12: startRound (4φp − 3)

13: function startRound (r)
14: rp ← r /* round number */
15: 〈msg, dst〉 ← S

rp
p (sp, coordp) /* calls function S of Algorithm 7.1 */

16: if msg 6= null then
17: send (〈φp, rp, p, priorityp,msg〉, dst) /* calls function send of Algorithm 7.3 */

18: function deliver (〈φ, r, q, priorityq,m〉) /* called by Algorithm 7.3 */
19: if φ < φp or r < rp then
20: ignore message
21: else
22: msgsp ← msgsp ∪ {〈φ, r, q, priorityq,m〉}
23: if φ = φp and priorityq > priorityp then
24: coordp ← q; priorityp ← priorityq;
25: if φ > φp then
26: coordp ← p for p ∈ Contender; otherwise ⊥
27: priorityp ← p’s identity for p ∈ Contender; otherwise 0
28: if priorityq > priorityp then
29: coordp ← q; priorityp ← priorityq;

30: forall r′ ∈ [rp, r) do sp ← T r
′

p ({〈m, q〉|〈φp, r′, q,−,m〉 ∈ msgsp}, sp, coordp)
/* calls function T for intermediate rounds */

31: startPhase (φ)
32: nsp ← T rp ({〈m, q〉|〈φp, r, q,−,m〉 ∈ msgsp}, sp, coordp) /* calls function T of

Algorithm 7.1 */
33: if nsp 6= sp then /* new state of p is different from its current state */
34: sp ← nsp; startRound (r + 1);

35: upon timerp > 5δ do /* timeout for current phase expires */
36: coordp ← p; priorityp ← p’s identity; startPhase (φp + 1);

37: upon timerp > 2δ do /* start new phase if no progress as coordinator */
38: if p = coordp and rp < 4φp − 2 then startPhase (φp + 1)

39: upon decide for phase φp do
40: if p = coordp then startPhase (φp + 1)
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Case 1: p /∈ Contender. In this case p remains in the current round rp of
phase φp until (1) it receives a message from a larger phase (line 25) or (2)
p has received “enough” messages in round r (lines 32 to 34). Note that
Algorithm 7.2 does not know what “enough” means. “Enough” is defined
by Algorithm 7.1: in rounds 4φ− 3 and 4φ− 1 “enough” is more than n/2;
in rounds 4φ − 2 and 4φ “enough” is 1. The solution is for Algorithm 7.2
to call the T rp function whenever a new message is received (line 32): if not
enough messages have been received, the T rp function does not modify the
state (line 33) and p remains in the same round (in order to wait for more
messages).

Case 2: p ∈ Contender. In addition to behaving like an ordinary process
(Case 1), p uses a timer, which is reset at the beginning of each phase φp
(line 9). In a good period a round does not take more than δ. So, in addition
to the behavior explained under Case 1, p remains in phase φp until (1) 2δ
time units have elapsed (duration of coordinator election round and round
4φ − 3) and p is still in round 4φp − 3 (line 37), or (2) 5δ time units have
elapsed (duration of coordinator election round and rounds 4φ − 3 to 4φ)
and p is still in phase φp (line 35).

Optimizations: Algorithm 7.2 includes two optimizations. The first one is
useful when several instances of consensus are running one after the other
(e.g., atomic broadcast). When a decision occurs in phase φ, the coordinator
starts immediately phase φ + 1 (line 39) without waiting the timeout for
phase φ. The second optimization avoids unnecessary coordinator changes.
Once some process p is considered to be the coordinator by a majority, it
remains the coordinator as long as its messages reach a majority of processes:
process q ∈ Contender that considers p as its coordinator (priorityq <
priorityp) does not change its coordinator unless its timer expires (line 35).
Finally, another optimization – not shown in Algorithm 7.2 but considered
in our simulations – is the following: the coordinator, on starting a new
phase (lines 38 and 40), does not need to send an additional message to all
(line 11), because there is a unique coordinator. This additional message
has to be sent when there is no unique coordinator: either timer has expired
(line 36) or a message from higher phase is received (line 31).

7.4.4 Proofs

Theorem 7.1. Algorithm 7.2 implements the predicate Plv4 in a good period
of minimal length 13δ.5

Proof. The proof is based on the following Lemmas.

