
Design and Performance Study of Algorithms for Consensus

in Sparse, Mobile Ad-hoc Networks

Thesis by

Khaled Alekeish

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Newcastle University

Newcastle Upon Tyne, UK

(Defended November 26, 2010)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Newcastle University eTheses

https://core.ac.uk/display/153776800?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I am deeply grateful to many people for their help and support during the period of

my PhD.

First and foremost, I would like to thank my supervisor, Dr. Paul Ezhilchelvan,

for his help, guidance and for the many valuable suggestions he made throughout the

work for this thesis. My thesis owes much to the patient supervision Dr. Ezhilchel-

van has given.

I would like to acknowledge the financial support of Damascus University that

provided the necessary financial support for my PhD.

I also would like to thank Dave Cooper for helping me to organize my results and

extend my simulations using TORQUE which helped me a lot to achieve effective

simulation.

My thanks go to Einar Vollset for helping me to learn SWANS simulator, and

Francois Bonnet for helping in the proof part.

I am grateful to Chris Ritson and Jim Wight for helping to solve the technical

problems in the cluster where I used to have my experiments.

Thanks also to the old gang from 10.02: Michele Mazzucco, Osama Younes,

Marios Andreou, Christiaan Lamprecht, Joris Slegers, and Chris Smith.

Last but not least, I would like to thank my parents for supporting and encour-

aging me. Without their constant support I would not have made it.

ii

Abstract

Mobile Ad-hoc Networks (MANETs) are self-organizing wireless networks that con-

sist of mobile wireless devices (nodes). These networks operate without the aid

of any form of supporting infrastructure, and thus need the participating nodes to

co-operate by forwarding each other’s messages. MANETs can be deployed when

urgent temporary communications are required or when installing network infras-

tructure is considered too costly or too slow, for example in environments such as

battlefields, crisis management or space exploration.

Consensus is central to several applications including collaborative ones which a

MANET can facilitate for mobile users. This thesis solves the consensus problem in

a sparse MANET in which a node can at times have no other node in its wireless

range and useful end-to-end connectivity between nodes can just be a temporary

feature that emerges at arbitrary intervals of time for any given node pair.

Efficient one-to-many dissemination, essential for consensus, now becomes a chal-

lenge: enough number of destinations cannot deliver a multicast unless nodes retain

the multicast message for exercising opportunistic forwarding. Seeking to keep stor-

age and bandwidth costs low, we propose two protocols. An eventually relinquishing

(♦RC) protocol that does not store messages for long is used for attempting at con-

sensus, and an eventually quiescent (♦QC) one that stops forwarding messages

after a while is used for concluding consensus. Use of ♦RC protocol poses addi-

tional challenges for consensus, when the fraction, f
n
, of nodes that can crash is:

1
4
≤ f

n
< 1

2
.

Consensus latency and packet overhead are measured through simulation indi-

cating that they are not too high to be feasible in MANETs. They both decrease

considerably even for a modest increase in network density.

iii

Contents

1 Introduction 1

1.1 Applications of MANET . 2

1.2 Background and Motivation . 2

1.3 Contributions . 9

1.4 Thesis Outline . 10

2 Related Work 12

2.1 Routing in Delay Tolerant Network (DTN) 12

2.1.1 Deterministic Routing . 12

2.1.2 Stochastic Approach . 13

2.2 Taxonomy of Multicast Routing Protocols in Dense Networks 14

2.2.1 Tree and Mesh Based Multicast Routing Protocols 15

2.2.2 Proactive and Reactive Multicast Routing Protocols 15

2.3 The Consensus Problem . 16

2.3.1 System Model . 16

2.3.2 A Fundamental Impossibility Result 17

2.3.3 Known Approaches to Solving consensus 17

2.3.4 ♦R and ♦Q protocols . 19

2.3.5 Some Existing Protocols for Solving Consensus 20

2.4 Summary . 25

3 System Model and the Approach 27

3.1 System Model . 27

3.1.1 Assumptions about Node Connectivity 28

3.1.2 Liveness Requirement . 28

3.1.3 Categories of MANETs Depending on Node Connectivity . . . 30

3.1.4 Multicast Services . 33

iv

3.1.5 Approach to Consensus and the Rationale 36

3.2 Summary . 37

4 Encounter Gossip Multicast Protocol 39

4.1 Encounter Gossip EG Broadcast Protocol 40

4.1.1 Protocol Definition . 40

4.2 Encounter Gossip Multicast EGM Protocol 41

4.2.1 Approach . 41

4.2.2 Protocol Definition . 42

4.2.3 Performance Study . 45

4.3 Optimization of EGM Protocol . 54

4.3.1 Effects of Node Speed . 54

4.3.2 Effects of Node Density . 54

4.3.3 flood reduction Optimization 55

4.3.4 Performance Study . 55

4.4 Summary . 64

5 Eventual Relinquishing/Quiescent Multicast Protocols 65

5.1 ♦RC Protocol Using EGM Protocol 66

5.1.1 EGM protocol . 68

5.1.2 DGB Protocol . 68

5.1.3 ♦RC-coordinator . 71

5.2 ♦QC Protocol Using EGM Protocol 72

5.2.1 DGB Protocol . 73

5.2.2 ♦QC-coordinator . 75

5.3 ♦RC protocol Without Using ♦R Service 75

5.4 Neighbourhood Manager NM Protocol 76

5.4.1 Overview of the H-hop Group Neighbourhood 77

5.4.2 NM Description . 78

5.4.3 Example of 2-hop Group Neighbourhood 80

5.5 Comparison Between ♦Q and ♦QC 82

5.6 Required Duration of Node Connectivity 83

5.7 Performance Study . 84

5.7.1 ♦RC Protocol Using EGM Protocol 85

v

5.7.2 ♦QC Protocol Using EGM Protocol 88

5.7.3 ♦RC protocol Without Using ♦R Service 90

5.8 Summary . 93

6 Consensus Protocol 95

6.1 The EMR Protocol . 95

6.1.1 Protocol Derivation and Challenges 97

6.1.2 The Protocol . 99

6.2 Performance Study . 101

6.2.1 The Performance Using β = 2 107

6.3 Compariosn Study . 109

6.3.1 Features of Leader-based Consensus Protocols 110

6.4 Summary . 116

7 Summary and Conclusions 118

7.1 Summary . 118

7.2 Conclusion . 120

7.3 Future Work . 120

vi

List of Figures

1.1 Always Connected Network. 4

1.2 Delay Tolerant Network. 5

1.3 A Sparse Network. 6

1.4 CDF of DR. Wireless Range = 100m 7

3.1 Probability of h-connectivity in dense MANETs 31

3.2 Probability of h-connectivity in sparse MANETs 32

3.3 Probability of h-connectivity in DTN MANETs 32

3.4 values of Ih for P=1 in sparse MANETs 33

3.5 Multicast Support . 37

4.1 Encounter Gossip Multicast EGM Protocol disseminates messages

using flooding and encounter based 43

4.2 The EGM interface includes the functions provided to the upper pro-

tocol . 45

4.3 The group coverage vs the encounters threshold τ , Wireless range =

100m, node density = 1.6, max speed = 5m/s 48

4.4 The group coverage vs the encounters threshold τ , Wireless range =

200m, node density = 6.3, max speed = 10m/s 49

4.5 The average of initiated floods by a group member for a given mul-

ticast vs the encounters threshold τ . Wireless range = 100m, max

speed = 5m/s . 50

4.6 The average of initiated floods by a group member for a given mul-

ticast vs the encounters threshold τ . Wireless range = 200m, max

speed = 10m/s . 50

vii

4.7 The average of transmitted messages per member for a given multicast

vs the encounters threshold τ . Wireless range = 100m, max speed =

5m/s . 51

4.8 The average of transmitted messages per member for a given multicast

vs the encounters threshold τ . Wireless range = 200m, max speed =

10m/s . 51

4.9 The average number of transmissions per a node vs the encounters

threshold τ . Wireless range = 100m, max speed = 5m/s 52

4.10 The average number of transmissions per a node vs the encounters

threshold τ . Wireless range = 200m, max speed = 10m/s 52

4.11 The group response time (second) vs the encounters threshold τ .

Wireless range = 100m, max speed = 5m/s 53

4.12 The group response time (second) vs the encounters threshold τ .

Wireless range = 200m, max speed = 10m/s 53

4.13 The group coverage vs the encounters threshold τ , Wireless range =

100m, node density= 1.6 . 56

4.14 The group coverage vs the encounters threshold τ , Wireless range =

150m, node density= 3.5 . 57

4.15 The group coverage vs the encounters threshold τ , Wireless range =

200m, node density= 6.3 . 57

4.16 The average of initiated floods by a group member for a given multi-

cast vs the encounters threshold τ . Wireless range = 100m 58

4.17 The average of initiated floods by a group member for a given multi-

cast vs the encounters threshold τ . Wireless range = 150m 58

4.18 The average of initiated floods by a group member for a given multi-

cast vs the encounters threshold τ . Wireless range = 200m 59

4.19 The average of transmitted messages per member for a given multicast

vs the encounters threshold τ . Wireless range = 100m 60

4.20 The average of transmitted messages per member for a given multicast

vs the encounters threshold τ . Wireless range = 150m 60

4.21 The average of transmitted messages per member for a given multicast

vs the encounters threshold τ . Wireless range = 200m 61

4.22 The average number of transmissions per a node vs the encounters

threshold τ . Wireless range = 100m 61

viii

4.23 The average number of transmissions per a node vs the encounters

threshold τ . Wireless range = 150m 62

4.24 The average number of transmissions per a node vs the encounters

threshold τ . Wireless range = 200m 62

4.25 The group response time (second) vs the encounters threshold τ .

Wireless range = 100m . 63

4.26 The group response time (second) vs the encounters threshold τ .

Wireless range = 150m . 63

4.27 The group response time (second) vs the encounters threshold τ .

Wireless range = 200m . 64

5.1 ♦RC protocol sends messages in two consecutive phases 67

5.2 ♦RC protocol without using ♦R service 76

5.3 The 2-hop neighbourhood between group members. The arrowa show

the routes between the neighbours . 81

5.4 The 2-hop neighbourhood after some members move away 82

5.5 The relinquishing time (seconds) vs the max speed (m/s) 86

5.6 The average of sent data packets per node vs the max speed (m/s) . . 87

5.7 The average of sent control packets per node vs the max speed (m/s) 87

5.8 The average number of transmitted NM control packets per node vs

the max speed (m/s) . 88

5.9 The quiescence time (seconds) vs the max speed (m/s) 89

5.10 The total number of sent control packets vs the max speed (m/s) . . 90

5.11 The relinquishing time (seconds) vs the max speed (m/s) 91

5.12 The average of sent data packets per node vs the max speed (m/s) . . 92

5.13 The average of sent control packets per node vs the max speed (m/s) 93

6.1 The Consensus Function . 99

6.2 Pseudo-Code for Consensus Thread 100

6.3 Average number of rounds vs the max speed (m/s) 103

6.4 Time until the first members decide vs the max speed (m/s) 104

6.5 Time until total quiescence vs the max speed (m/s) 105

6.6 The average of transmitted data packets per node unitil total quies-

cence vs the max speed (m/s) . 106

ix

6.7 The average of transmitted control packets per node unitil total qui-

escence vs the max speed(m/s) . 106

6.8 The average of transmitted data packets per node until the first mem-

bers decide vs the max speed (m/s) 107

6.9 The average of transmitted control packets per node unitil the first

members decide vs the max speed(m/s) 107

6.10 Time until the first members decide vs the max speed (m/s) 108

6.11 Time until total quiescence vs the max speed (m/s) 109

6.12 The average of transmitted control packets per node unitil total qui-

escence vs the max speed(m/s) . 109

6.13 CDF of number of leader changes . 112

x

List of Tables

1.1 Network Densities Considered for Evaluation 4

4.1 Default simulation parameters . 46

4.2 Initial values of φ . 56

xi

Chapter 1

Introduction

A Mobile Ad-hoc Network (MANET) consists of wireless mobile devices, called

nodes, which have the ability to send and receive messages. So each node is equipped

with wireless transmitter and receiver. These nodes operate without the aid of any

fixed infrastructure such as access points. So when a node transmits a message,

all nodes within its wireless transmission range may receive this message. In this

type of networks, a node wishing to communicate with nodes which are outside its

wireless range will have to use intermediate nodes to route messages. So the message

might visit multiple nodes before reaching its destination. Such networks are often

referred to as multi-hop networks.

The number of mobile devices with wireless network capabilities is growing,

triggered by the fast growth of wireless communication. The wireless capable devices

are daily used by the users of WiFi (802.11X variants) in laptops and PDAs (Personal

Digital Assistants), and Bluetooth in mobile phones. The mobility speed of these

devices can be wide-ranging; people, vehicles, animals etc may all carry these devices.

MANETs have some constraints which should be considered when designing any

solutions for this type of networks. These constraints can be summarized as follows.

1. Dynamic topology: The node mobility causes continuous and unpredictable

topology changes of mobile ad hoc networks. The link connectivity dynami-

cally varies in an arbitrary manner. This link is based on the proximity of one

node to another node, and it is affected by physical obstacles (such as mov-

ing vehicles, buildings, mountains, etc). Thus, the link is prone to frequent

breakage during node’s mobility.

2. Low bandwidth: MANETs use wireless channels that provide limited band-

1

width for transmission. Moreover, these channels are subjected to noise, fading

and interference.

3. Limited energy: Mobile devices get their energy from batteries which have a

limited power. This results in limited processing power of the mobile devices.

1.1 Applications of MANET

Generally, MANETs are suitable for all cases in which a temporary communication

is required or in cases the constructing of a traditional network infrastructure is not

possible. A common example for the environment where a network infrastructure

cannot be created is the military battlefield. Military devices (tanks, vehicles etc)

usually include some kind of computer equipment. Ad hoc networking would allow

these devices to retain an information network between the military information

head quarters, soldiers, and vehicles.

Related heavily to military scenarios are crisis and catastrophe scenario manage-

ment applications. It is very popular to use ad hoc networks in emergency circum-

stances. These occur, for example, after a large natural disasters like an earthquake

where the entire communications infrastructure may be completely damaged. Re-

viving communications quickly is crucial. So using ad hoc networks, the communi-

cations could be installed in hours instead of using wire-line communications which

require days/weeks to be installed.

Another common application of MANET is a Vehicular Ad-Hoc Network (VANET).

This type of networks provides road safety and passengers comfort. Vehicle moving

on the road are equipped with special electronic wireless devices which provide ad

hoc network connectivity to the passengers. So each vehicle, supplied with the wire-

less device, can receive and send/forward messages through the wireless network.

The drivers of the connected vehicles can share the road information which includes

collision warning, road sign alarms and in-place traffic view which all give the driver

essential tools to choose the best path along the way.

1.2 Background and Motivation

MANET is perhaps unique in its ability to facilitate collaboration amongst mobile

users in terrains that have no fixed infrastructures for communication support. One

2

of the challenging problems in supporting collaboration is to enable the users to

reach an identical collective decision while their preferred options are all different but

equally appropriate. This problem is widely known as the consensus [FLP85]. The

broader aim of our work is to build a consensus module for supporting collaborations

in a MANET.

In the consensus problem, implemented over a group of n nodes, each node Ni

proposes a value vi, then all correct nodes need to decide on a common value v

which is equal to one of the proposed values [CT96]. So the consensus problem

can be described using two primitives: propose and decide. Thus, we say that

the node Ni “proposes” vi, where vi is its proposal to the consensus protocol, when

Ni invokes propose(vi). Moreover, we say that Ni “decides” v, when Ni invokes

decide() and gets v as a result.

The consensus problem is defined by the following properties:

Validity If a node decides v, then v was the proposed value by some node.

Agreement No two nodes decide different values.

Termination Each correct node finally decides.

While the agreement and validity properties define the safety properties associated

with consensus, the termination property defines its liveness property.

We consider a system S made up of N nodes collaborating towards a common

goal. Out of N nodes, a small group G of n nodes is formed for the purpose of

reaching consensus during the collaboration. So each node in G proposes a value

and a unanimous choice out of the different proposals needs to be made. There

are several consensus protocols proposed for MANETs. Some of these protocols

([WCR09], [WCYR07], [CDG+05], [BPS08]) require that at least one node in G

remains connected to all other nodes in G for a sufficiently long duration. We will

derive a consensus protocol depending on different approach which doest not impose

this requirement. We will also develop two multicast protocols to be used under the

derived consensus protocol. The first multicast protocol will be used to help nodes

in G to reach decision. The second protocol will be used by deciding nodes to

multicast the decision.

Of the several consensus protocols proposed for a MANET, only a few have been

subject to performance evaluation. A closer look at these works reveals that they all

assume a network density that would leave the MANET almost always connected.

Network density can be defined as the average number of nodes within a disc of

3

radius equal to the nodes’ wireless range. Informally, two nodes are said to be

directly connected if they are in each other’s wireless range, and simply connected

if they are either directly connected or a sequence of one or more directly connected

nodes is between in them. (In Figure 1.1, Ni, 1 ≤ i ≤ 4, are connected to each other,

where ↔ is a direct connectivity.) Thus, the denser the network, the more likely

that any two nodes remain connected despite node mobility.

N
1

X
5

X
6

N
4

X
3 X

4
N
3

N
2

X
1

X
2

Figure 1.1: Always Connected Network.

Table 1.1 lists the density values considered in the design and evaluation of

consensus protocols in the literature. A density value of, say, 8.7 means that each

node is expected to be directly connected with 7.7 other nodes at any moment. Even

when nodes move at moderate speeds, any two nodes will have, at any moment, at

least one path connecting them and also lasting long enough for supporting message

transmission. (In [BPS08], connections last longer also for acknowledgments to be

received.)

Table 1.1: Network Densities Considered for Evaluation
Protocol Density

WCR2009[WCR09] 7.8
WCYR2007[WCYR07] 7.8
CDSNT2005[CDG+05] 11.2 - 352

BPS2008[BPS08] 8.7 - 707

At the opposite end to dense networks is the delay tolerant networking (DTN)

4

[Fal03]. Density is so low that a multi-hop connectivity is rare and direct connectivity

between a given node pair can take an arbitrarily long time to emerge. So, routing

a message, say, m to a given destination itself is a challenge with DTN (see [Zha06]

for a survey). It typically relies on opportunistic forwarding as Figure 1.2 illustrates:

direct connections that commence at different (and arbitrary) instances, t1, t2, t3

are treated as ‘opportunities’ for forwarding m from N1 to N2, with intermediaries

X1 and X2 willing to retain m and wait for such an opportunity. Figure 1.2 shows

that nodes N1 and X1 become connected during the interval (t1, t
′
1) in which N1

transmits m to X1, node X1 upon receiving m will retain this message awaiting

any opportunity to forward it. After t′
1, nodes possessing m do not experience

connectivity with any other nodes for an arbitrary time until t2. During the interval

(t2, t
′
2), X1 and X2 get connected, so m is transmitted to X2. In the same way

nodes X2 and N2 attain connectivity during the interval (t3, t
′
3) after an arbitrary

disconnectivity interval (t′
2, t3) of nodes which possess m. So nodes in this type of

networks manage to exchange messages after a sequence of intermittent connectivity

until the message reaches its destination. Message latencies are typically long and

are not the only criterion for measuring the efficacy of a routing strategy [Zha06].

To our knowledge, consensus has not been solved with DTN.

N
1

X
1

X
2

N
2

t
1

t
1
/ t

2
/t

2
t
3

t
3
/

N
1

X
1

X
2N

2

N
2

N
1

X
1

X
2

Figure 1.2: Delay Tolerant Network.

This thesis solves consensus for MANETs of density values larger than DTN but

not large enough to keep the network always connected. The MANET we consider

keeps distinct subsets of nodes connected at distinct intervals, and the sequence of

connectivity formed over some (unknown) period of time, would allow any node to

5

N
1

X
1

X
2

N
4

N
2

t
1

t
1
/ t

2
/t

2
t
3

t
3
/

N
3

N
4

N
1 X

3 X
4

N
3

N
2

N
1

X
5

X
2

N
3

N
4

N
2

X
3

X
4

X
6

X
6

X
5

X
5

X
6

X
1

X
2 X

1

X
4

X
3

Figure 1.3: A Sparse Network.

transmit its message to any other node if opportunistic forwarding is used.

Referring to Figure 1.3, connectivity involving {N1, X1, X2, N2}, prevails during

the interval (t1, t
′
1), enables nodes N1 and N2 to communicate without the need

for intermediate nodes (X1, X2) to retain messages. An arbitrary interval of time

elapses before the connectivity involving {N1, X3, X4, N3} occurs during the interval

(t2, t
′
2) and so on. Thus (t′

1, t2) and (t′
2, t3) are arbitrary unknown intervals, but

they are finite according to the liveness requirement which will be explained shortly.

The connectivity sequence occurred during (t1, t
′
3) supports opportunistic forwarding

from N2 to N3 and N4 (via N1); and also from N3 to N4.

Specifically, we assume that a MANET is just dense enough to satisfy the fol-

lowing liveness requirement: for any subset G of three or more nodes, such as

G = {N1, N2, N3, N4}, any partitioning of G, which is likely to occur, cannot be

permanent and is guaranteed to be healed through the connectivity sequence that

emerge over some finite but unknown amount of time. When the MANET meets

this requirement, nodes of G are guaranteed to be able to exchange information,

and therefore collaborate, with each other.

To expose the challenges posed by a sparse network, we simulated a network of

50 mobile nodes dispersed over a square terrain of dimensions (1000m)× (1000m).

The wireless range of nodes is 100m resulting in a nodes density of 1.6. So, there

is a 40% chance that a node will have no other node in its wireless range at any

given moment. 10 nodes were randomly selected to form a group G . The maximum

node speeds 5 m/s, 20 m/s, and 40 m/s where nodes move according to the Random

6

Waypoint mobility style. Nodes of G exchange messages using the basic flooding

protocol: when a node receives a message for the first time, it transmits that message

after a small random wait (irrespective of whether any node is present in its wireless

range).

A flood, once initiated, terminates quickly. The fraction of nodes in G which

receive a flood message (at least once), called the delivery ratio (DR), can thus

indicate the connectivity that existed between the message source and other nodes

of G during flooding. Each node of G flooded 100 messages of 512 Bytes each

and, to avoid losses due to collisions, floods (from any node) were well spaced out

in time. With node mobility as per Random Way Point model, Figure 1.4 depicts

the cumulative distribution function (cdf) of DR. Using this, we present the three

significant challenges that need to be addressed for reaching consensus when the

MANET is sparse.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
(≤

 x
)

DR in %

 speed 5
 speed 20
 speed 40

Figure 1.4: CDF of DR. Wireless Range = 100m

• The earlier works listed in Table 1.1 use a class of consensus protocols ([WCR09],

[WCYR07], [CDG+05], [BPS08]) that require that at least one node in G re-

mains connected to all other nodes in G for a sufficiently long duration. Figure

1.4 suggests that a sparse MANET cannot be relied upon to meet this require-

ment: the probability that a node at any moment is connected to, say, more

than 80% of nodes is only 10% (1 − P (DR ≤ 0.8) ≈ 0.1). So, we will use a

different approach [EMR01] that imposes no such requirement.

7

• A consensus protocol, randomized or otherwise, requires that when a node

multicasts its initial proposal, at least a majority of collaborating nodes receive

it. With this probability being as small as 40% in Figure 1.4, consensus requires

a multicast support that indulges in opportunistic forwarding which in turn

requires nodes to retain messages potentially for long durations. Moreover,

nodes typically engage in several rounds of message exchange before reaching

consensus and this increases the number of messages being retained.

So, we develop two types of multicast protocols to support consensus:

1. (♦RC) protocol that is guaranteed to delete a message (eventually re-

linquishing ♦R) once a target on DR is achieved (coverage, C). This

protocol will be used to help nodes to reach decision.

2. An eventually quiescent (♦QC) protocol that is guaranteed not to trans-

mit a message m (eventually quiescent ♦Q) once all nodes that were

operative at some time have received m (coverage, C), but may retain m

for ever. So ♦QC will be used just for sending the decision when a node

decides. This protocol, unlike ♦RC, guarantees that each operative node

will receive the decision if it does not decide, otherwise the decisions will

be identical.

