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Abstract
In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we
produce two new randomized algorithms that solve this problem in the abstract MAC layer model,
which captures the basic interface and communication guarantees provided by most wireless MAC
layers. Our algorithms work for any number of failures, require no advance knowledge of the
network participants or network size, and guarantee termination with high probability after a
number of broadcasts that are polynomial in the network size. Our first algorithm satisfies the
standard agreement property, while our second trades a faster termination guarantee in exchange
for a looser agreement property in which most nodes agree on the same value. These are the first
known fault-tolerant consensus algorithms for this model. In addition to our main upper bound
results, we explore the gap between the abstract MAC layer and the standard asynchronous
message passing model by proving fault-tolerant consensus is impossible in the latter in the
absence of information regarding the network participants, even if we assume no faults, allow
randomized solutions, and provide the algorithm a constant-factor approximation of the network
size.
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1 Introduction

Consensus provides a fundamental building block for developing reliable distributed sys-
tems [23–25]. Accordingly, it is well studied in many different system models [36]. Until
recently, however, little was known about solving this problem in distributed systems made
up of devices communicating using commodity wireless cards. Motivated by this knowledge
gap, this paper studies consensus in the abstract MAC layer model, which abstracts the
basic behavior and guarantees of standard wireless MAC layers. In recent work [41], we
proved deterministic fault-tolerant consensus is impossible in this setting. In this paper, we
describe and analyze the first known randomized fault-tolerant consensus algorithms for this
well-motivated model.
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38:2 Fault-Tolerant Consensus with an Abstract MAC Layer

The Abstract MAC Layer. Most existing work on distributed algorithms for wireless
networks assumes low-level synchronous models that force algorithms to directly grapple with
issues caused by contention and signal fading. Some of these models describe the network
topology with a graph (c.f., [8,16,20,28,32,38]), while others use signal strength calculations
to determine message behavior (c.f., [17, 21,26,27,37,39]).

As also emphasized in [41], these models are useful for asking foundational questions
about distributed computation on shared channels, but are not so useful for developing
algorithmic strategies suitable for deployment. In real systems, algorithms typically do not
operate in synchronous rounds and they are not provided unmediated access to the radio.
They must instead operate on top of a general-purpose MAC layer which is responsible for
many network functions, including contention management, rate control, and co-existence
with other network traffic.

Motivated by this reality, in this paper we adopt the abstract MAC layer model [34],
an asynchronous broadcast-based communication model that captures the basic interfaces
and guarantees provided by common existing wireless MAC layers. In more detail, if you
provide the abstract MAC layer a message to broadcast, it will eventually be delivered to
nearby nodes in the network. The specific means by which contention is managed – e.g.,
CSMA, TDMA, uniform probabilistic routines such as DECAY [8] – is abstracted away by
the model. At some point after the contention management completes, the abstract MAC
layer passes back an acknowledgment indicating that it is ready for the next message. This
acknowledgment contains no information about the number or identities of the message
recipient.

(In the case of the MAC layer using CSMA, for example, the acknowledgment would
be generated after the MAC layer detects a clear channel. In the case of TDMA, the
acknowledgment would be generated after the device’s turn in the TDMA schedule. In the
case of a probabilistic routine such as DECAY, the acknowledgment would be generated
after a sufficient number of attempts to guarantee successful delivery to all receivers with
high probability.)

The abstract MAC abstraction, of course, does not attempt to provide a detailed rep-
resentation of any specific existing MAC layer. Real MAC layers offer many more modes
and features then is captured by this model. In addition, the variation studied in this paper
assumes messages are always delivered, whereas more realistic variations would allow for
occasional losses.

This abstraction, however, still serves to capture the fundamental dynamics of real
wireless application design in which the lower layers dealing directly with the radio channel
are separated from the higher layers executing the application in question. An important
goal in studying this abstract MAC layer, therefore, is attempting to uncover principles and
strategies that can close the gap between theory and practice in the design of distributed
systems deployed on standard layered wireless architectures.

Our Results. In this paper, we studied randomized fault-tolerant consensus algorithms in
the abstract MAC layer model. In more detail, we study binary consensus and assume a
single-hop network topology. Notice, our use of randomization is necessary, as deterministic
consensus is impossible in the abstract MAC layer model in the presence of even a single
fault (see our generalization of FLP from [41]).

To contextualize our results, we note that the abstract MAC layer model differs from
standard asynchronous message passing models in two main ways: (1) the abstract MAC layer
model provides the algorithm no advance information about the network size or membership,
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requiring nodes to communicate with a blind broadcast primitive instead of using point-
to-point channels, (2) the abstract MAC layer model provides an acknowledgment to the
broadcaster at some point after its message has been delivered to all of its neighbors. This
acknowledgment, however, contains no information about the number or identity of these
neighbors (see above for more discussion of this fundamental feature of standard wireless
MAC layers).

Most randomized fault-tolerant consensus algorithms in the asynchronous message passing
model strongly leverage knowledge of the network. A strategy common to many of these
algorithms, for example, is to repeatedly collect messages from at least n − f nodes in a
network of size n with at most f crash failures (e.g., [9]). This strategy does not work in the
abstract MAC layer model as nodes do not know n.

To overcome this issue, we adapt an idea introduced in early work on fault-tolerant
consensus in the asynchronous shared memory model: counter racing (e.g., [5, 12]). At a
high-level, this strategy has nodes with initial value 0 advance a shared memory counter
associated with 0, while nodes with initial value 1 advance a counter associated with 1. If a
node sees one counter get ahead of the other, they adopt the initial value associated with
the larger counter, and if a counter gets sufficiently far ahead, then nodes can decide.

Our first algorithm (presented in Section 3) implements a counter race of sorts using the
acknowledged blind broadcast primitive provided by the model. Roughly speaking, nodes
continually broadcast their current proposal and counter, and update both based on the
pairs received from other nodes. Proving safety for this type of strategy in shared memory
models is simplified by the atomic nature of register accesses. In the abstract MAC layer
model, by contrast, a broadcast message is delivered non-atomically to its recipients, and in
the case of a crash, may not arrive at some recipients at all.3 Our safety analysis, therefore,
requires novel analytical tools that tame a more diverse set of possible system configurations.