5δ is the end-to-end multi-hop transmission delay.
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Lemma 7.1. Let phase φ0 be the largest phase when a good period starts at
time τG. Then, there is some process that starts phase φ0 + 1 at latest by
time τG + 5δ.

Proof. According to the code of Algorithm 7.2, all contenders start a timer
per phase (line 9). According to the definition of contender set, there is at
least one process (that is up) in contender set. This process times out for
phase φ0 at latest by time τG+5δ (line 35), and starts phase φ0 +1 (line 36)
at latest by time τG + 5δ.

Lemma 7.2. Let p be the first (not necessarily unique) process that starts
phase φ0 at time τ > τG. Then, process p belongs to the Contender set.

Proof. From Lemma 7.1 process p exists. According to the Algorithm 7.2, a
process starts phase φ0 for following reasons, either: (i) it receives a message
from another process for phase φ0 (line 31), or (ii) it ends phase φ0 − 1 by
deciding (line 40), or (iii) its timer for phase φ0− 1 expires (line 36), or (iv)
after 2δ, the coordinator does not receive from a majority set (line 38). The
first case is not possible, since p is the first process that starts phase φ0.
In the second case, we have p = coordp which implies p ∈ Contender by
definition. For the two last cases, since p has a timer (line 9) it is already a
contender.

Lemma 7.3. Let p be the first (not necessarily unique) process that starts
phase φ0 at time τ > τG. Then, all processes start phase φ0 at latest by time
τ + δ.

Proof. From Lemma 7.2 we have p ∈ Contender. According to the Algo-
rithm 7.2, process p starts phase φ0 by sending a message to all (line 11).
Since we are in good period, this message will be received by all processes
at latest by τ + δ. All processes that receive this message start phase φ0. If
some process at phase φ0 − 1 times out, just before receiving this message,
it starts phase φ0 on its own before τ + δ. Thus, all processes start phase
φ0 at latest by time τ + δ.

Lemma 7.4. Let p be the first (not necessarily unique) process that starts
phase φ0 at time τ > τG. Then, all processes have the same coordinator by
time τ + 2δ.

Proof. According to the Lemma 7.3, all processes start phase φ0 at latest
by time τ + δ. Assume there is some other process q ∈ Contender such
that priorityq > priorityp. Process q starts phase φ0 at time t (line 31),
τ < t < τ + δ, considering itself as coordinator (line 26), and sends its first
message for phase φ0 to all (line 11). This message will also be received by
all processes at latest by time t + δ < τ + 2δ. All processes change their
coordinator to q (line 24) before τ + 2δ.
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Lemma 7.5. Let p be the unique coordinator with highest priority that starts
phase φ0 at time τ > τG. Then, Algorithm 7.2 ensures Plv4 by time τ + 5δ.

Proof. Process p starts phase φ0 by sending its message to all (line 11). All
processes receive this message by time τ + δ (Lemma 7.3) and start round
4φ0 − 3 (line 12). Since p is the unique coordinator of phase φ0, no other
process executes line 11. Since p is the process with highest priority, all
processes accept p as coordinator in phase φ0 (line 29). Since we are in
good period, a round does not take more than δ. Algorithm 7.1 requires
four rounds (4δ). In total at latest by time τ + 5δ the predicate Plv4(φ0) is
satisfied.

Lemma 7.6. Let p be the first (not necessarily unique) process that starts
phase φ0 at time τ > τG. Let c 6= p be the coordinator of phase φ0 with
highest priority that receives only from a minority of processes in round
4φ− 1. Then, process c starts phase φ0 + 1 at latest by time τ + 3δ.

Proof. From Lemma 7.3, process c starts phase φ0 at latest by time τ + δ.
From Lemma 7.4, process c becomes the unique coordinator of phase φ0

at latest by time τ + 2δ. From the code of Algorithm 7.2, process c, 2δ
after starting phase φ0, finds out that it has not received from a majority
of processes (line 37). So, it starts phase φ0 + 1 at latest by time τ + 3δ
(line 38).

Lemma 7.7. Let p be the first (not necessarily unique) process that starts
phase φ0 at time τ > τG. Then, the predicate Plv4(φ0) is satisfied by time
τ + 8δ.

Proof. Two cases are possible: either p is the process with highest priority
or not. In the first case, from Lemma 7.5, the predicate is satisfied by time
τ+5δ. In the second case, from Lemma 7.4, there is a unique coordinator, c,
by time τ+2δ. Process c starts phase φ0+1 at latest by time τ+3δ according
to Lemma 7.6. In phase φ0+1, process c is the unique coordinator and again
according to the Lemma 7.5 the predicate is satisfied by time τ + 8δ.

