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Abstract

The thesis investigates the problem of fault- and intrusion-tolerant con-

sensus in resource-constrained wireless ad hoc networks. This is a fun-

damental problem in distributed computing because it abstracts the need

to coordinate activities among various nodes. It has been shown to be a

building block for several other important distributed computing problems

like state-machine replication and atomic broadcast.

The thesis begins by making a thorough performance assessment of ex-

isting intrusion-tolerant consensus protocols, which shows that the perfor-

mance bottlenecks of current solutions are in part related to their system

modeling assumptions. Based on these results, the communication fail-

ure model is identified as a model that simultaneously captures the reality

of wireless ad hoc networks and allows the design of efficient protocols.

Unfortunately, the model is subject to an impossibility result stating that

there is no deterministic algorithm that allows n nodes to reach agreement

if more than n−2 omission transmission failures can occur in a communi-

cation step. This result is valid even under strict timing assumptions (i.e.,

a synchronous system).

The thesis applies randomization techniques in increasingly weaker vari-

ants of this model, until an efficient intrusion-tolerant consensus proto-

col is achieved. The first variant simplifies the problem by restricting the

number of nodes that may be at the source of a transmission failure at

each communication step. An algorithm is designed that tolerates f dy-

namic nodes at the source of faulty transmissions in a system with a total

of n ≥ 3f + 1 nodes.

The second variant imposes no restrictions on the pattern of transmission

failures. The proposed algorithm effectively circumvents the Santoro-

Widmayer impossibility result for the first time. It allows k out of n nodes



to decide despite � ≤ ⌈n
2
⌉(n−k)+k−2 omission failures per communica-

tion step. This algorithm also has the interesting property of guaranteeing
safety during arbitrary periods of unrestricted message loss.

The final variant shares the same properties of the previous one, but re-
laxes the model in the sense that the system is asynchronous and that a
static subset of nodes may be malicious. The obtained algorithm, called
Turquois, admits f < n

3
malicious nodes, and ensures progress in commu-

nication steps where � ≤ ⌈n−f
2
⌉(n − k − f) + k − 2. The algorithm is

subject to a comparative performance evaluation against other intrusion-
tolerant protocols. The results show that, as the system scales, Turquois
outperforms the other protocols by more than an order of magnitude.

Keywords: Distributed systems, dependability, security, fault tolerance
intrusion tolerance, agreement, consensus, wireless ad hoc networks



Resumo

Esta tese investiga o problema do consenso tolerante a faltas acidentais

e maliciosas em redes ad hoc sem fios. Trata-se de um problema funda-

mental que captura a essência da coordenação em actividades envolvendo

vários nós de um sistema, sendo um bloco construtor de outros impor-

tantes problemas dos sistemas distribuídos como a replicação de máquina

de estados ou a difusão atómica.

A tese começa por efectuar uma avaliação de desempenho a protocolos

tolerantes a intrusões já existentes na literatura. Os resultados mostram

que as limitações de desempenho das soluções existentes estão em parte

relacionadas com o seu modelo de sistema. Baseado nestes resultados, é

identificado o modelo de falhas de comunicação como um modelo que si-

multaneamente permite capturar o ambiente das redes ad hoc sem fios e

projectar protocolos eficientes. Todavia, o modelo é restrito por um resul-

tado de impossibilidade que afirma não existir algoritmo algum que per-

mita a n nós chegaram a acordo num sistema que admita mais do que n−2

transmissões omissas num dado passo de comunicação. Este resultado é

válido mesmo sob fortes hipóteses temporais (i.e., em sistemas síncronos)

A tese aplica técnicas de aleatoriedade em variantes progressivamente

mais fracas do modelo até ser alcançado um protocolo eficiente e toler-

ante a intrusões. A primeira variante do modelo, de forma a simplificar

o problema, restringe o número de nós que estão na origem de transmis-

sões faltosas. É apresentado um algoritmo que tolera f nós dinâmicos na

origem de transmissões faltosas em sistemas com um total de n ≥ 3f + 1

nós.

A segunda variante do modelo não impõe quaisquer restrições no padrão

de transmissões faltosas. É apresentado um algoritmo que contorna efecti-

vamente o resultado de impossibilidade Santoro-Widmayer pela primeira



vez e que permite a k de n nós efectuarem progresso nos passos de co-
municação em que o número de transmissões omissas seja � ≤ ⌈n

2
⌉(n −

k) + k − 2. O algoritmo possui ainda a interessante propriedade de tol-
erar períodos arbitrários em que o número de transmissões omissas seja
superior a �.

A última variante do modelo partilha das mesmas características da vari-
ante anterior, mas com pressupostos mais fracos sobre o sistema. Em par-
ticular, assume-se que o sistema é assíncrono e que um subconjunto es-
tático dos nós pode ser malicioso. O algoritmo apresentado, denominado
Turquois, admite f < n

3
nós maliciosos e assegura progresso nos passos

de comunicação em que � ≤ ⌈n−f
2
⌉(n − k − f) + k − 2. O algoritmo é

sujeito a uma análise de desempenho comparativa com outros protocolos
na literatura. Os resultados demonstram que, à medida que o número de
nós no sistema aumenta, o desempenho do protocolo Turquois ultrapassa
os restantes em mais do que uma ordem de magnitude.

Palavras Chave: Sistemas distribuídos, confiabilidade, segurança, tol-
erância a faltas, tolerância a intrusões, acordo, consenso, redes ad hoc sem
fios



Resumo Alargado

As redes de comunicação sem fios assumem um papel cada vez mais preponderante

na sociedade. As redes ad hoc sem fios, em particular, representam uma tecnologia

emergente que, nos tempos recentes, tem sido um importante foco de investigação por

parte da comunidade científica internacional. Este tipo de redes existe sem nenhuma

forma de controlo centralizado. A estas não se aplica a noção de infra-estrutura e todos

os nós da rede, em princípio, desempenham igual papel na sua operação. Esta natureza

descentralizada das redes ad hoc sem fios torna-as muito apropriadas para situações de

emergência, tais como desastres naturais ou conflitos militares, em que a dependência

num único ponto de falha, não só não é desejável, como talvez inalcançável.

Um tema recorrente em muitos cenários de comunicação ad hoc é o da coorde-

nação local. Dispositivos sem fios, que se encontrem a uma distância que permita a

comunicação directa entre si, necessitam frequentemente de sincronizar as suas acções

de modo a executarem uma qualquer tarefa distribuída. Esta situação não acontece

por mero acaso. A proximidade entre os nós geralmente implica que estes tenham

que partilhar um determinado recurso. Nesse caso, alguma forma de coordenação é

necessária para que o acesso a esse recurso seja efectuado de forma justa e eficiente.

O recurso pelo qual os nós do sistema competem pode ser, por exemplo: o espectro

electromagnético, onde os nós tentam sincronizar os seus períodos de transmissão de

maneira a que não hajam sobreposições (Clementi et al., 2001; Kowalski, 2005); uma

estrada, onde um conjunto de veículos semi-automatizados tenta decidir qual a ordem

pela qual atravessam um cruzamento (Misener et al., 2005); ou o espaço aéreo, onde

vários aviões coordenam as suas manobras de modo a evitarem colisões (Brown, 2007;

Moniz et al., 2009).

Os nós de um sistema também necessitam muito frequentemente de se sincronizar

de modo a maximizar os seus recursos individuais. Por exemplo, numa rede de sen-

sores, os nós, tipicamente, organizam-se em grupos compostos por nós fisicamente

próximos uns dos outros, em que cada grupo é gerido por um nó líder que coordena

certas operações como o encaminhamento ou a agregação de dados (Dong & Liu, 2009;



Kuhn et al., 2006). Esta tarefa de gestão de um grupo pode exigir um consumo de en-

ergia substancial no nó líder e/ou aumentar a sua probabilidade de falha. De modo a

balancear a carga e garantir tolerância a faltas, os nós podem necessitar de se coordenar

para eleger um novo líder periodicamente.

A complexidade relacionada com estes cenários de coordenação local pode ser

abstraída através de uma primitiva de consenso. Este é um problema fundamental

dos sistemas distribuídos. Informalmente, pode ser definido do seguinte modo: cada

um dos processos que compõe o sistema propõe um valor e todos os processos têm

que decidir um valor comum baseado nos valores propostos. Esta definição captura a

essência da coordenação, que passa, fundamentalmente, pelos processos chegarem a

acordo sobre uma determinada informação. Muitos tipos de actividades coordenadas

num sistema distribuído podem ser reduzidos ao problema do consenso. Por exemplo,

o consenso foi demonstrado ser equivalente a outras operações distribuídas como a

replicação de máquina de estados (Schneider, 1990) ou a difusão atómica (Correia

et al., 2006).

Apesar da sua definição simples, o consenso em sistemas tolerantes a faltas está

longe de ser um problema trivial. De facto, dependendo dos pressupostos que são

feitos sobre o sistema, pode dar-se o caso de simplesmente não existir uma solução

determinista para o consenso (Fischer et al., 1985; Santoro & Widmeyer, 1989). Por

exemplo, o resultado de impossibilidade FLP (Fischer et al., 1985) mostra que não

existe nenhuma solução determinista para o problema do consenso em sistemas assín-

cronos mesmo que se admita que apenas um nó do sistema pode falhar. Um sistema

assíncrono é caracterizado por não assumir quaisquer pressupostos sobre o seu tempo

de execução, de modo que não é possível recorrer, por exemplo, a mecanismos tempo-

rais para detectar falhas de nós.

A tese foca-se no problema do consenso tolerante a faltas acidentais e maliciosas

em redes ad hoc sem fios. Estes ambientes apresentam variados desafios à computação

de tarefas distribuídas. Os seus recursos são tipicamente restritos, tanto em termos de

poder computacional como de comunicação. A falta de fiabilidade inerente às comu-

nicações por rádio também representa outro desafio significativo. Fenómenos ambi-

entais tais como condições atmosféricas adversas, interferência de rádio, ou colisões

nas transmissões, contribuem para a perda de sinal. A própria natureza dos nós que



compõem estas redes, que são muitas vezes móveis, também pode levar a períodos ar-

bitrários de perda de conectividade. Finalmente, a presença de elementos maliciosos,

algo provável em certas aplicações críticas, intensifica ainda mais a dificuldade de

projectar protocolos de consenso para estes ambientes. Idealmente, o sistema deve

fornecer um serviço correcto mesmo que alguns dos seus nós sejam atacados e con-

trolados por um adversário sofisticado. Neste caso, diz-se que o sistema é tolerante a

intrusões (Fraga & Powell, 1985; Veríssimo et al., 2003).

A concretização de protocolos de consenso que sejam simultaneamente eficientes

e sustenham a sua correcta execução face a este tipo de cenários, representa uma con-

tribuição inovadora e um importante passo no sentido da aplicação das redes ad hoc

sem fios a cenários críticos.

A primeira contribuição da tese passa por uma exaustiva avaliação de desempenho

de protocolos tolerantes a intrusões existentes na literatura. Para este passo, procedeu-

se à escolha de protocolos de acordo que possuam características que os tornem inter-

essantes para um ambiente de comunicação sem fios. Em primeiro lugar, teriam que

ser protocolos tolerantes a intrusões dado que, em última instância, o objectivo passa

por concretizar protocolos que possuam esta característica. Em segundo lugar, a exe-

cução dos protocolos teria que ser descentralizada. Dada a necessidade de preservar

recursos e lidar com a potencial mobilidade dos nós, a execução dos protocolos dev-

erá evitar depender de um nó líder. Finalmente, os protocolos deveriam assumir um

modelo de sistema assíncrono. Dada a pouca fiabilidade inerente às redes ad hoc sem

fios, a independência face a qualquer tipo de pressupostos temporais garante uma exe-

cução correcta mesmo na presença de um comportamento temporal mais imprevisível

do sistema.

Naturalmente, estas características implicam que os protocolos estejam sujeitos

ao, já mencionado, resultado de impossibilidade FLP. Isto implica que o seu modelo

de sistema tenha que ser estendido de alguma forma que permita uma solução para

o consenso. Esta questão tem sido estudada exaustivamente na literatura da área, ex-

istindo algumas soluções. No entanto, a sua maioria exige a inclusão de hipóteses

temporais mais fortes no modelo, seja de forma explícita (e.g., modelos de sincro-

nia parcial (Dolev et al., 1987; Dwork et al., 1988)) ou implícita (e.g., detectores de

falhas (Chandra & Toueg, 1996; Kihlstrom et al., 2003)). A única excepção é a aleato-

riedade, cuja solução passa por abordar o problema do consenso através de uma per-



spectiva probabilista. Por permitir manter o sistema totalmente livre de pressupostos

temporais, a escolha recaiu sobre protocolos que recorram a esta técnica de modo a

contornar o resultado FLP. Outro argumento a favor da aleatoriedade é que, ao con-

trário das outras técnicas, a execução dos seus algoritmos é inerentemente descentral-

izada.

Os resultados de avaliação obtidos neste passo levaram a importantes observações

sobre o desempenho de protocolos com recurso a aleatoriedade em situações práti-

cas. Em primeiro lugar, os resultados demonstram que este tipo de protocolos pode

ser encarado como uma solução eficiente para sistemas tolerantes a intrusões em re-

des locais com fios. Esta conclusão vai contra a percepção generalizada sobre estes

protocolos, cuja análise teórica determina que o seu tempo de execução é exponen-

cial em relação ao número total de nós do sistema. A análise de desempenho expõe

a distância que existe entre a teoria e a prática e prova que, na prática, os protocolos

terminam tipicamente em uma ou duas rondas de comunicação. No entanto, apesar

dos resultados positivos em redes locais com fios, o seu desempenho em ambiente sem

fios não foi tão satisfatório, ficando patentes certas limitações. A principal conclusão

que se retirou desta análise foi que o fraco desempenho está em parte relacionado com

o modelo de sistema assumido por estes protocolos (que é virtualmente extensível a to-

dos os protocolos tolerantes a intrusões) e, em particular, ao seu modelo de faltas, que

força a concretização de canais fiáveis ponto-a-ponto entre todos os processos. Esta

característica não permite aos protocolos um acesso eficiente ao meio de comunicação

partilhado. Por exemplo, não permite que se recorra a primitivas de difusão não-fiável,

mais alinhadas com a natureza das redes sem fios.

Esta conclusão levou à identificação do modelo de falhas de comunicação, intro-

duzido em Santoro & Widmeyer (1989), como sendo um modelo que simultaneamente

captura o ambiente das redes ad hoc sem fios e permite a criação de protocolos efi-

cientes. Este modelo assume que as transmissões de mensagens entre os nós estão

sujeitas a faltas de comunicações dinâmicas e transitórias, i.e., a comunicação en-

tre quaisquer dois nós pode ser alvo de faltas num determinado momento e correcta

noutro. Esta visão altamente dinâmica das faltas de comunicação encontra-se alinhada

com a natureza das redes ad hoc sem fios porque captura a perda momentânea de co-

municação relacionada com a mobilidade dos nós ou a pouca fiabilidade da rede. O



maior benefício desta aproximação ao problema é que a inexistência de hipóteses so-

bre a fiabilidade de qualquer comunicação entre dois nós liberta o sistema de ter que

concretizar mecanismos de garantia de entrega de mensagens. Isto permite que os pro-

tocolos retirem proveito de todo o potencial de comunicação por difusão, tão natural

num ambiente sem fios, onde o custo de transmitir uma mensagem para um nó pode

ser o mesmo de transmitir para os n nós do sistema, desde que o raio de transmissão

dos nós permita comunicação directa entre si.

Apesar da sua utilidade para representar uma rede ad hoc sem fios, a investigação

no modelo de falhas de comunicação tem sido muito reduzida. A este facto está rela-

cionado um importante resultado de impossibilidade associado ao modelo. O resul-

tado, denominado resultado de impossibilidade Santoro-Widmayer, aplica-se a qual-

quer problema de acordo num sistema de n nós e determina que é impossível conseguir

resolver o acordo deterministicamente se for assumido que se podem perder mais de

n − 2 mensagens transmitidas num dado passo de comunicação. Este é um resultado

muito desencorajador, dado que a falha por paragem de um só nó resulta necessaria-

mente em n− 1 omissões de mensagens, levando a que o acordo seja impossível. Para

tornar o problema mais difícil, este resultado aplica-se a sistemas totalmente síncronos,

onde tanto os tempos máximos de processamento dos nós como os de transmissão de

mensagens na rede são conhecidos e assumidos que se cumprem.

Uma das maiores contribuições desta tese prende-se com o desenho de uma solução

capaz de contornar este resultado de impossibilidade recorrendo a técnicas de aleato-

riedade. Neste sentido, a tese aborda o problema do consenso em variantes progressi-

vamente mais fracas do modelo, até ser alcançado um protocolo eficiente e tolerante a

intrusões.

A primeira variante do modelo restringe o número de nós que estão na origem

de transmissões faltosas. É apresentado um algoritmo que tolera f nós dinâmicos na

origem de transmissões faltosas em sistemas com um total de n ≥ 3f + 1 nós. A

segunda variante do modelo não impõe quaisquer restrições no padrão de transmis-

sões faltosas. É apresentado um algoritmo que contorna efectivamente o resultado

de impossibilidade Santoro-Widmayer, e que permite a k de n nós efectuarem pro-

gresso nos passos de comunicação em que o número de transmissões omissas seja

� ≤ ⌈n
2
⌉(n − k) + k − 2. O algoritmo possui ainda a interessante propriedade de

tolerar períodos arbitrários em que o número de transmissões omissas seja superior a



�. A última variante do modelo partilha das mesmas características da variante ante-
rior, mas com pressupostos mais fracos sobre o sistema. Em particular, assume-se que
o sistema é assíncrono e que um subconjunto estático dos nós pode ser malicioso. O
algoritmo apresentado, denominado Turquois, admite f < n

3
nós maliciosos e assegura

progresso nos passos de comunicação em que � ≤ ⌈n−f
2
⌉(n − k − f) + k − 2. O al-

goritmo é sujeito a uma análise de desempenho comparativa com outros protocolos na
literatura. Os resultados demonstram que, à medida que o número de nós no sistema
aumenta, o desempenho do protocolo Turquois ultrapassa os restantes em mais do que
uma ordem de magnitude.
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Chapter 1

Introduction

1.1 Context and Motivation

Impetus. Wireless networks are becoming increasingly prevalent in society. Devices

such as smartphones, PDAs, laptop computers, and GPS units, which rely on wireless

technologies like cellular telephony, bluetooth, wi-fi, and satellite communications, are

just a few examples of how pervasive this technology is in our lifes.

Wireless ad hoc networks, in particular, represent an emergent area that has been

the subject of considerable attention within the scientific community for the past few

years. Unlike managed wireless networks, which have infrastructural support from

fixed components (e.g., an access point), wireless ad hoc networks exist without any

form of centralized control. There is no notion of infrastructure and every node, in

principle, plays an equal role on the network operation. The archetypal scenario of

wireless ad hoc networks is a collection of nodes, none of which possessing any distin-

guishing processing or communication capabilities, spread out in some geographical

area and exchanging messages through radio waves.

The decentralized nature of these networks makes them particularly suited for

emergency situations like natural disasters and military conflicts, where the reliance

on a single point of failure is not only inappropriate, but maybe even unattainable.

In the near future, we can expect wireless ad hoc networking to invade many aspects

of modern life, either in civil or military contexts, and from the mundane to the life-
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critical. Sophisticated vehicular coordination (Hull et al., 2006; Nadeem et al., 2004),

automated air traffic management (Brown, 2007; Moniz et al., 2009), gaming (Clay-

pool, 2005), or social networking (Motani et al., 2005), are just a few examples of

promising new applications of wireless ad hoc networks.

Research. Wireless ad hoc networks are an extremely active subject of research

across many domains of computer science, and many interesting problems were moti-

vated by these networking environments.

For example, there is the problem of how a node can learn its own localization (Asp-

nes et al., 2006; Priyantha et al., 2000, 2005) and locate other nodes (Abraham et al.,

2004; Awerbuch & Peleg, 1995; Li et al., 2000). There is the study of the communi-

cation capacity of wireless networks, which allows the calculation of the theoretically

achievable efficiency of many ad hoc networking scenarios (Grossglauser & Tse, 2002;

Gupta & Kumar, 2000; Moscibroda & Wattenhofer, 2006). There is also the topology

control problem, an interesting distributed coordination problem, which tries to find the

optimal balance between transmission power and network connectivity (Heide et al.,

2004; Li et al., 2005). Another common line of research is related to the clustering of

nodes in the network, which involves solving graph theory problems, such as finding

connected dominating sets and maximal independent sets, for forming a communica-

tion backbone (Luby, 1985; Moscibroda & Wattenhofer, 2005; Wan et al., 2004; Wu

& Li, 1999). A final example is the problem of finding local algorithms for distributed

tasks, where a node communicates only with its closest neighbors and computes in

time independent of the size of the network (Kuhn et al., 2004; Naor & Stockmeyer,

1993).

The dynamic and unreliable nature of wireless ad hoc networks also raises new

challenges for previously well-studied problems. Medium access control (Rajendran

et al., 2006; Ye & Heidemann, 2004), routing (Broch et al., 1998; Draves et al., 2004;

Johnson & Maltz, 1996; Karp & Kung, 2000; Perkins & Belding-Royer, 1999), broad-

casting (Lou & Wu, 2002; Sasson et al., 2003; Stojmenovic et al., 2002), and clock

synchronization (Elson & Romer, 2003; Sundararaman et al., 2005) are all classical

problems that, within the context of wireless ad hoc networks, are faced with a greater

degree of uncertainty stemming from frequent topological changes and unreliable com-

munication.
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Local synchronization. A recurring theme in many wireless ad hoc networking sce-

narios is local synchronization. Nodes that are within direct communication range of

each other frequently have to synchronize their actions in order to perform some task.

This situation does not arise by mere chance. Proximity usually implies sharing a

common physical resource and some form of coordination is required such that access

to that resource is fair and efficient. There are many possibilities to what the shared

resource can be. For example, it can be the electromagnetic spectrum, where nodes

synchronize their broadcasting periods such that there is no overlap (Clementi et al.,

2001; Kowalski, 2005); it can be a road, where a set of semi-automated vehicles stand-

ing at an intersection have to decide on the order in which they cross (Misener et al.,

2005); or it can even be the airspace, where aircraft coordinate their maneuvering in

order to avoid collisions (Brown, 2007; Moniz et al., 2009).

Nodes may also have to synchronize to maximize their own individual resources.

For example, in densely-deployed sensor networks, nodes are often organized into

clusters of nodes that are physically close to each other, with every cluster being man-

aged by a cluster leader that coordinates operations such as routing and data aggre-

gation (Dong & Liu, 2009; Kuhn et al., 2006). The task of managing a cluster may

require substantial energy consumption and/or may increase the chance of failure of

the cluster leader. For purposes of load balancing and fault tolerance, the leader may

need to be periodically re-elected.

The topology control problem mentioned above is another example where nodes

synchronize to maximize their internal resources. In this problem, nodes calibrate their

transmission power, keeping it as near as possible to the minimum value, while main-

taining network connectivity. This has the effect of preserving energy and reducing the

overall contention in the network.

Consensus. The complexity involved in each one of these local synchronization sce-

narios can be normally abstracted through a consensus primitive. Informally, it can be

defined in the following way: each process in the system proposes some value and all

processes have to decide on a common value obtained from the proposals. Albeit sim-

ple, this definition captures the essence of coordination, i.e., the agreement on some

common piece of information.

3



1. INTRODUCTION

For example, the connection of leader election and consensus has been widely

studied (Malkhi et al., 2005; Mostefaoui & Raynal, 2001; Sabel & Marzullo, 1995).

Leader election can be achieved by having each node propose the ID of their preferred

process for leader. A consensus execution outputs a single common node ID in ev-

ery node, which becomes the new leader. In the k-selection problem (Clementi et al.,

2001; Kowalski, 2005), where nodes try to synchronize their broadcasting periods such

that there is no overlap, a consensus instance can be run for each process to decide

which is its broadcasting slot. The problem has also been shown to be a building block

for several other important distributed computing problems like state-machine repli-

cation (Schneider, 1990) and atomic broadcast (Correia et al., 2006). State-machine

replication is a general method for replicating services, while atomic broadcast ensures

the delivery of messages in the same order by all processes.

Challenges. Wireless ad hoc networks, however, present several challenges to dis-

tributed computing. They are typically resource-constrained both in terms of comput-

ing power and communication capacity. For example, they have less bandwidth than

wired local-area-networks, their shared communication medium leaves them more vul-

nerable to denial-of-service attacks, and their nodes are usually mobile devices with

limited energy and computing capabilities, whose very nature may lead to arbitrary

periods of disconnection. The inherent unreliability of radio communications is an-

other significant challenge. Pervasive physical phenomena - such as poor atmospheric

conditions, fading, or interference - contribute to signal loss. On top of this, link-layer

reliability is usually based on best-effort mechanisms (e.g., CSMA/CA). Collisions in

wireless networks are hard to detect. The radio communication is usually half-duplex,

which makes impossible for the transmitter to sense the channel for collisions while

transmitting data. Some proposals for MAC layer protocols that support collision de-

tection on the receiver side do exist (Polastre et al., 2004; Whitehouse et al., 2005),

but so far the ability to provide reliable collision detection in wireless environments re-

mains a major technical challenge. Finally, the presence of malicious elements, which

is likely given the critical services potentially provided by wireless ad hoc networks,

further intensifies the difficulty of designing agreement protocols for these environ-

ments.
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A consensus protocol designed for wireless ad hoc networks must cope with the

inherent unreliability of the environment. It is imperative that consensus is performed

in a dependable way, especially given the suitability of ad hoc networks to critical

situations. Neither the momentary breakdown of communications nor the failure of

some nodes, either of accidental or malicious nature, should be synonymous to the

failure of the entire system. Hence, nodes that do not fail need to be able to reach

agreement even if others are uncooperative, either by not communicating, crashing,

or plainly acting selfishly or maliciously. When correct system behavior is ensured

despite the failure of some of its components, it is said that the system is fault-tolerant.

Furthermore, if these components fail because they are compromised and controlled

by an intelligent adversary, the system is intrusion-tolerant (Fraga & Powell, 1985;

Veríssimo et al., 2003).

Despite its simple definition, the solution to consensus in fault-tolerant distributed

systems is far from trivial. In fact, depending on the assumptions that one makes about

the system, it may very well be the case that there is simply no deterministic solution to

consensus (Fischer et al., 1985; Santoro & Widmeyer, 1989). For example, the widely-

known FLP impossibility result (named after the initials of its authors) states that there

is no deterministic solution to consensus in asynchronous systems (i.e., where no as-

sumptions are made about timeliness) if only one process can crash (Fischer et al.,

1985).

1.2 Research Methodology

Goal. The overarching goal of this thesis is to devise efficient consensus protocols

for wireless ad hoc networks. Our focus is on single-hop networks, which we believe to

be an important scenario given the prevalent need for local synchronization in wireless

environments. While consensus may also be useful in multi-hop scenarios, any single-

hop protocol can be adapted to a multi-hop scenario if supported by an adequate routing

layer (e.g., Vahdat & Becker (2000)), which is a well-studied problem in the context

of wireless networks.

The problem is addressed from both a theoretical and practical perspective. The

work described in this thesis involves on one hand the definition of appropriate mod-
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els and algorithms for distributed computing in wireless ad hoc networks and over-

coming the associated lower bounds and impossibility results, and, on the other hand,

the implementation and experimental evaluation of consensus protocols in real-word

testbeds.

The designed protocols must be able to withstand a highly unreliable, and perhaps

hostile, environment. This implies tolerating accidental faults such as message loss

and node crashes, and, especially, arbitrary node behavior due to intrusions. Intrusion-

tolerant protocols, when specifically tailored for efficient operation in wireless envi-

ronments, represent a novel contribution and important step towards the deployment

of critical services in these environments.

Performance Assessment of Existing Protocols. The first step in designing effi-

cient consensus protocols for wireless ad hoc networks is to identify an appropriate

system model for these environments. This becomes a fundamental step if one wishes

to achieve good performance by exploiting the particular characteristics of wireless en-

vironments. For example, the openness of the network provides a natural broadcasting

medium, where the cost of transmitting a message to multiple processes can be just the

same of transmitting it to a single process, as long as they are within communication

range.

Finding an appropriate system model requires a great deal of insight into the prac-

tical performance of these protocols. Consequently, our first step is to understand how

current intrusion-tolerant agreement protocols perform in wireless ad hoc networks,

when compared to traditional (wired) local-area networks. To this end, it was carried

a thorough performance assessment of two families of (randomized) intrusion-tolerant

protocols under several different environmental settings. This step significantly deep-

ened our perception about the performance of these protocols, and, in particular about

their shortcomings in wireless environments, which, as our results confirm, stem es-

sentially from their classical modeling assumptions. The knowledge obtained in this

step was then used to identify a more appropriate system model for wireless ad hoc

networks.

Randomization. When surveying existing protocols to be evaluated, we looked for

three main characteristics that are particularly interesting for wireless ad hoc networks.
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First, we looked for intrusion-tolerant protocols because, ultimately, our goal was to

design algorithms that sustained both accidental and malicious faults. Second, the

execution of the protocols had to be decentralized (or leader-free). Wireless ad hoc

networks are, by definition, decentralized. Given the need to preserve resources and

deal with potential mobility of nodes, the progress of protocols should not depend on

any single process. Third, the protocols would have to be designed for an asynchronous

model of computation. Given the inherent unreliability of wireless networks, the inde-

pendence of any kind of timing assumptions would ensure correctness in face of even

the most unpredictable timing behavior by the network.

Of course, any protocol with such characteristics is subject to the aforementioned

FLP impossibility result, which states that there is no deterministic solution to fault-

tolerant consensus under the asynchronous model. This implies that the system model

has, in some way, to be changed in order to circumvent this result and make consensus

solvable. While this is a widely studied problem, most of the available approaches

require the inclusion of stronger timing assumptions (e.g., partial synchrony mod-

els (Dolev et al., 1987; Dwork et al., 1988)), or the addition of devices that hide in

their implementation these assumptions, such as failure detectors (Chandra & Toueg,

1996; Kihlstrom et al., 2003) or wormholes (Neves et al., 2005). The exception is

randomization. This technique relies on a probabilistic approach to consensus (Ben-

Or, 1983; Rabin, 1983). In a randomized protocol, there are certain steps in which the

current proposal may take a random value, chosen according to a given probability dis-

tribution. This means that an adversary scheduler cannot determine the outcome of any

disruptive strategy because that outcome is affected by a random element outside of its

control. The main advantage of this approach is that it allows the system to remain

completely asynchronous. To achieve this, one has to judiciously weaken the problem

statement to allow a probabilistic termination of consensus.

Another strong argument in favor of randomization is that its algorithms are inher-

ently decentralized, unlike other approaches to the FLP impossibility, which tend to

produce algorithms that rely on a leader during normal operation and falling back to a

leader election procedure in case the failure of the leader is detected. For example, un-

til recently, designing a leader-free intrusion-tolerant consensus algorithm for partially

synchronous systems was a problem that was yet to be approached (Borran & Schiper,

2010).

7



1. INTRODUCTION

For these reasons, it was decided that the performance assessment would focus

on randomized consensus protocols. By itself, this assessement represents one of the

major contributions of the thesis. It involved the implementation of more than half a

dozen agreement protocols in two different platforms (i.e., Linux and Windows Mo-

bile), and their evaluation under several different settings including wired and wireless

networks. The assessment was structured to reach two main goals: (1) to provide a

deep insight into the performance of fault- and intrusion-tolerant protocols that could

be used to identify a more appropriate system model for wireless ad hoc networks; and

(2) to raise general awareness about the behavior and practical possibilities of random-

ization.

That second point was an important achievement because our results demonstrate

that randomized protocols can indeed be efficient and should be regarded as a valid

solution for practical fault- and intrusion-tolerant distributed systems. This realization

is contradictory to the general intuition regarding randomized protocols, in particu-

lar those of the local coin class1, which have been historically dismissed as being

too inefficient due to their exponential expected time complexity. The obtained re-

sults, however, show otherwise. This was mainly because the adversarial model under

which these protocols are designed (i.e., one that completely decides the order in which

the processes receive the messages) is rarely, if ever, observed in practice. In fact, a

real adversary possessing such power could probably perform much more devastating

attacks such as blocking the communication entirely. Therefore, in practice, the net-

work scheduling leads to a speedy termination (usually in one or two communication

rounds). For example, in some scenarios with 4 processes, the local coin binary con-

sensus protocol (or Bracha’s protocol (Bracha, 1984)) terminated in under 1 ms in a

wired local-area-network. Even with 10 processes, if every process proposed the same

initial value, consensus was achieved in around 4 ms. These results roughly double

if the proposals of processes diverged, which usually required an additional execution

round.

1There are algorithms that are based on local coin mechanism that returns random bits observable
locally by each process. This class exists in juxtaposition to algorithms based on a shared coin, which
returns bits observable by all processes
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A System Model for Wireless Ad hoc Networks. Despite the positive results ob-

tained in wired LANs, the performance of the protocols in wireless settings, more

specifically in 802.11a/b/g networks, was relatively poor. For example, in one set of

experiments in a 802.11b wireless LAN, the Bracha’s binary consensus (a local coin

protocol) took an average of 35 ms to terminate with 4 processes, and this value in-

creased to 415 ms with 10 processes. The ABBA binary consensus (a shared coin

protocol) took 146 ms and 301 ms, respectively for 4 and 10 processes. These results

demonstrate the difficulty of applying these protocols to wireless environments.

In part, these results can be attributed to the particular characteristics of the eval-

uated protocols - Bracha’s protocol exchanges too many messages and ABBA relies

on computationally expensive cryptographic operations, which were taxing even for

Pentium III PCs, and much more for resource-constrained mobile devices. Neverthe-

less, while analyzing the results it became clear that a more systemic bottleneck affects

performance, which is directly related to the employed system model, in particular the

fault model.

Generally, faults can be assumed to occur in two components: processes and links.

The model used by virtually every intrusion-tolerant protocol (randomized or not) as-

sumes that faults occur only in processes and that these are connected by reliable point-

to-point communication links. Furthermore, these faults are commonly assumed to be

static, i.e., a fault is associated to a particular process that is forever considered faulty.

While it is true that are a few protocols (e.g., Paxos (Lamport, 1998) and PBFT (Castro

& Liskov, 1999)) that explicitly assume arbitrary messages loss in their channels, these

are constrained by a fair loss property. This property states that if a correct process p

sends a message m to another correct process q an infinite number of times, then q

receives m from p an infinite number of times. In practice, this has the same effect

of assuming asynchronous reliable point-to-point channels because the correctness of

the protocols is dependent on the fact that every message sent from one correct pro-

cess to another must be delivered (as long as it keeps being retransmitted). From the

perspective of wireless ad hoc networks, the downside of this approach is that it forces

the implementation of end-to-end message delivery mechanisms (e.g., TCP). Unfortu-

nately, implementing point-to-point communication on top of a shared communication

medium can be a very inefficient approach because it does not allow a natural use of

the wireless broadcasting medium.
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In order to fully exploit the natural characteristics of wireless ad hoc networks, the

unreliability of wireless communications has to be explicitly assumed. Any message

can be lost at any time and previous faulty behavior is not an indication of future

behavior, i.e., communication faults are dynamic and transient. Any protocol that can

tolerate this kind of uncertainty is free to efficiently access the shared broadcasting

medium of wireless ad hoc networks.

This realization led to the identification of the communication failure model as a

more appropriate model for wireless ad hoc networks. This model was introduced

by Nicola Santoro and Peter Widmayer in a seminal paper entitled ‘Time is not a

Healer’ (Santoro & Widmeyer, 1989). Under the communication failure model, the

system is affected by transmission faults that can occur anywhere in the system, i.e.,

the set of links affected by failures may change at every clock cycle. This precisely

captures the unpredictability that naturally occurs in wireless ad hoc networks.

This fault model is very general. Despite assuming dynamic failures, it can also

capture permanent and localized failures. For example, the crashing of a process can

be described as a series of transmission omission faults with the crashed process as

sender.