To achieve liveness, we use a technique loosely inspired by the randomized delay strategy
introduced by Chandra in the shared memory model [12] . In more detail, nodes probabilisti-
cally decide to replace certain sequences of their counter updates with nop placeholders. We
show that if these probabilities are adapted appropriately, the system eventually arrives at a
state where it becomes likely for only a single node to be broadcasting updates, allowing
progress toward termination.

Formally, we prove that with high probability in the network size n, the algorithm
terminates after O(n3 logn) broadcasts are scheduled. This holds regardless of which
broadcasts are scheduled (i.e., we do not impose a fairness condition), and regardless of the
number of faults. The algorithm, as described, assumes nodes are provided unique IDs that
we treat as comparable black boxes (to prevent them from leaking network size information).
We subsequently show how to remove that assumption by describing an algorithm that
generates unique IDs in this setting with high probability.

Our second algorithm (presented in Section 4) trades a looser agreement guarantee for
more efficiency. In more detail, we describe and analyze a solution to almost-everywhere
agreement [18], that guarantees most nodes agree on the same value. This algorithm
terminates after O(n2 log4 n log logn) broadcasts, which is a linear factor faster than our first
algorithm (ignoring log factors). The almost-everywhere consensus algorithm consists of two
phases. The first phase is used to ensure that almost all nodes obtain a good approximation

3 We note that register simulations are also not an option in our model for two reasons: standard
simulation algorithms require knowledge of n and a majority correct nodes, whereas we assume no
knowledge of n and wait-freedom.
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of the network size. In the second phase, nodes use this estimate to perform a sequence of
broadcasts meant to help spread their proposal to the network. Nodes that did not obtain
a good estimate in Phase 1 will leave Phase 2 early. The remaining nodes, however, can
leverage their accurate network size estimates to probabilistically sample a subset to actively
participate in each round of broadcasts. To break ties between simultaneously active nodes,
each chooses a random rank using the estimate obtained in Phase 1. We show that with
high probability, after not too long, there exists a round of broadcasts in which the first node
receiving its acknowledgment is both active and has the minimum rank among other active
nodes – allowing its proposal to spread to all remaining nodes.

Finally, we explore the gap between the abstract MAC layer model and the related
asynchronous message passage passing model. We prove (in Section 5) that fault-tolerant
consensus is impossible in the asynchronous message passing model in the absence of
knowledge of network participants, even if we assume no faults, allow randomized algorithms,
and provide a constant-factor approximation of n. This differs from the abstract MAC
layer model where we solve this problem without network participant or network size
information, and assuming crash failures. This result implies that the fact that broadcasts
are acknowledged in the abstract MAC layer model is crucial to overcoming the difficulties
induced by limited network information.

Related Work. Consensus provides a fundamental building block for reliable distributed
computing [23–25]. It is particularly well-studied in asynchronous models [2, 35,40,44].

The abstract MAC layer approach4 to modeling wireless networks was introduced in [33]
(later expanded to a journal version [34]), and has been subsequently used to study several
different problems [14,15,29,30,41]. The most relevant of this related work is [41], which was
the first paper to study consensus in the abstract MAC layer model. This previous paper
generalized the seminal FLP [19] result to prove deterministic consensus is impossible in
this model even in the presence of a single failure. It then goes on to study deterministic
consensus in the absence of failures, identifying the pursuit of fault-tolerant randomized
solutions as important future work – the challenge taken up here.

We note that other researchers have also studied consensus using high-level wireless
network abstractions. Vollset and Ezhilchelvan [45], and Alekeish and Ezhilchelvan [4],
study consensus in a variant of the asynchronous message passing model where pairwise
channels come and go dynamically – capturing some behavior of mobile wireless networks.
Their correctness results depend on detailed liveness guarantees that bound the allowable
channel changes. Wu et al. [46] use the standard asynchronous message passing model (with
unreliable failure detectors [13]) as a stand-in for a wireless network, focusing on how to
reduce message complexity (an important metric in a resource-bounded wireless setting) in
solving consensus.

A key difficulty for solving consensus in the abstract MAC layer model is the absence of
advance information about network participants or size. These constraints have also been
studied in other models. Ruppert [43], and Bonnet and Raynal [10], for example, study the
amount of extra power needed (in terms of shared objects and failure detection, respectively)
to solve wait-free consensus in anonymous versions of the standard models. Attiya et al. [6]
describe consensus solutions for shared memory systems without failures or unique ids. A

4 There is no one abstract MAC layer model. Different studies use different variations. They all share,
however, the same general commitment to capturing the types of interfaces and communication/timing
guarantees that are provided by standard wireless MAC layers
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series of papers [3, 11, 22], starting with the work of Cavin et al. [11], study the related
problem of consensus with unknown participants (CUPs), where nodes are only allowed to
communicate with other nodes whose identities have been provided by a participant detector
formalism.

Closer to our own model is the work of Abboud et al. [1], which also studies a single
hop network where nodes broadcast messages to an unknown group of network participants.
They prove deterministic consensus is impossible in these networks under these assumptions
without knowledge of network size. In this paper, we extend these existing results by proving
this impossibility still holds even if we assume randomized algorithms and provided the
algorithm a constant-factor approximation of the network size. This bound opens a sizable
gap with our abstract MAC layer model in which consensus is solvable without this network
information.

We also consider almost-everywhere (a.e.) agreement [18], a weaker variant of consensus,
where a small number of nodes are allowed to decide on conflicting values, as long as a
sufficiently large majority agrees. Recently, a.e. agreement has been studied in the context of
peer-to-peer networks (c.f. [7,31]), where the adversary can isolate small parts of the network
thus rendering (everywhere) consensus impossible. We are not aware of any prior work on
a.e. agreement in the wireless settings.

2 Model and Problem

In this paper, we study a variation of the abstract MAC layer model, which describes
system consisting of a single hop network of n ≥ 1 computational devices (called nodes in
the following) that communicate wirelessly using communication interfaces and guarantees
inspired by commodity wireless MAC layers.

In this model, nodes communicate with a bcast primitive that guarantees to eventually
deliver the broadcast message to all the other nodes (i.e., the network is single hop). At
some point after a given bcast has succeeded in delivering a message to all other nodes,
the broadcaster receives an ack informing it that the broadcast is complete (as detailed
in the introduction, this captures the reality that most wireless contention management
schemes have a definitive point at which they know a message broadcast is complete). This
acknowledgment contains no information about the number or identity of the receivers.

