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Abstract

Connected autonomous systems, which are powered by the synergistic integration of the

Internet of Things (IoT), Artificial Intelligence (AI), and 5G technologies, predominantly

rely on a central node for making mission-critical decisions. This reliance poses a significant

challenge that the condition and capability of the central node largely determine the

reliability and effectiveness of decision-making. Maintaining such a centralized system,

especially in large-scale wireless networks, can be prohibitively expensive and encounters

scalability challenges. In light of these limitations, there’s a compelling need for innovative

methods to address the increasing demands of reliability and latency, especially in mission-

critical networks where cooperative decision-making is paramount. One promising avenue

lies in the distributed consensus protocol, a mechanism intrinsic to distributed computing

systems. These protocols offer enhanced robustness, ensuring continued functionality and

responsiveness in decision-making even in the face of potential node or communication

failures.

This thesis pivots on the idea of leveraging distributed consensus to bolster the reliability

of mission-critical decision-making within wireless networks, which delves deep into the

performance characteristics of wireless distributed consensus, analyzing and subsequently

optimizing its attributes, specifically focusing on reliability and latency. The research be-

gins with a fundamental model of consensus reliability in an crash fault tolerance protocol

Raft. A novel metric termed ReliabilityGain is introduced to analyze the performance of

distributed consensus in wireless network. This innovative concept elucidates the linear

correlation between the reliability inherent to consensus-driven decision-making and the
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reliability of communication link transmission. An intriguing discovery made in my study

is the inherent trade-off between the time latency of achieving consensus and its reliabil-

ity. These two variables appear to be in contradiction, which brings further performance

optimization issues.

The performance of the Crash and Byzantine fault tolerance protocol is scrutinized and

they are compared with original centralized consensus. This exploration becomes particu-

larly pertinent when communication failures occur in wireless distributed consensus. The

analytical results are juxtaposed with performance metrics derived from a centralized con-

sensus mechanism. This comparative analysis illuminates the relative merits and demerits

of these consensus strategies, evaluated from the dual perspectives of comprehensive con-

sensus reliability and communication latency.

In light of the insights gained from the detailed analysis of the Raft and Hotstuff BFT

protocols, my thesis further ventures into the realm of optimization strategies for wire-

less distributed consensus. A central facet of this exploration is the introduction of a

tailored communication resource allocation scheme. This scheme, rooted in maximizing

the performance of consensus mechanisms, dynamically assesses the network conditions

and allocates communication resources such as transmit power and bandwidth to ensure

efficient and timely decision-making, which ensures that even in varied and unpredictable

network conditions, consensus can be achieved with minimized latency and maximized

reliability.

The research introduces an adaptive protocol of distributed consensus in wireless net-

work. This proposed adaptive protocol’s strength lies in its ability to autonomously con-

struct consensus-enabled network even if node failures or communication disruptions oc-

cur, which ensures that the network’s decision-making process remains uninterrupted and

efficient, irrespective of external challenges. The sharding mechanism, which is regarded

as an effective solution to scalability issues in distributed system, does not only aid in

managing vast networks more efficiently but also ensure that any disruption in one shard
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cannot compromise the functionality of the entire network. Therefore, this thesis shows

the reliability and security analysis of sharding that implemented in wireless distributed

system. In essence, these intertwined strategies, rooted in the intricate dance of commu-

nication resource allocation, adaptability, and sharding, together form the bedrock of my

contributions to enhancing the performance of wireless distributed consensus.
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Chapter 1

Introduction

1.1 Background of Distributed Consensus

Distributed consensus lies in the field of distributed systems, where multiple independent

nodes or computers work together to achieve a common goal. In such systems, achieving

consensus or agreement among the nodes is crucial for ensuring the correct functioning of

the system [1]. The concept of distributed consensus emerged as a solution to the problem

of achieving agreement among the nodes in critical aircraft control applications of Software

Implemented Fault Tolerance (SIFT) despite the possibility of nodes failing or behaving

maliciously [2]. The problem is commonly known as the Byzantine Generals Problem,

which was first proposed in 1982 by Leslie Lamport, Robert Shostak, and Marshall Pease

[3].

This problem is named after the hypothetical scenario where a group of Byzantine generals

is trying to coordinate an attack on a common enemy. The generals can only communic-

ate with each other by sending messages, but some of them may be traitors who will

deliberately send false messages to disrupt the coordination. The challenge is to come up

with a protocol that ensures that the loyal generals agree on a common plan of action,

even if some of the generals are traitors.

1
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Over the years, researchers have proposed several algorithms and protocols for achieving

distributed consensus, such as the Paxos algorithm [4], the Raft algorithm [5], and the

Practical Byzantine Fault Tolerance (PBFT) protocol [6]. These algorithms and protocols

have been applied to various distributed systems, including databases [7], blockchain [8],

and cloud computing [9] [10] [11], to ensure the consistency and reliability of the system,

and they can work as an interior algorithm that regulates the decision based on the collec-

ted information by nodes. In the protocol of a distributed consensus, every participant is

capable of transmitting and receiving the command to switch the state of replicas if it fol-

lows specific fault-tolerant protocols [12]. The majority of distributed consensus protocols

aim to solve two types of fault: Crash fault and Byzantine fault.

Crash fault refers to a sudden and unexpected failure of a node, which may be caused

by various factors such as hardware failure, software bugs, or network problems. Crash

fault tolerance is a concept in distributed systems that refers to the ability of a system to

continue functioning even if one or more nodes in the system experience a crash or failure.

To achieve crash fault tolerance, distributed systems often use replication, where multiple

copies of the same data or process are stored on different nodes in the system. If one node

fails, the other nodes can continue to operate and provide the required services. The failed

node can be replaced or restarted without affecting the overall system functionality [13].

Crash fault tolerance (CFT) protocols, such as Raft and Paxos, are designed to follow

these coteries to manage reliable state duplication and prevent system breakdown from

node crash failure.

Paxos is the first CFT consensus algorithm in the field of distributed systems, proposed by

Leslie Lamport in 1989. The main goal of Paxos is to ensure that a network of distributed,

potentially unreliable (in the sense of crashing or going offline), agents can agree on a

single value (a consensus). This is particularly crucial for databases and other distributed

storage systems, where they need to ensure data consistency across all nodes. Paxos

operates through a series of proposals, where each proposal is issued by a proposer, voted

on by acceptors, and disseminated by learners. The fundamental guarantee of Paxos is
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that if a value is chosen, then every future proposal will also suggest that value. The

protocol is structured such that it ensures that only one value is selected and that all

participants can eventually be aware of that value, despite the potential for failures and

message losses [14]. However, Paxos can be quite complex to implement correctly due to

the intricate interplay of its components. There are simpler versions like Multi-Paxos [15]

and variations [16] [17] developed to handle more complex real-world scenarios, such as

Google’s Chubby [18] and Apache Zookeeper [19]. These derivatives aim to improve upon

the efficiency and simplicity of the base Paxos algorithm.

CFT assumes that a node that fails will stop functioning completely but it will not behave

maliciously or provide incorrect information to other nodes in the system. However, in

real-world scenarios, nodes may fail in more complex ways, such as by sending conflicting

information, withholding information, or launching attacks on other nodes in the network

[20]. In such cases, CFT may not be sufficient to ensure the correctness and consistency

of the system. This is because CFT does not provide mechanisms to detect or isolate

malicious nodes, and relies on the assumption that a majority of the nodes in the sys-

tem are honest and will provide correct information. To address these limitations, more

advanced fault tolerance mechanisms such as Byzantine Fault Tolerance (BFT) are used

in distributed systems where there is a risk of malicious behavior. BFT provides stronger

guarantees of correctness and consistency in the presence of arbitrary and malicious faults

but may require more computational resources and communication overhead than CFT.

Byzantine failure represents the malicious behaviors given by an adversary, including

contradictory commands to the progress, communication abort, and lengthy intentional

delay to critical messages [21], which are more disruptive to the system than crash failures.

Such failures may be caused by software bugs, hardware failures, or malicious attacks, and

may result in the node providing incorrect information or behaving in a way that disrupts

the system’s operation. Therefore, Byzantine fault tolerance is proposed as a mechanism

to let the whole system consistently respond correctly and reliably even in the presence of

faulty nodes that may behave maliciously or send equivocation to other nodes. To achieve



1.1. Background of Distributed Consensus 4

Byzantine fault tolerance, distributed systems use BFT protocols like PBFT and Hotstuff

BFT [22] to keep a unique sequence in the state of nodes through quorum intersection, and

to ensure that the correct information is propagated throughout the system even in the

presence of faulty nodes [23]. These algorithms and protocols often involve redundancy,

such as replicating data or processes across multiple nodes, and consensus mechanisms

that allow nodes to agree on the correct state of the system.

Byzantine fault tolerance is particularly important for critical systems, such as financial

systems including blockchain [24] and cryptocurrency [25] [26], where the consequences

of faulty behavior can be severe. Some real-time aircraft systems, such as the Boeing 777

Aircraft Information Management System and flight control system, has used low latency

Byzantine fault tolerance solution to ensure their robustness [27].

In a distributed system, a quorum typically refers to the minimum number of nodes that

must participate to make a decision or commit an action. If a system wants to remain

consistent and avoid conflicting decisions, any two quorums in this system should have

an intersection, which means they should share some nodes. This mechanism ensures

that the situation where one quorum decides on one action and another quorum decides

on a conflicting action cannot happen, since they both always have at least one node

in common that would notice and prevent such a conflict. In CFT, two quorums only

need to share one node in a quorum intersection because all nodes are assumed trusted.

However, in BFT this intersection needs to have more nodes than the malicious nodes

f in the system, which means the number of nodes in the network should be more than

2 f to achieve consensus. Therefore, BFT can be computationally expensive and require

significant communication overhead. The protocol of BFT usually requires multiple rounds

of communication and computation to achieve consensus among nodes in a distributed

system, which can lead to increased latency and reduced throughput. Furthermore, BFT

assumes that all nodes in the system have equal computing power and communication

capabilities and there is no distinction between nodes that are more or less trusted. In real-

world scenarios, nodes may have different capabilities and trust levels, and the system may
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require more nuanced mechanisms for achieving consensus and managing node behavior.

Overall, while BFT provides stronger guarantees of correctness and security than CFT,

it requires careful design and tuning to ensure that the benefits outweigh the drawbacks

of a particular system.

1.2 Literature Review of Common Distributed Con-

sensus

Distributed consensus algorithms employ several communication schemes, including leader-

based [5], peer-to-peer [28] [29], and gossip-based protocols [30]. Our research primarily

centers on distributed consensus protocols using leader-based communication, such as

Raft and Hotstuff. In these consensus mechanisms, communication adopts a star topo-

logy, which signifies a network configuration where a central or coordinator node is directly

connected to all other peripheral nodes. The central node serves as the primary commu-

nication and coordination point, effectively managing interactions among the peripheral

nodes [31].

In the star communication topology for distributed consensus, each peripheral node only

needs to communicate with the central node, rather than with every other node in the

network. This topology simplifies the communication process and reduces the complexity

of maintaining connections. Since all peripheral nodes send their messages directly to

the central node, reaching consensus can be faster compared to decentralized topologies,

as there are fewer message hops between nodes. The central node can swiftly aggregate

information and disseminate the consensus to all connected nodes and detect and handle

faulty nodes or network issues more efficiently because it has a direct connection to each

peripheral node. Moreover, because the new node needs to establish a connection with the

central node, the engagement of new nodes to a network with star topology is relatively

straightforward, which allows the network to scale up easily.
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However, there are also some notable drawbacks to using a star topology for distributed

consensus. If the central node suffers from a single point of failure, it will be compromised

and the entire network can be broken down. The reliance on a central node for communic-

ation and decision-making can make the network more susceptible to censorship, control,

or manipulation, which goes against the principles of decentralization that distributed sys-

tems aim to achieve. Therefore, the protocol of distributed consensus with star topology

needs to be optimized when it is implemented in a wireless network to overcome these

flaws. This section will introduce the protocol of several common distributed consensus

for different scenarios.

1.2.1 Protocols of Paxos and Raft

The protocol of distributed consensus has been deployed in many decentralized systems to

keep the consistency of the state in nodes. In a system that requires a trusted authority to

access (i.e., private blockchain [32]), the possibility that the system suffers from Byzantine

fault can be negligible [3]. The crash of nodes and link transmission failure are the main

threats to these trusted systems. Therefore, it is appropriate to deploy the CFT protocol in

these scenarios. Two common CFT protocols are introduced in the following paragraphs:

The Paxos algorithm, a consensus algorithm named after a fictional legislative consensus

system used on the Paxos island in Greece, was introduced by Leslie Lamport in 1989

[33]. Its primary objective is to ensure that in a distributed system, a single value can be

agreed upon by participants, even in the face of failures. The origin of Paxos is deeply

intertwined with Leslie Lamport’s endeavors to understand and simplify the problem of

achieving consensus in distributed systems. Lamport initially presented the algorithm in

a parable form, in which he described an imaginary parliament on a Greek island, Paxos.

The parliament’s operation was described as a protocol, which later became the founda-

tion for the Paxos algorithm. While the parable presented a unique way to think about
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the problem, many researchers found it confusing. Hence, Lamport later wrote a more

traditional, direct explanation of the algorithm. Regardless of its original presentation

style, Paxos became a fundamental algorithm in distributed systems, due to its promise

of ensuring system consensus in the presence of node failures.

The Paxos algorithm comprises three primary roles: the Proposer, which initiates the

consensus process by suggesting a value; the Acceptor, which either accepts or declines

the proposed values; and the Learner, which acknowledges the agreed-upon value. In the

first phase, known as the Prepare Phase, the Proposer selects a unique proposal number

n and transmits a prepare request with this number to a majority of the Acceptors.

When an Acceptor gets a prepare request with n that is higher than any it has seen

before, it sends back two types of information to the Proposer: a commitment that it

will not accept proposals with a number less than n in the future, and details of the

highest-numbered proposal it has previously accepted. If the Proposer hears back from a

majority of Acceptors, it will issue a new proposal with the number n and a value v. v is

typically chosen based on the highest-numbered proposals received from the Acceptors. If

the Proposer doesn’t get any previously accepted proposals in the responses, it can freely

choose the value for v.

The second phase called the Accept Phase, begins when the Proposer sends out an accept

request, containing its proposal with number n and value v, to a majority of Acceptors.

An Acceptor, upon receiving this request, will agree to the proposal if it cannot commit

to any higher-numbered proposal during the Prepare Phase. The moment a majority of

Acceptors accept a particular proposal, the associated value is deemed chosen. Then the

Learners are informed of this decision and can proceed with the necessary actions, such

as committing a transaction or updating a database. It is worth noting that while Paxos

guarantees a consensus, it does not always ensure rapid progress in systems where com-

munication is asynchronous because Proposers might continually override each other’s

proposals. Practical implementations often introduce additional mechanisms, like desig-

nating a leading Proposer, to ensure decisions are made in a timely fashion.
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Figure 1.1: Normal operation of the Paxos algorithm [34]

Raft, as a CFT algorithm, is prevalently implemented in a private, trustworthy, distrib-

uted system to tolerate the breakdown of replicas [5]. Because Raft is simpler and un-

derstandable than the traditional CFT protocol Paxos [4], this CFT consensus protocol

has drawn attention to the applications [35], [36] and [37]. In wireless communication

networks, link transmission failure can be regarded as a type of breakdown, which means

Raft is practical in this situation. The Raft-enabled distributed network is composed of

consensus replicas, including the leader and followers. The protocol of Raft contains two

stages: Leader election and log replication, which is shown in Fig. 1.2.

Leader election begins with the situation that a follower node transitions to a candidate

state when it cannot receive any heartbeat messages from the current leader within a

predefined timeout period. The candidate then starts a new election term, votes for itself,

and sends a RequestVote message to all other nodes in the network. Upon receiving the

RequestVote message from this candidate, followers decide whether to vote for the can-

didate or not based on its state and the content of the messages. They need to check
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Figure 1.2: Communication scheme of distributed consensus with Raft

if they have already voted in the current term and if the candidate’s log is at least as

up-to-date as their own. If both conditions are satisfied, the follower grants its vote to the

candidate. If the candidate receives votes from over half of the nodes in the whole net-

work, it transitions to the leader state and starts sending heartbeat messages to maintain

its leadership. If the candidate fails to win votes from the majority, it reverts to follower

state, and the process may repeat until a new leader is elected.

In the stage of log replication, the leader needs to pack the commands in log entries and

replicate the entries to all followers ceaselessly through downlink transmission. Depending

on the successful reception of entries replication, the followers reply confirmation packets

to the leader through uplink unicast and start to execute the confirmed commands or

synchronize the state of leader in the current term. A successful Raft consensus represents

that more than 50% overall followers can receive the log entries from the leader and send

the confirmation back to the leader successfully in one term. The selection of the leader

may follow the criteria of maximizing performance because the node with better wireless

connections is more likely to become the leader.
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In some scenarios, the states of all nodes from the network need to be synchronized

in a time interval, which requires an extra synchronization stage after the stage of log

replication. This synchronization stage may improve the consensus reliability but cause

longer time latency [38].

1.2.2 Protocols of PBFT and Hotstuff BFT

Practical Byzantine Fault Tolerance (PBFT) is a consensus algorithm designed to work

efficiently in asynchronous systems and cope with Byzantine faults. The Byzantine Gen-

erals Problem, which it addresses, is a situation in which actors in a distributed system

must agree on a strategy, but some of these actors may be unreliable or malicious. The

term Byzantine or Byzantine Generals Problem refers to a classic problem in distributed

computing where actors must reach a consensus even if some of them are traitors who

might lie. Practical in PBFT emphasizes its aim to provide a solution that is efficient

enough for real-world use.

Practical Byzantine Fault Tolerance (PBFT) differentiates nodes into two primary roles:

a single primary node and multiple backup nodes. The primary node’s task is to propose

the order of logs, whereas the backup nodes are responsible for agreeing or disagreeing

with this proposed order. The algorithm’s operation can be categorized broadly into three

phases: Pre-prepare, Prepare, and Commit. In each phase, the nodes exchange messages

to achieve consensus. Initially, in the Pre-prepare phase, the primary node, after receiv-

ing a client’s request, broadcasts a Pre-prepare message containing the log details to all

backup nodes. Following this, during the Prepare phase, backup nodes, after validating

the received pre-prepare message, send a prepare message to all nodes, signifying their

readiness to process the log. Finally, in the Commit phase, a backup node, having received

2 f valid prepare messages, where f denotes the maximum number of nodes that can be

faulty, sends a commit message to all nodes. This action is an assertion that more than
2
3 of the nodes have acknowledged the log and are poised to finalize it.
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Figure 1.3: Communication scheme of PBFT [6]

For the actual execution, once a node gathers 2 f +1 commit messages for a particular log,

including its own, it carries out the log and then communicates the result to the client.

An integral component of PBFT is its ability to initiate view changes. This mechanism

comes into play if a primary node is perceived to be malfunctioning or is dormant. In

such instances, backup nodes can trigger a shift in view if they discern an absence of

timely communication from the primary. Successful execution of this change results in

the election of a new primary.