• The third and final challenge arises due to an interplay between the possibility

of node crashes and the maximum DR the ♦RC protocol can guarantee. Even

if the latter delivers a multicast message to a majority of nodes, some of these

nodes could subsequently crash, leaving the number of operative nodes that

received the multicast to fall below the threshold needed for consensus to make

progress. To deal with such unfortunate possibilities, the consensus protocol

of [EMR01] will have to be appropriately adapted.

When a node decides, the decision should be sent to all operative nodes. So

the ♦QC protocol will be used to send decisions. The ♦Q protocols in [ACT00]

assume that the nodes are connected. The latter assumption cannot be tolerated in

sparse MANETs. So the ♦QC protocol will be developed to suit sparse MANETs.

Moreover, another reason for using ♦QC only for sending decisions is that: ♦QC

might retain messages forever. The authors of [ACT00] also observe that for ♦Q

protocol to be able to delete messages (have ♦R), nodes need to know which nodes

8

have crashed. The latter knowledge is very difficult to obtain in MANETs, it is

particularly difficult to distinguish slow nodes from crashed ones.

♦RC protocol, unlike ♦QC, is eventually relinquishing (♦R) which means that

it deletes each message m after meeting a target on DR. The latter♦R property is of

high interest in MANETs in which nodes suffer from memory constraints. Therefore,

the use of ♦RC protocol will be kept to maximum possible. Basic flooding and its

variations, such as [HOTV99], are ♦R protocols. However, they cannot guarantee

anything on the DR, this guarantee is a crucial requirement for reaching consensus.

♦RC and ♦QC protocols described here use two, simple underlying services.

1. The first service provides, for a node Ni, an up-to-date view on the H-hop

neighborhood NeighH , which contains all other nodes that are connected to

Ni by at most H hops, for some chosen H ≥ 1.

2. The second service is optional and it can be any ♦R (eventually relinquishing)

protocol such as basic flooding. Using this service reduces the message over-

head of ♦RC and ♦QC multicast messages, albeit at the expense of delivery

latency. Its presence offers a leverage for making a trade-off between overhead

and latency.

1.3 Contributions

The main contributions of this thesis can be summarised as follows:

1. ♦RC Multicast Protocol

a new ♦RC multicast protocol is developed to support the consensus. This

protocol guarantees that nodes discard every multicast message m once a

target on the number of nodes which have received m is achieved (Chapter 5).

2. ♦QC Multicast Protocol

We introduce a new ♦QC multicast protocol which guarantees that dissemi-

nation of a multicast message m stops permanently once all operative nodes

have received m (Chapter 5).

3. Derivation of A Consensus Protocol

We derive a consensus protocol which forms with the latter two multicast pro-

9

tocols a consensus module for supporting collaborations in a MANET (Chapter

6).

4. ♦R Multicast Protocol

♦QC and ♦RC protocols can work on top of any ♦R multicast protocol. So

we produce a new ♦R multicast protocol to be used by our ♦QC and ♦RC.

This protocol is derived from an encounter based broadcast protocol (Chapter

4).

5. Neighbourhood Manager NM Protocol

We develop a new protocol, called Neighbourhood Manager NM, to build and

maintain the H-hop neighbourhood list. This list is used by ♦QC and ♦RC

protocols (Chapter 5 Section 5.4).

1.4 Thesis Outline

The outline of the thesis is as follows. In Chapter 2 we discuss the related work for

both consensus and multicast protocols. We highlight the limitations and merits of

the various approaches.

In Chapter 3 we describe the system context, fault assumptions which define

the maximum number of tolerable crashes in the system, required connectivity as-

sumptions for the system to be able to reach consensus, specifications of multicast

protocols and our approach to reaching consensus.

In chapter 4 a ♦R protocol called Encounter Gossip Multicast protocol is derived

from another protocol (Encounter Gossip broadcast protocol), and a performance

evaluation of the new derived protocol is carried out. Moreover, we introduce an

optimization to reduce the number of redundant floods in our new ♦R protocol and

study the performance after implementing the new optimization.

In chapter 5 we introduce our new ♦RC and ♦QC multicast protocols on top of

the Encounter Gossip Multicast protocol, present the new Neighbourhood Manager

protocol and study the performance of ♦RC and ♦QC protocols.

In chapter 6, we present our derived consensus protocol and study the perfor-

mance of the whole consensus module, that is, the consensus protocol on top of

♦RC and ♦QC protocols.

10

In Chapter 7, we conclude by summarizing our contributions and giving some

outlines for the future work.

11

Chapter 2

Related Work

This chapter discusses fundamental related work on multicast routing protocols and

solving the consensus problem in MANETs. We give a brief view about different

types of multicast routing protocols for MANETs. The multicast routing in Delay

Tolerant Networks (DTN) needs more requirements, in terms of memory and power,

so it is briefly discussed in a separate section (in section 2.1). The taxonomy of

multicast routing protocols in dense networks is introduced in section 2.2. In section

2.3, detailed discussion about the consensus problem is introduced. This includes

the known approaches and some existed protocols for solving consensus.

2.1 Routing in Delay Tolerant Network (DTN)

The routing of DTN can be categorized into two types deterministic routing and

stochastic (dynamic) routing [Zha06].

2.1.1 Deterministic Routing

This type of routing assumes that the future movement of nodes is completely known.

So all the future connections between nodes are known ahead of time. Therefore, the

transmissions of any message m (when and where to forward m) can be scheduled

ahead of time. So an end-to-end route is determined before a message is actually

transmitted. We refer the reader to [HGR04] for more information about determin-

istic routing.

The deterministic routing assumes that the network topology is known ahead of

time. This assumption cannot be tolerated in MANETs where nodes move randomly

12

and in unpredictable way. In particular, in environments such as a battle field or a

city hit by earthquake.

2.1.2 Stochastic Approach

Protocols under this approach assume that the network behavior is random and

not known. These protocols have to make decisions regarding when and where to

forward messages. The easiest decision is to transmit to any contacts within range,

while other ways are based on mobility patterns or history data.

Xi et al. [XC09] propose an encounter-based multicast routing (EBMR) proto-

col for DTN. This protocol depends on the knowledge, achieved from the history of

encounters, to select a next-hop node for sending a message m. Specifically, this pro-

tocol creates, at every node Ni, a probabilistic variable called delivery predictability

for each known destination. This variable shows the probable ability of node Ni to

deliver a message to the destination Nj. Moreover, nodes exchange their delivery

predictability values by broadcasting beacon periodically. So the beacon, which is

sent by Ni, contains the delivery predictability values from Ni to all other nodes.

When node Nj receives the beacon, it updates its delivery predictability values ac-

cording to the received ones. Moreover, the delivery predictability for node Ni will

age if Nj does not receive beacon from Ni during a specific interval of time. The

delivery predictability is transitive. So when Nj encounters Nk and Ni encounters

Nj, Ni can update its delivery predictability to node Nk (denoted as P (Ni, Nk)) de-

pending on its delivery predictability to node Nj P (Ni, Nj) and node Nj’s delivery

predictability to node Nk P (Nj, Nk).

The delivery predictability values are maintained in an N ×N Matrix (N is the

total number of nodes) where row i in the matrix contains the delivery predictability

values of node Ni to the other N − 1 nodes (the diagonal entry (i, i) is ignored).

According to EBMR, node Ni, which encounters another node Nj, passes the

multicast message m to Nj if Nj has delivery predictability higher than a delivery

threshold (Pthresh) or a wait timer (WT) expires. When a node receives a multicast

message, it will select the required number of nodes with the highest delivery pre-

dictability (that exceeds Pthresh) to every multicast receiver. The message will be

stored if no such next-hop node is found, that is, until the wait timer WT expires.

When WT expires, the node will select a node, which has not been selected before,

13

with the highest delivery predictability to a multicast receiver. So each relay node

(including the source) will have the chance to pick a next-hop node with delivery

predictability greater than Pthresh within the WT time.

Xi et al. state that the use of WT, for nodes storing a message m, reduces the

number of hops which are visited by m before reaching the destination. That is,

by giving the node Ni, which stores m, the chance to continue to store m during

the WT time. So Ni can have longer time to choose a next hop, for m, which has

delivery predictability higher than Pthresh. However, in cases when nodes need to

engage in several rounds of message exchange (such as consensus), they are required

to retain more messages at one time. This might result in unaffordable cost of

memory and power by the nodes which suffer from memory and power constraints.

Moreover, any node which has a message m deletes m upon choosing the next hop

for each receiver. This means that the channel is assumed to be reliable which is not

convenient assumption for MANETs where m might get lost after being transmitted.

The analysis and simulations, which the authors had for this protocol, show that

the average end-to-end delay incurred by the delivered messages was about 2000

seconds. That is, by using the Random Waypoint mobility style, Pthresh = 0.5 and

WT = 500 seconds. The authors also show that this delay can be reduced when

the source of each sent message m transmits m more than once. However, it is

shown that this reduction is at the expense of data efficiency (the total number of

messages received to the number of transmissions used to deliver these messages)

which is reduced dramatically when a source transmits a message more than once.

2.2 Taxonomy of Multicast Routing Protocols in

Dense Networks

Classification methods assist designers and researchers to comprehend the distinct

features of different multicast routing protocols and discover the internal relationship

among them. These features are mainly related to the tasks which nodes may take in

the multicast routing process and the information which is exploited for MANETs.

We consider below two types of classifications.

14

2.2.1 Tree and Mesh Based Multicast Routing Protocols

One of the most common ways of classifying multicast protocols is based on how

routes among group members are built. According to this way, multicast protocols

are divided into mesh-based and tree-based multicast protocols.

Many performance comparison studies of tree-based and mesh-based multicast

protocols were carried out. In this section, we will refer to two of these studies

[LSH+00] and [VOT06].

The study in [LSH+00] compares between the performance of On-Demand Multi-

cast Routing Protocol (ODMRP) [LGC99] and Core-Assisted Mesh Protocol (CAMP)

[GLAM99] as mesh-based approaches versus Adhoc Multicasting Routing Protocol

(AMRoute) [BLMT98] and Ad Hoc Multicast Routing Protocol Utilizing Increasing

Id-NumberS (AMRIS) [WTa98] which are both tree-based protocols. This study

shows that ODMRP has the best performance against all other protocols included

in this study. Moreover, CAMP was the second best protocol which also gives a

good performance comparing with the tree-based approaches.

The another study in [VOT06] compares ODMRP against Multicast Ad Hoc On-

Demand Distance Vector (MAODV) protocol [RP99] which is a tree-based protocol.

This study proves that ODMRP gives a better packet delivery ratio than MAODV.

The mesh-based protocols can provide with a high delivery ratio because they

create redundant routes with a mesh topology. This enables these protocols to work

even when some routes break due to node mobility. Therefore, mesh-based protocols

can be described as robust even when the node mobility is high. In contrast, tree-

based protocols give poor delivery ratio when node mobility is high. In fact, the

absence of redundant routes compels these protocols to rebuild the routes tree when

any topology changes occur. Therefore, these protocols are considered as very fragile

to nodes mobility.

2.2.2 Proactive and Reactive Multicast Routing Protocols

Another taxonomy is based on how routing information is gathered and maintained

by mobile nodes. According to this method, multicast protocols can be classified

into proactive routing and reactive routing.

A proactive multicast routing protocol is denoted as “table-driven” multicast

protocol. According to this type of protocols, each node retains one or more tables

15

containing information about the entire network topology. These tables retain up-

to-date routing information from every node to each other node. Maintaining up-

to-date routing information requires nodes to exchange the topology information

on a regular basis. This leads to a relatively excessive overhead on the network.

However, routes between nodes will always be available on request. Recently, several

proactive multicast routing protocols have been proposed, such as ad-hoc multicast

routing protocol utilizing increasing Id numbers (AMRIS) [WTa98], core assisted

mesh protocol (CAMP) [GLAM99] , and location guided tree (LGT) [CTA02].

A reactive multicast routing protocol is denoted as “on-demand” multicast pro-

tocol. Reactive protocols build the routes on-demand. That is, just when a node

needs to commence communication with another node to which it has no route, the

protocol will attempt to set such a route. Reactive multicast protocols are more scal-

able than proactive multicast protocols because they build routes just when these

routes are needed. However, when using reactive multicast protocols, source nodes

may need to wait until the routes are established. So source nodes may practice

long delays for route searching before they can send data packets. As examples

for reactive multicast protocols, Adaptive Core-based Multicast Routing Protocol

(ACMP) [KEJ05] and Mesh-based Multicast Routing Protocol with Consolidated

Query Packets (CQMP) [DN05].

2.3 The Consensus Problem

2.3.1 System Model

One of the most essential characteristics of distributed systems is the distinction be-

tween the synchronous and the asynchronous systems. In the synchronous system

each message can be received in a known bounded time after it is sent, also any pro-

cess take a known bounded time to be performed. While in the asynchronous system

the bounds on the message delays and the processing speeds are not certain. This

makes the asynchronous systems a very generic paradigm for distributed systems.

It is clear that MANETs are actually asynchronous systems because in MANETs

the bounds on message-delivery are not known with certenity. In particular, when

any two nodes get disconnected, it cannot be known how long it will take for these

nodes to get connected again.

16

2.3.2 A Fundamental Impossibility Result

This impossibility has been proved by Fischer, Lynch and Paterson[FLP85]. They

showed that it is impossible to design a deterministic consensus protocol in an

asynchronous distributed system prone to even a single crash failure. This result is

known as the FLP impossibility result and it holds even if a reliable communication

between nodes is attained.

The grounds which lead to this impossibility are that in an asynchronous system

it is impossible to recognize a crashed node from a very slow one. So the nodes

might wait to receive from one node (which is an expected slow node), but this

node may crash without the knowledge of other nodes. As a result, the nodes will

wait for ever to receive from this crashed node and so they will never decide. This

contradicts the termination property in the definition of consensus.

System developers must have a deep understanding about this impossibility re-

sult [GS97] which has attracted many researchers to find the weakest conditions

which, when satisfied by asynchronous systems, cause the consensus problem to be

solvable. The next section will survey some approaches used to solve the consensus

problem.

2.3.3 Known Approaches to Solving consensus

Many protocols have been developed to circumvent the FLP impossibility result.

These protocols use two ways in their solutions; (i) adding some timeliness require-

ments to the network, or (ii) changing the deterministic termination property to a

probabilistic one.

The first way, adding some timeliness requirements, assumes that the network

moves through steady intervals during which the progression towards consensus can

be achieved. This way involves the partial synchrony [DLS88], the timed asyn-

chronous model [CF99] and unreliable failure detectors [CT96]. Due to the popu-

larity of failure detectors, we will elaborate on them shortly.

The second way, changing the deterministic termination property, solves the

problem by weakening the deterministic termination property to the termination

with probability 1. That is, without affecting the safety properties. The random-

ization [BO83] uses this way to solve the problem.

17

2.3.3.1 Unreliable Failure Detectors

The unreliable failure detector concept, which was first established by Chandra and

Toueg [CT96], is one of the strongest notions for creating and maintaining depend-

able distributed applications. So, in a system with n nodes, the failure detector

consists of n modules, one per node, which provide the nodes with approximate

views of the node crashes during the execution. Thus each module provides a list

of suspected/crashed nodes. Since the system is asynchronous, the failure detector

is expected to make mistakes. That is, a failure detector may not suspect a crashed

node, or suspect a correct one. However, the failure detector eventually has to give

true information. So the errors of any failure detector has to be constrained by

completeness and accuracy properties. The completeness property needs nodes to

eventually suspect every bad node, while accuracy confines the number of incorrect

suspicions which a failure detector might make.

Several classes of failure detectors were defined in [CT96] based on different

descriptions of the completeness and accuracy properties. In this section we will

concentrate on the class of eventual strong failure detectors, denoted as ♦S, which

are the weakest required for consensus [CT96]. The completeness and accuracy

properties for ♦S class are defined as follows:

Strong Completeness: Eventually all correct nodes permanently suspect every

crashed node;

Eventual Weak Accuracy: Eventually some correct node is never suspected by

any correct node;

We will also define the class of eventual perfect failure detectors (♦P). This class

of failure detectors has the same completeness property of ♦S and the following

accuracy property:

Eventual Strong Accuracy: There is a time after which correct nodes are not

suspected by any correct node.

The failure detectors build the list of suspected nodes by following one of two

ways; either by sending periodic “heartbeat” messages between the failure detector

modules or by depending on gossiping to exchange the view of suspected nodes

[vRMH98].

18

2.3.4 ♦R and ♦Q protocols

The basic flooding protocol [HOTV99] is a ♦R protocol. This protocol works in

very simple way; when a node has a message m to send, it transmits m for one time.

Each node upon receiving m for the first time, it transmits m after a small random

wait (irrespective of whether any node is present in its wireless range).

The flooding protocol is network topology-independent which means that it does

not use any information about the network topology. The latter property is attrac-

tive for MANETs because nodes move frequently so storing valid information about

the network topology becomes a big challenge. However, the flooding protocol can-

not guarantee anything on the number of nodes that would receive a sent message

m. This guarantee is an important requirement for many applications (such as

consensus).

The authors in [ACT00] propose their quiescent reliable communication pro-

tocols, and they have concentrated on two categories of reliable communication

mechanisms: reliable broadcast and quasi-reliable send and receive. Reliable broad-

cast guarantees that (i) when a correct node (e.g., it does not crash) broadcasts a

message m, all correct nodes receive m, and (ii) all correct nodes receive the same

group of messages. The primitives of send and receive are said to be quasi-reliable

if they meet the condition: when nodes p and q are correct, q will receive a message

m from p precisely as many times as p sent m.

The authors of [ACT00] have proved that there is no quiescent implementation of

reliable broadcast or quasi-reliable send and receive in asynchronous systems subject

to at least one crash (with no failure detectors). For example, if a node p is sending a

message m and a neighbour q, of p, crashes before receiving m, p will keep sending m

to q for ever because p does not know that q is crashed. So the authors use a failure

detector to achieve a quiescent implementation. The failure detector used here is

the Heartbeat (HB) failure detector. HB works in a simple way and it requires each

node p to store a vector of counters (one counter for each neighbour q of p). So this

detector works according to the following steps: (i) each node periodically sends

a small message called a ’heartbeat’, and (ii) when a neighbour q of p receives a

heartbeat from p, it increases the stored counter for p. So if a neighbour p of q is

not crashed, its counter at q increases with no bound. Therefore, when p crashes,

its counter at a neighbour q finally stops increasing.

19

So the authors of [ACT00] developed a number of algorithms for performing a

quiescent communication using HB. We choose to describe the implementation of

reliable broadcast because this implementation is more relevant to our approach. In

this implementation, each node p stores, for each message m, a knowledge vector

hasp[m] containing a set of nodes. A node q is added to hasp[m] if p knows that

q has received m. Each sent message m by a node p is in the form (m, has msg,

route) where has msg is the current value of hasp[m], and route is the list of nodes

that this copy of (m, has msg, route) has visited so far.

For each broadcast message m, p initializes hasp[m] to {p} and calls the task

diffuse(m). In the latter task, which runs in the background, node p periodically

looks at its HB; if, for a neighbour q /∈ hasp[m], the counter of q at p has grown p

sends (m, hasp[m], p) to all neighbours whose counter has grown. diffuse(m) runs

until all neighbours of p are included in hasp[m].

When a node p receives a message (m, has msg, route): (i) if it has not already

received m, it initializes hasp[m] to {p} and calls the task diffuse(m), (ii) it annexes

the content of the received has msg to hasp[m] and appends itself to route, and (iii)

it sends the new message (m, hasp[m], p) to the neighbours which show up at most

once in route.

2.3.5 Some Existing Protocols for Solving Consensus

Lamport [Lam06] proposes a consensus protocol denoted as Fast Paxos. According

to Fast Paxos, a single node can play different roles by enacting different agents at

the same time. An agent can represent one of the following major roles: a proposer

which can propose values to send them to acceptors, an acceptor that participates

in choosing a single value to be sent to learners, and a learner which receives, and

learns, the value that has been chosen.

Fast Paxos proceeds in rounds, with each round having two phases. This protocol

also uses a group of nodes which can act as coordinators; Any acceptor can play the

role of coordinator for some round. Moreover, a coordinator might coordinate a lot

of rounds. A coordinator c retains the following information:

crnd[c] The greatest round number which c has initiated, initially 0.

cval[c] The value that was chosen by c in the round crnd[c], or none when no

values

20

have been chosen by c.

Each acceptor a retains the following information:

rnd[a] The greatest round number in which a has played a role, initially 0.

vrnd[a] The largest round number in which a has diffused a vote, initially 0.

vval[a] The value which was accepted by a in round vrnd[a].

A round r, which is coordinated by c, proceeds in two phases according to the

following steps:

Phase 1:

a) A coordinator c, which changes crnd[c] to r and cval[c] to none, tries to request

a participation in the round r from each acceptor a by sending a message to every

acceptor a

b) When an acceptor a receives a message that asks a to participate in round r

and r > rnd[a], it changes rnd[a] to r and replies to the coordinator c by sending

a message that includes the round number r and the stored values of vrnd[a] and

vval[a]

Phase 2:

a) If a coordinator c receives the replies (which was sent in step b in phase 1) from

the majority of acceptors in a round r, crnd[c] = r and cval[c]=none; Then the

coordinator c uses the received replies to choose a value v; where c chooses the

reply that contains the greatest vrnd[a] and copies vval[a] from that reply to v.

Thereafter, c changes its cval[c] to v and sends a message to all acceptors to ask

them to vote in round r to accept v

b) An acceptor a upon receiving a requesting message to vote on a value v in round

r, it will accept v if r ≥ rnd[a] and vrnd[a] 6= r. After accepting v, a sets vval[a] to

v, sets vrnd[a] and rnd[a] to r, and then tries to inform all learners about its vote

in round r by sending a message to these learners.

Wu et al. [WCYR07] propose a consensus protocol equipped with ♦P which is

unreliable failure detector FD [CT96], [LFA04]. The FD provides nodes with the

list of nodes which are suspected to crash or have crashed. The proposed consensus

protocol divides the network into two layers; The first one represents the Clusterhead

layer which contains a predefined group H of nodes that function as clusterheads to

merge/unmerge and forward messages for nodes. The second one is the Host layer

which contains a group M of all nodes including those nodes in H.

Only nodes in H behave as coordinators or decision makers/agreement keepers

21

DA. So, each node links itself to the nearest unsuspected clusterhead from H.

Moreover, when a node suspects its clusterhead or it changes position, it has to

associate itself with the nearest clusterhead from H.

According to this protocol, each round r is composed of two phases. At the

beginning of the first phase of round r, the current coordinator mcc sends its estimate

(PROP (r, estcc) message) to the nodes in H. Each clusterhead, upon receiving from

mcc, forwards the PROP message to its local nodes. In case a clusterhead adds mcc

to its suspected nodes before receiving PROP (r, estcc), it sends PROP (r,⊥) to its

local nodes, where ⊥ is a value which cannot be adopted and it is different from any

estimates of nodes. A node mi upon receiving the PROP message from its local

clusterhead, if the received PROP (r, v) has v 6= ⊥, then mi changes its estimate to

v and timestamp ts to r. When mi suspects its local clusterhead or this clusterhead

is no longer the nearest, it has to associate itself with another clusterhead before

continuing with the consensus protocol.

In the second phase, each node mi in M sends an echo message ECHOL(ri, esti, tsi)

to its local clusterhead. Every clusterhead, after receiving ECHOL(r,−,−) from

all unsuspected local nodes, creates its echo message ECHOG(r, v, tsv, x, y) by

combining the received ECHOL(r,−,−) messages. Where tsv is the highest re-

ceived timestamp, v is the estimate received in ECHOL(r,−,−) with tsv, x is the

group of nodes that send ECHOL(r,−,−) with tsv and y is the group of nodes

that send ECHOL(r,−,−) with ts < tsv. The created ECHOG(r, v, tsv, x, y) is

then sent to the nodes in DA. Each clusterhead in DA waits until i) receiving

ECHOG(r,−,−,−,−) messages which represent no less n − f nodes (all nodes

in x and y not less n − f), or ii) receiving ECHOG(−,−, tsv,−,−) message with

tsv > r. A clusterhead changes its estimate to the value v which is received with

the highest timestamp. If a clusterhead in DA has f + 1 or more nodes in x groups

of the received ECHOG(r, v, tsv, x, y) messages with tsv = r, then it decides upon

v and broadcasts this decided value.