Santoro-Widmayer Impossibility Result. Research in the communication failure

model, however, has been limited. This is mainly due to an associated impossibil-

ity result, dubbed the Santoro-Widmayer impossibility result. Basically, it states that

there is no deterministic algorithm that that solves some form of non-trivial agreement

(consensus included) if more than n − 2 omission failures can occur in a communi-

cation step. This is a very discouraging result, in the same line of the classic FLP

result, because, in practice, the crashing of a single process necessarily results in n− 1

transmission failures, rendering any form of agreement impossible. Moreover, this

result is produced under strong timing assumptions where both the processes’ rela-

tive processing times and communication delays are bound by known constants (i.e., a

synchronous system). Hence the motto, time is not a healer.

This result has been a major obstacle to the development of distributed algorithms

under this model, despite its potential usefulness. Unlike the FLP impossibility result

for asynchronous systems, which has been widely studied by the scientific community

(e.g., Ben-Or (1983); Chandra & Toueg (1996); Dwork et al. (1988); Neves et al.
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(2005); Rabin (1983)), the Santoro-Widmayer result has eluded researchers for the

past 20 years. Since the fault model in which the FLP result applies (i.e., process crash

failures) can be emulated in the communication failure model, it is easy to see how

the uncertainty that renders agreement impossible in the FLP result is similar to the

uncertainty that gives rise to the Santoro-Widmayer impossibility.

Most of the existing approaches to circumvent the FLP result cannot be directly ap-

plied to the Santoro-Widmayer result. These usually rely on time or failure detection.

Unfortunately, strengthening the timing assumptions clearly does not help because the

result is valid under the synchronous model. While failure detection is possible (be-

cause of the assumed timing model), it cannot be relied upon because faults are dy-

namic, and therefore past behavior is not indicative of future behavior. Randomization,

however, is an approach that can be applied to circumvent this impossibility result, as

shown in this thesis.

Exploration of the Communication Failure Model. The thesis explores the com-

munication failure model in increasingly weaker variants until an efficient intrusion-

tolerant consensus protocol is devised, which is then subject to a comparative perfor-

mance evaluation.

While many formulations of consensus exist, the problem is studied in its binary

variant where each process proposes a value 0 or 1, and then they have to decide on

one of the proposed values. This simple problem definition allows us to focus on

what is essential. First, this problem embodies the most difficult challenge in design-

ing agreement protocols, which requires circumventing the associated impossibility

results. Developing extensions from binary consensus to other variants is often an

easier task because the underlying limitations of agreement have already been dealt

with (Correia et al., 2006). Second, in this work, the pursuit for efficiency is consid-

ered a major objective. Performance often stems primarily from the assumed system

model, which can then be complemented with particular heuristic optimizations em-

ployed by the algorithms (some of these are later explored in Chapter 7). Any perfor-

mance gains obtained through solving binary consensus in the communication failure

model will naturally percolate to other higher-level protocols. Third, focusing on bi-

nary consensus simplifies the comparison of our algorithms to those already evaluated

(see Chapter 3) and provides empirical data that can justify the system assumptions.

11
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Consensus with communication faults of restricted source. The problem is first

approached under a simplified variation of the communication failure model that re-

stricts the number of processes where transmission faults can originate. The system

is assumed to be synchronous and faults can be of the omission (i.e., messages can

be lost) and corruption (i.e., messages can be modified) types. This essentially cap-

tures both unreliable communication and malicious behavior of nodes. Although the

fault pattern that can occur at each time step is restricted to originate at most in f

processes, these processes can arbitrarily change from one time step to another. The

interest of this model is purely theoretical because it is possibly unrealistic to restrict

the pattern of faults in this way. Nevertheless, despite being a restricted version of the

communication failure model, this model is still constrained by the Santoro-Widmayer

impossibility result. A randomized protocol is presented that can tolerate f process at

the source of transmission faults per step, with n ≥ 3f + 1.

Circumventing the Santoro-Widmayer impossibility result. The following step

focused on truly circumventing the Santoro-Widmayer impossibility result, i.e., admit-

ting more than n−2 omission faults regardless of their pattern. This was accomplished

through a randomized algorithm under a synchronous system model. This step is a

milestone in the thesis and represents a major theoretical contribution because it is the

first algorithm that effectively achieves this objective. The algorithm allows for k pro-

cesses to decide on a binary value in a system with n processes such that k > n
2
. The

safety properties of consensus (i.e., validity and agreement) are ensured even with an

unrestricted number of faults, while progress is attained in steps where the number of

faults is � ≤ ⌈n
2
⌉(n − k) + k − 2. These properties are adequate for wireless ad-hoc

networks because they allow the algorithm to tolerate arbitrary periods of unrestricted

message loss without compromising safety.

Byzantine consensus in wireless ad hoc networks. The final step in our exploration

of the communication failure model was directed at obtaining an efficient intrusion-

tolerant protocol. To this end, we designed, implemented and evaluated Turquois - a

binary consensus protocol for wireless ad hoc networks that tolerates both dynamic

omission faults and Byzantine processes. It fills an important gap in the distributed

12
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computing literature by being the first intrusion-tolerant consensus algorithm specifi-
cally designed for wireless ad hoc networks. Its characteristics are close to ideal for
wireless communication. It assumes an asynchronous system model subject to dy-
namic communication failures and a static subset of Byzantine processes. This makes
it subject to both the FLP and the Santoro-Widmayer impossibility results. For this rea-
son, Turquois represents a very challenging design from a theoretical perspective. It is
possibly the weakest model on which Byzantine consensus has been solved. Neverthe-
less, the algorithm is optimal in the number of Byzantine processes that tolerates (i.e,
f ≤ ⌊n−1

3
⌋), and, like in the previous iteration, it ensures safety despite arbitrary pe-

riods of unrestricted message omissions. Progress is ensured in communication steps
where the number of omissions is � ≤ ⌈n−f

2
⌉(n − k − f) + k − 2. Fundamental

to the operation of Turquois is a novel mechanism for message authentication based
on computationally inexpensive cryptographic hash functions, which avoids the use of
public-key cryptography during normal execution.

Turquois is subject to a thorough comparative performance evaluation with the
protocols of Bracha (Bracha, 1984) and ABBA (Cachin et al., 2000). This evaluation
validates our modeling claims. The results show that, as the number of the nodes in
the system increases, Turquois outperforms the other protocols by more than an order
of magnitude in many scenarios. For example, in executions with 16 processes and
no process failures, Turquois took on average 88 ms to reach consensus, while ABBA
took 1914 ms and Bracha’s took 7321 ms.

1.3 Contributions

The core contributions of this thesis are summarized into the following points, along
with the related publications:

1. A detailed experimental evaluation of existing intrusion-tolerant agreement
protocols. Our first contribution involved the implementation of several agree-
ment protocols in two different platforms (i.e., Linux and Windows Mobile), and
their evaluation under different environmental settings including wired and wire-
less networks. It was the first time that randomized intrusion-tolerant protocols
were analyzed with respect to their practical performance, providing revealing
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results. Notably, the results show that there is a significant gap between theory

and practice, in the sense that the theoretical analysis of these protocols (in par-

ticular, those of the local coin class) is highly pessimistic when compared to what

is observed in practice. The results obtained in this step were also fundamental

into identifying the performance bottlenecks associated with intrusion-tolerant

protocols in wireless environments, which lead to the development of a more ap-

propriate system model, based on the communication failure model of Santoro

and Widmayer.

• Experimental Comparison of Local and Shared Coin Randomized Con-
sensus Protocols
Henrique Moniz, Nuno Neves, Miguel Correia, and Paulo Veríssimo 25th

IEEE Symposium on Reliable Distributed Systems, October 2006

• Intrusion Tolerance in Wireless Environments: An Experimental Eval-
uation
Henrique Moniz, Nuno Neves, Miguel Correia, António Casimiro, and

Paulo Veríssimo

13th IEEE Pacific Rim Dependable Computing Conference, December 2007

• RITAS: Services for Randomized Intrusion Tolerance
Henrique Moniz, Nuno F. Neves, Miguel Correia, and Paulo Veríssimo

IEEE Transactions on Dependable and Secure Computing, accepted for

publication, 2010

2. Circumvention of the Santoro-Widmayer impossibility result. The obtained

system model for wireless ad hoc networks is bound by a 20-year old impos-

sibility result. This result states that there is no deterministic solution to any

non-trivial agreement problem if more than n − 2 messages can be lost at any

communication step in a system with n processes. This important theoretical

lower bound was circumvent for the first time by resorting to randomization.

A binary consensus algorithm is presented that preserves safety despite an un-

bounded number of omission failures, and guarantees progress in communica-

tion steps where the number of omission failures is � ≤ ⌈n
2
⌉(n − k) + k − 2.
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Additionally, these characteristics are very useful for wireless environments be-
cause they allow the algorithm to cope with periods of arbitrary message loss,
while ensuring progress in periods with better reliability (every time the upper
bound � holds).

• A Distributed Systems Approach to Airborne Self-Separation
Henrique Moniz, Alessandra Tedeschi, Nuno F. Neves, and Miguel Correia
Computational Models, Software Engineering and Advanced Technologies

in Air Transportation, L. Weigang, A. Barros, and I. Oliveira (eds.), IGI

Global, 2009

• Randomization can be a Healer: Consensus with Dynamic Omission
Failures
Henrique Moniz, Nuno F. Neves, Miguel Correia, and Paulo Veríssimo
23rd International Symposium on Distributed Computing, September 2009

• Randomization can be a Healer: Consensus with Dynamic Omission
Failures
Henrique Moniz, Nuno F. Neves, Miguel Correia, and Paulo Veríssimo
Distributed Computing, accepted for publication, 2010

3. Turquois, a Byzantine binary consensus protocol for wireless ad hoc net-
works. This protocol was designed over an asynchronous model that combines
dynamic transmission omission failures with Byzantine process failures. It is
bound by the impossibility results of FLP (Fischer et al., 1985) and Santoro-
Widmayer (Santoro & Widmeyer, 1989). Turquois employs a novel message au-
thentication mechanism that avoids the use of computationally expensive public-
key cryptography, this way sparing computational resources and keeping the au-
thentication payload within a fixed length. The protocol is extremely efficient
in wireless ad hoc networks and, in some experiments, outperformed existing
protocols by more than an order of magnitude.

• Turquois: Byzantine Consensus in Wireless Ad hoc Networks
Henrique Moniz, Nuno F. Neves, and Miguel Correia
40th IEEE/IFIP International Conference on Dependable Systems and Net-

works, July 2010
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• Efficient Intrusion-Tolerant Consensus in Wireless Ad hoc Networks
Henrique Moniz, Nuno F. Neves, and Miguel Correia

journal paper, under preparation, 2010

1.4 Thesis Overview

Chapter 2: Background. This chapter provides background on the problem at hand.

In particular, it presents an historical perspective on the problem of consensus and other

related agreement problems. It also provides an overview of group communication

systems, which are related to the evaluated intrusion-tolerant protocols of Chapter 3,

and surveys related research on wireless ad hoc networks.

Chapter 3: Assessment of Intrusion-Tolerant Protocols. This chapter carries out

a detailed performance assessment of existing intrusion-tolerant protocols under sev-

eral environmental settings - both wired and wireless. The knowledge obtained from

this work brings insight into the various tradeoffs involved in the implementation of

intrusion-tolerant protocols, which later supports the design of new protocols specifi-

cally tailored for wireless ad hoc networks.

Chapter 4: Consensus with Faulty Transmissions of a Restricted Source. From

the insights obtained in the previous chapter, this chapter introduces a system model

more adapted to wireless environments than the ones that are typically employed in

the design of intrusion-tolerant protocols: the communication failure model, which

considers the existence of ubiquitous message transmission failures. This model is

bound by the Santoro-Widmayer impossibility result, which rules out deterministic

practical solutions to any non-trivial agreement problem. This chapter also presents

the first of an incremental series of steps into attaining an efficient intrusion-tolerant

consensus protocol under the communication failure model. A consensus protocol

is obtained by restricting the number of processes per round at the source of faulty

transmissions. This makes the protocol resilient to failures of dynamic origin, but

limits the pattern of transmission faults that may occur in each step.
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Chapter 5: Consensus with Dynamic Omission Failures. This chapter shows how
to circumvent the Santoro-Widmayer impossibility result by resorting to randomiza-
tion. It presents a binary consensus protocol whose characteristics make it interesting
for wireless ad hoc networks. The protocol ensures safety in the presence of an unre-
stricted number of transmission omission failures, and guarantees progress in commu-
nication rounds where the number of omissions is within a certain bound �.

Chapter 6: Consensus with Byzantine Processes and Dynamic Omission Failures.
This chapter presents Turquois, a binary consensus protocol for wireless ad hoc net-
works that tolerates Byzantine processes. The protocol circumvents two impossibility
results: the FLP and the Santoro-Widmayer results. It assumes an asynchronous model
and is optimal in the number of Byzantine processes that tolerates. Like the previous
iteration, ensures safety despite arbitrary periods of unrestricted message omissions.

Chapter 7: Performance Evaluation of Turquois. This chapter presents a compar-
ative performance evaluation of Turquois. The protocol was prototyped and compared
with the binary consensus protocols evaluated in Chapter 3. The protocols are tested
both in real-world 802.11b wireless ad hoc networks and in a wireless network simu-
lator. Amongst other conclusions, the results show that, as the system scales, Turquois
outperforms the other protocols by more than an order of magnitude.

Chapter 8: Conclusions and Future Research Directions. This chapter reviews
the work described throughout this thesis and highlights its most important contribu-
tions. Additionally, it identifies future research directions to further extend this work,
e.g., to multi-hop environments and/or dynamic process groups.
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Chapter 2

Background

This chapter provides a background of previous work related with the thesis. It is orga-

nized in the following way. Section 2.1 discusses the role of agreement in distributed

systems. In particular, it focuses on consensus, which is the specific agreement prob-

lem addressed in this work. It defines the problem formally, discusses the models

in which it can be addressed and the associated computational limitations. Section

2.2 overviews other agreement problems related to consensus such as leader election,

broadcasting problems, quorum systems, and others. Section 2.3 presents an overview

of group communication protocol stacks. These are suites of protocols that provide co-

ordination services like group membership and atomic broadcast, of which consensus

is a fundamental building block. Two of the stacks described in this section are subject

to a performance assessment in Chapter 3. Finally, Section 2.4 discusses consensus

and related agreement problems in the context of wireless ad hoc networks.

2.1 Consensus in Distributed Systems

Agreement has a prominent role in distributed computing. It is essential that a set of

processes, belonging to a distributed system, is able to agree on one or more values. In

particular, it is important that this task is attained in the presence of failures. So even if

some processes behave in arbitrary ways, either due to accidental of malicious causes,

those processes that operate correctly must be able to reach an agreement.
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The most common way of encapsulating the problem of reaching agreement is

through the consensus abstraction (Turek & Shasha, 1992), which is the main focus of

this work. The problem of consensus is usually defined along the following lines: each

process from the group proposes a value, and then they have to decide on a common

result, obtained from the original proposals. Basically, any kind of coordinated activity

can be carried out by resorting to consensus as a primitive. For instance, this problem

has been shown to be related to state-machine replication (Schneider, 1990) and atomic

broadcast (Correia et al., 2006; Hadzilacos & Toueg, 1993).

This section provides an overview of the consensus problem in systems where pro-

cesses communicate by exchanging messages with each other. It starts by defining the

correctness properties of consensus, and then it presents the system models in which

consensus is often approached. Specifically, it explains how time and faults are mod-

eled. It then discusses the conditions in which consensus is unsolvable and explains

two important results in this area: the FLP and the Santoro-Widmayer impossibility

results.

2.1.1 Problem Statement

The consensus problem usually assumes a distributed system composed by a known set

of n processes. A process is deemed correct if it does not fail, i.e., it correctly follows

the protocol until conclusion. Otherwise, the process is considered to be faulty. A

consensus execution is initiated when every correct process pi proposes an input value

vi, and terminates after every correct process decides on a common value v.

More formally, consensus is defined by three properties: validity, agreement, and

termination. The definition of these properties may vary slightly, depending on the

underlying system model, but the differences are usually only a matter of adjusting the

definitions to the particular semantics of the model. Below is the typical formulation

of these properties:

Validity. If every correct process proposes the same value v, then any process that

decides, decides v.

Agreement. No two correct processes decide differently.
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Termination. Every correct process decides.

The agreement and termination properties are self-explanatory. Agreement ensures
consistency, i.e., if some process decides a value v, then no other process can decide
a different value. Termination ensures that processes must decide. The purpose of
validity is not so obvious. Essentially, it exists to rule out trivial solutions to consensus.
Without this property, processes could simply decide on some predetermined value v′,
even without exchanging any message, because this does not violate the other two
properties.

These properties can be broken down in two different categories: safety and live-

ness. Safety restricts the bad things that can happen in the system. Liveness ensures
that good things eventually happen. Both validity and agreement are safety properties,
while termination is a liveness property.

2.1.2 System Models

The consensus problem can be formulated under several different system models. The
two main dimensions of a distributed system model are the timing model and the fault
model. These are of particular importance in order to understand the thesis and they
are discussed in the following two subsections.

2.1.2.1 Timing Model

The timing model defines how the delays required to perform specific actions are
bounded. Examples of such delays are the time required for a message to be sent
from one process to another and the time required for a process to compute something.
The timing model can vary between two extremes: synchronous and asynchronous.

Synchronous Systems

It is said that a system is synchronous if there is a known bound on the message
transmission delays and relative speeds of processes. Hadzilacos and Toueg define
a synchronous system as one where the following properties are true (Hadzilacos &
Toueg, 1993):
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• there is a known upper bound on the time required by any process to execute a

computational step;

• every process has a local clock with a known bounded rate of drift with respect

of real time;

• there is a known upper bound on message delay; this consists of the time it takes

to send, transport, and receive a message over any link.

These properties are essential for processes to benefit from timing information in

their execution, e.g., they allow the detection of process crashes or message omissions

by the use of timeouts. A common consequence of these properties is that in many

synchronous systems it is assumed that processes execute in lockstep. The execution

consists of synchronous rounds. In each round every process can send a message

to other processes, receive messages transmitted by other processes, and perform a

computation based on its state and the set of messages just received.

Asynchronous Systems

A system is asynchronous if there are no timing assumptions whatsoever. Process

execution speeds, message transmission delays, and clock drift rates are completely

arbitrary. For example, the time required for a message to be sent from one process

to another is unknown. As a result, it becomes impossible to use timeouts to detect a

message loss or a process failure. The asynchronous model is, in principle, preferable

to model systems deployed in hostile environments. This is because the independence

from timing assumptions makes a system more resilient to attacks in the domain of

time (e.g., denial of service attacks). For example, a consensus protocol designed for

an asynchronous system will be able to preserve its safety properties regardless of

how long messages take to travel the network, and, as long as messages eventually

arrive, it will terminate correctly. On the other hand, since algorithms are unable to

incorporate any timing information in their execution, the asynchronous model is much

more restrictive in the problems it allows to solve.
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2.1.2.2 Fault Model

The fault model defines the types of faults that are assumed to occur in the system.

A fault occurs when a system component (i.e., a process or a link) deviates from its

correct behavior. Within the context of this work, faults will be classified in two main

classes: omissive faults and arbitrary (or Byzantine) faults. A fault is of the omissive

class when the affected component does not perform some action it was expected to.

Relevant examples of this class of faults are the crash of a process and a message loss

in a communication link. A fault is of the arbitrary class when the affected compo-

nent performs an action in a manner that is arbitrarily different from its specification.

An example is a compromised process that acts with malicious intend, and purposely

sends incorrect values to force the other processes to deviate from the properties of the

protocol, e.g., by forcing correct processes in a consensus protocol to decide different

values.

2.1.3 Impossibility of Consensus

Despite its simple definition, the solution of consensus in fault-tolerant distributed sys-

tems is far from trivial. These systems are supposed to operate correctly even if some

of their individual components are subject to failures. It is, then, when one starts to

consider the possibility of failures that the problem of consensus becomes much more

complex. In fact, depending on the assumptions that are made about the system, it may

happen that there is simply no deterministic solution to consensus.

This section discusses two important impossibility results of consensus: the FLP

result (Fischer et al., 1985), which states that consensus cannot be deterministically

solved in asynchronous systems if just one process can crash; and the Santoro-Widmayer

result (Santoro & Widmeyer, 1989), which states that consensus is impossible in sys-

tems with ubiquitous communication failures. As we will see from reading the follow-

ing two subsections, these two results occur in diametrically opposed models, which,

nevertheless, capture the same kind of uncertainty: the inability to detect permanent

failures.
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2.1.3.1 FLP Impossibility

The FLP impossibility is a classic result in distributed computing (Fischer et al., 1985).

It applies to asynchronous systems where communication is assumed to be reliable and

processes can fail. Essentially, it states that there is no deterministic algorithm that can

solve consensus in a system with n processes if only one process can potentially crash.

This precludes solutions to harder problems like Byzantine consensus, where processes

are also allowed to fail arbitrarily. Intuitively, the result comes from the fact that in an

asynchronous setting, it is impossible for a process that has not received a message to

know if the sender is faulty or just too slow. Since it is impossible to identify faulty

processes, the correct processes can find themselves, for example, in a state in which

they are waiting indefinitely for messages from a crashed process but have no way

of knowing that a failure has occurred. By formalizing this intuition, it was proved

that there is no deterministic consensus protocol that can guarantee the termination

property. This is a very well studied problem and through the years several solutions

have been proposed to circumvent it (see the following sections).

Partial Synchrony

Partially synchronous models were introduced as a way to circumvent the FLP

result (Dolev et al., 1987; Dwork et al., 1988). Although consensus was shown to have

no deterministic solution in asynchronous systems, it does not necessarily mean that

complete synchrony is needed to reach consensus. The goal is to identify the set of

synchrony assumptions that are both necessary and sufficient to solve consensus.

Dolev et al. (1987) break down the system into five parameters: processes, com-

munication, message order, transmission mechanism, and receive/send. Each param-

eter can then be either synchronous or asynchronous. For processes, it means that

a computational step can take arbitrarily long (asynchronous), or be bounded by a

known interval of time (synchronous). For communication, the situation is analogous.

For message order, it means that messages can be either delivered out of order (asyn-

chronous), or delivered according to their real time transmission times (synchronous).

For the transmission mechanism, it means that a process can send a message to at most

one process in an atomic step (asynchronous), or it can send a message to all processes
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in an atomic step (synchronous). For receive/send, it means that in an atomic step a

process cannot both send and receive (asynchronous), or it can it can receive and send

as part of the same atomic step (synchronous). The contribution of this work lies on

determining exactly on which combination of parameters consensus can and cannot be

deterministically solved. Their results are summarized in Table 2.1.

mt
00 01 11 10 00 01 11 10

pc

00 0 0 0 n 0 0 n 0
01 0 0 n 0 1 n n 1
11 n n n n n n n n
10 0 0 n n 0 0 n n

s = 0 s = 1

Table 2.1: The number crashed processes tolerated for each combination of system
parameters: (p) processes, (c) communication, (m) message order, (t) transmission
mechanism, and (s) receive/send. Synchrony is indicated by 1, and asynchrony by 0.
The corresponding table entries can be 0 (no process crash tolerated), 1 (only 1 process
crash tolerated), or n (every process in the system can crash).

Dwork et al. (1988) present a concept of partial synchrony of particular practical

utility. The intuition of this work is that, while the existence of bounds on communi-

cation and processing delays is necessary to solve consensus, the knowledge of their

exact values is not. They used the concept of partial synchrony in a distributed sys-

tem, which lies between the completely synchronous and completely asynchronous

models. There are two cases where the communication (or the computation) can be

partially synchronous. One is to assume that there exists an upper bound on commu-

nication (or computation) time, but its value is unknown. The other is to consider that

exists an upper bound which is known but it only holds after some unknown time.

From these scenarios, they devise three models of partial synchrony: partially syn-

chronous communication and synchronous processors, partially synchronous commu-

nication and processors, and partially synchronous processors and synchronous com-

munication. For each of these three timing models, they prove that consensus can be

solved with n ≥ 2f + 1 processes with f processes being allowed to fail by crashing,

and with n ≥ 3f + 1 with f processes allowed to fail arbitrarily.
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Failure Detectors

The failure detector approach was introduced by Chandra & Toueg (1996). Since

the impossibility to solve consensus in asynchronous systems arises from being unable

to distinguish a crashed process from a very slow one, Chandra and Toueg augment

the asynchronous model with a failure detection mechanism that can provide this in-

formation to processes. It is assumed that these failure detectors can make mistakes

(i.e., they are not necessarily perfect), and that processes only fail by crashing.

In the failure detector model, each process has access to a local unreliable failure

detector module that is responsible for detecting and maintaining a list of processes

suspected to have crashed. There are several classes of failure detectors. These are

specified according to two properties: completeness and accuracy. Completeness re-

quires the failure detector to eventually suspect every process that crashes, and ac-

curacy restricts the mistakes a failure detector can make when suspecting processes.

More formally, two types of completeness properties and four types of accuracy prop-

erties were defined:

Strong completeness. Eventually every process that crashes is permanently suspected

by every correct process.

Weak completeness. Eventually every process that crashes is permanently suspected

by some correct process.

Strong accuracy. No process is suspected before it crashes.

Weak accuracy. Some correct process is never suspected.

Eventual strong accuracy. There is a time after which correct processes are not sus-

pected by any correct process.

Eventual weak accuracy. There is a time after which some correct process is never

suspected by any correct process.

A class of failure detectors is obtained by combining one of the two completeness

properties with one of the four accuracy properties. This gives a total of eight classes
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summarized in Table 2.2. Basically, while this model makes possible the use of asyn-

chronous protocols, timing assumptions must still be made to implement the failure

detector module.

Accuracy
Completeness Strong Weak Eventually Strong Eventually Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S ◇P ◇S

Weak Weak Eventually Weak
Q W ◇Q ◇W

Table 2.2: The eight classes of failure detectors.

An example implementation of a failure detector is one where every process q

sends a periodic q-is-alive message to all other processes. When a process p does not

receive this message after a given time, it adds q to a list of suspected processes. If later

p receives a q-is-alive message, it is because it has erroneously suspected q. Process

p can then remove q from the list of suspects and, by increasing the timeout for the

q-is-alive message, it may avoid making the same mistake in the future. Although this

example fails to implement a failure detector with even the eventual weak accuracy

property, in practice it can hold this property for a ‘long enough’ period of time. In this

context, long enough means the necessary time for the consensus protocol to reach a

decision.

While it is possible to extend the failure detector approach to systems subject to

Byzantine faults (Doudou et al., 2002; Kihlstrom et al., 1997; Malkhi & Reiter, 1997),

there is a downside in doing so. Unlike crash failure detectors, arbitrary failure de-

tectors cannot be designed independently of the protocol that will use them. A strong

association is required between arbitrary failure detectors and the specific protocols

that use them. As such, the design of such detectors has to be made on a case-by-case

basis depending on the supported protocol (Baldoni et al., 2008; Doudou et al., 2002).

Wormholes

Despite their usefulness, failure detectors are not particularly adequate for systems

subject to Byzantine faults. For such a fault to be detected it would be necessary for
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the failure detector to perfectly understand the semantics of whatever protocols are

using its service. It would have to closely monitor every message transmission that

occurs in the system and be aware of all the badness that could occur in these message

exchanges. Additionally, there can be protocols were an invalid message does not

necessarily translate into a malicious action. In such cases, it would be extremely

difficult to distinguish a corrupt process from a correct one that made a honest mistake.

Wormholes are another way of augmenting the basic system model in order to

solve consensus (Correia et al., 2005; Neves et al., 2005; Veríssimo, 2002). They

are materialized through architectural hybridization (Veríssimo et al., 2003), which

captures the notion that certain parts of the system can be enhanced to offer stronger

properties otherwise not guaranteed by the “normal” environment. In such a setting,

the problem of solving consensus can be tackled by having a few of its critical steps

executed inside the wormhole which, by design, can be immune to Byzantine faults

and/or offer timely behavior.

Neves et al. solved the consensus problem with wormholes (Neves et al., 2005).

In their model the system is divided in two parts: a payload system which is the nor-

mal environment where processes carry out their execution, and a wormhole which

is a distributed component with local parts on each node and a private network with

enough synchrony guarantees to ensure that its services eventually terminate. While

the payload system is subject to Byzantine failures, it is assumed that the wormhole

is a secure component only subject to crash failures. This approach, however, can be

difficult to implement in certain environments. For instance, in a wireless or wide-area

network it would be difficult to obtain a private network with the necessary synchrony

guarantees. Even if only a local wormhole is assumed, it would be hard to implement

in nodes with limited computational power, such as a wireless sensor device.

Randomization

Randomization is fundamentally different from other solutions to circumvent the

FLP result. The approaches described so far rely, either implicitly or explicitly, on

incorporating timing assumptions into the system model in order to guarantee termina-

tion. Those protocols are deterministic: given a certain input and message scheduling,

the same output will always be produced at a certain step of the protocol. Rather than
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deterministic, randomized protocols are probabilistic. There are certain steps of the

protocol that may use a random value, chosen according to a probability distribution.

This means that even a computationally unbounded adversary cannot completely de-

termine the result of a disruptive strategy because the outcome is affected by a random

element outside of its control. Consequently, any strategy employed by the adversary

is dependent on ‘luck’ in order to prevent correct processes from reaching agreement.

The same reasoning applies for correct processes. They also rely on a ‘lucky’ event

to reach a decision. The difference is that in a multi-round protocol, the correct pro-

cesses only need that lucky event to happen once, while the adversary needs its lucky

event to happen an infinite number of times to prevent correct processes from reaching

a decision. If the correct processes are unable to reach agreement in a given round,

they just need to carry out the execution for another round. No matter how small the

probability for correct processes to reach agreement on any individual round, given an

infinite number of rounds, the probability that correct processes decide has asymptotic

value 1.

The biggest advantage of randomization is that the system model requires no addi-

tional timing assumptions. The only change is a slight modification to the termination

property of consensus. Instead of stating that the correct processes must decide, it is

stated that the correct processes eventually decide with probability 1. This allows the

system to remain completely asynchronous and safeguards the protocols from attacks

in the domain of time.

Randomized consensus protocols are based on a virtual coin toss operation that

returns a random value to the processes that execute it. Depending on the implementa-

tion, this value might return 0 or 1 with the same probability (i.e., a fair coin flip), or it

might return a value chosen from a larger domain. The protocols can be categorized in

one of two classes, depending on how they implement the coin toss operation. There

are those based on a local coin operation that is performed independently by each pro-

cess, and there are those based on a shared coin operation that returns the same value

to all processes, which is typically implemented by resorting to cryptographic tech-

niques. Both classes of protocols were introduced independently in 1983 by Ben-Or

(1983) (local coin) and Rabin (1983) (shared coin). Ben-Or presented two algorithms,

tolerating respectively crash and Byzantine process failures. The crash protocol toler-

ated f faulty processes out of n ≥ 2f + 1, and the Byzantine protocol tolerated f out
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of n ≥ 5f +1. Both protocols terminate in an expected exponential number of rounds.

Rabin’s protocol tolerates Byzantine faults and the resilience was f faulty processes

out of n ≥ 10f+1. The protocol achieves termination in a constant number of rounds.

In the years that followed, several randomized binary consensus protocols were

presented, both following Ben-Or’s local coin-style protocol (Bracha, 1984) and Ra-

bin’s shared coin approach (Canetti & Rabin, 1993; Toueg, 1984). A detailed survey on

early work can be found in Chor & Dwork (1989). Among the several goals pursued,

we emphasize the quests for optimal resilience in the number of Byzantine processes,

constant expected round complexity, and practical coin sharing. Protocols with opti-

mal resilience, i.e., that tolerate f out of 3f + 1 faulty processes, were presented quite

early, both for local coins (Bracha, 1984) and for shared coins (Toueg, 1984). Con-

stant expected round complexity with optimal resilience was for long an objective of

this line of research. The first protocol to attain this goal was presented by Canetti &

Rabin (1993). This protocol is based on shared coins, but has constant expected round

complexity at cost of an enormous number of transmitted messages (many thousands

even for low numbers of processes). The ABBA protocol also terminates in a small

constant expected number of rounds and sends a much lower number of messages than

the protocol of Canetti and Rabin (Cachin et al., 2000). It does so, however, at the cost

of incurring in computationally expensive cryptographic operations. In relation to coin

sharing, the original protocol of Rabin requires previous distribution of data among

the processes for each coin toss operation (Rabin, 1983), something that can be quite

impractical for real applications. This requirement was later removed, and more recent

protocols do not need this previous distribution of data (Cachin et al., 2000; Canetti &

Rabin, 1993).

2.1.3.2 Santoro-Widmayer Impossibility

The Santoro-Widmayer impossibility result affects distributed systems subject to fail-

ures on the communication links (Santoro & Widmayer, 2007; Santoro & Widmeyer,

1989). It was formalized for a variant of consensus called k-agreement, in which

k > ⌈n/2⌉ out of n processes must agree on a binary value v ∈ {0, 1}. It states that

there is no finite time deterministic algorithm that allows a system with n processes
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to reach k-agreement if more than n − 2 messages can be lost during a communica-

tion step. This is a very discouraging result because the crashing of a single process

necessarily results in n − 1 transmission failures, rendering this form of agreement

impossible. Moreover, this result is produced under strong timing assumptions where

both the processes’ relative processing times and communication delays are bound by

known constants (i.e., a synchronous system) and holds regardless of processes fail-

ures.

Therefore, on one hand we have asynchronous systems bound by the FLP impos-

sibility result (Fischer et al., 1985), where agreement is impossible even if communi-

cation is perfectly reliable. On the other hand, due to the Santoro-Widmayer result, we

have systems that are completely synchronous, but where agreement is also impossi-

ble because communication is unreliable. While several solutions have been proposed

over the years to circumvent the FLP impossibility, the result of Santoro and Wid-

mayer has not received comparable attention. The reason for this is likely to be related

with some lack of practical interest in this model prior to the emergence of wireless

ad hoc communication. For distributed systems based on wired networks, it was safe

and convenient to assume end-to-end reliable delivery mechanisms, since the imple-

mentation of such mechanisms does not represent a significant performance overhead.

Furthermore, except for randomization, the techniques that circumvent the FLP result

are based, implicitly or explicitly, on strengthening the timing assumptions. These do

not transpose well to the Santoro-Widmayer impossibility result because the system

model is already completely synchronous.

The problem of reaching agreement with unreliable communication links goes back

to 1975, when Akkoyunlu et al. (1975) pointed out that an agreement between two pro-

cesses connected by unreliable communication paths leads to an infinite exchange of

messages. In 1978, Gray identified essentially the same problem by formulating the

generals paradox (Gray, 1978). He showed that there is no deterministic protocol

that allows agreement between two processes connected by an unreliable communi-

cation link. This problem is often referred to as the coordinated attack problem from

the formalization of Lynch (1997). Varghese and Lynch proposed a randomized so-

lution to the coordinated attack problem where the protocol runs for a fixed number

of rounds and agreement is reached with a probability proportional to the number of

rounds (Varghese & Lynch, 1996).

31



2. BACKGROUND

The work of Chockler et al. (2008) presents algorithms that solve consensus in

systems where nodes fail only by crashing and messages can be lost due to collisions.

Their solution assumes that processes have access to a collision detector that deter-

mines when message collisions occur, which allows nodes to take recovery measures.

Message omissions other than those due to collisions, however, are not covered by

their model.

Two other works also study consensus with dynamic communication failures. The

work of Biely et al. (2007) does so by addressing the problem in the context of the

heard-of model of Charron-Bost & Schiper (2007). This model permits a fine-grained

specification of the fault patterns allowed in the system, thus being able to distinguish

the cases where the fault pattern exceeds the lower bound of Santoro and Widmayer

but in a way that is not harmful to the system (e.g., n − 1 faults are harmful to the

system if they originate at the same process, but may be acceptable if they occur at

different process).

The work of Schmid et al. (2009) presents an analogous contribution in the sense

that it restricts the number of faults that each process may experience, such that the

harmful fault patterns are avoided. None of these two contributions, however, deal

with the essence of the Santoro-Widmayer impossibility result, where for instance the

failure of every transmission from a single process renders consensus impossible. This

implies that consensus remains unsolvable if, in a wireless ad-hoc network, a single

node falls out of range of every other node for an unknown period of time.