PBFT’s robustness is underscored by two pivotal attributes: safety and liveness. While

safety guarantees that any pair of nodes decide on identical transaction orders, liveness

ensures that each request from a correct node will inevitably be committed. This dual

assurance stems from the algorithm’s mandate that a transaction can only be committed

after being validated by 2 f + 1 nodes. Lastly, PBFT’s fault tolerance capacity enables

it to manage up to n−1
3 malicious nodes (with n as the total nodes). Therefore, for the

system to accommodate f corrupt nodes, the network must consist of at least 3 f +1 nodes.

In practical applications, the principles of PBFT find relevance in several contemporary

blockchain platforms, especially where rapid transaction throughput and irrevocability are

prioritized over a completely permissionless and decentralized environment. The definitive

nature of PBFT, wherein a committed transaction is irreversible, makes it stand out from

many BFT protocols.
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Hotstuff, as a BFT state machine replication protocol, aims to ensure that non-faulty

replicas agree on the order of execution for client-initiated service commands in a de-

centralized network with N ≥ 3 f + 1 replicas, despite the efforts of f Byzantine replicas

[22]. The Libra blockchain project has chosen the Hotstuff BFT as its consensus protocol

because of the responsiveness and linearity in the protocol [23]. The view, as a round of

consensus of Hotstuff BFT, contains three phases: prepare, pre-commit, and commit. The

basic Hotstuff protocol works in a succession of view numbers with monotonically increas-

ing view numbers. Each view number has a unique dedicated leader for other replicas. The

leader must collect votes from a quorum of N− f replicas in three phases. The collection

of N− f votes to one leader is referred to as a quorum certificate (QC), which is associated

with a particular node and a view number [39]. In the prepare phase, the leader should
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Figure 1.4: Communication scheme of distributed consensus with Hotstuff BFT

collect new-view messages from replicas and process these messages to select a branch
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that has the highest preceding view. If over N− f replicas have sent their messages to

the leader successfully, a valid prepare QC can be formed through a threshold signature

scheme. Then the leader broadcasts the prepare QC in pre-commit messages to replicas,

and replicas respond to the leader with the pre-commit vote if they receive and verify

the prepare QC. Similarly, while receiving more than N− f pre-commit votes, the leader

combines them into a pre-commit QC and broadcasts it in commit messages to replicas.

Over N− f replicas should send the commit vote back to the leader for the final commit

QC combination. After a successful commit QC assembly, the leader needs to send in a

decided message to all other replicas to notify them the consensus protocol in this view

is completed, and the replicas will update their state according to the decided message.

Compared with the high communication complexity O(N2) in the phases of other BFT

consensus protocols [6], [40], the start topology and threshold signature scheme ensure

Hotstuff BFT can have a linear communication complexity to the number of nodes, which

is O(N) in all three phases of the consensus protocol and lower than other common BFT

protocols like PBFT. In the scenario of wireless communication, this low communication-

complexity feature can cause less interference and bandwidth cost [41]. However, because

the basic Hotstuff BFT has three phases in its protocol, the communications between the

leader and replicas in Hotstuff will cause longer time latency than a BFT protocol with

fewer consensus phases.
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According to the statement of basic Hotstuff BFT, the leader only needs to collect the vote

message in the form of a threshold signature through all three phases. This feature ensures

that changing the view on every prepare phase of different proposals cannot actively

influence the reliability of the consensus. Fig. 1.5 indicates such a pipeline structure of

decision-making in a type of more effective Hotstuff BFT protocol, which is called chained

Hotstuff [22]. The prepare message of the next view is bound with the pre-commit message

of the former view in the same package. Every new view of chained Hotstuff BFT needs

to start automatically after the prepare phase of the last view. This approach aims to

significantly improve throughputs of the views change in the Hotstuff BFT consensus

protocol, which means the average latency for every view in chained Hotstuff will be

shorter than the basic Hotstuff protocol if the success rate of the consensus is reasonably

high.

1.3 Distributed Consensus in Wireless Network

The exploration of distributed consensus in wireless networks spans a wide array of applic-

ations and challenges. This section discusses the current research about wireless distrib-

uted consensus in wireless sensor networks, wireless blockchain systems, and independent

models or frameworks for connected critical decision-making applications.

1.3.1 Distributed Consensus in Wireless Sensor Network

As the value of distributed consensus becomes increasingly evident in wireless commu-

nication networks, a growing number of researchers are turning their attention to ex-

ploring its underlying theories and practical applications. Pioneering research efforts have

sought to apply distributed consensus mechanisms to wireless sensor networks, specifically

for achieving accurate time synchronization among the network’s nodes [42]. They have

found that distributed consensus can play a crucial role in time synchronization for wire-
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less sensor networks by enabling all nodes to agree on a common time reference, thereby

ensuring consistent timing across the network. By handling multi-hop communication

and compensating for unpredictable time delays caused by factors such as interference,

backoff, and operating system scheduling, distributed consensus algorithms help maintain

synchronization and improve overall network performance. In essence, the function of

distributed consensus in time synchronization is to provide a robust and accurate mech-

anism for achieving and maintaining synchronized time across a wireless sensor network.

Another critical research about distributed consensus in wireless sensor networks aims

to maximize total network utility [43]. As for the cases without a centralized coordin-

ator among all sensors, the researchers propose an average consensus-based distributed

algorithm (ACDA) to distributively schedule the work modes of all sensors using only

local information.

1.3.2 Distributed Consensus in Wireless Blockchain System

In recent years, many critical decision-making scenarios and applications such as wireless

blockchain [44] [45], Vehicle-to-Everything (V2X) communication [46] [47], and Industrial

Internet of Things (IIoT) [48] [49] emerge due to the rapid development of advanced com-

munication technology. Various distributed consensus mechanisms have been adapted to

these critical applications and researchers have recognized that the quality of wireless links

can significantly influence the performance of distributed consensus and decision-making

in these new scenarios, while simultaneously presenting challenges related to power and

spectrum efficiency. Therefore, the focus of researchers has shifted towards performance

analysis and optimization of the distributed consensus in wireless applications.

To tackle these issues, [50] introduces a comprehensive framework for wireless block-

chain networks that takes into account various consensus mechanisms, network topolo-

gies, and communication protocols. This research delves into the four primary stages of the

blockchain process, laying the groundwork for future optimization efforts. By examining
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the connection between blockchain performance and communication resource allocation,

factors such as spectrum usage, transmission power, receiver sensitivity, interference, and

intentional radio jamming are considered. The analytical and numerical results provided

in this study highlight the extent to which communication resource provisioning can affect

the overall performance of wireless blockchain networks.

Moreover, [51] and [52] make efforts to improve the performance of distributed consensus

in wireless blockchain systems. [51] present a new network model for blockchain-enabled

IoT systems, along with a theoretical analysis of its performance and an optimal full func-

tion node (FN) deployment strategy. The model addresses key concepts such as blockchain

transaction throughput and communication throughput and establishes their mathemat-

ical relationship. Performance is analyzed using spatiotemporal domain Poisson point

process modeling, and the transaction success rate and overall communication through-

put are calculated. They also propose an algorithm for optimal FN deployment under

given IoT node density and transaction throughput and analyze the security performance

under three typical attacks, with solutions like physical layer security presented to ensure

system security.

1.3.3 Independent Model and Framework of Wireless Distrib-

uted Consensus

The problem addressed in [52] shifts from the success of individual communication links

to ensuring that at least half of communication links (both uplink and downlink) in a

multiple-link network are successful, regardless of malicious jamming. The authors first

map and model transaction processing into wireless downlink and uplink transmissions,

then investigate the transaction success rate of wireless Raft-enabled blockchain. Ana-

lytical results demonstrate the relationship between the success probability of consensus,

node location, and transmission power.
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[53] introduces a probabilistic failure model for CFT protocol, presents analytical re-

liability results, and proposes the Tolerance Gain indicators to guide wireless distrib-

uted consensus deployment, with findings extendable to other consensus mechanisms. [54]

presents a novel framework for Connected critical autonomous systems (C-CASs) using

a perception-initiative-consensus-action protocol, integrating mechanisms like PBFT and

Raft, offering enhanced system reliability and design insights for growing node networks.

[55] explores multi-valued fault-tolerant distributed consensus, introducing voting validity

for exact consensus output, presents impossibility results and system tolerance bounds,

and proposes practical algorithms to prioritize voting validity, with optimizations to boost

operation speed and fault tolerance.

1.4 Challenges and Motivations

Driven by advances in the fifth generation (5G) mobile network, industry 4.0, cloud com-

puting and artificial intelligence, etc., the application of cooperative intelligence clusters

is expected to grow rapidly in the scenarios of critical industrial sectors within the next

decade. According to [56], in such critical application scenarios, the system needs to obtain

an end-to-end decision delivery that has latency lower than 1 ms and exceedingly high

reliability less than 10−9. Up to now, the majority of wireless communication networks

are in centralized schemes, which require the connected nodes to transmit their data to

a central control station, where the critical decisions will be made and sent back to ac-

tuators for processing. However, a large number of mobile applications will be discretely

located in the topology, which means the scheme of centralized systems may hardly be

implemented in these applications.
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Additionally, the centralized system suffers from an ever-present single point of failure

issues [57]. In a centralized communication network, the nodes can only synchronize the

information with the central station, which means the system’s reliability performance

heavily relies on the central station, and the performance can be limited by the worst

node connection with the central station. Any wireless communication link failure can cut

off the synchronization, which may cause disaster or loss of human life in extreme cases.

The centralized communication system can be very costly since it is well-known that high

communication reliability is contradictory to low time latency with constant communic-

ation resources. The cost can be unaffordable when the network scales up [58], e.g., on

a busy road of autonomous driving scenarios or a smart factory with a large number

of mobile robots. As the number of nodes in the network increases, achieving consensus

becomes more challenging due to the increased communication overhead, complexity, and

convergence time. Wireless nodes are often battery-powered, and energy conservation is

a significant concern. The consensus algorithms need to be energy-efficient to prolong the

network’s lifetime. In a distributed environment, nodes may be malicious or faulty, af-

fecting the consensus process. Robust security mechanisms and trust models are required

to ensure the integrity and reliability of the consensus. Therefore, from algorithms and

protocols perspectives, an alternative low-cost solution should be investigated on how to

improve the overall network’s critical decision reliability and latency with low individual

link transmission reliability.

Moreover, critical real-time decisions are normally made and processed based on the local

data collection from distributed sensors scattered along with the devices. For example,

a decentralized approach has been proposed for decision-making in autonomous driving

[46], which presents that the local nodes in distributed networks can collect data, make

initial decisions, and send global consent to the joint nodes in the distributed network.

However, the initiative has to be consented by other vehicles in proximity through a safe

and secure consensus protocol since any nonalignment among the vehicles may cause a dis-

aster. In such a distributed system, communication plays a pivotal role in the information
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exchange among the connected components. Especially in mobile environments, where

the connection among the nodes (e.g., cars, robots, or any other type of equipment) is

wireless, the uncertainty of wireless channels and scarcity of communication resources can

be critical factors to limit the performance in terms of decision reliability and latency.

Fortunately, such distributed systems can achieve stringent requirements with relaxed

communication link reliability by using the distributed consensus to achieve the neces-

sary agreement on a unified state of the network. As one of the most famous distributed

systems, blockchain has applied multiple types of distributed consensus to ensure the syn-

chronization among the nodes. Unlike the traditional centralized communication system

that requires all communication links to be reliable under a time delay constraint to make

correct decisions for the network, distributed consensus in the system can tolerate a cer-

tain ratio of link transmission failure, i.e., it can achieve a high-reliability critical decision

with relatively low reliable communication links.

To fully leverage the potential of distributed consensus mechanisms in wireless networks,

further research is needed to develop efficient algorithms and protocols that address com-

munication overhead, complexity, and convergence time. Additionally, resource efficiency

schemes should be considered for nodes in wireless networks to improve the performance

of different distributed consensus. By addressing these challenges, distributed consensus

mechanisms can provide a viable alternative to centralized systems for critical decision-

making in wireless networks.

1.5 Original Contribution

In its quest to delve deep into the intricacies of distributed consensus within wireless net-

works, this thesis meticulously investigates the distributed consensus algorithm Raft that

prominently mentioned in the literature review due to the low communication complexity

of its star topology. The focus of research is primarily on achieving a robust consensus in
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the face of mission-critical decision-making applications in wireless networks, which are

characteristic of communication links that, while potentially offering low latency, might

often present challenges in terms of reliability. The original contributions in this thesis

can be summarized as follows:

• The research commences with the formulation of a comprehensive link failure model

for Raft. This model’s essence is to indicate the intricate mathematical interplay

between the reliability metrics of communication links and that of consensus. Stem-

ming from this analytical framework, the research introduces a pivotal concept

called Reliability Gain. This concept is paramount, as it quantifies the mathem-

atical correlation between the inherent reliability of the consensus and that of the

communication link. Intriguingly, the findings suggest that the Reliability Gain fol-

lows an approximately linear trajectory concerning the number of nodes. Moreover,

the derivation reveals that consensus reliability contradicts delay, providing valuable

design guidance for incorporating consensus mechanisms into distributed systems.

• To bolster the efficiency and reliability of the Raft algorithm in wireless networks,

my research moves on to the optimization of communication resource allocation

through novel methodologies. An optimal power transmission strategy, hinged on

the principles of Sequential Quadratic Programming (SQP), is devised to maximize

the consensus reliability of Raft. Concurrently, the research dives deep into dis-

cerning the optimal bandwidth allocation methodology. Tapping into the power of

Particle Swarm Optimization (PSO), the study identifies the perfect bandwidth al-

location strategy. The research further extends to unveiling the ideal number of

nodes that should be assimilated within the wireless network, ensuring that dis-

tributed consensus reliability can be optimized even with the constraints of a given

communication resource. The inferences and findings are backed by rigorous ana-

lytical proof, cementing their validity.
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• The thesis proposes some methods to solve the potential scalability issues of wire-

less distributed consensus in large-scale wireless networks. An adaptive protocol for

distributed consensus Raft in wireless networks is designed to ensure nodes within

the network can reach consensus on shared data, even in the presence of network

latency and node failures. This adaptive protocol adds a distinct node counting

procedure and node entry/exit mechanism to the original protocol of Raft. The pro-

posed adaptive protocol leverages widely-used routing protocols Ad hoc On-Demand

Distance Vector Routing (AODV) from Mobile Ad Hoc Networks (MANETs) to ef-

ficiently maintain the consistency of node states in Raft-enabled wireless networks.

Moreover, the security analysis of sharding, which is considered a practical scheme to

improve the throughput of distributed consensus, is present to indicate the security

level can be affected by the rate of malicious nodes in both cross-shard transactions

and non-cross-shard transactions.

1.6 Thesis Outline

The rest of this thesis is as follows. Chapter 2 starts with a fundamental reliability model

of distributed consensus from the perspective of probability of wireless link transmission

and the number of nodes. With this consensus reliability model, my research focuses on

the performance comparison between centralized consensus and distributed consensus in-

cluding Raft and Hotstuff BFT. These contents are relevant to “Low Reliable and Low

Latency Communications for Mission Critical Distributed Industrial Internet of Things”

(The first journal publication in List of Publications) and “Centralized and Distributed

Consensus in Wireless Network: An Analytical Comparison” (the first conference public-

ation in List of Publications).
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Chapter 3 proposes two optimal communication resource allocation schemes to improve

the consensus reliability and latency of Raft. It is produced on top of “Communication

Resource Allocation of Raft in Wireless Network” (The second journal publication in List

of Publications).

Chapter 4 focus on adapting the original protocol of Raft and security issues in the shard-

ing scheme of distributed consensus in wireless network, which is based on the content in

“Adaptive Protocol of Raft in Wireless Network” (the third journal publication in List of

Publications) and “Security analysis of Sharding in the Blockchain System” (the second

conference publication in List of Publications).

Chapter 5 summarizes the content from Chapter 2 to Chapter 4 and discusses the trend

of future research about this thesis.



Chapter 2

Fundamental Model and Analysis of
Consensus Reliability

In Chapter 1, we delved deep into the intricacies of mission-critical decision-making within

wireless networks. The findings suggest that while making critical decisions, it is possible

to meet stringent requirements even if the communication link is not completely reliable.

This is achievable through the implementation of a distributed consensus mechanism,

which ensures that the majority of nodes in the network converge to a consistent and

agreeable state or view of the network. Distributed consensus algorithms, such as Raft

and PBFT, have been the backbone of numerous distributed systems requiring a coherent

and consistent state among their constituents.

It’s vital to understand the essence of these consensus algorithms. The original protocols

of Raft and PBFT were primarily developed and fine-tuned for wired communication

environments. In such settings, the primary threats to the consensus process arise from

node failures or potential malicious attacks. Thus, these protocols are inherently focused

on ensuring nodes’ robustness to against these challenges. In contrast, the world of wire-

less networks introduces a unique set of challenges. Even if all nodes in a wireless network

function correctly and efficiently, the communication links or channels connecting these

nodes can be inherently unstable due to various factors, including environmental disturb-

ances, interference, and physical obstructions. This dynamic nature of wireless communic-

ation emphasizes the importance of deriving reliable consensus for critical decision-making

23



. Fundamental Model and Analysis of Consensus Reliability 24

applications, even in the face of potential link failures. It is not just about achieving con-

sensus among normal nodes but ensuring it can be reliably reached even when the com-

munication among nodes is sporadically interrupted. Furthermore, while we know how

consensus protocols work in wired networks, the implications of using them in a wireless

context remain uncertain, especially concerning communication delays. Any delay can

be critical, especially in mission-critical applications, and understanding these nuances

becomes vital. Before people try to adopt distributed consensus in real-world wireless

scenarios, these nuances and concerns need to be comprehensively addressed.

This chapter aims to pave the way for a more profound understanding of distributed

consensus in wireless environments. My research starts with introducing a specialized

link failure model for the distributed consensus. This model establishes a mathematical

relationship, mapping the correlation between the reliability of the communication link

and the reliability of the consensus process itself. Leveraging this relationship, a pivotal

concept, termed Reliability Gain, is introduced. The findings suggest that the Reliability

Gain is approximately linear in its relationship to the number of nodes in the network.

After that, I analytically compare the performance of Raft and Hotstuff BFT with a cent-

ralized consensus from the perspective of consensus reliability and latency. This chapter

will elucidate these concepts and analysis to provide deeper insights into their implica-

tions.

2.1 Reliability of Raft-enabled Wireless Network

Considering there are N nodes in a distributed system with Raft, theoretically, a reliable

critical decision requires that over N−1
2 followers can receive log entries from the leader

and send the confirmed messages back to the leader to achieve the commitment of log

replication, which means the number of nodes with both successful downlink and uplink

transmissions should be more than half nodes (i.e., N−1
2 followers and the leader) to

accomplish the consensus progress. We assume that the communication link success rate
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is Pl. Mathematically, the consensus success rate of the system PC is accumulated by the

probability of every case in the successful consensus progress, which is in the form of two

summations of probability in a binomial distribution. The accurate probability of success

consensus PC in the distributed communication system can be derived in the following

equation,

PC =
N−1

∑
i=N−1

2

(
N−1

i

)
Pl

i(1−Pl)
N−1−i

i

∑
j=N−1

2

(
i
j

)
Pl

j(1−Pl)
i−j. (2.1)

The first summation represents the probability that the majority of followers can down-

load the log entry from the leader. The second summation equals the probability that the

majority of followers can upload their confirmation back to the leader. Because the down-

link transmission happens before uplink transmission in Raft, the number of successful

uplink transmissions is never larger than the number of successful downlink transmissions.