Wu et al. address the problem caused by the reliable channel assumption, but

they note that complex design changes would be required to enable their protocol

to work with lossy channels, which is more feasible for MANETs. Moreover, this

protocol imposes two-layer hierarchy where each node is associated with a cluster-

head. This requires nodes, due to mobility and clusterheads crashes, to change their

clusterheads during execution. So choosing and agreeing on clusterheads involve

22

solving consensus which results in circularity. In addition to that, keeping nodes in

clusters is almost impossible when the network is sparse.

Wu et al. propose another consensus protocol [WCR09] which is similar to their

protocol in [WCYR07] in the sense that it makes use of the cluster-based hierar-

chy. However, Wu et al. address three improvements of [WCR09] over [WCYR07];

Firstly, in [WCR09] the clustering function is separated from achieving consensus

while this function is tightly coupled with achieving consensus in [WCYR07]. Sec-

ondly, the group of clusterheads is changed to be dynamic in [WCR09], which is

static in [WCYR07]. Finally, the protocol in [WCR09] is provided with the com-

monly used FD of ♦S [CT96] while the ♦P is used in [WCYR07].

Wu et al. [WCR09] separate the concerns of constructing the hierarchy and

achieving consensus by specifying the function of clustering nodes as a new oracle,

called eventual clusterer, denoted as ♦C, and introducing a protocol for achieving

consensus using ♦C. The oracle ♦C has two tasks; detecting the crashes of nodes

(based on the FD of ♦S) and building a cluster-based two layer hierarchy. The

second task can be further divided into two subtasks: 1)choosing clusterheads and

2)creation and maintenance of clusters.

The selection of clusterheads involves consulting ♦S about the suspected nodes.

Thus, each node excludes any suspected nodes, by its FD, from its list of cluster-

heads CH. A node mi periodically sends its CH to other nodes, so these nodes,

upon receiving from mi, exclude any clusterheads which do not appear in the re-

ceived CH.

The clustering operation is started by cluster members. A node mi chooses the

nearest node mcc from CH and sends a JOIN message to mcc. Upon receiving the

JOIN message, in case of mcc is a clusterhead of itself, it allows the joining of mi by

sending a positive ACK message; otherwise, it does not allow the joining of mi by

sending a negative ACK message. If a negative ACK is received, mi picks another

candidate from CH and repeats the joining procedure; otherwise, it ends this joining

procedure.

A clusterhead mcc might get deleted from CH. When a cluster member mi

detects the deletion of the local clusterhead, or receives a RELEASE message from

the local clusterhead, it will switch to a new cluster. Moreover, a node mi will

switch its cluster, if it discovers that its current clusterhead is no longer the nearest

one. If mi is switching its clusterhead it sends a LEAVE message to its current

23

clusterhead. When mi itself is the clusterhead being deleted from CH, it sends a

RELEASE message to tell its cluster members.

Wu et al. tried to improve their previous protocol [WCYR07] by introducing

the protocol in [WCR09]. The new protocol mainly separates the concerns of con-

structing the hierarchy and achieving consensus. However, the new protocol still

assumes that the channel is reliable. Moreover, building the two-layer hierarchy is

not attainable when the network is sparse.

Borran et al. [BPS08] propose a consensus protocol denoted as LastVoting.

LastVoting is composed of a sequence of phases, where each phase consists of 4

rounds. In each phase processes have to elect and maintain a coordinator which

might be different from phase to phase. Each process has its proposal xp which is

attached with a timestamp tsp. During the first round of each phase, (xp, tsp) is sent

by each process p to its coordinator. When the coordinator receives (x, ts) from a

majority of processes, it changes its vote to the received proposal with the highest

timestamp. In the second round, the vote is sent by the coordinator to all processes.

Upon receiving the vote from the coordinator, each process replaces its proposal,

by the received vote, and updates its timestamp. In the third round, each process,

which has received the coordinator’s vote, sends an ack message to the coordinator.

The coordinator can decide after receiving acks from the majority of processes. In

the last round, the coordinator sends the decision to all processes. Each process

decides upon receiving the decision from the coordinator.

The coordinator communicates with other processes through diffusion; it broad-

casts the message to other processes inside its wireless range. A process p, upon

receiving a message from another process q for the first time, becomes a child of q

only when priorityq > priorityp (q wins the election against p). Then p, except when

priorityq < priorityp, broadcasts the received message. Multiple copies of the same

message are ignored. The nodes respond to the coordinator by using convergecast

which employs the tree which was built during the diffusion.

LastVoting protocol solves the consensus problem in presence of crashes and lossy

channels. However, the nodes have to elect their coordinator which, due to crashes

and mobility, need to be synchronized periodically. So when nodes get partitioned,

they might choose different coordinators. This makes nodes take longer time and

more phases to decide. Moreover, synchronizing the coordinator between nodes is

very challenging when the network is sparse. In addition to that, the tree of routes

24

which is used in the convergecast needs to be maintained against mobility.

Chockler et al. [CDG+05] developed their consensus algorithms. According to

these algorithms, the network consists of a sequence of non-overlapping grid squares

where every square is supposed to be populated. Each node has the knowledge of

its approximate position in the grid square. A single-hop consensus algorithm first

runs within each grid square to reach a local decision which is then sent to all other

grid squares. As soon as a node receives a value from each grid square, it decides

by applying a deterministic function to the set of received values.

Chockler et al. had very complex assumptions on the system model. For exam-

ple, they put strong synchrony assumptions (inter-node communication delay are

bounded by known constants). Moreover, it was assumed that nodes know their

locations and they do not move. All these assumptions add more restrictions which

cannot be met in MANETs.

2.4 Summary

The routing protocols proposed for DTN suffer from many drawbacks: some of

these protocols assume that the network topology is always known, some others

assume that links are reliable. These assumptions cannot be tolerated in MANETs

where nodes move in unpredictable way and the links are lossy. Moreover, these

protocols require nodes to retain messages for opportunistic forwarding. This causes

unffordable cost of memory and power in particular when nodes need to engage in

several rounds of message exchange.

The multicast routing protocols for MANETs can be categorized as tree/mesh

based protocols and proactive/reactive protocols. It was proved that mesh based

protocols perform better than tree based protocols in terms of the delivery ratio

because mesh based protocols create redundant routes with a mesh topology. This

enables the latter protocols to work even when some routes break due to node

mobility. In contrast, tree based protocols need to rebuild the routes tree when any

topology changes occur.

Reactive protocols are more scalable than proactive protocols because they build

routes just when these routes are needed. In contrast, building and maintaining

routes in proactive protocols continue for the whole protocol lifetime. This requires

nodes, for the whole protocol lifetime, to exchange messages to maintain up to date

25

routes.

The FLP impossibility result proves that it is impossible to design a deterministic

consensus protocol in an asynchronous distributed system prone to even a single

crash failure. So several protocols were developed to circumvent this impossibility.

Of the several developed protocols, only a few have been subject to performance

evaluation. So we choose to explain about these protocols and show their weakness

in solving the consensus, especially when the network is sparse.

26

Chapter 3

System Model and the Approach

3.1 System Model

The system S is made up of mobile nodes collaborating towards a common goal

in a terrain that has no fixed infrastructure for supporting communication between

nodes. The nodes communicate using the omnidirectional wireless transmission

functionality of a CSMA/CA-like MAC layer protocol (e.g. IEEE 802.11b). Ex-

change of information between nodes is thus limited strictly to ad-hoc networking.

A small group G of n nodes is formed at time t0 for the purpose of reaching

consensus whenever a unanimous choice out of different possibilities needs to be

made during the collaboration. Nodes of (S-G) cooperate to discover and maintain

connectivity between nodes of G ; that is, nodes of (S-G) act as routers for nodes of

G to exchange messages and execute consensus.

We assume that nodes of S have unique identifiers and let G={N1, N2, ...Nn}

and S-G={X1, X2, ...}. We also assume that n≥3 and |S-G |� n. Nodes of G are

referred to as member nodes or simply as members, and those of S-G as non-member

nodes or non-members, for short.

Of the n members of G , at most f , 0 < f < n
2
, can crash over the lifetime of

G and a crashed member does not recover. Thus, a member is either working or

crashed permanently. A working member is also referred to as an operative member

and functions according to its specification. Every operative member knows the

identity of all other members in G and also knows f and n.

We define W (t) as the set of members that are operative at time t > t0. Since a

crashed member does not recover, W (t) is non-increasing over time: W (t′) ⊆ W (t),

27

∀t′ ≥ t. Since f < n
2

< n, G has at least (n− f) members that never crash. These

members are called permanently working members or simply the correct members

of G . PW denotes the set of all correct members. PW ⊆ W (t) for all t ≥ t0.

Consistent with fault-assumptions in the consensus literature, we will assume that

it is the adversary who solely decides which members of G crash and when.

3.1.1 Assumptions about Node Connectivity

Consider two operative members that are in the wireless range of each other. Let δ

be the maximum delay that any one of them may take to transmit an application

message to the other, despite possible collisions and interferences. The members are

said to be 1-hop connected or simply 1-Connected at time t ≥ t0, if they remain

operative and also in each other’s range at least until (t+δ). Note that 1-Connectivity

at time t ≥ t0 is a binary relation on W (t + δ) which is reflexive, symmetric and

intransitive.

Two operative members, Ni and Nj, are said to be h-Connected if a path of at

most h, h ≥ 1, 1-Connections, exists between them for the next hδ duration at least.

Ni and Nj are said to be (B,h)-Connected if they are operative and h-Connected

for a duration of length at least B, where B > hδ is a parameter specified by the

application.

The intuition behind (B,h)-Connectivity is that h-connectivity between two mem-

bers is useful to an application, only if it lasts for an additional duration of at least

(B−hδ) time. Applications that are of interest here are the multicast protocols used

by the consensus protocol. Note that, by definition, (B,h)-Connectivity will imply

(B,h′)-Connectivity for h′ > h if B +(h′−h)δ ≈ B, i.e., if δ is negligibly small com-

pared to B. If (B,h)-Connectivity ⇒ (B,h′)-Connectivity, then (B,h)-Connectivity

is a reflexive, symmetric and transitive relation.

3.1.2 Liveness Requirement

From an application’s perspective, a member Ni is permanently isolated from the rest

of G starting from time t, if it never enjoys (B,h)-Connectivity with any operative

member for any h, h ≥ 1, at any time after t. Of course, the above notion of

member isolation assumes that Ni remains operative and that the absence of (B,h)-

Connectivity emergence is not because Ni crashed sometime after t.

28

Solving consensus requires that operative members are not isolated permanently;

the MANET must fulfill a liveness condition that eliminates such permanent member

isolations. This condition can be informally stated as follows. For every t, t ≥ t0,

any Ni ∈ W (t) that remains operative for a ‘long enough’ duration will have (B,h)-

Connectivity for some h, h ≥ 1, with some operative member Nj before t+Ih, where

Ih, Ih ≥ B, is finite but unknown.

Observe that there are two unknowns in the informal statement of the liveness

condition: h and Ih. To keep the protocol design tractable, we assume that only Ih

is unknown and the condition holds for all h, h ≥ 1. More precisely, our assumption

will be as stated below:

For every t, t ≥ t0, any Ni ∈ W (t) that remains operative for a ‘sufficiently long’

time will make (B,h)-Connectivity, for every h, h ≥ 1, with some operative member

before t + Ih, where Ih, Ih ≥ B is finite but unknown.

When (B,h)-Connectivity is assured for all h ≥ 1, applications can choose to

work with a particular value of h, say H. Note that if H is chosen to be small,

(B,H)-Connectivity may take longer to emerge. That is, the smaller the H, the

more likely that IH is large and the more delay-tolerant the application needs to be.

Formally, the liveness condition assumed can be stated as:

∀t ≥ t0,∀h ≥ 1,∃Ih, B ≤ Ih 6= ∞ :

(∀Ni ∈ W (t + Ih),∃Nj, Nj ∈ W (t + Ih) : (3.1)

Ni and Nj (B,h)-Connect at some time in [t, t + Ih])

In words, for every t, t ≥ t0, for every h ≥ 1, there exists a finite but unknown

Ih, Ih ≥ B, such that for every Ni ∈ W (t + Ih) there exists Nj ∈ W (t + Ih) which

(B,h)-Connects with Ni at some time during the interval [t, t + Ih].

Node isolation is a special case of group partitioning in which a subset, say, G ′, of

operative members are unable to (B,h)-Connect with any of the operative member

not in G ′. To avoid G ′ from being permanently partitioned, the MANET must allow

some member in G ′ to (B,h)-Connect with some operative member in (G-G ′) before

t + Ih, for all h ≥ 1. So generalizing (3.1) gives the required Liveness Condition

that is assumed to be satisfied by the MANET so that G is never permanently

partitioned from the application’s perspective:

29

Liveness Condition (LC)

∀t ≥ t0,∀h ≥ 1,∃Ih, B ≤ Ih 6= ∞ :

∀G ′, W (t + Ih) ⊃ G ′ 6= {},∃Ni, Nj : (3.2)

(Ni ∈ G ′, Nj ∈ W (t + Ih)−G ′ ∧

Ni and Nj (B,h)-Connect at some time in [t, t + Ih])

In words, for every t, t ≥ t0, for every h ≥ 1, there exists a finite but unknown

Ih, Ih ≥ B, such that for every non-empty G ′ ⊂ W (t+Ih) the following holds: there

are operative members Ni and Nj such that Ni ∈ G ′, Nj ∈ W (t + Ih) − G ′ and

(B,h)-Connectivity exists between them starting from some time in the interval [t,

t + Ih].

Remark. Ih = ∞, ∀h ≥ 1 and IH = B, for some finite H, represent two extreme

cases of interest.

When Ih = ∞, ∀h ≥ 1, an application will never see correct members having

(B,h)-Connectivity for durations that are as long as it needs. That is, it is pointless

for the application to be delay indulgent because the MANET is never going to

oblige its requirement.

On the other hand, IH = B means that, at every t, new (B,H)-Connectivity

between some Ni ∈ G ′ and some Nj ∈ W (t + Ih) − G ′ is emerging, or an existing

(B,H)-Connectivity prolongs beyond t for a further B time or more, or both. That

is, the MANET keeps the operative members of G always (B,H)-Connected.

3.1.3 Categories of MANETs Depending on Node Connec-

tivity

Chapter 1 shows three types of MANETs; dense, DTN and sparse. The node con-

nectivity is low in DTN and sparse MANETs, but there is a distinction between

these two types; In DTN, two operative members Ni and Nj might never make

(B,h)-Connectivity, for any h (h ≥ 1), with each other even if they stay operative.

So sending a message between two members requires any intermediate node to store

the message until this node joins connectivity with either the destination member or

another intermediate node. On the other hand, members in sparse MANETs satisfy

the liveness condition (3.2) which contains three variables B, h and Ih:

30

 0

 1

 1 2 3 4 5

P
ro

ba
bi

lit
y

of
 h

-c
on

ne
ct

iv
ity

h

Small Ιh
Medium Ιh

Big Ιh

Figure 3.1: Probability of h-connectivity in dense MANETs

1. The value of B is mainly decided by the application. Applications of interest

here are the multicast protocols. So we will explain about the value of B when

we introduce our multicast protocols.

2. The value of h can be any finite number greater than 0, so applications can

select a particular value of h. There have been several studies which try to

choose an optimal value for h. In [KDPH05] and [jLBrP03] the protocols try

a set of values before selecting a suitable value for h. The detailed study of

choosing the optimal value of h is kept beyond the scope of this thesis. The

only requirement for the system is to satisfy the liveness condition for any

h ≥ 1. Note that choosing a small value for h, say H, might cause the (B,H)-

Connectivity to take longer time to emerge. So the smaller the H, the more

delay tolerant the application needs to be.

3. The value of Ih represents the interval of time during which the (B,h)-Connectivity

between any two members will start.

Figures 3.1, 3.2 and 3.3 show a qualitative comparison between dense, sparse

and DTN MANETs using different values of h and Ih. This comparison shows that:

• In dense MANETs: The probability of the (B,h)-Connectivity between any two

members is high even when the value of Ih is not big; Increasing the value of

31

 0

 1

 1 2 3 4 5

P
ro

ba
bi

lit
y

of
 h

-c
on

ne
ct

iv
ity

h

Small Ιh
Medium Ιh

Big Ιh

Figure 3.2: Probability of h-connectivity in sparse MANETs

 0

 1

 1 2 3 4 5

P
ro

ba
bi

lit
y

of
 h

-c
on

ne
ct

iv
ity

h

Small Ιh
Medium Ιh

Big Ιh
Infinite Ιh

Figure 3.3: Probability of h-connectivity in DTN MANETs

Ih gives higher probability of the (B,h)-Connectivity. Moreover, incrementing

the value of h always results in higher probabilities of (B,h)-Connectivity (see

Figure 3.1).

• In sparse MANETs: Figure 3.2 shows that a high probability of (B,h)-Connectivity

requires big values of Ih even for moderate values of h (e.g. h=3). So, using

a small value of Ih results in low probability of (B,h)-Connectivity despite

32

depending on big values of h (e.g. h=5).

• In DTN MANETs: The probability of (B,h)-Connectivity is low even for big

values of Ih and h. Moreover, when the value of Ih grows without bound

(Ih → ∞) and for big values of h, the probability cannot be guaranteed to

reach 1 because there may exist pairs of members which might never join

(B,h)-Connectivity (see Figure 3.3).

Figure 3.4 shows how to obtain a probability of (B,h)-Connectivity equals to 1

in sparse MANETs: It indicates that a big value of h is required when Ih is small

and bigger value of Ih can guarantee the connectivity even when smaller values of h

are used.

 0
 1 2 3 4 5 6

Ι h

h
Ν-1

P(h-connectivity)=1

Figure 3.4: values of Ih for P=1 in sparse MANETs

3.1.4 Multicast Services

The authors of [BEV06] describe the eventually relinquishing and eventually qui-

escent properties of broadcasting protocols. We will define these properties for

multicasting protocols.

A multicast protocol is said to be eventually relinquishing (♦R), if it ensures that

there is a time after which operative members do not retain a multicast message for

dissemination purposes.

33

A multicast protocol is said to be eventually quiescent (♦Q, for short), if it

ensures that there is a time after which operative members permanently stop dis-

seminating a multicast message.

So in a multicast protocol with ♦R property, each member eventually stops

retaining a message m and also, by implication, stops sending m. On the other

hand, a multicast protocol with ♦Q property guarantees only eventual cessation of

sending of m; especially, it might require the members to retain m for ever. The

latter discussion proves that (i) ♦R ⇒ ♦Q, and (ii) ♦Q does not necessarily imply

♦R because ♦Q might retain m for ever.

Basic flooding and its variations, such as [HOTV99], are both ♦Q and ♦R.

However, they cannot guarantee anything on the number or the set of members that

would receive a multicast message. We will use the term coverage to refer to the

number or the type of members that receive a multicast message. We will define two

classes of protocols (♦RC and ♦QC) that offer the maximum possible guarantee

on coverage while also being ♦R or ♦Q respectively.

In expressing the protocols’ properties (and also throughout the thesis), we will

use the term receive to refer to a member taking possession of a message by executing

a protocol. We will use m to denote a message; we will also assume that a member

that initiates multicasting of m also receives its own m. The term transmit will be

used for referring to a member’s MAC level, wireless transmitting of a packet that

can be received by all devices (members and non-members) that are in the wireless

range.

Definition.

♦RC is a class of multicast protocols which satisfy:

1. Members that receive m discard m within some finite time after multicast of

m is initiated (♦R).

2. In any execution in which at least one correct member receives m, at least

(n− f) members receive m (coverage, C).

Remark 1: All members that receive m need not be correct, and at most f can go on

to crash after receiving m. So, in the worst case, just (n−2f) correct members may

receive m. It is shown below that the 2 above is the strongest coverage guarantee

any ♦R protocol can offer.

34

Lemma 1 In any execution in which at least one correct member receives m, a

♦R multicast protocol that has no support for detecting member crashes, cannot

guarantee that more than (n− f) members receive m if more than (n− f) members

are operative throughout that execution.

Proof By Contradiction. Suppose that there exists a ♦R protocol that cannot

detect member crashes but nevertheless guarantees that more than (n−f) members

receive m if more than (n − f) members are operative throughout. Let F be any

set of f members and F = G −F . We consider two executions of this protocol and

some correct member in F multicasts m at time tb in both the executions.

Execution 1 : All members of F have crashed before tb. Let te, te > tb, be the

timing instance before which any member that receives m has relinquished m. te

must exist since the protocol is ♦R; also, no more than (n−f) members can receive

m.

Execution 2 : No member crashes before or after tb. However, the MANET keeps

all members of F outside the wireless range of every member in F at least until te.

This is possible if, in this execution, the unknown Ih > te − tb for every h ≥ 1; that

is, LC is met for Ih > te − tb.

Nodes of F cannot distinguish execution 2 from execution 1 until te for three

reasons: (1) the multicast initiator is in F , (2) members of F do not execute the

protocol for m (certainly until te in execution 2), and (3) members of F cannot

detect whether a member in F is crashed or operative.

So, in execution 2, as in execution 1, only at most (n− f) members can receive

m with all receiving members discarding m by te; additionally, members of F do not

execute the protocol until te and there is no m after te for them to receive. This is a

contradiction, since at least f members do not receive m even though all n members

are operative.

2Lemma 1

Definition.

♦QC is a class of multicast protocols which satisfy:

1. Dissemination of m stops permanently within some finite time after multicast

of m is initiated (♦Q).

2. In any execution in which at least one correct member receives m, all correct

35

members receive m (coverage, C).

Remark 2: Executions in which no correct member receives m involve members

crashing shortly after receiving m and not executing the protocol long enough for m

to reach a correct member. They have ♦Q and ♦R features, by default. So, we will

limit our interest to those executions in which at least one correct member receives

m.

Remark 3: No multicast protocol can offer a stronger coverage guarantee than

2 above, unless it also implements uniform delivery property. The latter requires

delaying delivery of m until it is deduced that at least (f+1) members can receive

m. This incurs time and bandwidth overhead.

As per [ACT00], transforming a ♦QC protocol into a ♦R equivalent with the

same coverage guarantee as 2, is not possible unless operative members can accu-

rately know which members have crashed. Such a knowledge is in turn not possible

because Ih in equation (3.2) can be arbitrarily long. So, a crashed member is indis-

tinguishable from an operative one that is out of other members’ wireless range for

an arbitrarily long period of time. So, 2 must be weakened for the ♦R counterpart.

When comparing between ♦RC and ♦QC, we have the following observations:

1. When a correct member receives m: ♦QC can guarantee that all correct

members will receive m, but ♦RC can guarantee that at least (n−2f) correct

members will receive m. So, in terms of coverage, ♦QC ⇒ ♦RC.

2. ♦RC ⇒ ♦QC in terms of freeing buffers because ♦RC deletes a message m,

and also stops sending m, within some finite time after the multicast of m is

initiated and ♦QC, however, only stops sending m.

3.1.5 Approach to Consensus and the Rationale

Given that every operative member in G proposes an initial value or initial estimate,

a consensus protocol satisfies the following properties which lead to members arriving

at an identical decision despite their potentially different initial estimates:

• Validity: If a member decides v, then v was proposed by some member.

• Agreement: No two members decide differently.

• Termination: Every correct member decides.

36

As was discussed in Chapter 1, consensus is typically solved using multicast pro-

tocols that assume that the network remains connected always (or almost always),

and assure that correct members receive each other’s messages with a probability

that is 1 (or close to 1, respectively). Using these consensus solutions as such for

sparse MANETs would involve deploying a ♦QC protocol for multicasting. This

could lead to an unaffordable storage overhead for two reasons: the ♦QC proto-

cols can retain messages for ever and consensus may take several rounds of message

exchange, using a large number of ♦QC multicasts.

An alternative approach, which is pursued here, will be to use a ♦RC multicast

protocol and address the challenges that arise thereof. In particular, a ♦RC pro-

tocol, in the worst case, can deliver a correct member’s m just to (n − 2f) correct

members (Remark 1 in Subsection 3.1.4); consequently, if (n− 2f) is not a majority

in n, which will be the case if n ≤ 4f , then executions of a traditional consensus

protocol may deadlock. Choosing the alternative approach requires addressing these

issues.