2.2 Related Problems of Consensus

While consensus is a central problem in distributed computing, there are several other

problems that are related and that have been extensively studied. This section provides

an overview of some of the most representative of these problems, and it is organized in

three categories: mutual exclusion and leader election, broadcasting, and replication.
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2.2.1 Mutual Exclusion and Leader Election

Mutual Exclusion. Mutual exclusion ensures that concurrent processes access shared

resources in a serialized manner, i.e., one process at a time. This is often referred as

the critical section (CS) problem in the context of operating systems. In a distributed

system, however, processes have to coordinate their access to the CS solely through

message passing. The problem is formalized through two properties. The safety prop-

erty ensures that at most one process enters CS at a time. The liveness property en-

forces fairness by ensuring that any request to enter the CS is eventually granted. This

prevents both deadlock and starvation.

Algorithms for distributed mutual exclusion can be permission-based or token-

based. In permission-based algorithms, introduced by Ricart & Agrawala (1981), a

process that wishes to enter the CS asks the other processes for permission, and enters

the CS when a certain quorum of permissions is granted. If two or more processes

are simultaneously interested in accessing the CS, then the conflict is resolved through

some priority-based mechanism.

In token-based algorithms, exemplified by token ring networks (Bux et al., 1983),

the right to enter the CS is materialized by a token, a special object unique in the

system. The token is then passed around in a manner that each process is granted the

token infinitely often and there is only one token in the system at any given time, thus

ensuring both safety and liveness.

Distributed Mutual Exclusion has been shown to be strictly harder than consen-

sus in the sense that the weakest failure detector that can solve mutual exclusion is

stronger than the weakest failure detector that can solve consensus (Delporte-Gallet

et al., 2005). The weakest failure detector T for mutual exclusion lies between the

eventually perfect failure detector ⋄P and the perfect failure detector P . For consen-

sus, a failure detector of the ⋄W class is sufficient.

Leader Election. This problem considers the issue of electing one process within

a system to perform a special role. This is considered a more general problem than

mutual exclusion because, for example, a leader election algorithm can be used to

determine the process that enters the critical section. In the leader election problem,

at any given moment, at most one process is considered to be the leader by every
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correct process in the system (including the leader itself). The algorithm of Chang &

Roberts (1980) for ring networks and the bully algorithm of Garcia-Molina (1982),

which considers process crashes in a synchronous system, represent initial seminal

work in this problem.

Like mutual exclusion, the leader election problem has been proved to be strictly

harder than consensus. The weakest failure detector with which consensus can be

solved is not sufficient to solve leader election. For example, although a strong failure

detector S is sufficient to solve consensus, it is not sufficient to solve leader elec-

tion (Sabel & Marzullo, 1995).

A useful relaxation of leader election is eventual leader election, which guarantees

that eventually at most one process is recognized as the leader. This is abstracted

through the Ω oracle (Chandra et al., 1996b). Queries to the Ω oracle return a process

ID and satisfy the eventual leadership property: there is a point in time after which all

queries return the same process ID. The usefulness of this abstraction is that it has been

shown to be sufficient to solve consensus. For example, the Paxos protocol is based on

such an idea of eventual leadership (Lamport, 1998).

2.2.2 Broadcasting

Broadcasting in distributed systems requires coordination amongst processes to en-

sure they receive consistent information. For example, if a sender process crashes in

the middle of a broadcast operation or if the network is unreliable, then it might be

possible that some processes receive the message while others do not. An in-depth

overview of broadcasting and related related problems in distributed systems can be

found in (Hadzilacos & Toueg, 1993).

Reliable Broadcast. This problem is the weakest amongst broadcasting primitives

discussed in this section. In essence, reliable broadcast requires that (1) all correct

processes deliver the same set of messages, and (2) if the sender is correct then its

message is delivered.

Reliable Broadcast in strictly weaker than consensus. The fact the reliable broad-

cast does not require a strong termination property like consensus (i.e., processes might
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never deliver a message if the sender is not correct), makes this problem solvable in

asynchronous systems.

Atomic Broadcast. This form of broadcasting imposes a total ordering on the deliv-

ery of messages. It can be seen as a reliable broadcast with the additional property that

all correct processes deliver the messages by the same order. More formally, if two

correct processes p and q deliver messages m and m′, then p delivers m before m′ if

and only if q delivers m before m′. Atomic broadcast has been shown to equivalent to

consensus in asynchronous systems in the sense that one problem can be reduced to

another (Chandra & Toueg, 1996; Correia et al., 2006).

Terminating Reliable Broadcast. With respect to reliable broadcast, this problem

imposes the additional property that some message must be delivered even if the sender

is faulty. This assumes that processes know when a broadcasting operation is impend-

ing. So, in the case that the sender is faulty, the problem specification allows the

delivery of a special message Fs stating that the sender s is faulty. Otherwise, if the

sender s is correct, then correct processes have to deliver the message m broadcast by

s. Terminating reliable broadcast is strictly harder than consensus. It requires a perfect

failure detector P, according to Chandra & Toueg (1996).

2.2.3 Replication

State Machine Replication. If two nodes, starting with the same state, execute ex-

actly the same deterministic sequence of commands, then they will evolve to an equal

state. State machine replication exploits this principle in order to implement fault-

tolerant services in distributed systems (Schneider, 1990). It is a well-known paradigm

in distributed computing. At the heart of state-machine replication is a protocol that

totally orders the messages carrying the commands to be executed by the replicas.

This can be achieved, for instance, through an atomic broadcast protocol, or through a

consensus protocol that allows processes agree on the order of message processing.

State machine replication was first proposed by Lamport (1978, 1984). The ap-

proach was later elaborated by Schneider (1990). Oki & Liskov (1988) were the first

to create a practical implementation of state machine replication that tolerated process
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crashes, while one of the early Byzantine fault-tolerant implementations, coined BFT,

was by Castro & Liskov (1999). In BFT, there are clients and servers. The clients

issue requests to the servers, then requests are processed by the servers in total or-

der, and a reply is returned to the clients. The servers are either primary or backup.

There is only one primary at any given moment in the system. The client requests

are issued directly to the primary, which in turn multicasts the request to the backups.

The replies are transmitted to the client by all servers. The client waits for a certain

number of replies with the same result in order to obtain the response. This comprises

the normal operation of the algorithm. In case a primary fails, a view change must

occur and the servers must agree on a new primary. View changes are triggered by

timeouts. After a view change the service resumes to its normal operation. Several

other systems have been proposed over the years that improve in one way or another

the original BFT protocol, these include the BASE (Castro et al., 2003), Q/U proto-

col (Abd-El-Malek et al., 2005), HQ (Cowling et al., 2006), Steward (Amir et al.,

2010), Prime (Amir et al., 2008), Zyzzyva (Kotla et al., 2008), Aardvark (Clement

et al., 2009), and Spin (Veronese et al., 2009).

Quorums. A quorum system is a collection of subsets of processes such that any two

subsets intersect in one or more elements. It is this intersection property that makes

quorum systems interesting for coordinating actions in a distributed system and led

to their application to a multitude of scenarios, including mutual exclusion (Barbara

& Garcia-Molina, 1986; Cohen, 1993; Garcia-Molina & Barbara, 1985) and replica-

tion (Fu, 1990; Herlihy, 1986). For example, in quorum-based shared memory, a data

item is timestamped and written to some quorum of servers. A client that wishes to ac-

cess this data item invokes a read operation on some (possibly different) quorum. The

intersection property of quorums ensures that the client has access to the most recent

write, which is identified by comparing the timestamps from each server.

Malkhi & Reiter (1998) were the first to study these quorum systems in the con-

text of Byzantine faults. They introduce the concept of masking quorums along with

two additional variations: dissemination quorums and opaque masking quorums. Dis-

semination quorums are a specialization tailored for the storage of self-verifying in-

formation, i.e., information to which clients can independently verify its integrity, for

example, through the use of digital signatures. Their intersection property requires that
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the intersection of any two quorums contains at least one non-faulty server. The (nor-

mal) masking quorums require that the intersection of any two quorums contains more

non-faulty servers than the faulty ones in either quorum. This way, the responses from

non-faulty servers outnumber those from faulty ones. Opaque masking quorums have

a stronger intersection property. In the context of a write operation in some quorum

Q1 and a subsequent read from quorum Q2, they require that the number of servers

in the intersection of the two quorums is greater than the number of faulty servers in

Q2 plus the number of servers in Q2 not in Q1. This is to avoid a scenario were the

faulty servers behave as the (outdated) servers in Q2 ∖ Q1, and thus could outnumber

the correct up-to-date servers and return an obsolete value to the client.

The quorum systems introduced by Malkhi & Reiter (1998) are confirmable in the

sense that the completion of a write operation can be locally determined by a server.

Martin et al. (2002b) later introduced the concept of non-confirmable quorums were

the completion of a write cannot be locally determined by a server, but the operation

is still guaranteed to eventually complete. For both types of quorums they proved tight

lower bounds on the number of faulty servers (Martin et al., 2002a).

This body of work on Byzantine quorum systems had a significant impact on sub-

sequent work in Byzantine fault-tolerant state machine replication. In particular, the

application of quorum-based techniques led to remarkable improvements in the perfor-

mance of protocols for consensus and state machine replication by reducing the num-

ber of required steps, at least for non-faulty or optimistic executions (Abd-El-Malek

et al., 2005; Cowling et al., 2006; Kotla et al., 2008; Martin & Alvisi, 2006).

View Synchrony. View or virtual synchrony is a model that supports dynamic pro-

cess groups (Birman, 1993; Birman & Joseph, 1987a). It is an essential component in

many group communication systems (reviewed in Section 2.3). Basically, it is a way

to serialize the events in a distributed system such that membership changes are atomic

with respect to message flow. In particular, it is said that a message m is delivered to

a process p in some system view 1 V i if it is delivered after view V i and before view

V i+1. View synchrony thus requires that if a message m is delivered to a process p in

view V i, then it is also delivered in view V i to every other process q ∈ V i.

1A system view contains essentially information about the group membership.
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View synchrony is essentially an agreement problem and can be solved using con-

sensus as a building block (Guerraoui & Schiper, 2001). As processes join or leave

the group, the processes in the current view V i execute a consensus algorithm that (1)

agrees on a new view V i+1 that reflects the new membership, and (2) also agrees on

the messages to be delivered on view V i. A process p only changes to view V i+1 af-

ter delivering all messages that were agreed to belong to view V i. View synchrony is

subject to essentially the same computational limitations of consensus (Chandra et al.,

1996a).

2.3 Group Communication Systems

This section discusses Group Communication Systems (GCSs). These systems typ-

ically provide a set of fault-tolerant communication and agreement primitives to a

group of processes. Examples of these are a membership service, which maintains

a consistent view of the group amongst all members (e.g., view synchrony described

in Section 2.2.3), or a reliable broadcast service, which guarantees that all members of

a group receive the same messages. The communication primitives provided by GCSs

are used as building blocks to aid in the development of fault-tolerant distributed appli-

cations. For example, database replication (Amir et al., 1994) or large-scale distributed

storage (Kubiatowicz et al., 2000).

The communication primitives are based on implementations of agreement proto-

cols (e.g., atomic broadcast) or are implemented on top of them (e.g., group member-

ship on top of consensus). In fact, some GCSs present themselves as stacks of several

agreement protocols. GCSs usually represent the most mature implementations of

agreement protocols, and their study can provide interesting insights into the behavior

of these protocols in practical settings. This is why our starting point in designing new

protocols for wireless ad hoc networks is the performance assessment of two exist-

ing GCSs in wired and wireless environments (see Chapter 3). This section focuses on

intrusion-tolerant GCSs, but it also covers some fault-tolerant and secure stacks (where

the group is secure against external attacks, although not intrusion-tolerant in the sense

that it does not tolerate malicious members).
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Early work in group communication considered only crash failures. The most well-

kown GCS of this line of work is the Isis toolkit (Birman & Joseph, 1987b). It was fol-

lowed by several others such as xAmp (Rodrigues & Verissimo, 1992), Transis (Amir

et al., 1992), and Totem (Moser et al., 1996).

Eventually, the work on GCSs evolved to support a stronger model, in which com-

munication can be attacked from entities external to the group. These attacks can be

passive (e.g., listening to all communication) or active (e.g., denial of service). In any

case, processes within the group are still assumed to behave correctly at all times and

indeed invulnerable to intrusions. The first of these systems was Horus (Reiter et al.,

1992, 1994; van Renesse et al., 1996), which is an extension of Isis (Birman & Joseph,

1987b). The security features of Horus are essentially the ability to provide mutual au-

thentication between processes and groups, and ensuring integrity and confidentiality

of communication within the group. Horus relies on a trusted third party for initial key

distribution. Ensemble is an evolution of Horus (Rodeh et al., 2001a,b). It addresses

two important limitations of the latter. First, it handles group partitions by allowing

groups to be re-merged, even if they eventually do not share anymore the same keys.

Second, it provides a rekeying protocol for group membership changes, i.e., every time

a process joins or leaves the group, the communication keys are renegotiated in order

to ensure confidentiality in relation to past and new members of the group. Secure

Spread is another popular GCS within this body of work (Amir et al., 2000, 2001).

Its main difference from Horus and Ensemble is that it does not rely on a trusted third

party for initial key distribution. Instead, it employs decentralized key management,

where keys are generated cooperatively by group members.

More recently, the work on GCSs has evolved to support models where the in-

dividual processes may be compromised and exhibit arbitrary behavior, including of

malicious nature. These GCSs implement agreement protocols more aligned with the

research of this thesis (i.e., they are intrusion-tolerant). Some of these systems are

classical GCSs, providing reliable communication primitives along with a group mem-

bership service (e.g., Rampart (Reiter, 1995), SecureRing (Kihlstrom et al., 2001), and

Worm-IT (Correia et al., 2007)). Others, like SINTRA (Cachin & Poritz, 2002) and

RITAS (Correia et al., 2006; Moniz et al., 2006b, 2010), while not providing a service

for dynamic group membership, focus on implementing a broad range of agreement
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and broadcast protocols, organized in a stack, which can then be used to build sophis-

ticated applications.

The first mature implementation of a set of Byzantine agreement protocols was

made for the Rampart toolkit (Reiter, 1994, 1995). Rampart implements the echo

broadcast and atomic broadcast protocols. Echo broadcast ensures that, upon a broad-

cast, no two processes receive a message with different values. Atomic broadcast

ensures that messages are delivered by all processes in the same order. The atomic

broadcast problem has been proven to be equivalent to consensus, while echo broad-

cast is considered to be a weaker form of agreement because it does not require termi-

nation (i.e., processes may not deliver any message at all). The message order in the

atomic broadcast protocol is defined by a leader process that echo-broadcasts the order

information. In Rampart, however, if a process does not echo-broadcast a message

to all or if a malicious leader performs some attack against the ordering of the mes-

sages, these events have to be detected and the corrupt process must be removed from

the group. This implies liveness is dependent on this detection, and synchrony assump-

tions are required about the network delay, allowing attacks where malicious processes

delay others in order to force their removal (Ramasamy et al., 2002). For this reason,

Rampart relies on a group membership protocol not only to handle voluntary joins and

leaves from the group, but also to detect and remove corrupt processes. The group

membership protocol uses a decentralized consensus primitive (i.e., one that does not

resort to a leader) in order for processes to agree on the elements of the group. The

consensus execution has to be decentralized to avoid malicious leaders from abusing

the system.

Like Rampart, SecureRing is an intrusion-tolerant group communication system

(Kihlstrom et al., 2001). It relies on a token that rotates among the processes to decide

the order of message deliveries. This signed token carries message digests, a solution

that allows a lower number of signatures and an improvement in performance when

compared to Rampart. In SecureRing, malicious behavior also has to be detected for

the protocols to make progress, which means that it suffers from similar problems as

Rampart.

Worm-IT uses the wormhole abstraction to provide a group membership service

and a view-synchronous atomic multicast primitive (Correia et al., 2007). It is designed

under an hybrid system model. The system is considered to be asynchronous and
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subject to Byzantine failures with the exception of a small subset, the wormhole, that

is assumed to be secure (i.e., can only crash) and synchronous. Critical steps of the

protocols that require stronger environmental properties (such as agreement tasks) are

executed inside the wormhole. Worm-IT has the main advantage of being completely

decentralized on its execution, not relying on leader processes.

SINTRA is a randomized protocol stack that provides a number of communica-

tion primitives for the construction of intrusion-tolerant distributed services (Cachin &

Poritz, 2002). From bottom to top, the protocols provided by SINTRA are: reliable

broadcast, echo broadcast, binary consensus (agreement on a binary value); multi-

valued agreement (agreement on an arbitrary value); atomic broadcast; and secure

causal atomic broadcast (an atomic broadcast that ensures privacy until the messages

are received by a threshold of processes). Like Worm-IT, the SINTRA protocols are

completely decentralized. Due to its randomized approach, SINTRA uses a completely

asynchronous system model, not relying on any time assumptions for either liveness

or safety. It uses a static group, and attains optimal resilience in the presence of arbi-

trary faults, tolerating f ≤ ⌊n−1
3
⌋ Byzantine processes out of a total of n processes.

The protocols in SINTRA also rely heavily in public-key cryptography, more specifi-

cally in threshold signatures and a shared coin tossing scheme based on secret sharing.

These characteristics impose a significant negative impact on the performance of the

protocols.

RITAS is another protocol stack that uses a randomized approach to circumvent the

FLP impossibility result and retain a completely asynchronous system model (Correia

et al., 2006; Moniz et al., 2006b, 2010) and decentralized execution. The protocols it

provides are from bottom to top: reliable broadcast and echo broadcast; binary con-

sensus; multi-valued consensus; vector consensus (agreement on a vector composed

by some of the proposed values) and atomic broadcast. Like SINTRA, it assumes

a static group of n processes and achieves optimal resilience, tolerating f ≤ ⌊n−1
3
⌋

Byzantine processes. RITAS, however, differs significantly from SINTRA in its ap-

proach to randomization because it does not need any kind of public-key or otherwise

expensive cryptographic operations. The downside is that it relies heavily on message

exchanges, which affects performance in environments where latency and bandwidth

are more scarce.
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2.4 Wireless Ad Hoc Networks

This section surveys research on wireless ad hoc networks. It describes solutions to

consensus and other related problems specifically designed for wireless ad hoc net-

works. This includes mutual exclusion and leader election, broadcasting algorithms,

and group communication primitives (e.g., group membership).

2.4.1 Consensus

Over the past decade, there have been some contributions to the solution of consen-

sus in wireless ad hoc networks. However, practically none of them considered the

presence of Byzantine nodes. Research on Byzantine fault-tolerant protocols for wire-

less environments has been basically restricted to broadcasting problems, which are

discussed in the following section.

Badache et al. (1999) were the first to present a consensus protocol specifically for

wireless environments. Their approach, however, is not applicable to wireless ad hoc

networks per se because it relies on a preexisting infrastructure. Their system model

assumes the presence of two types of entities: mobile hosts (MHs) and fixed hosts

that act as mobile support stations (MSSs). Each MH is connected to the particular

MSS responsible for its geographical area, and all MSSs are fully connected by a

static network. The message propagation delay is assumed to be arbitrary but finite.

Naturally, this accounts to an asynchronous system with reliable links. The set of

MHs involved in a consensus execution is assumed to be known a priori. To solve

consensus, each MH communicates its initial proposal value to the respective MSS.

The MSSs execute amongst themselves the Chandra-Toueg consensus protocol using

a ⋄S failure detector (Chandra & Toueg, 1996), and then communicate the decision

value to the associated MHs. The decision value is a vector V containing the initial

values of � of mobile hosts, with � being a configurable parameter such that � ≥ 1.

Both the MHs and MSSs can fail by crashing. In a system composed by n MSSs and

m MHs the protocol tolerates f < n
2

MSS failures and f ′ = m − � MH failures.

Later on, this work was extended by Seba et al. (2002) to take into consideration the

dynamism in the set of MSSs executing consensus due to the handover of MHs.
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Wu et al. (2007b) describe a hierarchical consensus protocol for mobile ad hoc

networks, which can be seen as a variation of the protocol of Badache et al. (1999).

Both protocols share essentially the same system model. The main difference is that

Wu et al. do not assume the presence of infrastructure support. Instead, they assume

that the system is composed by n mobile hosts distributed in clusters and that there is a

static subset of k predefined nodes that act as clusterheads, which take essentially the

same role of the MSSs in the protocol of Badache et al. (1999). The protocol requires

connectivity amongst the clusterheads, and between a clusterhead and every node on

its cluster. The clusterheads gather the initial values of their associated nodes and

execute consensus using a ⋄P failure detector. The decision is then propagated from

the clusterheads to the nodes. The protocol tolerates the crashing of f < min(k, n
2
)

nodes.

Vollset & Ezhilchelvan (2005) implement the randomized consensus protocol of

Ezhilchelvan et al. (2001) in a wireless context. The protocol is a simple generalization

of the classic local coin protocol of Ben-Or (1983) to an arbitrary domain of decision

values. It is designed for an asynchronous system with a static set of n nodes and

tolerates up to f < n
2

node crashes. Their adaptation to a wireless context assumes

arbitrary connectivity changes in the system, but requires a fairness condition such

that every pair of correct nodes is eventually directly connected to each other, ensuring

that messages exchanged between them are eventually delivered. This is essentially the

same as modeling the system as being asynchronous with reliable links. The protocol

was subject to a simulation in which a consensus instance required on average between

50 and 100 seconds, with the number of nodes ranging from 1 to 40.

The research discussed so far assumes, in one form or another, an asynchronous

system with reliable links. Already described in Section 2.1.3.2, the work of Chockler

et al. (2005) solves consensus in collision-prone wireless networks, where commu-

nication is synchronous but unreliable. Under their system model, nodes can fail by

crashing and messages can be lost, but only due to collisions. To cope with the un-

certainty in this model, they introduce the collision detector abstraction. Reminiscent

of the failure detector, the collision detector is a device attached to each process that

in every communication round provides information about message collisions. This

allows consensus to be solved with anonymous processes in single-hop networks and

43



2. BACKGROUND

to tolerate any number of process crashes. The protocol was also adapted to a multi-

hop scenario, where the network is divided into a series of grid squares. Here, every

process must know its position in the grid and the number of grid squares in the net-

work. A single-hop consensus is executed individually in each grid square and the

results are gossiped throughout the network. Once a node has received a value for

every grid square, it decides the final value by applying some deterministic function to

these values.

Borran et al. (2008) approach to consensus in wireless ad hoc networks assumes

a static and known group of n processes. The classic Paxos algorithm is expressed

under the heard-of (HO) model (Charron-Bost & Schiper, 2007) and then it is extended

with a communication layer for wireless networks. The HO model does not explicitly

state timing or fault assumptions. Instead, it defines the system through a predicate

expressing the patterns of message delivery that are allowed to occur. For Paxos, the

conditions for liveness are: (1) eventually a majority of processes consider the same

coordinator, (2) a majority of processes receive the messages from the coordinator,

and (3) the coordinator receives messages from a majority of processes. Safety is

always assured regardless of the pattern of message delivery. The communication

layer provides a leader election service that is used as a primitive by Paxos (Lamport,

1998) and a message propagation algorithm for multi-hop communication. The model

for the communication layer assumes an asynchronous system with periods of reliable

message delivery bounded by a known constant value, which, in essence, represents a

partially synchronous system. The leader election algorithm tolerates up to f process

crashes, with n ≤ 2f + 1.

2.4.2 Mutual Exclusion and Leader Election

Two other related problems of consensus - leader election and mutual exclusion - have

been extensively studied in the context of wireless ad hoc networks. These are relevant

problems because they regulate access to shared resources, a common problem in these

networks. Nevertheless, these studies have been focused on the mobility of processes,

and they typically assume that communication is reliable (at least among neighbors)

and that processes do not fail in a malicious way. In fact, most of the approaches to

these problems consider reliable processes, i.e., processes never crash.
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Mutual Exclusion. The work of Walter et al. (2001b) solves mutual exclusion in

mobile ad hoc networks by inducing a logical directed acyclic graph (DAG) on the

network, dynamically changing the logical structure to adapt to the changing physical

topology. The DAG is constructed such that it is token-oriented, i.e., directed edges

lead to the node holding the token. Thus, requests to the token holder are forwarded

through a path along the DAG, while the token is delivered to the requesting node in

reserve order of the path. For this work, the authors assume that: node failures do not

occur; the network graph is connected; incipient link failures are detectable; and each

node is always aware of the set of neighboring nodes. This solution was later extended

to the k−mutual exclusion problem (Walter et al., 2001a). Building and maintaining

the DAG incurs an overhead on message exchanges.

The proposal of Baldoni et al. (2002) follows essentially the same model and at-

tempts to eliminate the overhead of maintaining the logical structure. Instead of a

DAG, they employ a logical ring with a circulating token. Each time a node receives

a token from the predecessor, it decides the successor on-the-fly according to some

policy (e.g., hop distance). The algorithm proceeds in rounds, which have different

coordinators. In each round, the coordinator circulates the token, allowing each pro-

cess to enter the CS. After the token is returned to the coordinator, it enters an idle

state waiting for a request another process to enter the CS. When this happens, this

other process assumes the role of coordinator and initiates another round. This way,

the algorithm remains idle until some process requires to enter the CS. Chen & Welch

(2002) propose a self-stabilizing algorithm also based on dynamic logical rings. The

algorithm requires the topology to be static while converging. After it has converged,

it can guarantee safety under arbitrary mobility, and liveness with a restricted mobility

pattern.

Wu et al. (2005) propose a permission-based approach to mutual exclusion in ad

hoc networks. The rationale is that token-based algorithms are inherently fragile in

mobile environments, due to token loss caused by mobility and frequent disconnec-

tions. This approach does not need to maintain a logical structure, and avoids message

exchange if no node wants to enter the CS. In order to keep the number of exchanged

messages low, the protocol resorts to the ‘look-ahead’ technique, requiring mutual ex-

clusion only amongst the nodes competing for the CS (Singhal & Manivannan, 1997).
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Another approach to tolerate token losses is proposed by Wu et al. (2007a). This

solution is based on a dual-token algorithm, where two tokens monitor each other to

detect token losses. A fundamental limitation of this approach is related to the simul-

taneous loss of both tokens, in which case liveness cannot be guaranteed. The paper

suggests that more tokens can be used, but this only leads to the recurrent problem of

estimating the right number of needed tokens.

Attiya et al. (2010) focus on the problem of mutual exclusion amongst neighboring

nodes, i.e., no two nodes that can communicate directly can be in their critical sections

simultaneously. The paper presents two algorithms. The first assigns colors to nodes

and resolves conflicts based on the colors. As nodes move, they choose new colors to

reflect their repositioning in the network. This algorithm has two variations. The first

has a response time (i.e., delay between a node requesting to enter the CS and actually

entering the CS) that is polynomial in the number of neighboring nodes, and has a

failure locality of n, where n is the total number of nodes in the system (e.g., a failure

locality of n determines that a process makes progress if no failures occurs within n

hops). The second variation has also a polynomial response time in the number of

neighboring nodes, and failure locality logarithmic with the number of nodes in the

system. The second algorithm uses dynamic priorities to regulate access to the CS.

The basic idea is that a node that enters the CS resets its priority, thus lowering its

priority relative to the neighbors. This algorithm has optimal failure locality (i.e., 2),

and a response time of O(n2) (but can be O(n) if the network remains static).

Leader Election. Hatzis et al. (1999) were the first to study the problem of leader

election in mobile networks. In particular, the paper focuses on how the motion of the

nodes can affect the problem of leader election. To this end, the algorithms are classi-

fied in two classes. Non-compulsory algorithms do not affect the motion of the nodes

and instead try to use the nodes natural movements to achieve leader election. Compul-

sory algorithms determine the motion of the nodes in order to ensure the correctness

of the protocol. For both classes, it is assumed that nodes move in a three-dimensional

space bounded by some regular polyhedron. The nodes must know in advance the di-

mensions of this polyhedron and must be able to measure the distance that they cover.

The non-compulsory protocols have the additional limitation of not guaranteeing that

a unique leader is elected.
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Malpani et al. (2000) propose a leader election protocol based on a directed acyclic

graph (DAG). The basic idea is that each node is assigned a height, links are logi-

cally directed from higher to lower heights, and, as the network topology changes, the

heights are manipulated such that the network forms a DAG with exactly one sink,

which is considered the leader. The proposal is based on TORA, a routing algorithm

for mobile ad hoc networks (Park & Corson, 1997). The system is assumed to be syn-

chronous, nodes are connected by reliable channels, and only one link is created or

destroyed at a time. An extension to this algorithm was proposed by (Ingram et al.,

2009), which can tolerate multiple topology changes.

The algorithms of Vasudevan et al. (2004) and Boukerche & Abrougui (2006) fo-

cus on extrema-finding solutions to leader election in ad hoc networks. These are

algorithms that elect as leader the node that ranks higher or lower in some category. It

is an useful abstraction in wireless ad hoc networks because one might want to elect as

leader the node, for example, with the most energy or computational resources.

2.4.3 Broadcasting

Research on fault-tolerant broadcasting protocols for wireless environments have re-

ceived considerable attention from the scientific community. This section focuses on

contributions that tolerate Byzantine failures because research on intrusion-tolerant

protocols for wireless networks has been practically restricted to broadcasting prob-

lems.

The first contribution in this line of research is from Koo (2004). His work ad-

dresses the problem of reliable broadcast (Pease et al., 1980) in multi-hop networks

with Byzantine nodes. The model assumes that nodes are distributed uniformly in a

square grid with each integral point representing a node. It also assumes that nodes

adhere to a predetermined TDMA message transmission schedule, which implies a

synchronous system, and that message spoofing and collisions do not occur. The con-

tribution lies in defining upper and lower bounds on the number of Byzantine neighbors

t that a process can have within its communication radius r. Koo proves that reliable

broadcast is possible for t < 1
2
r(r +

√
r
2

+ 1) and impossible for t ≥ ⌈1
2
r(2r + 1)⌉. A

year later, Bhandari & Vaidya (2005) showed the lower bound to be tight by providing

a matching algorithm that tolerates t < ⌈1
2
r(2r + 1)⌉. This model was later extended
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by Koo et al. (2006) to allow spoofed messages and collisions. They show that if these

are bounded by a known value, then the previous threshold for t still holds.

Pelc & Peleg (2005) study the problem of broadcasting under essentially the same

model of Koo (2004), but considering arbitrary graphs. Their paper presents upper

and lower bounds for the feasibility of reliable broadcast based on graph-theoretic

parameters. These bounds, however, are not tight, indicating that different parameters

may need to be used in order to close the gap. They also show that for certain graphs,

only algorithms that have knowledge of the topology can solve reliable broadcast.

Drabkin et al. (2005) present a broadcast protocol for wireless ad-hoc networks in

asynchronous systems. The protocol employs an overlay on which messages are dis-

seminated. In parallel, signatures of these messages are being gossiped by all nodes

in the system in an unstructured manner. It is assumed that each device can obtain the

public key of every other device. When a node learns about a message it is missing,

it requests this missing message from another node. The model is extended with three

types of failure detectors: verbose, mute, and trust. These, respectively, detect mes-

sages sent too often, messages not sent, and incorrect nodes. The broadcast protocol

is then built by combining together these failure detectors along with the use of digi-

tal signatures and gossiping. The protocol tolerates an arbitrary number of Byzantine

nodes as long as the correct nodes form a connected graph.

2.4.4 Group Communication

Most research on group communication protocols for wireless ad hoc networks has

been focused on managing group membership in face of mobility. Many of the pro-

posals described below do not tolerate process failures, and none are intrusion-tolerant,

but instead they address the uncertainty caused by mobility. This is perhaps an indica-

tion of the difficulty of ensuring strong agreement primitives in these environments.

The first contribution of a group communication protocol for wireless ad hoc net-

works was proposed by Prakash & Baldoni (1998). Their proposal consists of a group

communication architecture augmented with a synchronous proximity layer. They

state that group membership is likely to be mostly determined by the location of the

nodes. The proximity layer identifies the nodes within a certain distance of a node p.

For this purpose, messages are time and location stamped, and a flood-based broadcast
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protocol is employed such that, for a given node p, it determines the nodes within a

certain distance D, even if several hops are necessary to identify all the nodes. On

top of the proximity layer lies the group membership layer. Using this layer, a node

p can create a group G composed by a subset of nodes within distance D, which are

selected according to some desired criteria, using a three round commit protocol. This

contribution is another example of the need for local synchronization in wireless ad

hoc networks because its correctness is dependent on the execution of an (unspecified)

algorithm that ensures mutual exclusion on communication channels after a group is

established.

Liu et al. (2005) present a similar contribution. Their approach, however, general-

izes the attributes that define group membership. Besides location, they also consider

scale (i.e., number of hops), trustworthiness, and QoS attributes (e.g., CPU load, mem-

ory, battery, etc.) in order to restrict group membership. They present a group service

that is generic with respect to membership constraints, and realizes three basic func-

tions: discovering mobile nodes that are eligible for membership, group initialization,

and group maintenance.

The proposals of Roman et al. (2001) and Murphy et al. (2006) focus on achieving

and maintaining consistent group membership despite node mobility. They identify the

fact that consensus is impossible in the presence of link failures as a major obstacle.

Thus, to achieve consistent group membership, they focus on hiding mobility-induced

link failures. The basic idea is to make link failures unobservable to the processes.

This is accomplished through the concept of announced disconnection, which basically

relies on location information to disconnect processes from the group. Their model

assumes a safe distance r for which communication is reliable. As soon as a process

is not within r, it is disconnected from the group before a link failure can happen.

Additionally, they employ group discovery and group reconfiguration protocols. The

former identifies groups with the purpose of merging, while the latter deals with the

actual merging and splitting of groups.

Another contribution, by Killijian et al. (2001), follows the same principle of set-

ting group membership based on location. Their main contribution, however, lies on

describing an approach to coverage estimation (i.e., determining if a certain set of

nodes covers a predetermined geographical area) and not on group communication per

se.

49



2. BACKGROUND

Luo & Hubaux (2004) concentrate on the problem of small scale group commu-

nication, in which wireless nodes contend for resources dictated by proximity. Their

proposal, called NASCENT, employs a local membership service that tracks nodes

within k hops through periodic beacon broadcasting. This protocol is used to build

a directed acyclic graph (DAG) with all the nodes in the system. A token circulation

protocol passes a token around the DAG to periodically visit each node. This basic

operation can is then employed to construct other distributed protocols. The authors

provide examples of mutual exclusion, reliable broadcast, and leader election algo-

rithms. Key assumptions for correctness are that the system is stable enough for the

token circulation period to have a small variance, and that the token visits each member

infinitely often.

PILOT is designed as a toolkit for reliable group communication in wireless ad hoc

networks (Luo et al., 2004). Its basic building block is a protocol for probabilistic mul-

ticast, called Route Drive Gossip (RDG). This protocol relies on an underlying generic

on-demand routing protocol to help in membership and message dissemination. Upon

RDG two other services are offered: Reliable RDG (R2DG) and a probabilistic quorum

system for ad hoc networks (PAN). The R2DG protocol is tailored for multicasting a

stream of packets from a source. It exploits the sequence numbers of these packets

to provide information about packet loss and improving the reliability of multicasting.

PAN is a reliable data sharing service based on (probabilistic) quorums.

Another line of research looks at group communication through a random walk

perspective. Dolev et al. (2006) propose a self-stabilizing group membership service

for mobile ad hoc networks. Their approach is based on the notion of an agent that tra-

verses the network by means of a random walk. This agent is responsible for collect-

ing and distributing information about group membership. Self-stabilization consists

of ensuring that exists exactly one agent in the system. When a node does not receive

an agent for a predefined period of time, it produces an agent. Then, whenever a node

receives two or more agents, a single agent is generated at the node. This guarantees

that eventually a agent is present in the system.