Therefore, the probability of a successful consensus term is the product of these two sum-

mations. It is worth mentioning that consensus success rate PC increases monotonically

with the number of nodes N. Though this property cannot be revealed by (2.1) straight-

forwardly, however, our following simplification and the simulation result can show this

property explicitly.

Remark 1. According to (2.1), to satisfy the most stringent reliability requirement, i.e.,

the consensus failure rate 1−PC is less than 10−9, the nodes number N should not be less

than 69, 31, 12, 5, when the link success rate Pl is 90%, 95%, 99% and 99.9%, respectively.

The remark. 1 indicates the fact that even if the link success rate Pl is undesirable, the

consensus success rate of Raft can still be improved to the requirement, and the number of

nodes N can influence this reliability improvement. Therefore, we introduce a parameter

called Reliability Gain (also can be interpreted as reliability amplification factor)�

Definition 1. The Reliability Gain is the ratio of consensus failure rate 1−Pc and link

failure rate 1−Pl in logarithm

to represent the quantitative relationship between the reliabilities of consensus and com-

munication link.
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Theorem 1. When the link success rate Pl is reasonably large1, it has a linear relationship

with consensus failure rate 1−PC in logarithm

log(1−PC) = k · log(1−Pl)+h, (2.2)

where the Reliability Gain k = N+1
2 and the intercept h = log(

(N−1
N−3

2

)
)+∆h, with ∆h being

given in Table 2.1.

Proof. See Appendix A

Theorem 1 indicates the linear relationship between consensus failure rate log(1−PC)

and link failure rate log(1−Pl) after the simplification. With fixed link reliability, the

increasing N rises up the consensus reliability, which proves the increasing monotonicity

of consensus success rate PC with the nodes number N. Compared to (2.1), this equa-

tion shows a simple relationship between link reliability and consensus reliability. Thus,

this linear relationship can provide practical methods to estimate the maximum value

of consensus reliability with given link reliability. The simulation result shows that the

consensus failure rate log(1−PC) satisfies the linear relationship in (2.2) when Pl is as low

as 90%.

∆h is derived by the gap between the intercept h from the simulation and the item

log(
(N−1

N−3
2

)
) from the simplification of (2.1). Table 2.1 shows the estimated ∆h when nodes

Table 2.1: Estimated ∆h

N ∆h N ∆h N ∆h
5 0.472 6 0.704 7 0.797
8 1.081 9 1.214 10 1.509
11 1.668 12 1.965 13 2.144
14 2.441 15 2.635 16 2.931
17 3.136 18 3.431 19 3.645

1. Our results show that Pl = 90% is large enough to make the conclusion, while this communication link
reliability can be achieved in most of the communication environments.
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number N increases from 5 to 19. ∆h remains constant with a fixed nodes number N.

To increase the reliability gain in a consensus communication system, more nodes can be

added to participate in the consensus network.

A wireless communication model 2, which aims to analyze the packet error probability

of the wireless short package transmissions in URLLC [60], is used to define the link

transmission failure and find out the relationship between consensus success rate PC and

the consensus latency T . We assume it is caused by downlink and uplink transmission

delay. I.e., Raft consensus latency T is only composed of communication transmission

delay to show the communication impacts on the overall consensus latency. The link

failure rate 1−Pl used in (2.1) and (2.2) can be written as a function of T as follow,

1−Pl = fQ(
B T

2N (C−R)+ log2(B
T

2N )
2

(B T
2N )

1
2 log2(e)

), (2.3)

where B is the available spectrum bandwidth. R and C are the uplink or downlink trans-

mission rate and channel capacity, respectively. fQ refers to the Q-function, which is

the tail distribution function of the standard normal distribution [61]. Note that here

both uplink and downlink transmissions are assumed to be time divisioned, i.e., given the

overall consensus delay, T , each transmission can have t = T
2N transmission internal since

there are N transmissions in both uplink and downlink. Therefore, with a constant N, the

increasing consensus delay T can provide more time t for each link transmission, which

intuitively can reduce the link failure rate 1−Pl. By substituting equation (2.3) into equa-

tion (2.1) or (2.2), the relationship of consensus failure rate 1−PC with the latency T can

be obtained. The contradiction of consensus failure rate 1−PC and time delay T can be

proved in mathematics. By calculating the derivative of the variable Q=
B T

2N (C−R)+
log2(B

T
2N )

2

(B T
2N )

1
2 log2(e)

in Q-function,
∂Q
∂T

=
B

2N (C−R)− 1
2T log2(

T
2N B)+ 1

T (ln2)

2
√

T
2N B log2(e)

. (2.4)

2. With the constraints on high reliability and low latency of distributed consensus, the block length is
short and small packet size is adopted [59]. In addition, the size of log entries transmitted by node is
usually small in Raft. In such a scenario, the impact of decoding error cannot be ignored.
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the derivative ∂Q
∂T in equation always keeps positive, which means the variable Q increases

monotonically along with T . Based on the decreasing monotonicity of Q-function fQ(∗)

along with Q and the increasing monotonicity of PC along with Pl, the time delay of

consensus T and consensus reliability 1−PC are contradictory. 3

According to the conclusion of Reliability Gain, the consensus reliability PC increases

monotonically with N. However, given fixed consensus delay T , increasing node number

will also result in a shorter transmission time t = T
2N for each link, thus causing a smaller

Pl, which may turn out a less reliable consensus according to (2.1) or (2.2). Thus, it is

expected that there is an optimal N to achieve maximum consensus reliability.

2.2 Performance Comparison between Centralized and

Distributed Consensus

Based on the characteristics of stability and instantaneity in the mission-critical de-

cision, the reliability and time of decision delivery are the most conspicuous factors

in the performance of the centralized and distributed consensuses. For an illustration,

paradigms in the IoT network’s decision-making are presented in Fig. 2.1. Compared with

the Perception-Collection-Decision-Action (PCDA) paradigm deployed in the critical de-

cision execution of centralized consensus, a novel Perception-Initiative-Consensus-Action

(PICA) scheme that the local nodes collect data, make initial decisions, and accomplish

the consent among the majority of joint nodes before the execution is purposed. The

initial decision can be determined based on the local informative sensing and potentially

combined with some machine learning algorithms [62], [63]. A request is made by the node

3. The scheme of wireless transmission in this chapter is assumed in time-division. This assumption
will switch to bandwidth-division in the analysis of following chapters. Yet, the conclusion about the
contradictory between consensus reliability and latency is still valid.
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based on the initial local decision and then sent to the network for a joint global decision

(i.e., Consensus), where only the consented joint decision will be sent to the actuators for

execution. For example, the robots that collaboratively coordinate movements to perform

tasks can use the PICA paradigm through emergent action [64].

Perception-Collection-Decision-Action (PCDA)  Perception-Initiative-Consensus-Action (PICA)

Central Control Station

Replica/Acutator

Figure 2.1: Communication topology for centralized and distributed consensus networks

To fairly compare the performance of centralized and distributed consensus, the analysis

in this chapter focuses on the cost of time and consensus reliability caused by the wire-

less connection during the consensus and synchronization. The link failure in wireless

communication channels can cause breakdowns that are identical to crashing faults and

Byzantine faults in functionality. Therefore, the link reliability, which is influenced by the

allocation of communication resources, can determine the consensus reliability [65]. Spe-

cifically, a longer transmission time can improve the reliability of link transmission in a

single channel and eventually improve the reliability of the consensus and state synchron-

ization of all replicas in the network. Meanwhile, the higher link reliability may cause the

overall latency to reach the threshold of requirement.

Unlike the original consensus reliability noted in (2.1), a concept called full consensus

reliability is implemented in the analysis in this chapter, which is defined as the probability

PF of all replicas in the network having completed successful link transmissions to update

their state in one term of consensus. The performance analysis of all consensus protocols
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in this article is related to the overall time latency T and the probability of successful full

consensus PF . We assume the length of time slot in a downlink broadcasting is equivalent

to the length of time slot in an uplink unicasting, which is unified as t. Table 2.2 shows

all common parameters used in this chapter.

Table 2.2: Common parameters used in centralized and distributed consensus

Notation Definition
N Number of nodes in the centralized / distributed consensus
r Total rounds of synchronization
f Number of links failed replicas in a distributed consensus

PC Probability of successful consensus
Mt Mean of the number of time slots cost
PF Probability of successful full consensus
t Length of the time slot for one link transmission
T Overall time latency for a consensus view
Pl Probability of successful link transmission in consensus

T P Log throughput
Pls(r) Probability of successful link transmission in the rth

round synchronization

2.2.1 Full Reliability and Latency of Centralized Consensus

In the centralized consensus, to achieve full replicas communication success, the central

base station should receive the acknowledgment packet from all replicas to confirm that

the replicas have acquired the successful state synchronization messages. The probability

PT D(0) that i0 of total N replicas can successfully receive the message from CN during the

centralized consensus can be derived by the binomial distribution of link reliability Pl

PT D(0)=
(

N−1
i0

)
Pl

i0(1−Pl)
N−1−i0. (2.5)

Similarly, the probability that the CN successfully receives j0 of i0 messages from replicas

in the centralized consensus with link reliability Pl

PTU(0) =
(

i0
j0

)
Pl

j0(1−Pl)
i0− j0. (2.6)
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The number of nodes that have not been synchronized successfully after h rounds of

synchronization can be denoted as jF(h),

jF(h) = N−
h

∑
k=0

jk. (2.7)

The equation (2.8) and (2.9) indicates the probability PT D(r−1) that ir−1 of N−1− jF

successfully receive the downlink message and the probability PTU(r−1) that the CN

successfully receive jr−1 of ir−1 acknowledgement messages after the (r−1)th round of

synchronization.

PT D(r−1)=
(

N−1− jF(r−2)
ir−1

)
Pls(r−1)ir−1(1−Pls(r−1))N−1−jF (r−2), (2.8)

PTU(r−1)=
(

ir−1

jr−1

)
Pls(r−1) jr−1(1−Pls(r−1))ir−1− jr−1. (2.9)

In the final round of synchronization, PT (r) represents the probability that the CN receives

the acknowledgment messages from all of N−1− jF(r−1) replicas that failed in previous

rounds, which can ensure all replicas states have been updated successfully by the CN

after r rounds of synchronization.

PT(r)= (Pls(r))
2(N−1− jF (r−1)). (2.10)

Therefore, the probability PF that the states of all replicas have been correctly updated

by the CN after the centralized consensus and r rounds of synchronization is accumulated

by the probability PT D and PTU in every round of synchronization, which represents the

full consensus reliability of the centralized consensus.

PF =
N−1

∑
i0=0

(PT D(0)
i0

∑
j0=0

(PTU(0)· · ·
N−1−jF (r−2)

∑
ir−1=0

(PTD(r−1)
ir−1

∑
jr−1=0

(PTU(r−1)(PT (r)))) · · ·)). (2.11)
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Because of the unified length of time slot t, the overall time latency T is consequently

proportional to the number of time slots Mt that have been spent in protocols. Mt can be

accumulated by the number of time slots cost in the consensus and r rounds of synchron-

izations.

Mt−b=
N−1

∑
i0=0

PT D(0)i0+
N−1

∑
i0=0

(PT D(0)
i0

∑
j0=0

(PTU(0)
N−1− j0

∑
i1=0

(PT D(1)i1)))+· · ·+

N−1

∑
i0=0

(PT D(0)
i0

∑
j0=0

(PTU(0)· · ·
N−1− jF

∑
ir=0

(PT D(r)ir) · · ·))

+N−1+
N−1

∑
i0=0

(PT D(0)
i0

∑
j0=0

(PTU(0)(N−1− j0)))

+
N−1

∑
i0=0

(PT D(0)
i0

∑
j0=0

(PTU(0)· · ·
ir−1

∑
jr−1=0

(PTU(r)(N−1− jF(r−1)))) · · ·)),

(2.12)

The overall latency T is the length of all time slots cost by broadcasting and unicasting

in the protocol and each time slot has the constant length t

T = tMt . (2.13)

The equation (2.12) and (2.13) show that the overall latency T depends on the round of

synchronization r, link reliability Pl and Pls.

2.2.2 Full Reliability and Latency of Raft and Hotstuff BFT

The communication scheme of Raft is identical to the centralized consensus, so the prob-

abilities derivation of Raft consensus are comparable to the equation (2.5) and (2.6),

which are derived in equation (2.14) and (2.15)

PRD=

(
N−1

i0

)
Pl

i0(1−Pl)
N−1−i0 , (2.14)

PRU =

(
i0
j0

)
Pl

j0(1−Pl)
i0−j0 . (2.15)
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According to the link failure model in (2.1), the probability of successful consensus PC

represents that the leader can receive over N−1
2 uplink messages from followers through

the consensus, which can be accumulated by PRD and PRU as i0 and j0 is not less than
N−1

2

PC=
N−1

∑
i0=N−1

2

(

(
N−1

i0

)
Pl

i0(1−Pl)
N−1−i0

i0

∑
j0=N−1

2

(

(
i0
j0

)
Pl

j0(1−Pl)
i0−j0)). (2.16)

The followers who fail in consensus can be modified through the synchronization provided

by the followers that attain the successful consensus. The probability PSF that after r

rounds of synchronization, there are still i1 of N− j0−1 followers have not received the

downlink synchronization messages from other followers is performed in (2.17)

PSF =

(
N− j0−1

i1

)
(

r

∏
k=1

(1−Pl(k)))i1)(1−(
r

∏
k=1

(1−Pl(k))))N−j0−i1−1. (2.17)

The probability PF represents that all N− j0−1 consensus-failed followers receive the

broadcasting state message from other followers with successful consensus after certain

rounds of synchronization, which can be derived as

PF =PC−
N−1

∑
i0=N−1

2

(PRD

i0

∑
j0=N−1

2

(PRU

N−j0−1

∑
i1=1

(PSF)). (2.18)

In the broadcasting downlink scheme, the number of time slot Mt cost in Raft protocol is

accumulated by the number of unicasting response messages and the number of times to

broadcast,

Mt =
N−1

∑
i0=N−1

2

PRDi0+r+1. (2.19)

In the unicasting downlink scheme, the number of time slots costs in each round of down-

link is equivalent to the number of channels used in downlink transmissions. Therefore,

the total time slots cost Mt in the protocol can be presented in (2.20)

Mt =
N−1

∑
i0=N−1

2

PRDi0+N−1+ r
N−1

∑
i0=N−1

2

(PRD

i0

∑
j0=N−1

2

(PRU(N−1− j0))). (2.20)
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where N− 1− j0 is the number of channels in r rounds of synchronizations. The overall

latency T of broadcasting and unicasting downlink schemes in Raft can be both expressed

in (2.13).

2.2.3 Reliability and Latency of Hotstuff BFT

Since the number of new-view messages in one view of Hotstuff BFT is identical to the

number of backup replicas N−1, it is reasonable to assume that the link transmission for

new-view messages in the prepare phase is reliable. The successful consensus rate should

concern the successful link rate Pl after new-view messages. We assume the numbers of

replicas that receive the downlink message are ip, ipc, and ic in the prepare phase, pre-

commit phase, and commit phase. The numbers of response messages that the leader

receives in the prepare phase, pre-commit phase, and commit phase are jp, jpc, and jc.

The probability Ppd that ip replicas receive the downlink prepare message from the leader

in Hotstuff BFT should be

Ppd =

(
N−1

ip

)
Pip

l (1−Pl)
N−1−ip . (2.21)

The probability Ppu that the leader receives jp uplink responses from a backup replica in

the prepare phase should be

Ppu =

(
ip

jp

)
P jp

l (1−Pl)
ip− jp . (2.22)

The pre-commit phase and commit phase have the same downlink and uplink scheme as

prepare phase in Hotstuff BFT protocol, which means the probability Ppcd and Pcd that

ipc and ic replicas receive the downlink message in pre-commit and commit phase is in

the same formation as Ppd. The formation of the probability Ppcu and Pcu that jpc and jc

response messages are received by the leader also follows this property.
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The link failure model of Hotstuff indicates that N − jc replicas fail in the consensus

progress, the probability PS that every replica from this group should receive at least one

synchronization message after the consensus to achieve the full consensus success.

PS=1−
N−jc

∑
i=1

(
N− jc

i

)
(

r

∏
k=1

(1−Pls(k)))i)(1−(
r

∏
k=1

(1−Pls(k))))N−jc−i). (2.23)

The probability of successful full consensus PF can be derived by all the deduced prob-

abilities in the subsection 2.2.3 with the condition that the number of correct response

messages received by the leader is not less than 2 f in every phase.

PF =
N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=2 f

(
ipc

∑
jpc=2 f

(
jpc

∑
ic=2 f

(
ic

∑
jc=2 f

PcuPS)Pcd)Ppcu)Ppcd)Ppu)Ppd. (2.24)

The minimum number 2 f of replicas that achieve the consensus should be less than 2(N−1)
3

in the link failed model of Hotstuff BFT.

The communication scheme in every phase of Hotstuff BFT is identical to the scheme in

the Raft consensus protocol. Therefore, the time slots cost in three phases Mt−p, Mt−pc

and Mt−c of Hotstuff BFT with broadcasting downlink scheme can be calculated in the

same way of (2.19), which are indicated in (2.25), (2.26) and (2.27)

Mt−p=1+
N−1

∑
ip=0

Ppdip, (2.25)

Mt−pc=1+
N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=0

Ppcdipc)Ppu)Ppd, (2.26)

Mt−c=
N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=2 f

(
ipc

∑
jpc=2 f

(
jpc

∑
ic=0

Pcdic)Ppcu)Ppcd)Ppu)Ppd +1. (2.27)

The overall time latency T in Hotstuff BFT is the sum of all time slots that cost in three

consensus phases and the stage of synchronization,

T =(Mt−p +Mt−pc +Mt−c + r)t. (2.28)
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When the downlink scheme of Hotstuff is unicasting, the time slot cost is the sum of the

channels used in both downlink and uplink through the whole view, which is more than

the cost of the broadcasting scheme in this consensus protocol.

Mt p= N−1+
N−1

∑
ip=0

Ppdip, (2.29)

Mt pc=
N−1

∑
ip=2 f

(
ip

∑
jp=0

Ppu jp))+
N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=0

Ppcdipc)), (2.30)

Mtc=
N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=2 f

(
ipc

∑
jpc=0

(Ppcu jpc)Ppcd)Ppu)Ppd+

N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=2 f

(
ipc

∑
jpc=2 f

(
jpc

∑
ic=0

Pcdic)Ppcu)Ppcd)Ppu)Ppd.