We assume a node can only broadcast one message at a time. That is, once it invokes
bcast, it cannot broadcast another message until receiving the corresponding ack (formally,
overlapping messages are discarded by the MAC layer). We also assume any number of nodes
can permanently stop executing due to crash failures. As in the classical message passing
models, a crash can occur during a broadcast, meaning that some nodes might receive the
message while others do not.

This model is event-driven with the relevant events scheduled asynchronously by an
arbitrary scheduler. In more detail, for each node u, there are four event types relevant to u
that can be scheduled: initu (which occurs at the beginning of an execution and allows u to
initialize), recv(m)u (which indicates that u has received message m broadcast from another
node), ack(m)u (which indicates that the message m broadcast by u has been successfully
delivered), and crashu (which indicates that u is crashed for the remainder of the execution).

A distributed algorithm specifies for each node u a finite collection of steps to execute for
each of the non-crash event types. When one of these events is scheduled by the scheduler,
we assume the corresponding steps are executed atomically at the point that the event is
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38:6 Fault-Tolerant Consensus with an Abstract MAC Layer

scheduled. Notice that one of the steps that a node u can take in response to these events
is to invoke a bcast(m)u primitive for some message m. When an event includes a bcast
primitive we say it is combined with a broadcast.5

We place the following constraints on the scheduler. It must start each execution by
scheduling an init event for each node; i.e., we study the setting where all participating
nodes are activated at the beginning of the execution. If a node u invokes a valid bcast(m)u

primitive, then for each v 6= u that is not crashed when the broadcast primitive is invoked,
the scheduler must subsequently either schedule a single recv(m)v or crashv event at v. At
some point after these events are scheduled, it must then eventually schedule an ack(m)u

event at u. These are the only recv and ack events it schedules (i.e., it cannot create new
messages from scratch or cause messages to be received/acknowledged multiple times). If the
scheduler schedules a crashv event, it cannot subsequently schedule any future events for u.

We assume that in making each event scheduling decision, the scheduler can use the
schedule history as well as the algorithm definition, but it does not know the nodes’ private
states (which includes the nodes’ random bits). When the scheduler schedules an event that
triggers a broadcast (making it a combined event), it is provided this information so that it
knows it must now schedule receive events for the message. We assume, however, that the
scheduler does not learn the contents of the broadcast message.6

Given an execution α, we say the message schedule for α, also indicated msg[α], is the
sequence of message events (i.e., recv, ack, and crash) scheduled in the execution. We
assume that a message schedule includes indications of which events are combined with
broadcasts.

The Consensus Problem. In this paper, we study binary consensus with probabilistic
termination. In more detail, at the beginning of an execution each node is provided an initial
value from {0, 1} as input. Each node has the ability to perform a single irrevocable decide
action for either value 0 or 1. To solve consensus, an algorithm must guarantee the following
three properties: (1) agreement: no two nodes decide different values; (2) validity: if a node
decides value b, then at least one node started with initial value b; and (3) termination
(probabilistic): every non-crashed node decides with probability 1 in the limit.

Studying finite termination bounds is complicated in asynchronous models because the
scheduler can delay specific nodes taking steps for arbitrarily long times. In this paper, we
circumvent this issue by proving bounds on the number of scheduled events before the system
reaches a termination state in which every non-crashed node has: (a) decided; or (b) will
decide whenever the scheduler gets around to scheduling its next ack event.

Finally, in addition to studying consensus with standard agreement, we also study almost-
everywhere agreement, in which only a specified majority fraction (typically a 1−o(n) fraction
of the n total nodes) must agree.

5 Notice, we can assume without loss of generality, that the steps executed in response to an event never
invoke more than a single bcast primitive, as any additional broadcasts invoked at the same time would
lead to the messages being discarded due to the model constraint that a node must receive an ack for
the current message before broadcasting a new message.

6 This adversary model is sometimes called message oblivious and it is commonly considered a good fit
for schedulers that control network behavior. This follows because it allows the scheduler to adapt the
schedule based on the number of messages being sent and their sources – enabling it to model contention
and load factors. One the other hand, there is not good justification for the idea that this schedule
should somehow also depend on the specific bits contained in the messages sent. Notice, our liveness
proof specifically leverages the message oblivious assumption as it prevents the scheduler from knowing
which nodes are sending updates and which are sending nop messages.
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Algorithm 1 Counter Race Consensus (for node u with UID idu and initial value vu)

Initialization:
cu ← 0
nu ← 2
Cu ← {(idu, cu, vu)}
peers← {idu}
phase← 0
active← true

decide← −1
k ← 3
c← k + 3
bcast(nop, idu, nu)

On Receiving ack(m):
phase← phase+ 1
if m = (decide, b) then

decide(b) and halt()
else

newm← ⊥
C ′u ← Cu

ĉ
(0)
u ← max counter in C ′u paired with value 0 (default to 0 if no such elements)
ĉ

(1)
u ← max counter in C ′u paired with value 1 (default to 0 if no such elements)

if ĉ(0)
u > ĉ

(1)
u then vu ← 0

else if ĉ(1)
u > ĉ

(0)
u then vu ← 1

if ĉ(0)
u ≥ ĉ(1)

u + k or decide = 0 then newm← (decide, 0)
else if ĉ(1)

u ≥ ĉ(0)
u + k or decide = 1 then newm← (decide, 1)

if newm = ⊥ then
if max{ĉ(0)

u , ĉ
(1)
u } ≤ cu and m 6= nop then cu ← cu + 1

else if max{ĉ(0)
u , ĉ

(1)
u } > cu then cu ← max{ĉ(0)

u , ĉ
(1)
u }

update (idu, ∗, ∗) element in Cu with new cu and vu

newm← (counter, idu, cu, vu, nu)
if phase % c = 1 then with probability 1/nu active← true otherwise active← false

if newm = (decide, ∗) or active = true then
bcast(newm)

else
bcast(nop, idu, nu)