It is also not entirely feasible to rule out the use of a ♦QC protocol. When a

correct member decides during an execution of a consensus protocol, it is common

for another correct member not to be able to decide at or around the same time;

the latter needs to be ‘helped’ by the former by sending the decision to it. A ♦QC

protocol, will be used (only) for this purpose. Figure 3.5 depicts the role of ♦QC

and ♦RC protocols in our approach.

◊RC multicast

decis ion

◊QC multicast

Consensus

Figure 3.5: Multicast Support

3.2 Summary

This chapter introduced the system model for MANETs. Three main points were

defined accurately in this chapter:

37

1. The requirements on the network connectivity which are essentail for solving

the consensus: These requirements state that operative members do not get

isolated permanently. So the liveness condition, that eliminates such perma-

nent member isolations, was introduced.

2. The principles of required multicast protocols for solving the consensus: Two

types of multicast protocols, ♦QC and ♦RC, were defined.

3. Our approach for solving the consensus using ♦QC and ♦RC protocols.

38

Chapter 4

Encounter Gossip Multicast

Protocol

The flooding protocol is one of the most common protocols for MANETs. This

protocol works in a very simple manner: (i) When a node Ni initializes a message m

it transmits m for one time (ii) If a node Nj receives m for the first time, it transmits

this message after a small random wait (redundant copies of a received message will

be ignored). So it is clear that the flooding protocol does not require any information

about the network topology or the routes between nodes. This makes this protocol

to be convenient for MANETs where the network topology changes, due to node

mobility, are very frequent. However, It was proved in Chapter 1 that the flooding

protocol performs poorly in low densities. The authors of [HOTV99] explains more

about the problems of the flooding protocol for MANETs.

The Encounter Gossip EG broadcast protocol [CEM09] is a persistent form of

flooding. This protocol performs well in a wide range of node speeds and network

densities including the low densities. Moreover, EG preserves the same flexibility of

the flooding protocol with the regard of the network topology-independence. This

protocol is ♦R because nodes delete any message m after transmitting m for a

limited number of times.

We use the EG protocol to derive our Encounter Gossip Multicast EGM protocol.

So this chapter will first present the EG protocol, then the EGM protocol will be

introduced.

39

4.1 Encounter Gossip EG Broadcast Protocol

As was mentioned, this protocol is a persistent form of flooding. The main focus

of this protocol is to improve the coverage (the fraction number of nodes which

receive a message m) of the flooding protocol. This protocol depends on the notion

of encounter and transmits a message m a number of times upon encounters. Note

that the protocol presented in this part is a broadcast one, so all nodes show the

same interest in receiving each message m (G = S).

4.1.1 Protocol Definition

Describing this protocol requires defining the following terms:

• Beacon: Every node Ni needs to send its ID periodically, this ID can be carried

in a small packet (called beacon). So the beacon tells other nodes ‘hello, I am

node Ni’, by sending this beacon every node in the system can advertise its

existence to other nodes in the area.

• Neighborhood list: When a node Ni receives the beacon from another node

Nj, it realizes that Nj is within its wireless range, so Ni adds Nj to its

neighborhood list Neighi. Thus this list contains all neighbors identifiers

Neighi = {Nj, Nk, Nl, ...} whose beacons have been recently received by Ni.

Node Ni prunes Neighi by removing any node from whom few executive bea-

cons (3 in our implementation) are missing.

• Encounter: Node Ni encounters another node Nj when Nj, which is not in the

neighborhood list of Ni, is added to Neighi. In this case, it is not necessary

for Nj to encounter Ni at the same time because the beacon packets are not

synchronized between nodes. Note that, if Nj leaves the neighborhood list of

Ni and later enters it again this will be considered as a fresh encounter.

• Threshold τ : A message must be transmitted a total of τ times to ensure

high expected coverage. This requirement can be met by having every node

transmits a message τ times after encounters. τ is estimated to be

τ = 2dln N + γe (4.1)

40

Where N is the total number of nodes in the system, γ = 0.5772... is the

Euler-Mascheroni’s number.

According to this broadcast protocol, each node in the system acts as follows:

1. When a node Ni initiates or receives a new message m it creates a counter

c(m) which is set to 0, then Ni stores m associated with c(m). If m is received

from another node Nj, the node Ni adds Nj to its neighborhood list.

2. Upon having a new initiated (or received) message m, if node Ni has any

neighbors (apart from the sender of m), it transmits m once and increases

c(m) by 1.

3. When node Ni encounters any other node, it checks c(m), if c(m) < τ it

transmits m once and increments c(m) by 1.

4. Node Ni keeps transmitting m upon encounters until c(m) = τ , after that it

removes m from the memory.

5. When node Ni removes a message m from the memory it keeps the ID of m.

So in the future, if m is received again it will be ignored.

4.2 Encounter Gossip Multicast EGM Protocol

The EG broadcast protocol is used to send messages to all nodes in the system. So

EG treats G as S itself. On the other hand, in case of multicast only a subset of

nodes G ⊂ S need to exchange messages. So the EG broadcast protocol needs to be

adapted properly to enable only nodes in G to exchange messages upon encounters.

The next section explains about the steps which are required for changing the EG

protocol to become a multicast protocol.

4.2.1 Approach

As was explained earlier, in case of broadcast where all nodes are interested in

receiving messages, EG protocol performs well. According to EG, all nodes in the

system transmit messages upon encountering each others. On the other hand, when

there is only a subset of nodes G exchange messages, every member Ni ∈ G can

have two types of encounters:

41

1. Group encounter: It happens when a member Nj ∈ G is added to Neighi.

2. Non-group encounter: It occurs when a node Xi ∈ (S−G) is added to Neighi.

A simple adaptation of EG protocol for G ⊂ S, will be to allow a node Ni ∈ G to

transmit m only when it encounters another Nj ∈ G in its Neighi, and do nothing

if the encounter involves a node Xi ∈ (S − G). But it could turn out to be highly

delay-indulgent when |G| � |S|. That is, a node Ni ∈ G needs to wait for a long

time before encountering any Nj ∈ G . So, we allow occasional flooding of m. Ni

initiates a flooding of m if the number of consecutive encounters that did not involve

any Nj ∈ G exceeds a threshold called the encounters-to-flood and denoted as φ.

The value of φ has to be chosen carefully because a big value of φ might cause a

long delay and a small value might cause excessive flooding. We will assume that

a flood initiated by a member reaches at least one other member, just like in an

encounter-triggered transmission.

4.2.2 Protocol Definition

This protocol transmits messages by using two different ways; flooding and encounter

gossip transmission (see Figure 4.1). A node Ni upon receiving a message m should

be able to recognize in which way m was transmitted (flooding or encounter gossip

transmission). Therefore, the flooding messages will be marked differently by the

source nodes. The following section explains about the two ways used to transmit

messages and when each of them is applied.

4.2.2.1 Flooding

This part deals with the received messages which were sent by flooding and it works

according to the following steps: When any node receives a message m, which has

not been forwarded by this node, (i) it forwards a copy of this message, and (ii) if

the receiving node is a group member, m is passed to the encounter gossip part of

this node (see figure 4.1); otherwise, m is discarded.

4.2.2.2 Encounter Gossip Based

Encounter gossip based requires group members to have some data structures.

42

MAC Layer

Encounter Gossip Multicasting Protocol

Flooding
Based

Encounter
Gossip Based

Figure 4.1: Encounter Gossip Multicast EGM Protocol disseminates messages using
flooding and encounter based

4.2.2.2.1 Data Structures The protocol defines three additional data struc-

tures, in addition to retaining c(m) which was described earlier

1. c(m): Counts the number of encounter transmissions and floods which a mem-

ber has carried out for multicasting m.

2. encounters(m): Keeps track of the number of consecutive encounters involving

only non-members. When it reaches φ, a flood of m is initiated and encoun-

ters(m) is reset to 0. So its value at any moment during multicast of m will

be in [0, φ].

3. Propagation History for m, PH(m): A member node maintains the most

recent values of c(m) which the member nodes (including itself) are known

to have had. It is made up of 2-tuples of the form <Ni, c> one for a distinct

member node Ni whose c(m) is most recently known to have had the value c.

4. The integer variable, group propagation counter for m, gc(m) , indicates the

total number of transmissions or floods that are known to have occurred for

multicasting of m; gc(m) =
∑
M

c for all <M, c> in PH(m).

5. Encounter History for m, EH(m): A member Ni maintains, in EH, the ID of

any member Nj which has flooded or transmitted m to Ni.

These data structures are maintained only by member nodes. Note also that

maintaining PH(m) requires piggybacking a copy of it onto every m that is being

43

transmitted or flooded; and, updating the PH(m) using the piggybacked informa-

tion in a received m. Since c(m) of a group member cannot decrease, updating of

PH(m) should choose the biggest c for a given member Ni; if <Ni, c> is present

in the piggyback. Finally, a member node halts the execution when its gc(m) ≥ τ .

Therefore, a piggyback PH(m) will not have more than τ tuples in it and τ is O(n

ln(n)).

4.2.2.2.2 Protocol Behavior It consists of two parts and it is described for a

member Ni handling multicast message m.

Part 1:

• When Ni initializes multicasting of m, it initializes c(cm), gc(m), and en-

counters(m) to zero; PH(m) and EH(m) to empty. If Neighi contains one

or more members, then Ni enters <Ni, c(m) + 1> into PH(m), piggybacks

PH(m) onto m and transmits m.

• If Ni receives m for the first time it initializes c(m), gc(m), and encounters(m)

to zero; PH(m) to the piggybacked PH(m) of the received m and EH(m) to

the ID of the source member of m.

Part 2: The following two concurrent tasks are carried out until gc(m) ≥ τ

• On receiving m: PH(m) is updated with the piggybacked PH(m) of the

received m and the ID of the source member of m is added to EH(m).

• On encountering a node: (i) If the encountered node is not a member encoun-

ters(m) is incremented by 1; If encounters(m)≥ φ, it is set to 0, m is prepared,

a flood of prepared m is initiated, and c(m) is incremented by 1. (ii) If the

encountered node is a member: (a) if the encountered member is not in EH,

m is prepared and the prepared m is transmitted, and (b) encounters(m) is

set to 0 and c(m) is incremented by 1.

Preparing of m for flooding/transmission involves replacing the tuple <Ni, c> in

PH(m) with <Ni, c(m) + 1> and piggybacking PH(m) onto m.

4.2.2.3 Protocol Interface

The EGM protocol offers four primitives which can be invoked for multicasting a

message m. These primitives are shown in Figure 4.2 and explained below:

44

EGM Interface

Upper Application/Protocol

Send killdeliver notify

Figure 4.2: The EGM interface includes the functions provided to the upper protocol

1. send : This function is invoked when the upper application (or the member)

has any message m to send to other members. So the upper level orders EGM

protocol to send m by invoking send(m).

2. deliver : When EGM receives a message m it can pass m to the upper appli-

cation by invoking deliver(m).

3. kill : It is invoked by the upper level to order EGM to stop dealing with a

message m. This happens when EGM is working to send m then the upper

level decides to stop handling m. In fact, this function adds more flexibility

to this protocol because it allows the upper level to interfere at any time to

stop sending any message.

4. notify : When EGM finishes sending a message m, it informs the upper appli-

cation by invoking notify(m).

4.2.3 Performance Study

This section studies the performance of the EGM protocol through simulation. All

simulations in this thesis were performed using JiST/SWANS simulator, a Java

based discrete event simulator [BHvR05]. The simulation parameters and the met-

rics used to evaluate the protocol performance will be, shortly, explained in details.

45

4.2.3.1 Simulation Parameters

The default simulation parameters used throughout this thesis, unless otherwise

specified, are shown in Table 4.1. 50 mobile nodes of S were randomly placed in

a fixed size terrain of 1000m x 1000m. The multicast group G contains 10 nodes

which are chosen randomly at the start of each experiment and they do not leave

the group during the experiment. The network density was varied by varying the

nodes’ wireless range as 100, 150 and 200 meters, resulting in the density values

1.6, 3.5 and 6.3 respectively. The mobility model for nodes is Random Waypoint:

In this model, each node chooses a destination randomly and starts moving to this

destination; once the node reaches its destination, it pauses for a chosen interval, it

again randomly picks out a new destination and so on.

Table 4.1: Default simulation parameters
Simulation Parameters

Simulator JiST/SWANS[BHvR05]
Area size 1000m x 1000m

Mobility style Random Waypoint
Pause time 0s

Node placement Random
|S| 50

n = |G | 10
Wireless range 100m, 150m, 200m

Density 1.6, 3.5, 6.3
Maximum Node Speed 5 m/s - 40 m/s

Pathloss model Free-Space

4.2.3.2 Performance Metrics and Observations

It is important to define the following factors and metrics:

• Total multicasts: Is the total number of messages to be multicasted by group

members.

• Average of coverage: Is the average of destinations that receive a given multi-

cast:

average of coverage =
1

total

(
total∑
i=1

ci

)
(4.2)

Where total refers to the total multicasts, and

ci = destinations that received the multicast mi

total number of destinations for mi

46

• Average of group cost: Is the average number of messages transmitted by each

member for a given multicast:

Avg group cost =
number of transmissions by all members

total multicasts ∗ |G |
(4.3)

• Average of floods: Is the average number of initialized floods by a group

member for a given multicast:

Avg of floods =
total number of all initialized floods

total multicasts ∗ |G |
(4.4)

• Average of the total cost: Is the average number of transmissions committed

by any node for a given multicast:

Avg of total cost =
total number of transmissions by all nodes

total multicasts ∗ |S|
(4.5)

• Average of group response time: Group response time can be defined as the

interval between generating a message and the moment when all members have

stopped propagating it. So the average of group response time is:

average of group response time =
1

total

(
total∑
i=1

resi

)
(4.6)

Where resi = group response time for the multicast mi.

A simulation for a particular set of parameters involves 100 runs using distinct

random seeds. Thus, a point in the graphs we present is the average on measure-

ments taken over 100 runs. Moreover, each run commenced after 1000 seconds of

node movement to avoid any initial bias in node placement.

In this part, each member sends 10 messages of 512 Bytes each and, to avoid

losses due to collisions, sent messages (from any member) were well spaced out in

time.

We study the effect of using different values of τ which had the values 1, 2, 4, 6,

8, and 10. For each value of τ we used different values of φ as 0, 2, 4, 6, and 8 to

show the effect of flooding on the protocol behaviour.

Figures 4.3 and 4.4 show the group coverage achieved as a function of the encoun-

ters threshold τ using maximum node speeds 5 m/s and 10 m/s with node densities

47

of 1.6 and 6.3 respectively. They show that increasing τ causes the group coverage to

improve; (i) at low densities, increasing τ causes substantial improvement of group

coverage, and (ii) at high densities, the effect of increasing τ is correspondingly

smaller. The second observation from these Figures is about the effect of φ:

1. At low densities: When τ is less than 4, smaller values of φ cause better group

coverage. This means that the flooding is more effective than the encounter

based transmission when τ is less than 4. On the other hand, the encounter

based transmission becomes more effective than the flooding when τ ≥ 4.

2. At high densities: Smaller values of φ provide better group coverage until

τ = 6 where the effect of φ disappears for τ ≥ 6.

Comparing Figures 4.3 and 4.4 shows that the group coverage is always higher

when densities are higher (as expected).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 6 8 10

A
vg

 o
f c

ov
er

ag
e

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.3: The group coverage vs the encounters threshold τ , Wireless range =
100m, node density = 1.6, max speed = 5m/s

48

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 4 6 8 10

A
vg

 o
f c

ov
er

ag
e

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.4: The group coverage vs the encounters threshold τ , Wireless range =
200m, node density = 6.3, max speed = 10m/s

There are several factors which might affect the number of initiated floods by

group members. These factors include the value of τ , the value of φ, group ratio

(the ratio of group members |G | to the total number of nodes |S|), node density

and node speed. In this part we will concentrate on the effect of the values of τ and

φ. So figures 4.5 and 4.6 show the effects of the values of τ and φ on the average of

initiated floods, by a group member, for a given multicast. In case of low densities,

increasing τ always results in increasing the number of floods (as expected). As

when densities are high, the number of floods increases dramatically up to a point

(τ = 2), and then a slight increase is experienced. This is because when (τ > 2),

the PH(m) is diffused quickly due to the high group coverage (see Figure 4.4) so

gc(m) grows quickly to reach τ and therefore members halt sending m. Another

observation is that the number of floods in all densities is increased by decreasing

the value of φ (as expected).

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 4 6 8 10

A
vg

 o
f f

lo
od

s

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.5: The average of initiated floods by a group member for a given multicast
vs the encounters threshold τ . Wireless range = 100m, max speed = 5m/s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 6 8 10

A
vg

 o
f f

lo
od

s

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.6: The average of initiated floods by a group member for a given multicast
vs the encounters threshold τ . Wireless range = 200m, max speed = 10m/s

Figures 4.7 and 4.8 show the transmission cost by a member for a given mul-

ticast. Figures 4.9 and 4.10 show the total transmission cost by a node (member

and non-member) for a given multicast. These graphs show the same trend as the

flooding graphs (4.5 and 4.6) for low and high densities. Note that at high densities,

increasing τ after the point (τ = 2) has a small effect on the transmission cost.

50

This is because, as was explained, the group coverage is very high after this point so

PH(m) and EH(m) can be diffused quickly to prevent any redundant transmissions.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 c
os

t

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.7: The average of transmitted messages per member for a given multicast
vs the encounters threshold τ . Wireless range = 100m, max speed = 5m/s

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 c
os

t

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.8: The average of transmitted messages per member for a given multicast
vs the encounters threshold τ . Wireless range = 200m, max speed = 10m/s

51

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 6 8 10

A
vg

 o
f t

ot
al

 c
os

t

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.9: The average number of transmissions per a node vs the encounters
threshold τ . Wireless range = 100m, max speed = 5m/s

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

A
vg

 o
f t

ot
al

 c
os

t

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.10: The average number of transmissions per a node vs the encounters
threshold τ . Wireless range = 200m, max speed = 10m/s

Figures 4.11 and 4.12 show the average of the group response time. These graphs

show that using more floods (smaller values of φ) reduces the response time con-

siderably. This is because when members use more floods, they can escape waiting

members encounters to occur. Moreover, increasing the node density helps reduce

52

the group response time. This is because increasing the node density results in

higher connectivity which makes members encounter each other more quickly.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 r
es

po
ns

e
tim

e
(S

)

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.11: The group response time (second) vs the encounters threshold τ . Wire-
less range = 100m, max speed = 5m/s

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 r
es

po
ns

e
tim

e
(S

)

Encounters threshold τ

φ = 0
φ = 2
φ = 4
φ = 6
φ = 8

Figure 4.12: The group response time (second) vs the encounters threshold τ . Wire-
less range = 200m, max speed = 10m/s

53

4.3 Optimization of EGM Protocol

The flooding was added to this protocol mainly to reduce the delay when |G| � |S|.

The last section has showed the effect of the value of φ on coverage, cost and delay.

It was shown that a small value of φ increases the transmission cost (see Figures 4.9

and 4.10). On the other hand, using a big value of φ increases the protocol response

time (or the delay) (see Figures 4.11 and 4.12). Therefore, we will introduce an

optimization for EGM to prevent members from repeating any unnecessary floods.

This optimization, which is called flood reduction optimization, adapts the value of φ

according to some factors which can decide the need for flooding. This optimization

considers two factors; node speed and node density. So the next section will explain

about the effect of these two factors on the need of flooding.

4.3.1 Effects of Node Speed

There are two obersvations about the effect of node speed:

1. When the node speed is low: The traveled distance by nodes will be small.

So encounters between members are less likely to occur. Therefore, members

need to use flooding to be able to deliver their messages as the encounter based

transmission will be rare.

2. If nodes move more quickly (high speed): Members are more likely to encounter

each others so they can exchange messages upon encounters. Therefore, using

the flooding should be kept to minimum.

4.3.2 Effects of Node Density

The node density has a substantial effect on the efficiency of flooding:

1. At high node density: When a member Ni floods a message m, this message is

more likely to be received by other members because the network connectivity

is high. So any further flooding of m by Ni is more likely to be redundant

becuase it is assumed that members have already received m. Therefore, Ni

should avoid flooding the same message m in the future.

2. At low node density: When a member Ni floods a message m, no/few members

are expected to receive m because the connectivity between nodes is low. So Ni

54

should avoid repeating the flooding of m because this flooding is not effective.

4.3.3 flood reduction Optimization

In the original EGM protocol, the value of φ does not change during the protocol

execution, but according to this optimization φ will be changed depending on some

events. So, the flood reduction will adaptively vary the value of φ, similar in style

to additive increase and multiplicative decrease in TCP congestion control, so that

flooding is rarely resorted. Therefore, this optimization adds the following two steps

to the EGM :

• φ is initialized when the protocol starts: When nodes move slowly, φ is initial-

ized to a small value and as the node speed increases, φ is increased accordingly.

• After a member Ni transmits a message m:

1. If Ni is transmitting m by flooding, it doubles the threshold φ (φ=2φ).

2. If Ni is transmitting m by encounter based, φ takes the value φ = max

{φ− 1, encounters(m)+1}.

4.3.4 Performance Study

This section studies the performance of the optimized EGM where the value of φ

is adapted according to the flood reduction optimization. We use the same simula-

tion parameters in Table 4.1. Moreover, all simulation parameters and factors used

in studying EGM performance stay the same, that is, except the values of φ and

the range of maximum node speeds. So, each member sends 10 messages and each

simulation involves 100 runs using distinct random seeds. The value of φ is initial-

ized depending on the node maximum speed and it is increased when this speed is

increased. So all simulations which have the same node maximum speed start by

having the same value of φ, and during execution the value of φ is adapted when

any transmission occurs (see flood reduction optimization steps). Table 4.2 shows

the initial values of φ.

We also show the effect of using different values of τ . However, when evaluating

the coverage and cost we will concentrate on the point τ = 6. This value of τ is

estimated to give a coverage levels close to 1. That is, according to Equation 4.1

after replacing N by n = |G | = 10 (in case of multicast).

55

Table 4.2: Initial values of φ
Maximum Speed (m/s) Initial Value of φ

5 2
10 3
15 4
20 5
25 6
30 7
35 8
40 9

Figures 4.13 - 4.15 show the group coverage achieved using different values of

encounters threshold τ . The first observation is that the node speed has, mostly,

no effect on the group coverage. That is, despite the use of different values of φ for

different maximum speeds. The second observation is about the group coverage for

τ = 6, which reaches at least 0.95 in all, low and high, densities.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 6 8 10

A
vg

 o
f c

ov
er

ag
e

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.13: The group coverage vs the encounters threshold τ , Wireless range =
100m, node density= 1.6

56

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 6 8 10

A
vg

 o
f c

ov
er

ag
e

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.14: The group coverage vs the encounters threshold τ , Wireless range =
150m, node density= 3.5

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 4 6 8 10

A
vg

 o
f c

ov
er

ag
e

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.15: The group coverage vs the encounters threshold τ , Wireless range =
200m, node density= 6.3

Figures 4.16 - 4.18 show the effect of different values of τ and maximum node

speed on the average of initiated floods. These Figures show that the maximum

node speed has no considerable effect on the initiated floods. Moreover, it is clear

that the average number of initiated floods is substantially reduced here comparing

with the original EGM. This can be observed by comparing Figures 4.16 and 4.18

57

with the correspondent Figures in the original EGM (see Figures 4.5 and 4.6). Note

that during this comparison, we choose an average value for φ, say φ = 4, from the

latter Figures.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 4 6 8 10

A
vg

 o
f f

lo
od

s

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.16: The average of initiated floods by a group member for a given multicast
vs the encounters threshold τ . Wireless range = 100m

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 4 6 8 10

A
vg

 o
f f

lo
od

s

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.17: The average of initiated floods by a group member for a given multicast
vs the encounters threshold τ . Wireless range = 150m

58

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 4 6 8 10

A
vg

 o
f f

lo
od

s

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.18: The average of initiated floods by a group member for a given multicast
vs the encounters threshold τ . Wireless range = 200m

Figures 4.19 - 4.21 show the transmission cost by a member and Figures 4.22

- 4.24 show the transmission cost by a node (member and non-member). These

Figures again show that the maximum node speed has no effect on the transmission

cost. Moreover, we compare Figures 4.19 and 4.21 with the transmission cost by a

member in the original EGM and Figures 4.22 and 4.24 with the transmission cost

by a node in the original EGM. This comparison shows that the transmission cost in

the optimized EGM is reduced considerably. Note also that we choose φ = 4 from

the correspondent Figures in the original EGM.

