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Plant stress detection is considered one of the most critical areas for the improvement

of crop yield in the compelling worldwide scenario, dictated by both the climate

change and the geopolitical consequences of the Covid-19 epidemics. A complicated

interconnection of biotic and abiotic stressors affect plant growth, including water, salt,

temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants,

pests and diseases. In facing this extended panorama, the technology choice is manifold.

On the one hand, quantitative methods, such as metabolomics, provide very sensitive

indicators of most of the stressors, with the drawback of a disruptive approach, which

prevents follow up and dynamical studies. On the other hand qualitative methods, such

as fluorescence, thermography and VIS/NIR reflectance, provide a non-disruptive view

of the action of the stressors in plants, even across large fields, with the drawback

of a poor accuracy. When looking at the spatial scale, the effect of stress may

imply modifications from DNA level (nanometers) up to cell (micrometers), full plant

(millimeters to meters), and entire field (kilometers). While quantitative techniques are

sensitive to the smallest scales, only qualitative approaches can be used for the larger

ones. Emerging technologies from nuclear and medical physics, such as computed

tomography, magnetic resonance imaging and positron emission tomography, are

expected to bridge the gap of quantitative non-disruptive morphologic and functional

measurements at larger scale. In this review we analyze the landscape of the different

technologies nowadays available, showing the benefits of each approach in plant stress

detection, with a particular focus on the gaps, which will be filled in the nearby future by

the emerging nuclear physics approaches to agriculture.
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1. INTRODUCTION

The world population is expected to increase up to 10.9 billion by
2050. Consequently food supply needs to be increased from 50 to
75% depending upon the region (Prosekov and Ivanova, 2018).
Such scenario is even more complicated due to the global climate
change and to the recent COVID-19 geopolitical problems that
have been affecting the food production and importation inmany
parts of the world.

Global climate change has resulted in heat waves due to
rising temperature, increased atmospheric CO2 level, frequent
spells of drought and higher precipitations. In addition to
climate change, the natural resource depletion as well as the
anthropogenic activities have created serious challenges to
agriculture sustainability causing lower agricultural yields, threat
to the food security and food and feed safety (Miraglia et al., 2009;
Pisante et al., 2012).

The already critical food security situation has been
exacerbated by the restrictions of movement and trade due to the
recent Covid-19 crisis. A series of social problems are also heavily
affecting agriculture. On the one hand the limited availability of
seasonal workers disrupted the harvesting cycles, on the other
hand increasing food price is limiting food accessibility. The
World Bank estimates that protectionism accounted for about
40% of the increase in the global price of wheat and 25% of the
rise in maize prices.

When subjected to both biotic and abiotic stressful conditions
plants respond through physiological and metabolic changes
mediated by pulses of gene expression, suggesting the existence
of a complex signaling network that allows plant recognizing
adverse environmental conditions as well as changes in growth
conditions (Kollist et al., 2019).

Therefore, it became extremely urgent to define novel
technologies and methods to ensure better growth and yields of
all crops. An early warning system of plant stress (i.e., before
symptoms are visible in the plant) would be, indeed, the tool that
helps growers on greenhouse management to increase efficiency
the use of resources. Moreover such approach could constitute
the base for breeding programs to select genotypes for biotic
and abiotic stress adaptation and high yield in both stress and
non-stress environments.

As represented in Figure 1, the effect of stressors manifests
itself in a series of signs at a wide length scale, ranging from
the entire cropping system down to the cellular level. Therefore
a series of detection techniques has been developed to measure
physiological responses to situation of stress.

The remote sensing approach is preferred for large area
investigations, as it allows to detect the chemical or physical
properties of crops from whatever distance, through the
record, measure and interpretation of imagery and digital
representations of energy patterns.With thesemethods the whole
fields can be investigated during the whole crop seasons, allowing
an accurate, early and reliable detection of crop stress, thanks also
to highly innovative and sophisticated methods of data analysis.