Bar-Yossef et al. (2008) propose a membership service in the same line of research,

based on random walks, called RaWMS. The main differences are that (1) while in the

work of Dolev et al. (2006) the agent constructs a full membership of the system,
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RaWMS can be used to create partial membership views, and (2) RaWMS uses multi-
ple agents that simultaneously cover the connectivity graph, thus improving time and
communication complexities of the group membership algorithm.
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Chapter 3

Assessment of Intrusion-Tolerant

Protocols

In order to design efficient protocols for wireless ad hoc networks, we should first un-

derstand how the current solutions work. This chapter analyzes the performance of

intrusion-tolerant agreement protocols based on randomization in different environ-

ments - both wired and wireless. The knowledge obtained from this work will: (1)

bring insight into the various tradeoffs involved in the implementation of intrusion-

tolerant protocols, which will later support the design of new protocols specifically

tailored for wireless ad hoc networks; and (2) provide a considerable understanding

about the performance of randomized protocols in practical settings, a knowledge that

was mainly inexistent prior to the work of this thesis.

To carry this task, we chose to evaluate the protocols from two stacks discussed

in Chapter 2: RITAS and SINTRA. These stacks of randomized protocols embody a

series of characteristics that we believe to represent the best fit for wireless ad hoc

networks. First, they are intrusion-tolerant, being optimal in this respect by assuming

up to less than one third of Byzantine processes. Second, they are general enough,

since both stacks provide a series of agreement protocols (e.g., reliable broadcast, bi-

nary consensus, multi-valued consensus, atomic broadcast, etc.) that can be used to

implement various distributed services. Finally, very importantly, their execution is

inherently decentralized - a characteristic that is aligned with the nature of wireless ad
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hoc networks. Unlike other approaches, these protocols do not rely on a designated

process (i.e., a leader) to make progress.

This chapter is divided in two main sections. Section 3.1 describes an experimental

performance comparison of the two classes of randomized protocols: local coin and

shared coin. RITAS implements a local coin algorithm, while SINTRA implements

a shared coin algorithm. These two classes are fundamentally different. Local coin

protocols are usually devoid of computationally intensive cryptographic operations,

but exchange many messages. Shared coin protocols, on the other hand, exchange

less messages, but rely on expensive asymmetric cryptography. Since the two classes

result in fundamentally different algorithms, the objective is to obtain a foundational

knowledge of the environmental settings favorable to each protocol class. Section 3.2

is concerned with the performance evaluation of the protocol stacks in wireless LANs.

This task also evaluates the performance of agreement algorithms other than binary

consensus. The objective is to understand how the particular characteristics of wireless

networks affect the performance of the protocols.

3.1 Local vs. Shared Coin Randomized Consensus

Randomized consensus protocols are based on a random step (i.e., tossing a coin),

which (normally) returns values 0 or 1 with equal probability. These protocols can be

divided in two classes depending on how the tossing operation is performed. There

are those that use a local coin mechanism in each process (started in Ben-Or (1983)),

and those based on a shared coin that returns the same value to all processes (initi-

ated in Rabin (1983)). Typically, local coin protocols are simpler but terminate in an

expected exponential number of rounds (Bracha, 1984), while shared coin protocols

require a sophisticated cryptographic scheme for coin sharing but can terminate in a

constant number of rounds (Cachin et al., 2000; Canetti & Rabin, 1993).

To conduct the investigation, one protocol from each class was selected, imple-

mented, and evaluated in a LAN setting under different conditions, such as distinct

network characteristics and types of faults. During the experiments, the bandwidth

was progressively restricted in order to understand how each protocol behaves with

constrained resources, closer to a wireless environment.
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The shared coin class is represented by the ABBA protocol (Cachin et al., 2000),

part of the SINTRA stack, which is theoretically the most efficient protocol currently

found in the literature, terminating in two rounds with high probability. This protocol

uses an interesting combination of cryptographic primitives, like threshold signatures

and a threshold coin-tossing scheme, which makes it have a very good time complex-

ity - it reaches decision in one or two rounds with negligible inverse probability. The

local coin class is represented by Bracha’s consensus protocol (Bracha, 1984), which

is implemented by the RITAS stack. This protocol resorts to almost no cryptographic

operations, but potentially terminates in an exponential number of rounds. Neverthe-

less, it has been shown to be efficient in practice, when used as part of the RITAS

stack (Moniz et al., 2006b).

Both protocols solve binary consensus, i.e., the values proposed and decided are

binary digits, 0 and 1. This is a natural choice since most randomized consensus pro-

tocols are binary. Multi-valued consensus and other variants of consensus can be im-

plemented on top of binary consensus protocols (see, e.g., Cachin & Poritz (2002);

Correia et al. (2006)).

The experimental evaluation lead to several interesting conclusions. The local coin

protocol was the fastest in all experiments. However, the shared coin protocol is appar-

ently more scalable, since its performance degraded less when the number of processes

was increased. The local coin protocol was also more sensitive to a network bandwidth

decrease than the other, which indicates that it should perform worse in environments

where the bandwidth is limited (e.g., a wireless network). The average number of

rounds executed in practice was close to 1 in both protocols, although theoretically the

local coin protocol runs in an exponential number of rounds.

The remainder of this section is organized as follows. Section 3.1.1 formally de-

scribes the binary consensus problem. Section 3.1.2 describes the system model and

provides an overview of the protocols. Finally, Section 3.1.3 presents a comparative

performance evaluation of the two protocols and discusses the results.

3.1.1 The Binary Consensus Problem

In the binary consensus problem, a set of processes pi proposes some initial value vi ∈
{0, 1} and then they must decide on a common value. Since we are considering the
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randomized model, the termination of the protocol is only guaranteed in a probabilistic

way. More formally, the binary consensus problem is specified with the following

properties:

Agreement If all correct processes propose the same value v, then any correct process

that decides, decides v.

Validity No two correct processes decide differently.

Termination All correct processes eventually decide with probability 1.

3.1.2 System Model and Protocols

The system is composed by a set of n processes P = {p0, p1, ...pn−1}. The processes

are said to be correct if they follow the protocol until termination (i.e., they do not

fail). Processes that fail are said to be corrupt. A maximum of f = ⌊n−1
3
⌋ processes

can be corrupt during the lifetime of the system. There are no constrains on the actions

taken by corrupt processes – they can, for instance, stop executing, omit messages, or

send invalid messages, either alone or in collusion with other corrupt processes. This

class of unconstrained faults is usually called arbitrary or Byzantine. The system is

asynchronous meaning that no assumptions are made about the bounds on processing

times or communication delays. It is assumed that the communication channels are

unreliable, which indicates, for instance, that messages can be lost or (maliciously)

modified while in transit in the network. We assume the adversary cannot break the

cryptography employed in the protocols.

Bracha’s Local Coin Protocol (LCP). Bracha’s binary consensus protocol exchanges

O(n3) point-to-point messages per round and the expected number of rounds until ter-

mination is 2n−f under the strong adversary model1. The algorithm itself does not use

any kind of cryptographic operations, albeit its dependence on a reliable communica-

tion channel implies the use of a relatively inexpensive cryptographic hash function.

1In the strong adversary model it is assumed that the adversary completely controls the network
scheduling, having the power to decide the timing and the order in which the messages are delivered to
the processes.
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The protocol requires an extension to the basic system model to provide the binary

consensus properties. Specifically, it requires a reliable channel abstraction, and on

top of this abstraction a reliable broadcast primitive.

The reliable channel abstraction provides point-to-point communication between

any pair of correct processes with the reliability and integrity properties. Reliability

means that messages are eventually received, and integrity says that messages are de-

livered without modifications (i.e., messages with changes are detected and removed).

In practical terms, these properties can be enforced using retransmissions and Mes-

sage Authentication Codes (MACs). A MAC is a cryptographic checksum which can

be calculated with a hash function and a shared key (Menezes et al., 1997). Therefore,

it is assumed that every pair of processes (pi, pj) share a secret key kij . The way these

keys are given to the processes is out of the scope of the protocol, but it may require

some kind of trusted dealer or key distribution protocol. In any case, since this task is

performed during initialization, it does not affect performance during the execution of

the protocol. Standard Internet protocols can be employed to implement the reliable

channels. In the experiments, reliability was achieved with TCP and integrity with the

IPSec Authentication Header protocol (Kent & Atkinson, 1998).

The reliable broadcast primitive keeps corrupt processes from broadcasting con-

flicting values to different processes. It ensures that: (1) all correct processes deliver

the same messages, and (2) if the sender is correct then the message is delivered. Sec-

tion 3.2.1 describes the protocol used to implement this primitive.

The execution of Bracha’s Local Coin Protocol proceeds in 3-step rounds, running

as many rounds as necessary for a decision to be reached. Each process pi executes a

round as follows:

Step 1 Reliable broadcast the initial proposal value. Wait for n−f valid messages for

this step (the meaning of valid is explained below). Set the new proposal value

to reflect the majority of the received values. If all the n− f messages have the

same value v, then decide, but continue the execution of the protocol to allow

the other processes also to finish.

Step 2 Reliable broadcast the proposal value. Wait for n − f valid messages for this

step. The new proposal value is set to v ∈ {0, 1} if more than n/2 of the received
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messages have the same value v. Otherwise, the new proposal value is set to a

default value ⊥.

Step 3 Reliable broadcast the proposal value. Wait for n − f valid messages for this

step. If at least 2f + 1 messages have the same value v ∕=⊥, then the process

decides v (if it had not decided previously). Otherwise, if at least f + 1 have the

same value v ∕=⊥, then the process sets the new proposal value to v and a new

round is initiated. If none of the previous conditions apply, then the process sets

the new proposal value to a random bit with value 1 or 0, each with probability
1
2
, and a new round is initiated.

A message received in the first step of the first round is always considered valid. A

message received in any other step k, for k > 1, is valid if its value is congruent with

any subset of n − f values accepted at step k − 1. Suppose that process pi receives

n − f messages at step 1, where the majority has value 1. Then at step 2, it receives

a message with value 0 from process pj . Remember that the message a process pj
broadcasts at step 2 is the majority value of the messages it received at step 1. That

message cannot be considered valid by pi since value 0 could never be derived by a

correct process pj that received the same n − f messages at step 1 as process pi. If

process pj is correct, then pi will eventually receive the necessary messages for step 1,

which will enable it to form a subset of n− f messages that validate the message with

value 0.

This protocol will be referred to as simply the LCP (local coin protocol).

The ABBA Shared Coin Protocol (SCP). The ABBA binary consensus protocol

exchanges O(n2) point-to-point messages per round and reaches a decision in 1 or 2

rounds with high probability. The protocol makes extensive use of asymmetric cryp-

tography to ensure the correctness of the execution.

The protocol needs the following extensions to the basic system model: reliable

channels for point-to-point communication, and two cryptographic primitives – dual

threshold signatures and a threshold coin-tossing scheme.

The reliable channels in the ABBA protocol only need to provide the reliability

property (i.e., that messages are eventually received) between every pair of correct
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processes1. The integrity of the messages is guaranteed by the use of public-key sig-

natures inside the protocol itself. Therefore, the TCP protocol can be employed in the

implementation of these channels.

An (n, k, f) dual-threshold signature scheme is a technique where n processes,

from which up to f can be corrupt, hold shares of a private key. The processes can

generate shares of signatures on particular messages, and k of such shares are both

necessary and sufficient to assemble a valid signature. Every process has the ability to

individually verify every generated share and the assembled signature. In practice, this

scheme can be (and was) implemented using a vector of RSA signatures.

An (n, k, f) dual-threshold coin-tossing scheme is also a technique where there

are n processes and at most f of them may be corrupt. Processes hold shares of an

unpredictable function F that maps the coin name C to a binary value F (C) ∈ {0, 1}.
The processes can generate shares of the coin and k of those shares are both necessary

and sufficient to assemble the function F . The implemented threshold coin-tossing

scheme is the Diffie-Hellman based solution of Cachin et al. (2000).

The execution of the ABBA Shared Coin Protocol proceeds in rounds of three

steps each, except for the first round where there is an additional communication step

at the beginning of the round. Let cid be a unique identifier for each execution of the

protocol. Every process pi executes the protocol as follows:

Step 0 (first round only) Broadcast a pre-process message containing the initial pro-

posal value vi along with an (n, f + 1, f)-signature share on the message (cid,

pre-process, vi). Wait for 2f + 1 valid pre-process messages (see the meaning

of valid below).

Step 1 If in round r = 1, the new proposal value vi is the majority value of the received

pre-process messages. If in round r > 1, wait for n − f coin messages and let

vi = b if there was a main-vote in round r − 1 for b ∈ {0, 1}. Otherwise, let

vi = F (C), where C = (cid, r). Broadcast a pre-vote with value vi along with

an (n, n− f, f)-signature share on the message (cid, pre-vote, r, vi).

1Even tough “Bracha’s reliable channels” have one more property than the “ABBA reliable chan-
nels”, we decided to call them with the same name in order to avoid an extra channel qualifier, and
therefore to keep the presentation as simple as possible.

59



3. ASSESSMENT OF INTRUSION-TOLERANT PROTOCOLS

Step 2 Wait for n − f valid pre-votes. If there were n − f pre-votes for b ∈ {0, 1},
then set vi = b. Otherwise, set vi = abstain. Broadcast a main-vote with value
vi along with an (n, n− f, f)-signature share on the message (cid, main-vote, r,

vi).

Step 3 Wait for n − f valid main-votes. If there were n − f main-votes for b, then
decide b and continue for one more round up to step 2. Otherwise, generate a
share of the coin with name C = (cid, r). Broadcast the coin share in a coin
message, and proceed for round r = r + 1.

In round r = 1, a pre-vote for value b is valid when accompanied by an (n, f+1, f)-
threshold signature on the message (cid, pre-process, b). In round r > 1, a pre-vote
for value b is valid when accompanied by either an (n, n − f, f)-threshold signature
on the message (cid, pre-vote, r-1, b) (hard pre-vote), or an (n, n − f, f)-threshold
signature on the message (cid, main-vote, r-1, abstain) (soft pre-vote). A hard pre-vote
is cast when there was a main-vote for either 0 or 1 in round r − 1. A soft pre-vote is
cast when all the main-votes in round r − 1 were abstain. The soft pre-vote value is
F (cid, r − 1).

A main-vote for value abstain in round r is valid when it is accompanied by either
the validations of two conflicting round r pre-votes (i.e., one pre-vote for value 0,
and another for 1). A main-vote for value b ∈ {0, 1} in round r is valid when it
is accompanied by an (n, n − f, f)-threshold signature on the message (cid, pre −
vote, r, b).

Besides these validations, all received signature shares also need to be verified to
accept the corresponding messages. This also includes the coin shares generated in
step 3. They need to be verified before being assembled into a coin function F (C).

The ABBA Shared Coin Protocol will be referred to as simply the SCP (shared
coin protocol).

3.1.3 Testbed and Implementation

The experiments were conducted in a testbed consisting of 11 Dell PowerEdge 850
computers. The characteristics of the machines are the same: a single Pentium 4 CPU
with 2.8 GHz of clock speed, and 2Gb of RAM. The machines were connected by a
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Dell PowerConnect 2724 network switch with 10/100/1000 Mbps bandwidth capacity.

The operating system was Linux, with kernel version 2.6.11. The protocols were im-

plemented as part of the RITAS suite using the C language. The ABBA protocol, while

not part of the original RITAS suite, was independently implemented and integrated

into the RITAS framework.

3.1.4 Performance Metrics and System Parameters

The metrics are the set of criteria used to compare the performance of the protocols.

The system parameters are the configurable variables of the system that define specific

execution environments.

The two main performance metrics utilized in most experiments were the latency

(L) and the maximum throughput (Tmax). Latency is always relative to a particular

process pi, and it is denoted as the interval of time between the moment pi proposes a

value to a consensus execution and the moment pi decides the consensus value. The

average latency is obtained by taking the mean value of the sample of latency values

of all processes. We also evaluate the protocols in terms of burst latency (Lburst).

Given a burst of k concurrent consensus executions, the burst latency is the interval

of time between the moment pi proposes the first value and the moment it decides the

ktℎ value. The throughput Tburst is the number of decisions per second obtained for a

burst of a given size k. It is calculated by dividing the burst size k by the burst latency

Lburst. The maximum throughput Tmax is the value at which the throughput stabilizes

(i.e., does not change with increasing burst sizes).

The system parameters selected for the experiments were the faultload, distribution

of process proposals, group size, network bandwidth, and cryptography.

The faultload defines the types of faults that are injected in the system during its

execution. In the failure-free faultload, all processes behave correctly. The fail-stop

faultload makes f processes crash before the measurements are taken. In the Byzan-

tine faultload, f processes try to keep the correct processes from reaching a decision

by attacking the protocol execution. This is accomplished as follows. In the LCP, a

Byzantine process in steps 1 and 2 always proposes the opposite value that it would

propose if it were behaving correctly, and in step 3 always proposes the default value⊥.

In the SCP, since a Byzantine process has no possibility of proposing an invalid value
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without detection (because of the employed asymmetric cryptography), it transmits

messages with invalid signatures and justifications in order to force extra computation

in the correct processes.

The proposal distribution defines the initial values to be proposed by the processes.

The uniform proposal distribution makes all processes propose the same initial value 1.

In the corrosive proposal distribution, processes with an odd process identifier propose

1 and the others propose 0. The random proposal distribution chooses for the initial

proposal of each process a randomly selected value.

The group size defines the number of processes n in the system. In our case it can

take three values: 4, 7, and 10.

The network bandwidth is the bandwidth of the network links defined in the net-

work switch. It can take three values: 10 Mb/s, 100 Mb/s, and 1000 Mb/s. The default

network bandwidth used in the experiments was 1000 Mb/s.

Cryptography defines the type of cryptography employed by the protocols. The

LCP can only either use the IPsec AH protocol (with SHA-1) or no cryptography at all

(in this case the protocol correctness is affected but this setting is utilized for the sake

of comparative evaluation only). The SCP uses RSA with three possible key sizes:

512, 1024, and 2048 bits. The cryptographic default settings are set to IPSec for the

LCP, and 1024-bit RSA keys for the SCP.

3.1.5 The Experiments

Three main experiments are presented that demonstrate how different system settings

affect the performance of the protocols. The first experiment aims to understand the

impact of the group size and proposal distribution. The second analyzes how the pro-

tocols perform under different types of faults. Finally, the third looks into how the

cryptographic and bandwidth parameters influence performance.

Group Size and Proposal Distribution. The results presented in this subsection are

a starting point for the rest of the performance analysis. They show the latency values

for both consensus protocols with different group sizes and proposal distributions. The

remaining parameters were set to the default values and no faults were injected (i.e.,

the failure-free faultload).
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The measurements were taken the following way: a signaling machine, which does

not participate in the protocols, is selected to control the benchmark execution. It

broadcasts m 1-byte UDP messages to the n processes involved in the experiment,

each one separated by a five second interval (in this case m was set to 100). Whenever

one of these messages arrives to a specific process, it executes whatever protocol is

relevant for the current experiment (LCP or SCP). The average latency is obtained

from the sample of 100 executions.

Local Coin (�s) Shared Coin (�s)
n = 4 n = 7 n = 10 n = 4 n = 7 n = 10

uniform 824 2187 4132 21590 31315 43633
corrosive 2453 6172 12075 33834 38529 55169
random 2056 5812 11501 24320 36325 49206

Table 3.1: Average latency in microseconds (�s) for different group sizes and proposal
distributions.

The results of this experiment are shown in Table 3.1. It can be observed that the

LCP is very fast, reaching a decision in less than 1 ms with 4 processes and a uni-

form proposal distribution. The SCP is comparatively slower, despite having a lower

communication complexity. In these environmental settings, the lower number of ex-

changed messages of the SCP clearly does not compensate for the computationally

intensive asymmetric cryptography.

Nevertheless, even though the LCP is significantly faster than the SCP, its latency

grows at a faster rate as the group size increases. While the latency of the LCP roughly

doubles at successive larger group sizes, the latency for the SCP grows at roughly 50%.

This indicates that SCP could potentially outperform LCP in groups with high numbers

of processes.

Protocol Behavior under Different Faultloads. This section studies the behavior

of the protocols when subject to different faultloads. Two system parameters were

varied in this experiment: the faultload and the number of processes. The proposal

distribution was fixed to random, and the rest of the parameters were set to the default

values. The metrics used to assess the performance of the protocols were the latency

and throughput.
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The experiment was carried out by having the n processes run several concurrent

consensus executions. A signaling machine, which does not participate in the execu-

tion of the protocols, sends a 2-byte UDP message to all n processes, containing a

number k. When a process receives this message, it starts a burst of k simultaneous

consensus executions. The burst latency Lburst and the burst throughput Tburst are the

metrics used for this experiment. For every tested burst size k, the displayed result

reflects the average value of 10 executions.

The results for each faultload are presented in three separate pairs of graphs. The

first graph of each pair studies the latency and the second the throughput.

Failure-free Faultload. The results when there are no faults are shown in Figures 3.1

and 3.2, respectively for the LCP and the SCP protocols. Each curve represents a

different group size n.
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Figure 3.1: Burst latency and throughput for the LCP with no failures

From the graphs it is possible to observe that the burst latency Lburst is linear

with the number of concurrent consensus executions. The stabilization points in the

throughput curves indicate the maximum throughput Tmax for each n. It can be seen

that the LCP is much faster than the SCP, achieving much lower latency and higher

throughput values, irrespective of the group size.

For the LCP, for 200 concurrent consensus executions, Lburst has a value of 439

ms with n = 4, 1126 ms with n = 7, and 2492 ms with n = 10. The maximum
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Figure 3.2: Burst latency and throughput for the SCP with no failures

throughput Tmax is around 455 decisions/s with n = 4, 175 decisions/s with n = 7,

and 81 decisions/s with n = 10.

As for the SCP, for 100 concurrent consensus executions, Lburst has a value of 7454

ms with n = 4, 10713 ms with n = 7, and 11625 ms with n = 10. The maximum

throughput Tmax is around 13 decisions/s with n = 4, 9 decisions/s when n = 7, and 8

decisions/s when n = 10.

Fail-stop Faultload. Figures 3.3 and 3.4 display the performance of the protocols

when there are f crashed processes in the system. Each curve shows the latency and

throughput for a different group size n.

For the LCP, the performance is noticeably better with f crashed processes than

it is in the failure-free scenario. This happens because with fewer processes there

is less contention on the network and more bandwidth is available to exchange the

messages. This result gives a hint that the performance bottleneck of the LCP is indeed

the communication (as opposed to the computation). In more detail, for 200 concurrent

consensus executions, Lburst has a value of 329 ms with n = 4, 890 ms with n = 7,

and 1820 ms with n = 10. The maximum throughput Tmax is around 608 decisions/s

with n = 4, 225 decisions/s with n = 7, and 110 decisions/s with n = 10.

As for the SCP, the performance results when there are f crashed processes also

show a significant improvement over the failure-free scenario. In this case, however,

the reduced network contention does not explain entirely what happens. In more detail,
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Figure 3.3: Burst latency and throughput for the LCP with f crashed processes

for 100 concurrent consensus executions, Lburst has a value of 3215 ms with n = 4,

3959 ms with n = 7, and 4981 ms with n = 10. The maximum throughput Tmax is

around 31 decisions/s with n = 4, 25 decisions/s when n = 7, and 20 decisions/s when

n = 10.

While this can not be inferred from the graphs, what really speeds up the SCP is

the fact that, with only n− f processes proposing values, all the correct processes see

exactly the same n − f messages at every protocol step, resulting always in 1-round

decisions for all protocol executions (this behavior also happens in the LCP, but its

performance is affected to a lesser degree by it). In the failure-free scenario, even with

an overwhelming majority of executions reaching decision in only one round, it only

takes a single execution needing more than one round to considerably delay the burst

latency, hence the performance improvement in the fail-stop case.

Byzantine Faultload. Figures 3.5 and 3.6 depict the protocols’ performance when

there are f processes trying to disrupt their execution. Each curve shows the latency

and throughput for a different group size n.

For the LCP, the curves show that the performance is negatively affected by the

Byzantine failures. For 200 concurrent consensus executions, Lburst has a value of 592

ms with n = 4, 2290 ms with n = 7, and 6772 ms with n = 10. The maximum
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Figure 3.4: Burst latency and throughput for the SCP with f crashed processes
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Figure 3.5: Burst latency and throughput for the LCP with f Byzantine processes

throughput Tmax is around 337 decisions/s with n = 4, 87 decisions/s with n = 7, and

30 decisions/s with n = 10. While it is not possible for f malicious processes to pre-

vent correct processes from reaching a decision, it is still possible for them to increase

the number of rounds needed to reach a decision. This can be directly linked to the

lack of cryptographic verifications on the received messages, which affects the robust-

ness. In practice, this means that the processes usually have to wait for extra messages

beyond the n− f threshold because the malicious processes are proposing values that

fail the validation. A good example can be found in step 3 of the the protocol. In alter-

native to b ∈ {0, 1}, the processes are allowed to propose an ‘undecided’ default value

⊥ for which the verification step is somewhat relaxed (it only needs n − f − n
2

valid
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Figure 3.6: Burst latency and throughput for the SCP with f Byzantine processes

different proposals from the majority value in step 2 to be considered valid by a correct

process), which Byzantine processes exploit in order to try to postpone a decision for

one extra round.

For the SCP, it is clear from the curves that there is not a noticeable performance

penalty in relation to the failure-free scenario. In more detail, for 100 concurrent con-

sensus executions, Lburst has a value of 5987 ms with n = 4, 11712 ms with n = 7,

and 13139 ms with n = 10. The maximum throughput Tmax is around 16 decisions/s

with n = 4, 9 decisions/s when n = 7, and 8 decisions/s when n = 10. These results

are directly related to the extensive use of public-key cryptography which provides su-

perior robustness to the protocol when compared to the LCP. In this case, a Byzantine

process has no room to “lie” since it has to justify all of its proposals with a vector of

signatures received from the other processes. The best a malicious process can do is

to force correct processes to verify more signatures by sending proposals with invalid

justifications. A correct process has to verify an extra vector of signatures beyond the

n−f threshold for each invalid justification it receives before gathering n−f valid pro-

posals. Nevertheless, this does not have a significant performance impact because the

cost of verifying signatures is much smaller than the cost of constructing signatures.

Number of Rounds. Tables 3.2 and 3.3 show the number of rounds needed to reach a

decision by the LCP and SCP, respectively. The presented results are the average num-

ber of rounds until decision of all the consensus executions of the above experiments
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which sum up to approximately 6000 executions per each tested group size/faultload
pair.

Local Coin
n = 4 n = 7 n = 10

failure-free 1.004 (0.42) 1.005 (0.14) 1.009 (0.19)
fail-stop 1 (0) 1 (0) 1 (0)

Byzantine 1.462 (1.52) 1.569 (1.69) 2.289 (2.79)

Table 3.2: Average number of rounds for the LCP. The standard deviation is shown in
parenthesis.

Shared Coin
n = 4 n = 7 n = 10

failure-free 1.013 (0.23) 1.018 (0.27) 1.01 (0.2)
fail-stop 1 (0) 1 (0) 1 (0)

Byzantine 1.016 (0.25) 1.017 (0.26) 1.012 (0.22)

Table 3.3: Average number of rounds for the SCP. The standard deviation is shown in
parenthesis.

The first noticeable result is that the average number of rounds is much lower than
what is suggested by previous theoretical results even when considering Byzantine
faults. For instance, the expected theoretical number of rounds for the LCP with a
strong adversary is 2n−f . The obtained average number of rounds with 10 processes
(of which 3 of them are malicious) is a little bit above 2 rounds (2.289) which is very
far from the theoretical result (128 rounds).

When comparing the two protocols, their performance is similar except for the
Byzantine case where the SCP is much more robust. In fact, there is practically no dif-
ference in the number of rounds of the SCP between the failure-free, and the Byzan-
tine fault loads. The SCP also shows no degradation with an increasing number of
processes, while the LCP shows some degradation, but only in the Byzantine scenario.

The fact that both protocols always reach decision in one round with f crashed
processes has a simple explanation. When f processes crash just before the execution
of the protocols, and the system is left with n − f processes it is guaranteed that at
every step of the protocols, the correct processes always see the same set of expected
n − f messages. Since the proposed values at each step are based on this set of n −

69



3. ASSESSMENT OF INTRUSION-TOLERANT PROTOCOLS

f messages, they will always propose the same values every step of the way, thus

achieving a decision by the first round.

Cryptography vs. Bandwidth. Although the previous results already give some idea

of the impact of the cryptographic and bandwidth parameters on the performance of

the protocols, this section provides a comprehensive analysis of the relative costs of

communication and computation. In this experiment the only varying parameters are

the bandwidth and the cryptographic settings. The tested bandwidth values are 1000,

100, and 10 Mbit/s. The measurements made for the LCP use IPSec activated and

deactivated. For the SCP, the experiments are taken with three RSA key sizes: 512,

1024, and 2048 bits. No failures were injected during the experiments, the group size

was 4 processes, and the proposal distribution was set to uniform.

Figure 3.7 depicts the performance of the LCP with each curve corresponding to a

specific bandwidth/IPSec combination. It shows that cryptography (IPsec) has almost

no impact on the performance of the protocol, and that reducing the available band-

width results in a great performance cost. Every time the bandwidth is downgraded, the

latency and throughput suffer a significant degradation. Considering 200 concurrent

consensus executions, the throughput has a value of approximately 1300 decisions/s

with a bandwidth of 1000 Mbit/s, 170 decisions/s with 100 Mbit/s, and 60 decisions/s

for with 10 Mbit/s.
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Figure 3.7: Burst latency and throughput for the LCP with different bandwidth and
cryptographic parameters
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The performance of the SCP is shown in Figure 3.8. This scenario is quite different

from the LCP. While reducing the network bandwidth has a negative effect on perfor-

mance, this cost is not as accentuated as the cost of increasing the key size. Regardless

of the available bandwidth, the measurements with 2048-bit keys rank the bottommost

among all the experiments, and the measurements with 512-bit keys rank among the

first four spots. More closely, for 200 concurrent consensus executions, the measured

throughput with a bandwidth of 1000 Mb/s was approximately 46, 30, and 10 deci-

sions/s for 512, 1024, and 2048 bit keys, respectively. With 100 Mb/s it was 39, 23,

and 8 decisions/s for 512, 1024, and 2048 bit keys, and with 10 Mb/s was 19, 16, and

6 decisions/s for 512, 1024, and 2048 bit keys.
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Figure 3.8: Burst latency and throughput for the SCP with different bandwidth and
cryptographic parameters

The SCP, despite getting significantly closer to the LCP in terms of performance

each time the network settings were downgraded, never matched the performance of

the LCP with identical network bandwidth. Nevertheless, in a wireless setting where

there is much less bandwidth available, and there is a significantly higher network

delay, it seems plausible for the SCP to outperform the LCP. Besides benefiting from

its relatively lower number of exchanged messages, the network latency would offset

the cryptographic computation costs of the SCP.
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3.1.6 Summary of Results

The most important conclusions from this experimental evaluation are summarized in

the following points:

• The LCP is significantly faster than the SCP with similar system parameters for

all the environmental settings tested.

• The SCP, while slower, proved to be more scalable since its performance de-

graded to a lesser degree than the LCP with an increasing number of processes.

• The SCP is more robust than the LCP since it was not affected in terms of perfor-

mance when malicious faults were injected in the system. The LCP evidenced a

little degradation with respect to the number of rounds, latency and throughput.

• The measured average number of rounds of both protocols was quite small, being

close to one with no faults, and exactly one with f crashed processes. With

respect to the situation with f malicious processes, the SCP scored similar to

the failure-free scenario, and the LCP showed a small degradation which was

accentuated when the number of processes was higher.

• The performance bottleneck for the LCP, when many consensuses were exe-

cuted concurrently, was the network because of its high number of exchanged

messages and use of cheap cryptography. For the SCP, the bottleneck was the

CPU because it exchanged a small number of messages and utilized expensive

asymmetric cryptography.

3.2 Evaluation of Intrusion-Tolerant Protocols in Wire-

less LANs

This section extends the performance analysis to wireless environments, in particular

to 802.11 wireless LANs, and to a greater number of protocols. In addition to the

binary consensus protocols described in the previous section, this section evaluates

the protocols from the RITAS stack (Moniz et al., 2010), discussed in Section 2.3.

72



3.2 Evaluation of Intrusion-Tolerant Protocols in Wireless LANs

The evaluated protocols are echo broadcast, reliable broadcast, multi-valued consen-

sus, and vector consensus. They are arranged in a stack depicted in Figure 3.9. At

the lowest level of the stack there are two broadcast primitives: reliable broadcast and

echo broadcast. These ensure that processes do not receive contradictory messages.

On top of these primitives, there is the most basic form of consensus, the binary con-

sensus, which can be the LCP or the SCP. The rest of the protocols are simply built

on the top of this one. Multi-valued consensus allows agreement on values with an

arbitrary domain. Vector consensus lets processes decide on a vector with values pro-

posed by a subset of the processes. Most protocols from the RITAS stack were orig-

inally designed by Correia et al. (Correia et al., 2006). They were further improved,

implemented, and evaluated under LAN, WAN and Wireless environments in three

subsequent papers (Moniz et al., 2006b, 2007, 2010).

Reliable 
Broadcast

Echo 
Broadcast

Binary Consensus

Multi-valued Consensus

Vector Consensus

Figure 3.9: Evaluated protocol stack.

3.2.1 System Model and Protocols

The system model for the protocols is the same as the one described in Section 3.1.2

with the reliable channel extension. In a nutshell, the assumptions are that the system

is asynchronous, it is composed by a set of n processes, f ≤ ⌊n−1
3
⌋ may exhibit arbi-

trary behavior, and any pair of correct processes is connect by a reliable channel. The
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reliable channel enforces the reliability and integrity properties. Reliability guaran-

tees that messages are eventually received and integrity ensures that messages are not

modified in the channel.

Reliable Broadcast and Echo Broadcast. The reliable broadcast primitive ensures

two properties: (1) all correct processes deliver the same messages; (2) if the sender

is correct then the message is delivered. The implemented protocol was originally

proposed by Bracha (Bracha, 1984). The protocol starts with the sender broadcasting

a message (INIT, m) to all processes. Upon receiving this message a process sends a

(ECHO,m) message to all processes. It then waits for ⌊n+f
2
⌋+1 (ECHO,m) messages

or f + 1 (READY, m) messages, and then it transmits a (READY, m) message to all

processes. Finally, a process waits for 2f + 1 (READY, m) messages to deliver m.

The echo broadcast primitive is a weaker and more efficient version of the reliable

broadcast. Its properties are somewhat similar, however, it does not guarantee that all

correct processes deliver a broadcast message if the sender is corrupt (Toueg, 1984). In

this case, the protocol only ensures that the subset of correct processes that deliver will

do it for the same message. The protocol is essentially the described reliable broadcast

algorithm with the last communication step omitted. An instance of the protocol is

started with the sender broadcasting a message (INITIAL, m) to all processes. When

a process receives this message, it broadcasts a (ECHO, m) message to all processes.

It then waits for ⌊n+f
2
⌋+ 1 (ECHO, m) messages to accept and deliver m.

Binary Consensus. The binary consensus protocol is the Bracha’s Local Coin Pro-

tocol (Bracha, 1984). This protocol was described in detail in Section 3.1.2.

Multi-Valued Consensus. A multi-valued consensus allows processes to propose a

value v ∈ V with arbitrary length. The decision is either one of the proposed values

or a default value ⊥/∈ V. The implemented protocol is based on the multi-valued

consensus proposed by Correia et al. (2006). It uses the services of the underlying

reliable broadcast, echo broadcast, and binary consensus layers. The main differences

from the original protocol are the use of echo broadcast instead of reliable broadcast at

a specific point, and a simplification of the validation of the vectors used to justify the

proposed values.
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The protocol starts when every process pi announces its proposal value vi by reli-

ably broadcasting a (INIT, vi) message. The processes then wait for the reception of

n− f INIT messages and store the received values in a vector Vi. If a process receives

at least n − 2f messages with the same value v, it echo-broadcasts a (VECT, v, Vi)

message containing this value together with the vector Vi that justifies the value. Oth-

erwise, it echo-broadcasts the default value ⊥ that does not require justification. The

next step is to wait for the reception of n−f valid VECT messages. A VECT message,

received from process pj , and containing vector Vj , is considered valid if one of two

conditions hold: (a) v =⊥; (b) there are at least n − 2f elements Vi[k] ∈ V such that

Vi[k] = Vj[k] = vj . If a process does not receive two valid VECT messages with dif-

ferent values, and it received at least n−2f valid VECT messages with the same value,

it proposes 1 for an execution of the binary consensus, otherwise it proposes 0. If the

binary consensus returns 0, the process decides on the default value ⊥. If the binary

consensus returns 1, the process waits until it receives n − 2f valid VECT messages

(if it has not done so already) with the same value v and decides on that value.