59

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 6 8 10

A
vg

 g
ro

up
 c

os
t

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.19: The average of transmitted messages per member for a given multicast
vs the encounters threshold τ . Wireless range = 100m

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 6 8 10

A
vg

 g
ro

up
 c

os
t

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.20: The average of transmitted messages per member for a given multicast
vs the encounters threshold τ . Wireless range = 150m

60

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 6 8 10

A
vg

 g
ro

up
 c

os
t

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.21: The average of transmitted messages per member for a given multicast
vs the encounters threshold τ . Wireless range = 200m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 6 8 10

A
vg

 o
f t

ot
al

 c
os

t

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.22: The average number of transmissions per a node vs the encounters
threshold τ . Wireless range = 100m

61

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 6 8 10

A
vg

 o
f t

ot
al

 c
os

t

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.23: The average number of transmissions per a node vs the encounters
threshold τ . Wireless range = 150m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 6 8 10

A
vg

 o
f t

ot
al

 c
os

t

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.24: The average number of transmissions per a node vs the encounters
threshold τ . Wireless range = 200m

Figures 4.25 - 4.27 show the average of group response time. It is observed (as

expected) that low speeds incur longer delay because encounters are less frequent.

This delay is, particularly, long when the speed is very low (5 m/s), increasing the

speed after the latter one reduces the group response time substantially.

62

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 r
es

po
ns

e
tim

e
(S

)

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.25: The group response time (second) vs the encounters threshold τ . Wire-
less range = 100m

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 r
es

po
ns

e
tim

e
(S

)

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.26: The group response time (second) vs the encounters threshold τ . Wire-
less range = 150m

63

 0

 50

 100

 150

 200

 250

 1 2 4 6 8 10

A
vg

 o
f g

ro
up

 r
es

po
ns

e
tim

e
(S

)

Encounters threshold τ

speed = 5
speed = 10
speed = 15
speed = 20
speed = 25
speed = 30
speed = 35
speed = 40

Figure 4.27: The group response time (second) vs the encounters threshold τ . Wire-
less range = 200m

4.4 Summary

In this chapter, the Encounter Gossip Multicast EGM protocol was derived from

the Encounter Gossip EG broadcast protocol. The new derived protocol is a ♦R

protocol. This protocol is also a network topology-independent which makes it

work without the need to build any routes. The latter property is preferable for

MANETs where building and maintaining routes often pose extra overhead due to

node mobility. EGM uses occasional flooding in addition to the group encounter

based. The flooding, which is controlled by the encounters-to-flood threshold φ, is

used to prevent the long delay which might be caused by the rare group encounters.

However, the excessive use of flooding will impose extra overhead. Therefore, we

introduce an optimization for EGM which uses an adaptive value for the threshold

φ. The optimized EGM gives a good coverage with affordable cost and delay. So

when we refer to EGM from any other chapters in this thesis, we mean the optimized

EGM.

64

Chapter 5

Eventual Relinquishing/Quiescent

Multicast Protocols

The last chapter has introduced the EGM protocol which is a ♦R protocol. This

protocol gives a good performance as was shown in simulations. However, EGM

does not provide guarantee on the number of nodes that would certainly receive a

multicast message. So this chapter will introduce our new ♦RC and ♦QC, which

both provide a delivery guarantee as was mentioned in the definition of these pro-

tocols.

As was explained, ♦RC and ♦QC use two underlying services. The first service

is optional and it can be any ♦R protocol. The second service provides an up-to-date

view on the H-hop neighbourhood.

For the first service, we choose to implement ♦RC and ♦QC on top of the EGM

protocol (as a ♦R protocol). The EGM was chosen because (i) it was proved that

this protocol performs well for a wide range of densities and node speeds, (ii) the

provided coverage is not affected by network topology changes and (iii) it uses only

one hop neigbourhood which can be maintained by just MAC level beacons.

We will also implement ♦RC without using any ♦R protocols. So we can com-

pare the performances of this implementation and the implementation which uses

EGM as a ♦R protocol.

For the second service, the Neighbourhood Manager NM protocol will be pre-

sented. This protocol is used to build and maintain the H-hop (H ≥ 1) neighbour-

hood list for group members.

So in the following sections, the ♦RC and ♦QC protocols will be presented and

65

we refer the reader to our work in [AE10] for the correctness discussions for these

protocols.

5.1 ♦RC Protocol Using EGM Protocol

As was mentioned, ♦RC protocol satisfies two properties: Eventually relinquishing

(♦R) and the delivery guarantee of any multicast to n − f members. So to fulfill

these properties, ♦RC uses the following sub protocols:

1. ♦RC-coordinator: This is the coordinator part which supervises the whole

sending process of a message m until the required delivery guarantee is ob-

tained (see Figure 5.1).

2. ♦R: This part is optional and it can be any protocol which satisfies the ♦R

property (e.g. the flooding protocol). In this section, we will use the Encounter

Gossip Multicasting EGM protocol. This protocol will be instructed by ♦RC-

Coordinator to multicast a message m (the first phase in Figure 5.1).

3. Delivery Guarantee Booster DGB : When EGM finishes sending m without

attaining the required delivery guarantee, ♦RC-Coordinator needs to instruct

DGB to start sending m. So DGB represents a booster part to help in gaining

the required delivery guarantee (the second phase in Figure 5.1).

4. Neighborhood Manager NM : This protocol works to provide (i) 1-hop neigh-

bours list, which includes member and non-member neighbours, to the EGM

protocol, and (ii) H-hop group neighbours list (H ≥ 1) to DGB and the routes

to each neighbour when H > 1.

Figure 5.1 shows that each protocol (♦RC-Coordinator, EGM and DGB) has

four functions send, deliver, kill and notify. So when referring to these functions,

we will add the protocol name to distinguish between them (e.g. send function of

EGM protocol is denoted as EGM send).

66

◊RC-coordinator

EGM (◊R)

Initiating message m

First
phase

Second
 phase

send deliver notifysend deliver

send deliver kill

kill

notify

kill

DGB

notify

NM 1-hop
Neighbours

 H-hop Group
Neighbours

Figure 5.1: ♦RC protocol sends messages in two consecutive phases

The major challenge in designing a ♦RC protocol is in preventing a member Ni

that received m from retaining m once the following property is met: at least n− f

members have received m. This property will be denoted as the realization of m.

So member Ni, to be able to deduce this property, maintains knowledge regarding

which other members have m. This knowledge is saved in a boolean vector, of n bits,

which is denoted as Ki(m). So Ki(m) contains the values 0 or 1: (i) Ki(m)[j] = 1

means that node Ni knows that Nj has m, and (ii) Ki(m)[j] = 0 means that Ni does

not know if Nj has m or not. Thus, Ki(m) is maintained such that if it indicates

that Nj has m, then it is certainly true; it needs not be true the other way round:

when Nj does have m, Ki(m) may indicate that Nj does not have m. Note also that

Ki(m)[j] = 1 represents a specific knowledge of Ni about member Nj and m. So

this knowledge does not change by time, therefore, number of 1s in Ki(m) can only

increase. Let |Ki(m)| denote the total number of 1s in Ki(m). Obviously, Ki(m) is

undefined if Ni had never ‘seen’ m, i.e., never received m.

In the following sections, we will describe the tasks of each sub protocol, in

Figure 5.1, in details.

67

5.1.1 EGM protocol

This protocol works in the same way which was described in the last chapter except

the transmission of the knowledge vector. So, with ♦RU protocol, EGM has to

include a copy of the knowledge vector Ki(m) with any transmitted message m. As

a result, members exchange the knowledge on the propagation of m by exchanging

their knowledge vectors about m. This happens according to the following steps:

• A member Ni includes a copy of Ki(m) with any transmitted message m.

• When a member Nj receives a message m:

1. If Nj is receiving m for the first time, it stores a copy of the received

vector K(m) after changing its bit to 1, that is, Kj(m)[j] = 1. Moreover,

Nj passes a copy of m accompanied with a copy of Kj(m) to ♦RC-

Coordinator by calling EGM deliver(m).

2. If Nj already has a copy of m, it updates Kj(m) according to the re-

ceived K(m) by adding the knowledge which is included in K(m), that

is, Kj(m)[i] is set to 1, if either Kj(m)[i] or K(m)[i] is 1. If any changes

occur to Kj(m), Nj conveys these changes to ♦RC-coordinator by calling

EGM deliver(m).

In this way members which are running EGM share the knowledge about m. In

addition, this knowledge will be used by ♦RC-Coordinator which is informed about

any changes to the knowledge vector K(m) of a message m.

5.1.2 DGB Protocol

Describing this protocol requires adding some data structures which are stored by

member nodes.

5.1.2.1 Local Data Structures

• In addition to the K(m) vector, DGB needs each member to maintain, for

every multicast message m, a boolean vector denoted as KK(m). This vector

stores the knowledge on K(m). So each member Ni uses KKi(m) to maintain

its knowledge on K(m). That is, KKi(m)[j] = 1 means that Ni knows that

member node Nj has the same K(m) as itself; otherwise, KKi(m)[j] = 0. Note

68

that Ni has to reset KKi(m) every time K(m) is changed because any changes

to K(m) affect the whole knowledge in KKi(m). So the number of 1s in

KKi(m) might decrease. Moreover, when KKi(m)[j]=1, Ni can only conclude

that Nj had the same K(m) as itself at some time during the execution, because

Nj may have changed its K(m) without Ni being aware of this change.

• H-hop group neighbourhood list (NeighH): Every member Ni maintains a

list of all H-hop group neighbours NeighHi (or Neighi) which is provided and

maintained by NM protocol.

• Routes list: For each neighbour Nj of a member Ni (Nj ∈ Neighi) a routes

list (Routesj) to this neighbour is provided by the NM protocol. Each entry

of this list contains the ID of the next hop node towards Nj; the next hop

might be the destination node Nj itself, or any non-member node.

• Message pool M : Each member Ni maintains a message pool Mi in which all

received messages are saved.

• Each member Ni maintains a list Li of 3-tuples for each received m:

< m.id,Ki(m), KKi(m) >.

• Knowledge packet K pkt(m): A member node Ni can use this packet to send

its knowledge vector about m. So this packet carries just the id of m and

K(m).

• Request packet req(m): This packet can be sent by a member Ni to request

m from another member. So it carries just the id of m.

• Realize packet realize(m): When a member Ni knows that at least n − f

members (including Ni itself) have m, it realizes m (which means that Ni

does not need to send m any more). Ni announces this realization by sending

the realize packet (realize(m)) which contains only the id of m.

5.1.2.2 DGB Execution Steps

Figure 5.1 shows that DGB uses the H-hop group neighbours list which is provided

by the NM protocol. So when DGB has any messages to send, it instructs NM to

start working to find these neighbours.

69

This protocol has two threads that work concurrently to multicast a message

m. Moreover, the related packets are not processed on their arrival but at discrete

instances: each thread sleeps for a random interval on (0, β) where β is a parameter;

when it wakes up, it processes all packets delivered to it while it was asleep and

then goes to sleep again. We show below the execution steps of these threads for a

member Ni.

Thread 1.

For every message m ∈ Mi, which is not realized yet, this thread executes the

following steps when it wakes up before it goes to sleep again:

1. For every member Nj ∈ Neighi if KKi(m)[j] = 0, then node Ni unicasts

K pkt(m) to Nj.

2. If it receives, during the last sleeping interval, a request packet req(m) from a

neighbour Nj, it unicasts m to Nj accompanied with a copy of its K(m).

3. When Ni receives K pkt(m), it adds all the information from the received

K(m) to its Ki(m). That is, if Ki(m)[j] = 0 and K(m)[j] = 1, then Ki(m)[j]

is set to 1. After any changes to Ki(m), Ni updates KKi(m) accordingly.

4. Ni realizes m (i) if it receives realize(m), or (ii) when |Ki(m)| ≥ n− f .

5. If Ni realizes m, it unicasts realize(m) to each Nj ∈ Neighi, invokes DGB notify(m)

and deletes m from Mi.

Thread 2.

The following steps are executed when this thread wakes up:

1. If Ni receives a new message m /∈ Mi:

• It copies the received K(m) to its Ki(m) after changing Ki(m)[i] to 1, and

also creates the KKi(m) vector and sets all bits to 0 except KKi(m)[i] =

1.

• It stores a copy of m in Mi and < m.id,Ki(m), KKi(m) > in Li.

• It passes a copy of m to ♦RC-Coordinator by invoking DGB deliver(m).

70

2. When Ni receives any K pkt(m), from another member Nj, for a message m

which has not been received by Ni, it unicasts req(m) to Nj.

3. If Ni receives realize(m) for m, which has not been received, it ignores this

packet.

4. When Ni receives m, req(m), or K pkt(m) from a member Nj for a realized

m, it unicasts realize(m) to Nj.

Note that when < m.id,Ki(m), KKi(m) >∈ Li and m /∈ Mi, this means that m

is a realized message by Ni.

5.1.3 ♦RC-coordinator

♦RC-Coordinator requires each member Ni to maintain a list Listi of 2-tuples

< m.id, Ki(m) > for each received m. We will present the interface provided by

♦RC-Coordinator to the local application before we explain the tasks of ♦RC-

Coordinator.

5.1.3.1 ♦RC-coordinator Interface

♦RC-Coordinator provides the upper layer/protocol of a member Ni with the fol-

lowing functions (Figure 5.1):

• send(m): When the upper protocol has a message m to send, it invokes

send(m) to instruct ♦RC-Coordinator to send m.

• deliver(m): When ♦RC-Coordinator receives a new message m, it invokes

deliver(m) to pass m to the upper protocol.

• kill(m): The upper protocol can call this function to instruct♦RC-Coordinator

to realize m, and so to stop handling m.

• notify(m): When ♦RC-Coordinator realizes m, it informs the upper protocol

about this realization by calling notify(m).

5.1.3.2 ♦RC-coordinator Execution Steps

As was mentioned, ♦RC-Coordinator represents the coordinator for the whole ♦RC

protocol. So when a member Ni has a message m to send, it invokes♦RC send(m) to

71

pass m to ♦RC-Coordinator which handles this message according to the following

steps:

1. It creates and initializes Ki(m) as a vector of zeros and sets its own bit to 1,

that is, Ki(m)[i] = 1. Then, Ni stores < m.id,Ki(m) > in Listi.

2. It hands over m, accompanied with Ki(m), to EGM which starts sending m

to other members.

3. While EGM is sending m, ♦RC-Coordinator will be listening to any changes

in the knowledge vector Ki(m):

a) If♦RC-Coordinator receives any changes to Ki(m) from EGM, it replaces

Ki(m) in < m.id,Ki(m) > by the new received one.

b) If |Ki(m)| ≥ n − f : ♦RC-Coordinator realizes m, invokes EGM kill(m)

and calls ♦RC notify(m). Then ♦RC-Coordinator passes m to DGB, by

calling DGB send (m,K(m)), just to make DGB aware of the realization.

c) When ♦RC-Coordinator gets notified by EGM which finishes sending

m, it executes the next step.

4. ♦RC-Coordinator hands over m, accompanied with Ki(m), to DGB which

starts sending m (handing over m can be done by invoking DGB send (m,K(m))).

5. When ♦RC-Coordinator gets notified by DGB, it invokes

♦RC-Coordinator notify(m) to inform the upper protocol.

6. When ♦RC-Coordinator receives a new message m passed by EGM, it stores

< m.id,Ki(m) > in Listi, invokes ♦RC deliver(m) and executes step 3.

7. When ♦RC-Coordinator receives a new message m passed by DGB, ♦RC-

Coordinator just stores < m.id,Ki(m) > in Listi and invokes♦RC deliver(m).

5.2 ♦QC Protocol Using EGM Protocol

This protocol is similar to the ♦RC protocol. So ♦QC has the same structure

of ♦RC in Figure 5.1 after replacing the name of ♦RC-coordinator by ♦QC-

coordinator. However, the main difference between ♦QC and ♦RC is that in ♦QC

messages are not relinquished upon realization. Therefore, ♦QC-coordinator and

72

DGB will be slightly different in this protocol while EGM and NM work exactly

in the same way like ♦RC protocol. So in the following sections, we will introduce

DGB and ♦QC-coordinator.

5.2.1 DGB Protocol

Members here have to act in a different way, comparing with DGB in ♦RC, after

the realization of a message m. This section will explain the differences in the

behaviour of DGB between ♦QC and ♦RC. These differences require some extra

data structures which will be introduced later in this section.

DGB here needs to work for an extra time, beyond the realization of m, until

reaching quiescence. That is, until each member is not required to unicast m or any

packets regarding m. We will try to keep the cost incurred during the extra time to

minimum. So we will add two actions which can help to reduce this cost:

1. DGB will use only 1-hop group neighbours after the realization of m by making

H = 1. This will reduce the number of transmitted control packets because

1-hop group neighbours can be maintained with just MAC level beacons. So

no control packets are needed for maintaining group neighbourhood.

2. DGB will use a new vector after the realization of m, instead of KK(m),

to deduce the need of unicasting control packets. Let us suppose that we

use KK(m) in the same way like ♦RC; In ♦RC, DGB uses the knowledge

in KK(m) to decide if a member needs to unicast K pkt(m), but KK(m)

is reset whenever a change occurs to K(m). This causes KK(m) to take a

long time to build the required knowledge for reaching quiescence because

quiescence cannot be reached unless the number of 1s in KK(m) is at least

n− f . Therefore, a new vector of bits, denoted as RV (m), will be used with

DGB here. This vector will be introduced shortly.

5.2.1.1 Local Data Structures

DGB uses the same data structures used earlier with DGB in ♦RC in addition to

the following data structures:

• Another vector of bits, denoted as RV (m), is needed to store the knowledge on

the realization of m. So each member Ni maintains RVi(m) where RVi(m)[j] =

73

1 means that Ni knows that Nj has realized m, while RVi(m)[j] = 0 means

that Ni does not know if Nj has realized m or not. Note that RVi(m)[j] =

1 represents a certain knowledge of Ni about member Nj and m. So this

knowledge does not change by time, therefore, number of 1s in RVi(m) does not

decrease. The number of 1s in RVi(m) will be denoted as |RVi(m)|. Moreover,

RVi(m) is undefined if Ni has not realized m.

• The realize packet realize(m) contains, in addition to the id of m, a copy of

the RV (m) vector.

5.2.1.2 Execution Steps

DGB uses the H-hop (H ≥ 1) group neighbours list until the realization of received

messages. So when all messages in Mi for a member Ni are realized, Ni uses only

1-hop group neighbours list by setting H to 1.

DGB here works in a similar way like DGB in ♦RC. So this protocol uses the

same two threads (Thread 1 and Thread 2) which were used in ♦RC after applying

some changes on each thread. In addition to these two threads, DGB here uses a

new thread (Thread 3) for the realized messages. This new thread also operates on

a sleep-and-act basis. Thus, this thread handles the received packets after a random

sleep on (0, β). In the following, we show the tasks carried out by Thread 3 as well

as the changes on Thread 1 and Thread 2 for a member Ni. Note that when using

any execution steps from ♦RC, ♦RC-coordinator is replaced by ♦QC-coordinator.

Thread 1.

Tasks 4 and 5 are changed as follows:

4. Ni realizes m when one of the following occurs: (i) Ni receives realize(m), so

Ni copies the received RV (m) to its RVi(m) after changing RVi(m)[i] to 1.

(ii) |Ki(m)| ≥ n− f , in this case, Ni initialize RVi(m) with all bits being set

to 0 except the ith bit which is set to 1.

5. If Ni realizes m, it unicasts realize(m), accompanied with a copy of RVi(m),

to each Nj ∈ Neighi.

Thread 2.

Task 4 is deleted from this thread and task 3 is changed as follows:

74

3. If Ni receives realize(m) from a member Nj for m, which has not been re-

ceived by Ni, it unicasts req(m) to Nj.

Thread 3.

For each message m ∈ Mi, which is realized, this thread carries out the following

tasks when it wakes up before it goes to sleep again:

1. For every Nj ∈ Neighi if RVi(m)[j] = 0, then Ni unicasts realize(m) to the

Nj accompanied with a copy of RVi(m).

2. If Ni receives, during the β interval, a request packet req(m) from a neighbour

Nj, it transmits m to Nj accompanied with K(m).

3. When Ni receives realize(m), it adds all the knowledge from the received

RV (m) to its RVi(m). That is, if RVi(m)[j] = 0 and RV (m)[j] = 1, then

Ki(m)[j] is set to 1.

4. Ni deletes m from Mi when |RVi(m)| = n.

5.2.2 ♦QC-coordinator

This part works in the same way like ♦RC-coordinator after changing task b) in

step 3 in ♦RC-coordinator to:

b) If |Ki(m)| ≥ n − f : ♦QC-Coordinator invokes EGM kill(m) and hands over

m accompanied with K(m) to DGB.

5.3 ♦RC protocol Without Using ♦R Service

In the last section, ♦RC was implemented on top of the EGM protocol as an

optional ♦R service. In this section, ♦RC will be implemented without the support

of the ♦R service. The purpose of this implementation is to study the effect of using

this service with ♦RC protocol.

The structure of this protocol is shown in Figure 5.2. This structure shows that

this protocol uses ♦RC-coordinator, DGB and NM :

75

• ♦RC-coordinator works in the same way like ♦RC-coordinator in the last

implementation of ♦RC (sub section 5.1.3.2) after deleting steps 2, 3 and 6

which are related to using EGM.

• DGB here works exactly in the same way like DGB in the last implementation

of ♦RC (sub section 5.1.2.2).

• NM provides DGB with H-hop group neighbourhood list.

MAC Layer

◊RC-coordinator

send deliver

send deliver kill notify

kill

DGBNM H-hop Group
Ne ighbours

Add

Dele te

Read
notify

Figure 5.2: ♦RC protocol without using ♦R service

5.4 Neighbourhood Manager NM Protocol

This section will introduce the Neighbourhood Manager NM protocol which is used

to build and maintain (i) H-hop (H ≥ 1) group neighbourhood list and routes to

each group neighbour (when H > 1), or (ii) 1-hop neighbourhood list (H = 1) which

includes members and non-members. The 1-hop neighbourhood list and 1-hop group

neighbourhood list do not need maintaining any routes. Moreover, as was explained

before, these lists can be maintained with just MAC level beacons. So no control

packets are needed for maintaining these lists. This section will concentrate on the

76

cases when H > 1 where group neighbourhood list and routes to each neighbour

need to be maintained.

NM is a mesh-based protocol which means that NM builds and maitains routes

by buidling a mesh that connects group neighbours. So NM, as a mesh-based proto-

col, provides a high delivery ratio because it creates redundant routes. This enables

this protocol to work even when some routes break due to node mobility. Moreover,

NM is on-demand (reactive) protocol which means that it constructs and maintains

routes on demand (only when they are needed). This reduces the overhead which is

caused by building these routes.

NM protocol’s mission is only to build and maintain routes between members,

so it has to be supplemented with a multicast protocol. For example, This protocol

is used in Figures 5.1 and 5.2 to build and maintain the H-hop neighbourhood list.

The built neighbourhood list and routes are provided to the supplemented protocols

on demand.

5.4.1 Overview of the H-hop Group Neighbourhood

When a member Ni has some other members inside its wireless range (which are

considered neighbours of Ni), it can communicate with them without the need to

build any routes. This kind of neighbourhood can be called one hop neighbourhood.