Analysis: From Lemma 7.1, we have seen that at most 5δ after τG a new
phase is started. From Lemma 7.7, we need 8δ to satisfy the predicate
Plv4. In total, we need a good period of minimal length 13δ to ensure the
predicate.

7.4.5 The lower communication layer: broadcast and con-
vergecast

Algorithm 7.2 invokes Algorithm 7.3 (lower communication layer) when it
sends a message in lines 11 and 17. Depending on dst, Algorithm 7.3 uses
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Algorithm 7.3 Lower communication layer: broadcast and convergecast
algorithm (code of process p)
1: Initialization:
2: parentp ∈ Π ∪ {NULL}, initially NULL
3: levelp ∈ N, initially 0
4: priorityp refers below to the variable priorityp of Algorithm 7.2

5: function send (m, dst) /* called by Algorithm 7.2 */
6: if dst = Π then
7: parentp := p; levelp := 1;
8: locally broadcast 〈MESSAGE, p, levelp,m〉
9: else

10: unicast 〈RESPONSE, q, levelp,m〉 to parentp

11: upon receive 〈MESSAGE, root, l,m〉 from node q with priorityq for the first time
do

12: deliver (m) /* calls Algorithm 7.2 */
13: if priorityq > priorityp then
14: parentp := q; levelp := l + 1;
15: if priorityq ≥ priorityp then
16: locally broadcast 〈MESSAGE, root, levelp,m〉

17: upon receive 〈RESPONSE, root, l,m〉 for the first time do
18: if p = root then deliver (m) /* calls Algorithm 7.2 */
19: else unicast 〈RESPONSE, root, levelp,m〉 to parentp

diffusion or convergecast in lines 8 and 10: diffusion is used for a message
sent by a coordinator (one-to-all), while convergecast is used for messages
sent to the coordinator (all-to-one). Diffusion messages are identified by the
tag MESSAGE (e.g., line 8), while convergecast messages are identified by
the tag RESPONSE (e.g., line 10). During diffusion, Algorithm 7.3 delivers
the message that is received for the first time (line 12) to Algorithm 7.2.
During convergecast, the message is delivered only if it reaches its desti-
nation (line 18). Algorithm 7.3 also contributes to an efficient election of
the coordinator by discarding messages from contenders that can no more
become coordinator.

Diffusion: As all participating nodes are not within communication range
of each other, it is not possible for a node to directly communicate with all
others. However, a network-wide message broadcast can be implemented
through diffusion. The message source (a coordinator) will broadcast the
message locally at the MAC layer (line 8). When node p receives a message
from some node q for the first time (line 11), and priorityq > priorityp (q
wins against p), then p becomes a child of q (line 14) and p broadcasts the
message at the MAC layer (line 16). When a node receives copies of the
same message later, it ignores them. As a result, an efficient tree rooted at
a coordinator is formed.
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p1 p3

p2 p4

p5 p6 p7

p2

Figure 7.2: Broadcast (red arrows) vs. convergecast (blue arrows).
p1, p2 ∈ Contender (p2 > p1). p2 becomes the coordinator.

Convergecast: The tree constructed during diffusion is used by converge-
cast, to transport responses to the coordinator, the root of the tree. As
a node does not know the identities of all its children, it is not possible
for the node to determine when it has received responses from all of them.
Therefore, each node sends its response to its parent as soon as the node
joins the tree. Subsequently, whenever the node receives a response from
any child it forwards the received response to its parent. Figure 7.2 shows
an example of broadcast and convergecast protocol in a multi-hop network.
During diffusion (tag MESSAGE), since p2’s priority is higher than p1’s, if
p5 receives the message form p2 before p1, it ignores p1’s message. Other-
wise, it diffuses both, but p4 becomes its parent and p2 its grand parent.
During convergecast (tag RESPONSE), only path from p7 to p2 is followed.