Vector Consensus. Vector consensus allows processes to agree on a vector with a

subset of the proposed values. The protocol is the one described in Correia et al. (2006)

and uses reliable broadcast and multi-valued consensus as underlying primitives. It

ensures that every correct process decides on a same vector V of size n; if a process pi
is correct, then V [i] is either the valued proposed by pi or the default value ⊥, and at

least f + 1 elements of V were proposed by correct processes.

The protocol starts by reliably broadcasting a message containing the proposed

value by the process and setting the round number ri to 0. The protocol then proceeds

in up to f rounds until a decision is reached. Each round is carried out as follows. A

process waits until n − f + ri messages have been received and constructs a vector

Wi of size n with the received values. The indexes of the vector for which a message

has not been received have the value ⊥. The vector Wi is proposed as input for the

multi-valued consensus. If it decides on a value Vi ∕=⊥, then the process decides Vi.

Otherwise, the round number ri is incremented and a new round is initiated.
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3.2.2 Testbeds and Implementation

The experiments were carried out on two different testbeds, tb-emulab and tb-pda. The

first, tb-emulab, was formed by 11 nodes from the Emulab network testbed (White

et al., 2002). Each node was a Pentium III PC with 600 MHz of clock speed and 256

MB of RAM, and contained a 802.11 a/b/g D-Link DWL-AG530 WLAN interface

card, which was able to operate as an access point (AP). The operating system running

on these nodes was Redhat Linux 9 with kernel version 2.3.34. The nodes were located

on the same physical cluster and were, at most, a few meters distant from each other.

The second testbed, tb-pda, was formed by 7 HP hw6915 PDAs. These PDAs

were equipped with an Intel PXA270 416 MHz processor, 64 MB of SDRAM, and

integrated 802.11b WLAN. The operating system was Windows Mobile 5. The ex-

periments were done with the PDAs placed on the same table a few centimeters apart

from each other. The access point used in this testbed was an Asus WL-320gE 802.11

b/g.

The broadcast and consensus protocols were taken from the RITAS suite, which

provides an implementation for Linux. These protocols were then ported to the Win-

dows Mobile platform. The reliable channels were implemented by the use of TCP for

reliability, and the IPSec Authentication Header protocol for integrity (Kent & Atkin-

son, 1998).

RITAS was originally implemented in C and compiled in gcc in Linux. Although

only wired LANs were assumed, it was not necessary to change it for the experiments

in the wireless testbed with Linux PCs (testbed tb-emulab). However, to test it with

PDAs (testbed tb-pda), most RITAS code had to be ported to the Windows Mobile plat-

form. These protocols were developed in Visual Studio using C++, and were debugged

with one process running in Visual Studio’s PocketPC emulator and the remaining pro-

cesses in Linux virtual machines running the Linux version of RITAS. This allowed

a more seamless debugging process and ensured interoperability between both im-

plementations. The main challenge in porting the protocols was concerned with the

mutual exclusion code, since the Windows Mobile semantics for multi-threading is

considerably different from POSIX threads in Linux.
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3.2.3 Performance Metrics and System Parameters

The performance metric utilized in the experiments was the latency. This metric is

always relative to a particular process pi. In the case of the consensus protocols, it is

denoted as the interval of time between the moment pi proposes a value to a consensus

execution, and the moment pi decides the consensus value. In the case of the broadcast

protocols, it is the interval of time between the moment the sender process, say pi,

initiates the execution of the protocol, and the moment pi delivers the broadcasted

value.

The system parameters are configurable parameters that define specific execution

environments. These are the group size, the wireless standard and network bandwidth,

and the network topology. The group size defines the number of processes n in the

system, and in our case it can take three values: 4, 7, and 10. The wireless standard and

network bandwidth defines the amendment to the 802.11 WLAN standard used, and

intrinsically defines the amount of bandwidth available in the network. Three WLAN

standard are used: 802.11a, 802.11b, and 802.11g. The 802.11a and 802.11g standards

provide 54 Mb/s bandwidth, and 802.11b provides 11 Mb/s. The network topology

defines the way the network nodes communicate with each other. There are two types

of network topology: ad-hoc and infrastructure. In the ad-hoc network topology the

nodes communicate directly with each other with no access points. In the infrastructure

network topology, all nodes communicate through an access point (AP). Additionally,

in the experiments described in this section, every process starts with the same proposal

value. Hence, an unanimous proposal distribution is used.

3.2.4 The Experiments

Four different experiments are presented. Each one was tailored to evaluate the impact

of specific system parameters in the latency of the algorithms. The first analyzes the

impact of the wireless standard with different group sizes. The second, the effects of

the computational capability of the processes. The third, the impact of the network

topology. Finally, the fourth focuses on the binary consensus protocols with the goal

of expanding the knowledge obtained from the evaluation described in Section 3.1 to

wireless settings.
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The experiments were all carried out the same way. A signaling machine, which

does not participate in the execution of the protocols, is selected to conduct the ex-

periment. It repeats the following procedure m times: it broadcasts a 1-byte UDP

message to the n processes involved in the experiment. When a process receives one

of these messages, it executes whatever protocol is relevant for the current experiment

(the information about which protocol to execute is carried within the 1-byte UDP

message). Processes record the latency value as described above, and send a 1-byte

UDP message to the signaling machine indicating the termination of the execution of

the protocol. The signaling machine, upon receiving n such messages, waits five sec-

onds, and recommences the procedure. The average latency is obtained by taking the

mean value of the sample of measured values.

In all the experiments, the message payload size of the broadcast and consensus

protocols was set to 100 bytes. The only exception is binary consensus where 1-byte

payloads are used (since the protocol only deals with binary values it does not make

sense to have larger payloads). The evaluated binary consensus protocol was always

Bracha’s (Bracha, 1984), except where an explicit comparison between the two binary

consensus protocols is presented.

Wireless Standard and Group Size. This experiment evaluates the performance

impact of both the wireless standard and the group size. The used testbed was tb-

emulab. The network topology was set to infrastructure with one of the nodes acting

exclusively as an access point. All possible wireless standard and group size settings

were tested. The tested protocols were reliable broadcast, Bracha’s binary consensus,

multi-valued consensus, and vector consensus.

Table 3.4 shows the obtained measurements. The relative cost of the protocols can

be easily observed. It is completely congruent with their interdependencies within the

stack. The greatest gap is from the binary consensus to the multi-valued consensus

and it is justified by the large messages that multi-valued consensus has to reliably

broadcast to justify the proposed values (Correia et al., 2006). The gaps from reliable

broadcast to binary consensus, and from multi-valued consensus to vector consensus

are smaller and directly related to the overhead incurred from the respective upper-

layer protocols.
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Latency (ms)
Wireless Group Reliable Binary Multi-val. Vector
Standard Size Broadcast Consensus Consensus Consensus

802.11b
n = 4 20.2 42.6 178.4 259.9
n = 7 72.4 292.7 1581.7 2078.3
n = 10 219.2 832.8 4678.9 6234.1

802.11g
n = 4 8.3 18.2 79.9 109.3
n = 7 24.7 92.6 564.6 879.9
n = 10 62.5 326.3 1608.1 2504.6

802.11a
n = 4 7.7 17.1 73.1 94.8
n = 7 23.4 73.3 438.8 720.4
n = 10 50.6 310.8 1340.5 1828.5

Table 3.4: Latency measurements for different wireless standards and group sizes in
testbed tb-emulab in infrastructure mode.

The performance impact of the wireless standard is mainly a consequence of the

available bandwidth. The experiments with 802.11b (11 Mb/s) were significantly

slower than the ones with 802.11g and 802.11a (54Mb/s). A reliable broadcast with

four processes takes 8.3 ms on a 802.11g network, while on a 802.11b network this

more than doubled to 20.2 ms. This pattern is roughly observed for all the experiments,

while the difference becomes slightly more accentuated with larger group sizes.

Another interesting result is that the values obtained in the 802.11a experiments

were consistently lower than the ones obtained in 802.11g, despite both standards be-

ing capable of achieving the same bandwidth. This difference is modest for the cheaper

protocols and smaller group sizes. For instance, a reliable broadcast with four pro-

cesses costs 8.3 ms in 802.11g, and 7.7 ms in 802.11a, an almost negligible difference.

However, as the protocols become more expensive and the group size increases (i.e.,

the network becomes more stressed), this difference becomes substantial. For vector

consensus with ten processes, the latency cost is 2504.6 ms in 802.11g, and 1828.5 ms

in 802.11a, which is a considerable difference.

Computational Capability. The second set of experiments measures how the com-

putational capability of the individual nodes affects the performance of the protocols.

Both testbeds were configured with the same system parameters: the wireless standard

was set to 802.11b, the group size to 4 and 7 processes, and the network topology to
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Latency (ms)
Group Reliable Binary Multi-valued Vector
Size Testbed Broadcast Consensus Consensus Consensus

n = 4
tb-emulab 12 35 160 210

tb-pda 26 211 320 374

n = 7
tb-emulab 36 154 972 1474

tb-pda 52 1626 2555 3221

Table 3.5: Average latency in 802.11b ad-hoc network for both testbeds.

ad-hoc mode. The computational capability in this contexts refers not just to the pro-
cessing power of the CPU, but the whole local environment where the protocols are
executed (e.g., hardware, drivers, operating system).

The obtained measurements are presented in Table 3.5. From the results it is clear
that the computational characteristics of the individual nodes greatly affect the perfor-
mance of the protocols. There is always a significant gap between the two testbeds for
all the experiments. The average latency roughly doubles from tb-emulab to tb-pda,
except for binary consensus where the difference is much greater.

In both testbeds it is observed that, at some point, a larger gap exists from one
protocol to another. In tb-pda this happens from reliable broadcast to binary consensus,
and in tb-emulab from binary consensus to multi-valued consensus. Being the system
parameters equal for both testbeds, one must assume that it is the limited computational
capability of the nodes in tb-pda that is responsible for the gap observed from reliable
broadcast to binary consensus.

Network Topology. This section looks at how the network topology of wireless net-
works impacts the performance of the protocols. For this experiment, measurements
were taken in testbed tb-pda with 802.11b networks for both ad-hoc and infrastructure.
The group size was set to 4 and 7 processes.

The measurements are presented in Table 3.6. The observation is that the operation
in infrastructure mode does have a significant impact on performance. It introduces an
additional delay into the communication between the processes since all data must be
relayed through the AP.

The performance penalty in infrastructure mode remains essentially the same across
all protocols despite their relative cost. Around 3 times with four processes, and 4 times
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Latency (ms)
Group Reliable Binary Multi-valued Vector
Size Testbed Broadcast Consensus Consensus Consensus

n = 4
ad-hoc 26 211 320 374

infrastructure 43 631 952 1190

n = 7
ad-hoc 52 1616 2555 3221

infrastructure 138 7620 10062 12929

Table 3.6: Average latency for tb-pda with 4 and 7 processes.

with seven processes. For instance, in testbed tb-pda, a multi-valued consensus with
four processes took 320 ms on average in ad-hoc mode, and 952 ms in infrastructure
mode. With seven processes, it took 2555 ms in ad-hoc mode, and 10062 ms in infras-
tructure mode. So, a larger group also emphasizes a bit the degradation brought up by
the presence of the AP.

These results demonstrate the high sensitivity these protocols have to the network
latency, even more than the bandwidth, because of the large number of communication
steps involved.

Binary Consensus Comparison. This section performs a more in-depth analysis of
a key protocol in the stack: binary consensus. It compares the two different imple-
mentations of the protocol that were studied in Section 3.1: Bracha’s protocol, which
was the local coin protocol (LCP), and the ABBA protocol, which was the shared
coin protocol (SCP). In particular, this section presents some considerations about the
performability of the two strategies employed by the protocols – one depends on the
heavy use of public-key cryptography (ABBA), and the other on abundant message
exchanges (Bracha’s).

Only testbed tb-emulab was used in the experiments. This is justified by the fact
that the computational cost of the cryptographic operations of the SCP made its evalu-
ation unfeasible in testbed tb-pda. In our tests, the generation of just a single signature
took several seconds. The system parameters evaluated were: group size of 4, 7, and 10
processes; 802.11b and 802.11g wireless standards; ad hoc and infrastructure network
topologies.

Given the features of the protocols it was expected for the LCP to outperform the
SCP given more favorable network conditions, and to exist a certain point, as network
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Latency (ms)
Group Algorithm 802.11g 802.11b
Size ad-hoc infra. ad-hoc infra.

n = 4
LCP 11 18 35 43
SCP 147 148 146 160

n = 7
LCP 43 94 154 293
SCP 210 211 211 270

n = 10
LCP 95 326 415 833
SCP 290 311 301 717

Table 3.7: Average latency for binary consensus protocols in tb-emulab.

conditions degrade, where the SCP strategy would pay off to the point of being faster

than the LCP. Table 3.7 presents the measurements observed for the various environ-

mental settings tested.

The results confirm the expectations. The table shows the measurements for the

best network configuration (802.11g and ad-hoc), where the LCP is clearly faster than

the SCP, even for a group size of ten processes – 95 ms against 290 ms, respectively.

In remaining scenarios where the network conditions are not so good – either there

is an AP or the standard is 802.11b, or both – there is a point from which the SCP

outperforms the LCP. For the 802.11b/adhoc and 802.11g/infrastructure scenarios, this

happens when the group size is ten, and for the 802.11b/infrastructure, which is the

worst network configuration, this happens at n = 7. The conclusion is that the LCP is

much faster with few processes and “good” network conditions, but it quickly degrades

with the network capacity up to a point where the SCP, being more resilient to the

network limitations, becomes faster.

3.2.5 Summary of Results

The most important conclusions from this experimental evaluation are summarized in

the following points:

• The measurements taken in 802.11a/g networks (54 Mb/s) were considerably

better than the ones taken in 802.11b (11 Mb/s), showing how the available band-

width can affect the performance of the protocols.
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• The execution of the protocols is slightly but consistently faster in 802.11a against

802.11g. Despite both being capable of achieving the same maximum data rate,

the typical data rate is higher in 802.11a networks.

• The computational capability of the individual processes can represent a signifi-

cant performance bottleneck. Nevertheless, as the cost of the protocols increase

and more stress is put on the network, this bottleneck tends to shift from the

computational capability to the network bandwidth.

• The introduction of an access point, and the consequential relay of all communi-

cation through it, imposes a general performance penalty on the protocols. The

protocols are highly sensitivity to the network delays.

• Bracha’s binary consensus (LCP) is faster than ABBA binary consensus (SCP)

when the network conditions are better (i.e., higher bandwidth, lower latency).

Nevertheless, there is a point, as network conditions degrade, at which ABBA

outperforms Bracha’s.

• In devices with limited computational capabilities the use of public-key cryp-

tography must be kept to a minimum. The generation of a single signature took

several seconds in testbed tb-pda, making the evaluation of the SCP infeasible.

3.3 Discussion of Results

The experimental evaluation of Section 3.1, which compares two classes of random-

ized consensus protocols in a wired LAN, lead to several important conclusions. The

first is that the local coin protocol has a much better latency and throughput than the

shared coin protocol in a LAN, both with and without crash or Byzantine failures. An-

other conclusion is that the higher number of messages sent by the local coin protocol

tends to increase the latency and decrease the throughput when many consensuses are

executed in parallel, especially when the bandwidth is reduced. Shared coin protocols

are somewhat less sensitive to these factors, since much of their cost is in computing

cryptographic operations in the machines.
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These results give the idea that, for devices with similar computational power of

those used in these experiments, shared coin protocols potentially perform better than

local coin protocols in a WLAN or WAN. This is because the available bandwidth in

these environments is usually not higher than the minimum we considered in the exper-

iments (10Mbit/s). Moreover, since the communication delay is typically much higher,

the extra communication steps of the LCP protocol will have an important cost. It it

not clear, however, how devices with constrained computational power, usually found

in wireless ad-hoc network, will perform with the SCP protocol given the significant

amount of asymmetric cryptographic operations involved.

The set of experiments described in Section 3.2 provided a rich corpus of results re-

garding the performance of intrusion-tolerant protocols in wireless networks. The most

relevant observations to extract are related to (1) how the stack of protocols performed

as a whole and if their performance is acceptable for the deployment of distributed

applications in wireless environments, and (2) how the two binary consensus protocols

fared in relation of each other.

For this first point it can be said that the performance can be acceptable in some

circumstances, but not in general. For example, the performance may be acceptable if

the application environment involves a reduced number of processes, relatively pow-

erful hardware, and a considerable amount of bandwidth (e.g., 4 processes, Pentium

III processes, and 802.11g). Even still, the application must be comfortable with pro-

tocols delays of, roughly, up to 1 second. It is clear then that this current generation

of intrusion-tolerant protocol cannot sustain the execution of distributed applications

with more than relatively modest performance requisites. Of particular importance is

that the protocols are very limited when it comes to scaling to a higher number of

processes. For example, the results with 10 processes can only rarely be acceptable,

specially when considering more resource-constrained environments, either in terms

of computational power or network bandwidth.

For the second point, it was interesting to confirm the results that were suggested

by the experiments described in Section 3.1. As the networking resources became

increasingly restricted, either because less bandwidth was available or because more

processes were present in the system, the shared coin protocol (ABBA) evolved from

a position where it was clearly outperformed by the local coin protocol (Bracha’s) to a
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position where it fared better than the local coin protocol. Nevertheless, the high com-
putational cost involved in the cryptographic operations of the shared coin protocol
made the evaluation of that protocol impractical in testbed tb-pda where, for instance,
the generation of a single valid signature took several seconds. These results indicate
that none of these protocols are fit to resource-constrained environments. They react
poorly with either restricted computational power (e.g., ABBA) or restricted commu-
nication capacity (e.g., Bracha’s).
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Chapter 4

Consensus with Faulty Transmissions

of a Restricted Source

This chapter draws on the results obtained in the previous chapter and introduces the
communication failure model of Santoro and Widmayer as a new system model suited
for wireless ad hoc networks (Section 4.1). The introduction of the new model is
completed with the presentation of a consensus algorithm designed for a simplified
version of the desired model (Section 4.2).

4.1 A New System Model for Wireless Ad hoc Networks

As the experiments of the previous chapter demonstrated, protocols for wireless ad
hoc networks should strive to keep communication complexity low and avoid expen-
sive cryptography. These two characteristics represent the respective performance bot-
tlenecks for each class of randomized protocols, since these networks are usually re-
stricted in their communicational and computational resources. Apart from these two
characteristics, which pertain to the design of the protocols, the system model usu-
ally employed by intrusion-tolerant systems also plays a significant role in their (poor)
performance in wireless ad hoc networks.

The design of both RITAS (Moniz et al., 2010) and SINTRA (Cachin & Poritz,
2002), and intrusion-tolerant protocols in general, follows a traditional modeling ap-
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proach where it is assumed an asynchronous timing model, static process failures,

and reliable point-to-point communication links. In such a model, as long as any two

processes are correct, any message sent from one process to another is eventually de-

livered. If the environment does not provide such guarantee, then reliable channels

have to be implemented in order to abstract the underlying unreliable communication

from protocol design (e.g., TCP). In wireless environments, where the communication

medium is shared, this approach significantly increases the medium access contention,

impairing the overall performance.

Since wireless ad hoc networks provide a natural broadcasting medium, the cost of

transmitting a message to multiple processes can be just the same of transmitting it to

a single process, as long as they are within communication range. To take advantage

of this feature, it becomes necessary to depart from the common modeling assumption

of reliable point-to-point channels. The unreliability inherent to radio communications

has to be dealt with in some other way. As such, models that assume unreliable com-

munication links are more adjusted to wireless networking. Tolerance to message loss

becomes integrated within the semantics of the algorithms, instead of being abstracted

by typically inefficient implementations. To this end, the following section introduces

the communication failure model, where links are assumed to be unreliable.

4.1.1 The Communication Failure Model

In the traditional models for distributed systems, faults are static and component-

bound, i.e., a fault is associated to a particular component that is forever considered

faulty. The faulty component can be a process or a communication link (e.g., (Pease

et al., 1980; Perry & Toueg, 1986)). These models are referred to as component failure

models. For systems based on these models to operate correctly, a certain number of

components must not exhibit failures during their entire operation time.

The communication failure model (Santoro & Widmayer, 2007; Santoro & Wid-

meyer, 1989) differs from the component failure models in this regard: failures are not

static. Instead, they are dynamic and transient in the sense that they can occur any-

where in the system, and following a failure, normal functioning can be resumed after

some unknown time. This pattern may repeat any number of times. Such an approach
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implicitly allows every component of the system to eventually fail. The only restriction

is placed on the number of faults that simultaneously manifest in the system.

This model is also more aligned with the inherent uncertainty of wireless ad hoc

networks. Nodes are usually subject to momentary disconnection due to node mobil-

ity and other environmental phenomena such as electromagnetic interference, fading,

collisions, etc. These events may result in message loss or corruption, but should not

be sufficient to permanently assume a process or link as faulty, specially because they

can possibly affect many processes during the lifetime of the system.

In the communication failure model, faults are assumed to occur only in message

transmissions. A transmission amongst a source process pi and a destination process

pj is faulty if one of the following occurs:

Omission. The message sent by pi is not received by pj .

Addition. A message is delivered to pj when no such message was sent.

Corruption. The message sent by pi is received by pj with different content.

Under this model, processes are modeled as not to exhibit faulty behavior. The

notion of a faulty process is instead captured by the assumption of faulty message

transmissions. On message-passing systems, any component failure will ultimately

manifest itself as transmission faults. For example, a process crash will manifest into a

series of transmission omission faults with the crashed process as sender, and a process

that is attacked and falls under the control of a maliciously adversary may manifest into

a series of transmission corruption faults where the contents of the messages are modi-

fied relative to the original protocol. Message corruptions and additions are exclusively

dedicated to capture the arbitrary actions of malicious processes, which will happen in

practice. Of course, accidental corruptions will also occur, but these are assumed to be

detected by integrity checking mechanisms (e.g., a checksum function). Consequently,

these can be safely treated as message omissions (e.g., if a message fails an integrity

check, then it is simply discarded). Since faults can occur non-uniformly at the re-

ceivers, a message broadcast is modeled as n separate transmissions. For example, a

process pj may receive a message broadcast by pi, while some other process pl may

receive a corrupted version of that message or no message at all.
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The communication failure model is constrained by the Santoro-Widmeyer impos-

sibility result (Santoro & Widmayer, 2007; Santoro & Widmeyer, 1989). This result

states that no agreement protocol is possible in a synchronous system if just n − 1

omission faults may occur. This means that, in practice, the crashing of any one node

(which causes n − 1 transmission omission failures) renders any form of agreement

impossible. This result is parallel to the widely known FLP impossibility result for

asynchronous systems (with reliable links) which states that consensus is impossible if

at least one node can crash (Fischer et al., 1985).

Given the usefulness of this model for wireless ad-hoc environments, it deserves

a systematic study in order to circumvent its impossibility result. It is of particular

importance, however, that this process does not involve extending the model with un-

reasonable assumptions regarding the system. In this regard, randomization seems to

be the best approach because it just implies assuming that processes have access to

some local source of random information. Other approaches, previously used to cir-

cumvent the FLP result, do not appear to be appropriate either for the communication

failure model or our target environment. The Santoro-Widmayer impossibility applies

for synchronous system, so further strengthening of timing assumptions is not possi-

ble. The failure detector approach is also elusive, mainly because failure detectors usu-

ally hide timing assumptions in their implementation. The collision detector approach

of Chockler et al. (2005) does not use time, but instead makes simplistic assumptions

about the environment. Namely, that message omissions are only due to collisions and

that these can be detected. Finally, the wormhole approach may not be appropriate for

wireless ad hoc networks. Assuming a hybrid model where some subpart of the system

provides stronger reliability properties is very difficult to obtain in these environments.

With respect to randomization, the goal is to design protocols for the communica-

tion failure model that avoid the performance bottlenecks observed in Chapter 3. In

order to achieve this goal, local coin protocols appear more appropriate for two rea-

sons: (1) shared coin protocols involve cryptographic operations whose cost is usually

prohibitive for mobile devices, and (2) the new model promises to cope much better

with the communication costs involved because it reflects more closely the broadcast-

ing nature of wireless environments.

The following material explores the problem of consensus under variations of this

fault model, each one dealing with increasingly complex aspects of the model. The
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next section presents a binary consensus algorithm that tolerates omission and cor-

ruption faults, however, it simplifies the problem by assuming a synchronous system

and restricting the number of processes where faults may originate at any given step.

Chapter 5 significantly extends this result by tolerating truly dynamic omission failures

(i.e., no restrictions on the number of processes at the source of faulty transmissions),

and presents the first randomized algorithm that achieves this. It does not handle, how-

ever, arbitrary failures. Chapter 6 introduces intrusion tolerance: it assumes an asyn-

chronous model and presents an algorithm that tolerates a combination of dynamic

omission failures and a static subset of Byzantine processes, thus achieving the desired

goal of intrusion-tolerant consensus in wireless ad hoc networks.

4.2 Consensus Algorithm

This section represents a first step into the exploration of the communication failure

model. It presents a randomized binary consensus algorithm that tolerates transmission

faults of the omission and corruption types under a synchronous system.

In this initial approach, the problem is simplified by restricting the number of pro-

cesses at any step in which transmission faults can originate. Since the set of processes

which are the source of a transmission failure can be different from one broadcasting

step to another, we say the protocol is resilient to dynamic process failures. Despite

being a restricted version of the communication failure model, this model is still con-

strained by the Santoro-Widmayer impossibility result. The uncertainty captured by

this model is similar to that of the FLP result: it is impossible to determine a process

as permanently faulty. The fact that the system is synchronous does not bring any

additional power in this respect. It is possible to detect failures, but since these are

dynamic and transient in nature, they do not provide a reliable indication of a process

being permanently faulty. In essence, it is impossible to distinguish a failed process

from one whose transmissions are just temporarily faulty.
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4.2.1 The Binary Consensus Problem

The binary consensus represents the most basic form of agreement (i.e., on a single bit
of information) and it is used as a building block for other agreement and broadcast
protocols (e.g., multi-valued consensus and atomic broadcast). In the protocol, each
process pi proposes a bit value vi ∈ {0, 1} and all processes decide on the same value
v ∈ {0, 1}. Additionally, if all processes propose the same initial value v, then the
decision has necessarily to be v. Since the algorithm is randomized, the termination
property is formulated in a probabilistic way.

Formally, the properties of the protocol are defined as follows:

Validity. If all processes propose the same value v, then any process that decides,
decides v.

Agreement. No two processes decide differently.

Termination. Every process eventually decides with probability 1.

4.2.2 System Model

The system is composed by a static set of n processes Π = {p0, p2, ..., pn−1} that ex-
change messages through two communication primitives: broadcast and receive.
The primitive broadcast(m) transmits a messagem to all processes in Π, including
itself. The primitive receive() returns a set with the messages that arrived due to
invocations of broadcast from the processes in Π.

The system is synchronous, meaning that both the processing times of processes
and the communication delays are bound by known constants. Communication be-
tween processes occurs at synchronous steps. At each step, every process executes the
following actions: (1) invokes broadcast(m), (2) invokes receive(), and (3)
performs a state transition based on its current state and the messages received so far.
The messages are stored by each process pi in a local set Vi. It is assumed that at most
one message per step from each process pj is stored at Vi.

A broadcast operation originates n transmissions of a message m, one for each
process in the system. A transmission of a message amongst a source process pi and a
destination process pj is faulty if one of the following occurs:
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Omission. The message m broadcast by pi is not received by pj .

Corruption. The message m broadcast by pi is received by pj with different content

m′ ∕= m.

Faults can occur non-uniformly at a message broadcast, i.e., of the n transmissions

originated by a broadcast operation some may be faulty and others not. The system

can exhibit transmission faults of the omission and corruption types with the restriction

that faults cannot affect more than f source processes per step, with n ≥ 3f + 1. A

fault is said to affect a source process pi if it occurs at a transmission made by pi.

Message addition failures (i.e., some message is received when it was not sent by the

source process) are not considered because it is assumed that processes have access to

some message authentication mechanism which prevents spoofing of messages. The

implementation of such mechanism is not taken into account for now.

Processes are modeled as not to exhibit faulty behavior, i.e., they correctly follow

the protocols until termination. The notion of a faulty process is instead captured by

the assumption of faulty message transmissions. For example, a process pi whose com-

munication system is malfunctioning is captured by omission faults originating at pi.

Similarly, a malicious process pj that sends messages with different content to every

other process is captured by corruption faults originating at pj . In order to properly

capture the malicious behavior of processes into the model, it is also assumed that

integrity-checking mechanisms cannot detect this kind of message corruption. Other-

wise, corruption faults could be easily converted into omission faults.

Finally, each process pi has access to a local random bit generator through a func-

tion coini() that returns unbiased bits.

4.2.3 The Algorithm

The protocol is presented in Algorithm 1. It runs in rounds of two steps each and takes

as input the proposal value for the consensus execution. Every process pi ∈ Π starts the

protocol by initializing both the round number ri and step number si to 1, the decision

value decisioni to an undefined value⊥ indicating that no decision has been made yet,

and the variable stopi to an undefined value ⊥. This variable keeps the round number
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where the algorithm should halt the execution. Variable vi keeps the current proposal

value, and Vi is a set storing the messages received so far (initialized as empty).

Each process pi then enters step 1 of the protocol (lines 8-14). It broadcasts a mes-

sage of the form ⟨i, ri, si, vi⟩, containing the process identifier i, the round number ri,

the step number si, and the proposal value vi. It then receives the messages broadcast

in the current step and stores them in Vi (lines 8-9). At line 10, it checks if there are

more than n+f
2

messages with the same value v in Vi that were broadcast in the current

round and step (with the ∗ indicating a wild card for the process identifier). If true,

then vi is set to v to indicate the preference value of pi. Otherwise, vi is set to⊥, which

indicates a lack of preference (lines 10-14).

Processes then proceed to step 2 (lines 15-24). Each process pi broadcasts a new

message containing the updated proposal value vi and saves the arriving messages in

Vi (lines 15-16). If there are more than n+f
2

messages with the same value v in Vi,

then pi sets the decision value decisioni to v and sets the variable stopi to indicate the

algorithm should stop the execution at the next round (lines 17-20). If there are at least

f + 1 messages with v (note that entering the previous condition implies entering this

one), then the proposal value vi is updated to v (lines 21-22). Otherwise, if none of

the previous thresholds are observed, then vi is set to a random value 1 or 0, each with

probability 1
2

(lines 23-24). This random step ensures that eventually there will be a

round where every process proposes the same value, in which case it is easy to see that

the algorithm reaches a decision by the end of that round.

Finally, the algorithm checks if it should stop the execution by comparing the cur-

rent round number ri with the stopi variable (lines 25-26). If the numbers match, the

algorithm halts, otherwise it increments the current round number, sets the step num-

ber to 1 (lines 27-28), and continues for another round. The algorithm completes the

execution exactly one round after making a decision. This means that an efficient im-

plementation must not wait until the end of the protocol execution to output a decision

value. It should output the decision value immediately when one is available and then

continue the execution for an extra round.

94



4.2 Consensus Algorithm

Algorithm 1: Binary Consensus Algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
ri ← 1; // round number;1

si ← 1; // step number;2

stopi ← ⊥; // round number where execution halts;3

decisioni ← ⊥;4

vi ← proposali;5

Vi ← ∅;6

while do7

broadcast(⟨i, ri, si, vi⟩); // step 1;8

Vi ← receive();9

if ∃v ∈ {0, 1} : ∣{⟨∗, r, s, v⟩ ∈ Vi}∣ > n+f
2

then10

vi ← v;11

else12

vi ← ⊥;13

si ← 2;14

broadcast(⟨i, ri, si, vi⟩); // step 2;15

Vi ← receive();16

if ∃v ∈ {0, 1} : ∣{⟨∗, r, s, v⟩ ∈ Vi}∣ > n+f
2

then17

if decisioni = ⊥ then18

decisioni ← v;19

stopi ← ri + 1;20

if ∃v ∈ {0, 1} : ∣{⟨∗, r, s, v⟩ ∈ Vi}∣ ≥ f + 1 then21

vi ← v;22

else23

vi ← coini();24

if ri = stopi then25

halt(); // stop execution;26

ri ← ri + 1;27

si ← 1;28
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4.2.4 Correctness Proof

This section shows that the above protocol ensures the three properties from Section
4.2.1. The proof is supported by Lemmas 3 and 5, which essentially demonstrate that
the messages processes receive at each step can differ from one another in a limited
way. The agreement property (Theorem 9) is further supported by Lemma 8. Lemmas
10 and 11 specifically support the termination property (Theorem 12).

Definition 1. Let Ω be the set of messages broadcast by all processes in Π at some

round r and step s, with ∣Ω∣ = n.

Definition 2. Let Vi be the set of messages received by a process pi at some round r

and step s, with n− f ≤ ∣Vi∣ ≤ n.

Lemma 3. For any process pi at any round r and step s, ∣Ω ∩ Vi∣ ≥ n− f is true.

Proof. If no transmission failures occur, then Ω = Vi, i.e., the set of broadcasted

messages is equal to the set of received messages. Since, according to the system

model, transmission failures can originate, at most, from f processes per step, then

at most f messages in Vi are subject to transmission failures (i.e., not received or

received with different content). Therefore, the sets Ω and Vi have to contain at least

n− f messages in common. Hence, ∣Ω ∩ Vi∣ ≥ n− f .

Corollary 4. For any process pi at some round r and step s, set Vi has at most f

elements not contained in set Ω. Hence, ∣Vi∖Ω∣ ≤ f .

Lemma 5. Let Vi and Vj be the sets of messages received at some round r and step s

by processes pi and pj , respectively, with i ∕= j. Then, ∣Vi ∩ Vj∣ ≥ n− f .

Proof. According to the system model, transmission failures can originate, at most,

from the same f processes per step. Therefore, any two sets Vi and Vj have to include

at least the same n−f elements, i.e., the messages not subject to transmission failures.

It follows that ∣Vi ∩ Vj∣ ≥ n− f must be true.
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Corollary 6. For any two processes pj and pi at some round r and step s, set Vj has

at most f elements not contained in set Vi. Hence, ∣Vj∖Vi∣ ≤ f .

Theorem 7. If all processes propose the same value v, then any process that decides,

decides v.

Proof. Let Vi be the set of messages received by a process pi at round 1, step 1. Since

all processes propose the same value v, then, by definition, all messages in Ω have the

same value v. According to Lemma 3, at least n− f > n+f
2

messages in Ω are also in

Vi. Therefore, Vi includes at least n − f messages with value v. This means that all

processes execute line 11 of the algorithm, setting vi = v. A trivial inspection of the

protocol shows that a similar reasoning applies to step 2. Here, since a process receives

at least n− f > n+f
2

messages with the same value v, then it must decide v.

Lemma 8. If some process pi decides v at round r, then any process either broadcasts

v or ⊥ at step 2 of round r.

Proof. For a process pi to decide on a value v at round r, it means that it must have

received more than n+f
2

messages with value v ∕= ⊥ at step 2 of round r (lines 17-23).

This implies that some processes broadcasted value v ∕= ⊥ at step 2 (line 15), and,

hence, they must have set their proposal value to v at step 1 of round r (line 11). For a

process pi to set its proposal value to v ∕= ⊥ at step 1, it must receive more than n+f
2

messages with v (lines 9-11). Consequently, no other process can receive more than
n+f
2

messages with value v′ ∕= v at step 1. It follows that, at step 1, a process can only

set its proposal value to v or ⊥. Thus, any process either broadcasts v or ⊥ at step 2 of

round r.

Theorem 9. No two processes decide differently.