However, in many scenarios this kind of communications between members cannot

be attained due to node mobility and low group density (which is the number of

group members |G | to the total number of nodes in the system |S|). Therefore,

H-hop group neighbourhood can be built to attain higher connectivity between

members. So according to the H-hop group neighbourhood, members can have H-

hop group neighbours where H can be any integer greater than 0. Building this

neighbourhood requires defining the following terms and data structures:

• Group hello packet Ghello: Group members can advertise their existence to

other members in the area by sending Ghello packets. So when a member Ni

needs to discover the H-hop group neighbours, it sends Ghello packet which

can be forwarded H − 1 times, by non-member nodes, until it reaches another

member Nj. This packet carries the following information:

1. The multicast group ID (MGID).

77

2. Time to live TTL: This variable refers to the number of times the Ghello

packet can be transmitted/forwarded. So every time a node

transmits/forwards the Ghello, it reduces TTL by 1, nodes stop forward-

ing the Ghello packet when TTL=0. TTL is always initiated to H.

3. The generators ID list (GIDL): This list contains the IDs of all nodes

which have transmitted/forwarded the group hello packet where GIDL[0]

carries the ID of the member Ni which created this packet.

• Routes or forwarding table (denoted as Routes): Every node in the system

has a forwarding table which is used to save the routes information between

members.

• Route Entry RE : The forwarding table contains the routes entries which de-

scribe routes. So each entry inside this table represents one route and it

involves the following data:

1. The route destination ID (RDID): It represents the ID of the member

which is the final destination of this route.

2. The route next hop ID (RNID): It is the ID of the next node on the route

towards the destination.

3. The ID of the multicast group (RMGID).

4. The route creation time RT : This is the time when this entry was gener-

ated.

5. The route priority RP : It decides the priority of the route. This variable

can be used when there are more than one route to the same destination.

So the sender can choose the route with the greatest priority.

• H-hop group neighbourhood list NeighH : It stores the group neighbours for

a member Ni. So each member needs to have a neighbourhood list for its

neighbours.

5.4.2 NM Description

This protocol works according to the following steps:

78

• When a member Ni needs to find routes to its H-hop neighbours, this member

is marked as an active member. This activation means that Ni periodically

(every µ time) has to broadcast Ghello packets to other members. So this node

starts by generating a Ghello packet and setting the content of this packet as

follows:

1. MGID : It is set to the ID of the multicast group which the member Ni

belongs to.

2. TTL: It is set to H.

3. GIDL: This list is set to empty and then Ni is added to it.

• Ni transmits the generated Ghello after reducing TTL by 1.

• When any node receives the Ghello packet, it reads the content of this packet

(MGID, TTL, and GIDL) and behaves as follows:

1. It uses the content of the received Ghello to create a route entry RE=

{RDID, RNID, RMGID, RP , RT} where (RDID= GIDL[0],

RNID=GIDL[H−TTL−1], RMGID=MGID, RP=TTL, RT=current

time). Then, it checks its routes table: (i) If it finds any entry RE1 ∈

Routes where (RDID1=RDID, RNID1=RNID and RMGID1=

RMGID), it replaces RE1 by RE in Routes, otherwise, (ii) it adds the

route entry RE to its Routes.

2. If it is a member node (denoated as Nj), it adds the received GIDL[0] to

Neighj. Moreover, if Nj is not an active member, it creates and transmits

a Ghello packet for one time. This enables other members to discover Nj

when they receive this Ghello.

3. If it is a non-member node (denoted as Xj) and the received TTL (in

the received Ghello) is greater than 0, it adds its ID to the GIDL in the

received Ghello, reduces TTL by 1 and then transmits this Ghello again.

• When a node needs to use a route to a destination member Ni, it searches in

its Routes to find out if this table has a route to Ni; When Routes contains

more than one route, the route with the greatest route priority RP is chosen.

79

• a route entry RE ∈ Routes of any node is deleted when it ages. A route entry

ages when the node does not receive any Ghello from the same RDID of RE

during an interval of time. This latter interval is a parameter and it needs to

be chosen carefully.

• A member Ni stops sending Ghello packets when it gets inactivated by the

upper protocol.

5.4.3 Example of 2-hop Group Neighbourhood

Figure 5.3 shows an example for 2-hop neighbourhood between group members. The

system contains 10 nodes of which 3 are group members Ni, Nj and Nk. Figure 5.3

shows that every group member has the following neighbours and routes to each

neighbour:

Member Ni:

The group neighbours Neighi = {Nj} with two routes to this neighbour:

• Ni → Xi → Nj

• Ni → Xj → Nj

Member Nj:

Neighj = {Ni, Nk} with two routes to each neighbour:

• Nj → Xi → Ni

• Nj → Xj → Ni

• Nj → Xk → Nk

• Nj → Xl → Nk

Member Nk:

Neighk = {Nj} and the routes to this neighbour are:

• Nk → Xk → Nj

• Nk → Xl → Nj

80

N
i

X
i

X
j

N
j

X
l

N
kX

k

Figure 5.3: The 2-hop neighbourhood between group members. The arrowa show
the routes between the neighbours

The routes between the group neighbours maintain the property of robustness.

So when some changes occur to the network topology, nodes can still communicate

by using the redundant routes. Figure 5.4 shows the same scenario in Figure 5.3

when node Nj moves to a new position. In the latter case, member nodes can still

communicate with each others by using the following routes:

• Ni → Xj → Nj

• Nj → Xj → Ni

• Nj → Xl → Nk

• Nk → Xl → Nj

81

N
i

X
j

N
j

X
l

N
k

Figure 5.4: The 2-hop neighbourhood after some members move away

5.5 Comparison Between ♦Q and ♦QC

In chapter 2, we described a quiescent implementation of the reliable broadcast

protocol which was developed in [ACT00]. This section will compare between the

described quiescent implementation ♦Q and our quiescent protocol ♦QC which was

described in details earlier in this chapter.

The quiescent implementation in [ACT00] uses the HB failure detector. HB

enables the quiescent protocols to distinguish crashed nodes for the purpose of pre-

venting any node to send messages to these crashed nodes. This failure detector

requires nodes to periodically send a heartbeat and store a vector of counters (one

counter for each neighbour Nj of node Ni). So when a node Ni receives a heart-

beat from a neighbour Nj, it increases the counter of Nj, so Ni assumes that Nj

is crashed when the counter of Nj stops increasing. In addition to the HB, the

quiescent implementation in [ACT00] requires a node Ni to store, for each message

m, a knowledge vector hasi[m] which contains the IDs of nodes that it is known to

Ni that these nodes have m. So by using this vector, a node Ni can avoid sending

m to any neighbour that has m.

In our ♦QC protocol, each member periodically sends Ghello packet to other

82

members. This packet enables members to build the group neighbourhood list.

Moreover, ♦QC uses the following data structures:

• Each member Ni stores, for each message m, a knowledge vector Ki(m) re-

garding which other members have m.

• For each message m, a member Ni maintains another knowledge vector KKi(m)

which stores the knowledge on K(m). After the realization of m, KKi(m) is

replaced by another vector RVi(m) which stores the knowledge on the realiza-

tion of m.

So we notice that the quiescent implementation of the reliable broadcast and our

quiescent protocol ♦QC are both similar in their ability of preventing nodes from

sending messages to the crashed nodes. That is, using the heartbeat in the former

and the Ghello in the latter. Moreover, the two protocols use knowledge vectors

(has[m] and K(m)) to store the knowledge regarding which nodes/members have

m. On the other hand, a member Ni in ♦QC uses, for each message m, an extra

vector KKi(m) which stores information as whether other members have the same

K(m) as Ni. So when Ni has a group neighbour Nj which is deemed not to have

the same K(m) as Ki(m), then Ni sends only Ki(m) to Nj. If Nj has not received

m, it learns of the existence of m and a request for m to be sent. Thus, Ni sends m

to a neighbour only on request. After the realization of m, Ni deletes KKi(m) and

starts using RVi(m) to store the knowledge on the realization of m. This vector is

used in similar way, when Ni has a group neighbour Nj which is deemed not to have

realized m, then Ni sends RVi(m) to Nj. Thus, Ni does not send any packets if all

its neighbours are known to have realized m.

5.6 Required Duration of Node Connectivity

The system satisfies the liveness condition (3.2) which was introduced in Chapter

3. Claim 1: Supposing that ♦RC and ♦QC use β as their sleep interval and NM

uses µ as its Ghello interval; If B > (2µ + 3β + 5Hδ), then a (B,H)-Connectivity is

long enough to support the sequence of information exchange triggered by the ♦RC

and ♦QC protocols.

Suppose that Ni has received m and Nj has not, when (B,H)-Connectivity be-

tween them begins at time, say, t. The following sequence of events can occur, each

83

with the worst possible delay:

1. Ni emits Ghello at t + µ which reaches Nj at (t + µ + Hδ).

2. Nj responds by emitting Ghello at (t+2µ+Hδ) which reaches Ni at t+2µ+

2Hδ, ensuring the presence of Nj in Neighi.

3. Thread 1 of Ni wakes-up at (t+2µ+β +2Hδ) and unicasts a K pkt(m) which

reaches Nj by (t + 2µ + β + 3Hδ).

4. Thread 2 of Nj processes the K pkt(m) from Ni at (t + 2µ + 2β + 3Hδ) and

unicasts a req(m) which reaches Ni at (t + 2µ + 2β + 4Hδ).

5. Thread 1 of Ni responds to req(m) at (t + 2µ + 3β + 4Hδ) and m arrives at

Nj at (t + 2µ + 3β + 5Hδ) < t + B.

5.7 Performance Study

The same simulation parameters listed in Table 4.1 are used here. 50 mobile nodes

of S were randomly placed in a fixed size terrain of 1000m x 1000m. The multicast

group G contains 10 nodes (|G | = 10) chosen randomly at the start of each run and

they do not leave the group during this run. Also, at the start, three members are

randomly chosen for crashing (f = 3) at randomly chosen moments.

The network density (as was shown in Table 4.1) was varied by varying the nodes’

wireless range as 100, 150 and 200 meters, resulting in the density values 1.6, 3.5

and 6.3 respectively.

Each simulation, for a particular set of parameters, was repeated 1000 times using

distinct random seeds. So, each point in the graphs we present is the average on

measurements taken over 1000 runs. Moreover, each run started after 1000 seconds

of node movement to avoid any initial bias in node placement.

The value of β in ♦QC and ♦RC protocols was varied as: 2 and 5 seconds. No

significant difference in performance was observed and the results presented here use

β = 5.

The value of H in NeighH is 2, if a node has an unrealized multicast, whether

it is ♦QC or ♦RC; H is set to 1, once all on-going multicasts are realized. For

H > 1, members send a Ghello packet every 2 seconds interval to update NeighH .

Each member allows 2 losses of Ghello packet before deleting a group neighbour.

84

So membership of NeighH and a route information are lost, unless renewed within

3 × 2 = 6 seconds. Constructing NeighH , for H = 1, takes advantage of MAC

level beacons being periodically sent by mobile devices to announce their presence

to their immediate (1-hop) neighbours. So no extra control packets are required in

this case.

EGM is using the value 6 for τ (τ = 6) and the values for φ are the same which

are shown in Table 4.2.

5.7.1 ♦RC Protocol Using EGM Protocol

The protocol starts a run by randomly choosing an operative member to send one

message m. This run continues until all operative members, which have received m,

realize m. Note that the crashing members are excluded when choosing the member

which initiates m.

We measured 3 performance metrics for 3 different densities, and 8 different

maximum node speeds. They are presented as: relinquishing time, average of sent

data packets and average of sent control packets. The first one is categorized as

time overhead and the other two as packet overhead.

• Relinquishing time for a message m: The time taken until the last opera-

tive member, which has m, realizes m starting from the moment when m is

initiated.

• Average of sent data/control packets for multicasting m: The total number of

data/control packets transmitted by all nodes until the last member realizes

m, divided by |S| = 50. A data packet refers to any m containing data passed

to ♦RC by the local application, while all other packets are counted as control

packets (which do not however include MAC level beacons).

Figure 5.5 shows that when the node density is lower, the relinquishing time

is always longer. The relinquishing time reduces when the node speed increases

(up to a threshold). This is because (i) ♦RC is using EGM protocol which shows

the same trend when increasing the speed (see Figures 4.25 - 4.27), and (ii) as the

speed increases (B, H ≥ 2)-Connectivity is formed quickly; beyond the threshold,

connectivity does not last for the required B duration due to fast node movement.

85

Doubling the density value reduces relinquishing time by more than half at all node

speeds.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30 35 40

R
el

in
qu

is
h

tim
e

(S
)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.5: The relinquishing time (seconds) vs the max speed (m/s)

Figure 5.6 shows that the node speed has no important effect on the number

of transmitted data packets. This is because the node speed has no effect on the

transmitted packets in EGM (see Figures 4.22 - 4.24). It is also observed that

the highest density (wireless range=200m) shows the smallest number of transmit-

ted data packets. The reason for this is that at this density, members realize the

message m quickly (Figure 5.5) and so EGM is ordered to stop sending m quickly

(upon realizing m). Decreasing the density shows that higher density (wireless

range=150m) incurs more transmitted data packets than lower density (wireless

range=100m). This is explained by the effect of EGM which shows the same trend

at these densities (see Figures 4.22 and 4.23).

Figure 5.7 shows that the relinquishing time has a big influence on the num-

ber of transmitted control packets per a multicast message. Indeed, the number of

transmitted control packets shows a similar trend as the relinquishing time (Figure

5.5). This suggests that the longer it takes to realize the message, the more con-

trol packets are transmitted. Figure 5.8 shows the average number of transmitted

Ghello packets, by NM, per node. This Figure shows the same trend as Figure

5.7. Moreover, when comparing between 5.7 and 5.8, we notice that the majority

of transmitted control packets in 5.7 are actually Ghello packets. In general, more

86

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40

A
vg

 o
f s

en
t d

at
a

pa
ck

et
s

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.6: The average of sent data packets per node vs the max speed (m/s)

Ghello packets will be needed when the message takes longer time to be realized

(longer relinquishing time). This explains the link between the trends in 5.5 and

5.7.

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

A
vg

 o
f s

en
t c

on
tr

ol
 p

ac
ke

ts

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.7: The average of sent control packets per node vs the max speed (m/s)

87

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

A
vg

 o
f s

en
t N

M
 c

on
tr

ol
 p

ac
ke

ts

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.8: The average number of transmitted NM control packets per node vs the
max speed (m/s)

5.7.2 ♦QC Protocol Using EGM Protocol

We use exactly the same parameters used in the last section. The protocol starts

by randomly choosing a member which sends one message, but the protocol here

continues until all operative members reach the total quiescence after receiving m.

However, in some cases reaching the total quiescence requires a long simulation time,

in particular, with low density and slow movement. So to avoid the big delay in

performing our experiments, we have set a maximum delay time MD for members.

That is, when all members, in a run, do not perform any unicasting activities for

a duration d (d ≥ MD), this run is terminated. The value of MD used in our

simulations is 500 seconds. In fact, the terminated cases were rarely encountered

(less than 1%) during the whole 1000 runs for each set of parameters.

We measured only 2 performance metrics: Quiescence time (time overhead) and

the total of sent control packets (packet overhead).

• Quiescence time for a message m: The time taken until all members become

totally quiescent. The latter occurs when all operative members have identical

RV (m). The timing starts from the moment when m is initiated.

• Total number of sent control packets: The total number of control packets

88

transmitted by all nodes between the moment when last member realizes m

until members become totally quiescent.

Figure 5.9 shows that the quiescence time has a similar trend as the relinquishing

time in Figure 5.5. It is shown that members take some extra time to become

quiescent comparing with the relinquishing time (as expected). This extra time

is at its longest when density and maximum speed are at their lowest. Increasing

density reduces the extra time incurred before quiescence. This extra time becomes

almost negligible at the highest density (wireless range=200m).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20 25 30 35 40

Q
ui

es
ce

nt
tim

e
(S

)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.9: The quiescence time (seconds) vs the max speed (m/s)

Figure 5.10 shows the total number of control packets transmitted by all nodes

starting from the moment when the last operative member, which has m, realizes

m until members become totally quiescent. It is shown that only few numbers of

control packets are sent in all densities. These numbers can be easily ignored; the

maximum is 7 packets by 50 nodes. Considering that members after realizing m use

only MAC level beacons to maintain the group neighbourhood list.

Note that there are no extra transmitted data packets after the last operative

member realizes m. That is, considering that all data packets transmitted after the

first member realizes m until the last operative member does are counted in Figure

5.6.

89

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40

A
vg

 o
f s

en
t c

on
tr

ol
 p

ac
ke

ts

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.10: The total number of sent control packets vs the max speed (m/s)

5.7.3 ♦RC protocol Without Using ♦R Service

The simulation parameters used here are the same like the ones which used for ♦RC

in the last section. The only difference here is that EGM protocol is not used. So all

parameters which are related to EGM (values of τ and φ) are ignored here. In the

same way like in last section, ♦RC starts a run by randomly choosing an operative

member to send one message m. This run continues until all operative members,

which have received m, realize m.

We measured here the same 3 performance metrics which measured for ♦RC in

the last section; relinquishing time, average of sent data packets and average of sent

control packets. The only difference here is that the average of sent data packets

refers to the total number of transmitted data packets by all nodes, so here this

number is not divided by |S| = 50.

Figure 5.11 shows that the relinquishing time has the same trend like the relin-

quishing time of ♦RC (Figure 5.5) in the last section; lower densities incur longer

time to relinquish the message. Moreover, increasing the node speed (up to a thresh-

old) reduces the relinquishing time. It is also observed, when comparing Figures 5.11

and 5.5, that ♦RC here takes shorter time to relinquish. This is because ♦RC in

this section sends messages only using DGB which depends on 2-hop members con-

nectivity while ♦RC in the last section uses EGM and DGB subsequently; EGM

90

depends on, only, 1-hop connectivity. This makes ♦RC in the last section incur

more delay before relinquishing the message in particular with lower densities due

to lower 1-hop members connectivity.

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40

R
el

in
qu

is
h

tim
e

(S
)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.11: The relinquishing time (seconds) vs the max speed (m/s)

Figure 5.12 shows the total number of data transmissions by all nodes. It is

shown that this number is quite small, in all densities, because ♦RC in this section

depends on DGB which unicasts messages only when they are requested. So a

member Ni, which has not received m, will request m only once unless this message

is lost after it is unicasted to it. It is also observed that the node density and

the node maximum speed have very small effect on the number of transmissions.

The two higher densities incur almost one extra transmission. This is may be due

to faster connectivity, with higher densities, which enables some crashing nodes to

request m before they go to crash.

Figure 5.13 shows that this protocol (♦RC in this section) transmits more control

packets when the relinquishing time is longer (as expected). This can be observed

when comparing 5.13 and 5.11 which both show the same trend. We will have more

interest in comparing this protocol with ♦RC in the last section in terms of the

number of transmitted control packests. That is, by comparing between Figures 5.13

and 5.7. These figures show that this protocol incurs higher number of transmitted

control packets in all densities. In particular, in the lowest and highest densities

where (i) in the lowest density each node transmits almost 20 extra control packets

91

 11

 12

 13

 14

 15

 5 10 15 20 25 30 35 40

A
vg

 o
f s

en
t d

at
a

pa
ck

et
s

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.12: The average of sent data packets per node vs the max speed (m/s)

in all speeds, and (ii) in the highest density each node transmits more than double

the number of transmitted control packets in ♦RC in the last section (in all speeds).

Note that this protocol transmits this higher number of control packets despite the

fact that it incurs shorter delay (relinquishing time) than ♦RC in the last section.

This is because this protocol depends only on DGB which requires 2-hop group

neighbourhood while ♦RC in the last section depends on EGM and DGB ; EGM,

unlike DGB, requires only 1-hop neighbourhood which is obtained using MAC level

beacons.

92

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30 35 40

A
vg

 o
f s

en
t c

on
tr

ol
 p

ac
ke

ts

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 5.13: The average of sent control packets per node vs the max speed (m/s)

5.8 Summary

This chapter introduced ♦RC and ♦QC protocols in addition to the NM protocol

which is used as an underlying service. Moreover, An intensive performance study

for both ♦RC and ♦QC was carried out by simulation.

The structure of ♦RC was explained in details by using two implementations.

The first implementation was by using EGM as an added ♦R service. The second

one by not using any added ♦R services. We carried out a detailed comparison

between the performance of the two implementations. This comparison lead us to

the following observations:

1. The first implementation incurs more delay than the second one especially in

low densities.

2. The number of data transmissions in the first implementation is higher, but

this number in the same implementation is considered to be reasonable; each

node had 1.3 transmissions on average in the worst case scenario.

3. The first implementation had less number of transmitted control packets in all

densities. The difference in the number of transmitted control packets cannot

be tolerated.

93

The last observations lead to the result that ♦RC using EGM gives a better

performance than the ♦RC which does not use any ♦R services. Therefore, the

former will be used in all future implementations.

♦QC was implemented also using EGM. It was shown that ♦QC has a similar

structure like ♦RC. The simulations prove that:

1. ♦QC has the same cost like ♦RC in terms of transmitted data packets.

2. Few extra control packet transmissions are incurred by ♦QC comparing with

♦RC. The number of extra packets is very small in all densities.

3. ♦QC takes some extra delay, this delay is reduced when densities are increased.

So the extra cost for ♦QC, comparing with ♦RC, is mainly in the delay where

members need some extra time to be quiescent after the realization of a message m.

This extra delay is reduced when density is increased.

The NM protocol was presented in details. This protocol is used to build and

maintain the H-hop (H ≥ 1) neighbourhood list and routes to group neighbours

(when H > 1). This list and routes are used by ♦RC and ♦QC protocols.

NM builds routes on demand depending on a mesh routes structure. So routes

are built just when they are needed to reduce the overhead. Moreover, NM can

maintain redundant routes, which makes it robust against node mobility (as was

shown in Figures 5.3 and 5.4).

94

Chapter 6

Consensus Protocol

The consensus protocol will be derived from that by Ezhilchelvan, Mostefaoui and

Raynal [EMR01]. The latter will be referred to as the EMR protocol and works

using dissemination primitives designed for a (connected) wired network. The new

derived protocol will depend on the ♦RC and ♦QC for disseminating messages.

As was explained, the ♦QC protocol will be used only by deciding members to

disseminate decisions. So members will use the ♦RC protocol for disseminating

their estimates until they decide. The challenges which arise due to using the ♦RC

protocol will be handled here. To handle these challenges, the EMR protocol will

have to be appropriately adapted.

So this chapter will briefly prsenet the EMR protocol, then the protocol deriva-

tion and challenges will be explained in details. Finally, a detailed performance

study will be carried out to illustrate the cost of the derived protocol.

6.1 The EMR Protocol

The EMR protocol uses two communication facilities which operate within G and

both are ♦R. These two facilities are:

1. A uniform reliable broadcast service which is denoated as RBcast. This ser-

vice ensures that even if an operative member receives m and subsequently

crashes, m is received by every correct member. It thus offers delivery guar-

antees stronger than ♦QC multicast whose coverage guarantee applies only in

executions where at least one correct member receives m.

2. A simple non-crash-tolerant broadcast service which denoted as Bcast. This

95

service ensures that all correct members receive m, if the broadcasting of m

by the source member is not interrupted by a crash; otherwise, some correct

members may receive m, while some others may not. This guarantee is stronger

than that of ♦RC in which even a correct member’s m is not necessarily

received by all other correct members.

The EMR protocol mostly uses Bcast and reserves RBcast only for the following

two activities:

1. Each member Ni RBcasts its initial value to every other member at the start

of the protocol and collects the values received through RBcast in a bag called

Value-Bag or V Bagi.

2. If Ni decides, it RBcasts its decision to others so that the latter can decide

upon receiving the decision.

The main part of the execution involves n-to-n message exchanges until some

member can decide. It is briefly described as follows. It proceeds in rounds, with

each round having two phases. During the first phase of a round, every member

broadcasts a value called its estimate, est for short, and waits to obtain estimates

from a majority of members in G . If estimates from a majority are the same, that

identical value is adopted as the member’s new estimate; otherwise a default value

⊥ (different from any possible estimate) is taken as the new estimate.

During the second phase, as in the first, members exchange their estimates and

wait to obtain estimates from a majority of members of G . If a member obtains

the same value from a majority, it decides on that value and RBcasts its decision.

Otherwise, it proceeds to the first phase of the next round with a new estimate

computed as follows: if it has obtained at least one v, v 6= ⊥, v is its new estimate;

else, i.e., if all the values obtained are ⊥, the member chooses its new estimate

randomly from its V Bag.