However, remote sensing methods are qualitative and do
not allow precision measurements. Quantitative techniques at
cellular level principally relay on two different acquisition

strategies [nuclear magnetic resonance (NMR) and mass
spectrometry (MS)] to the Volatile organic compound-based
techniques. Such laboratory methods, although often result
very accurate, are sampling destructive and allow monitoring
only a very limited number of plants or sections of plants.
Consequently, such approach is not suitable to control, estimate
and manage within-field spatial variability as well as ready
detection of the changes of physiological crop responses
over time.

Therefore the current frontier of stress evaluation in plant
science is the establishment of novel quantitative and non-
disruptive imaging techniques, both for precision morphological
studies (computed tomography, magnetic resonance) and
dynamic functional imaging (positron emission tomography).

In this review we present an overview of the several methods
and approaches to detect the most affecting biotic and abiotic
stress in agricultural crops at the different plant scales, ranging
from qualitative remote sensing techniques (section 2), to
sample disruptive quantitative techniques (section 3), to frontier
quantitative and non-disruptive functional imaging technologies
(section 4).

2. REMOTE SENSING QUALITATIVE
METHODS FOR STRESS ASSESSMENT

The term remote sensing can be defined as a set of techniques that
allow detecting the chemical or physical properties of physical
objects, fromwhatever distance, through the record, measure and
interpretation of imagery and digital representations of energy
patterns derived from non-contact sensor systems. It represents
a rapid, non-destructive, method to detect both biotic and abiotic
stressful conditions, utilized in precision agriculture and plant
phenotyping for resistance breeding purposes.

The processes involved are mainly based on the interaction
between electromagnetic radiation and plants. Since any stressful
condition can induce numerous and complex physiological
and biochemical responses in plants (i.e., altered stomatal
conductance, pigments concentration, and biochemistry),
healthy crop status could be derived from alterations observed
in plant-electromagnetic radiation relationship, provided on
specific spectral domains. Over the past decades, agricultural
sciences relied principally on reflectance (in the visible, VIS,
0.4–0.7 µm, near-infrared, NIR, 0.7–1.3 µm and short wave-
infrared, SWIR, 1.3–2.5 µm regions), thermal (in the thermal
infrared, TIR 7.0–20.0 µm region) and fluorescence (at 0.68 and
0.74 µm wavelengths) sensors. These sensors, although each
one with proper characteristics, can be used for applications on
scales ranging from microscopic observation (i.e., laboratory
spectroscopy or hyperspectral microscopy) to ground (proximal
sensing, i.e., detector within 2 m from the observed object),
airborne, and satellite remote sensing. Consequently, each
sensor is characterized, beyond its resolution in discriminating
the signal variations, by the spatial resolution, as a function
of the distance between the sensor itself and the subject of
the analysis. Sensors can also be classified based on their
application in (i) non-imaging [i.e., VIS and infrared (IR)
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FIGURE 1 | A summary of the main techniques for plant stress detection. The stressors and the wavelength used for stress detection in each technique are also

shown. Stress manifests itself over a wide length scale ranging from the microscopic cellular to the macroscopic plant and field level. Whole field sensing (VIS/NIR

reflectance, Thermography, Fluorescence) is naturally attractive in the agricultural practice, but provides only a qualitative information. At plant level morphological

imaging techniques (CT, MRI) provide quantitative high resolution detection of structural damages induced by the stress, but cannot provide any information on the

functional basis of the physiological mechanisms of reactions to both biotic and abiotic stressors at cellular level. For this purpose, metabolomics is an essential tool to

enhance the results obtained with morphologic imaging techniques, but it is sample disruptive and is not able to provide timely indications to support early

interventions both in open-field and controlled conditions. PET is by far the only quantitative functional imaging technique, which provides a time-dynamic

non-disruptive information of the modifications of functional mechanisms and transport flows in the vascular system in response to biotic and abiotic stress.

spectroscopy, fluorescence spectroscopy], and (i) imaging (i.e.,
VIS, multispectral and hyperspectral imaging, thermal imaging,
fluorescence imaging, x-ray imaging) approaches. In general,
non-imaging sensors could be more effectively applied on
lab-scales or leaf-scales measurements, since they provide data
without spatial information.