Proof. The proof assumes that some process pi decides on a value v at some round r,

and proceeds to show that no other process can decide on a value v′ ∕= v. A process pi
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decides on a value v if it receives more than n+f
2

messages with value v ∕= ⊥ at step

2 of round r (lines 17-20). Additionally, by Corollary 6, every other process receives

more than n+f
2
− f = n−f

2
> f messages with value v at step 2 of the same round. By

Lemma 8, since pi decides at round r (line 19), then any process either broadcasts v or

⊥ at step 2 of round r (line 15). This implies, by Corollary 4, that no process receives

more than f messages with value v′ ∕= v, where v′ ∈ {0, 1}, at step 2 of round r (line

17). Consequently, the only value (not ⊥) for which every process receives f + 1 or

more messages is v. Therefore, every process at step 2 of round r sets its proposal

value to v (line 22), and propose the same value v at the beginning of step 1 of round

r + 1. According to Theorem 7, any remaining process that needs to decide will also

chose v. Thus, no two processes decide differently.

Lemma 10. At step 2 of any round r, if a process pi sets its proposal value to v without

resorting to a coin flip, then no other process sets its proposal value to v′ ∕= v unless it

resorts to a coin flip.

Proof. At step 1, a process pi sets its proposal value to v ∕= ⊥ if it receives more than
n+f
2

messages with v (lines 10-11). Consequently, no other process can receive more

than n+f
2

messages with v′ ∕= v, where v′ ∈ {0, 1}. Therefore, no other process sets

its proposal value to v′. This implies that for step 2 every process broadcasts the same

value v or ⊥ (line 15) and, based on Corollary 4, no process receives more than f

messages with value v′. Thus, no process sets its proposal value at step 2 to v′ ∕= v

unless it resorts to a coin flip (line 24) because, otherwise, at least f + 1 messages with

a value v′ had to be received at step 2, which is a contradiction.

Lemma 11. If every process proposes the same value v at the beginning of some round

r, then every process decides v by the end of round r.

Proof. Since all processes propose the same value v at the beginning of round r, then,

by Lemma 3, all processes receive at least n − f > n+f
2

messages with v at step 1.
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Therefore, all processes propose v for step 2 because they all executed line 11. This

implies that, again by Lemma 3, all processes receive at least n − f > n+f
2

messages

with v at step 2. Consequently, all processes decide v at line 19.

Theorem 12. Every process eventually decides with probability 1.

Proof. According to Lemma 11, if all processes propose the same value v at the be-

ginning of a round r, then all processes decide v by the end of that round. The proof

consists of showing that eventually all processes propose the same value v.

At step 2 of any round r, processes set their proposal values to be broadcasted at

the beginning of round r + 1. This value can be set deterministically (lines 21-22) or

randomly (lines 23-24). At any round r, let D(r) be the set of processes that set their

value deterministically and R(r) the set of processes that set their value randomly. By

Lemma 10, all processes inD(r) set their proposal to the same value v. Therefore, with

probability 2−∣R(r)∣, all processes in R(r) set their proposal value to v at the beginning

of round r + 1. In a worst-case scenario, where ∣R(r)∣ = n, the probability of the

processes not proposing the same value at the beginning of a round is 1 − 2−n. Thus,

the probability P that all processes set their proposal to the same value v within r

rounds is at worst P = 1− (1− 2−n)r. Thus, limr→∞ P = 1, meaning that eventually

all processes propose the same value v at the beginning of some round with probability

1.
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Chapter 5

Consensus with Dynamic Omission

Failures

This chapter presents a randomized binary k-consensus algorithm that tolerates dy-

namic omission transmission faults in both a practical and efficient way. The algorithm

allows at least k processes to decide on a common binary value in a system with n pro-

cesses such that k > n
2
. It is the first algorithm to circumvent the Santoro-Widmayer

impossibility result without restricting the pattern of faults (unlike other approaches,

e.g., Section 4.2.1; Biely et al. (2007); Schmid et al. (2009)). The safety properties of

consensus (i.e., validity and agreement) are ensured even with an unrestricted number

of faults, while the liveness property (i.e., termination) is ensured if the number of

faults per round is � ≤ ⌈n
2
⌉(n− k) + k − 2. Termination is achieved with probability

1 when communication becomes stable, i.e., when the threshold above is satisfied.

As stated before, the considered model focuses on the effects of faults (e.g., mes-

sage omissions), rather than their source. As a consequence, it does not take into ac-

count the explicit failure of processes. The actual crashing of a process results simply

in a certain pattern of message omissions. It is the latter that is captured by our model.

The notion of faulty process is, however, implicitly present in the parameter k. Since

k processes have to decide, n− k processes can, in practice, be crashed. Naturally, the

algorithm tolerates this behavior and makes progress as long as the number of message

omissions does not exceed �.
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From a theoretical point of view, the main contribution of the algorithm is a new
upper bound for the number of omission transmission faults. It has, however, additional
characteristics that make it very interesting for practical deployment in wireless ad hoc
networks. It allows an efficient utilization of the broadcasting medium and, at the same
time, ensures safety under arbitrary message loss, regardless of its cause. Furthermore,
the algorithm is efficient in the sense that it is fast-learning (Lamport, 2006), i.e., it
terminates in 2 communication steps under favorable conditions (i.e., with no message
losses, benign patterns of message losses, and/or all processes having the same initial
value).

The remainder of the chapter is organized as follows: Section 5.1 formalizes the
k-consensus problem, and the next section presents the system model. Section 5.3 de-
scribes the algorithm, and the correctness proofs are provided in the following section.
Finally, Section 5.5 discusses some extensions to the algorithm.

5.1 The k-Consensus Problem

The k-consensus problem considers a set of n processes where each process pi pro-
poses a binary value vi ∈ {0, 1}, and at least k > n

2
of them have to decide on a

common value proposed by one of the processes. The remaining n − k processes do
not necessarily have to decide, but if they do, they are not allowed to decide on a
different value. Our problem formulation is designed to accommodate a randomized
solution and is formally defined by the properties:

Validity. If all processes propose the same value v, then any process that decides,
decides v.

Agreement. No two processes decide differently.

Termination. At least k processes eventually decide with probability 1.

5.2 System Model

The system is composed by a fixed set of n processes Π = {p0, p1, ..., pn−1}, where
each process pi has an unique identifier i. The timing model is assumed to be syn-
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chronous. As previously explained, this implies that (1) there is a known upper bound

on time required by a process to execute a step, (2) there is a known upper bound on

message transmission delays, and (3) every process has a local clock with a known

bounded rate of drift with respect to real-time.

The communication between processes proceeds in synchronous rounds. At each

round, every process pi ∈ Π executes the following actions: (1) transmits a message m

to every process pj ∈ Π, including itself, by invoking broadcast(m), (2) receives

the messages broadcast in the current round by invoking receive(), and (3) per-

forms a local computation based on its current state and the set of messages received

so far. It is assumed that a broadcast operation generates n transmissions, one for each

process in Π. This arises from the necessity of capturing the possibility of non-uniform

message delivery by the processes. Of course, in practice, this operation can still be

implemented efficiently by transmitting only a single message.

Processes do not to exhibit faulty behavior, i.e., they correctly follow the protocol

until termination. The notion of a faulty process is instead captured by the assumption

of faulty message transmissions. For example, a crashed process can be expressed

by the loss of every message transmitted by it. The model considers only omission

transmission failures. A transmission between two processes pi and pj is subject to an

omission failure if the message sent by pi is not received by pj .

In rounds where omission faults are bounded by � ≤ ⌈n
2
⌉(n − k) + k − 2 out

of the n2 transmissions that occur (where k is the number of processes required to de-

cide), the protocol necessarily makes some progress that eventually leads to a decision.

Therefore, if enough of these rounds occur, then the protocol ensures termination with

probability 1. Nevertheless, to simplify the correctness proofs we will assume that

there is some unknown time after which at most � faulty transmissions occur at each

round. The number of faults per round prior to this is unrestricted and can for instance

match the total number of transmissions.

Finally, every process pi ∈ Π has access to a local random bit generator acessible

via a function coini() that returns unbiased bits observable only by pi.
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5.3 The Algorithm

This section presents a k-consensus algorithm (Algorithm 2). The algorithm is tolerant
to omission faults and relies on each process pi having access to a local coinmechanism
that returns random bits observable only by pi (e.g., Ben-Or (1983); Bracha (1984)).
Safety (i.e., the validity and agreement properties of consensus) is ensured by the
algorithm regardless of the number of omission faults that occur per round, while
liveness (i.e., the termination property) is ensured if, after some arbitrary number
of rounds, the number of omission faults per round does not exceed the threshold
� ≤ ⌈n

2
⌉(n− k) + k − 2.

The internal state of a process pi is comprised by three variables: (1) the phase

�i ≥ 1, (2) the proposal value vi ∈ {0, 1}, and (3) the decision status statusi ∈
{decided, undecided}. Each process starts the execution with �i = 1, statusi =

undecided, while vi is set to the initial proposal value indicated by the input register
proposali.

A round of the algorithm is executed as follows. Upon every clock tick (line 5),
each process pi broadcasts a message of the form ⟨i, �i, vi, statusi⟩ containing its iden-
tifier and the variables that comprise the internal state, and receives the messages
broadcast by all processes (lines 6-7). Some of the messages that a process is sup-
posed to receive may be lost. The messages that a process pi receives at any round are
accumulated in a set Vi (line 8). Based on its current internal state and the messages
accumulated so far in set Vi, each process pi performs a state transition (i.e., modifies
�i, vi or statusi).

Before continuing the explanation of the state transition, it is important to note the
distinction between round and phase. The term round pertains to a periodic execution
of the protocol activated by a synchronous event, a clock tick in this case. The term
phase pertains to a monotonic variable �i that is part of the internal state of a process
pi, and whose value increases as pi accumulates messages of a certain form in set Vi.
How exactly �i is updated is explained below. For now, it is beneficial to retain that for
any given round, any two processes pi and pj can have different phase values �i ∕= �j .

A process pi performs a state transition when one of two conditions occur:

1. The set Vi holds one message from some process pj whose phase �j is higher

than the phase �i of pi.
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5.3 The Algorithm

Algorithm 2: k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
�i ← 1;1

vi ← proposali;2

statusi ← undecided;3

Vi ← ∅;4

for each clock tick do5

broadcast(⟨i, �i, vi, statusi⟩);6

Mi ← receive();7

Vi ← Vi ∪Mi;8

while ∃⟨∗,�,v,status⟩∈Vi : � > �i do9

�i ← �;10

vi ← v;11

statusi ← status;12

end13

if ∣{⟨∗, �, ∗, ∗⟩ ∈ Vi : � = �i}∣ > n
2

then14

if �i mod 2 = 1 then /* odd phase */15

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ > n
2

then16

vi ← v;17

else18

vi ← ⊥;19

end20

else /* even phase */21

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ > n
2

then22

statusi ← decided;23

end24

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ ≥ 1 then25

vi ← v;26

else27

vi ← coini();28

end29

end30

�i ← �i + 1;31

end32

if statusi = decided then33

decisioni ← vi;34

end35

end36
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2. The set Vi holds more than n
2

messages whose phase is equal to the phase �i of
pi.

The first case is straightforward (lines 9-13). As long as there is some message in
Vi with a higher phase than that of pi, the loop iterates until the state of pi is matched
with the state of the message with the highest phase value.

The second case involves the execution of more steps (lines 14-32). The way a
process pi updates its state depends on whether the current number of its phase �i is
odd (i.e., �i mod 2 = 1) or even (i.e., �i mod 2 = 0). The odd phase essentially
guarantees that if two processes set their proposal to a value 1 or 0, they do it for the
same value. The even phase is where a process decides if it learns that a majority of
processes have the same proposal value.

If �i mod 2 = 1 (lines 15-20), then the proposal value vi is updated in the following
way: if there are more than n

2
messages of the form ⟨∗, �, v, ∗⟩ in Vi with � = �i and

the same value v ∈ {0, 1}, then vi is set to v (lines 16-17). Otherwise, it is set to a
special value ⊥ /∈ {0, 1} indicating a lack of preference (lines 18-19).

If �i mod 2 = 0 (lines 21-30), then the process sets statusi to decided if there are
more than n

2
messages of the form ⟨∗, �, v, ∗⟩ in Vi with the same value v ∕= ⊥ and

� = �i (lines 22-24). The proposal value vi is updated to v if there is at least one
message of the form ⟨�, v, ∗⟩ in Vi with a value v ∕= ⊥ and � = �i. Otherwise, vi is set
to the value of function coini(), which returns a random number 0 or 1, each with
a probability 1

2
(lines 25-29). Regardless of whether the phase �i is odd or even, its

value is always incremented by one unit (line 31).
At the end of each round, a process pi checks if statusi has been set to decided. If

so, it decides by setting the output variable decisioni to the current proposal value vi
(lines 33-35). Any further accesses to this variable do not alter its value. Hence, they
have no impact on the correctness of the algorithm.

5.4 Correctness Proof

The correctness proof of the algorithm is divided in two subsections. Section 5.4.1 is
concerned with the safety properties of the algorithm: validity and agreement. Section
5.4.2 proves the liveness property: termination.
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5.4.1 Safety

The validity and agreement properties are proven on the assumption that the system

might be subject to an unbounded number of transmission omission faults per round.

The first lemma shows that if there is some phase where every process has the same

proposal value, then at any subsequent phase they all have that same proposal value.

This supports Lemma 14, which essentially states that whenever there is an odd phase

� where every process has the same proposal value, every process that reaches a phase

higher than � + 1 decides on that value. With these two lemmas, the validity property

is easily proven (Theorem 15).

Lemma 13. If every process pi with phase value �i = � has the same proposal value

vi = v ∕= ⊥, then every process pj that sets �j = �+ 1 also sets vj = v.

Proof. The lemma is going to be proven by induction on the number of processes that

reach phase � + 1. Basis: Without loss of generality, let p1 be the first process that

sets �1 = � + 1. In this case, process p1 must have received more than n
2

messages of

the form ⟨∗, �, ∗, ∗⟩ (Line 14). Since every process pi with �i = � has the same value

vi = v ∕= ⊥, every broadcast message of the form ⟨∗, �, ∗, ∗⟩ carries the same proposal

value v (Line 6). This implies that the more than n
2

messages received by process p1

have the form ⟨∗, �, ∗, ∗⟩ with the same value v. Therefore, p1 must set its proposal

value to v (either on Line 17 or 26). Inductive step: Assume that every process pu with

1 ≤ u ≤ j − 1 has �u = � + 1 and vu = v. Now we want to demonstrate that when

pj sets �j = � + 1 it will also set vj = v. In order for process pj to set �j = � + 1 it

must have in set Vj (1) more than n
2

messages of the form ⟨∗, �, ∗, ∗⟩ (Line 14) or (2)

at least a message of the form ⟨∗, � + 1, ∗, ∗⟩ (Line 9). Condition (1) corresponds to

the basis case, and therefore it has already been shown that pj sets vj = v. Condition

(2) also results in the same outcome, since by hypothesis message ⟨∗, �+ 1, ∗, ∗⟩ must

have been transmitted by one of the pu processes, and therefore pj also sets �j = �+ 1

and vj = v (Lines 10-11).
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Lemma 14. Let � be some odd phase (i.e., � mod 2 = 1). If every process with phase

value � has the same proposal value v, then every process that sets its phase to any

value �′ > �+ 1 decides v.

Proof. Since every process with odd phase value � has the same proposal value v,

by Lemma 13, every process that reaches even phase � + 1 also has proposal value

v (either on Lines 10-11 or Lines 17 and 31). Let pi be the first process to set phase

value �i = � + 2. Since there is no other process pj with phase value �j > � + 1, the

only way for pi to go from phase � + 1 to � + 2 is to receive more than n
2

messages

of the form ⟨∗, �+ 1, ∗, ∗⟩ (Line 14). Since �+ 1 is even and all these messages carry

the same proposal value v, this implies that pi sets statusi = decided, vi = v and

�i = �+ 2 (Lines 23, 26, 31). Consequently, process pi can now decide v (Line 34).

The next process that sets its phase value to � + 2 also decides v because it

either accumulates more than n
2

messages with phase value � + 1 and same pro-

posal value v (Lines 23, 26, 31 and 34), or receives a message from pi of the form

⟨∗, �+ 2, v, decided⟩ (Lines 10-12 and 34). This reasoning can be applied recursively

to any other process that sets its phase value to � + 2. It follows that any process that

sets its phase value to �′ ≥ � + 2 must either had been at phase � + 2, and hence de-

cided, or it must have received some message from a process that went through phase

� + 2, and thus also decided. Therefore, every process that sets its phase to any value

�′ > �+ 1 decides v.

Theorem 15. If all processes propose the same value v, then every process that de-

cides, decides v.

Proof. If every process has the same initial proposal value v, then they all and set

proposal value to v in odd phase 1 (Lines 1-2). Therefore, by Lemma 13, every process

pj that sets phase �j = 2 also has proposal value vj = v. Moreover, by Lemma 14,

every process pi that sets its phase to �i > 2, decides v.
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The following lemma proves that any two processes in the same even phase can not
have different proposal values 0 and 1. In other words, if some process has proposal
value v ∈ {0, 1}, then any other process can only have a proposal value of v or⊥. This
lemma is essential to the agreement property in Theorem 17, which shows that when
the first process decides, every process proposes the same value at the following phase.
By lemma 14, this inevitably leads to a decision on the same value.

Lemma 16. In some even phase �, there are no two process pi and pj that receive

messages of the form ⟨∗, �, 0, ∗⟩ and ⟨∗, �, 1, ∗⟩, respectively.

Proof. Suppose otherwise. Then pi and pj are two processes with phase value � that,

respectively, receive a message ⟨∗, �, 0, ∗⟩ from pu and a message ⟨∗, �, 1, ∗⟩ from

pw. This implies that process pu has set vu = 0 either because on odd phase � − 1

it accumulated more than n
2

messages of the form ⟨∗, � − 1, 0, ∗⟩ (Lines 16-17, 31),

or because it received a message ⟨∗, �, 0, ∗⟩ (Lines 10-11) from a process that had

accumulated that majority of ⟨∗, � − 1, 0, ∗⟩ messages. Using a similar reasoning, in

order for process pw to have set vw = 1, some process must have received on odd phase

� − 1 more than n
2

messages of the form ⟨∗, � − 1, 1, ∗⟩. But this is a contradiction

because only one of the proposal values 0 and 1 can be in a majority of the messages

broadcast for any particular phase number.

Theorem 17. No two processes decide differently.

Proof. Let pi be the first process to decide, and do so when phase �i = � (Line 34).

Without loss of generality, let the decision value be 1. Then, set Vi must contain more

than n
2

messages of the form ⟨∗, �−1, 1, undecided⟩, and �−1 must be even (to allow

the execution of Lines 23, 26, and 31). By Lemma 16, no other process pj can receive

a message of the form ⟨∗, � − 1, 0, ∗⟩. Therefore, every other process pj with phase

�j = � has proposal value vj = 1 either because it accumulates more than n
2

messages

with at least one being of the form ⟨∗, � − 1, 1, ∗⟩ (Line 26), or because it receives a

message ⟨∗, �, 1, ∗⟩ (Line 11) transmitted by process pi (or another process that sets
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its proposal value to 1). Additionally, since all processes with phase � have proposal

value 1, then by Lemmas 13 and 14, every process that decides in phase �′ > � will

do it for value 1.

5.4.2 Liveness

The remainder of the proof handles the termination property of consensus (Theorem
23). For this part we work on the assumption that the message scheduling falls under
the control of an adversary that can cause no more than � faults per round, with � ≤
⌈n
2
⌉(n− k) + k − 2.
The rationale for the termination property is based on the idea that as long as pro-

cesses keep increasing their phase values, a decision is eventually reached. As we
have seen from the safety proofs, if there is unanimity at some odd phase �, then every
process that reaches any phase higher than � + 1 decides. The idea is to show that
k processes can reach any arbitrarily high phase value, and that unanimity eventually
happens.

The following two lemmas dictate how processes increment their phase values in
tandem. Lemma 19, in particular, states that for any process with phase value �, even-
tually k processes must have a phase value equal or higher than �− 1.

Lemma 18. If some process pi has some phase value �i > 1, then there is a set of

processes S such that ∀pj∈S : �j ≥ �i − 1 and ∣S∣ > n
2
.

Proof. Given a phase number � > 1, then there must be some process pi that is the

first to set its phase to �i = �. In order to do this, pi must have more than n
2

messages

of the form ⟨∗, � − 1, ∗, ∗⟩ in set Vi (Line 14). It follows that there are more than n
2

processes that were at some point in time in phase �− 1.

Lemma 19. If some process pi has phase value �i = �, then eventually there is a set

of processes S such that ∀pj∈S : �j ≥ �− 1 and ∣S∣ ≥ k.

Proof. Suppose otherwise. By Lemma 18, if some process pi has �i = � > 1, then

there is a set of processes S such that ∀pj∈S : �j ≥ � − 1 and ∣S∣ > n
2
. Let R+ = S
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where n
2
< ∣R+∣ < k, and R− be the set of remaining processes, i.e., ∀pu∈R− : �u <

�− 1 where n− k < ∣R−∣ < n
2
.

By assumption, the adversary can create at most � = �1 + �2 message omissions

per round, where �1 = ⌈n
2
⌉(n−k) and �2 = k−2. In order to prevent processes inR−

from reaching �u ≥ � − 1, the adversary must omit every message from processes of

R+ to R− (due to Lines 9-13). This implies the elimination of more than n
2

messages

in more than n− k processes because ∣R+∣ > n
2

and ∣R−∣ > n− k. It is clear that after

consuming �1 faults, there are at most n − k processes in R− that do not receive any

message from R+.

Since by definition ∣R−∣−(n−k) = k−∣R+∣ > 0, there must be k−∣R+∣ processes

in R− that could still receive messages from every process in R+. Let R−∗ denote the

set of processes in this situation. To prevent every process pu in R−∗ from reaching

�u ≥ � − 1, the adversary must create ∣R+∣∣R−∗ ∣ omissions, where ∣R+∣ + ∣R−∗ ∣ = k.

However, the adversary only has �2 = k − 2 = ∣R+∣+ ∣R−∗ ∣ − 2 faults available. This

creates a contradiction because ∣R+∣∣R−∗ ∣ > ∣R+∣ + ∣R−∗ ∣ − 2, for all ∣R+∣ ≥ 1 and

∣R−∗ ∣ ≥ 1. This implies that some process in ∣R−∣ always increases its phase value

when n
2
< ∣R+∣ < k.

The following lemma is central to this part of the proof. It shows that in any
communication round where the number of omission faults is not higher than ⌈n

2
⌉(n−

k) + k − 2, some process increases its phase value.

Lemma 20. Let R+ represent a set of processes such that ∀pi∈R+ : �i ≥ �, with

∣R+∣ = k + � and 0 ≤ � ≤ n − k. Let � or more processes in R+ have phase � and

the remaining processes ofR+ have phase �+1. LetR− be the set of process such that

∀pj∈R− : �j < �, with ∣R−∣ = n − k − �. Whenever a round has such configuration,

some process increases its phase value.

Proof. Suppose otherwise. Then, under the lemma conditions, there must be a message

schedule where at some round no process increases its phase value.
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In order to prevent every process in R− from increasing its phase value, the adver-

sary must omit every message from R+ to R− (due to Lines 9-13). This requires that

∣R+∣∣R−∣ faults must be spent. Since ∣R+∣∣R−∣ = (k + �)(n − k − �) and the total

number of omissions per round is � = ⌈n
2
⌉(n − k) + k − 2, then the adversary is left

with no more than � − ∣R+∣∣R−∣ ≤ (� + ⌈n
2
⌉+ k − n)� + k − 2 faults.

In order to block each of the � processes in R+ with phase �, the adversary must

omit all messages from processes in R+ with phase �+ 1 (Line 9) and it must prevent

the reception of more than n
2

messages of the form ⟨∗, �, ∗, ∗⟩ also from processes in

R+ (Line 14). This implies that each of the � processes with phase � can receive the

n − k − � messages from processes in R− and at most ⌊n
2
⌋ messages from processes

in R+. Therefore, the adversary must create at least
[
n− (⌊n

2
⌋+ n− k − �)

]
� faults

to stop the progression of the � processes. Since
[
n− (⌊n

2
⌋+ n− k − �)

]
� = (� +

⌈n
2
⌉+ k − n)�, the adversary is left with no more than k − 2 faults.

For the remaining k processes in R+, there are two possible cases:

1. First consider the two extreme situations, where all k processes either have phase

value � or � + 1. Since the adversary only has k − 2 faults left, some process

has to receive more than n
2

messages with the same phase � or �+ 1. Therefore,

some process increases its phase value (Line 14).

2. Second consider that some of the k processes have phase value � + 1 and the

others have phase value �. Let H be the set of processes with � + 1 and L the

set of processes with �, such that ∣H∣ + ∣L∣ = k. To block the processes in L,

the adversary has to omit ∣H∣∣L∣ messages (due to Line 9). Since the adversary

only has k − 2 = ∣H∣+ ∣L∣ − 2 faults left, it can not prevent some process from

increasing its phase because ∣H∣∣L∣ > ∣H∣+ ∣L∣−2 for all ∣H∣ ≥ 1 and ∣L∣ ≥ 1.
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Lemma 21. Let �init = 1 be the initial phase value for all processes. Some process pi

eventually sets �i > �init.

Proof. If every process has the same phase value �init, then according to the conditions

of Lemma 20, this is equivalent to having every process in setR+ with phase �init, such

that ∣R+∣ = n. Therefore, by Lemma 20, some process has to increase its phase value

and set �i > �init.

The following lemma concludes the progress of phase values by stating that some

process can reach any arbitrarily high phase value.

Lemma 22. If some process has phase value �, then eventually some process must

have phase value �+ 1.

Proof. If some process has phase value �, then by Lemma 19, eventually there is a set

R+ of k or more processes such that ∀pi∈R+ : �i ≥ �− 1. This implies that the system

must reach a configuration where there are two sets of processesR+ andR− according

to the conditions of Lemma 20. When this happens, by the same lemma, some process

will increase its phase. This process can be in one of three possible cases: (1) a process

of R−; (2) a process with phase number � − 1 of R+; or (3) a process with phase

number � of R+. The system configuration resulting from cases (1) and (2) falls under

the conditions of Lemma 20, and therefore more processes will continue to increase

their phase. Consequently, in the most extreme scenario, the system will evolve to a

configuration where all process are in phase number �, and case (3) will necessarily

have to occur, and some process pi will set its phase number to �i = �+ 1.

Finally, the termination property is proven by showing that as long as processes

keep increasing their phase value, then unanimity eventually happens and, conse-

quently, a decision by k processes.

Theorem 23. At least k processes eventually decide with probability 1.
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Proof. The proof is organized in two parts. First, we show that as messages are re-

ceived, processes make progress on the protocol execution and continue to increase

their phase number. Second, we demonstrate that due to this progression, eventually

the system will reach to a configuration where at least k processes decide with proba-

bility 1.

First part: By Lemma 21, some process pi eventually increases its phase number

from the initial phase number, i.e., �i = � > �init. Then, by Lemma 22, some

process will eventually set its phase number to � + 1. Moreover, by Lemma 19, k or

more processes set their phase value to at least �. Since these lemmas can be applied

repeatedly, this ensures that for any arbitrary phase value �′, there is some subset S of

at least k processes such that every process pj ∈ S eventually has phase value �j ≥ �′.

Second part: By Lemma 16, no two processes with the same even phase value �

can receive messages ⟨∗, �, 0, ∗⟩ and ⟨∗, �, 1, ∗⟩. Therefore, any process pi that enters

the if condition of Line 14, and sets �i = � + 1 (Line 31), must set its proposal value

vi either to a common value v (Line 26) or to a random value 1 or 0 (Lines 28). This

implies that the probability of every process with odd phase value � + 1 having the

same proposal value v is p ≥ 2− , where  is the number of processes with phase

�+ 1.

As the protocol progresses, and the phase number of processes increases, the prob-

ability of not existing an odd phase where every process proposes the same value v

is lim�→∞(1 − p)� = 0. Thus, eventually there will be an odd phase �t where every

process pi with phase �i = �t has the same proposal value v. According to Lemma 14,

every process pi that sets its phase value to �i > �t + 1 decides v. By the discussion

in the first part of the proof there is a subset S of k processes such that every process

pj ∈ S eventually has phase value �j > �t + 1. Consequently, at least k processes

eventually decide.
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5.5 Extensions to the Algorithm

The section discusses important extensions to the algorithm. It is divided in two sub-

sections. The first discusses how the algorithm can be changed so the processes stop

sending messages, and the third discusses practical performance considerations of the

algorithm.

5.5.1 Quiescence

In the presented algorithm, processes do not voluntarily stop sending messages. The

fact that the system stabilization time is unknown, combined with the assumed fault

model, means that processes have no way of knowing when other processes have de-

cided.

One possible solution to this limitation is by having the processes execute for an

additional round after deciding, where the broadcast operation is performed through a

reliable channel. Raynal & Roy (2005) showed that it is possible to implement reliable

and asynchronous communication on top of an unreliable and synchronous model, and

vice-versa. One can assume the presence of an asynchronous reliable channel that is

judiciously used in such situations.

There is another practical solution, which is not guaranteed to achieve quiescence,

but, in practice, is likely to work amongst processes that are not permanently dis-

connected from the system. The idea is to add a new status called quiescent. If a

process process receives k messages of the form ⟨j, �, v, decided⟩, then it sets its sta-

tus to quiescent and stops periodically broadcasting messages, changing to message-

triggered broadcasting rounds (i.e., it only starts a new round whenever some message

whose status is not quiescent is received). If a process receives a message of the form

⟨j, �, v, quiescent⟩, it sets its status to quiescent (if it has not done so), and changes to

message-triggered broadcasting rounds. The effect of this extension is that processes

that are still periodically broadcasting (i.e., that have not yet achieved quiescence) trig-

ger communication on processes that have already stopped sending messages on their

own. Eventually, a process that has not yet achieved quiescence might receive a mes-

sage with a quiescent status, and achieve quiescence itself.
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5.5.2 Performance

The algorithm guarantees the termination property of consensus in a probabilistic fash-

ion. Since the execution of the algorithm may need to be extended for any number of

rounds and any process may reach an arbitrarily high phase, eventually there will be

a phase where all processes flip the same coin value v and decide (Theorem 23). The

expected number of rounds for this to happen isO(2n) after the system stabilizes at the

upper bound of f faults per round. There are other randomized protocols based on a

shared coin constructed with cryptographic mechanisms that can achieve termination

in polynomial time (Cachin et al., 2000; Canetti & Rabin, 1993; Rabin, 1983).

Although the expected worst-case running time is exponential, a simple inspection

of the algorithm suffices to observe that it is fast-learning, i.e., it can decide within two

communication rounds in runs with no faults or with certain fault patterns. This is true

even if processes have different initial proposal values. As long as k processes see the

majority of one value during the first phase, they propose the same value for the second

phase and then decide.

There are two optimizations, however, that can make the algorithm perform even

better in practical scenarios. The first allows termination in one communication round,

and the second improves the performance against certain fault patterns. These are

discussed below and the modified algorithm is presented in Algorithm 3.

One-round Decision

The algorithm can be modified such that processes decide if they receive, for their

current phase �i, n messages with the same value v. One-round decision, in particular,

can be achieved if every process proposes the same initial value and every message

is delivered to at least k processes in the first communication round, then k processes

decide by the end of the round. It can be easily seen by Lemma 14 why this does not

affect the correctness of the algorithm.

Three-step Variant

When the initial proposal values of the processes are not unanimous, there are certain

fault patterns that can make Algorithm 2 terminate in the worst case expected number
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of phases. The precise conditions for this to happen are: (1) the fault pattern is such
that in every round there is no communication from one fixed subset of k processes to
a fixed subset of the other n− k processes, and (2) the subset of k processes does not
have unanimous proposal values. Under this scenario the algorithm is forced into the
worst expected number of phases until a decision is reached, which is O(2n).

This issue can be overcome by introducing an extra phase in the algorithm, follow-
ing an approach similar to the local coin protocol of Bracha (1984). This way, phase
� mod 3 = 1 is our new extra phase, phase � mod 3 = 2 is equal to the previous
odd phase, and phase � mod 3 = 0 is equal to the previous even phase. In the new
phase � mod 3 = 1, processes simply set their proposal value to the value present in
the majority of messages that were received for �. The majority can be biased for a
predefined proposal value in order to overcome potential ties. This way, the set of k
processes converges to the same proposal value in phase � mod 3 = 1, deciding by the
end of phase � + 2 under the considered scenario. It has been demonstrated that the
presence of an adversary that enforces a worst-case scheduling against this algorithmic
construction is very unlikely to happen in practice (Moniz et al., 2006a, 2010).
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Algorithm 3: Optimized k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
�i ← 1;1

vi ← proposali;2

statusi ← undecided;3

Vi ← ∅;4

for each clock tick do5

broadcast(⟨i, �i, vi, statusi⟩);6

Mi ← receive();7

Vi ← Vi ∪Mi;8

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ = n then /* early decision */9

statusi ← decided;10

end11

while ∃⟨�,v,status⟩∈Vi : � > �i do12

�i ← �;13

vi ← v;14

statusi ← status;15

end16

if ∣{⟨∗, �, ∗, ∗⟩ ∈ Vi : � = �i}∣ > n
2 then17

if �i (mod 3) = 1 then /* phase �i (mod 3) = 1 */18

vi ← majority value v in messages with phase � = �i;19

else if �i (mod 3) = 2 then /* phase �i (mod 3) = 2 */20

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ > n
2 then21

vi ← v;22

else23

vi ← ⊥;24

end25

else /* phase �i (mod 3) = 0 */26

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ > n
2 then27

statusi ← decided;28

end29

if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ ≥ 1 then30

vi ← v;31

else32

vi ← coini();33

end34

�i ← �i + 1;35

end36

if statusi = decided then37

decisioni ← vi;38

end39

end40
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Chapter 6

Consensus with Byzantine Processes

and Dynamic Omission Failures

This chapter conciliates intrusion tolerance with the unreliable resource-constrained

nature of ad hoc networks. As in previous chapters, it focuses on the problem of binary

consensus for single-hop wireless ad hoc networks, assuming that nodes are subject

to transitory disconnection, but also assumes that nodes may suffer from permanent

corruption by a malicious entity. Furthermore, it assumes an asynchronous system,

which is a fundamental assumption in order to resist attacks in the domain of time.

In more detail, the model is an asynchronous system composed of n ad hoc nodes

where a subset t of them may be compromised by a malicious adversary (with t <
n
3
). Compromised nodes can fail in an arbitrary (or Byzantine) manner, namely by

sending messages with erroneous content or by simply becoming silent. Therefore, it

will be considered that potentially all transmissions from these nodes may be lost (or

discarded), either due to network omission faults or bad behavior. Additionally, it will

be assumed the existence of dynamic omission transmission faults that might affect the

communications between correct nodes.

The consensus algorithm described in this chapter, named Turquois1, is, to the best

of our knowledge, the first consensus protocol to tolerate a combination of Byzan-

1Turquois: 1. a semiprecious stone, typically opaque and of a sky-blue color; 2. french for Turk,
historic enemy of the Byzantine.
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tine nodes and dynamic omission transmission faults. Furthermore, since the system

is asynchronous, consensus is bound by the FLP and the Santoro-Widmayer impossi-

bility results (Fischer et al., 1985; Santoro & Widmeyer, 1989). Turquois is able to

circumvent both impossibility results. Like the approaches of previous chapters, this is

accomplished by resorting to randomization, ensuring termination with probability 1.

The protocol ensures progress towards a decision in rounds where omission faults are

� ≤ ⌈n−f
2
⌉(n− k− f) + k− 2 (where k is the number of nodes required to decide and

f ≤ t is the number of processes that are actually faulty). If a higher number of faults

occurs, then the protocol always guarantees safety, but progress might be stopped until

the network starts to behave better. Turquois employs a novel mechanism for broadcast

message authentication that resorts to an inexpensive hashing operation instead of typ-

ical public-key cryptography. Therefore, through this mechanism, Turquois is capable

of preserving the computational restrictions usually associated with mobile nodes and

increasing efficiency.

The remainder of the chapter is organized in the following way. Section 6.1 formal-

izes the k-consensus problem with Byzantine processes, and the next section presents

the system model. Section 6.3 describes the algorithm. Section 6.3.1 presents the mes-

sage authentication and validation mechanism. Finally, the correctness proofs of the

algorithm are provided in Section 6.4.