Gradient-based convergecast: If any node on the path from node p to the
root of the tree (i.e., to the coordinator) is down, or any link on this path is
lossy, p’s message may not reach the root. Gradient-based convergecast can
increase the probability of responses reaching the root. During diffusion, as
a node joins the tree, it sets its level to be one greater than its parent’s level
(line 14). The root is always at level one (line 7). During convergecast nodes
listen to transmissions in the promiscuous mode. If they receive a message
from a neighboring node at a higher level they retransmit the message (using
MAC layer broadcast). Thus, messages travel from higher level to lower
level, with no cyclic forwarding, ultimately reaching the root. Even if the
path from the root to a node breaks down after the node has joined the
tree, it may be possible for the node’s response to reach the root along other
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gradient-based paths, if such paths exist. This can be done as follows:

1. In line 10, instead of sending the RESPONSE to the parent, locally
broadcast the RESPONSE.

2. In line 19, first determine if l > levelp. If so, locally broadcast the
RESPONSE.

7.5 Simulation

We used the JiST/SWANS v1.0.6 [BHvR+04,Bar04] wireless network simu-
lator. We consider a m×m square grid with nodes placed at each intersec-
tion as illustrated in Figure 7.3. The grid-based placement is used instead
of the random uniform placement only for manageability reasons. For in-
stance, using this placement we can select exactly which nodes belong to
the Contender set. Communication between two nodes p1 and p2 occurs in
an ad hoc manner using unicast/broadcast as defined in the IEEE 802.11b
standard [Gro97]. The data rate of the wireless channel is 1 Mbps. All
nodes have the same transmission range (150 m). We modify the network
area to vary network density and network diameter. Nodes are stationary,
except for one case in which we measure the impact of mobility (see Sec-
tion 7.5.2.E). We measure the impact of location and number of contenders
in Section 7.5.2.C. Each contender starts the algorithm randomly between
0 and 10 milliseconds after simulation start time. The simulation lasts for
100 seconds. Every consensus packet is around 32 bytes.

Note that the IEEE 802.11b MAC layer specification uses CSMA/CA
and enforces RTS/CTS/ACK control frames for unicast communication
only. Collision control for broadcast is limited to basic collision avoidance
carrier sensing, and broadcast is therefore prone to packet collisions. A
straightforward approach to reduce collisions is to have nodes wait for a
small random amount of time (jitter) before rebroadcasting.

Given the consensus algorithm in Section 7.3.1 and based on broadcast
and convergecast protocol (Algorithm 7.3), we are interested in analyzing
whether the required liveness condition is provided by Algorithm 7.2 and 7.3
in wireless ad hoc networks. The network that we consider is quite dense to
avoid partitioning as much as possible, and quite noisy (due to frequent colli-
sions, node interference, and background traffic explained later) to simulate
bad periods.

7.5.1 Metrics

In order to evaluate the performance of the LastVoting consensus algorithm,
several instances of consensus are run one after the other. Each process
starts a new instance of consensus with a new proposition. A new consensus
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Figure 7.3: Square grid of size 5× 5 in network area 400× 400 m2.

instance is started as soon as the decision for current instance is reached or
a message from a later instance is received. In the latter case, the previous
decisions can be communicated through piggy-backing.

We have defined two (independent) metrics: consensus latency and con-
sensus throughput. Consensus latency is expressed in terms of average num-
ber of phases per consensus from initialization to first decision. Consen-
sus throughput represents the number instances run successfully during
the simulation time (100 seconds): the time for one consensus is simply
100/throughput.

7.5.2 Results

We evaluate the performance of our consensus algorithm in both single and
multi-hop networks. In these scenarios no process crashes and no packet
is explicitly dropped: the only source of failure is the collisions and node
interferences.6 However, to observe the performance of our algorithm in
realistic situations, we added a background traffic to the system: every
second, each node sends a packet (with the same size as a consensus packet)
to a random destination. We have noticed that increasing background traffic
only reduces the throughput of our algorithm slightly (additional graphs can
be found in the Appendix A). All results of simulations are averaged over 30
independent runs. The vertical bars in the graph represent 95% confidence
interval for the mean.