(2.31)

The link failed model of Hotstuff consensus reveals that there are N−1− jc replicas that

have failed in the consensus. The number of channels used in one round of synchronization

should correspond to this number of failed replicas. Thus, the number of time slots cost

Mts in one round of synchronization can be presented in (2.32)

Mts=
N−1

∑
ip=2 f

(
ip

∑
jp=2 f

(
jp

∑
ipc=2 f

(
ipc

∑
jpc=2 f

(
jpc

∑
ic=2 f

(
ic

∑
jc=2 f

Pcu(N−1− jc))Pcd)Ppcu)Ppcd)Ppu)Ppd. (2.32)

The overall time slots cost Mt through the Hotstuff BFT consensus with a downlink

unicasting scheme and the stage of synchronization will be

T =(Mt p +Mt pc +Mtc + rMts)t. (2.33)

The comparison of the overall latency of Hotstuff BFT protocol in equation (2.28) and

the overall latency of Raft protocol in equation (2.19) shows that basic Hotstuff protocol

costs much more time slots than Raft because of the two additional consensus phases in

the Hotstuff BFT. Such long latency limits the throughput of the whole communication

network. Yet, the chain Hotstuff protocol with pipeline structure is presented to solve
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this throughput issue. In Fig. 1.5, if there are 3K logs processed by the chain Hotstuff

protocol and all of them successfully achieve the consensus in three phases, the overall

latency can cost 3K + 3 slots, and each slot represents the average time latency in one

phase of Hotstuff. Therefore, the log throughput of chain Hotstuff can be derived

T P=
K

K +1
. (2.34)

When the number of successful logs processed 3K is large, the log throughput T P in (2.34)

will converge to 1, which is equivalent to the throughput of Raft protocol with a single

phase. Therefore, the chain Hotstuff can solve this long latency issue in Hotstuff BFT.

2.3 Simulation Results

Simulations are conducted to validate the proposed consensus communication model and

its derivations. The location of nodes are set to be evenly distributed in a circle with

constant radius and density. The given bandwidth for link transmission B is set as 18 kHz,

and the SINR (signal-to-interference-plus-noise ratio) is set to 10 dB [66]. The jammer

sends interference signals continuously at both uplink and downlink frequency bands.

The uplink and downlink capacity R is assumed 50% of the channel capacity, which is

calculated by C = log(1+SINR).
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Figure 2.2: Consensus failure rate 1−PC vs. Nodes number N [Lines: analytical result
from equation (2.1), Asterisks: simulated]

Fig. 2.2 indicates the consensus failure rate with several constant link reliability Pl and an

increasing number of nodes N in Raft-enabled wireless network. The consensus failure rate

1−PC declines as N increases with relatively low communication link success rate Pl =

90%,95%,99%,99.9% respectively. The simulated results (in asterisks) of the consensus

failure rate 1−PC is overlapped to their analytical curves (in lines) when the link success

rate Pl = 90% and 95%, which proves the correctness of the equation (2.1). The analytical

curves show the property that the consensus success rate PC increases monotonically with

N. Because the consensus failure rate is extremely low for a larger Pl and MATLAB

compute power is limited, the simulated result of consensus failure rate 1−PC cannot be

completely presented in Fig. 1 when Pl is 99% and 99.9%.
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Figure 2.3: Consensus failure rate log(1−PC) vs. Link failure rate log(1−Pl) [Solid lines:
analytical results from equation (2.1), Broken lines: simplified analytical results from
equation (2.2)]

Fig. 2.3 shows the consensus reliability tendency along with the link success rate Pl. The

analytical result represents the original consensus reliability 1−PC in logarithm in (2.1).

The simplified result represents the consensus failure rate log(1−PC) in (2.2). Analytical

lines and simplified lines are highly matched, which supports the accuracy of the linear

relation in (2.2). The slopes of lines are equivalent to the value of Reliability Gain k = N+1
2 ,

which become steeper when the nodes number N rises up. The result shown here suggests

that we can use a simplified model to guide the real deployment of Raft for distributed

systems.
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Figure 2.4: Consensus failure rate (1−PC) vs. Consensus delay T

The simulation in Fig. 2.4 reveals the contradiction between consensus reliability 1−PC

and consensus delay T . Four curves correspond to different nodes number N = 10,15,20,30

respectively. All curves show that with the constant N, the consensus reliability 1−PC

reduces when the time delay T rises, which proves the contradiction of the consensus

reliability and time latency. The tendency of the consensus failure rate at N = 15 drops

more dramatically than the consensus failure rate at N = 10, along with the increase

of time delay, which causes the interception of two curves. It implies that the consensus

reliability does not have monotonicity along with N if consensus delay T ’s effect on the link

transmission reliability is considered. Therefore, further investigation of this phenomenon

is performed.
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Figure 2.5: Consensus failure rate (1−PC) vs. Nodes number (N)

Fig. 2.5 indicates the change of consensus failure rate 1−PC in the wireless link model

of 2.3 along with N and a constant consensus time latency T . The curves show that

the consensus reliability 1− PC fluctuates when nodes number increases, and there is

maximum consensus reliability. By modifying the time delay in the consensus system,

the maximum value of the reliability curve will be shifted to a higher value with the

larger corresponding N. The reason for this phenomenon is that the consensus failure rate

follows the monotonicity in (2.1) when N is small; when N becomes large, given the fact

that communication resource (i.e., the communication time T ) is limited, the time latency

in each link transmission will be reduced, and 1−Pl will increase dramatically along N

based on the property of Q function in (2), which causes the rise of 1−PC. Therefore, N has

both positive and negative effects on consensus reliability. The shifting of curves indicates

that the optimization of consensus reliability by allocating communication resources can

be implemented to reach the requirements of different scenarios.
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The analysis of consensus reliability in the Raft-enabled wireless network concludes that

with the constant communication link reliability, the consensus reliability in Raft increases

monotonically along with the number of nodes. The relationship of consensus reliability

with communication link reliability is interpreted in a linear form for simplicity. Mean-

while, the simulation results show that the time latency is contradictory to the consensus

reliability in Raft.

Numerical results are conducted to compare the full consensus reliability PF and the

overall time latency T among the centralized consensus and two distributed consensuses

mentioned in this chapter. The link reliability Pl of consensus is assumed as 99.9%. The

synchronization is a type of retransmission strategy given by replicas, which can enhance

the signal-to-noise ratio (SNR) of link reliability Pl in the consensus. We assume the link

reliability of the synchronization Pls increases by 2dB after every round of synchronization.

It should be noted that the value affects not only the communication results but the

derivations.

Fig. 2.6 indicates the failure rate 1−PF of full consensus and the overall latency T caused

by the link transmission within one view of the centralized consensus and distributed

consensus Raft. The downlink scheme is broadcasting and the number of nodes N ranges

from 4 to 32 with an interval of 4. Without any rounds of synchronization, the curve

that represents the reliability and latency of Raft exactly coincides with the curve of

the centralized consensus because the communication scheme in the consensus of Raft is

identical to the scheme of the centralized consensus.
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Figure 2.6: Performance of centralized consensus vs Performance of distributed consensus
Hotstuff (Broadcasting downlink)

The curves in Fig 2.7 show that when the network has a constant number of nodes,

the reliability PF is identical to the rate in broadcasting the downlink scheme when the

downlink scheme is unicasting. Yet, the unicasting downlink scheme will take more time

slots to complete the log replication than the broadcasting downlink scheme. Without any

rounds of retransmission and synchronization, the curve that represents the reliability and

latency in the Raft protocol exactly coincides with the curve of the centralized network

because the communication scheme in the consensus of Raft is identical to the scheme of

the centralized communication network.
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Figure 2.7: Performance of centralized network vs Performance of decentralized network
with Raft (Unicasting downlink)

When one or more rounds of synchronization are implemented, there is a considerable

drop in the failure rate 1−PF of both protocols. When two consensuses have the same

number of replicas, the distributed consensus Raft tends to cost fewer time slots and has

a lower failure rate 1−PF . When two rounds of synchronization are implemented, the

result shows a conspicuous result that the failure rate 1−PF of Raft in the small-scale

network (N < 12) is higher than the centralized consensus. This result is caused by the

high failure rate of the consensus 1−PC when the number of replicas N is small.

Fig. 2.8 presents the failure rate 1−PF and latency T comparison between the distributed

consensus Hotstuff BFT and the centralized consensus in one view. The downlink scheme

is broadcasting and the number of nodes N in the network ranges from 4 to 28 with an

interval of 3.
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Figure 2.8: Performance of centralized consensus vs Performance of distributed consensus
Hotstuff (Broadcasting downlink)

In Fig. 2.9, the failure rate 1−PF and latency T comparison between a decentralized

network with Hotstuff BFT and a centralized network in one term of view are shown when

the downlink scheme is unicasting. The number of nodes N engaged in the communications

is identical to the setting as the downlink scheme is broadcasting.
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Figure 2.9: Performance of centralized network vs. Performance of decentralized network
with Hotstuff protocol (Unicasting downlink)

When one round of synchronization is implemented (r = 1) and link failure rate 1−Pl

remains 10−3, the failure rate of the full consensus 1−PF in Hotstuff BFT is always far

lower than the centralized consensus. With two or more rounds of synchronization, the

Hotstuff BFT may have the same reliability issue as Raft that its reliability PF is worse

than the reliability in the centralized consensus when the number of nodes N is small.

This abnormal condition is also caused by the limit of low consensus reliability PC. When

over f = N−1
3 replicas suffer from link transmission failures, the centralized network can

still step into the synchronization stage and complete multiple rounds of synchronization.

However, the protocol of Hotstuff BFT regards this case as a failure of consensus and

terminates the state of synchronization. The probability of such cases monotonically de-



2.3. Simulation Results 47

creases as the number of nodes N rises. Therefore, the centralized consensus can have

higher reliability than the consensus reliability PC of Hotstuff BFT when a small-scale

network is implemented. However, the distributed consensus will become more reliable

than the centralized consensus as the size of the network grows.

Unlike the comparison of latency between the centralized consensus and the Raft in Fig.

2.6, Fig. 2.8 indicates that the corresponding latency T to the basic Hotstuff BFT is longer

than the centralized consensus because of multiple phases in the basic Hotstuff protocol.

The numerical result of Mt in Hotstuff BFT approaches three times of Mt that cost in the

centralized consensus. Yet, the discussion about the log throughput T P in every view of

chain Hotstuff proves that the average time cost of one view in the chain Hotstuff BFT

protocol can approach the average time latency of one-phase CFT protocol like Raft and

the centralized consensus when the number of successively successful consensus views K

is reasonably large.

2.4 Conclusion

In this chapter, the analysis of consensus reliability in the Raft-enabled wireless network

concludes that with the constant communication link reliability, the consensus reliability

in Raft increases monotonically along with the number of nodes. The relationship of

consensus reliability with communication link reliability is interpreted in a linear form

for simplicity. Meanwhile, the results show that the time latency is contradictory to the

consensus reliability in Raft.

The link failed models of two distributed consensuses Raft and Hotstuff BFT, are analyzed

to compare their performances to the centralized consensus in terms of full consensus re-

liability and time latency. The comparison of performance in centralized and distributed

consensus indicates that the large-scale network with CFT protocol Raft will have higher

full consensus reliability and lower latency than a centralized consensus when multiple
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rounds of synchronization are implemented. The large-scale network with Hotstuff BFT

protocol has higher full consensus reliability than the centralized consensus when syn-

chronization is implemented. However, the network with basic Hotstuff BFT needs to

consume more time slots than the centralized consensus to complete the consensus be-

cause of the three phases in the Hotstuff consensus protocol. The pipeline construction

implemented in the chain Hotstuff BFT may provide a practical solution to improve the

throughput of the Hotstuff BFT protocol.



Chapter 3

Communication Resource Allocation
for Distributed Consensus

In both CFT and BFT protocols, communication acts as a critical enabler to ensure that

every node can exchange its state information with others in the distributed consensus.

Currently, most of the distributed consensus usually is deployed through stable wired

communication [67]. However, the majority of the upcoming generation of IoT networks

have the trend to become wireless systems. For example, The protocol of distributed

consensus can be deployed in DLT-enabled wireless networks [51]. Unlike the reliable link

transmission in a wired network, wireless channels are more stochastic and dynamic. The

link transmission failure that occurs in the wireless channel can have the same influence

on the state synchronization as the node that has crash or byzantine faults within it. This

influence should be addressed when distributed consensus is implemented in the wireless

network.

Some researchers have investigated the impact of wireless transmission on distributed

consensus performance. A consensus-enabled industrial IoT network based on PBFT pro-

tocol has been presented to prove that the consensus mechanism is feasible for critical

decision-making in the distributed wireless communication system. However, nodes in the

wireless network may generally undertake the risk of link transmission errors and state

synchronization loss [68]. The authors in [65] conclude the relationship between the reli-

49
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ability of Raft and the reliability of wireless link transmissions. The excessive nodes can

intensively occupy the limited wireless communication resource, which can cause the at-

tenuation of the link reliability and consensus reliability. This problem usually occurs in

the massive IoT network with wireless connection [69].

The conclusions from the above research indicate that the limited communication re-

sources (e.g., transmit power, spectral bandwidth, etc.) can cause inadequate reliability

of link connections, which reduces the reliability of distributed consensus through these

link connections. The decline of consensus reliability can increase the frequency of the

primary nodes changing, which may cause a longer latency to complete the consensus

and the state synchronization among nodes in the network. Therefore, reasonable and

practical communication resource allocation methods should be investigated to achieve

high reliability and low latency of the distributed consensus.

3.1 Wireless Link Model

Reliability and latency are the important performance metrics for the distributed con-

sensus in wireless networks [68]. The consensus reliability PC refers to the probability

that most trusted nodes complete vote or log replication in a term and the latency of

Raft, which includes the time consumed by one round of downlink and uplink transmis-

sions between the leader and all followers and the time of message verification [70]. When

the number of nodes in the network is constant, PC only depends on the link reliabil-

ity of channels, which refers to the probability of successful link transmission between

the leader and followers [65]. Different resource allocation methods and stochastic fading

gains may cause variations in the link reliability and transmission time among the chan-
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nels between the leader and followers. Therefore, varied link reliabilities and latency of

wireless channels are determined by a derived wireless link model in this chapter. Relev-

ant optimization problems of resource allocation are solved based on the proposed link

reliability and latency.

The protocol of Raft is deployed on the considered wireless network that has N +1 static

nodes, including a leader and N followers. The communication scheme in the protocol of

Raft is assumed to be frequency division in this paper. The 2N channels, which include

N downlink channels and N uplink channels that connect the leader and followers, are

characterized by the Rayleigh fading model [71]. Rayleigh Fading is a statistical model for

the effect of a propagation environment on a radio signal, such as that used by wireless

devices. This model assumes that the magnitude of a signal that has passed through a

communication channel will vary randomly, or fade, according to a Rayleigh distribu-

tion. It is viewed as a reasonable model in situations where the communication signal

may bounce off objects from many directions before reaching the receiver, resulting in a

large number of signal paths that can destructively interfere with each other. Rayleigh

Fading Model simulates the worst-case scenario for signal distortion by a propagation

environment. Therefore it is used extensively in designing wireless networks even if the

channels are in terrible conditions. Hk denotes the Rayleigh fading gain of the kth channel

that k ∈ [1,2N], which follows the complex normal distribution, i.e., Hk ∼ C N (0,1). The

channel gains are assumed to be independent and identically distributed (i.i.d.). There-

fore, |Hk|2 follows the exponential distribution. When a package is sent through the kth

channel with a given transmit power Ptk, the signal-to-noise ratio (SNR) in this channel

can be indicated as γk

γk =
Sk|Hk|2Ptk

Pnoise
, (3.1)

where Pnoise refers to the white Gaussian noise power, Sk represents the large-scale effect

on the kth channel from the environment, such as the path loss and shadowing, and ρ

is the SNR threshold. If γk is below the threshold ρ , the SNR outage occurs in the kth

channel. Consequently, the link reliability Plk of the kth channel can be calculated by the
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SNR outage probability in this channel [72]

Plk = 1−Pr(γk < ρ) = exp(−ρPnoise

SkPtk
), (3.2)

which reveals that the transmit power Ptk is the communication resource that can affect

the link reliability Plk when other parameters remain constant in the wireless link model.

Meanwhile, the latency cost by transmission in the kth channel can be represented as

tk =
M

Bklog(1+ γk)
, (3.3)

where M is the average length of the package sent by the leader or followers and Bk is the

bandwidth used in this channel. When the distributed consensus is implemented in the

wireless network, the derived model of link reliability Plk in (3.2) and time latency tk in (3.3)

can determine the critical parameters of the performance, such as consensus reliability

PC and the latency of consensus tc. The derived model shows that these performance

parameters can be improved by optimizing the power and bandwidth allocation.

3.2 Power Allocation Scheme for Consensus Reliab-

ility

The model of wireless channel in (3.2) is implemented as an example to demonstrate the

influence in the consensus reliability PC given by the allocated transmit power Ptk, which

is a prevalent type of communication resource that can influence the link reliability in

practice. Therefore, Ptk is regarded as a variable of the communication resource allocation

scheme to pursue the maximum consensus reliability PC. The procedure of analysis can

be similar when other wireless communication models are selected.
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With the proposed link reliability, the consensus reliability PC can be represented as a

function with the transmit power Ptk. The communication scheme of Raft shows that

the successful follower needs to complete both the downlink and uplink transmission.

Therefore, the consensus reliability PC can be calculated as

PC =
N

∑
k=N

2 +1
∑

Qk∈ΩS

∏
w∈Qk

Pw ∏
v∈QC

k

(1−Pv), (3.4)

where Qk refers to the set of k followers that successfully complete both the downlink and

uplink transmission. ΩS refers to the set that over N
2 followers have reached the consensus.

W is a successful follower that belongs to Qk and v is a failed follower that belongs to

complement of set Qk. Pw represents the probability that w belongs to the set Qk

Pw = PDL
lw PUL

lw , (3.5)

which is the product of the downlink reliability PDL
lw and uplink reliability PUL

lw . Similarly, Pv

refers to the probability that nodes from v complete the downlink and uplink transmissions

successfully

Pv = PDL
lv PUL

lv , (3.6)

Other parameters in (3.4) are assumed constant for all 2N channels.

The scheme of power allocation aims to maximize the consensus reliability PC when the

overall transmit power Psum is fixed. In the protocol of Raft, the overall transmit power

Psum is allocated to all 2N channels. Therefore, the problem of optimization for the power

allocation scheme can be formulated as

min
Pt

1−PC

s.t.
2N

∑
k=1

Ptk ≤ Psum,

(3.7)
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This optimization problem has 2N variables of transmit power. The channels from 1 to

N represent the downlink channel of N followers, and channels from N +1 to 2N are the

corresponding uplink channel of N followers. Sequential quadratic programming (SQP) is

implemented to solve the nonlinear programming in this resource allocation scheme, which

aims to transform the original optimization problem into an optimal quadratic problem

and find the appropriate descent direction d. The original objective function in 3.7 will be

approximated to the first three items of taylor’s series in SQP, which can be formulated

as follow:
min

d
f (Ptk)+∇ f (Ptk)

T d +
1
2

dT ∇2L(Ptk,λ )d

s.t.∇g(Ptk)d +g(Ptk) = 0,
(3.8)

where f (Ptk) represents the objective function 1−PC with a vector of transmit power

Ptk allocated to all 2N channels, and it is the first item of the Taylor’s series in 1−

Pc, ∇ f (Ptk)
T denotes the gradient of the transpose of f (Ptk) and it refers to the second

item of the Taylor’s series. 1
2dT ∇2L(Ptk,λ )d represents the third item and ∇2L(Ptk,λ )d

represents the Hessian matrix of the Lagrangian function at f (Ptk). The Hessian matrix

is a square matrix of second-order partial derivatives of a scalar-valued function and is

used to describe the local curvature of the function. The summation of these three items

can be the approximation of the objective function in 3.7. g(Ptk) denotes the constraint

and L(Ptk,λ ) denotes the Lagrangian Function, which can be calculated as:

L(Ptk,λ ) = f (Ptk)−∑λg(Ptk). (3.9)

where λ represents the Lagrange multipliers, which are auxiliary variables introduced in

the optimization problem to deal with constraints [73]. The remainder Rn of the Taylor

series [74] can be calculated as:

Rn =
+∞

∑
n=3

∇n f (Ptk)

n!
dn. (3.10)
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If the descent direction d is small in each iteration, the remainder Rn will converge to

zero, which means the transformed optimization problem in (3.9) is equal to the original

nonlinear optimization problem. Therefore, the solution to the optimization problem (3.8)

is identical to the convergence of the result from SQP. However, consensus reliability

PC from (3.4) shows that the overall probability is the summation of the product of

link reliabilities from 2N channels, which can exponentially increase the complexity of

nonlinear programming. The high complexity can be impractical to deploy the scheme of

communication resource allocation in a large-scale wireless network.