On Receiving Message m:
updateEstimate(m)
if m = (decide, b) then

decide← b

else if m = (counter, id, c, v, n′) then
if ∃c′, v′ such that (id, c′, v′) ∈ Cu then

remove (id, c′, v′) from Cu

add (id, c, v) to Cu

DISC 2018



38:8 Fault-Tolerant Consensus with an Abstract MAC Layer

Algorithm 2 The updateEstimate(m) subroutine called by Counter Race Consensus
during recv(m) event.

if m contains a UID id and network size estimate n′ then
peers← peers ∪ {id}
nu ← max{nu, |peers|, n′}

3 Upper Bound

Here we describe analyze our first randomized binary consensus algorithm: counter race
consensus (see Algorithms 1 and 2 for pseudocode, and Section 3.1 for a high-level description
of its behavior). This algorithm assumes no advance knowledge of the network participants
or network size. Nodes are provided unique IDs, but these are treated as comparable black
boxes, preventing them from leaking information about the network size. (We will later
discuss how to remove the unique ID assumption.) It tolerates any number of crash faults.
The detailed proofs can be found in the full paper [42].

3.1 Algorithm Description
The counter race consensus algorithm is described in pseudocode in the figures labeled
Algorithm 1 and 2. Here we summarize the behavior formalized by this pseudocode.

The core idea of this algorithm is that each node u maintains a counter cu (initialized to
0) and a proposal vu (initialized to its consensus initial value). Node u repeatedly broadcasts
cu and vu, updating these values before each broadcast. That is, during the ack event for its
last broadcast of cu and vu, node u will apply a set of update rules to these values. It then
concludes the ack event by broadcasting these updated values. This pattern repeats until u
arrives at a state where it can safely commit to deciding a value.

The update rules and decision criteria applied during the ack event are straightforward.
Each node u first calculates ĉ(0)

u , the largest counter value it has sent or received in a message
containing proposal value 0, and ĉ(1)

u , the largest counter value it has sent or received in a
message containing proposal value 1.

If ĉ(0)
u > ĉ

(1)
u , then u sets vu ← 0, and if ĉ(1)

u > ĉ
(0)
u , then u sets vu ← 1. That is, u adopts

the proposal that is currently “winning” the counter race (in case of a tie, it does not change
its proposal).

Node u then checks to see if either value is winning by a large enough margin to support a
decision. In more detail, if ĉ(0)

u ≥ ĉ(1)
u + 3, then u commits to deciding 0, and if ĉ(1)

u ≥ ĉ(0)
u + 3,

then u commits to deciding 1.
What happens next depends on whether or not u committed to a decision. If u did

not commit to a decision (captured in the if newm = ⊥ then conditional), then it must
update its counter value. To do so, it compares its current counter cu to ĉ(0)

u and ĉ(1)
u . If

cu is smaller than one of these counters, it sets cu ← max{ĉ(0)
u , ĉ

(1)
u }. Otherwise, if cu is the

largest counter that u has sent or received so far, it will set cu ← cu + 1. Either way, its
counter increases. At this point, u can complete the ack event by broadcasting a message
containing its newly updated cu and vu values.

On the other hand, if u committed to deciding value b, then it will send a (decide, b)
message to inform the other nodes of its decision. On subsequently receiving an ack for
this message, u will decide b and halt. Similarly, if u ever receives a (decide, b) message
from another node, it will commit to deciding b. During its next ack event, it will send its
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own (decide, b) message and decide and halt on its corresponding ack. That is, node u will
not decide a value until it has broadcast its commitment to do so, and received an ack on
the broadcast.

The behavior described above guarantees agreement and validity. It is not sufficient,
however, to achieve liveness, as an ill-tempered scheduler can conspire to keep the race
between 0 and 1 too close for a decision commitment. To overcome this issue we introduce
a random delay strategy that has nodes randomly step away from the race for a while by
replacing their broadcast values with nop placeholders ignored by those who receive them.
Because our adversary does not learn the content of broadcast messages, it does not know
which nodes are actively participating and which nodes are taking a break (as in both
cases, nodes continually broadcast messages) – thwarting its ability to effectively manipulate
the race.

In more detail, each node u partitions its broadcasts into groups of size 6. At the beginning
of each such group, u flips a weighted coin to determine whether or not to replace the counter
and proposal values it broadcasts during this group with nop placeholders – eliminating
its ability to affect other nodes’ counter/proposal values. As we will later elaborate in the
liveness analysis, the goal is to identify a point in the execution in which a single node v
is broadcasting its values while all other nodes are broadcasting nop values – allowing v to
advance its proposal sufficiently far ahead to win the race.

To be more specific about the probabilities used in this logic, node u maintains an estimate
nu of the number of nodes in the network. It replaces values with nop placeholders in a given
group with probability 1/nu. (In the pseudocode, the active flag indicates whether or not u
is using nop placeholders in the current group.) Node u initializes nu to 2. It then updates it
by calling the updateEstimate routine (described in Algorithm 2) for each message it receives.

There are two ways for this routine to update nu. The first is if the number of unique IDs
that u has received so far (stored in peers) is larger than nu. In this case, it sets nu ← |peers|.
The second way is if it learns another node has an estimate n′ > nu. In this case, it sets
nu ← n′. Node u learns about other nodes’ estimates, as the algorithm has each node append
its current estimate to all of its messages (with the exception of decide messages). In essence,
the nodes are running a network size estimation routine parallel to its main counter race
logic – as nodes refine their estimates, their probability of taking useful breaks improves.

3.2 Safety
We begin our analysis by proving that our algorithm satisfies the agreement and validity
properties of the consensus problem. Validity follows directly from the algorithm description.
Our strategy to prove agreement is to show that if any node sees a value b with a counter at
least 3 ahead of value 1− b (causing it to commit to deciding b), then b is the only possible
decision value. Race arguments of this type are easier to prove in a shared memory setting
where nodes work with objects like atomic registers that guarantee linearization points. In our
message passing setting, by contrast, in which broadcast messages arrive at different receivers
at different times, we will require more involved definitions and operational arguments.7

We start with a useful definition. We say b dominates 1 − b at a given point in the
execution, if every (non-crashed) node at this point believes b is winning the race, and none
of the messages in transit can change this perception.