The EMR protocol achieves termination with probability 1 by using two facts: all

operative members eventually have identical V Bag (thanks to the uniform delivery

property of RBcasts) and there is a small probability that all members randomly se-

lect the same value from their V Bags and start a round with the same estimate. The

correctness proofs of [EMR01] show that the protocol must eventually terminate.

96

6.1.1 Protocol Derivation and Challenges

The new protocol is derived from the EMR protocol by addressing the implications

of replacing RBcast and Bcast with ♦QC and ♦RC multicasting respectively;

moreover, the use of ♦QC multicasting is kept to a minimum.

6.1.1.1 Using ♦QC Multicast

It is done only for disseminating the decision value. By the definition of consensus,

the value decided must be the same, irrespective of which or how many members

decide. Therefore, several deciding members initiating ♦QC multicast need not be

distinguished based on sender identifiers and can be easily optimized to equivalent

of handling a single ♦QC multicast.

The new consensus protocol does not require members to exclusively disseminate

their initial estimates for the sake of building identical V Bag. However, it requires,

just like EMR, that operative members eventually have identical V Bag. While

EMR achieves this requirement through accumulation of values disseminated by

RBcast, the new protocol does it through elimination of values from V Bag so that

all operative members eventually have identical V Bag containing a single value.

The scheme is explained below.

Members make a random selection at the end of each phase, concurrently to their

attempts to decide based on est exchanged as per the logic of the EMR protocol.

Each Ni maintains a variable candi which is its input candidate for the random

selection process. candi = esti for phase 1, round 1.

At the start of each phase, Ni sends candi together with its esti. Once Ni receives

{est, cand} pair from a majority of members (including its own), V Bagi becomes

the set of all distinct cand values Ni received in the current phase. A value selected

randomly from V Bagi becomes the new candi which will be Ni’s input candidate

for the selection to be held at the end of next phase. It is later shown that if random

selections are repeated frequently enough, V Bags of operative members decrease in

size and eventually become identical singleton sets, returning the same cand after a

‘random’ selection.

97

6.1.1.2 Using ♦RC Multicast

At least (n − f) members receive a ♦RC multicast m. In the worst case, f of

those that ♦RC received m may crash, leaving only (n−2f) correct members with

m. This worst-case possibility may block a correct member receiving m from a

majority of members, when n− 2f ≤ n
2
, i.e., for all n, 2f + 1 ≤ n ≤ 4f . Note that

if a member cannot ♦RC receive {est, cand} pair from a majority of members, it

cannot complete a phase. (Completing a phase means deciding or moving onto the

next phase/round). A deadlock arises when no member can complete a phase and

this is illustrated by the scenario described below.

Consider G = {N1, N2, N3} and f = 1. Say, N1 and N2 ♦RC mcast a message

for round r and phase ph, denoted as (r, ph) message for short. Let (r, ph) messages

from N1 and N2 be ♦RC received by {N1, N3} and {N2, N3} respectively. Suppose

that N3 crashes after ♦RC receiving these messages but before processing them

and therefore before ♦RC mcasting any (r, ph) message of its own. Both N1 and

N2 cannot now receive two (r, ph) messages, if their own (r, ph) messages have

been discarded by the ♦RC multicast protocol. ♦RC discards a message when it is

known that this message was received by at least n− f members. In this scenario,

it is enough for a message to be received by 2 members to become realized. So if

N1/N2 knows that N3 has received its (r, ph), it realizes its (r, ph). Therefore, both

N1 and N2 will cease the multicast of (r, ph), although each of them has only its

own {est, cand}.

To break the deadlock, it is necessary for operative members to repeat their

♦RC mcasting of (r, ph) messages at regular intervals, if they judge themselves

being unable to receive (r, ph) messages from a majority of members. In the above

scenario, the (r, ph) messages ♦RC mcast by N1 and N2 after N3 has crashed will

allow N1 and N2 to make progress.

This repetitive ♦RC mcasting of (r, ph) messages must be done in a judicial

manner, mindful of overheads involved. Our protocol manages this using a time-

driven mechanism that can also be event-driven one when 2f + 1 < n ≤ 4f : a

member distinquishes its♦RC multicasts for a given (r, ph) message using a message

field, called the attempt sequence number and denoted as α, α ≥ 1. The ♦RC

multicast system will treat ♦RC multicasts from a given member with distinct α as

distinct mulitcast messages. Every time a member ♦RC receives a (r, ph) message,

98

Function consensus (vi)
{

(1) ri = phi = αi = 1; esti = candi = vi;
(2) activate Thread C(ri, phi, αi, esti, candi);
(3) wait until ♦QC receive (decision, v) occurs;
(4) return (v);
}

Figure 6.1: The Consensus Function

it increments a count by 1. When the count reaches (n − 2f), the (r, ph) message

will be ♦RC mcast after ∆ time and the count is decremented by (n− 2f).

In the scenario considered earlier with G = {N1, N2, N3} and f = 1, only

∆-driven mechanism is effective as n = 2f + 1: both N1 and N2 will perform

a ♦RC mcast once every ∆ interval until N3 crashes or no longer receives the

♦RC mcasts from N1 and N2.

It is proved in our work in [AE10] that if a correct member begins a phase ph

of round r, then some correct member ♦RC receives (r, ph) from a majority of

members, so long as no correct member is decided. The proofs make no assumption

as to how long a faulty member, such as N3 in the earlier scenario, can take to crash

or to stop receiving correct members’ repeated ♦RC multicasts; they only require

the interval to be finite.

6.1.2 The Protocol

The protocol is expressed in Figure 6.1 as a function that takes a member Ni’s

proposed estimate and returns the decision v (line 4). It assumes the use of ♦QC

and♦RC protocols which respectively provide♦QC mcast(m) and♦RC mcast(m)

for multicasting m, and ♦QC receive() and ♦RC receive() for receiving a multicast

m exactly once.

The round-based activities are carried out by thread C() which is activated in

line 2 of Figure 6.1 for phase ph = 1 of round r = 1, (r = 1, ph = 1) for short.

Thread activation supplies five input parameters which are all initialized in line 1

of Figure 6.1, where, it should be noted, candi and esti are both set to Ni’s own

proposal vi and αi is set to 1.

Thread C() is designed to die after either deciding or spawning a new instance

of itself for a later phase. If decision is made, it is ♦QC multicast which, when

♦QC received (line 3), terminates Function consensus.

99

Thread C(ri, phi, αi, esti, candi)
{

(1) while (true) do
{

(2) m = (ri, phi, αi, esti, candi); ♦RC mcast (m);
(3) Bagi = {}; V Bagi = {}; counti = 0;
(4) while (|Bagi| ≤ n

2) do
{

(5) while (counti < n− 2f) do
{

(6) wait until (rj , phj , αj , estj , candj)
♦RC received: (rj = ri ∧ phj ≥ phi) ∨ (rj > ri);

(7) if ((rj = ri ∧ phj > phi) ∨ (rj > ri)) then
{

(8) activate Thread C(rj , phj , 1, estj , candj); die;
}

(9) counti + +;
(10) if (candj /∈ V Bagi) then enter candj in V Bagi;
(11) if (<j, estj> /∈ Bagi) then enter <j, estj> in Bagi;
(12) if (|Bagi| > n

2) then { exit; }
}

(13) if (counti ≥ n− 2f ∧ |Bagi| ≤ n
2) then

{
(14) counti = counti − (n− 2f); αi = αi + 1;
(15) schedule ♦RC mcast (ri, phi, αi, esti, candi)

at clock + ∆;
}

}
(16) cancel any pending ♦RC mcast();
(17) candi = PickRandom(V Bagi);
(18) if (phi = 1) then

{
(19) if (v = estj for all <j, estj> in Bagi) then esti = v;
(20) else esti = ⊥;
(21) phi = 2; αi = 1;

}
(22) else if (phi = 2) then

{
(23) if (v = estj ∧ v 6= ⊥ for all <j, estj> in Bagi) then

{
(24) ♦QC mcast (decision, v); die;

}
(25) else if (v = estj ∧ v 6= ⊥ for some <j, estj> in Bagi) then
(26) esti = v;
(27) else esti = candi;
(28) ri = ri + 1; phi = 1; αi = 1;

}
}

} // end Thread C()

Figure 6.2: Pseudo-Code for Consensus Thread

The pseudo-code for thread C() of some Ni ∈ G for a given (r, ph), r ≥ 1

and ph ∈ {1, 2}, is presented in Figure 6.2. It can be understood in three parts:

Ni ♦RC multicasting own {est, cand} (line 2), awaiting {est, cand} pairs to be

♦RC received from a majority of nodes (lines 3-15) and acting on the {est, cand}

100

pairs received (lines 16-28).

To deduce the termination of waiting in part 2, Bagi is maintained for storing

estj that was ♦RC received from Nj ∈ G , as a 2-tuple <j, estj>. Having initialized

Bagi, V Bagi and counti (in line 3), the thread waits (line 6) to ♦RC receive mj

from any Nj ∈ G for some (rj, phj) that is either future to or the same as (ri, phi).

A future mj will have either (rj = ri and phj > phi) or rj > ri (line 7) and

will expedite the execution: a new thread instance is created with future mj as the

input (except for αj which is initialized to 1), and the current thread dies (line 8).

If mj is current with rj = ri and phj = phi, counti is incremented (line 9); V Bagi

and Bagi are updated, if candj and <j, estj> are not already present, respectively

(lines 10-11). If counti ≥ n− 2f without termination of part 2 (lines 12-13), then a

repeat of ♦RC mcast(m) after ∆ time is scheduled (line 15), once m.α is increased

by 1 and counti decreased by (n− 2f) (line 14).

Once Bagi has more than n
2

entries, part 3 begins: any pending ♦RC mcast(m)

is canceled (line 16) and candi is set to a random value picked from V Bagi (line

17). The rest of part 3 faithfully implements the EMR logic as described in §6.1 for

both ph = 1 and 2, except for one aspect: when ph = 2, if esti has to be a random

selection then esti is simply set to candi (line 27). The rest of part 3 (lines 18-28)

is shown below in more details.

When ph = 1: (i) If all received estimates from a majority are the same and

equal to v, v is adopted as the member’s new estimate (line 19); otherwise ⊥ is

taken as the new estimate (line 20), and (ii) phi is set to 2 and αi to 1 (line 21).

When ph = 2: If all obtained estimates from a majority are the same and equal

to v (v 6= ⊥) (line 23), Ni decides on v and ♦QC mcasts the dcision, then the

current thread dies (line 24). If, otherwise, Ni has received at least one v, v 6= ⊥

(line 25), it takes v as its new estimate (line 26). Otherwise, candi is taken as the

new estimate (line 27). Finally, ri is incremented by 1, and both phi and αi are set

to 1 (line 28).

6.2 Performance Study

The simulation parameters used in this section are the same parameters which were

used in the last chapter. A total of 50 nodes (S = 50) were randomly placed in a

fixed size terrain of 1000m x 1000m. At the start of each run, 10 nodes are chosen

101

randomly to be group members (G = 10). The group members do not leave the

group during the run.

In the same way as in the last chapter, each run of simulation was repeated 1000

times using distinct random seeds. Moreover, every run started after 1000 seconds

of node movement to avoid any initial bias in node placement.

The value of β in ♦RC and ♦QC protocols was varied as: 2 and 5 seconds. No

significant difference in performance was observed. So we present our results using

β = 5, then some chosen graphs which use β = 2 are added to demonstrate the

similarity in performance. So all presented graphs use β = 5 unless it is explicitly

stated.

Consensus protocol always starts with each node proposing a distinct initial esti-

mate. Also, at the start, three nodes are randomly chosen for crashing at randomly

chosen moments. ∆ in the consensus protocol was chosen to be 10 seconds - a large

value because the failure scenario (see § 6.1.1.2) that calls for repeated ♦RC multi-

casting of a given (r, ph) message was judged to occur rarely. (It was never observed

in our study).

The used value, in ♦RC and ♦QC, for H in NeighH (ii) is 2 when a node has an

unrealized multicast, or (ii) is set to 1, once all on-going multicasts are realized. For

H > 1, members update NeighH every 2 seconds interval by transmitting Ghello

packet. The number of allowed Ghello losses is 2; a neighbour is deleted when its

Ghello is not received within 3 × 2 = 6 seconds. Finally, when a node begins to

execute a given phase, ph of round r, it kills any on-going ♦RC multicasts for an

earlier phase.

♦RC and ♦QC use EGM as their ♦R service. EGM uses the value 6 for τ

(τ = 6) and the values for φ are the same as the ones listed in Table 4.2.

We measured 5 performance metrics for 3 different densities, and 8 different

maximum node speeds. They are presented in three categories: number of rounds,

time overhead and packet overhead.

1. Average number of rounds: The number of rounds, measured as an average

over 1000 runs, taken to reach consensus.

2. Time overhead: It was measured in terms of (i) time taken for the first mem-

bers to decide, and (ii) time taken for members to become totally quiescent.

The latter occurs when all operative members have identical RV for a multi-

102

cast m and hence not even a control packet (such as K pkt or Ghello) needs

to be unicast for that m.

3. Packet overhead: The average of control and data packets per node which

is measured as the total number of control/data packets transmitted by all

nodes until total quiescence, divided by |S| = 50. A data packet refers to any

m containing (est, cand) pair or the decision.

We also measure the packet overhead until the first members to decide. This

overhead has the same definition used for packet overhead in 3, but here the trans-

mitted control/data packets are calculated until the first members decide.

Figure 6.3 shows that members take less number of rounds to reach consensus

when density is lower. This section will prove that the number of rounds is the only

metric which benefits from low density. The node speeds have no important effect

on the number of rounds.

It appears that when the network is denser, more members receive each other’s

estimates and simultaneously complete a round/phase. As the density drops, few

members complete a round/phase much ahead of the rest, resulting in them expe-

diting the slow ones and enforcing their random choice on to the slow ones. Conse-

quently, estimates of different members converge faster and consensus is reached in

fewer rounds.

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 5 10 15 20 25 30 35 40

A
vg

 n
um

be
r

of
 r

ou
nd

s

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.3: Average number of rounds vs the max speed (m/s)

103

Figures 6.4 and 6.5 show the time for first members to decide and time for

the total quiescence repectively. These graphs have the same trends for the node

density and the node speed. They show that the lower the density, the longer the

latencies. Despite the fewer number of rounds in lower densities, these densities

incur longer delay. Note that the latencies which shown in Figure 6.4 and 6.5 are

affected by latencies in ♦RC and ♦QC protocols repectively because these protocols

are used here. So in the same way like in ♦RC and ♦QC, increasing the node

speed (up to a threshold) helps reduce the latencies. This is because increasing

the speed casuses the (B, H ≥ 2)-Connectivity to be formed quickly; beyond the

threshold, connectivity does not last for the needed B duration due to quick node

movement. Longest latencies are observed when density and maximum speed are at

their smallest, 1.6 and 5 m/s: it takes 20 and 34 minutes for the first node to decide

and for total quiescence, respectively. Doubling the density value reduces latencies

by more than half at all node speeds. So a dramatic decrease in latencies is observed

when increasing densities because in higher densities connectivity between members

is formed quickly.

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40

T
im

e
fo

r
fir

st
 m

em
be

r
to

 d
ec

id
e

(s
)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.4: Time until the first members decide vs the max speed (m/s)

104

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 5 10 15 20 25 30 35 40

T
im

e
to

 to
ta

l q
ui

es
ce

nc
e

(s
)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.5: Time until total quiescence vs the max speed (m/s)

The average of data and control packets, transmitted per node until total quies-

cence, are presented in Figures 6.6 and 6.7 respectively.

It is shown that data packet overhead is fairly constant over node speeds. This

is because the node speed has no important effect on the data packet overhead of

♦RC and ♦QC which are used here. The node density has a significant influence

on the data packet overhead. Despite the fact that higher densities require more

number of rounds, they incur less data packet overhead than lower densities. This

is because at higher densities, (B, H)-Connectivity is formed quickly. So members

can receive each other’s estimates, and so move to advanced phase, more quickly.

As was mentioned before, when a member begins to execute a given phase, ph of

round r, it kills any on-going ♦RC multicasts for an earlier phase. This causes the

number of killed ♦RC multicasts to be greater at higher densities. So the data

packet overhead will be smaller.

Control packet overhead, in Figure 6.7, shows a similar trend as the latencies; the

longer it takes to reach consensus, the more control packets are being expended. This

is because ♦RC is used here and the longer it takes to reach consensus, the longer

♦RC needs to be working; As was shown in the last chapter, longer ♦RC latencies

incur more control packet transmissions. In fact the control packet overhead for

♦RC has the same trend like Figure 6.7.

105

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 5 10 15 20 25 30 35 40

D
at

a
pa

ck
et

 o
ve

rh
ea

d

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.6: The average of transmitted data packets per node unitil total quiescence
vs the max speed (m/s)

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

C
on

tr
ol

 p
ac

ke
t o

ve
rh

ea
d

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.7: The average of transmitted control packets per node unitil total quies-
cence vs the max speed(m/s)

Figures 6.8 and 6.9 show data and control packet overhead until the first mem-

bers to decide. These Figures show the same trends like 6.6 and 6.7 respectively.

Figures 6.6 and 6.7 have some extra overhead which is required for members to reach

consensus after the first members decide (as expected).

106

 7

 8

 9

 10

 11

 12

 13

 14

 5 10 15 20 25 30 35 40

D
at

a
pa

ck
et

 o
ve

rh
ea

d
un

til
 fi

rs
t t

o
de

ci
de

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.8: The average of transmitted data packets per node until the first members
decide vs the max speed (m/s)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 5 10 15 20 25 30 35 40

C
on

tr
ol

 p
ac

ke
t o

ve
rh

ea
d

un
til

 fi
rs

t t
o

de
ci

de

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.9: The average of transmitted control packets per node unitil the first
members decide vs the max speed(m/s)

6.2.1 The Performance Using β = 2

We show in this section some of our results using β = 2. Since the purpose is to

discuss the influence of different values of β, we choose to show the metrics which

107

are more connected to the time taken to decide/reach consensus. So we will show

here the following metrics:

1. Time taken for the first members to decide.

2. Time taken for members to become totally quiescent.

3. The average of transmitted control packets until total quiescence.

Comparing Figures 6.10 and 6.11 with Figures 6.4 and 6.5, respectively, shows

that there is no important difference in the time overhead using β = 2 and β = 5.

Moreover, comparing Figure 6.12 with Figure 6.7 shows that there is no significant

difference in the control packet overhead between using the two different values of

β.

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40

T
im

e
fo

r
fir

st
 m

em
be

r
to

 d
ec

id
e

(S
)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.10: Time until the first members decide vs the max speed (m/s)

108

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 5 10 15 20 25 30 35 40

T
im

e
to

 to
ta

l q
ui

es
ce

nc
e

(S
)

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.11: Time until total quiescence vs the max speed (m/s)

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

C
on

tr
ol

 p
ac

ke
t o

ve
rh

ea
d

Max speed (m/s)

Range 100
Range 150
Range 200

Figure 6.12: The average of transmitted control packets per node unitil total quies-
cence vs the max speed(m/s)

6.3 Compariosn Study

In this section, we compare the performance of our consensus protocol, as an example

of randomized consensus protocol, against one of the leader-based consensus proto-

cols which were introduced in Chapter 2. So next, we introduce the leader-based

109

approach in sparse MANETs and identify the design challenges that arise.

6.3.1 Features of Leader-based Consensus Protocols

Our randomized consensus protocol proceeds in rounds, each round is made up of

two phases. In the same way, a leader-based consensus protocol proceeds in rounds

each of which is made up of two phases. In the leader-bases protocols, however,

consultation messages are sent to the leader which, in turn, multicasts its reply to

all group members.

In the best case for a leader-based protocol, a decision can be reached at the end

of round 1 if an operative leader is:

(a) able to communicate with enough number of members, and

(b) trusted by these members long enough while it carries out the leadership tasks.

The latter feature is one of the advantages of a leader-based protocol over a ran-

domized one. A leader-based protocol has one more advantage: if the leader of a

round crashes or, in the case of sparse MANETs, remains unable to receive enough

consultation messages from other members, the protocol has a built-in procedure to

switch to another leader. So if a leader cannot make progress (e.g. cannot achieve

(a) above) during any round, it can be replaced by another leader.

So a leader-based protocol can circulate the leadership between a group of mem-

bers. This allows this protocol to tackle any deadlock that might be caused by

crashes or poor leader connectivity. However, the down side to the latter advantage

is the difficulty in choosing the suitable timeout before changing a leader, this time-

out will be referred to as suspicion timeout. The chosen duration for the suspicion

timeout has a big effect on the protocol behaviour; choosing an unduly small time-

out duration subverts (b) above, even if the current leader is being assisted by the

MANET to achieve (a).

So, we experimentally explore the following question: how helpful is a sparse

MANET in letting a leader accomplish (a) while (b) is never undermined? (Thus,

in our experiments, a leader change occurs only if the MANET has not helped

the current leader to achieve (a)). Experiments confirm that the MANET is least

helpful; This, we argue, requires the messages be sent using opportunistic forwarding

protocols, such as ♦QC or ♦RC protocols we have employed for our consensus

protocol.

110

The necessity to use opportunistic forwarding protocols have two implications.

First, consensus latencies would be longer even if (b) above is never undermined.

Secondly, choosing a timeout duration that never undermines (b) above is hard. Ex-

panding on the second implication, we conclude that a rigorous performance com-

parison between a leader-based protocol and ours cannot be done in any meaningful

manner. We end with providing a qualitative comparison on achievable consensus

latencies, subject to a few caveats.

6.3.1.1 Leader-based Performance Study

We chose to simulate Fast Paxos [Lam06] which is a leader-based protocol (Chapter

2 has some details about Fast Paxos). The target is to assess how swiftly this sparse

MANET supports the protocol by being well-connected for a sufficiently long time

in order that some leader manages to complete just one round. In other words, we

assess the efficiency of Fast Paxos in the absence of any support for opportunistic

forwarding.

So we simulated this protocol in a MANET of density 1.6 for speed 5 m/s. In

our experiment, the leadership role is circulated amongst operative members after

it is known that no message is in transit and the current leader still remains unable

to discharge its responsibilities.

All multicast communications were performed using flooding whose capacity for

delivering messages is as effective as the connectivity that exists during the brief

period that a flood lasts. The suspicion timeout was chosen to be 10 seconds, to

eliminate any influence of it being too small. in the same way like other simulation

experiments, each Paxos simulation was carried out 1000 times; each run was ter-

minated either as soon as a member decides or 200 leader changes have occurred

with no member deciding. Figure 6.13 shows the cumulative distribution function

(CDF) of the number of leader changes before reaching a decision.

Referring to Figure 6.13, we notice that 200 leader changes are enough to reach

decision only in 69% of the runs. Furthermore, only in a few runs the decision

was reached after a reasonably small number of leader changes: for example, the

probability that a decision is reached within 20 leader changes is 0.15 (P (≤ 20) =

0.15). The experimental data also suggests (not obvious from Fig 6.13) that the

decision was reached with the first, the second and the third leader in 2%, 1% and

111

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 20 40 60 80 100 120 140 160 180 200

P
(≤

 x
)

Number of leader changes

speed 5 m/s
wireless range 100 m

Figure 6.13: CDF of number of leader changes

1% of 1000 runs. That is, a sparse MANET of 1.6 density is only 4% reliable in

providing the necessary connectivity so that the decision can be reached in at most

2 leader changes.

Another important observation can be derived from what did not happen in

our experiments: in 31% of the 1000 runs, no decision was reached even after 200

leader changes. Note that the nature of the leader-based protocols is such that

when the leadership is changed, the new leader cannot build on the incomplete

work done by the past leader(s), but must start its work from scratch. (See [Lam06]

for more details). So a leader-based protocol is memoryless when it comes to leader

changes: the probability of the ith leader deciding does not depend on i, but on how

it is favored by the network connectivity patterns when it is discharging its leader

responsibilities.

Of course, if the MANET were to eventually bestow its favor to some leader at

some time, then P (≤ λ) = 1 for some large number λ of leader changes. On the

other hand, the MANET may not be eventually obliging and as a result P (≤ λ) < 1

as λ → ∞. In that case, 1 − P (≤ λ), λ → ∞ refers to the tail probability that

a decision is never reached. Based on the experiments that limit λ to 200, we can

conclude that the opportunistic forwarding protocols are also an absolute necessity

for leader-based consensus protocols when the MANET is sparse.