Two power allocation methods, which can be practical to implement in reality, are pro-

posed to compare with the performance of the optimal power allocation scheme from

SQP. The first method is allocating the transmit power equally to each channel,

Ptk
1 =

Psum

2N
. (3.11)

With identical communication resources, the channel with better channel gain will have

higher link reliability to complete transmission.

The second power allocation method aims to ensure all channels receive appropriate trans-

mit power Pt to reach the same link reliability Pl, which follows the proportion of the

channel fading gain Sk in each channel to the summation of channel fading gains from all

2N channels. The link reliability in (3.2) indicates that the transmit power Ptk is inversely

proportional to Sk when link reliability Plk is constant. Therefore, the link reliability in

this power allocation method should be

Ptk
2 =

Psum ∑2N
k=1 Sk

Sk
. (3.12)
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According to the inverse proportional relationship between the transmit power Pt and

fading gain Sk when the link reliabilities of all channels tend to be identical with this

allocation method, more transmit power should be compensated to the communication

channel with lower Sk to keep the identical link reliability. These two power allocation

methods have lower complexity than the result of SQP, which means they can replace

the optimal power allocation method from the nonlinear optimization if the gap between

their performances can be tolerated.

3.3 Bandwidth Allocation Scheme for Consensus Latency

Besides reliability, latency is also critical to the performance of distributed consensus.

Consensus reliability and transmission time are two factors that can influence the overall

latency of distributed consensus in a wireless network. Optimal consensus reliability in-

dicates that the protocol of Raft has the maximum probability of preventing a new leader

election and spending extra time on this stage. Therefore, an optimal consensus latency

means the reliability of consensus needs to reach the maximum, which means the power

allocation method in this condition should be optimal and follow the result of SQP, then

the only factor that can change the consensus latency is the transmission time cost by

nodes. Based on the model in (3.3), the consensus latency can be reduced by minimizing

the transmission time through an optimal bandwidth allocation method. In this section,

we aim to investigate this optimal bandwidth allocation scheme to pursue the minimum

value of consensus latency.
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The protocol of Raft indicates that each follower needs to receive a downlink message

from the leader and respond with confirmation through uplink transmission in one term

of consensus. The time that ∀n∈ 1,2...,N follower spends in completing the consensus can

be represented as

tn = tDL
n + tUL

n + tv

=
MDL

BDL
n log(1+SNRDL

n )
+

MUL

BUL
n log(1+SNRUL

n )
+tv,

(3.13)

which is the summation of delays caused by the downlink tDL
n , uplink transmissions tUL

n

and verification time tv. MDL and MUL refer to the package length during downlink and

uplink transmission. In the same round of communications, the protocol of Raft indicates

that MDL and MUL are identical for all downlink and uplink channels, respectively. All

nodes are assumed to have the same ability to handle the verification, so the verification

time tv of all N followers is the same. The derived model of latency in (3.13) shows the

bandwidth allocated to nth channel is the communication resource that can influence the

transmission latency tn besides the SNR of channels. The consensus ends the term when

the last follower completes its transmission. Therefore, the longest latency cost by the

follower can be considered as the latency tc of distributed consensus.

tc = max{t1, t2, ..., tN} , (3.14)

which derives an optimization problem to solve the minimum value of tc when the overall

bandwidth Bsum is constant.
min

B
tc

s.t.
2N

∑
k=1

Bk ≤ Bsum.
(3.15)
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where SNR in all downlink and uplink channels of the followers are based on the result of

SQP from transmit power allocation, which means the consensus reliability PC converges

to the theoretical maximum value in this scheme. The overall bandwidth Bsum is the con-

straint for this optimization problem. Table 3.1 shows the notations of major parameters

used in the proposed resource allocation schemes.

Table 3.1: Notation used in resource allocation of Raft-enabled Network

Notation Definition
N Number of Nodes within network
Sk Large Scale Effect of the kth channel
Hk Rayleigh Fading Gain of the kth channel

Psum (dBm) The overall transmit power
Bsum (MHz) The overall bandwidth
Ptk (dBm) Transmit Power allocated to the kth channel
Bk (MHz) Bandwidth allocated to the kth channel

Plk Link reliability of the kth channel
PC Consensus reliability

tk (s) Transmission time of the kth channel
tc (s) Transmission time cost by consensus
Nmax Number of node with maximized consensus reliability

The optimization problem presented in equation (3.15) is nonlinear, and its objective

function lacks an explicit closed-form solution, implying that the solution is complex

and cannot be obtained through straightforward mathematical methods. Thus, we have

employed Particle Swarm Optimization (PSO) to iteratively resolve this optimization

problem and find the minimum value of tc. The PSO algorithm, renowned for its prowess

in global optimization, enables us to evade suboptimal solutions [75]. In the context of our

study, Algorithm.1 represents the application of PSO in bandwidth allocation within the

Raft consensus algorithm. The position of the particles in this algorithm corresponds to

the bandwidth distributed to the wireless channels. The PSO’s inertia weight w, along with

acceleration constants c1 and c2, guide the particle’s movements and drive it towards the

historically optimal and collective optimal position. The position of a particle gets updated
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Algorithm 1 PSO algorithm for tc
Initializepopulation
for m = 1 : Iterations do

for i = 1 : n do
ti,m = f (Bi,m)
if ti,m < ti,h then

ti,h = ti,m
Bi,h = Bi,m

else
ti,h = ti,h
Bi,h = Bi,h

end if
ti,opt = min(ti,m)
Bi,opt = Bmin(ti,m)

end for
for i = 1 : n do

vi(m+1) = wvi(m)+ c1r1(Bi,opt−Bi)+ c2r2(Bi,h−Bi)
Bi(m+1) = Bi(m)+Vi(m+1)
if Vi(m+1)>Vmax then

Vi(m+1) =Vmax
else if Vi(m+1)<Vmin then

Vi(m+1) =Vmin
end if
if Bi(m+1)> Bi,max then

Bi(m+1) = Bi,max
else if Bi(m+1)< Bi,min then

Bi(m+1) = Bi,min
end if

end for
end for

iteratively through the combination of its inertia weight and acceleration constants. After

sufficient iterations, we are able to derive ti,opt as the maximum value of consensus latency

tc, a testament to PSO’s effectiveness in exploring and converging towards an optimal

solution in a complex problem space.

In the protocol of Raft, all followers need to occupy a constant overall bandwidth. A

reasonable expectation of the optimization result is that most of the followers’ latency tn

tends to be close when the optimal bandwidth allocation method is implemented because

a non-optimal bandwidth allocation method can cause some followers to cost more time to
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complete the transmission, which increases the overall latency of distributed consensus in

wireless networks. However, the stochastic wireless channel between the leader and some

followers may have extremely terrible conditions, which can occupy a large proportion of

communication resources and limit the optimal performance of the distributed consensus.

Because Particle Swarm Optimization is a type of practical evolutionary algorithm for

non-linear optimization. It needs to complete large number of iterations to let the fitness

curve reach the optimal value of the objective function, which means the optimal result can

be much better than the benchmarks that used in power allocation even if the Coefficient

of Variation is small.

3.4 Limited Communication Resource and Optimal

Number of Nodes

The algorithms of nonlinear optimization proposed in this chapter can solve the optimiza-

tion problem of the communication resource allocation to achieve the maximum consensus

reliability PC and minimum consensus latency tc. However, if the overall communication

resources are not adequate, even the optimal consensus reliability and latency cannot

reach the requirement of high reliability and low latency in specific scenarios. This sec-

tion aims to investigate the solution to the problem of inadequate overall communication

resources in resource allocation. Firstly, the criteria of adequate communication resources

for the distributed consensus Raft is defined. Then we find out the solution based on the

feature of fault tolerance in the distributed consensus to improve the performance of the

optimized consensus reliability and latency from the perspective of network size.
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3.4.1 Limited Overall Communication Resource for Raft

In the assumption of this article, the allocated communication resources to the wireless

channels and channel gains are the parameters that can influence link reliability Pl and

the consensus reliability PC. Therefore, the link reliability Pl and consensus reliability PC

can be reasonable criteria to judge the condition of overall communication resources when

the wireless channel gain is determined. The reliability of information delivery and syn-

chronization changes in different applications. These reliability requirements correspond

to the consensus reliability if the distributed consensus is implemented. The dotted lines

in Fig. 3.1 denote the target consensus reliability in multiple 5G scenarios, including URC

over the long term, V2V wireless coordination, Reliable cloud connectivity, and Real-time

Virtualization [76] [77]. The optimization problem in (3.7) indicates that even though the
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Figure 3.1: Reliability requirements in different scenarios
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power allocation method is optimized by SQP, adequate overall transmit power should

also be provided if the consensus reliability needs to be improved to reach the require-

ment of a specific scenario. Otherwise, an alternative solution should be implemented to

improve the consensus reliability of Raft in the wireless network.

3.4.2 Optimal Number of Nodes

When the overall communication resource is constant, the number of nodes that particip-

ate in the distributed consensus can influence the performance of distributed consensus

because more nodes should occupy the limited communication resources, and each node is

expected to take fewer resources for the transmission. Specifically, the performance of the

resource allocation method will be damaged when the overall communication resources

are inadequate because some channels cannot gain enough resources to achieve the target

performance.

A reasonable solution to this problem is eliminating the redundant consensus nodes that

are linked with terrible communication channels. However, the increasing size of the net-

work represents that the distributed consensus can tolerate more crash faults or byzantine

fault nodes [78]. These two controversial characteristics can cause the maximum global

value for the reliability of consensus PC with a dynamic number of nodes but constant

communication resources for a local wireless network. The corresponding number of nodes

N to the maximum of PC can be determined by Proposition 1.

Proposition 1 shows that when the overall communication resources are inadequate for

a distributed network, the number of nodes engaged in this network should be less than

the value of Nmax. The maximum value of the consensus reliability PC indicates that

excessive consensus nodes can damage the reliability of Raft. Therefore, a large-scale

network can abandon some nodes that have terrible communication channels to converge

the number of nodes N to Nmax if the overall communication resource is rare, which
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can improve the consensus reliability of Raft. For example, In a multiple-layer consensus

network [79], the network size in the consensus layers can be optimized based on the

communication resource allocated to them, which helps the whole network achieve the

highest performance.

Proposition 1. If Nmax is assumed as the number of followers that can reach the maximum

of consensus reliability,

Nmax = ⌈Ma⌉= ⌊Mb⌋. (3.16)

Ma and Mb correspond to the value of function

Ma =
P̃−

√
P̃2−4P̃+1

1
2 −2P̃

Mb =
1−3P̃−

√
P̃2−4P̃+1

1
2 −2P̃

,

(3.17)

where P̃ = (1−P2
l )P

2
l and Pl denotes the average link reliability of channels

Proof. See Appendix B

The computational complexity of the model revolves around the calculation of Nmax,

which is the optimal number of nodes that can reach the maximum consensus reliability.

Calculating Nmax involves solving the equation (3.17), which is the function of link reli-

ability P(N). P(N) is a function with 2N variables, which means the calculation of P(N)

can involve iterating over all 2N variables at least once. Therefore, the computational

complexity for P(N) will be O(N). Subsequently, Nmax is calculated from P(N) with the

equation (3.17), which are operations with constant computational complexity. Therefore,

the overall computational complexity of the model primarily depends on the calculation

of P(N) and is O(N).
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While the proposed model’s computational complexity is linear in the size of network, the

feasibility of real-time or near-real-time implementation of the proposed model depends

on the number of nodes N and environmental effects. If N is large in the network, the

calculation of link reliability P(N) can be computationally intensive, which makes real-

time implementation challenging. Moreover, the dynamic change of the communication

environment causes a varied distribution of link reliability among nodes, and the Raft-

enabled network has to frequently recalculate the optimal resource allocation scheme,

which may pose influence the real-time implementation of the proposed model. Therefore,

an ideal condition for the real-time deployment of the proposed model should contain an

appropriate number of nodes within the network and a stable communication environment.

3.5 Simulation Results

In the simulation section, the proposed resource allocation schemes for Raft are simulated

in MATLAB R2019b. Based on the Rayleigh Fading model, we assume the channel fading

gain Hk and large-scale effect Sk of 2N channels from (3.1) are in the Gaussian distribution

[71]. The nodes are set as static nodes, and the number of them N in the wireless network

is set to 13. The overall power Psum ranges from 20 dBm to 36 dBm for the transmit

power allocation. The Coefficient of Variation (CV), which refers to the ratio of standard

derivation to mean of channel fading gain H and large-scale effect S in the wireless model,

is implemented in the simulation to represent the dispersion in the probability distribution

of wireless channel fading gains and large-scale effect. A higher CV means that part of

channels have more probabilities of suffering terrible fading gain H and large-scale effect

S, which influence the performance of proposed resource allocation schemes.
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In this section, the optimal reliability of the distributed consensus PC from SQP is com-

pared with the other two transmit power allocation methods. The numerical results of

three transmit power allocation methods are presented in Fig. 3.2 when the channel gains

Sk has a high coefficient of variation (CV=1.303). The consensus reliability given by the

three allocation methods is significantly different. The output PC from the equal power

method in (3.11) is closer to the optimized result of SQP, which reveals that the equal

power allocation method has better performance than the equal link reliability method

when the variation of channel gains is large. Even though the complexity of SQP will rise

when the size of the network increases, the transmit power allocation method derived by

SQP is still the best allocation method to use in this case.
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Figure 3.2: Performance of three power allocation methods with a high coefficient of
variation in channel gains
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Moreover, Fig. 3.3 shows that when the channel fading gain is more concentrated (CV=0.392),

the curves of equal power and equal link reliability methods will converge to the optim-

ized consensus failure rate 1−PCopt , which means three power allocation methods will

have similar performances when the conditions of wireless channels are close. Therefore,

two practical transmit power allocation methods in (3.11) and (3.12) can substitute the

optimal power allocation method derived by SQP in this case.
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Figure 3.3: Performance of three power allocation methods with low coefficient of variation
in channel gains

Fig. 3.4 illustrates the influence of the varied channel gains in consensus reliability where

PC denotes the consensus reliability derived by the two practical power allocation methods

in (3.11) and (3.12), PCopt is the optimal consensus reliability from SQP, and Reliability

Gap (RG) represents the ratio of consensus failure rate between 1−PC and 1−PCopt .
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The difference among the three allocation methods gradually increases when the CV of

channel gains is rising. All three methods have approximate results when the CV is less

than 0.5, which means the other two power allocation methods can replace the optimal

power allocation method derived by SQP with a small compromise performance.
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Figure 3.4: The performance comparison among optimal consensus reliability and other
two methods with different CVs in wireless channel gains

In practice, the CV of wireless channel gain can be reduced by abandoning some nodes with

bad channel conditions (e.g., low large-scale effect S,etc.) to achieve a near-optimal power

allocation scheme, which is supported by the feature of fault tolerance in the distributed

consensus.
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The simulation of bandwidth allocation assumes that the amount of overall bandwidth

Bsum ranges from 8 to 14 MHz, and the number of followers N = 12. The model of the

wireless channel is the same as previous transmit power allocation and the SNRs of all

channels are set based on the optimal result of transmit power allocation scheme from

SQP. The iteration rounds are set to 500 in the PSO algorithm. The curve of the fitness

function in the proposed optimization problem should be presented first. Fig. 3.5 shows the

convergence of the optimal consensus latency when different overall bandwidths are used

in the same wireless network. The convergence of consensus latency decreases when more

overall bandwidth is provided for the communication. The number of iterations that the

result of PSO converges to the minimum consensus reliability is between 100 to 150. The

transmission time cost by all followers is evaluated in Fig. 3.6 when the optimal bandwidth
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allocation scheme is exploited. Because the definition of consensus latency refers to the

longest time cost by the follower from the whole wireless network, the simulation result

matches the expectation that the transmission time cost by most of the followers is close

when the consensus latency tc reaches a minimum value.

The stochastic wireless channels between the leader and followers have variable channel

gains, which can have a significant influence on consensus latency. Fig. 3.7 aims to indicate

the tendency of optimized consensus latency tc with an increased coefficient of variation

CV in channel gain Sk. The results show that when CV increases from 0.74 to 1.56, the

optimal consensus latency tc dramatically rises from 1 µs to 105 µs. This numerical result

reveals a larger variation of channel gain can increase the optimal latency of Raft in the

wireless network.
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The simulation of the optimal number of nodes is presented in Fig. 3.8, which illustrates

the change in the consensus reliability when the number of nodes in the network increases.

The number of nodes is assumed to range from 4 to 40 and the overall communication

resource keeps constant. The trend of consensus reliability increases first and then drops

when the number of followers reaches the optimal network size and finally increases.

The number of nodes that corresponds to the maximum consensus reliability matches

the result of the optimal number of nodes in Proposition 1. S represents the rounds

of synchronization processed during the Raft consensus protocol. When more rounds of

synchronization S are implemented to the distributed consensus protocol, the maximum

value of consensus reliability PC will increase. But the eventual tendencies of all curves

still remain the same.
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The negative influence on consensus latency from varied wireless channel gains indicates

that if the consensus latency needs to be improved, the node with terrible channel gain

should be removed. Fig. 3.9 compares the numerical result of optimal consensus latency

tc before and after the followers with the worst channel gains are eliminated from the

network. The number of followers N = 8 in the initial network. The channel gains Sk of

all nodes follow the normal distribution. The convergence of optimized tc is close to 2000

µs when no followers are removed. The convergence of tc drops to the region between 300

and 400 µs when one follower with the worst channel gain is removed. And tc will keep

dropping to 10 µs after two followers are removed from the network, which proves this

method is also efficient in reducing the consensus latency.
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The procedure of simulation indicates that the computational complexity of SQP and

PSO heavily depends on the number of nodes N. The computational consumption if op-

timization algorithms is also verified during the simulation. When number of node N > 50,

the time cost by the simulation will expands to hours. Therefore, some low computational

complexity algorithms need to be implemented to optimize the communication resource

allocation in wireless distributed consensus with large networks.

Another optimization method has been tried in the optimization problem of bandwidth

allocation is bisection. But this method has a higher computational complexity log(n)

than PSO and it is more possible to achieve a local optimal value instead of a global one.