7 We had initially hoped there might be some way to simulate linearizable shared objects in our model.
Unfortunately, our nodes’ lack of information about the network size thwarted standard simulation
strategies which typically require nodes to collect messages from a majority of nodes in the network
before proceeding to the next step of the simulation.
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To formalize this notion we need some notation. In the following, we say at point t (or
at t), with respect to an event t from the message schedule of an execution α, to describe
the state of the system immediately after event t (and any associated steps that execute
atomically with t) occurs. We also use the notation in transit at t to describe messages that
have been broadcast but not yet received at every non-crashed receiver at t.

I Definition 1. Fix an execution α, event t in the corresponding message schedule msg[α],
consensus value b ∈ {0, 1}, and counter value c ≥ 0. We say α is (b, c)-dominated at t if the
following conditions are true:
1. For every node u that is not crashed at t: ĉ(b)

u [t] > c and ĉ(1−b)
u [t] ≤ c, where at point t,

ĉ
(b)
u [t] (resp. ĉ(1−b)

u [t]) is the largest value u has sent or received in a counter message
containing consensus value b (resp. 1 − b). If u has not sent or received any counter
messages containing b (resp. 1− b), then by default it sets ĉ(b)

u [t]← 0 (resp. ĉ(1−b)
u [t]← 0)

in making this comparison.
2. For every message of the form (counter, id, 1− b, c′, n′) that is in transit at t: c′ ≤ c.

The following lemma formalizes the intuition that once an execution becomes dominated
by a given value, it remains dominated by this value.

I Lemma 2. Assume some execution α is (b, c)-dominated at point t. It follows that α is
(b, c)-dominated at every t′ that comes after t.

Proof. In this proof, we focus on the suffix of the message schedule msg[α] that begins with
event t. For simplicity, we label these events E1, E2, E3, ..., with E1 = t. We will prove the
lemma by induction on this sequence.

The base case (E1) follows directly from the lemma statement. For the inductive step,
we must show that if α is (b, c)-dominated at point Ei, then it will be dominated at Ei+1 as
well. By the inductive hypothesis, we assume the execution is dominated immediately before
Ei+1 occurs. Therefore, the only way the step is violated is if Ei+1 transitions the system
from dominated to non-dominated status. We consider all possible cases for Ei+1 and show
none of them can cause such a transition.

The first case is if Ei+1 is a crashu event for some node u. It is clear that a crash cannot
transition a system into non-dominated status.

The second case is if Ei+1 is a recv(m)u event for some node u. This event can only
transition the system into a non-dominated status if m is a counter message that includes
1− b and a counter c′ > c. For u to receive this message, however, means that the message
was in transit immediately before Ei+1 occurs. Because we assume the system is dominated
at Ei, however, no such message can be in transit at this point (by condition 2 of the
domination definition).

The third and final case is if Ei+1 is a ack(m)u event for some node u, that is combined
with a bcast(m′)u event, where m′ is a counter message that includes 1− b and a counter
c′ > c. Consider the values ĉ(b)

u and ĉ(1−b)
u set by node u early in the steps associated with this

ack(m)u event. By our inductive hypothesis, which tells us that the execution is dominated
right before this ack(m)u event occurs, it must follow that ĉ(b)

u > ĉ
(1−b)
u (as ĉ(b)

u = ĉ
(b)
u [Ei]

and ĉ
(1−b)
u = ĉ

(1−b)
u [Ei]). In the steps that immediately follow, therefore, node u will set

vu ← b. It is therefore impossible for u to then broadcast a counter message with value
vu = 1− b. J

To prove agreement, we are left to show that if a node commits to deciding some value
b, then it must be the case that b dominates the execution at this point – making it the
only possible decision going forward. The following helper lemma, which captures a useful
property about counters, will prove crucial for establishing this point.
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I Lemma 3. Assume event t in the message schedule of execution α is combined with a
bcast(m)v, where m = (counter, idv, c, b, nv), for some counter c > 0. It follows that prior
to t in α, every node that is non-crashed at t received a counter message with counter c− 1
and value b.

Proof. Fix some t, α, v and m = (counter, idv, c, b, nv), as specified by the lemma statement.
Let t′ be the first event in α such that at t′ some node w has local counter cw ≥ c and value
vw = b. We know at least one such event exists as t and v satisfy the above conditions, so
the earliest such event, t′, is well-defined. Furthermore, because t′ must modify local counter
and/or consensus values, it must also be an ack event.

For the purposes of this argument, let cw and vw be w’s counter and consensus value,
respectively, immediately before t′ is scheduled. Similarly, let c′w and v′w be these values
immediately after t′ and its steps complete (i.e., these values at point t′). By assumption:
c′w ≥ c and v′w = b. We proceed by studying the possibilities for cw and vw and their
relationships with c′w and v′w.

We begin by considering vw. We want to argue that vw = b. To see why this is true,
assume for contradiction that vw = 1− b. It follows that early in the steps for t′, node w
switches its consensus value from 1− b to b. By the definition of the algorithm, it only does
this if at this point in the ack steps: ĉ(b)

w > ĉ
(1−b)
w ≥ cw (the last term follows because cw

is included in the values considered when defining c(1−b)
w ). Note, however, that c(b)

w must
be less than c. If it was greater than or equal to c, this would imply that a node ended an
earlier event with counter ≥ c and value b – contradicting our assumption that t′ was the
earliest such event. If c(b)

w < c and c(b)
w > cw, then w must increase its cw value during this

event. But because ĉ(b)
w > ĉ

(1−b)
w ≥ cw, the only allowable change to cw would be to set it to

ĉ
(b)
w < c. This contradicts the assumption that c′w ≥ c.

At this checkpoint in our argument we have argued that vw = b. We now consider cw. If
cw ≥ c, then w starts t′ with a sufficiently big counter – contradicting the assumption that t′
is the earliest such event. It follows that cw < c and w must increase this value during this
event.

There are two ways to increase a counter; i.e., the two conditions in the if/else-if
statement that follows the newm = ⊥ check. We start with the second condition. If
max{ĉ(b)

w , ĉ
(1−b)
w } > cw, then w can set cw to this maximum. If this maximum is equal to

ĉ
(b)
w , then this would imply ĉ(b)

w ≥ c. As argued above, however, it would then follow that a
node had a counter ≥ c and value b before t′. If this is not true, then ĉ(1−b)

w > c
(b)
w . If this

was the case, however, w would have adopted value 1− b earlier in the event, contradicting
the assumption that v′w = b.