First, we ran a calibration test to examine the behavior of the simulator
and our routing algorithm to tune the amount of the jitter. Figure 7.4 (top)
shows once a single message has been broadcast, the duration for which the
wireless channel remains busy (henceforth, referred to as channel occupancy

6Considering only message loss does not make consensus easier to solve: consensus is
impossible to solve in a synchronous system with lossy links [SW89]. To solve consensus,
message loss must be restricted.
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Figure 7.4: Impact of network density and jitter.

duration). Note that the same message forwarding algorithm is employed
by each node: on receiving a message for the first time, a node rebroadcasts
the message after a random time between 0 and jitter. So, the wireless
channel becomes idle either when the message is received by everyone or
when the message is completely lost. For instance, for 100 nodes within
range of each other, with jitter = 10 ms, channel occupancy is 40 ms. This
gives us 80 ms for round-trip time, or 200 ms for one phase of our consensus
implementation (5×40 ms). Figure 7.4 (bottom) shows the percentage of
nodes that receive the broadcast message. It seems that the value of the
jitter is optimal around 10 ms. With 10 ms, at least a majority of processes
have received the message (LastVoting requires a majority) and there is
almost the same channel occupancy as 5 ms. For the rest of simulations we
fix jitter to 10 ms.

7.5.2.A Single-hop scenarios

First, we consider a single-hop network in which all nodes are in communi-
cation range of each other. The network area is 100×100 m2. We gradually
increased the network density. Only a single node, for example p1, belongs
to the Contender set. We measured the average number of phases per con-
sensus in networks with different node densities (from 4 nodes to 100 nodes)
while varying the timeout. The value of timeout refers to 5δ used in Algo-
rithm 7.2. The ideal value in our scenario is 1 phase per consensus. However,
this value can increase in the presence of packet loss.

Figure 7.5 (top) shows how the number of phases varies with timeout.
Logarithmic scales are used in x-axis to better visualize a large range of
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Figure 7.5: Impact of timeout in single-hop networks.
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Figure 7.6: Impact of density in single-hop networks.

timeout and emphasize the small timeouts. Beyond a certain value of time-
out, the number of phases to terminate consensus remains almost constant
(1 phase) as density of the deployment increases. Figure 7.5 (bottom) shows
how consensus throughput varies with timeout for several network densities.
Note that the results we have obtained in this simulation based on the time-
outs confirm our previous results on channel occupancy (e.g., for n = 64 the
best throughput is for timeout ≈ 200 (ms), which is greater than 5×30 (ms)
taken from Figure 7.4 (top)).
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Figure 7.7: Impact of network diameter in multi-hop networks.

Figure 7.6 (top) is just another representation of Figure 7.5 (bottom)
to better visualize the impact of network density. In general, by increasing
density (number of nodes), the throughput of our algorithm decreases, in-
dependent of the phase timeout value. This is because of message losses due
to increased collisions. The graph shows that there is an optimal value for
density. After around 25 nodes, the throughput always goes down. So the
algorithm performs less efficiently in the presence of more than 25 nodes per
10000 m2 (single-hop). Although with small number of nodes the through-
put is high, the number of timeouts that occur is also high (see Figure 7.6
(bottom)). For instance, for n = 4 the algorithm allows only one message
loss while for n = 100, 49 losses are allowed in a round (majority set). This
explains why for small number of nodes, increasing the timeout reduces the
performance, see Figure 7.6 (top).

7.5.2.B Multi-hop scenarios

We consider 100 nodes distributed in a 10×10 square grid. The transmission
range for each node is fixed to 150 m. To obtain multi-hop scenarios, we
varied the network area from 100 × 100 m2 (single-hop) to 900 × 900 m2

(9-hops), and we chose p1 as the coordinator (p1 is located at the lower left
corner of the grid).

Figure 7.7 (top) shows the scalability of our algorithm in multi-hop net-
works. By increasing the network area for 100 nodes, on one hand we in-
crease the number of hops and on the other hand we decrease the density
and, therefore, the probability of message collisions. Figure 7.7 (bottom)
shows the trade-off between number of hops and network density. From
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Figure 7.8: Impact of contenders.

one-hop to four-hops, we decrease the density, so the performance is im-
proved. From six-hops on, since the message must traverse more hops the
performance is slightly decreased. So, 100 nodes perform better in five-
hops. This gives approximately 20 nodes per hop. This is almost the same
conclusion that we had from single-hop scenarios.