Therefore, this bisection method is abandoned in the optimization problem of bandwidth

allocation.
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3.6 Conclusion

In this chapter, we delve into methodologies aimed at enhancing the efficiency of the dis-

tributed consensus Raft in wireless networks. One of the key challenges in such networks is

ensuring effective and reliable data transmission. To address this problem, optimal power,

and bandwidth allocation methods are explored to boost reliability and cut down latency

in the wireless distributed consensus. Understanding the intricacies of these methods

necessitates a deep dive into their foundational principles. The power and bandwidth al-

location methods are meticulously derived by two distinct optimization algorithms. Each

of these algorithms is implemented to extract the best possible performance from the

network even when the overall communication resources available remain unchanged. In

other words, they aim to reach near-optimal performance levels within the constraints of

a constant resource pool.

However, real-world scenarios often throw curveballs, and it’s conceivable that in certain

situations, the available resources might be insufficient to meet the required performance

standards. Anticipating such scenarios, we have delineated an optimized network size

to help pinpoint the optimal number of nodes that can function efficiently given the

available resources. It can also offer a tangible solution for scenarios where resources

fall short of requirements. In essence, this chapter aims to provide a roadmap for the

effective deployment of resource allocation schemes, ensuring the efficiency and reliability

of wireless distributed consensus.



Chapter 4

Adaptive Protocol and Sharding
Scheme for Distributed Consensus

The nature of wireless communication magnifies some of the core challenges of distrib-

uted systems, especially scalability. Scalability, the ability of a system to grow and manage

increased demand effectively, encounters numerous obstacles in wireless distributed con-

sensus. Some of the most pressing issues like bandwidth limitations and energy constraints

were already tackled by optimizing communication resources and adjusting the number

of nodes as detailed in [80]. However, these solutions are just the tip of the iceberg, and

several underlying challenges persist. A quintessential example is the impact of wireless

mobile nodes, which introduce a factor of dynamism to network topologies. Envision a

constantly evolving network where nodes are not stationary; they frequently enter, exit, or

relocate within the network. Establishing a consistent consensus under such fluid circum-

stances becomes an intricate task. The propensity of wireless networks to morph makes

them susceptible to network partitioning. As the size and complexity of the network bur-

geon, it tends to fragment into multiple, disconnected sub-networks. This partitioning

hinders communication and consensus achievement.

74
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Furthermore, while most discussions around scalability gravitate towards performance, it’s

imperative to acknowledge that scalability extends beyond just throughput or latency. As

a network scales, so does its vulnerability. The enlarged network can bring malevolent

entities, be they malicious nodes or those attempting to jam signals, with more oppor-

tunities to disrupt the consensus process. Thus, the security of consensus mechanisms

becomes increasingly imperative in expansive wireless networks.

Given these multifaceted challenges, this chapter introduces the adaptive protocol of dis-

tributed consensus and security analysis of the sharding scheme to alleviate the afore-

mentioned scalability issues. The adaptive protocol of distributed consensus does not

only contain a static set of rules but also provides a dynamic framework. It possesses

the ability to recalibrate the consensus algorithm, adapting it to the real-time conditions

prevalent in the wireless network. Such adaptability ensures the system remains resili-

ent, even when nodes are involuntarily ejected due to issues like network partitioning or

temporary disconnections.

Furthermore, sharding offers a structural solution. Originating from the domain of com-

puter networks, sharding dissects a monolithic network or dataset into smaller, more

manageable chunks known as shards. These shards are functional entities that can op-

erate autonomously, processing their subset of data independently. Such a decentralized

approach accelerates processes, paving the way for parallel operations and, consequently,

amplifying the system’s throughput and efficiency. This chapter will analyze the secur-

ity level of sharding when it is implemented in wireless distributed networks, providing

insights and strategies for highly effective wireless distributed consensus.
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4.1 Adaptive Protocol of Raft in Wireless Network

The protocol of distributed consensus is primarily designed for wired networks, where the

communication link is stable, predictable, and reliable [81]. Therefore, communication fail-

ure is not a major concern in this circumstance. However, the deployment of distributed

consensus in wireless networks may suffer from several challenges. For example, wireless

networks are typically subject to interference, signal fading, and environmental factors,

all of which can lead to unpredictable delays and packet loss [82]. Most of the distributed

consensus assumes that messages will be delivered in a timely manner and that failures are

relatively rare. In a wireless network, these assumptions may not hold, leading to frequent

leader changes or a large number of failed attempts to reach a consensus. Moreover, wire-

less networks generally have less bandwidth compared to wired networks. However, a high

communication-complexity distributed consensus needs a significant amount of network

traffic for leader election and state synchronization [83]. The high traffic could deplete the

limited bandwidth available on a wireless network and damage the performance of distrib-

uted consensus [84]. The high mobility of nodes in wireless networks can cause frequent

changes in the network topology and reduce the throughput of state synchronization [85],

which cannot be handled by the original protocol of distributed consensus.

Efforts have been made by various researchers to address the challenges of distributed

consensus in wireless networks. [50] shed light on the impact of communication resources

on the CFT and BFT consensus protocols within wireless networks. To demonstrate the

feasibility of consensus mechanisms in critical decision-making processes within distrib-

uted wireless communication systems, they introduced a consensus-enabled industrial IoT

network based on the PBFT protocol. Further studies, such as the one conducted by [65],

established a relationship between the reliability of Raft and the reliability of wireless

link transmissions. They found that an excessive number of nodes can significantly oc-

cupy limited wireless communication resources. This occupation can lead to a reduction in

both the reliability of the link and the consensus, particularly in large-scale IoT networks
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that utilize wireless connections, as discussed in [69]. [80] proposes power and bandwidth

allocation schemes to optimize the consensus reliability and latency of Raft for multiple

5G scenarios, and a blockchain-based mobile edge computing framework is presented for

adaptive resource allocation and computation offloading in wireless networks [86]. The

findings from these studies try to solve the network instability and resource allocation

issue of the distributed consensus in wireless networks. However, they have not investig-

ated any solutions that involve adapting the original protocol of distributed consensus to

better address these potential issues in wireless circumstances.

A blockchain system for security-related data collection is designed in MANETs [87],

which proves the compatibility of MANET’S routing scheme in distributed consensus. A

lightweight Blockchain-based secure routing algorithm is proposed to improve the security

level of swarm Unmanned Aircraft System (UAS) networking [88]. With the enlightenment

from these solutions to an unreliable wireless connection in different routing scenarios, We

adapt the original protocol of Raft to ensure the protocol can be compatible while it is

deployed in wireless networks in this section.

In the protocol of Raft, a valid node should support broadcasting, multicasting, peer-to-

peer communication, and the verification of request call [89]. If Raft is deployed in a wire-

less environment, these functionalities should be adapted to suit the unique characteristics

of wireless networks, which include high variability in signal strength, dynamic network

topology, and higher data failure rates. Therefore, the adaptive protocol of distributed

consensus in wireless networks should consider several phases: the determination of con-

sensus nodes, consensus achievement, and extra state synchronization [90]. Therefore, this

section proposes the main procedure of Raft’s adaptive protocol to show the completed

progress of Raft when it is deployed in a wireless network. The key functions of the adapt-

ive protocol include node counting, leader election, log replication, extra synchronization,

and node entry or exit mechanism to ensure that information can be transmitted and

received accurately and efficiently by every normal node within the network. The main

procedure of the proposed adaptive protocol is shown in Fig. 4.1.
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Figure 4.1: Main procedure of Raft’s adaptive protocol in wireless network

4.1.1 Nodes Counting

Before initiating network construction, the total number of nodes in the network is un-

known to each individual node. Therefore, the first phase of this adaptive protocol should

involve determining the number of nodes participating in the consensus process. Once an

accurate number of nodes is identified by the nodes that intend to join the consensus, the

protocol can enter the stage of leader election. A client, which usually synchronizes the

commands with the leader but cannot engage in consensus progress of Raft, can be used

to estimate the number of nodes that are interested in constructing a new Raft-enabled

wireless network.

The stage of node counting is initiated by broadcasting a NodeCountCall command to

all nodes in a certain region. This NodeCountCall command contains information includ-

ing the client’s IP address, the type of consensus, and the network sequence. Nodes that

support the specified consensus protocol and have not yet joined another network will re-
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spond with an acknowledgment message when they receive the NodeCountCall command.

The client node can repeat this node counting procedure several times and accumulate

the number of acknowledgments to fully determine the total number of nodes that intend

to join the consensus.

Algorithm 2 Node counting by client
1: Initialize client
2: RepeatCall← R
3: Ncount ← 0
4: for i← 1 : RepeatCall do
5: for j← 1 : Nmax do
6: if NodeCountCall = 1 and NodeCountReply = 1 then
7: Ncount ← Ncount +1
8: else
9: Ncount ← Ncount

10: end if
11: end for
12: end for

Algorithm 2 presents a procedure of the nodes counting in this adaptive protocol of Raft.

It shows that the individual node is counted if the client sends NodeCountCall to this

node and receives NodeCountReply from it successfully in one round of communication.

This node counting procedure can be repeated several times to fully count the number of

nodes that intend to join distributed consensus until the total number of nodes reaches

the maximum value of the network that can afford, and the counted nodes cannot re-

spond to NodeCountCall when they receive it again. RepeatCall represents the times of

NodeCountCall that broadcasts to uncounted nodes by the client. Nmax is the maximum

number of nodes that can join in the distributed consensus. Once the node counting

is complete, the client node broadcasts a consensus permission message to the counted

nodes. Upon receiving this permission, each node starts a random-length timer and trans-

itions to the candidate state when the timer expires. Then these new candidates will start

the leader election stage.
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4.1.2 Leader Election

In a wired communication network, nodes start the leader election when they don’t receive

a heartbeat from the leader within a certain period. However, nodes may miss heartbeats

more often due to issues like signal attenuation, interference, or congestion in a wireless

network. Nodes in the wireless network usually have high mobility, which means they

might come into contact with different subsets of the network at different times, which

leads to issues like split votes or prolonged periods without a leader. Therefore, we increase

the election timeout to improve the probability of a successful leader election and reduce

the frequency of unnecessary elections.

In the adaptive protocol of Raft, the state of nodes is synchronized in stable storage before

any type of call. Three types of states are assumed in the node for consensus, and they are

shown in Table 4.1. T ,V F , and LOG belong to the persistent state on all nodes, CI and

AI are volatile states on all nodes, NI and MI are also volatile states but only function on

the leader, which are reinitialized after the stage of leader election.

Table 4.1: States in the node

Notation Definition
TC Current term of consensus
V F Candidate ID that this node vote for

LOG Log entries that contain the commands and corresponding term
CI Index of highest Log entry that is committed
AI Index of highest Log entry applied to state
NI Index of next log entry send send to nodes
MI Index of highest log entry replicated on server (matched)

The commands from candidates in leader election refer to VoteRequestCall, and the

commands from followers refer to VoteRequestResponse. Table 4.2 presents the types of

commands in VoteRequestCall and VoteRequestResponse. Algorithm 3 presents the logic

of leader election in this protocol. The logic of leader election in this stage basically

follows the leader election from the original Raft protocol: The candidate broadcasts
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the VoteRequestCall message to every follower in the network. Once a follower receives

VoteRequestCall, it checks whether CT is smaller than the term of this follower FT . Oth-

erwise, the follower will reply VoteRequestResponse with a True state in the VOT E com-

mand. Otherwise, it will give a False state response, which means it cannot vote for this

candidate.

Table 4.2: Commands of VoteRequestCall and VoteRequestResponse in leader election

Message Command Definition

VoteRequestCall

CT Candidate Term
CA Candidate Address
LLI Index of Last Log Entry
LLT Term of Last Log Entry

VoteRequestResponse FT Candidate Term
VOT E Candidate Address
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Algorithm 3 Leader Election Algorithm
1: Function LeaderElection(Ncount , T T , TV )
2: TV ← Random(0,T T )
3: VOT EC← [0]∗Ncount
4: Candidates← []
5: Followers← []
6: for k← 1 to Ncount do
7: if TV (k) = 0 then
8: Candidates.append(k)
9: VoteRequestk← 1

10: VoteResponsek← 0
11: else
12: Followers.append(k)
13: VoteRequestk← 0
14: VoteResponsek← 1
15: end if
16: end for
17: for candidate in Candidates do
18: for follower in Followers do
19: backo f f ← Random(0,MaxBackoff)
20: sleep(backo f f )
21: Send VoteRequest(candidate, f ollower)
22: ackreceived←VoteResponse(candidate, f ollower)
23: if ack_received and VoteRequest[candidate] = 1 then
24: VOT EC[candidate]←VOT EC +1
25: end if
26: end for
27: end for
28: Leader← 1
29: MaxVotes←−1
30: for i← 1 to Ncount do
31: if VOT EC[i]> MaxVotes then
32: MaxVotes←VOT EC[i]
33: Leader← i
34: end if
35: end for
36: if MaxVotes≥ Ncount−1

2 then
37: print ”Node”, Leader, ”is the leader”
38: else
39: print ”No leader elected”
40: Leader Election(Ncount ,T T,TV )
41: end if
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If the candidate can receive VOTEs from over Ncount−1
2 nodes in the network before the

timeout of its election, it can win the election and become the leader of the current

consensus term. A countdown timer with a random time interval is set in candidates

to ensure that they can start to broadcast the VoteRequestCall message at a different

moment, which reduces the probability of conflicts in VoteRequestResponse.

4.1.3 Log Replication

The leader needs to synchronize its log entries with the majority of followers in the stage

of log replication. In a wireless network, this stage could be affected by higher failure rates

and variable latency. To reduce the impact of high consensus failed rate and latency, the

leader needs to batch together multiple log entries with a pipeline approach and connect

the failed node through a routing scheme. When the leader is successfully elected during

the current term, Raft starts the log replication stage. The commands from the leader

in the stage of log replication belong to AppendEntriesCall, and the commands from

the followers in the stage of log replication refer to AppendEntriesResponse, which are

presented in Table 4.3

Table 4.3: Commands in AppendEntriesCall and AppendEntriesResponse

Message Command Definition

AppendEntriesCall

LT Leader Term
LA Leader Address
NLI Index of New Log Entry
NLE Term of New Log Entry
LC Leader Commit Index

AppendEntriesResponse FT Follower Term
SR Success Response
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The logic of algorithm in log replication can be concluded that followers reply with a false

status in the response if LT is less than the FT or if the NLI doesn’t contain an entry with

a matched term at the given NLT . If a conflict arises between existing and new entries,

the existing entry is deleted, and all nodes follow the new one. New entries that have not

been presented in the log should be appended, and if the leader’s Commit Index LC is less

than the follower’s CI, the CommitIndex CI needs to be updated to the minimum value

of LC. Algorithm 4 shows the completed program in the stage of log replication in Raft.

Algorithm 4 Log Replication
1: Term = 1
2: NLI[Leader] = NLI[Client]
3: AckCount = [0, . . . ,0] of size (Ncount +1)
4: for l = 1 to Ncount−1 do
5: if is_follower(l) then
6: success, index = send_AppendEntriesCall(Leader, l)
7: if success then
8: AckCount[index] = AckCount[index] + 1
9: else

10: decrement_next_index(Leader, l)
11: end if
12: end if
13: end for
14: for i = 1 to Ncount do
15: if AckCount[i] ≥ Ncount−1

2 then
16: Consensus = 1
17: apply_log_entry(Leader, i)
18: update_commit_index(Leader, i)
19: break
20: end if
21: end for
22: if Consensus ̸= 1 then
23: leader_election()
24: end if

Leader election and log replication are two main stages of Raft. Nodes in two stages

should follow the rules that all nodes should update their terms and convert to followers

if they receive requests or responses with higher terms. Followers only respond to calls

from candidates and a leader and become candidates if their election timeout elapses.

Candidates initiate elections, increase their term, vote for themselves, reset their election
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timer, and request votes from other nodes. They can become leaders only if they receive

a majority of votes in one term. Otherwise, they need to revert to followers if they receive

an AppendEntriesCall from a new leader. The leader sends initial AppendEntriesCalls

to prevent election timeouts, append log entries upon receiving client commands, and

synchronize entries with followers. The leader also needs to manage the next indices and

matches indices for each follower and update its commit indices based on log entries’

terms and majority acknowledgment from followers.

A consensus with high liveness represents the probability of log replication failure as neg-

ligible, ensuring that one leader node can consistently synchronize the log entries through-

out multiple terms. In such a network with stable and robust distributed consensus, data

is reliably replicated across nodes, maintaining data integrity and minimizing the risk of

data loss or inconsistencies. Consequently, if we add necessary procedures in the adapt-

ive protocol of Raft to improve the consensus reliability, the overall performance of the

distributed consensus in the wireless network can be enhanced, allowing it to effectively

manage and process transactions in challenging or dynamic network conditions.

4.1.4 Participant and Exit of Node

The distributed consensus in wireless networks may encounter the participant and exit

of nodes more frequently than in wired networks, which can have a critical influence on

the performance of consensus. Therefore, we present Algorithm 5 to show the procedure

of node entry and exit in the adaptive protocol of Raft. When a new node intends to

join the existing distributed consensus, it needs to send the JoinRequest command to the

leader of the current term. If the leader receives JoinRequest and replies to it, this new

node can participate in the state synchronization in the next round of log replication as

other normal followers. Otherwise, it has to build the routing path to complete the state

synchronization.



4.1. Adaptive Protocol of Raft in Wireless Network 86

Algorithm 5 Node Participation and Exit in adaptive Raft protocol
1: FunctionHandleNodeJoinnewNode
2: Send JoinRequest to leader
3: if leader replies then
4: Participate in the next round of log replication
5: else
6: Follow routing scheme
7: end if
8: FunctionHandleNodeExitnode
9: nodeType←DetermineNodeType(node)

10: if nodeType = Follower then
11: Send ExitRequest to leader
12: Leader stops sending AppendEntriesCall to node
13: Leader deletes all routing paths involving node
14: Update Routing Paths For State Synchronization
15: else if nodeType = Leader then
16: Multicast ElectionCommand to all followers
17: for f in followers do
18: StartElectionTimer(f)
19: ConvertToCandidate(f)
20: end for
21: else if nodeType = ConsensusFailedNode then
22: Send ExitRequest to leader through current routing path
23: Leader deletes routing path
24: Leader does not synchronize state of node in next round of log replication
25: end if

In a Raft-enabled wireless network, there are various scenarios in which different types of

nodes may exit the network. If a follower wishes to leave the network, it sends ExitRequest

to the leader, who then stops sending AppendEntriesCall to this follower and deletes all

routing paths involving the follower. Destination nodes affected by these deleted paths

must restart the routing protocol to update new routing paths for state synchronization.

When a leader intends to leave the network, it multicasts an election command to all

followers, prompting them to start an election timer. All existing routing paths expire,

and new ones are established after the election. If a consensus failed node decides to leave

the network, it sends a ExitRequest to the leader through the current routing path. The

leader then deletes the routing path and does not synchronize the state of the failed node
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in the next round of log replication. Moreover, the leader needs to eliminate the nodes

that failed in state synchronization of several terms because they cannot build up any

routing paths to the leader, which means these failed nodes have crashed and damaged

the performance of distributed consensus.

Besides the scenarios in which nodes intend to exit the network, the case of nodes unin-

tentionally exiting should also be considered in the adaptive protocol of Raft. A subset of

nodes might be isolated from the rest of the network when the network partition happens.

