2 research outputs found

    An overview of data fusion techniques for internet of things enabled physical activity recognition and measure

    Get PDF
    Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Measure (PARM) has been widely recognised as a key paradigm for a variety of smart healthcare applications. Traditional methods for PARM relies on designing and utilising Data fusion or machine learning techniques in processing ambient and wearable sensing data for classifying types of physical activity and removing their uncertainties. Yet they mostly focus on controlled environments with the aim of increasing types of identifiable activity subjects, improved recognition accuracy and measure robustness. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to an open and dynamic uncontrolled ecosystem by connecting heterogeneous cost-effective wearable devices and mobile apps and various groups of users. Little is currently known about whether traditional Data fusion techniques can tackle new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand potential use and opportunities of Data fusion techniques in IoT enabled PARM applications, this paper will give a systematic review, critically examining PARM studies from a perspective of a novel 3D dynamic IoT based physical activity collection and validation model. It summarized traditional state-of-the-art data fusion techniques from three plane domains in the 3D dynamic IoT model: devices, persons and timeline. The paper goes on to identify some new research trends and challenges of data fusion techniques in the IoT enabled PARM studies, and discusses some key enabling techniques for tackling them

    Multi-sensor fusion based on multiple classifier systems for human activity identification

    Get PDF
    Multimodal sensors in healthcare applications have been increasingly researched because it facilitates automatic and comprehensive monitoring of human behaviors, high-intensity sports management, energy expenditure estimation, and postural detection. Recent studies have shown the importance of multi-sensor fusion to achieve robustness, high-performance generalization, provide diversity and tackle challenging issue that maybe difficult with single sensor values. The aim of this study is to propose an innovative multi-sensor fusion framework to improve human activity detection performances and reduce misrecognition rate. The study proposes a multi-view ensemble algorithm to integrate predicted values of different motion sensors. To this end, computationally efficient classification algorithms such as decision tree, logistic regression and k-Nearest Neighbors were used to implement diverse, flexible and dynamic human activity detection systems. To provide compact feature vector representation, we studied hybrid bio-inspired evolutionary search algorithm and correlation-based feature selection method and evaluate their impact on extracted feature vectors from individual sensor modality. Furthermore, we utilized Synthetic Over-sampling minority Techniques (SMOTE) algorithm to reduce the impact of class imbalance and improve performance results. With the above methods, this paper provides unified framework to resolve major challenges in human activity identification. The performance results obtained using two publicly available datasets showed significant improvement over baseline methods in the detection of specific activity details and reduced error rate. The performance results of our evaluation showed 3% to 24% improvement in accuracy, recall, precision, F-measure and detection ability (AUC) compared to single sensors and feature-level fusion. The benefit of the proposed multi-sensor fusion is the ability to utilize distinct feature characteristics of individual sensor and multiple classifier systems to improve recognition accuracy. In addition, the study suggests a promising potential of hybrid feature selection approach, diversity-based multiple classifier systems to improve mobile and wearable sensor-based human activity detection and health monitoring system. - 2019, The Author(s).This research is supported by University of Malaya BKP Special Grant no vote BKS006-2018.Scopu
    corecore