7.5.2.C Impact of location and number of contenders

We varied the position of the contender (coordinator) from bottom-left cor-
ner to the center.7 We run a Kruskal-Wallis non-paired data test [Bou06]
(generalized Wilcoxon Rank Sum test) to determine if the position of the
contender influences consensus throughput (null hypothesis: position of the
contender does not influence consensus throughput). The test accepts the
null hypothesis with p-value 0.9699. The conclusion is that the throughput
of our consensus algorithm is independent of the contender’s position. This
seems reasonable in single-hop networks. In multi-hop networks, when the
contender moves from bottom-left corner to the center of square grid, the

7 This is enough to explore other possibilities because of the symmetry of the square
grid.

140



7.5. Simulation

 0

 200

 400

 600

 800

 1000

 1200

 0  0.1  0.2  0.3  0.4  0.5  0.6

co
n

se
n

su
s 

th
ro

u
g

h
p

u
t

probability of loss (p)

n = 25, transmission range = 150 (m), timeout = 100 (ms)

1-hop
2-hops
3-hops
4-hops

Figure 7.9: Impact of message loss.

number of hops from the contender to the farthest node is reduced while
the number of collision is augmented (in center there is 4 times more colli-
sion than in corner). So in multi-hop networks, reduced number of hops is
compensated by increased number of collisions.

In Figure 7.8, we increased the number of contenders in a network of 25
nodes from 1% to 50%. The figure confirms that for large enough timeouts,
the number of contenders does not have an important impact on the con-
sensus throughput. In fact, once the process with highest priority is elected
as the coordinator, it remains the same as long as a majority of its messages
are not lost.

To better understand how the crash of the coordinator influences our al-
gorithm, we ran a simulation in which the contender with the highest priority
crashes and recovers with frequency 1/t. We noticed that for t � timeout
(which is reasonable assumption) the consensus throughput is almost the
same as the case in which the contender never crashes (the corresponding
graphs are in the Appendix A).

7.5.2.D Impact of message loss

We now consider scenarios in which a node on receiving a message discards
it with probability p (uniform distribution). This simulates the loss of the
message during its passage through the network. There is one coordinator
located at the lower left corner of the grid. Figure 7.9 shows the sensitivity
of our algorithm to p and confirms the ability of our algorithm to tolerate
almost 50% message loss. Until 30% message loss the performance is almost
the same.
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Figure 7.10: Impact of mobility.

7.5.2.E Impact of mobility

Finally, we measured the impact of mobility on consensus throughput. We
used the random waypoint model with a fixed speed and zero pause time.
In this model, nodes select an arbitrary destination in the field and move
directly towards it at constant speed. When they reach the destination,
they pick a new destination and so on. Figure 7.10 shows the behavior of
our algorithm with node speed. The coordinator is located at the lower left
corner of the grid at the beginning of the simulation, and then moves. Note
that when the network diameter is 2 (network area is 200×200), a majority
of nodes (13 nodes) are in communication range with the coordinator, which
explains why there is no difference between 1-hop and 2-hop scenarios.

7.6 Conclusion

The Paxos/LastVoting algorithm extended with an adequate communica-
tion layer can potentially solve the consensus problem in wireless mobile
networks. Paxos/LastVoting is safe by design, but a communication predi-
cate is required to ensure the termination of consensus. We have proposed
an appropriate implementation that satisfies the required communication
predicate in good periods. We have validated our implementation by run-
ning simulations in multi-hop wireless networks. The results of simulations
validate the existence of the good periods and confirm that our approach is
applicable for realistic networks.

We could not compare our results with Chockler’s paper [CDG+05] since
they do not provide the time unit in their figures. The results in Vollset’s
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paper [VE05] are far from being efficient (they require around 100 seconds in
average for one instance of consensus). Finally, the performance evaluation
in Wu’s paper [WCYR07] is of limited utility since they do not use a realistic
MAC layer in their simulations. Although the results of this chapter are
limited to the simulations, we believe that this approach is applicable in
real systems.
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Chapter 8

Conclusion

This chapter assesses the research performed in the context of the thesis and
presents directions for future research.

8.1 Thesis Assessment

The thesis has investigated the round model abstraction, to represent con-
sensus algorithms for benign and Byzantine faults in a concise and modular
way. The round model allowed us to separate the consensus algorithms from
the round implementations, propose different round implementations for a
single consensus algorithm, improve existing round implementations, extend
round implementation for wireless ad hoc networks and provide quantitative
analysis of different algorithms. In the context of Byzantine faults, the round
model allowed us to better understand existing protocols, express them in
a simple and modular way, obtain simplified proofs, discover new protocols,
and finally perform precise timing analysis to compare different algorithms.
In the following, we highlight the main contribution of the thesis in more
details.