At this next checkpoint in our argument we have argued that vw = b, cw < c, and
w increases cw to c through the first condition of the if/else if ; i.e., it must find that
max{ĉ(b)

w , ĉ
(1−b)
w } ≤ cw and m 6= nop. Because this condition only increases the counter by 1,

we can further refine our assumption to cw = c− 1.
To conclude our argument, consider the implications of the m 6= nop component of this

condition. It follows that t′ is an ack(m)w for an actual message m. It cannot be the case that
m is a decide message, as w will not increase its counter on acknowledging a decide. Therefore,
m is a counter message. Furthermore, because counter and consensus values are not modified
after broadcasting a counter message but before receiving its subsequent acknowledgment,
we know m = (counter, idw, cw, vw, ∗) = (counter, idw, c − 1, b, ∗) (we replace the network
size estimate with a wildcard here as these estimates could change during this period).

Because w has an acknowledgment for this m, by the definition of the model, prior to t′:
every non-crashed node received a counter message with counter c− 1 and consensus value b.
This is exactly the claim we are trying to prove. J
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Our main safety theorem leverages the above two lemmas to establish that committing to
decide b means that b dominates the execution. The key idea is that counter values cannot
become too stale. By Lemma 3, if some node has a counter c associated with proposal value
1− b, then all nodes have seen a counter of size at least c− 1 associated with 1− b. It follows
that if some node thinks b is far ahead, then all nodes must think b is far ahead in the race
(i.e., b dominates). Lemma 2 then establishes that this dominance is permanent – making b
the only possible decision value going forward.

I Theorem 4. The Counter Race Consensus algorithm satisfies validity and agreement.

Proof. Validity follows directly from the definition of the algorithm. To establish agreement,
fix some execution α that includes at least one decision. Let t be the first ack event in α that
is combined with a broadcast of a decide message. We call such a step a pre-decision step as
it prepares nodes to decide in a later step. Let u be the node at which this ack occurs and
b be the value it includes in the decide message. Because we assume at least one process
decides in α, we know t exists. We also know it occurs before any decision.

During the steps associated with t, u sets newm ← (decide, b). This indicates the
following is true: ĉ(b)

u ≥ ĉ(1−b)
u + 3. Based on this condition, we establish two claims about

the system at t, expressed with respect to the value ĉ(1−b)
u during these steps:

Claim 1. The largest counter included with value 1− b in a counter message broadcast8
before t is no more than ĉ(1−b)

u + 1.
Assume for contradiction that before t some v broadcast a counter message with value
1− b and counter c > ĉ

(1−b)
u + 1. By Lemma 3, it follows that before t every non-crashed

node receives a counter message with value 1− b and counter c− 1 ≥ ĉ(1−b)
u + 1. This set

of nodes includes u. This contradicts our assumption that at t the largest counter u has
seen associated with 1− b is ĉ(1−b)

u .
Claim 2. Before t, every non-crashed node has sent or received a counter message with
value b and counter at least ĉ(1−b)

u + 2.
By assumption on the values u has seen at t, we know that before t some node v
broadcast a counter message with value b and counter c ≥ ĉ

(1−b)
u + 3. By Lemma 3, it

follows that before t, every node has sent or received a counter with value b and counter
c− 1 ≥ ĉ(1−b)

u + 2.

Notice that claim 1 combined with claim 2 implies that the execution is (b, ĉ(1−b)
u + 1)-

dominated before t. By Lemma 2, the execution will remain dominated from this point
forward. We assume t was the first pre-decision, and it will lead u to tell other nodes to
decide u before doing so itself. Other pre-decision steps might occur, however, before all
nodes have received u’s preference for b. With this in mind, let t′ be any other pre-decision
step. Because t′ comes after t it will occur in a (b, ĉ(1−b)

u + 1)-dominated system. This means
that during the first steps of t′, the node will adopt b as its value (if it has not already done
so), meaning it will also promote b.

To conclude, we have shown that once any node reaches a pre-decision step for a value
b, then the system is already dominated in favor of b, and therefore b is the only possible
decision value going forward. Agreement follows directly. J

8 Notice, in these claims, when we say a message is “broadcast” we only mean that the corresponding
bcast event occurred. We make no assumption on which nodes have so far received this message.
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3.3 Liveness
We now turn our attention liveness. Our goal is to prove the following theorem:

I Theorem 5. With high probability, within O(n3 lnn) scheduled ack events, every node
executing counter race consensus has either crashed, decided, or received a decide message.
In the limit, this termination condition occurs with probability 1.

Notice that this theorem does not require a fair schedule. It guarantees its termination
criteria (with high probability) after any O(n3 lnn) scheduled ack events, regardless of which
nodes these events occur at. Once the system arrives at a state in which every node has
either crashed, decided, or received a decide message, the execution is now univalent (only
one decision value is possible going forward), and each non-crashed node u will decide after
at most two additional ack events at u.9

Our liveness proof is longer and more involved than our safety proof. This follows, in
part, from the need to introduce multiple technical definitions to help identify the execution
fragments sufficiently well-behaved for us to apply our probabilistic arguments. With this
in mind, we divide the presentation of our liveness proof into two parts. The first part
introduces the main ideas of the analysis and provides a road map of sorts to its component
pieces. The second part, which contains the details, can be found in the full paper [42].

3.3.1 Main Ideas
Here we discuss the main ideas of our liveness proof. A core definition used in our analysis is
the notion of an x-run. Roughly speaking, for a given constant integer x ≥ 2 and node u,
we say an execution fragment β is an x-run for some node u, if it starts and ends with an
ack event for u, it contains x total ack events for u, and no other node has more than x ack
events interleaved. We deploy a recursive counting argument to establish that an execution
fragment β that contains at least n · x total ack events, must contain a sub-fragment β′ that
is an x-run for some node u.

To put this result to use, we focus our attention on (2c + 1)-runs, where c = 6 is the
constant used in the algorithm definition to define the length of a group (see Section 3.1
for a reminder of what a group is and how it is used by the algorithm). A straightforward
argument establishes that a (2c+ 1)-run for some node u must contain at least one complete
group for u – that is, it must contain all c broadcasts of one of u’s groups.