Although these nodes are still operational, they have essentially exited from the network’s

perspective because they can’t communicate with the nodes in another partition. How-

ever, instead of halting the consensus process, the adaptive protocol aims to maintain

consensus among the remaining nodes, which can be achieved by holding a mini-election

within each partition and electing temporary leaders to keep the consensus process going.

When the network partition is resolved, the system can trigger a new election to revote a

single leader and reintegrate the partitions to preserve the consistency of the consensus.

Another case is when a node gets temporarily disconnected caused by interference or

power loss, the adaptive protocol treats it as a temporary exit. During the disconnection

period, the node is removed from the routing paths to prevent the leader from trying to

communicate with an unavailable node, which can avoid unnecessary delays or failures in

message transmissions. If the disconnected node rejoins the network, it should resume the

original routing paths and can participate in the consensus process again. The node, upon

rejoining, also needs to complete a state synchronization process to update any missed

changes during its absence. All cases of node entry and exit can alter the ratio of followers

and consensus failed nodes in the network. If the ratio of followers falls below half of the

overall nodes, the protocol of Raft terminates the current term and initiates a new leader

election.
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4.1.5 Extra State Synchronization and Routing Scheme

In the original protocol of Raft, a successful consensus only requires the synchronization

of states in over half of the nodes. However, in certain reliability-sensitive scenarios, it is

crucial to eventually synchronize the states of failed nodes as well. These nodes may not

have a reliable direct connection to the leader, necessitating a routing path to complete

the extra state synchronization. The routing protocol plays a crucial role in maintaining

the stability of the distributed consensus in two scenarios: when a new node intends

to join or exit the network but cannot directly connect to the current leader; when a

node’s state must be synchronized after a failure during the log replication stage. In both

cases, the routing protocol can establish connections between the affected nodes and the

leader through a series of intermediary nodes. which ensures seamless communication and

integration within the network to preserve system-wide consistency and reliability.

Table 4.4: Commands in RREQ and RREP

Message Command Definition

RREQ
SNS Sequence Number of Source Node
HN Hopping Number

RRID RREQ Identity

RREP

SND Sequence Number of Destination Node
HN Hopping Number
SR Success Response

RPID RREP Identity
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Algorithm 6 Extra State Synchronization and Routing Scheme in Adaptive Raft Pro-
tocol

1: Function Handle_message(message)
2: if message.type is RREQ then
3: Process_RREQ(message)
4: else if message.type is RREP then
5: Process_RREP(message)
6: end if
7: Function Process_RREQ(RREQ)
8: Update_reverse_route(RREQ)
9: if node is the destination then

10: Send_RREP(RREQ)
11: else
12: Forward_RREQ(RREQ)
13: end if
14: FunctionProcess_RREP(RREP)
15: Update_forward_route(RREP)
16: if node is the source then
17: Start_state_synchronization()
18: else
19: Forward_RREP(RREP)
20: end if
21: Function Route_discovery(destination)

Send_RREQ(destination)
Create RREQ message with destination address
Broadcast RREQ

22: Function Send_RREP(RREQ)
Create RREP message with source address from RREQ
Unicast RREP to the previous hop

23: Function Forward_RREQ(RREQ)
Increment RREQ’s hop count
Broadcast RREQ

24: Function Forward_RREP(RREP)
Unicast RREP to the previous hop

The routing scheme used in this adaptive protocol of Raft is derived from Ad hoc On-

Demand Distance Vector (AODV) scheme from Mobile Ad Hoc Network (MANET).

MANETs are wireless networks without a central controller, allowing nodes in the network

to move freely and establish connections autonomously without the need for infrastructure

support [91]. The AODV scheme is an on-demand routing strategy that establishes routes

only when needed, which has good adaptability and scalability, effectively coping with
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the high dynamics and topology changes of nodes in the network [92]. Other common

routing protocols in MANET, such as Dynamic Destination-sequenced Distance-vector

routing protocol (DSDV) [93] and Dynamic Source routing protocol (DSR) [94], can be

implemented if they have satisfactory performance in the adaptive protocol of Raft. In the

routing scheme of the adaptive protocol, it follows the rule that if the new node intends

to join the network or the failure node in log replication cannot connect to the current

leader, the leader node can act as the source node and broadcast RREQ (Routing Request

message) to neighbor nodes to found an efficient routing path. Commands in the RREQ

message are shown in Table. 4.4.

When a node receives an RREQ for the first time, it should create a reverse route entry

for the source node in its routing table, with the previous hop, sequence number, and an

incremented hop number (HN). If the node receiving the RREQ is not the destination

node (the leader in the current term), it should rebroadcast the RREQ to its neighbors,

updating the hop count in the process. Otherwise, it should initiate the RREP (Routing

Response Message) process. When a node receives an RREP, it should update its rout-

ing table with a forward route entry for the destination node, including the next hop,

destination sequence number, and hop count. This node should then forward the RREP

towards the source node, following the reverse path established earlier. If a node receives

a duplicate RREQ, it should discard the RREQ if it has already processed it or if the

RREQ contains a lower or equal sequence number and hop count than the existing route

entry. Intermediate nodes that have a valid route to the destination with a higher sequence

number than the RREQ can send a gratuitous RREP to the source node, informing it of

a better route. Route maintenance can be achieved through monitoring link breakages.

When a node detects a link breakage, it should send a Route Error (RERR) message to

the affected nodes. These nodes can then either re-initiate the route discovery process or

use alternate routes if available.
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4.1.6 Simulation Results

This subsection shows the simulation result of the proposed adaptive protocol of dis-

tributed consensus Raft. The simulation platform is MATLAB R2019B. The number of

initial nodes is set to 20, and they are located randomly in the region of a square area

with a side length of 10km and a center on the origin point. All nodes are assumed to be

reliable when they process the commands, and they have the full function to complete the

adaptive protocol, including broadcasting and unicasting messages, routing path storage,

and timer activation. The position of nodes is assumed dynamic during the consensus,

and they can enter and exit the consensus network until the number of nodes reaches the

maximum value Nmax that the protocol can support, which is set at 40 in the simulation.

Nodes that exit the network are deleted in the simulation. The transmission failure rate

of wireless links follows the Rayleigh Fading Model, where the distance between nodes

acts as the large-scale effect [68]. The transmission time is set as 1 ms and the countdown

timer of nodes ranges from 100 ms to 500 ms. The client, which is set at the original point

as a static node, can only participate in the stage of node count but cannot act as any

consensus node in the later stages of Raft.

The diagram depicted in Fig. 4.2 elucidates the comprehensive procedure of node counting

that is managed by the client. It initiates the interaction by broadcasting a NodeCountCall

message to all 20 nodes within the network. This message provokes a response from

nodes to confirm their readiness to partake in consensus proceedings. However, dynamic

networks mean that not all nodes may be responsive at all times. In this instance, Nodes

9 and 12 cannot send back the anticipated NodeCountReply message, which means the

availability for the consensus process of Nodes 9 and 12 is ignored by the client node,

and the total count of nodes that are participating in the consensus falls to 18. In a

broader perspective, this procedure symbolizes the resilience provided by the adaptive

protocol of Raft, showcasing their inherent ability to maintain functionality despite the
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Figure 4.2: Node counting by client

occasional unresponsiveness of individual components. The consensus process proceeds

with the remaining responsive nodes, ensuring the robustness and continuation of the

network. The simulation result of node counting by the client indicates this stage can

play a critical role in monitoring and managing the reliability of the entire system.

As the network protocol progresses to the stage of leader election, a distinctive shift

in node behavior is observed in Fig. 4.3. Node 4 exhausts its pre-established timer and

transforms its state to a candidate. Once this transformation occurs, Node 4 tries to win

the vote by broadcasting a VoteRequestCall message to the other 17 active nodes within

the network. Although communication link failures lead to Nodes 3, 5, 14, and 18 being

unable to respond with their votes, Node 4 still successfully secures votes from other

76.47% nodes, which ensures Node 4 can work as the leader in this round of election.
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Figure 4.3: Election for leader

Figure. 4.4 clearly illustrates the procedure involving the entry and exit of nodes within a

Raft-enabled wireless network. After the successful completion of the leader election stage,

Node 21 and Node 22 emerge on the scene. They managed to join the existing network

by establishing successful communication with the recently elected leader, Node 4. Their

entrance not only adds to the network’s size but also signifies their endorsement of Node

4’s leadership, as they contribute their votes towards its commitment. This commitment

indicates their states are identical to the overall state of the network, and they are prepared

to maintain the continuity of consensus.
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Figure 4.4: Node entry and exit

Following the acceptance into the network, Nodes 21 and 22 can then participate in

subsequent crucial stages of the Raft protocol. They get actively involved in the log

replication stage, which is essential for maintaining a consistent state across the majority

of nodes in the network. They are also included in the state synchronization stage, a

process that ensures that failed nodes can have an updated and accurate view of the

network’s state. This sequence of actions underlines the flexibility of the adaptive protocol

of Raft in accommodating new nodes and integrating them into the existing network.

When new nodes enter the network, the total number of followers increases to 17. These

nodes then proceed into the log replication phase, as shown in Figure 4.5. Unfortunately,

only a disappointing 45% of the nodes successfully complete this process, and the rest

of followers suffer communication failure. Node 4, despite its leadership role, struggles
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Figure 4.5: Failed log replication

to achieve state synchronization across the majority of the network nodes. This failure

indicates the need for a significant adjustment within the network. Consequently, Node 4

relinquishes its leadership, converting into a follower instead, which triggers the initializ-

ation of a new leader election.

Figure 4.6 provides an overview of successful log replication after another round of leader

election. It depicts that Node 2 has won the vote and assumes the mantle of leadership

for the new term. The network experiences an improved level of success in the log replic-

ation stage, with 60% of the nodes successfully completing the task. This signifies that a

consensus has been achieved within the network, allowing it to progress to the next round

of log replication. Furthermore, additional state synchronization measures are instigated
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Figure 4.6: Successful log replication

for nodes that had failed in this process. This extra step ensures that the states of all

nodes can be updated, thereby preserving the robustness and integrity of the system. It

highlights the adaptive protocol’s resilience and adaptability, capable of rectifying prior

failures and ensuring functioning, even in the face of dynamic situations.

After a successful log replication, failed nodes need to synchronize their states, which can

be achieved via a designated routing path and relay nodes. As illustrated in Figure 4.7, the

routing path is determined using an Ad-hoc On-Demand Distance Vector (AODV)-like

routing protocol, which is well-regarded for its efficiency. Three relay nodes 4, 12, and 18,

are chosen from among the follower nodes that successfully completed the log replication.

These nodes are selected due to their proximity to the leader, making them ideal for
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Figure 4.7: Routing Path for state synchronization

this crucial role. The selected relay nodes essentially bridge seven reliable links between

the leader and failed nodes, thereby completing the process of state synchronization.

This comprehensive routing scheme ensures that all nodes can keep a consistent state to

maintain the integrity and functionality of the entire network.

The performance of adaptive protocol can also be analyzed from the perspective of con-

sensus reliability and latency. And these two parameters are dominated by the routing

scheme. [95], [96] indicates that the performance of routing scheme is mainly determined

by the number of relay nodes. However, because every node that successfully achieve con-

sensus has the same state, the routing path built by the adaptive protocol of Raft should

have only one relay node, which means the performances are convergent even if multiple

routing schemes of MANETs are implemented in the adaptive protocol.



4.1. Adaptive Protocol of Raft in Wireless Network 98

Because Raft is a crash fault tolerance protocol, the security issue such as malicious attack

tolerance is not a major concern under this circumstance. However, if the further work

is about adaptive protocol of BFT, the relevant security analysis should be proposed as

part of the protocol’s performance.

4.2 Security analysis of Sharding

Most large-scale blockchain networks have a common problem with scalability and effi-

ciency. In Proof of work (PoW) consensus, nodes need to consume time and computing

power to solve the complex hash function [97]. The block broadcasting is also time-

consuming because a completed transaction needs verification and state storage from

every miner node. Therefore, the transaction throughput in a public blockchain network

is much lower than traditional centralized transaction processors such as VISA, which

can process thousands of transactions per second. In order to increase the transaction

throughput in the blockchain system, the developers of public blockchain initially try to

extend the size of the block to verify more transaction information in one block. However,

the growing block size overloads the communication throughput and storage space in the

database, which has less benefit in efficiency improvement.

To solve the scalability issue in blockchain systems, a concept called sharding that is

from the distributed database has been implemented in new generation blockchain net-

works such as Ethereum 2.0 [98]. The sharding in the blockchain system aims to allocate

transactions and validated nodes into different groups, which also refers to shards, which

can process transactions in parallel. Sharding can be categorized in ways of transactions

or ledger storage. The transactions in sharding include non-cross-shard or cross-shard

transactions [99]. Non-cross-shard transaction corresponds to a transaction that happens

in a single shard and the validated nodes of this transaction are all the nodes in this

single shard. According to the principle of blockchain transaction verification, the size
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of this single shard is closely related to the security level of non-cross-shard transactions

in it. Cross-shard transaction refers to the transactions that happen between different

shards, and the validating nodes are selected randomly from all shards even though most

of them are unrelated to this transaction. Moreover, the type of sharding can be defined

as transaction sharding or state sharding based on the way of ledger storage. Transaction

sharding means every node of all shards will store a completed ledger that contains all

verified transactions like traditional blockchain networks. In the state sharding, nodes in

a shard will only store the verified transactions that have been processed by nodes in

this shard instead of all shards. Therefore, it may require less storage space. Shards from

the same blockchain network can implement different consensus mechanisms to fit the

requirement of the decentralized application (dApp), which solves the scalability problem

in a traditional blockchain system. In wireless blockchain system [100], the sharding can

reduce the communication complexity of different consensus protocols [101], which saves

the cost of corresponding communication resources in the blockchain network [102].

Several sharding protocols have been developed in a new blockchain network. They are

making efforts to improve the scalability of systems even though there are still drawbacks

to these protocols. Elastico [103] is the first sharding protocol design for a public block-

chain network. It has combined Bitcoin PoW protocol and standard BFT but it only con-

cerns about the way of transactions and network sharding. The formation of committees

highly improves transaction throughput in the blockchain network, which is approximately

proportional to the number of committees (shards). However, the transaction latency in

Elastico is not affordable, even if the sharding number is small. Additionally, the normal

committees in Elastico tend to have a limited number of nodes. This feature leads to the

fact that after several transaction epochs, the probability of transaction failure could be

tremendous. Even though Elastico has many drawbacks as a sharding protocol, it still has

pointed out a direction to advanced sharding development for later design [104].
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OmniLedger [105] is deployed as the Decentralized Ledger (DL) with a sharding struc-

ture. It is based on ByzCoin [106] and Hybrid consensus to select representative attesting

nodes via scalable collective signing [107][108]. RandHound [109] is implemented in Omni-

Ledger to distribute attesters to shards securely and ensure that shards are large enough

to resist potential attacks. A two-phase client-driven lock/unlock protocol Atomix to let

transactions commit or abort atomically during cross-sharding transactions. OmniLedger

supports trust-but-verify validation to reduce transaction latency in low-value payment

cases, and it allows the validators to switch between different shards securely and ef-

ficiently. However, the OmniLedger system epochs are time-consuming, and it requires

advanced anti-censorship to detect unfairly censored transactions.

Ethereum, as the first decentralized Blockchain platform, implements a Turing-complete

programming language for smart contracts development. The sharding in Ethereum 2.0

(ETH 2.0) aims to solve the severe issue of low scalability and transaction throughput

in the ETH 1.0 network. Shards in ETH 2.0 may use different consensus mechanisms to

reach the requirements of their own scenarios. The beacon chain, as the essential structure

of ETH 2.0, will be implemented in Stage 0 of development. The primary function of the

beacon chain is to assign an attesting committee randomly to verify the transactions or

smart contracts in 1024 shards. The communication between the beacon chain and shards,

which is through crosslinks, will generally be cross-shard communication. Beacon chain

and other shards will use Casper FFG [110] to determine the canonical chain with Proof

of Stake. Even though the development plan of Phase 0 in ETH 2.0 is explicit, the details

of protocols have not been finalized [111].

All these references above only talk about the performance of their unique design even

though they use similar random nodes distributed mechanisms. Therefore, it lacks a kind

of general method to analyze the performance of sharding with random node distribution.

The main contribution of this study is building a random nodes distributed sharding model

to analyze the security performance with the conditions of cross-shard/non-cross-shard

transactions and transaction/state sharding. The model initially calculates the probability
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P of the assigned number of nodes in any shard. With this probability, the probability of

a secure transaction in any shard can be determined, which represents the security level

of the shard. Then the transaction throughput and communication throughput, which

is related to the probability of secure transaction, will be conducted. The analysis is

indicated in subsection 4.2.3. This shard analyzing model provides a general pattern to

figure out the security performance of a specific sharding design and improve its reliability.

4.2.1 Security Model of Sharding

When link communication is stable among nodes, the reliability of distributed consensus

is positively correlated to the number of validating nodes in it. However, the sharding

divided the blockchain network into several smaller pieces and the number of validating

nodes may decline, which can cause an inevitable decrease in security in transactions.

In order to reduce the influence from less validating nodes, most sharding designs use

Verifiable Random Function (VRF) [112] to provide randomness for validating node dis-

tribution. Before distributing the validating nodes randomly, the nodes will be categorized

according to the specific bits of their hash value, which can be adjusted to change the

difficulty of assigning functions. Some researchers have already optimized the node distri-

bution methods in sharding to improve the secure transaction rate, such as Game-theoretic

analysis [113] and Trust-Based shard distribution [114].

The analysis of this model depends on the types of sharding (transaction/state) and

transaction (cross-shard/non-cross-shard). These types of sharding designs are presented

in Fig. 4.8 and Fig. 4.9. The model assumes that N nodes with the same computing

power are randomly distributed into M shards initially, and the total N nodes contain H

malicious nodes in them, which will violate the transaction verification. If the number of

malicious nodes h reaches 50% of the total nodes number k in a shard, the transaction

validated by these nodes will fail, and it will not be recorded in the ledger. Normally, in

distributed systems, the malicious node ratio R can influence the reliability of transaction
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verification in blockchain, which is represented in (4.1)

R = H/N. (4.1)

This section investigates the security performance in the sharding system when the ma-

licious nodes ratio R changes. Table 4.5 shows all parameters set in this model.

Table 4.5: Parameter setting in sharding security analysis

Notation Definition
N Total number of nodes in the network
M Number of shards
H Total number of malicious nodes in the network
R The ratio of malicious nodes in total nodes
k The number of nodes distributed in any shards
h The number of malicious nodes distributed in any shards

P(k) Probability of k nodes distributed in a shard
P(m) Probability of m nodes distributed in validating set

Ph Probability of h malicious nodes in a shard
Pc Probability of secure transaction in a shard

PH(k) Probability of h malicious nodes in a k nodes shard
Ps(k) Probability of secure transaction in a k nodes shard

4.2.2 Non-cross-shard Transaction

Fig. 4.8 presents the main stages of the non-cross-shard transaction. The first stage is

node distribution: All nodes from the original network are randomly distributed in several

shards. During consensus, nodes cannot alter the shards they have been assigned to. The

second stage is transaction verification: transactions can only happen between nodes that

belong to the single shard, and the transaction can only be verified by nodes in this

specific shard. The last stage is ledger storage, and it could be different in the transaction

or state sharding. If all transaction records are still stored in every node like a traditional

blockchain system, it will be defined as a transaction or network sharding. But if nodes

in a shard only store the transaction processed in this specific shard, it will be state

sharding. State sharding may require less memory space. However, it may conflict with

the purpose of decentralization in the blockchain network. So this trade-off needs to be

optimized in innovative sharding designs. Before analyzing the security performance of
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Figure 4.8: The non-cross-shard transaction

sharding, it is necessary to figure out the random process of node distribution to shards.