Quantitative analysis of consensus algorithms In the context of the HO
model and benign faults, we have shown different implementations for the
HO predicates required by the consensus algorithms. We have also derived
the time complexity (and message complexity) for implementations in a sys-
tem that alternates between good and bad periods. The time complexity is
the duration of the good period for one instance of consensus. For each algo-
rithm two expressions are computed: one for the case of a short good period
(that includes an initialization period plus the duration for a regular phase),
and another for long good period (for which the initialization period can be
ignored). Our results show that the OTR consensus algorithm has always
the best time complexity, but requires a two-thirds majority of processes to
be up in a good period. Among the algorithms that require only a simple
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majority of up processes, their time complexity is very close in the case of a
short good period. In the case of a long good period, the difference becomes
relevant. For example in the case Φ � ∆, which is typically the case in a
WAN, LV-4 with synchronization by a coordinator has a time complexity
50% higher than LV-3 with piggybacking. However, the message complexity
of the latter is higher (n2 + 2n vs. 4n).

Swift algorithms for repeated consensus We have analyzed efficiency of
algorithms in two models for solving consensus: the round-based model
(which can be implemented on top of a partially synchronous system), and
the asynchronous system augmented with failure detectors. Efficiency refers
here to swiftness, a new notion that captures the fact that an algorithm, once
the system is stabilized, progresses at the speed of the messages. Our new
round-based implementation combines the advantages of failure detector so-
lutions (swiftness) and round-based model (lossy links). This weak link as-
sumption makes round-based algorithm easy to adapt to the crash-recovery
model with stable storage [HS07]. We have illustrated the new round-based
implementation on a specific consensus algorithm (OTR). This does not
mean that the new solution is limited to OTR. It applies to any consen-
sus algorithm expressed in the round model, in particular to the LastVoting
algorithm [CBS09], a round-based variant of Paxos [Lam98]. Furthermore,
we show another swift round implementation for benign faults that can be
extended for Byzantine faults.

Decentralized Byzantine consensus algorithms All previously known de-
terministic consensus algorithms for partially synchronous systems with
Byzantine faults are leader-based. However, leader-based algorithms are
vulnerable to performance degradation, which occurs when the Byzantine
leader sends messages slowly, but without triggering timeouts. Our results
confirm the existence of a deterministic decentralized Byzantine consensus
algorithm in a partially synchronous system that is resilient-optimal and
signature-free. We started from the observation that decentralized consen-
sus algorithms exist for the synchronous system, both for benign faults (e.g.,
the FloodSet algorithm [Lyn96]) and for Byzantine faults (e.g., the algorithm
based on interactive consistency [PSL80]). However, these algorithms vio-
late agreement if executed during the asynchronous period of a partially
synchronous system. Therefore we combined one of these algorithms with a
second algorithm that ensures agreement in an asynchronous system. One of
our decentralized Byzantine consensus algorithms requires 5t+ 1 processes,
and t+ 2 rounds per consensus instance; the other one requires 3t+ 1 pro-
cesses, and t+ 3 rounds per consensus instance during periods of synchrony.
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Timing analysis of leader-based and decentralized Byzantine consensus
algorithms We compared the leader-based and the decentralized variant
of two typical round-based consensus algorithms for Byzantine faults in an
analytical way. The results show a surprisingly clear preference for the
decentralized version in the worst case. Moreover, the decentralized variant
of the algorithm is at least as good as the leader-based algorithms in both
fault-free and best case scenarios for the practically relevant cases t ≤ 2. We
also showed a hybrid algorithm that is as good as the leader-based algorithm
in the fault-free case, and has a better performance than the leader-based
algorithm (comparable to the decentralized algorithm) in the worst case.

Extending Paxos/LastVoting for wireless ad hoc networks We have shown
how to extend the Paxos/LastVoting algorithm with an adequate commu-
nication layer to solve the consensus problem in wireless mobile ad hoc net-
works. Paxos/LastVoting is safe by design, but a communication predicate
is required to ensure the termination of consensus. We have proposed an ap-
propriate implementation that employs a best-effort broadcast/convergecast
protocol to satisfy the required communication predicate in good periods.
We have validated our implementation by running simulations in single hop
and multi-hop wireless networks. The results of simulations validate the
existence of the good periods and confirm that our approach is applicable
for realistic networks. Although the results are limited to the simulations,
we believe that this approach is applicable in real systems.