The high resolution of the currently available sensors helps in
individuating the possible correlations between subtle processes
at the tissue level and plant electromagnetic patterns, following
stress exposure (Thomas et al., 2017, 2018). At canopy or
landscape levels, the spatial resolution represents a critical factor
to gather information on plant responses to stress. As an example,

for the characterization of a specific disease at the field scale,
proximal hyperspectral imaging is more able than hyperspectral
remote sensing, thanks to higher spatial resolution (Kuska and
Mahlein, 2018). Despite the potential of remote sensing for stress
detection, some general considerations and weaknesses deserve
to be highlighted.

Firstly, based on the reached technological advances and
on the intrinsic characteristics of the applied technology, each
sensing technique is characterized by its own effectiveness
in stress detection and identification (see also Figure 1), that
depends on (i) the kind of stressful conditions and (ii) its
magnitude. Consequently, the desirable early identification of
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stressful conditions (i.e., before symptoms appearance) is not
obvious at all. For example, in the case of water stress,
the temperature-based indices (see section 2.3) provide an
appropriate pre-visual detection of plant responses, while some
vegetation indices derived from reflectance in the VIS/NIR
domain (see section 2.2) are effective only at late plant responses
(Gerhards et al., 2019).

Secondly, within the same sensing vegetation technique and
stressful condition, spectral responses to stress exposure are
related to plant genotype (i.e., principally due to genotype-
sensitivity). This aspect may need an in-depth study of specific
stress-genotype combinations, also involving the understanding
of the physiological and biochemical processes, which cause
changes in the spectral feature, to derive indicators or parameters
for specific demands.

Thirdly, data acquisition processes should consider the
environmental condition during measurements as well as plant
canopy and leaf structural architecture. Improvements need to
be achieved in terms of (i) data pre-processing, (ii) inclusion of
calibration systems integrated on automated systems, and (iii)
use of multiple sensors platforms also equipped with 3-D shape
sensors (Mishra et al., 2020).

Fourthly, some plant responses, potentially detectable for
stress diagnosis, may be shared among different stresses (i.e.,
drought, salinity, temperatures, mineral toxicity, or pathogen
infection) making difficult the identification of specific stressors,
especially in open-field conditions, where a multi-stress scenario
can occur. It derives that, while a single sensing technique
could be characterized by high specificity in the identification of
individual stress signals in experimental conditions, the possible
multiple causes in agricultural applications can be identified only
through a holistic and integrated approach (Jones and Schofield,
2008).

All the above considerations offer a new starting point for the
advancement in vegetation sensing for stress detection through
the implementation of the currently available techniques,
also with the introduction and strengthening of innovative
imaging techniques applicable to the agricultural sector (see
section 4). The review goes through a more detailed overview
of remote sensing technologies applied to plant stress detection
in agriculture. Considering the complexity and breadth of
the covered topics, further information can be obtained by
consulting the available scientific literature, to which reference is
made (Gorbe and Calatayud, 2012; Murchie and Lawson, 2013;
Mishra et al., 2017; Khan et al., 2018; Gerhards et al., 2019).