Combining these observations, it follows that if we partition an execution into segments
of length n · (2c+ 1), each such segment i contains a (2c+ 1)-run for some node ui, and each
such run contains a complete group for ui. We call this complete group the target group ti
for segment i (if there are multiple complete groups in the run, choose one arbitrarily to be
the target).

These target groups are the core unit to which our subsequent analysis applies. Our goal
is to arrive at a target group ti that is clean in the sense that ui is active during the group
(i.e., sends its actual values instead of nop placeholders), and all broadcasts that arrive at
u during this group come from non-active nodes (i.e., these received messages contain nop
placeholders instead of values). If we achieve a clean group, then it is not hard to show that
ui will advance its counter at least k ahead of all other counters, pushing all other nodes
into the termination criteria guaranteed by Theorem 5.

9 In the case where u receives a decide message, the first ack might correspond to the message it was
broadcasting when the decide arrived, and the second ack corresponds to the decide message that u
itself will then broadcast. During this second ack, u will decide and halt.
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To prove clean groups are sufficiently likely, our analysis must overcome two issues. The
first issue concerns network size estimations. Fix some target group ti. Let Pi be the nodes
from which ui receives at least one message during ti. If all of these nodes have a network
size estimate of at least ni = |Pi| at the start of ti, we say the group is calibrated. We prove
that if ti is calibrated, then it is clean with a probability in Ω(1/n).

The key, therefore, is proving most target groups are calibrated. To do so, we note
that if some ti is not calibrated, it means at least one node used an estimate strictly less
than ni when it probabilistically defined active at the beginning of this group. During this
group, however, all nodes will receive broadcasts from at least ni unique nodes, increasing
all network estimates to size at least ni.10 Therefore, each target group that fails to be
calibrated increases the minimum network size estimate in the system by at least 1. It follows
that at most n target groups can be non-calibrated.

The second issue concerns probabilistic dependencies. Let Ei be the event that target
group ti is clean and Ej be the event that some other target group tj is clean. Notice that
Ei and Ej are not necessarily independent. If a node u has a group that overlaps both ti and
tj , then its probabilistic decision about whether or not to be active in this group impacts the
potential cleanliness of both ti and tj .

Our analysis tackles these dependencies by identifying a subset of target groups that are
pairwise independent. To do so, roughly speaking, we process our target groups in order.
Starting with the first target group, we mark as unavailable any future target group that
overlaps this first group (in the sense described above). We then proceed until we arrive at
the next target group not marked unavailable and repeat the process. Each available target
group marks at most O(n) future groups as unavailable. Therefore, given a sufficiently large
set T of target groups, we can identify a subset T ′, with a size in Ω(|T |/n), such that all
groups in T ′ are pairwise independent.

We can now pull together these pieces to arrive at our main liveness complexity claim.
Consider the first O(n3 lnn) ack events in an execution. We can divide these into O(n2 lnn)
segments of length (2c+ 1)n ∈ Θ(n). We now consider the target groups defined by these
segments. By our above argument, there is a subset T ′ of these groups, where |T ′| ∈ Ω(n lnn),
and all target groups in T ′ are mutually independent. At most n of these remaining target
groups are not calibrated. If we discard these, we are left with a slightly smaller set, of size
still Ω(n lnn), that contains only calibrated and pairwise independent target groups.

We argued that each calibrated group has a probability in Ω(1/n) of being clean. Lever-
aging the independence between our identified groups, a standard concentration analysis
establishes with high probability in n that at least one of these Ω(n/ lnn) groups is clean –
satisfying the Theorem statement.

3.4 Removing the Assumption of Unique IDs
The consensus algorithm described in this section assumes unique IDs. We now show how to
eliminate this assumption by describing a strategy that generates unique IDs w.h.p., and
discuss how to use this as a subroutine in our consensus algorithm.

We make use of a simple tiebreaking mechanism as follows: Each node u proceeds by
iteratively extending a (local) random bit string that eventually becomes unique among the
nodes. Initially, u broadcasts bit b1, which is initialized to 1 (at all nodes), and each time u

10This summary is eliding some subtle details tackled in the full analysis concerning which broadcasts are
guaranteed to be received during a target group. But these details are not important for understanding
the main logic of this argument.
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samples a new bit b, it appends b to its current string and broadcasts the result. For instance,
suppose that u’s most recently broadcast bit string is b1 . . . bi. Upon receiving ack(b1 . . . bi),
node u checks if it has received a message identical to b1 . . . bi. If it did not receive such a
message, then u adopts b1 . . . bi as its ID and stops. Otherwise, some distinct node must have
sampled the same sequence of bits as u and, in this case, the ID b1 . . . bi is considered to be
already taken. (Note that nodes do not take receive events for their own broadcasts.) Node
u continues by sampling its (i+ 1)-th bit bi+1 uniformly at random, and then broadcasts
the string b1 . . . bibi+1, and so forth. In the full paper [42], we prove the following result and
describe how to combine it with our consensus algorithm:

I Theorem 6. Consider an execution α of the tiebreaking algorithm. Let tu be an event in
the message schedule msg[α] such that node u is scheduled for Ω(logn) ack events before
tu. Then, for each correct node u, it holds that u has a unique ID of O(logn) bits with high
probability at tu.

4 Almost-Everywhere Agreement

In the previous section, we showed how to solve consensus in O(n3 logn) events. Here we show
how to improve this bound by a near linear factor by loosening the agreement guarantees.
In more detail, we consider a weaker variant of consensus, introduced in [18], called almost-
everywhere agreement. This variation relaxes the agreement property of consensus such that
o(n) nodes are allowed to decide on conflicting values so long as the remaining nodes all
decide the same value. For many problems that use consensus as a subroutine, this relaxed
agreement property is sufficient.

In more detail, we present an algorithm for solving almost-everywhere agreement in
the abstract MAC layer model when nodes start with arbitrary (not necessarily binary)
input values. The algorithm consists of two phases. We present the pseudo code in the full
paper [42].