8.2 Future Research Directions

The thesis can be extended in the following directions:

Swift algorithms for Byzantine faults In the thesis we have shown two
different approaches to construct swift algorithms to tolerate benign faults
(see Chapter 4): one is using the Alive set and terminating rounds earlier,
the other is using an adaptive timeout mechanism. The first approach seems
not to be applicable for Byzantine faults, while the second approach is used
in Chapter 6. One possible direction for future research is to investigate
other possibilities to render a round based algorithm swift with benign and
Byzantine faults. One important advantage of the round-based approach
comparing to other ad hoc approaches is that the core of the consensus
algorithm remains the same for both non-swift and swift algorithms, and the
same round implementation can be used by different consensus algorithms.

General transformations for consensus algorithms In Chapter 5 we have
shown the main idea of our algorithm to derive a decentralized algorithm.
The idea is not limited to decentralized algorithms nor to Byzantine faults.

147



Chapter 8. Conclusion

We believe that our methodology is quite extensible. In fact, any algorithm
that satisfies predicate PInt in all the rounds (including synchrony and asyn-
chrony periods), and satisfies predicate PCons in synchrony periods, can be
extended to solve consensus problem in a partially synchronous system. A
future work is to investigate other synchronous Byzantine consensus algo-
rithms, e.g., phase queen and phase king algorithms [BG89,BGP89], to see
whether they satisfy the above mentioned properties and are extensible or
not. Furthermore, the same methodology used to construct a decentralized
Byzantine consensus algorithm can be used to construct a new consensus
algorithm for benign or timing faults. For instance, one can replace EIGByz
algorithm by FloodSet algorithm and extend the FloodSet algorithm using
OneThirdRule algorithm.

Compare decentralized and leader-based consensus algorithms experi-
mentally We have compared two decentralized and leader-based Byzan-
tine consensus algorithms in an analytical way in Chapter 6. It may be
interesting to compare the algorithms experimentally to better understand
the trade-off between the execution time and the message complexity. The
message complexity of our decentralized algorithm is quadratic in number of
processes and its message size is exponential in number of faults, while the
leader-based algorithm requires one round with linear message complexity
the others being quadratic.

Extending decentralized Byzantine consensus algorithm for state machine
replication The Byzantine consensus algorithms presented in Chapter 5
ensure the strong validity property of consensus. Existing protocols for
state machine replication, e.g., PBFT, satisfy only weak validity property.
An interesting future work would be to extend our Byzantine consensus
algorithms to atomic broadcast. Having this, a fair comparison between
PBFT and decentralized PBFT would be possible. In fact the work can be
extended to implement generic broadcast [PS02] protocols.

Extend and simulate a Byzantine consensus algorithm for MANETs Mes-
sage complexity is an important factor for wireless ad hoc networks. How-
ever, it seems that any Byzantine consensus algorithm that satisfies strong
validity property requires a quadratic number of messages even in the fault-
free case, unless using digital signatures. If the claim is true, it would be
interesting to compare the trade-off between quadratic message complexity
and digital signatures for the wireless ad hoc networks.

Experiment the proposed consensus algorithms for MANETs using a real
testbed Conducting a real experiment for wireless ad hoc networks is a
complex and time-consuming task. FRANC [CSS03] is a lightweight Java
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framework to implement and deploy real ad hoc network applications. Fu-
ture work could explore the performance of the proposed consensus algo-
rithms using FRANC in multi-hop and mobile wireless ad hoc networks.
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[DSU04] X. Défago, A. Schiper, and P. Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Comput. Surv., 36(4):372–421, 2004.

[Fis83] M. J. Fischer. The consensus problem in unreliable dis-
tributed systems (a brief survey). In Fundamentals of Com-
putation Theory, pages 127–140, 1983.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, April 1985.

[Gaf98] E. Gafni. Round-by-round fault detectors (extended ab-
stract): unifying synchrony and asynchrony. In Proceedings
of the 17th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC’98), pages 143–152, Puerto Val-
larta, Mexico, 1998. ACM Press.

[GKQV10] R. Guerraoui, N. Knezevic, V. Quéma, and M. Vukolic. The
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Appendix A

A.1 Impact of background traffic
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Figure A.1: Impact of background traffic on consensus throughput.
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Appendix A.

A.2 Impact of coordinator crash
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(a) Single-hop network
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Figure A.2: Impact of coordinator crash on consensus throughput.
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