6.1 The k-Consensus Problem with Byzantine processes

The k-consensus with Byzantine processes considers a system composed by a set of n

processes where f ≥ t can be Byzantine. Each process pi proposes a binary value vi ∈
{0, 1}, and at least k correct processes have to decide on a common value proposed by

some of the correct processes (with n+t
2
< k ≤ n − t). The remaining non-Byzantine

processes (at most n − k − t) do not necessarily have to decide, but if they do, they

are not allowed to decide on a different value. Our problem formulation is designed to

accommodate a randomized solution and is defined by the properties:

Validity. If all correct processes propose the same value v, then any correct process

that decides, decides v.
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Agreement. No two correct processes decide differently.

Termination. At least k correct processes eventually decide with probability 1.

6.2 System Model

The system is composed by a fixed and known set of n nodes, each one running

a single process belonging to Π = {p0, p1, ..., pn−1}. The communication between

processes proceeds in asynchronous broadcast rounds. At each round, every process

pi ∈ Π transmits a message m to every process pj ∈ Π, including itself, by invok-

ing broadcast(m). A round r is defined as the rtℎ time that processes invoke the

broadcast() primitive and is triggered by a clock tick local to each process.

The fault model assumes that up to t < n
3

processes can be Byzantine, and that

these processes may fail in an arbitrary way. For example, a Byzantine process can

become silent, send messages with wrong values, or collude with other Byzantine

processes to disrupt the correct operation of the system. Such processes are said to be

faulty, while processes that follow the algorithm are called correct. The actual number

of faulty processes in the system is represented by f , where f ≤ t.

The fault model also accommodates dynamic omission failures in message trans-

missions amongst correct processes. A transmission between two correct processes pi
and pj is subject to an omission failure if the message broadcast by pi is not received

by pj . The number of omission failures that can occur per round is unrestricted, in

the sense that safety properties are always guaranteed. However, in order to ensure

progress, we will make the following fairness assumption: given an unbounded num-

ber of rounds, there are infinitely many rounds in which the number of omission faults

that affect correct processes is bounded by � ≤ ⌈n−f
2
⌉(n−k−f)+k−2. If a message

m transmitted by process pi to process pj is not subject to a dynamic omission failure

and both processes are correct, then m is eventually received by pj .

Cryptographic functions employed in the protocol are secure and can not be sub-

verted by an adversary, and each process pi ∈ Π can call a local random bit generator

to obtain unbiased bits observable only by pi.
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6.3 The Algorithm

The algorithm Turquois allows k processes out of n to reach consensus on a binary

value v ∈ {0, 1} (see Algorithm 4). Correctness in maintained as long as the number

of faulty (Byzantine) processes f is bounded by t < n
3
. Furthermore, the algorithm en-

sures safety (i.e., the validity and agreement properties) despite an unrestricted number

of transmission omission faults. Progress towards termination is guaranteed in rounds

where the number of omission faults is � ≤ ⌈n−f
2
⌉(n− k − f) + k − 2.

In the algorithm, each processes pi has an internal state comprised by three vari-

ables: (1) the phase �i ≥ 1, (2) the proposal value vi ∈ {0, 1}, and (3) the decision

status statusi ∈ {decided, undecided}. Each process starts its execution with �i = 1,

statusi = undecided, while vi is set to the initial proposal value indicated by the input

parameter proposali (lines 1-3).

The algorithm is run in parallel by two exclusive tasks (only one of the tasks is

allowed to advance from the respective when condition (lines 5 and 8)). Task T1

defines a broadcasting round and is activated periodically upon a local clock tick (lines

5-7). A process pi broadcast a message of the form ⟨i, �i, vi, statusi⟩ containing its

identifier i and the variables that comprise its internal state.

Task T2 is activated whenever a message arrives (lines 8-43). Some of the mes-

sages that a process is supposed to receive may be lost, or may carry invalid content

if transmitted by a Byzantine process. Therefore, all arriving messages are subject

to a validation procedure that constrains the wrongful actions of Byzantine processes.

Essentially, a message is considered valid if it could have been sent by a process that

followed the algorithm (details in Section 6.3.1). Valid messages are accumulated in a

set Vi (line 9), and the others are discarded.

Based on its current internal state and the messages accumulated so far in set Vi,

each process pi performs a state transition, which happens when one of two conditions

occur:

1. the set Vi holds some message whose phase value � higher than the current phase

�i of pi;

2. the set Vi holds more than n+f
2

messages whose phase is equal to the current

phase �i of pi.
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Algorithm 4: Turquois: a Byzantine k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
�i ← 1;1
vi ← proposali;2
statusi ← undecided;3
Vi ← ∅;4

TASK T1:
when local clock tick do5

broadcast(⟨i, �i, vi, statusi⟩);6
end7

TASK T2:
when m = ⟨j, �j , vj , statusj⟩ is received do8

Vi ← Vi ∪ {m : m is valid};9

if ∃⟨∗,�,v,status⟩∈Vi
: � > �i then10

�i ← �;11
if � (mod 3) = 1 and v is the result of a coin flip then12

vi ← coini();13
else14

vi ← v;15
end16
statusi ← status;17

end18

if ∣{⟨∗, �, ∗, ∗⟩ ∈ Vi : � = �i}∣ > n+f
2 then19

if �i (mod 3) = 1 then /* phase �i (mod 3) = 1 */20
vi ← majority value v in messages with phase � = �i;21

else if �i (mod 3) = 2 then /* phase �i (mod 3) = 2 */22
if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ > n+f

2 then23
vi ← v;24

else25
vi ← ⊥;26

end27

else /* phase �i (mod 3) = 0 */28
if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ > n+f

2 then29
statusi ← decided;30

end31
if ∃v∈{0,1} : ∣{⟨∗, �, v, ∗⟩ ∈ Vi : � = �i}∣ ≥ 1 then32

vi ← v;33
else34

vi ← coini();35
end36

end37
�i ← �i + 1;38

end39

if statusi = decided then40
decisioni ← vi;41

end42
end43
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The first case is simpler (lines 10-18). When the condition is met (line 10), process

pi updates the state to match the state of the received message, with a slight exception.

The special instance is the following: if the phase value is � (mod 3) = 1 and the

value v was obtained from the result of a coin flip (which can be verified from the

validation procedure described in Section 6.3.1), then pi executes a local coin flip to

determine vi (lines 12-13). Since it is not possible to force Byzantine processes into a

fair coin flip, this step becomes necessary to guarantee that correct processes assume a

random value.

The second case is more complex (lines 19-39). The way a process pi updates its

state depends on the value of its current phase number �i modulo 3. If �i (mod 3) = 1

(lines 20-21), then the proposal value is set to the majority value of all messages with

phase value � = �i.

If �i (mod 2) = 2 (lines 22-27), then the proposal value vi is updated the following

way: if there are more than n+f
2

messages of the form ⟨∗, �, v, ∗⟩ in Vi with � = �i

and the same value v, then vi is set to v (lines 23-24), otherwise it is set to a special

value ⊥ /∈ {0, 1} indicating a lack of preference (lines 25-26). This step ensures that

in the following phase �i + 1 every process either proposes the same value v ∈ {0, 1}
or ⊥. Furthermore, if there was unanimity amongst correct processes at the previous

phase �i − 1, then every process must set its proposal value to the same value v (since

messages with a different value are considered invalid). This will imply that in the next

phase �i + 1 every process receives the same value v ∈ {0, 1} in all valid messages

and decides.

If �i (mod 2) = 0 (lines 28-37), then the process sets statusi to decided if there

are more than n+f
2

messages of the form ⟨∗, �, v, ∗⟩ in Vi with � = �i and the same

value v ∕= ⊥ (lines 29-31). The proposal value vi is updated to v if there is at least one

message of the form ⟨∗, �, v, ∗⟩ in Vi with � = �i and a value v ∕= ⊥. Otherwise, vi
is set to the value of function coin(), which returns a random number 0 or 1, each

with a probability 1
2

(lines 32-36). Regardless of the previous steps, the phase is always

incremented by one unit (line 38).

At the end of each round, a process pi checks if statusi has been set to decided.

If so, it decides by setting the output variable decisioni to the current proposal value

vi (lines 40-42). Further accesses to this variable do not modify its value. Hence, they

have no impact on the correctness of the algorithm.
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6.3.1 Validation of Messages

A process pj must check the validity of arriving messages before adding them to set Vj .

This procedure is fundamental to the correct operation of the protocol because it limits

the wrongful actions that a Byzantine process can accomplish. There are two types of

validation that a message must pass: authenticity validation and semantic validation.

The first guarantees that of some of the fields of a message were actually generated

by a process pi, while the second ensures that the contents of a message are congruent

with the current execution of the algorithm. A message is deemed valid if it passes

both tests.

Authenticity Validation

This form of validation provides (partial) message authentication. More precisely, for

any message ⟨i, �, v, status⟩, it provides to a receiving process pj assurance that the

values of � and v originated at the alleged source process pi. This statement deserves

the following caveat. The authenticity of the status variable is not protected by this

mechanism. Consequently, it is possible for a malicious entity to replay a message

⟨i, �, v, status⟩ with an arbitrary status value. This, however, does impact the cor-

rectness of the protocol because our semantic validation mechanism (see next section)

requires processes to justify their status based on the received proposal values, there-

fore, making the attack ineffective.

Authentication is based on a mechanism for generating and verifying one-shot

hash-based message signatures that is particularly efficient for a round-based group

communication protocol with a small domain of input values. In our case, the mecha-

nism is devised for an input domain of three values (0, 1, and ⊥), which represents the

possible proposal values that a message can have. To the best of our knowledge, this

is the first time such a mechanism is employment in an agreement protocol.

The mechanism is composed by a generic message authentication procedure for

each phase of the k-consensus protocol, and by a key exchange procedure that has to

be executed periodically. The message authentication resorts to an efficient one-way

hash function H to generate hash values of length ℎ (e.g., SHA-256 or RIPEMD-

160) (Menezes et al., 1997). The key exchange procedure resorts to a more computa-

tionally expensive trapdoor one-way function F (e.g., RSA (Rivest et al., 1978)) that
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is used to sign an array of verification keys. It is assumed that each process pi has an

associated public/private key pair to be used in F , where pui is the public key and pri
is the private key. Every process knows the public key of all other processes.

Key Exchange. The key exchange procedure generates m secret keys, which are es-

sentially random bit strings of length ℎ, and distributes the corresponding verification

keys. These keys are valid for m phases of the k-consensus protocol. If m is equal or

larger than the number of phases required to reach consensus, then the key exchange

procedure only needs to be executed once, at the beginning of the k-consensus proto-

col. Potentially, this scheme can be further optimized so that a single key exchange

can span multiple instances of the k-consensus. Nevertheless, for clarity purposes, we

describe the scheme assuming only a single instance.

For each process pi, the key exchange e ≥ 1 consists of the following steps. Pro-

cess pi generates a two-dimensional array SKi of secret keys, such that each element

SKi[�][v] is a random bit string of length ℎ, with (e − 1)m + 1 ≤ � ≤ em and

v ∈ {0, 1,⊥} 1. It then creates an equivalent two-dimensional array V Ki of verifica-

tion keys, such that each element V Ki[�][v] = H(SKi[�][v]). Finally, the verification

keys array V Ki is signed using the trapdoor one-way function F and the private key

pri, and then both the V Ki and the signature are disseminated to the other processes

using an out-of-band reliable channel.

When V Ki arrives to a process, the correctness of the keys is confirmed by verify-

ing the signature with the public key of pi, and then the array is stored for future use.

For efficiency purposes, the first V Ki array can be distributed offline along with the

public keys. Subsequent arrays may be transmitted during idle periods of the system

such that interference with normal execution is kept to a minimum.

Message Authentication. For any phase �, a message ⟨i, �, v, status⟩ broadcast by

process pi is authenticated by attaching SKi[�][v]. When a process pj receives the

message, it applies the hash function to SKi[�][v] and verifies ifH(SKi[�][v]) is equal

to V Ki[�][v]. If they are equal, then by the properties of cryptographic hash functions

� and v originated at pi.

1In practice, SKi[�][⊥] only needs to be generated if � (mod 3) = 0 because ⊥ is an acceptable
proposal value only in such phases.
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Semantic Validation

The semantic validation ensures that the values carried by the three states variables

within a message are congruent with the execution of the algorithm. For example,

if, at phase � = 1, every correct process broadcasts the same value 0, then it is not

possible for a process that is executing the protocol to send a proposal value of 1 at

phase � + 1. Therefore, if such proposal arrives, then it must have been sent by a

Byzantine process, and it can be discarded without impacting the protocol. In practice,

this validation mechanism restricts the way that Byzantine processes may lie.

There are two ways for the congruency of messages to be verified: one is implicit

and the other is explicit. The implicit way is based on whenever a process receives a

message, it sees if enough messages have arrived to justify the values carried by the

message just received. For example, if a process has in set Vi more than n+f
2

messages

with phase �, then, for any message of the form ⟨∗, � + 1, ∗, ∗⟩, its phase value is

implicitly valid.

The explicit way is based on broadcasting, along with the message, the previous

messages that justify the values of the state variables. For example, a message with

phase �+ 1 can be justified by having appended more than n+f
2

messages of the form

⟨∗, �, ∗, ∗⟩ (and, naturally, the appended messages must also pass the validity checks).

Our current implementation of the algorithm resorts to both techniques. First, a

process tries an implicit validation, which is optimistic by nature, and is much more

efficient because messages are allowed to be kept small. However, if, for the following

clock tick, a process is forced to broadcast the same message, then explicit validation

is employed by appending the justifying messages.

Each of the state variables carried by a message are validated independently. A

message passes this validation test if all three variables pass in their individual test.

The messages required to validate each variable may sometimes overlap. Next, we

explain in more detail how to perform the validations.

Phase value. The phase value � of a message of the form ⟨∗, �, ∗, ∗⟩ requires more

than n+f
2

messages of the form ⟨∗, �− 1, ∗, ∗⟩ to be considered valid.
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Proposal value. The validation of the proposal value varies according to the phase

carried in the message. Messages with phase value � = 1 are the only that do not

require validation and are immediately accepted.

• Messages with phase � (mod 3) = 2: The proposal value v is valid if there are

more than (n+f
2

)/2 messages with phase �− 1 and proposal value v.

• Messages with phase � (mod 3) = 0: If the proposal value is v ∈ {0, 1}, then it

requires more than n+f
2

messages with phase �− 1 and proposal value v. If the

proposal value is ⊥, then it requires more than (n+f
2

)/2 messages of the form

⟨∗, �− 2, 0, ∗⟩ and more than (n+f
2

)/2 messages of the form ⟨∗, �− 2, 1, ∗⟩.

• Messages with phase � (mod 3) = 1: The validity of proposal value v in these

messages depends if it was obtained deterministically (lines 32-33) or randomly

(lines 34-35). If obtained deterministically, it requires more than n+f
2

messages

of the form ⟨∗, � − 2, v, ∗⟩. If set randomly, then it requires more than n+f
2

messages of the form ⟨∗, �− 1,⊥, ∗⟩.

Status value. For the status variable, any message with phase � ≤ 3 must nec-

essarily carry value undecided because no process can decide prior to phase 3. For

messages with � > 3, a status = decided (and value v) requires more than n+f
2

messages of the form ⟨∗, �′, v, ∗⟩ where �′ (mod 3) = 0.

A status = undecided requires more than (n+f
2

)/2 messages of the form ⟨∗, �′, 0, ∗⟩
and more than (n+f

2
)/2 messages of the form ⟨∗, �′, 1, ∗⟩, where �′ must be the highest

�′ (mod 3) = 2 lower than �.

6.4 Correctness Proof

The correctness proof of the algorithm is divided in two parts. Up to Theorem 29

we are concerned with the safety properties of the algorithm: validity and agreement.

From Lemma 30 on, we are concerned with the liveness property: termination.

The validity and agreement properties are proven on the assumption that the system

might be subject to an unbounded number of transmission omission faults per round.
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The first two lemmas show that if there is some phase � (mod 3) = 1 where every

process has the same proposal value, then at any subsequent phase they all have that

same proposal value. With these two lemmas, the validity property is easily proven

(Theorem 26).

Lemma 24. Let �u be some phase such that �u (mod 3) = 1 and any correct process

pi with �i = �u has the same proposal value vi = v. No process pj can produce a

valid message of the form ⟨j, �u + 1, v′, ∗⟩, ⟨j, �u + 2, v′, ∗⟩, or ⟨j, �u + 3, v′, ∗⟩, where

v′ ∕= v.

Proof. The proof for all forms of message is obtained by contradiction. Suppose that

some process pj can produce a valid message of the form ⟨j, �u + 1, v′, ∗⟩. If so,

according to the semantic validation, the message requires more than n+f
2
/2 messages

of the form ⟨∗, �u, v′, ∗⟩. This implies that at least one correct processes must have

broadcast a message of the form ⟨∗, �u, v′, ∗⟩. This is a contradiction because it is

assumed that every correct process with phase �u has proposal value v. Thus, any

valid message of the form ⟨∗, �u + 1, ∗, ∗⟩ must have proposal value v ∕= v′.

Now suppose that some process pj can produce a valid message of the form ⟨j, �u+

2, v′, ∗⟩. There are two cases to consider: v′ = ⊥ and v′ ∈ {0, 1}. First, if v′ = ⊥, then,

according to the semantic validation, the message requires more than n+f
2
/2 messages

of the form ⟨∗, �u, 0, ∗⟩ and more than n+f
2
/2 messages of the form ⟨∗, �u, 1, ∗⟩ from

different processes. By assumption, however, only one of the values (0 or 1) is the

proposal value of every correct process with phase �u. This implies that the other

value can be in at most in f messages. This is a contradiction because f < n+f
2
/2.

Second, if v′ ∈ {0, 1}, then, according to the semantic validation, the message requires

more than n+f
2

messages of the form ⟨∗, �u+1, v′, ∗⟩. As demonstrated in the previous

paragraph, every correct process broadcasts the same value v at phase �u + 1. This

means that an adversary can create at most f messages of the form ⟨∗, �u + 1, v′, ∗⟩.

This is a contradiction because f < n+f
2

.

129



6. CONSENSUS WITH BYZANTINE PROCESSES AND DYNAMIC
OMISSION FAILURES

Finally, suppose that some process pj can produce a valid message of the form

⟨j, �u+3, v′, ∗⟩. According to the semantic validation, such message either requires (1)

more than n+f
2

messages of the form ⟨∗, �u + 1, v′, ∗⟩, or (2) more than n+f
2

messages

of the form ⟨∗, �u + 2,⊥, ∗⟩. This is a contradiction because it has already been shown

that any valid message of the form ⟨∗, �u + 1, ∗, ∗⟩ or ⟨∗, �u + 2, ∗, ∗⟩ must carry

proposal value v. Thus, an adversary can create, at most, f < n+f
2

messages of the

form ⟨∗, �u + 1, v′, ∗⟩ or ⟨∗, �u + 2,⊥, ∗⟩.

Lemma 25. If there is some phase �, where � (mod 3) = 1, such that every correct

process pj that sets �j = � also sets vj = v, then no process pj can produce a valid

message of the form ⟨j, �′, v′, ∗⟩, for any �′ > � and v′ ∕= v.

Proof. The proof is obtained by complete induction on the phase number �′. Thus, it

can be assumed that there exists a number a > 0 such that no process pj can produce a

valid message of the form ⟨j, �+m, v′, ∗⟩, for all 0 < m ≤ a. We must prove that no

process pj can produce a valid message of the form ⟨j, � + a + 1, v′, ∗⟩, with v′ ∕= v.

There are three cases to consider, depending on the value of (�+a) (mod 3). If (�+a)

(mod 3) = 1, then, by Lemma 24, no process pj can produce a valid message of the

form ⟨j, �+a+ 1, v′, ∗⟩. If (�+a) (mod 3) = 2, then, by assumption, it must be true

that no process pj can produce a valid message of the form ⟨j, �+a−1, v′, ∗⟩. It follows

at phase (�+ a− 1) (mod 3) = 1 every correct process must have the same proposal

value v. Thus, by Lemma 24, no process pj can produce a valid message of the form

⟨j, � + a + 1, v′, ∗⟩. Likewise, if (� + m) (mod 3) = 0, then, by assumption, it must

be true that no process pj can produce a valid message of the form ⟨j, �+ a− 2, v′, ∗⟩.

It follows at phase (�+ a− 2) (mod 3) = 1 every correct process must have the same

proposal value v. Thus, by Lemma 24, no process pj can produce a valid message of

the form ⟨j, �+ a+ 1, v′, ∗⟩.

Theorem 26. If all correct processes propose the same value v, then every correct

process that decides, decides v.

130



6.4 Correctness Proof

Proof. If every correct process pi proposes the same initial value v, then every pi has

phase �i (mod 3) = 1 and vi = v. Therefore, by Lemma 25, every correct process

pi with any phase value �i > 1 must have proposal value vi = v. Since any correct

process pi that decides must do it on its proposal value vi (Line 41), it follows that pi

cannot decide on any value other than v.

Corollary 27. If there is some phase �, where � (mod 3) = 1, such that every correct

process pj that sets �j = � also sets vj = v, then every correct process that decides,

decides v.

The following lemma proves that any two processes in the same phase � (mod 3) =

0 can not have different proposal values 0 and 1. In other words, if some correct pro-
cess has proposal value v ∈ {0, 1}, then any other process can only propose a value of
v or⊥. This lemma is essential to the agreement property in Theorem 29, which shows
that when the first correct process decides, every process has to propose the same value
at the following phase. By Lemma 25, this can never lead to a decision on different
values.

Lemma 28. Let � be any phase such that � (mod 3) = 0. There are no two correct

processes pi and pj that receive valid messages of the form ⟨∗, �, 0, ∗⟩ and ⟨∗, �, 1, ∗⟩,

respectively.

Proof. Suppose otherwise. Then pi and pj are two processes with phase value �

where pi receives a valid message ⟨u, �, 0, ∗⟩ from pu and pj receives a valid mes-

sage ⟨w, �, 1, ∗⟩ from pw. According to the semantic validation, message ⟨u, �, 0, ∗⟩

requires more than n+f
2

messages of the form ⟨∗, �− 1, 0, ∗⟩ and message ⟨w, �, 1, ∗⟩

requires than n+f
2

messages of the form ⟨∗, �− 1, 1, ∗⟩. This implies there are at least

f + 1 faulty processes that must have produced messages with contradictory values for

phase � − 1. This is a contradiction because, by definition, there are at most f faulty

processes.

Theorem 29. No two correct processes decide differently.
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Proof. Let pi be the first correct process to decide. Without loss of generality, let

the decision value be 1. Then, pi must have received either more than n+f
2

valid

messages of the form ⟨∗, �, 1, undecided⟩ with � (mod 3) = 0 (Lines 29-31), or

some valid message of the form ⟨∗, �′, 1, decided⟩ with �′ > � (Lines 10-18). Ei-

ther way, more than n−f
2

correct processes must have broadcast a message of the form

⟨∗, �, 1, undecided⟩ because, according to the semantic validation, a message with

status = decided requires more than n+f
2

messages of the form ⟨∗, �, 1, undecided⟩

with � (mod 3) = 0. Additionally, for these correct processes to have a proposal value

of 1 at phase �, more than n−f
2

correct processes must have broadcast a message of the

form ⟨∗, � − 1, 1, ∗⟩ (Lines 23-24). Hence, more than n−f
2

correct processes have a

proposal value 1 at both phases �− 1 and �.

The following paragraph shows that any correct process that reaches phase � + 1

also sets proposal value 1, and by Lemma 26 can not decide on a value different than

1. A correct process pj that sets phase �j = � + 1 must have received either (1) more

than n+f
2

messages with phase � (Line 19), or (2) some message with �+ 1 (Line 10).

In case (1), at least one of the messages must be of the form ⟨∗, �, 1, ∗⟩ because, as we

have demonstrated, more than n−f
2

correct processes must have broadcast a message

of the form ⟨∗, �, 1, undecided⟩. Additionally, by Lemma 28, no process can receive

valid a message of the form ⟨∗, �, 0, ∗⟩. This means that, in this case, pj sets vj = 1

(Line 33). In case (2), any message with phase � + 1 requires either (a) more than
n+f
2

messages of the form ⟨∗, �− 1, v, ∗⟩, or (b) more than n+f
2

messages of the form

⟨∗, �,⊥, ∗⟩. Scenario (a) is impossible with v ∕= 1 and scenario (b) is impossible

altogether because, as we have demonstrated, more than n−f
2

correct processes have a

proposal value 1 at both phase �−1 and �. Hence, in this case, no message with phase

� + 1 can be considered valid if it carries a proposal value v ∕= 1. Consequently, any

process that sets its phase value to � + 1 also sets its proposal value to 1. Thus, by

Corollary 27 no two correct processes can decide different values.
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The remainder of the proof handles the termination property of consensus (Theo-

rem 36). For this part, we work on the assumption that the message scheduling falls

under the control of an adversary that can cause no more than � dynamic omission

faults per round, with � ≤ ⌈n−f
2
⌉(n− k − f) + k − 2

The rationale for the termination property is based on the idea that as long as correct

processes keep increasing their phase values, a decision is eventually reached. As we

have seen from the safety proofs, if there is unanimity amongst the correct processes

at some � (mod 3) = 1, then every correct process that reaches any phase higher than

� + 1 decides. The idea is to show that k correct processes can reach any arbitrarily

high phase value, and that unanimity eventually happens.

The following two lemmas dictate how correct processes increment their phase

values in tandem. Lemma 31, in particular, states that for any process with phase value

�, eventually k correct processes must have a phase value equal or higher than �− 1.

Lemma 30. If some process broadcasts a valid message of the form ⟨∗, �, ∗, ∗⟩ with

� > 1, then more than n−f
2

correct processes must have broadcast some valid message

of the form ⟨∗, �− 1, ∗, ∗⟩.

Proof. According to the semantic validation, a message of the form ⟨∗, �, ∗, ∗⟩ requires

more than n+f
2

messages of the form ⟨∗, � − 1, ∗, ∗⟩. Since at most f messages come

from Byzantine processes, this implies that, for a process to broadcast a valid mes-

sage of the form ⟨∗, �, ∗, ∗⟩, more than n+f
2
− f = n−f

2
correct processes must have

broadcast a valid message of the form ⟨∗, �− 1, ∗, ∗⟩.

Lemma 31. If some correct process pi has phase value �i = �, then eventually there

is a set of correct processes S such that ∀pj∈S : �j ≥ �− 1 and ∣S∣ ≥ k.

Proof. Suppose otherwise. By Lemma 30, if some process pi has �i = � > 1, then

there is a set of correct processes S ′ such that ∀pj∈S′ : �j ≥ �− 1 and ∣S ′∣ > n−f
2

. Let

R+ = S ′ where n−f
2

< ∣R+∣ < k, and R− be the set of remaining correct processes,

i.e., ∀pu∈R− : �u < �− 1 where n− k − f < ∣R−∣ < n−f
2

.
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By assumption, the adversary can create at most � = �1 + �2 message omissions

per round, where �1 = ⌈n−f
2
⌉(n − k − f) and �2 = k − 2. In order to prevent

processes in R− from reaching �u ≥ � − 1, the adversary must omit ∣R+∣ messages

from processes of R+ to R− (due to Lines 10-18). This implies the elimination of

more than n−f
2

messages in more than n − k − f processes because ∣R+∣ > n−f
2

and

∣R−∣ > n−k−f . It is clear that after consuming �1 faults, there are at most n−k−f

processes in R− that do not receive any message from R+.

Since by definition ∣R−∣ − (n − k − f) = k − ∣R+∣ > 0, there must be k − ∣R+∣

processes in R− that could still receive messages from every process in R+. Let R−∗

denote the set of processes in this situation. To prevent every process pu in R−∗ from

reaching �u ≥ � − 1, the adversary must create ∣R+∣∣R−∗ ∣ omissions, where ∣R+∣ +

∣R−∗ ∣ = k. However, the adversary only has �2 = k − 2 = ∣R+∣ + ∣R−∗ ∣ − 2 faults

available. This creates a contradiction because ∣R+∣∣R−∗ ∣ > ∣R+∣ + ∣R−∗ ∣ − 2, for

all ∣R+∣ ≥ 1 and ∣R−∗ ∣ ≥ 1. This implies that some correct process in ∣R−∣ always

increases its phase value when n−f
2
< ∣R+∣ < k.

The following lemma is central to the liveness part of the proof. It shows that in
any communication round where the number of dynamic omission faults is not higher
than ⌈n−f

2
⌉(n− k − f) + k − 2, some correct process increases its phase value.

Lemma 32. Let R+ be a set of correct processes such that ∀pi∈R+ : �i ≥ �, with

∣R+∣ = k+� and 0 ≤ � ≤ n− k− f . Let � or more process in R+ have phase � and

the remaining processes of R+ have phase �+ 1. Let R− be the set of correct process

such that ∀pj∈R− : �j < �, with ∣R−∣ = n − k − f − �. Whenever a round has such

configuration, some correct process increases its phase value.

Proof. Suppose otherwise. Then, under the Lemma conditions, there must be a mes-

sage schedule where at some round no process increases its phase value.

In order to prevent every process in R− from increasing its phase value, the adver-

sary must omit every message from R+ to R− (due to Lines 10-18). This requires that
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∣R+∣∣R−∣ omission faults must be spent. Since ∣R+∣∣R−∣ = (k+�)(n−k−f−�) and

the admissible number of omissions per round is � = ⌈n−f
2
⌉(n−k−f)+k−2, then the

adversary is left with no more than �−∣R+∣∣R−∣ ≤ (�+ ⌈n−f
2
⌉+k+f −n)�+k−2

omission faults.

In order to block each of the � processes in R+ with phase �, the adversary

must omit all messages from processes in R+ with phase � + 1 (Line 10) and it

must prevent the reception of more than n+f
2

messages of the form ⟨∗, �, ∗, ∗⟩ also

from processes in R+ (Line 19). This implies that each of the � processes with

phase � can receive the n − k − f − � messages from processes in R− and at most

⌊n+f
2
⌋ messages from processes in R+. Therefore, the adversary must create at least[

n− (⌊n+f
2
⌋+ n− k − f − �)

]
� omission faults to stop the progression of the � pro-

cesses. Since
[
n− (⌊n+f

2
⌋+ n− k − f − �)

]
� = (� + ⌈n−f

2
⌉ + k + f − n)�, the

adversary is left with no more than k − 2 omission faults.

For the remaining k processes in R+, there are two possible cases:

1. First consider the two extreme situations, where all k processes either have phase

value � or � + 1. Since the adversary only has k − 2 omission faults left, some

process has to receive more than n+f
2

messages with the same phase � or �+ 1.

Therefore, some process increases its phase value (Line 19).

2. Second consider that some of the k processes have phase value � + 1 and the

others have phase value �. Let H be the set of processes with � + 1 and L

the set of processes with �, such that ∣H∣ + ∣L∣ = k. To block the processes

in L, the adversary has to omit ∣H∣∣L∣ messages (due to Line 10). Since the

adversary only has k− 2 = ∣H∣+ ∣L∣ − 2 omission faults left, it can not prevent

some process from increasing its phase because ∣H∣∣L∣ > ∣H∣ + ∣L∣ − 2 for all

∣H∣ ≥ 1 and ∣L∣ ≥ 1.
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Lemma 33. Let �init = 1 be the initial phase value for all correct processes. Some

correct process pi eventually sets �i > �init.

Proof. If every correct process has the same phase value �init, then according to the

conditions of Lemma 32, this is equivalent of having every correct process in set R+

with phase �init, such that ∣R+∣ = n − f . Therefore, by Lemma 32, some correct

process has to increase its phase value and set �i > �init.

The following lemma wraps up the progress of phase values by stating that some

correct process can reach any arbitrarily high phase value.

Lemma 34. If some correct process has phase value �, then eventually some correct

process must have phase value �+ 1.

Proof. If some correct process has phase value �, then by Lemma 31, eventually there

is a set R+ of k or more correct processes such that ∀pi∈R+ : �i ≥ �− 1. This implies

that the system must reach a configuration where there are two sets of correct processes

R+ andR− according to the conditions of Lemma 32. When this happens, by the same

Lemma, some correct process will increase its phase. This process can be in one of

three possible cases: (1) a process ofR−; (2) a process with phase number �−1 ofR+;

or (3) a process with phase number � of R+. The system configuration resulting from

cases (1) and (2) falls under the conditions of Lemma 32, and therefore more correct

processes will continue to increase their phase. Consequently, in the most extreme

scenario, the system will evolve to a configuration where all correct processes are in

phase number �, and case (3) will necessarily have to occur, and some correct process

pi will set its phase number to �i = �+ 1.

This lemma supports Theorem 36 by restricting Byzantine processes from broad-

casting undecided messages after a certain point if there is unanimity amongst correct

processes.
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Lemma 35. If there is some phase �u, where �u (mod 3) = 1, such that every correct

process pi that sets �i = �u also sets vi = v, then no process can broadcast a valid

message of the form ⟨∗, �u + 3 + c, ∗, undecided⟩, for any c ≥ 0.

Proof. Suppose otherwise, that some process can broadcast a valid message of the

form ⟨∗, �u + 3 + c, ∗, undecided⟩. According to the semantic validation, such mes-

sage requires more than n+f
2
/2 messages of the form ⟨∗, �′, 0, ∗⟩ and more than n+f

2
/2

messages of the form ⟨∗, �′, 1, ∗⟩, where �′ must be the highest �′ (mod 3) = 2 lower

than �u + 3 + c. This means that �′ ≥ �u + 1. However, it is easy to see that, by

Lemma 25, no process can broadcast a message of the form ⟨∗, �, v′, ∗⟩ with v′ ∕= v,

for any � ≥ �u + 1. This results in a contradiction. Hence, no process can broadcast a

valid message of the form ⟨∗, �u + 3, ∗, undecided⟩.

Finally, the termination property is proven by showing that as long as correct pro-

cesses keep increasing their phase value, then unanimity eventually happens and, con-

sequently, a decision by k correct processes.

Theorem 36. At least k correct processes eventually decide with probability 1.

Proof. The proof is organized in three parts. First, we show that as messages are

received, correct processes make progress on the protocol execution and continue to

increase their phase number. Second, we demonstrate that due to this progression, with

probability 1, there will be some phase where every process that reaches it proposes

the same value. Third, we prove that when this happens at least k correct processes

decide.

First part: By Lemma 33, some correct process pi eventually increases its phase

number from the initial phase number, i.e., �i = � > �init. Then, by Lemma 34, some

correct process will eventually set its phase number to �+1. Moreover, by Lemma 31,

k or more correct processes set their phase value to at least �. Since these Lemmas can

be applied repeatedly, this ensures that, for any arbitrary phase value �′, there is some
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subset S of at least k correct processes, such that every process pj ∈ S eventually has

phase value �j ≥ �′.

Second part: By Lemma 28, no two processes with the same phase � (mod 3) = 0

can receive messages ⟨∗, �, 0, ∗⟩ and ⟨∗, �, 1, ∗⟩. Therefore, any process pi that enters

the if condition of Line 19, and sets �i = � + 1 (Line 38), must set its proposal value

vi either to a common value v (Line 33) or to a random value 1 or 0 (Line 35). This

implies that the probability of every correct process with phase value � + 1 (where

� + 1 (mod 3) = 1) having the same proposal value v is p ≥ 2− , where  is the

number of correct processes with phase �+ 1.

As the protocol progresses, and the phase number of processes increases, the proba-

bility of not existing a phase �u (mod 3) = 0 where every correct process has the same

value v is lim
�→∞

(1 − p)� = 0. Thus, eventually there will be a phase � (mod 3) = 1

where every correct process pi that sets �i = �u also sets vi to the same proposal value

v.

Third part: Since every correct process with phase �u (mod 3) = 1 has the same

proposal value, by Lemma 35 no process with phase value �u + 3 or higher can broad-

cast a message with the status set to undecided. This implies that any correct process

with phase �u+3 or higher must have status set to decided. The first part of this lemma

shows that k correct processes can reach any arbitrarily high phase value. As such, k

correct processes must eventually have phase value �u + 3 or higher, which implies

that those processes decide.
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Chapter 7

Performance Evaluation of Turquois

This chapter studies the performance of Turquois in 802.11b wireless ad hoc networks

under both a real-world network testbed and a simulation environment. In the former,

Turquois is compared with the binary consensus protocols of the RITAS and SINTRA

protocol stacks (Cachin & Poritz, 2002; Moniz et al., 2006b), whose performance was

previously assessed in Chapter 3. These are, respectively, Bracha’s binary consen-

sus (Bracha, 1984), and the ABBA binary consensus (Cachin et al., 2000).