Phase 1. In this phase, nodes try to obtain an estimate of the network size by performing
local coin flipping experiments. Each node u records the number of times that its coin comes
up tails before observing the first heads in a variable X. Then, u broadcasts its value of X
once, and each node updates X to the highest outcome that it has seen until it receives the
ack for its broadcast. In our analysis, we show that, by the end of Phase 1, variable X is
an approximation of log2(n) with an additive O(log logn) term, for all nodes in a large set
called EST , and hence N := 2X is a good approximation of the network size n for any node
in EST .

Phase 2. Next, we use X and N as parameters of a randomly rotating leader election
procedure. Each node decides after T = Θ(N log3(N) log log(N)) rounds. (Note that due
to the asynchronous nature of the abstract MAC layer model, different nodes might be
executing in different rounds at the same point in time.) We now describe the sequence
of steps comprising a round in more detail: A node u becomes active with probability
1/Nu at the start of each round.11 If it is active, then u samples a random rank ρ from a
range polynomial in Xu, and broadcasts a message 〈r, ρ, val〉 where val refers to its current
consensus input value. To ensure that the scheduler cannot derive any information about

11We use the convention Nu when referring to the local variable N of a specific node u.
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whether a node is active in a round, inactive nodes simply broadcast a dummy message
with infinite rank. While an (active or inactive) node v waits for its ack for round r, it
keeps track of all received messages and defers processing of a message sent by a node in
some round r′ > r until the event in which v itself starts round r′. On the other hand, if
a received message was sent in r′ < r, then v simply discards that late message as it has
already completed r′. Node v uses the information of messages originating from the same
round r to update its consensus input value, if it receives such a message from an active
node that has chosen a smaller rank than its own. (Recall that inactive nodes have infinite
rank.) After v has finished processing the received messages, it moves on the next round.

We first provide some intuition why it is insufficient to focus on a round r where the
“earliest” node is also active: Ideally, we want the node w1 that is the first to receive its ack
for round r to be active and to have the smallest rank among all active nodes in round r, as
this will force all other (not-yet decided) nodes to adopt w1’s value when receiving their own
round r ack, ensuring a.e. agreement. However, it is possible that w1 and also the node w2
that receives its round r ack right after w1, are among the few nodes that ended up with a
small (possibly constant) value of X after Phase 1. We cannot use the size of EST to reason
about this probability, as some nodes are much likelier to be in EST than others, depending
on the schedule of events in Phase 1. In that case, it could happen that both w1 and w2
become active and choose a rank of 1. Note that it is possible that the receive steps of their
broadcasts are scheduled such that roughly half of the nodes receive w1’s message before
w2’s message, while the other half receive w2’s message first. If w1 and w2 have distinct
consensus input values, then it can happen that both consensus values gain large support in
the network as a result.

To avoid this pitfall, we focus on a set of rounds where all nodes not in EST have already
terminated Phase 2 (and possibly decided on a wrong value): from that point onwards, only
nodes with sufficiently large values of X and N keep trying to become active. We can show
that every node in EST has a probability of at least Ω(1/(n logn)) to become active and a
probability of Ω(1/ logn) to have chosen the smallest rank among all nodes that are active
in the same round. Thus, when considering a sufficiently large set of rounds, we can show
that the event, where the first node in EST that receives its ack in round r becomes active
and also chooses a rank smaller than the rank of any other node active active in the same
round, happens with probability 1− o(1).

In the full paper [42], we formalize the above discussion by proving the following main
theorem regarding this algorithm:

I Theorem 7. With high probability, the following two properties are true of our almost-
everywhere consensus algorithm: (1) within O(n2 log4 n · log logn) scheduled ack events, every
node has either crashed, decided, or will decided after it is next scheduled; (b) all but at most
o(n) nodes that decide, decide the same value.

5 Lower Bound

We conclude our investigation by showing a separation between the abstract MAC layer
model and the related asynchronous message passing model. In more detail, we prove below
that fault-tolerant consensus with constant success probability is impossible in a variation of
the asynchronous message passing model where nodes are provided only a constant-fraction
approximation of the network size and communicate using (blind) broadcast. This bounds
holds even if we assume no crashes and provide nodes unique ids from a small set. Notice,
in the abstract MAC layer model, we solve consensus with broadcast under the harsher
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Algorithm 3 Almost-everywhere agreement in the abstract MAC layer model. Code for
node u.
1: val← consensus input value
2: . Phase 1
3: initialize X ← 0; R← ∅
4: while flip_coin() = heads do
5: X ← X + 1
6: bcast(X)
7: while waiting for ack do
8: add received messages to R
9: X ← max(R ∪ {X})
10: N ← 2X

11: . Phase 2
12: T ← dcN log3(N) log log(N)e, where c is a sufficiently large constant.
13: initialize array of sets R[1], . . . , R[T ]← ∅
14: for i← 1, . . . , T do . Start of round i at u
15: u becomes active with probability 1

N

16: if u is active then
17: ρ← unif. at random sampled integer from [1, X4]
18: else
19: ρ←∞
20: bcast(〈i, ρ, val〉)
21: while waiting for ack do
22: add received messages to R[i]
23: for each message m = 〈i′, ρ′, val′〉 ∈ R[i] do
24: if i′ = i and ρ′ < ρ then . Received message from node with smaller rank
25: val← val′

26: else if i′ > i then . Received message from node active in future round
27: add m to R[i′]
28: else
29: discard message m
30: decide on val

constraints of no network size information, no ids, and crash failures. The difference is the fact
that the broadcast primitive in the abstract MAC layer model includes an acknowledgment.
This acknowledgment is therefore revealed to be the crucial element of the our model that
allows algorithms to overcome lack of network information. We note that this bound is a
generalization of the result from [1], which proved deterministic consensus was impossible
under these constraints. In the full paper [42], we show that, for any given randomized
algorithm we can construct scenarios that are indistinguishable for the nodes, thus causing
conflicting decisions.

I Theorem 8. Consider an asynchronous network of n nodes that communicate by broadcast
and suppose that nodes are unaware of the network size n, but have knowledge of an integer
that is guaranteed to be a 2-approximation of n. No randomized algorithm can solve binary
consensus with a probability of success of at least 1− ε, for any constant ε < 2−

√
3. This

holds even if nodes have unique identifiers chosen from a range of size at least 2n and all
nodes are correct.
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