2.1. Fluorescence Spectroscopy
Fluorescent molecules absorb energy from a given wavelength,
modify its electronic shell, and, after a short time, descend back
to its natural status while emitting some of the absorbed energy in
the form of an electromagnetic wave. Wavelengths of absorption
and emission are specific for each compound: chlorophyll a
fluorescence (ChlF) has a natural emission between 650 and
800 nm, with two maxima in the red (680 nm) and far-red
(735 nm) wavelengths. Changes in the fluorescence spectra shape
as well as in the ratio between the two maxima emission peaks
(i.e., F685/F735) are responsive of changes in Chl content of

leaves (Buschmann, 2007; Pandey et al., 2015). So, ChlF and
ChlF parameters are widely applied to rapid assess any mutation
of Photosystem II, following the plant exposure to both biotic
and abiotic stressful conditions (Belasque et al., 2008; Pandey
et al., 2015). With respect to the latter, the fluorescence in the
blue-green range (400–600 nm, with two maxima in the blue—
440nm and green—530 nm) is related to fungal leaf infections
as it is emitted by substances (e.g., stilbenes) produced by the
leaf following a fungal attack, and so providing a useful early
detection tool (Casa et al., 2016). Active systems, based on laser-
induced fluorescence (LIF), was applied, for example, on citrus
plants to detect the citrus canker disease (caused byXanthomonas
axonopodis pv. citri) (Belasque et al., 2008) or, more recently,
the Huanglongbing (caused by Candidatus Liberibacter spp.) or
citrus greening (Ranulfi et al., 2016).

LIF was also successfully applied to study the effects of
dimethoate on physiological and growth responses of pigeon pea
plants and to measure out its application (Pandey et al., 2015).
A fluorescent index was also proposed to estimate leaf nitrogen
concentration in rice (Yang et al., 2019). In particular, differently
to reflectance measurements (see sections 2.2 and 2.5), the signal
is not affected by soil properties; so, ChlF sensors can be applied
to estimate Chl content (linked to nitrogen availability) even in
the early crop stages (after plant emergence or transplant) or in
sparse soil coverage conditions (Casa et al., 2016).

2.2. Vis/NIR Spectroscopy
Leaf and/or canopy reflectance has been widely researched across
several biotic and abiotic stressful conditions with both active
and passive sensors; the former are equipped with light-emitting
components while the latter depend on sunlight as a source of
light. The main applications in plant health detection are based
on the spectral wavelengths ranging from 400 to 2,500 nm, since
reflectance in the VIS, NIR and SWIR is primarily influenced
by photosynthetic pigments, cell structure and water content,
respectively. These traits can in fact undergo important changes
in plants growing under unfavorable conditions (Mishra et al.,
2017).

Briefly, the electromagnetic radiation that runs into the leaf
surface can be reflected, scattered, absorbed and transmitted
at wavelengths which depend on the biochemical and physical
characteristics of the leaf. In the VIS and IR regions the reflection
patterns are somehow influenced by (i) the C-O, O-H, C-H and
N-H covalent bonds of macromolecules (i.e., sugars, proteins,
lignin, and cellulose), (ii) the amount of natural pigments
containing tetrapyrroles rings, like chlorophylls (as important
absorbing molecules, in the blue and in the red bands), as well
as (iii) the anatomical and biochemical leaf traits (i.e., surface
texture or thickness of cuticle, trichome density and architecture,
shape and thickness of the palisade and spongy mesophyll).

The typical spectral assignments of a green leaves in the
optical spectral ranges VIS-NIR-SWIR of the electromagnetic
spectrum is reported in Figure 2. In the VIS region, there are
two main absorption bands in blue (470 nm) and in red (670
nm), associated with Chla and Chlb, and a reflectance peak in the
yellow-green band (550 nm). The NIR region is characterized by
higher reflectance values (the typical spectrum plateau), while in
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FIGURE 2 | A typical healthy vegetation spectrum (350–2,500 nm); spectral reflectance signature refers to spinach leaves (author’s personal and unpublished data).

Measurements were taken using full-range hyperspectral ASD FieldSpec 4 Hi-Res (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer equipped

with a contact probe. Red-edge and water bands’ absorption sections are highlighted in red and blue, respectively.

the SWIR region the leaf reflectance pattern is highly dependent
on the light absorbed by leaf water (near 1,450 and 1,900 nm) and
on leaf dry matter (Ge et al., 2019; Gholizadeh and Kopacková,
2019).