112

6.3.1.2 Implementation Support and Suspicion Timeout

We identify four requirements for implementing a leader based protocol:

• A ♦RC multicast protocol for the leader to disseminate its phase-1 or phase-2

m. Though blocking due to post-delivery crashes can be a problem, this does

not necessarily require repeating of ♦RC multicasts. However, the (single)

leader is to make several attempts in a given phase, it would increase the

coverage as the MANET topology is likely to change in between attempts.

• A unicast protocol that employs opportunistic forwarding so that a non-leader

could respond to the leader’s phase-1 or phase-2 m with a small overhead. We

refer the reader to [Zha06] for choosing an effective unicast protocol.

• A ♦QC multicast protocol for the leader to disseminate its decision which

would occur if it receives responses to its phase-2 m from a majority.

• The duration of the suspicion timeout, STO for short, which a non-leader

member, say, Ni sets after it has responded to the leader’s phase-1 or phase-2

m; if phase-2 m or the decision m is not received before the timeout expiry,

Ni will act as the leader if it is the next leader candidate; otherwise it waits

on STO for the next leader to act. (All leader-based protocols pre-arrange the

leadership sequence).

The duration of STO must be at least as large as the sum of an upper bound on

the ♦RC multicast protocol latencies and an upper bound on the unicast protocol

latencies. Otherwise, non-leader members will falsely suspect a leader and would

deny it the chance to complete the round which might have occurred if only more

time had been given to it.

Establishing upper bounds on multicast and unicast latencies can be done through

simulations or analytical estimations, but both require MANET characteristics to

be fully known in advance and is specific to the multicast and unicast protocols

used. More specifically, latencies depend on:

• The connectivity patterns that emerge while the multicast or unicast is in

progress. i.e., the MANET characteristics, such as density, node speed etc.;

and,

113

• The protocol mechanisms employed to exploit the emerging connectivity pat-

terns for message propagation and the values chosen for protocol parameters

such as β, H in NeighH etc.

Even when all MANET and protocol parameter values are known, analytical

estimation of latency bounds (in terms of these parameters) is a non-trivial task

and we refer the reader to [Asp10] which is, to the best of our knowledge, the latest

work to take on this problem.

In practice, however, MANET characteristics can change over time. For example,

as devices run low on battery, they may reduce their transmission range causing a

drop in network density. As our experiments indicate, a small drop in density can

adversely alter the latency behavior. So, if MANET characteristics change past

deployment, revising the bounds, be through simulations or estimations, is difficult

since the global MANET state needs to be periodically assessed.

Thus, identifying an appropriate value for STO and adapting it when the MANET

characteristics change, are a difficult (if not impossible) task. When the chosen STO

is, or subsequently becomes, unduly small relative to the prevailing multicast and

unicast latencies, false suspicions lead to unwarranted leader changes which in turn

increase consensus latencies and message overhead. This also means that choosing

the right STO is not only hard and but the performance of a leader-based protocol

is also sensitive to the chosen STO.

6.3.1.3 Randomized vs. Leader-Based Protocols

Our consensus protocol is free of STO and ∆ is the only timeout it uses. But

these two timeouts do not impact performance identically. When STO is chosen

to be large (relative to the prevailing latencies), the leader crash (a rare event)

will be detected late; similarly when ∆ is chosen to be large (again, relative to the

prevailing latencies), it will take a long time to deal with blocking due to post-

delivery crashes (also a low-probability event). Here, the similarities end. A smaller

STO, as indicated earlier, will cost messages and prolong the time taken to reach

consensus; on the other hand, a smaller ∆ will cost only messages and speed up the

release of any blocking due to post-delivery crashes.

Thus, the leader-based protocols and ours (or the randomized protocols in gen-

eral) are quite distinct in several aspects:

114

• Design: centralized versus decentralized;

• Dissemination support: multicasts and unicasts versus multicasts only;

• Timeout Used: STO with or without ∆ versus ∆ only; and,

• Performance impact due to unduly small timeouts: increase of both latency

and message overhead versus increase of message overhead only.

Therefore, a rigorous and quantitative performance comparison requires an agreed

framework for making certain choices, listed here in the increasing order of difficulty:

choosing (i) a leader-based protocol for implementation, (ii) an effective unicast pro-

tocol, and (iii) appropriate values for protocol parameters that are not necessarily

present in both these consensus protocols. In the absence of such a benchmark, an

attempt to compare their performance risks being seen to favor one approach over

the other. Therefore, we below make an informal and qualitative comparison on

consensus latencies with several caveats.

We have noted that a leader-based protocol also requires opportunistic protocols

for message dissemination and a ♦QC equivalent to propagate the decision which

must reach all operative members. Hence, one could take a view that the time taken

for completing a given round and that for total quiescence after the first member

has decided will be comparable between the two protocols.

Therefore, assuming that no crashes occur, a leader based protocol will take ex-

actly one round for decision if STO is chosen to be sufficiently large. This means

that our protocol, taking 3.2 - 2.2 rounds (on an average with minor variations) to

decide for the densities considered, can take up to approximately 3 times the time

taken by a leader-based protocol to reach decision. If the chosen STO causes 2 un-

warranted leader changes, then both the protocols would perform nearly identically.

If the chosen STO causes 3 or more unwarranted leader changes, our protocol would

certainly achieve total quiescence faster.

To summarize, the question of whether the leader-based approach to consensus

is better suited to sparse MANETs than the randomized approach depends primar-

ily on how reliably the right STO is found and maintained over the lifetime of a

sparse MANET. It is mainly to avoid the difficulties in reliable estimation of STO,

a randomized consensus protocol was first proposed (in 1983) [BO83] in the context

of asynchronous communication systems where, unlike in LAN or always-connected

115

MANETs, the bound on prevailing communication latencies cannot be reliably esti-

mated. The latter aspect is modeled in [BO83] as the communication network being

controlled by an unknown adversary who keeps the latencies finite but controls them

in an arbitrary manner.

6.4 Summary

The consensus protocol introduced in this chapter was derived from the EMR pro-

tocol. The derived protocol makes use of ♦RC and ♦QC protocols. The ♦QC

protocol is used only to disseminate decisions. So the ♦RC is used excessively by

members to exchange estimates in all phases/rounds until reaching a decision.

While members in EMR exchange each other’s estimates (est values), members

in this protocol send an extra value; the input candidate for the random selection

process cand. A member Ni uses V Bagi to maintain received distinct cand values in

the current phase. At the end of each phase, candi is randomly chosen from V Bagi to

be sent with esti. So this candi will be the input candidate for the random selection

to be held at the end of next phase. When two mebers Ni and Nj randomly select the

same value for their cand values, V Bags of operative members in the next phase will

decrease in size. So repeating the random selections, frequently enough, will result

in reducing the size of V Bags of operative members until these V Bags eventually

become identical singleton sets. This makes operative members have the same cand

after any ‘random’ selection. So mebers can decide on this cand value. We refere

the reader to our work in [AE10] for the proof.

This protocol copes with the challenges which might arise from using the ♦RC

protocol. These challneges are mainly expressed by the deadlock which might occur

when n − 2f ≤ n
2
. This deadlock is encountered because ♦RC guarantess that at

least n−2f correct members receive any multicast and the consensus protocol needs

members to receive from a majority. So when n−2f is less thatn majority, members

might not be able to proceed their rounds. To avoid the deadlock, operative members

repeat their ♦RC mcasting of (r, ph) if they find themselves being unable to receive

(r, ph) messages from a majority of members. The repetition of ♦RC mcasting of

(r, ph) messages is done in a reasonable manner to avoid any overhead. Note also

that any repeated (r, ph) messages are treated as distinct mulitcast messages by

♦RC.

116

Simulations show that the average number of rounds, taken to recach decision,

is amazingly small; it is between 2.2 and 3.2 for all used densities. The latency for

this protocol decreases dramatically when the node density increases; lower densities

incur long time to reach the consnesus (as expected). Moreover, increasing the nodes

maximum speed causes the latency to be decreased in particular in lower densities.

The node density has a significant influence on the data packet overhead as higher

densities incur less data packet overhead. While node speeds show no influence on

the data packet overhead.

The control packet overhead shows a similar trend as the latencies, suggesting

that the longer it takes to reach consensus, the more control packets are being

expended.

117

Chapter 7

Summary and Conclusions

Consensus being a fundamental problem in distributed computing, it has been ad-

dressed in MANETs, often in association with addressing another MANET-centric

concern: [WCR09] and [WCYR07] solve consensus together with clustering and

scalability issues, [CDG+05] with packet collisions, [GT07] and [CSS04] in the con-

text of participants’ identities not known initially. This thesis considers consensus

for sparse MANETs where flooding [HOTV99] or mesh/tree based routing [VOT06]

cannot guarantee multicast coverage necessary for known solutions to be simply

deployed. So a consensus module has been built for supporting collaborations in

MANETs. This module has been shown to operate even in sparse and highly mo-

bile MANETs, and expanded simulations confirm that the overheads incurred are

not too high to be feasible in MANETs.

This chapter summarizes the contributions made in this dissertation and illus-

trates some routes of future research.

7.1 Summary

Chapter 2 presented the fundamental related work on multicast protocols and solving

the consensus problem in MANETs. A brief comparison between the performance of

some existed categories of multicast protocols was carried out. It was also observed

that few consensus protocols have been subject to performance evaluation. These

protocols were introduced briefly and an explanation about the weakness of each of

them was presented.

In chapter 3, a system model for MANETs was presented. The system model

accurately defines the requirements on the network conncectivity, the multicast pro-

118

tocols which will be used for solving the consensus and the approach to the consen-

sus. The requirement on the network connectivity was intended to be as minimal

as possible, and essentially only requires operative members not to be isolated per-

manently. The principles of the required multicast protocols were defined in details.

Finally, the approach to the consensus was introduced.

Chapter 4 presented a derived multicast protocol called Encounter Gossip Mul-

ticast (EGM, for short). This protocol has been used, as an optional service, by

the required multicast protocols. EGM is also a ♦R protocol because it ensures

that there is a time after which operative members relinquish a multicast message.

Moreover, EGM is a network topology-independent which makes it work without

the need to store any information about the network topology. An optimized ver-

sion of EGM was introduced in the same chapter. The simulations showed that the

optimized EGM gives a high coverage with affordable cost and delay.

In chapter 5, two new multicast protocols, ♦RC and ♦QC, required for solving

consensus were presented. In addition to another protocol used as underlying service

to build and maintain (i) the H-hop group neighbourhood list (when H ≥ 1) and

routes to each group neighbour (when H > 1), and (ii) 1-hop neighbourhood list

which includes members and non-members. These neighbourhood lists are needed

by the required multicast protocols. ♦RC was explained in details by using two

implementations; one by using EGM as an added service and another one without

using any optional services. Simulations have proved that ♦RC which used EGM

as an added service performs better. ♦QC was introduced using EGM as an added

service. Intesive simulations for these protocols showed that they peform well in all

scenarios with extra cost in sparse ones which is an expected behaviour.

Chapter 6 presented the consensus protocol which is derived from [EMR01]. The

derived protocol was implemented on top of ♦RC and ♦QC protocols. The use of

♦RC was kept to maximum so members use it to exchange their estimates in all

phases/rounds until reaching a decision. The ♦QC protocol was used only to send

decisions. All the challenges which might be imposed by using ♦RC were addressed

and the derived consensus protocol can cope with these challenges. Simulations

showed that the average number of rounds taken to recach decision was small in all

densities (maximum was 3.2). Moreover, the time and packet overhead were not too

high to be reasonable in MANETs.

119

7.2 Conclusion

This thesis has built a consensus module that supports a wide range of MANETs

scenarios including sparse ones, and further that implementing this module deos

not incur too high time and packet overhead to be feasible. It has done so by first

defining the required condition on the network connectivity for the consensus to be

solvable. Then, two multicast protocols, essential for consensus, have been devel-

oped before deriving the consensus protocol which addresses all challenges arised

due to using the developed multicast protocols. Finally, extended simulations have

been displayed which show that these protocols do not incur excessive time and

transmission overhead.

7.3 Future Work

In this thesis we have shown the performance of our consensus protocol in a range

of scenarios. Yet it would be preferable to provide a more in depth compariosn

study with other protocols. So as a future work, we would like to investigate how

our protocol performance compares with others, such as [WCR09] and [WCYR07],

when the network becomes moderately dense.

The ♦RC and ♦QC protocols use an optional ♦R service. In this thesis we

have compared the pefromance of ♦RC protocol using two implementations; one

implementation using EGM protocol as an added ♦R service and the another imple-

mentation without adding any ♦R optional services. However, it would be prudent

to add more comaprison studies by using other ♦R protocols as added services and

compare the performance.

The H-hop group neighbourhood list is used by both ♦RC and ♦QC protocols.

The value of H which has been used throughout simulations in this thesis is 2. It

was shown in section 5.7.3 that using H = 2 has influence on the latency incurred

by ♦RC. However, the influence of the value of H can be investigated more by

using different values. So as a future work, we would like to increase the value of H

to compare any results with our cuurent ones.

Group members periodically send Ghello packets to update the group neighbour-

hood list. So, throughout this thesis, members send Ghello packets every 2 seconds

interval. Choosing a small value of this interval might result in a big control packet

120

overhead because members will send Ghello packets more frequently. In contrast,

choosing a big value might result in using invalid routes because members will try to

update their routes less frequently, so some changes might occur on routes without

members being aware of these changes. The performance study in sction 5.7.3 has

proved that members send only few data packets before the realization of a message

m. So this gives the implicastion that there were no loss in the transmitted data

packets which means that the used routes were, mostly, valid. However, we would

like to know more about the effect of this interval by using different values. So a

potential future work would be to implement our protocols using different values of

this interval in particular values greater than 2.

The simulation runs, though carried out in a cluster, were quite time-consuming

because of low density values used. For density values smaller than 1.6, our protocol

will work if the liveness condition is met but one should expect latencies to be in

the order of hours, in particular, with slow moving nodes. So as a future work, we

would like to run our protocol in lower densities than the used ones.

121

Bibliography

[ACT00] Marcos Kawazoe Aguilera., Wei Chen, and Sam Toueg. On quiescent

reliable communication. SIAM J. Comput., 29:2040–2073, April 2000.

[AE10] Khaled Alekeish and Paul Ezhilchelvan. Consensus in Sparse, Mobile

Ad hoc Networks. In Technical Report, CS-TR-1208, 2010.

[Asp10] Mikael Asplund. Disconnected Discoveries: Availability Studies in Par-

titioned Networks. PhD thesis, 2010.

[BEV06] François Bonnet, Paul Ezhilchelvan, and Einar Vollset. Quiescent con-

sensus in mobile ad-hoc networks using eventually storage-free broad-

casts. In Proc. of 21st ACM Symposium on Applied Computing (SAC),

pages 670–674, 2006.

[BHvR05] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist: an

efficient approach to simulation using virtual machines. Softw., Pract.

Exper., 35(6):539–576, 2005.

[BLMT98] E. Bommaiah, M. Liu, A. Toh McAuley, and R. Talpade. Amroute:

Adhoc multicasting routing protocol. In draft-talpade-manet-amroute-

00.txt. IETF, manet, 1998.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract):

Completely asynchronous agreement protocols. In PODC ’83: Proceed-

ings of the second annual ACM symposium on Principles of distributed

computing, pages 27–30, New York, NY, USA, 1983. ACM.

[BPS08] Fatemeh Borran, Ravi Prakash, and Andre Schiper. Extending

Paxos/LastVoting with an Adequate Communication Layer for Wire-

less Ad Hoc Networks. In Proc. of 27th IEEE Symposium on Reliable

Distributed Systems (SRDS), pages 227–236, 2008.

122

[CDG+05] Gregory Chockler, Murat Demirbas, Seth Gilbert, Calvin Newport, and

Tina Nolte. Consensus and collision detectors in wireless ad hoc net-

works. In Proc. of the 24th annual ACM symposium on Principles of

distributed computing (PODC), pages 197–206, 2005.

[CEM09] D.E. Cooper, P. Ezhilchelvan, and I. Mitrani. Encounter-based message

propagation in mobile ad-hoc networks. Ad Hoc Networks, 7(7):1271 –

1284, 2009.

[CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed

system model. IEEE Trans. Parallel Distrib. Syst., 10(6):642–657, 1999.

[CSS04] D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown partic-

ipants or fundamental self-organization. In Proc. of the 3rd Int. Conf.

on ADHOC-NOW, pages 135–148, Vancouver, 2004.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors

for reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[CTA02] W. Chen, S. Toueg, and M.K. Aguilera. On the quality of service of fail-

ure detectors. IEEE Transactions on Computers, 51(5):561–580, 2002.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the

presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[DN05] H. Dhillon and H.Q. Ngo. Cqmp: a mesh-based multicast routing proto-

col with consolidated query packets. In Wireless Communications and

Networking Conference, 2005 IEEE, volume 4, pages 2168 – 2174 Vol.

4, 13-17 2005.

[EMR01] Paul Ezhilchelvan, Achour Mostefaoui, and Michel Raynal. Randomized

multivalued consensus. In Proc. of the 4th Int. Symp. on Object-Oriented

Real-Time Computing (ISORC01), pages 195–200, 2001.

[Fal03] Kevin Fall. A delay tolerant network architecture for challenged inter-

nets. In ACM SIGCOMM, pages 27–34, August, 2003.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-

possibility of distributed consensus with one faulty process. J. ACM,

32(2):374–382, 1985.

123

[GLAM99] J. J. Garcia-Luna-Aceves and Ewerton L. Madruga. The core-assisted

mesh protocol. IEEE JOURNAL ON SELECTED AREAS IN COM-

MUNICATIONS, 17(8):1380–1394, 1999.

[GS97] Rachid Guerraoui and Andre Schiper. Consensus: The big misunder-

standing. In FTDCS ’97: Proceedings of the 6th IEEE Workshop on

Future Trends of Distributed Computing Systems, page 183, Washing-

ton, DC, USA, 1997. IEEE Computer Society.

[GT07] F. Greve and S. Tixeuil. Knowledge connectivity vs. synchrony require-

ments for fault-tolerant agreement in unknown networks. In Proc. of the

International Conference on Dependable Systems and Networks, (DCCS

Track), pages 82–91, Edinburgh, UK, 2007.

[HGR04] Radu Handorean, Christopher Gill, and Gruia-Catalin Roman. Accom-

modating transient connectivity in ad hoc and mobile settings. Lecture

Notes in Computer Science, 3001:305–322, March 2004.

[HOTV99] Christopher Ho, Katia Obraczka, Gene Tsudik, and Kumar Viswanath.

Flooding for reliable multicast in multi-hop ad hoc networks. In Proc. of

the 3rd ACM workshop on Discrete algorithms and methods for mobile

computing and communications (DIALM), pages 64–71, 1999.

[jLBrP03] Sung ju Lee, Elizabeth M. Belding-royer, and Charles E. Perkins. Scal-

ability study of the ad hoc on-demand distance vector routing protocol.

International Journal of Network Management, 13:97–114, 2003.

[KDPH05] Dimitrios Koutsonikolas, Saumitra M. Das, Himabindu Pucha, and

Y. Charlie Hu. On optimal ttl sequence-based route discovery in manets.

In Proceedings of the Second International Workshop on Wireless Ad

Hoc Networking - Volume 09, ICDCSW ’05, pages 923–929, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[KEJ05] B. Kaliaperumal, A. Ebenezer, and Jeyakumar. Adaptive core based

scalable multicasting networks. In INDICON, 2005 Annual IEEE, pages

198 – 202, 11-13 2005.

[Lam06] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

124

[LFA04] Mikel Larrea, Antonio Fernandez, and Sergio Arevalo. On the implemen-

tation of unreliable failure detectors in partially synchronous systems.

IEEE Transactions on Computers, 53:815–828, 2004.

[LGC99] Sung-Ju Lee, M. Gerla, and Ching-Chuan Chiang. On-demand mul-

ticast routing protocol. In Wireless Communications and Networking

Conference, 1999. WCNC. 1999 IEEE, pages 1298–1302 vol.3, 1999.

[LSH+00] Sung-Ju Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. A performance

comparison study of ad hoc wireless multicast protocols. volume 2, pages

565 –574 vol.2, 2000.

[RP99] Elizabeth M. Royer and Charles E. Perkins. Multicast operation of the

ad-hoc on-demand distance vector routing protocol. In MobiCom ’99:

Proceedings of the 5th annual ACM/IEEE international conference on

Mobile computing and networking, pages 207–218, New York, NY, USA,

1999. ACM.

[VOT06] Kumar Viswanath, Katia Obraczka, and Gene Tsudik. Exploring mesh

and tree-based multicast routing protocols for manets. IEEE Transac-

tions on Mobile Computing, 5(1):28–42, 2006.

[vRMH98] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-based failure

detection service. In N. Davies, K. Raymond, and J. Seitz, editors, Proc.

of the Int. Conf. on Distributed Systems Platforms and Open Distributed

Processing (Middleware), pages 55–70, September 1998.

[WCR09] Weigang Wu, Jiannong Cao, and Michel Raynal. Eventual clusterer:

A modular approach to designing hierarchical consensus protocols in

manets. IEEE TPDS, 20:753–765, 2009.

[WCYR07] Weigang Wu, Jiannong Cao, Jin Yang, and Michel Raynal. Design and

performance evaluation of efficient consensus protocols for mobile ad

hoc networks. IEEE Trans. on Computers, 56:1055–1070, 2007.

[WTa98] C. Wu, Y. Tay, and C. Toh and. Ad hoc multicast routing protocol

utilizing increasing id-numbers (amris). In draft-ietf-manet-amris-spec-

00.txt. IETF, manet, 1998.

125

[XC09] Yong Xi and Mooi Choo Chuah. An encounter-based multicast scheme

for disruption tolerant networks. Comput. Commun., 32(16):1742–1756,

2009.

[Zha06] Zhensheng Zhang. Routing in intermittently connected mobile ad hoc

networks and delay tolerant networks: Overview and challenges. IEEE

Communications Surveys and Tutorials, 8(1-4):24–37, 2006.

126

	Introduction
	Applications of MANET
	Background and Motivation
	Contributions
	Thesis Outline

	Related Work
	Routing in Delay Tolerant Network (DTN)
	Deterministic Routing
	Stochastic Approach

	Taxonomy of Multicast Routing Protocols in Dense Networks
	Tree and Mesh Based Multicast Routing Protocols
	Proactive and Reactive Multicast Routing Protocols

	The Consensus Problem
	System Model
	A Fundamental Impossibility Result
	Known Approaches to Solving consensus
	R and Q protocols
	Some Existing Protocols for Solving Consensus

	Summary

	System Model and the Approach
	System Model
	Assumptions about Node Connectivity
	Liveness Requirement
	Categories of MANETs Depending on Node Connectivity
	Multicast Services
	Approach to Consensus and the Rationale

	Summary

	Encounter Gossip Multicast Protocol
	Encounter Gossip EG Broadcast Protocol
	Protocol Definition

	Encounter Gossip Multicast EGM Protocol
	Approach
	Protocol Definition
	Performance Study

	Optimization of EGM Protocol
	Effects of Node Speed
	Effects of Node Density
	flood reduction Optimization
	Performance Study

	Summary

	Eventual Relinquishing/Quiescent Multicast Protocols
	RC Protocol Using EGM Protocol
	EGM protocol
	DGB Protocol
	RC-coordinator

	QC Protocol Using EGM Protocol
	DGB Protocol
	QC-coordinator

	RC protocol Without Using R Service
	Neighbourhood Manager NM Protocol
	Overview of the H-hop Group Neighbourhood
	NM Description
	Example of 2-hop Group Neighbourhood

	Comparison Between Q and QC
	Required Duration of Node Connectivity
	Performance Study
	RC Protocol Using EGM Protocol
	QC Protocol Using EGM Protocol
	RC protocol Without Using R Service

	Summary

	Consensus Protocol
	The EMR Protocol
	Protocol Derivation and Challenges
	The Protocol

	Performance Study
	The Performance Using =2

	Compariosn Study
	Features of Leader-based Consensus Protocols

	Summary

	Summary and Conclusions
	Summary
	Conclusion
	Future Work