Like Turquois, Bracha’s and ABBA are leader-free randomized protocols that at-

tain optimal resilience in terms of Byzantine processes. Unlike Turquois, they were

not designed with a wireless environment in mind, and employ the typical intrusion-

tolerant asynchronous model with reliable point-to-point links. The protocol of Bracha

does not resort to any kind of cryptographic operations, apart from a computationally

efficient hash function to authenticate the point-to-point channels, but requires many

message exchanges (in complexity order of O(n3)), and the expected worst-case num-

ber of rounds to terminate is O(2n). The ABBA protocol, on the other hand, has

message complexity of O(n2) and usually terminates in a constant number of steps

(at most two rounds of three steps each), but relies heavily on expensive public-key

cryptography.

The chapter is composed by two main sections. Section 7.1 compares the per-

formance of Turquois against the Bracha’s and ABBA protocols. The protocols are

executed in the Emulab platform (White et al., 2002), on a testbed composed of up

to 16 rack-mounted and Wi-Fi enabled hosts. Section 7.2 analyzes the performance
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of Turquois in the ns-3 network simulator (Henderson et al., 2006) and evaluates the

impact of several additional parameters - not possible to evaluate in the experimental

setting of the previous section - such as a significantly higher number of nodes.

7.1 Protocol Comparison in Emulab

This section compares Turquois with the Bracha’s and ABBA binary consensus pro-

tocols in 802.11b wireless ad hoc networks. It evaluates the latency of the protocols

under several parameters such as the number of processes, types of faults in the sys-

tem, and distribution of the initial proposal values. Other aspects such as the clock tick

mechanism of Turquois and optimizations to the protocol are also evaluated.

7.1.1 Testbed and Implementation

Testbed. The experiments were carried out on the Emulab testbed (White et al.,

2002). A total of 16 nodes were used, each one with the following hardware char-

acteristics: Pentium III processor, 600 MHz of clock speed, 256 MB of RAM, and

802.11 a/b/g D-Link DWL-AG530 WLAN interface card. The operating system was

the Fedora Core 4 Linux with kernel version 2.6.18.6. The nodes were located on the

same physical cluster and were, at most, a few meters distant from each other.

Implementation. All the protocols were implemented in C. In Turquois, processes

communicate using UDP broadcast. A local clock tick is triggered if one of the follow-

ing conditions is true: (1) x ms have passed since the last broadcast (where x = 10 for

n = 4 and n = 7, and x = 20 for n = 10, n = 13 and n = 16), or (2) the phase value

was changed. In both Bracha’s and ABBA, the processes use TCP to communicate be-

cause of their requirement of reliable point-to-point links. Bracha’s protocol requires

authenticated channels. To this end, we use the IPSec Authentication Header with se-

curity associations being established between every pair of nodes before the execution

of the protocol. Both Turquois and ABBA employ their own authentication mech-

anisms. For these protocols, the cryptographic keys were generated and distributed

before the execution of the protocols.
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Non-optimized vs. optimized protocols. To obtain a deeper knowledge about the

performance of these protocols, each protocol was implemented and tested in two vari-

ants: a non-optimized and an optimized one. The optimized variants consist exclu-

sively of the inclusion an early decision step, similar to the one employed by Bracha’s

binary consensus as described in Section 3.1.2, where processes decide in step 1 if they

receive unanimous proposals.

This implies that the non-optimized implementation of Bracha’s differs slightly

from the version described in Section 3.1.2 such that it does not include the early

decision at step 1. The non-optimized versions of ABBA and Turquois correspond

exactly to the protocols described, respectively, in Section 3.1.2 and Section 6.3.

In the case of the optimized implementations, Bracha’s protocol is exactly the one

described in Section 3.1.2, with the early decision at step 1. ABBA and Turquois

optimized versions are described below in Section 7.1.4, where we present the per-

formance results of the optimized protocols. Their optimizations consist of an early

decision step similar to Bracha’s.

7.1.2 Methodology

The performance metric utilized in the experiments is the latency. This metric is al-

ways relative to a particular process pi, and it is denoted as the interval of time between

the moment pi proposes a value to a consensus execution, and the moment pi decides.

The average latency for the whole set of processes is obtained in the following

manner. A signaling machine, which does not participate in the execution of the proto-

cols, is selected to coordinate the experiment. It broadcasts a 1-byte UDP message to

the n processes involved in the experiment. When a process receives such a message,

it starts a consensus execution. Processes record the latency value as described above,

and send a 1-byte UDP message to the signaling machine indicating the termination of

the execution of the protocol. The signaling machine, upon receiving n such messages,

waits five seconds, and recommences the procedure. The average latency is obtained

by repeating this procedure 50 times, and then by averaging the latencies collected

by all processes. The confidence interval for the average latency is calculated for a

confidence level of 95%
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The experiments were carried out for combinations of group size, proposal distri-

bution, and fault load. The group size defines the number of processes in the system.

In our experiments, the values are 4, 7, 10, 13, and 16 processes. The proposal dis-

tribution defines the initial values to be proposed by the processes. In the unanimous

proposal distribution all processes propose the same initial value 1. In the divergent

distribution processes with an odd process identifier propose 1, while the others pro-

pose 0. The fault load defines the type of faults that are injected in the system. In the

failure-free fault load, all processes behave correctly. The fail-stop fault load makes

f = ⌊n−1
3
⌋ processes crash before the measurements are initiated. In the Byzantine

fault load, f = ⌊n−1
3
⌋ processes try to keep the correct processes from reaching a de-

cision by attacking the execution of the protocol. This is accomplished as follows. In

both Bracha’s and Turquois, a Byzantine process in phase 1 and 2 proposes the oppo-

site value that it would propose if it were behaving correctly, and in phase 3 it proposes

the default value ⊥. This strategy is followed even if messages are potentially con-

sidered invalid, since at least it causes a delay due to message validations. In ABBA,

since the protocol terminates in a constant number of steps, a Byzantine process does

not have much room to delay the execution of the protocol by proposing incorrect val-

ues. Instead, it transmits messages with invalid signatures and justifications in order to

force extra computations at the correct processes. Finally, the value of the parameter k

in Turquois is set to k = n− f in all fault loads, with f = ⌊n−1
3
⌋.

7.1.3 Results for the Non-Optimized Implementations

Failure-free fault load. Table 7.1 and Figure 7.1 present the average latency for

every tested combination of group size and proposal distribution, in executions without

process failures. By observing the results, it becomes apparent that Turquois performs

significantly better than the other two protocols. The difference becomes wider as the

number of processes increases, exceeding an order of magnitude in some cases.

The performance of Turquois stems naturally from its design. Two fundamental

reasons contribute to its efficiency. First, the use of UDP broadcast takes full advantage

of the shared communication medium. This was only possible because the protocol is

able to tolerate dynamic transmission faults. Second, the use of a novel hash-based sig-
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Average Latency ± Confidence Interval (ms)
Group Turquois
Size unanimous divergent
n = 4 14.90± 4.74 28.67± 9.99
n = 7 26.85± 6.18 54.38± 12.20
n = 10 43.15± 10.05 71.75± 25.05
n = 13 60.94± 14.15 128.07± 42.51
n = 16 87.57± 22.34 236.31± 77.27

Group Bracha
Size unanimous divergent
n = 4 101.06± 8.15 127.39± 22.99
n = 7 552.77± 31.36 715.15± 112.90
n = 10 1361.90± 33.17 2282.23± 315.53
n = 13 3459.10± 100.34 6276.91± 734.11
n = 16 7321.41± 110.69 10420.00± 2640.11

Group ABBA
Size unanimous divergent
n = 4 74.70± 7.93 135.39± 28.04
n = 7 125.81± 6.22 253.66± 37.93
n = 10 277.90± 12.47 547.42± 81.94
n = 13 693.39± 103.45 1722.44± 295.05
n = 16 1914.54± 283.18 4309.51± 750.20

Table 7.1: Average latency and confidence interval in a 802.11b network with no pro-
cess failures (latency in milliseconds and confidence level of 95%).

nature scheme for message validation allows for computational efficiency. The impact

of these features is clearly reflected in the results.

Bracha’s protocol is the worst contender, showing serious performance degrada-

tion due to the O(n3) message complexity. In addition to being a shared medium,

wireless ad hoc networks are restricted in their speed and capacity, and, therefore, a

higher number of message transmissions is bound to have a severe cost. The ABBA

protocol performs better than Bracha’s, but still much worse than Turquois. Despite its

O(n2) message complexity, the fact that, like Bracha’s, it still requires the use of TCP

channels combined with the heavy cryptography proves to be too much of a burden.

At a first glance, these results may seem contradictory to the ones described in

Chapter 3, where Bracha’s protocol evidenced better performance than ABBA in most

settings. There are two reasons for this. The first is that the version of Bracha’s evalu-
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Figure 7.1: Average latency and confidence interval in a 802.11b network with no
process failures (logarithmic scale of base 2).

ated here is removed of the optimization that allowed it to decide on the first step if the

proposals were unanimous. Hence, the protocol is forced to execute for at least three

steps until it decides. The second reason is related to the fact that the ABBA protocol

itself was significantly faster in this experiment. The explanation for this was due to

the different operating system images used in the experiments of Section 3.2 and the

ones described here. While both sets of experiments were made on the same exact

hardware, at the time when the experiments described in this section were taken, the

Emulab testbed employed a more recent Linux kernel version (2.6.18 against 2.4.34

from Section 3.2) along with a newer openssl package (0.9.7f against 0.9.7a from Sec-

tion 3.2). Under this combination, the speed of public-key cryptographic operations

is significantly improved. Table 7.2 shows a direct comparison of the time required to

generate and verify 1024-bit RSA signatures on both OS images. It is worth to note,

however, that these differences in the results do not represent any inconsistencies what-

soever. This experiment simply shows that the superior scalability of ABBA in relation

to Bracha’s (a trend that was already seen in Chapter 3) is now observed earlier, due to

the reasons stated above.

Another observation in this experiment is that the relative difference between pro-

posal distributions was approximately the same across all protocols, with the latency
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Time (ms)
Kernel 2.6.18 Kernel 2.4.34

N Sign Verify Sign Verify
10 132.13 6.77 300.31 15.62

100 1276.73 64.05 2807.66 156.17
1000 12765.49 642.27 28087.20 1562.70
10000 127681.27 6428.06 280871.99 15631.49

Table 7.2: Time in milliseconds for N sign and verify 1024-bit RSA operations (160-
bit hash size) under Linux kernel 2.6.18 (used in this section) and 2.4.34 (used in
Section 3.2).

roughly doubling from an unanimous to a divergent proposal distribution. The reason

for this is that when processes propose different values, the protocols usually need to

execute for an additional cycle of steps. For example, in Turquois, processes decide

by the end of phase 3 with unanimous proposals, but with divergent proposals they

typically decide by the end of phase 6. Under the divergent scenario, the first cycle of

steps is usually not enough for processes to decide, but is sufficient for a significant

number of them to converge into the same proposal value, which leads to a decision by

the end of the following cycle.

Fail-stop fault load. Table 7.3 and Figure 7.2 show the performance of the proto-

cols when f = ⌊n−1
3
⌋ processes crash before the execution of the protocols begins.

Two observations are clear from these results. First, for all three protocols, there is

practically no difference between the two proposal distributions. Since f processes

crash, for every group size tested, exactly n − f = ⌊n+f
2
⌋ + 1 processes are left in

the system. This means that, as the processes make progress, they necessarily have to

receive the same set of messages. Thus, never diverging in their proposal values after

the first phase.

The second observation is that, for the unanimous proposal distribution, in most

cases the performance of the protocols is worse in the fail-stop scenario than in the

fault-free experiments. At a first glance this result seems counterintuitive because

when some processes crash there is less contention on the network and, in principle,

the protocols can run faster. The problem is that protocols become more sensitive to

message loss when only n − f processes are present in the system. More retransmis-
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Average Latency ± Confidence Interval (ms)
Group Turquois
Size unanimous divergent
n = 4 42.26± 30.29 43.84± 31.27
n = 7 106.28± 37.98 110.18± 22.00
n = 10 168.45± 39.46 188.95± 35.05
n = 13 375.00± 56.03 387.22± 60.06
n = 16 395.96± 55.11 422.65± 82.41

Group Bracha
Size unanimous divergent
n = 4 99.29± 3.05 99.61± 3.17
n = 7 516.26± 26.70 519.76± 37.63
n = 10 2488.75± 52.53 2619.35± 75.43
n = 13 5992.63± 143.00 6267.88± 355.51
n = 16 6362.68± 136.64 6469.38± 159.40

Group ABBA
Size unanimous divergent
n = 4 77.31± 9.17 77.88± 9.34
n = 7 183.20± 15.96 169.90± 6.18
n = 10 310.97± 15.61 335.93± 24.09
n = 13 747.56± 44.77 771.68± 52.71
n = 16 1180.03± 109.18 1284.83± 103.64

Table 7.3: Average latency and confidence interval in a 802.11b network with fail-stop
process failures (latency in milliseconds and confidence level of 95%).

sions are needed to ensure that processes receive enough messages to make progress.

Turquois is particularly sensitive to this fact. There are two reasons that explain this:

(1) since Turquois uses UDP broadcast, a single collision can result in up to n − 1

processes not receiving a message, while in the protocols that employ TCP one col-

lision results in just one process not receiving the message; (2) although the chosen

timeout value for the experiments turned out to be well-adjusted regarding the number

of processes (see below the paragraph discussing the timeout mechanism of Turquois),

the fact that it assumes a static value means that, unlike TCP, it is not adaptable to the

network conditions, and therefore it does not self-adjust to dynamic factors like colli-

sions, external interference, etc. This also explains its proportionally wider confidence

interval. An optimization of the retransmission mechanism could potentially improve

the performance of Turquois in these scenarios. Nevertheless, Turquois still performs
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Figure 7.2: Average latency in a 802.11b network with fail-stop process failures (log-
arithmic scale of base 2).

significantly better than the other two protocols with this fault load.

In the Bracha’s and ABBA protocols with 16 nodes, results seem to start to contra-

dict the idea that protocols perform better in the failure-free fault load when compared

with the fail-stop fault load. This indicates that there may be a turning point where the

group size becomes more stringent to performance than sensitivity to message loss, al-

though experiments with higher numbers of processes would be necessary to confirm

this.

Byzantine fault load. Table 7.4 and Figure 7.3 show the performance of the proto-

cols when f = ⌊n−1
3
⌋ processes act according to a malicious strategy. It is interesting

to note that the relative difference between the unanimous and divergent proposal dis-

tributions is similar to the scenario with no process failures, with the latency very

roughly doubling in the divergent distribution. Like in the failure-free scenario, this is

because divergent proposal values force processes to execute for extra rounds to reach

a decision.

When compared directly to the failure-free scenario, this fault load suffers from

a performance degradation that becomes increasingly noticeable with a higher group

size, specially with a divergent proposal distribution. The reason is that many messages
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Average Latency ± Confidence Interval (ms)
Group Turquois
Size unanimous divergent
n = 4 44.74± 30.16 80.18± 33.93
n = 7 96.20± 37.88 186.74± 60.54
n = 10 145.22± 23.21 288.94± 64.04
n = 13 386.39± 38.57 719.79± 72.57
n = 16 590.95± 76.14 904.27± 83.48

Group Bracha
Size unanimous divergent
n = 4 111.16± 6.99 248.66± 38.80
n = 7 619.09± 23.40 1634.17± 236.21
n = 10 2216.42± 54.17 5633.47± 668.64
n = 13 5445.93± 114.10 12656.41± 1572.59
n = 16 7698.29± 180.10 20412.36± 2271.55

Group ABBA
Size unanimous divergent
n = 4 87.65± 22.38 197.78± 25.25
n = 7 198.69± 17.72 361.53± 48.41
n = 10 481.83± 31.10 1137.94± 37.78
n = 13 1573.46± 110.70 3276.53± 211.76
n = 16 2940.68± 426.93 6045.06± 533.52

Table 7.4: Average latency in a 802.11b network with Byzantine process failures (la-
tency in milliseconds and confidence level of 95%).

being broadcasted by Byzantine processes carry values that fail to pass the validation
mechanisms of the protocols. The result is that, similarly to the fail-stop scenario, pro-
tocols become sensitive to message loss with the added burden of a higher contention
(with n processes broadcasting messages). As for Turquois, despite its non-optimized
timeout mechanism making it more sensitive to this issue, it still manages to be the
faster protocol. The question of the performance impact of the local clock tick value is
further explored in the following section.

Timeout Mechanism of Turquois. Under the experiments carried out so far, Turquois
assumed a constant local clock tick value of 10 ms or 20 ms. This section analyzes how
an optimized local clock tick can impact the performance of the protocol. To this end,
Turquois was executed with a variable number of processes - 4 to 16 - and local clock
tick value - 2, 5, 10, 20, 50, and 100 ms. Every other parameter was fixed. The pro-
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Figure 7.3: Average latency in a 802.11b network with Byzantine process failures
(logarithmic scale of base 2).

tocol was run in a 802.11b network with the failure-free fault load and a unanimous
proposal distribution.
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Figure 7.4: Average latency in a 802.11b network with varying timeout value.

The graph from Figure 7.4 shows how the latency of the protocol can be affected
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by the local clock tick value. The values shown are the average latency for 50 execu-

tions of the protocol obtained through the same experimental methodology described

in Section 7.1.2. As it can be observed, a poorly chosen timeout value can severely

impair the performance. A low timeout value can be particularly harmful. It gener-

ates too much contention in the network, which results in considerable message loss,

severely impairing performance. It can also be observed that as the number of pro-

cesses increases, the optimal timeout value tends to be higher in order to alleviate the

contention created by having extra processes in the system.

7.1.4 Results for Optimized Protocols

This section describes the results from the evaluation of the optimized versions of the

protocols. For this set of experiments, it was added an early decision step to each pro-

tocol, such that if they receive an unanimity of proposals they can decide immediately.

To this end, each protocol was adapted as described below.

Bracha’s. In the Bracha’s binary consensus, the protocol was exactly as it is de-

scribed in Section 3.1.2, where, in each round, a processes can decide v at the end of

step 1 if it receives n− f messages with the same proposal value v.

ABBA. Since ABBA does not rely on reliable broadcast as an underlying communi-

cation primitive, unlike Bracha’s, it cannot decide on the first communication step even

if it receives n − f unanimous proposals. This is because there is no way of know-

ing (without additional communication steps) if the received messages by a process

are consistent with the messages that arrive at the other correct processes. Neverthe-

less, an early decision step was still obtained by having the processes keep track of the

pre-process messages they receive for step 0 (see Section 3.1.2) even if they already

have progressed to a higher step. So, in the case a process accumulates n pre-process

messages with the same proposal value v, it can decide v. Like in Bracha’s algorithm,

even if a process decides early in this fashion, it continues to execute the algorithm

because other processes might require its help to make progress. This optimization

does not violate safety. A trivial inspection of the algorithm shows that if n−f correct
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processes propose the same initial value v (which must be the case if a process receives

n pre-process messages with v), then the algorithm must decide v.

Turquois. Turquois suffers from the same limitation of ABBA: it cannot decide

based solely on n − f messages with the same value v because it does not rely on

a reliable broadcast primitive. For this reason, in Turquois, a process decides early if

it eventually accumulates n messages for some phase � (mod 3) = 1 with the same

proposal value v. A simple analysis of the protocol shows that if n − f correct pro-

cesses propose the same value v at some phase � (mod 3) = 1, then every process

must decide v by phase �+ 2 (Corollary 27). Additionaly, since in Turquois messages

can be arbitrarily lost without the possibility of recovery, the protocol was changed so

that the proposal value of the last � (mod 3) = 1 phase reached by a process is piggy-

backed in the messages for the subsequent two phases. This improves the changes of

an early decision in case a process does not receive some � (mod 3) = 1 messages.

Like the other two protocols, a process that decides early has to continue its execution

to guarantee the progress of the other processes.

Experiments. A a similar set of experiments with varying values of group size and

proposal distributions was run to evaluate how each protocol performed. The results

are presented in Table 7.5. This table is directly comparable to Table 7.1.

In general, the results show that every protocol benefited with the early decision

step optimization. Bracha’s protocol was the one that had the most dramatic improve-

ment, in which the decision time was cut down to approximately 1/3 in the unanimous

proposal distribution, but also to about 1/2 with higher numbers of processes and di-

vergent proposals. These results are very consistent with the employed optimization

because with unanimous proposals it is guaranteed that only the first of the 3 commu-

nication steps are required to decide. With divergent proposals, the performance gains

are justified by the fact that, even though the protocol cannot decide early in the first

round, it might still decide on the first step of a subsequent round.

ABBA also evidenced a noteworthy performance improvement with unanimous

proposals, deciding in about 1/2 the time. The fact that the decision time was cut

to around 1/2 and not 1/3 like in Bracha’s (despite ABBA being also a 3-step round

algorithm) is justified by the early decision requiring n messages instead of the n− f
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Average Latency ± Confidence Interval (ms)
Group Turquois
Size unanimous divergent
n = 4 7.29± 1.00 18.54± 2.56
n = 7 18.35± 2.70 30.18± 3.21
n = 10 29.14± 4.00 55.09± 9.23
n = 13 38.39± 5.35 103.83± 40.63
n = 16 72.34± 19.21 221.50± 87.84

Group Bracha
Size unanimous divergent
n = 4 32.27± 4.32 121.37± 12.15
n = 7 158.39± 24.35 528.74± 53.35
n = 10 349.93± 14.18 1482.28± 172.87
n = 13 849.90± 141.87 3335.86± 393.82
n = 16 1914.84± 340.07 5647.30± 142.66

Group ABBA
Size unanimous divergent
n = 4 35.32± 0.37 136.40± 38.26
n = 7 63.08± 6.80 245.37± 45.99
n = 10 130.04± 17.08 572.54± 72.09
n = 13 386.95± 61.03 1673.56± 265.64
n = 16 703.62± 205.73 4039.64± 499.61

Table 7.5: Optimized Protocols. Average latency and confidence interval in a 802.11b
network with no process failures (latency in milliseconds and confidence level of 95%).

in Bracha’s. The overhead incurred by waiting for the last f messages accounts for the

decreased efficiency. A pattern observed in the experiments was that the last message

of some step s was commonly received only after the first messages from step s + 1.

The performance in ABBA with divergent proposals was similar to the non-optimized

version. Since ABBA guarantees termination by the end of the second round with high

probability and only the first round includes step 0 where the early decision is tried (see

Section 3.1.2), this implies that without unanimity of proposals the algorithm executes

just like in the non-optimized version.

Turquois also benefited from its optimization, although to a lesser degree. With

n = 4 and unanimous proposals it executes in about 1/2 the time, but the differences

to the non-optimized version get progressively narrower as the number of processes

increases. A similar pattern occurs with the divergent proposals, but with a smaller

152



7.2 Simulation

margin. These results are justified because Turquois has to wait for n messages to

decide early. Additionally, the progressively narrower differences are related to the

fact that as the number of processes increases, it becomes increasingly harder for a

process to receive the n proposal values for any given phase � (mod 3) = 1, even

with piggybacking. With higher process numbers, it was usual for some process p to

be unable to receive any message from another process q during a particular execution

of the algorithm. Despite not benefiting so much from the early decision optimization

as the other protocols, Turquois still performed significantly better than the others, in

many cases by more than an order of magnitude.

7.2 Simulation

This section analyzes the performance of Turquois in the ns-3 network simulator (Hen-

derson et al., 2006). It tests Turquois under some additional interesting parameters that

could not be captured by the Emulab testbed, such as a higher number of nodes - up

to 100 - and the physical distribution of the nodes. More specifically, this section (1)

complements the previous analysis of how the timeout value affects performance, and

(2) it evaluates Turquois considering the physical distribution of the nodes. Every ex-

periment is carried out in a simulated 802.11b ad-hoc network with a failure-free fault

load and unanimous value proposals.

7.2.1 Timeout Value

Figures 7.5 to 7.8 plot the average latency and average number of rounds to termination

of Turquois as a function of the timeout value. Each curve has an associated number

of processes. Figures 7.5 and 7.7 show the curves for 4, 10, and 25 processes, while

Figures 7.6 and 7.8 show the curves for 50, 75, and 100 processes.

The results obtained via simulation are congruent with the observed trend of the

experimental evaluation of Section 7.1. A relatively low timeout value generates too

much contention, which significantly affects performance. As the timeout value in-

creases, the performance becomes better until it reaches a sweet spot (which seems

to be roughly around n ms). After that, the latency increases linearly with the timeout
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Figure 7.5: Average latency of Turquois with varying timeout value for 4, 10, and 25
processes.
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Figure 7.6: Average latency of Turquois with varying timeout value for 50, 75, and
100 processes.

value. This pattern is clearly observable with n=25 and, to a lesser extent, with n = 10.

With n = 4, the number of processes is too low to cause any significant contention,

even with very low timeout values. With n = 50, n = 75, and n = 100, it can only
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be observed the latency approaching its sweet spot (actually, in n = 50, it can still be

observed an increase in latency towards the higher timeout values, but very slightly).

Notice that the curves start to be drawn from a progressively higher timeout value as n

becomes larger. For example, with n = 50 the curve only starts at timeout = 19, with

n = 75 it starts at timeout = 21, and with n = 100 at timeout = 31. This is because

with lower timeout values the generated contention is so high that the algorithm does

not terminate in a reasonable number of steps (i.e., within 1000 rounds).
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Figure 7.7: Average number of rounds of Turquois with varying timeout value for 4,
10, and 25 processes.

As for the average number of rounds, depicted in Figures 7.7 and 7.8, they show

a strong correlation with the latency graphs. Like with the latency, the number of

rounds is higher when the timeout value is too low. A very low timeout generates

many concurrent broadcasts, resulting in message loss due to transmission collisions,

which implies more broadcasting rounds. As the timeout increases, the contention

decreases (less concurrent broadcasts) and, as it can be clearly observed in the graphs,

the number of rounds stabilizes. This stabilization point occurs at about the same

timeout value as the latency reaches its sweet spot (roughly around n ms).
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Figure 7.8: Average number of rounds of Turquois with varying timeout value for 50,
75, and 100 processes.

7.2.2 Physical Node Density

This section analyzes the performance of Turquois by varying the node density (i.e.,
the physical area for a given number of nodes). For this simulation, the nodes were
uniformly distributed within a disc of varying radius - 10, 90, and 140 meters. Fig-
ures 7.9 and 7.10 plot, respectively, the average latency and average number of rounds
until termination. The same pattern is observed for both figures. The latency increases
linearly with the number of processes and the disc radius. As the disc radius grows,
some processes fall off broadcasting range of each other. The degree of connectivity
is still sufficient for the information to propagate within the system (i.e., for processes
to increase they phase numbers), but the number of needed rounds becomes higher.
Since some nodes fall off broadcasting range, the algorithm starts to be more sensitive
to message loss, as the level of redundancy is lower.

7.3 Summary of Results

The chapter presented the performance evaluation of Turquois - an intrusion-tolerant
binary consensus protocol specifically designed for wireless ad-hoc networks. The
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Figure 7.9: Average Latency of Turquois with disc radius of 10, 90, and 140 meters.
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Figure 7.10: Average Rounds of Turquois with disc radius of 10, 90, and 140 meters.

protocol was subject to (1) a comparative performance evaluation with two well-known

intrusion-tolerant consensus protocols in a real-world network testbed, and to (2) a

simulation under the ns-3 network simulator, which studied a few additional relevant

parameters.
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7. PERFORMANCE EVALUATION OF TURQUOIS

The main results of these experiments are summarized in the following points:

• Turquois performs significantly better than the other two protocols - Bracha’s

and ABBA - in wireless ad hoc networks. This difference becomes wider as

the number of processes increases, exceeding an order of magnitude in several

cases.

• Bracha’s protocol is the worst contender, showing serious performance degrada-

tion due to the O(n3) message complexity.

• The latency roughly doubles across all protocols from the unanimous to diver-

gent proposal distribution. When processes propose different values, the proto-

cols usually need to execute for an additional cycle of steps.

• The exception to the above observation happens with the fail-stop fault load

where the latency results are similar for both proposal distributions. This is

because when f processes crash, the remaining processes necessarily update

their values based on the same set of messages.

• A counterintuitive observation is that, for the unanimous proposal distribution,

the protocols perform worse in the fail-stop fault load than in the failure-free

case. The reason for this is that with less nodes in the system, the protocols

become more sensitive to message loss and more retransmissions are necessary

to ensure progress.

• With the Byzantine fault load, the protocols suffer a performance degradation

that becomes increasingly noticeable with a higher group size, specially with a

divergent proposal distribution.

• The latency of Turquois can be affected by the local clock tick value. In par-

ticular, a too small timeout value generates too much contention in the network,

which causes considerable message loss, severely impairing performance. Ad-

ditionally, as the number of processes increases, the optimal timeout value tends

to be higher in order to accommodate the extra contention.
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7.3 Summary of Results

• Every protocol benefited significantly from an optimization that allowed for
early decision in good executions. Bracha’s protocol was the one that bene-
fited the most, deciding in about 1/3 of the time with unanimous proposals.
ABBA decided in about 1/2 of the time. Turquois decided in 1/2 of the time
with n = 4, but this margin got narrower as the number of processes increased.
This is justified because processes have to wait for n messages with the same
value, combined with the lack of reliable communication channels.

• A higher node dispersal over a spatial area requires more rounds to reach con-
sensus. Thos occurs because processes fall off the broadcasting range of each
other, and consequently the latency becomes higher.
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Chapter 8

Conclusions and Future Research

Directions

8.1 Conclusions

The operation of wireless ad hoc networks is intrinsically tied to the ability of nodes

to coordinate their actions in a dependable and efficient manner. The failure of some

nodes and momentary breakdown of communications, either of accidental or malicious

nature, should not result in the failure of the entire system. This thesis investigates the

problem of agreement in wireless ad hoc networks. Its overarching goal is the design

of consensus algorithms adapted to wireless ad hoc networks that are able to both (1)

cope with the unreliability and potential hostility of wireless environments, and (2)

operate efficiently. The ideal protocol would be able to withstand a portion of its nodes

falling under the control of a malicious adversary and behaving in an arbitrary manner.

The first step towards this goal started with a thorough performance evaluation of

existing intrusion-tolerant protocol stacks in both wired and wireless environments.

The choice over which protocol stacks to evaluate was based on their potential attrac-

tiveness for wireless ad hoc networks - mainly, the fact that their protocols execute in

a completely decentralized manner (i.e., they are leader-free). From the rich corpus

of results obtained with these experiments, several important observations were made
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8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

that add to our knowledge about the practical behavior of intrusion-tolerant protocols,

in particular of randomized algorithms, which are used by both protocol stacks.

The main conclusion to extract was that current intrusion-tolerant agreement proto-

cols do not fare well in wireless ad hoc networks. This is attributed to several reasons:

the high message complexity (in the case of local coin protocols), the computationally

expensive cryptography (in the case of shared coin), but perhaps more importantly, to

their underlying point-to-point reliable communication model, which forces the imple-

mentation of inefficient end-to-end message delivery mechanisms.

These results lead to the identification of the communication failure model as a

system model more adjusted to wireless ad hoc networks. Under the communication

failure model, message transmissions are assumed to be affected by dynamic and tran-

sient faults, i.e., communication between two nodes can be faulty at one time and be

correct at another; past failures are not an indicator of future behavior. Furthermore,

faults can strike anywhere in the system during its lifetime. This highly dynamic vision

of faults is aligned with the nature of wireless ad hoc networks. It captures momentary

node disconnection - pervasive in wireless environments - due to mobility and other

environmental phenomena such as electromagnetic interference, fading, collisions, etc.

The main benefit from this approach is that it makes no assumptions regarding the reli-

ability of any particular communication between two processes. This effectively frees

the system architect from implementing end-to-end delivery mechanisms and allows

the protocols to directly tap into the natural broadcasting medium of wireless ad hoc

networks, where the cost of transmitting a message to multiple processes can be just the

same of transmitting it to a single process, as long as they are within communication

range.

Despite its usefulness to represent wireless ad-hoc communication environments,

research on the communication failure model has been limited. This is related to an as-

sociated impossibility result. This result, dubbed the Santoro-Widmayer impossibility,

applies to the k-agreement problem among n processes, in which k out of n processes

must agree on a binary value v ∈ {0, 1}. The Santoro-Widmayer impossibility result

applies to non-trivial agreement, i.e., for k > ⌈n/2⌉. It states that there is no finite time

deterministic algorithm that allows n processes to reach k-agreement if more than n−2

transmission failures occur in a communication step. This is a very discouraging result

since the crashing of a single process necessarily results in n− 1 transmission failures,

162



8.1 Conclusions

rendering this form of agreement impossible. Moreover, this result is produced under

the strongest timing assumptions where both the processes’ relative processing times

and communication delays are bound by known constants (i.e., a synchronous system).

A significant theoretical contribution of the thesis was to show that this impossibil-

ity result can be circumvented. This was achieved by employing randomization, which

has never been applied before in the context of the communication failure model. The

Santoro-Widmayer impossibility result rules out deterministic solutions to agreement

in this model. Randomization takes a probabilistic approach to the problem. It over-

comes previous limitations by supplying processes with access to random information

and combining this with a refinement of the problem statement where a decision is

ensured with probability 1.

To this end, it was presented a randomized k-consensus algorithm and the re-

spective correctness proof. The algorithm allows at least k processes to decide on

a common binary value in a system with n processes such that k > n
2
. The safety

properties of consensus are ensured even with an unrestricted number of faults, while

the progress is ensured in communication rounds where the number of omissions is

� ≤ ⌈n
2
⌉(n − k) + k − 2. The algorithm is adequate for wireless ad-hoc networks

because it allows one to take advantage of the broadcasting medium in an efficient way

and, at the same time, ensures safety under severe communication problems that lead

to many message losses. The termination is achieved with probability 1 when commu-

nication becomes stable, i.e., when the above threshold is satisfied. Furthermore, the

algorithm is efficient in the sense that it terminates in 2 communication rounds under

favorable conditions.

The last step to attain the goal of efficient intrusion-tolerant consensus in wireless

ad hoc networks was achieved with the Turquois protocol - designed to tolerate a com-

bination of Byzantine nodes and dynamic omission transmission faults. To the best of

our knowledge, this is the first consensus protocol that exhibits these characteristics.

Besides tolerating Byzantine nodes, Turquois improves the previous protocol on a very

important aspect: it assumes an asynchronous model - a fundamental assumption since

it is usually hard to force wireless networks into a timely behavior. Furthermore, it

tolerates t < n
3

Byzantine processes, being optimal in this aspect. Safety is maintained

despite unrestricted message omissions, and liveness is ensured in broadcasting steps

where the number of omissions is � ≤ ⌈n−f
2
⌉(n − k − f) + k − 2, with f ≤ t being
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the number of processes in the system that are actually faulty. The protocol relies on
a novel message authentication and validation mechanism that minimizes the use of
computationally expensive public-key cryptography, which allows computational re-
sources to be spared and keeps the authentication payload within a fixed length. The
protocol evaluated together with two well-known intrusion-tolerant consensus proto-
cols. The results confirmed the expectations regarding the usefulness of the communi-
cation failure model for wireless ad hoc networks and, in particular, for the design of
intrusion-tolerant agreement protocols. Regardless of the type of faults present in the
system, Turquois significantly outperformed the other protocols, sometimes by more
than an order of magnitude, specially when the number of processes in the system
increased.

8.2 Future Research Directions

There are several ways in which this work can be extended in order to provide further
functionality to wireless ad hoc networks. Extending the model to consider multi-hop
communication is certainly one of the most obvious ways of augmenting the useful-
ness of the approaches described in this thesis. Another one is to take into account a
dynamic group of processes - an assumption very close to environments with mobile
nodes. Finally, on a more theoretical perspective it would be interesting to close the
gap on the upper bounds obtained for the number of omission faults and prove their
tightness - both for the omissions-only model of Chapter 5 and the hybrid model -
dynamic omission faults and Byzantine nodes - employed by Turquois.
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