218 research outputs found

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Past and future of plant stress detection: an overview from remote sensing to Positron Emission Tomography

    Get PDF
    Plant stress detection is considered one of the most critical areas for the improvement of crop yield in the compelling worldwide scenario, dictated by both the climate change and the geopolitical consequences of the Covid-19 epidemics. A complicated interconnection of biotic and abiotic stressors affect plant growth, including water, salt, temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants, pests and diseases. In facing this extended panorama, the technology choice is manifold. On the one hand, quantitative methods, such as metabolomics, provide very sensitive indicators of most of the stressors, with the drawback of a disruptive approach, which prevents follow up and dynamical studies. On the other hand qualitative methods, such as fluorescence, thermography and VIS/NIR reflectance, provide a non-disruptive view of the action of the stressors in plants, even across large fields, with the drawback of a poor accuracy. When looking at the spatial scale, the effect of stress may imply modifications from DNA level (nanometers) up to cell (micrometers), full plant (millimeters to meters) and entire field (kilometers). While quantitative techniques are sensitive to the smallest scales, only qualitative approaches can be used for the larger ones. Emerging technologies from nuclear and medical physics, such as computed tomography, magnetic resonance imaging and positron emission tomography, are expected to bridge the gap of quantitative non disruptive morphologic and functional measurements at larger scale. In this review we analyze the landscape of the different technologies nowadays available, showing the benefits of each approach in plant stress detection, with a particular focus on the gaps, which will be filled in the nearby future by the emerging nuclear physics approaches to agriculture

    New photogrammetric sensors for precision agriculture: the use of hyperspectral cameras

    Get PDF
    Photogrammetric and remote sensing techniques are increasingly getting used in precision agriculture to improve monitoring and management of the crops and at the same time to increase the crop yield and reduce the environmental impacts derived from the treatments.The entire production sector can benefit from the advance in technologies and the development of lightweight sensors for UAV (uncrewed aerial vehicles) with a higher spectral and spatial resolution such as the hyperspectral sensors. The hyperspectral sensors' ability for measuring hundreds of bands has impacts on the complexity and the data processing. Indeed, it is necessary to handle a considerable quantity of acquired data and select the relevant information for interventions in the agricultural area. The aims of this work are providing a survey of the UAV-based hyperspectral sensors available on the market and their acquisition technology and a global view of possible applications in the agriculture field. Moreover, the paper highlights future research developments related to this new type of device

    A systematic literature review

    Get PDF
    Barriguinha, A., Neto, M. D. C., & Gil, A. (2021). Vineyard yield estimation, prediction, and forecasting: A systematic literature review. Agronomy, 11(9), 1-27. [1789]. https://doi.org/10.3390/agronomy11091789Purpose—knowing in advance vineyard yield is a critical success factor so growers and winemakers can achieve the best balance between vegetative and reproductive growth. It is also essential for planning and regulatory purposes at the regional level. Estimation errors are mainly due to the high inter-annual and spatial variability and inadequate or poor performance sampling methods; therefore, improved applied methodologies are needed at different spatial scales. This paper aims to identify the alternatives to traditional estimation methods. Design/methodology/approach—this study consists of a systematic literature review of academic articles indexed on four databases collected based on multiple query strings conducted on title, abstract, and keywords. The articles were reviewed based on the research topic, methodology, data requirements, practical application, and scale using PRISMA as a guideline. Findings—the methodological approaches for yield estimation based on indirect methods are primarily applicable at a small scale and can provide better estimates than the traditional manual sampling. Nevertheless, most of these approaches are still in the research domain and lack practical applicability in real vineyards by the actual farmers. They mainly depend on computer vision and image processing algorithms, data-driven models based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that can support dynamic crop simulation models. Research limitations—this work is based on academic articles published before June 2021. Therefore, scientific outputs published after this date are not included. Originality/value—this study contributes to perceiving the approaches for estimating vineyard yield and identifying research gaps for future developments, and supporting a future research agenda on this topic. To the best of the authors’ knowledge, it is the first systematic literature review fully dedicated to vineyard yield estimation, prediction, and forecasting methods.publishersversionpublishe

    OCM 2021 - Optical Characterization of Materials

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    OCM 2021 - Optical Characterization of Materials : Conference Proceedings

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    GeoAI approach to Vineyard Yield Estimation

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsKnowing in advance vineyard yield is a key issue for growers, winemakers, policy makers, and regulators being fundamental to achieve the best balance between vegetative and reproductive growth, and to allow more informed decisions like thinning, irrigation and nutrient management, schedule harvest, optimize winemaking operations, program crop insurance, fraud detection and grape picking workforce demand. In a long-term scenario of perceived climate change, it is also essential for planning and regulatory purposes at the regional level. Estimating yield is complex and requires knowing driving factors related to climate, plant, and crop management that directly influence the number of clusters per vine, berries per cluster, and berry weight. These three yield components explain 60%, 30%, and 10% of the yield. The traditional methods are destructive, labor-demanding, and time-consuming, with low accuracy primarily due to operator errors and sparse sampling (compared to the inherent spatial variability in a production vineyard). Those are supported by manual sampling, where yield is estimated by sampling clusters weight and the number of clusters per vine, historical data, and extrapolation considering the number of vines in a plot. As the extensive research in the area clearly shows, improved applied methodologies are needed at different spatial scales. The methodological approaches for yield estimation based on indirect methods are primarily applicable at small scale and can provide better estimates than the traditional manual sampling. They mainly depend on computer vision and image processing algorithms, data-driven models based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that can support dynamic crop simulation models. Despite surpassing the limitations assigned to traditional manual sampling methods with the same or better results on accuracy, they still lack a fundamental key aspect: the real application in commercial vineyards. Another gap is the lack of solutions for estimating yield at broader scales (e.g., regional level). The perception is that decisions are more likely to take place on a smaller scale, which in some cases is inaccurate. It might be the case in regulated areas and areas where support for small viticulturists is needed and made by institutions with proper resources and a large area of influence. This is corroborated by the fact that data-driven models based on Trellis Tension and Pollen traps are being used for yield estimation at regional scales in real environments in different regions of the world. The current dissertation consists of the first study to identify through a systematic literature review the research approaches for predicting yield in vineyards for wine production that can serve as an alternative to traditional estimation methods, to characterize the different new approaches identifying and comparing their applicability under field conditions, scalability concerning the objective, accuracy, advantages, and shortcomings. In the second study following the identified research gap, a yield estimation model based on Geospatial Artificial Intelligence (GeoAI) with remote sensing and climate data and a machine-learning approach was developed. Using a satellite-based time-series of Normalized Difference Vegetation Index (NDVI) calculated from Sentinel 2 images and climate data acquired by local automatic weather stations, a system for yield prediction based on a Long Short-Term Memory (LSTM) neural network was implemented. The results show that this approach makes it possible to estimate wine grape yield accurately in advance at different scales

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

    Get PDF
    Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions
    • …
    corecore