The random distribution in sharding is similar to the dice-tossing problem. Each shard

represents a side of the dice that has an equivalent probability of selecting an individual

node. Therefore, the probability P(k) that k nodes are randomly distributed to a shard

can be given by a binomial distribution, which is implied in (4.2), which is influenced by

shards number M and total nodes number N

P(k) =
(

N
k

)
(

1
M
)k(

M−1
M

)N−k. (4.2)
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With the theoretical probability P(k) in every shard, the security level of sharding trans-

actions can be analyzed. The probability Ph(k) that N nodes within H malicious nodes

have randomly distributed k nodes to a shard within h malicious nodes in this shard.

Ph(k) is similar to the problem of product sample check. There are total N products

within H poor products. k products are selected from them, and Ph(k) is the probability

of h poor products from these k products, which follows the principle of Hyper-geometric

Distribution. (4.3) indicates the probability distribution of Ph

Ph(k) = f (h,k,H,N) =

(H
h

)(N−H
k−h

)(N
k

) . (4.3)

Once Ph(k) is determined, the successful transaction rate in this shard with k nodes could

be calculated. With the consensus of PoW, if we assume the node number k in a shard is

set and each node has identical computing power, the probability Pc of secure transaction

processing in the shard can be accumulated by Ph(k) until h reaches 50% of k

Pc(k) =

k
2

∑
h=1

Ph(k) =

k
2

∑
h=1

(H
h

)(N−H
k−h

)(N
k

) . (4.4)

To obtain the eventual successful transaction rate Ps(k), it’s necessary to consider both the

random nodes distribution k and malicious nodes distribution h in the shard. Therefore, for

the probability that a shard has k nodes within h malicious nodes PH(k) is the production

of P(k) and Ph(k) because these probabilities are independent to each other

PH(k) = P(k) ·Ph(k). (4.5)
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If h is over 50% of k, the transaction verification will be controlled by malicious users, and

the transaction in this shard will be insecure. The probability of secure transactions in

one shard with specific nodes number k is Ps(k), which is accumulated by the probability

PH(k) that h is less than half of k while h and k are both uncertain

Ps(k) =

k
2

∑
h=1

PH(k) = Pc(k)P(k). (4.6)

According to (4.4), (4.5), (4.6), Ps(k) is only depends on the amount of k and ratio of

malicious nodes R.

4.2.3 Cross-shard Transaction

The main stages of cross-shard transactions in Fig. 4.9 also include sharding and ledger

storage. The difference from a non-cross-shard transaction is that the transaction can

happen between nodes from different shards. It could be quite complicated in the stage

of ledger storage if cross-shard transaction records are stored in the way of state sharding

because the sharding system can hardly determine which parts of nodes are responsible

for storing the records. The mainstream idea tends to let all nodes that are related to

the transaction keep the ledger consistent, including transaction nodes and validating

nodes. However, this mechanism may cause the issue that some nodes from the same

shard may have different ledger contents, which means the blockchain system may lose

state consistency.

In a cross-shard transaction, the probability P(k) that k nodes are assigned to a shard is

the same as (4.2) in the non-cross-shard transaction because the number of total nodes N

and shards M do not change and the nodes are randomly assigned to shards. However, the

security analysis in cross-shard is different from non-cross-shard. The nodes participating

in transaction verification are not only from the transaction-relevant shards but also

randomly assigned nodes from the whole blockchain network. In the case of validating,
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it assumes the probability that any node participant validating is 20%. Therefore, the

probability P(m) that m nodes are chosen to be validators in a transaction is

P(m) =

(
N
m

)
(
1
5
)m(

5−1
5

)N−m. (4.7)
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Figure 4.9: The cross-shard transaction
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In cross-shard transaction, the probability that random x nodes within h malicious nodes

engage in transaction validating from the blockchain network is PH :

Ph(m) = f (h,m,H,N) =

(H
m

)(N−H
m−h

)(N
m

) , (4.8)

PH(m) = P(m)Ph(m). (4.9)

When h is less than 50% of m, the transaction will be secure. The probability of secured

transaction with m validators Ps will be accumulated by PH as malicious nodes number h

is less than half of validating nodes number m

Ps(m) =

m
2

∑
h=1

PH(m) =

m
2

∑
h=1

P(m)Ph(m). (4.10)

Compared with the non-cross-shard transaction, the security of a cross-sharding transac-

tion is influenced by the malicious nodes rate in randomly selected validating nodes set

instead of the malicious nodes number k in the shard. If the size of validating nodes set is

large enough, the difficulty in accomplishing Sybil attacks in a cross-shard transaction will

be much more incredible than in a non-cross-shard transaction. Therefore, the security

of cross-shard transactions can be improved. However, the cross-shard transaction may

require more resources to support the communication for a massive validating network

and solve the problem of ledger consistency.

The number of nodes N is set as 1000, and the number of shards M is set as 10 in the

simulation. By comparing the tendency curves of P(k) in theory and simulation while

the nodes number k in a shard changing, the correctness of (4.1) will be determined.

The random distribution progress in simulation is repeated 105 times to get a mean of

probability P(k) and then compared with the theoretical value of P(k) in (4.2).
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The comparison between analytical and simulated results is shown in Fig. 4.10, which con-

curs with the analytical value in equation 4.2 because the simulation points are overlapped

with the analytical curve of P(k). The result presents that P(k) is mainly distributed at

k = N
M , which means the size of shards will be close if the nodes are randomly distributed

into the shards before the consensus progress.
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Figure 4.10: Probability P(k) of nodes number k distributed in a shard

4.2.4 Simulation Result

Subsection 4.2.4 presents the crucial probabilities that represent the security level of non-

cross-shard transactions in sharding. In Fig. 4.11, the probabilities Pc indicate that it can

be influenced by R. When R is less than 50%, the probability curve of Pc will converge to

100% as h increasing.



4.2. Security analysis of Sharding 109

0 10 20 30 40 50
h

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

P
c

R=0.3

R=0.4

R=0.5

R=0.6

R=0.7

Figure 4.11: Probability Pc of secure transaction in a shard

The simulation result reveals that the probability PH of the ratio of malicious nodes in

a shard depends on the ratio of malicious nodes to all nodes in the whole blockchain

network R. As R changes from 0.3 to 0.7, the corresponding number of malicious nodes

to the peak value of PH(k) will rise up, which is indicated in Fig. 4.12.
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The result in Fig. 4.13 implies the dominated influence in PS(k) given by the rate of

malicious nodes R. As R is less than 0.5, the peak value of PS(k) could be over 10−2,

which is considerable for a shard transaction when all values from the same curve are

accumulated. However, if the number of malicious nodes M is over 50% of N, The successful

transaction rate PS(k) will be less than 10−5, which could be negligible from the perspective

of transaction security.
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The simulation result of P(m) in Fig. 4.14 is similar to P(k) of non-cross-shard transaction

in Fig. 4.11. But the peak value of the probability curve is changed because the number

of validating nodes m in cross-shard transaction differs from shard’s nodes number k in

non-cross-shard.
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Figure 4.14: Probability of validating nodes number m in cross-shard transaction

As R is 0.3 and 0.4, the value of PS(m) is close in Fig. 4.15, which means R has less influence

in the successful transaction rate of cross-shard transaction. But once malicious nodes

occupy the majority of network (R > 0.5), the reliable transaction can hardly happen.
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The model assumes that the number of validating nodes m in the cross-shard transaction

is larger than the size of shards k in the non-cross-shard transaction, which causes the

corresponding vertical peak values of all curves to be right-shifted in the model of cross-

shard transaction. It indicates that if attackers want to compromise the security of cross-

shard transactions, they need to cost more computing power than non-cross transactions.

In other words, the cross-shard transaction is normally more reliable than the non-cross-

shard transaction in shards.
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4.3 Conclusion

This section presents an adaptive protocol for the Raft consensus algorithm in wireless

networks with dynamic network topology changes and potential data losses. It intro-

duces stages including node counting, extra synchronization, and adaptive node entry/exit

mechanism to the adaptive protocol of Raft. Simulation results validate the protocol’s ro-

bustness and reliability in wireless environments, demonstrating its promise for real-world

deployment in autonomous wireless systems, and opening new possibilities for distributed

consensus in various wireless applications.

The content in this section also indicates the reliability and security analysis of sharding

schemes in wireless distributed consensus. Most of the current sharding designs use a

random distribution method to assign validating nodes from the whole network to com-

plete the consensus. The analysis of the sharding model shows the security level can be

affected by the rate of malicious nodes in both cross-shard transactions and non-cross-

shard transactions. In the future, more advanced validating nodes distribution methods

and consensus algorithms should be explored and applied in a wireless network to reduce

the malicious node’s influence on the shard’s security performance.



Chapter 5

Conclusion and Future Trend

5.1 Conclusion

All models and experiment results that are shown in the chapters above focus on the reli-

ability, latency, security, and scalability of wireless distributed consensus, which provides

explicit performance analysis, optimization, and adaptive schemes for the practical ap-

plication in wireless networks.

In Chapter 2, the analysis of consensus reliability of Raft concludes that with the constant

communication link reliability, the consensus reliability in Raft increases monotonically

along with the number of nodes. The relationship of consensus reliability with communic-

ation link reliability is interpreted in a linear form for simplicity. Meanwhile, the results

show that the time latency is contradictory to the consensus reliability in Raft. After that,

the link failed models of two distributed consensuses Raft and Hotstuff BFT, are ana-

lyzed to compare their performances to the centralized consensus in terms of full consensus

reliability and time latency. The comparison of performance in centralized and distrib-

uted consensus indicates that the large-scale network with CFT protocol Raft can have

higher full consensus reliability and lower latency than a centralized consensus when mul-

tiple rounds of synchronization are implemented. The large-scale network with Hotstuff

BFT protocol has higher full consensus reliability than the centralized consensus when

synchronization is implemented. However, a network with basic Hotstuff BFT needs to

115
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consume more time slots in three phases to complete the synchronization when it is com-

pared with the centralized consensus. Fortunately, the pipeline construction implemented

in the chain Hotstuff BFT may provide a practical solution to this long latency issue in

the Hotstuff BFT protocol.

Chapter 3 proposes optimal power and bandwidth allocation methods are proposed to

improve reliability and reduce latency for the distributed consensus Raft in a wireless

network. Both power and bandwidth allocation methods, which are derived through two

different optimization algorithms, can reach near-optimal performance when the overall

communication resource is constant. Besides the SQP and PSO algorithm that are used to

solve the optimization problems, more state-of-art optimization methods with lower com-

putational complexity can be implemented for more complicated optimization problems of

resource allocation in wireless distributed consensus. Moreover, an optimized network size

is defined to address the issue that the overall communication resources are inadequate

to reach the required optimal performance of distributed consensus.

Chapter 4 brings attention to the scalability and applicability issue of distributed con-

sensus in practical scenarios. The adaptive protocol of Raft is presented to improve the

compatibility of distributed consensus in wireless networks through a routing scheme and

node-exiting mechanism. Security analysis of sharding, which is a common scalability-

improvement paradigm in blockchain systems, is investigated to find a reliable solution

to deploy different distributed consensuses.
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5.2 Future Trends

5.2.1 Extension of Current Researches

The advancement of wireless distributed consensus has opened up numerous avenues for

research, particularly in areas where real-time decision-making and data synchronization

are critical. The intersection of distributed consensus with practical applications in the

realms of industry and transportation is poised to redefine how these systems operate.

Take, for instance, the evolving landscape of cooperative driving. As our roads become

more populated with interconnected vehicles, the need for these vehicles to communicate

seamlessly with each other becomes paramount. Whether it’s for enhancing the flow of

traffic or averting potential mishaps, the vehicles continuously exchange data about their

respective speeds, positions, routes, and even potential obstacles. Each vehicle, in this

context, isn’t just a mode of transportation. It embodies the role of a network node,

which not only sends and receives data but also processes it to make split-second decisions.

If this data exchange is not accurate or consistent across all vehicles, the consequences

could range from minor traffic disruptions to severe accidents. Herein lies the invaluable

contribution of distributed consensus in such ecosystems. It ensures that irrespective of

the volume of data or the number of nodes (vehicles) involved, there is a consistent and

reliable understanding of the shared data. In essence, distributed consensus can act as a

foundation that upholds the integrity, safety, and reliability of operations conducted by

these interconnected vehicles.
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Furthermore, as the horizons of wireless technologies expand, it is anticipated that distrib-

uted consensus will find its applications in various other sectors like smart cities, industrial

IoT, and even remote healthcare. The potential of distributed consensus, when tethered

to real-world applications, is not only vast but also transformative. In these scenarios,

more adaptive protocols of distributed consensus will be implemented. The performance

analysis of the adaptive protocols and corresponding optimization to the routing scheme

should be investigate to reach the requirement of specific applications.

5.2.2 Promising Future Direction

Based on the extension of current research discussed in this section, the future direction

of wireless distributed consensus can be summarized as follows:

• The integration of Artificial Intelligence (AI) represents a growing research trend

for distributed consensus in wireless networks. AI is efficient in bolstering the per-

formance of distributed consensus by optimizing communication resource allocation,

and it’s capable of identifying suspicious patterns of behavior in the network, such

as potential Sybil attacks or intrusion attempts. AI can be applied for predictive

modeling in distributed networks, forecasting the future states of nodes based on

their historical data, thereby making the consensus process more efficient through

the preemptive identification of potential conflicts or bottlenecks. Additionally, AI

can be utilized to develop adaptive consensus protocols, which can dynamically

adjust their parameters according to the network state. For instance, generative

artificial intelligence (GAI) applications such as Chatgpt and PaLM have shown

their tremendous potential in multiple-tasks processing. This ability can enable one

node to process different types of distributed consensus protocols in wireless net-

work. Moreover, GAI has proved its capability in wireless channel estimation [115],

which can provide essential parameters for communication resource allocation and

improve the performance of wireless distributed consensus.
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• The assimilation of metaverse concepts and functionalities emerges as a cutting-

edge direction for distributed consensus within wireless networks. In the sprawling

digital expanse of the metaverse, where virtual environments intersect with real-

world data, distributed consensus becomes vital to maintain a seamless and con-

sistent user experience. Imagine virtual worlds where assets, ranging from digital

real estate to avatars, need validation and synchronization across a vast network.

Distributed consensus ensures that these assets maintain their integrity and value

across various virtual environments, irrespective of the user’s entry point into the

metaverse. Furthermore, users are the most essential object to frequently make crit-

ical decisions in the virtual world. Their choices and interactions play a pivotal role

in shaping the dynamics of the digital realm, influencing everything from the eco-

nomic landscape to the social fabric of the metaverse. As they navigate through this

virtual space, their decisions not only affect their individual experiences but also

have far-reaching implications on the collective virtual ecosystem. This underscores

the importance of robust and reliable distributed consensus mechanisms, ensuring

that the metaverse operates smoothly and fairly, reflecting the collective will and

actions of its diverse user base. Therefore, integrating distributed consensus with

the metaverse could potentially revolutionize digital ownership and critical decision

making management.

• Smart cities, with their interconnected systems and data-driven infrastructure, also

stand to benefit immensely from advances in wireless distributed consensus. The

urban environments of the future will hinge on numerous IoT devices, sensors, and

systems communicating continuously. For example, traffic management systems,

public transport scheduling, and even waste management will require real-time

data exchanges. Distributed consensus guarantees that this data remains consistent

across all nodes, ensuring that city services run smoothly and efficiently. This not

only enhances the residents’ quality of life but also ensures sustainable and optimal

utilization of resources. Furthermore, in the realm of Industrial IoT (IIoT), distrib-

uted consensus is poised to redefine how manufacturing and production processes
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are monitored and optimized. The factories of tomorrow will rely on a multitude

of sensors, devices, and machines communicating simultaneously. Distributed con-

sensus can ensure that production schedules, machine health data, or inventory

levels are coherent and up-to-date across the entire facility. This leads to improved

production efficiencies, reduced downtimes, and better resource allocation. By inter-

twining wireless distributed consensus with IIoT, industries can achieve unparalleled

levels of automation and precision in their operations.



Appendices

A Proof of Equation (2.2)

In the summations of the binomial distributions of the consensus success rate PC, the

largest term dominates the summation if the link success rate Pl increases to reasonably

large. Thus, the inner summation of the binomial distributions can be replaced by the

largest term of it for simplification

i

∑
j=N−1

2

(
i
j

)
Pl

j(1−Pl)
i− j ≈

(
i
i

)
Pl

i(1−Pl)
i−i = Pl

i. (1)

The result of equation (1) can be substituted into the (2.1). According to cumulative

distribution function of binomial distribution, the consensus failure rate 1-PC is

1−PC =

N−3
2

∑
i=0

(
N−1

i

)
Pl

i(1−Pl)
N−1−i≈

(
N−1
N−3

2

)
(1−Pl)

N+1
2 . (2)

The largest term in the summation of the consensus failure rate in equation (2) is also

dominating. Since Pl is reasonably large, the summation in equation (2) can be simplified

in the same way of equation (1). And when the consensus failure rate 1−PC is converted

to logarithm form, it will correspond to the linear relation in equation (2.2)

log(1−PC) = (
N +1

2
) log(1−Pl)+ log(

(
N−1

N−3
2

)
)+∆h, (3)
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where ∆h is the corrected value of the intercept in equation (2.2) to get the minimum

error between equation (2.1) and equation (2.2).

B Proof of Proposition 1

The dominant term of consensus reliability PC from (3.10) is a discrete function, which

means PC cannot determine its tendency through derivation. If the Raft consensus with N

followers can reach the maximum consensus reliability PC(N), PC(N) should be less than

the consensus reliability of the network that contains N−2 and N +2 followers.


PC(N)> PC(N +2)

PC(N)> PC(N−2).

(4)

In the problem of communication resource allocation, if the network with N followers

can reach the minimum consensus failure rate, the overall communication resource can

be regarded as adequate for this network, which means the dominant term of (3.10) can

replace the whole consensus reliability PC. Therefore, the difference among the average

link reliability Pl in the network of N, N− 2, and N + 2 followers can be negligible. The

dominant term of the consensus failure rate is substituted into (4) to solve the Nmax



( N
f+1)(1−Pl

2) f+1(Pl
2)N− f−1

(N−2
f )(1−Pl

2) f (Pl
2)N− f−2 < 1

( N
f+1)(1−Pl

2) f+1(Pl
2)N− f−1

(N+2
f+2)(1−Pl

2) f+2(Pl
2)N− f < 1.

(5)

Eventually, the conclusion in Proposition. 1 can be derived by replacing the number of

fault tolerant nodes f = N
2 in (5) when the distributed consensus protocol is Raft.
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