Interestingly, the position (wavelength) of the rapid increase
in leaf reflectance from VIS to NIR, called red-edge (RE), is
significantly affected by Chl content in leaves (Liu et al., 2019b).
Thus, stressful conditions that influence the concentration of
leaf pigments can be effectively identified. To this purpose,
the analysis of the spectral derivative is successfully performed
to highlight changes in RE (i.e., position and amplitude). For
instance, a blue-shift of the RE in rice infested by rice leaf folder
has been found (Huang et al., 2019).

In general, reflectance spectroscopy is used for the sensing of
a wide range of stressful conditions. Some of the more recent
literature on this topic concerns the assessment of the nitrogen
status in crops (Stellacci et al., 2016), the macro- and micro-
nutrient deficiencies (Galieni et al., 2015; Visioli et al., 2016;
Rustioni, 2017; Rustioni et al., 2018), the impact of air and
soil pollution (Cotrozzi et al., 2018; Gholizadeh and Kopacková,
2019), the plant disease detection (Ortiz et al., 2019; Zhang
et al., 2019a), the salinity effects on crop growth and yield (El-
Hendawy S. et al., 2019; El-Hendawy et al., 2019a; Boshkovski
et al., 2020), the drought-induced changes in plants (Stagnari
et al., 2014; Maimaitiyiming et al., 2017; Sylvain and Cecile, 2018;

El-Hendawy et al., 2019b), the specific secondary metabolites
accumulation in plant tissue (Couture et al., 2016) as well as the
plant phenotyping (Garriga et al., 2017; Ge et al., 2019).

Nowadays, reflectance spectroscopy principally relies on
technologies based on hyperspectral sensors, which consist of
acquiring images in several narrow (< 10 nm) and contiguous
spectral bands, and allow to collect a large amount of data
(Feng et al., 2018; El-Hendawy S. et al., 2019). Over years, the
reflectance values measured at specific wavelengths of the VIS
-NIR-SWIR domains have been combined to obtain different
spectral reflectance indices (SRIs), applied in the assessment
of morphological, physiological and biochemical parameters
related to stress (El-Hendawy S. et al., 2019). One of the
most commonly used SRI is represented by the Normalized
Difference Vegetation Index (NDVI), which was observed to
significantly correlate with the final yield of many crop species
(El-Hendawy et al., 2019b). It is very difficult to provide
a complete overview of all developed SRIs. In Table 1 are
summarized some of the SRIs commonly used to estimate a
range of plant characteristics indicative of various stressors
exposures. Some SRIs have been formulated and validated
under specific genotype-stressor combinations, see plant-disease
during infection (i.e., grapevine-Flavescence Dorée, AL-Saddik
et al., 2017). Although their reliability, a significant amount
of information come from very narrow spectrum regions
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TABLE 1 | Summary of some of the most commonly vegetation spectrum reflectance indices (SRIs) and the related estimated morphological or physiological traits. Traits

can relate to more than one stressful condition, so the same index can detect different kinds of stress, both biotic and abiotic. Abbreviations: N, nitrogen; Chl, chlorophyll;

Car, carotenoids.

Index Formula Estimated parameter Reference

Photochemical Reflectance Index

(PRI)

(R531 - R570)/(R531+R570) Physiology

Photosynthesis

Peñuelas et al., 1995a

Normalized Difference Vegetation

Index (NDVI)

(R800 - R670)/(R800 + R670) Physiology Photosynthesis Rouse et al., 1974

Normalised Difference Red Edge

(NDRE)

(R790 - R720)/(R790 + R720) N status Barnes et al., 2000

Nitrogen Stress Index 1 (NSI-1) * (R415/R710) N content Read et al., 2002

Nitrogen Stress Index 2 (NSI-2) * (R517/R413) N content Zhao et al., 2005

Simple Ratio Index 1 (SR-1) * (R750/R710) Chl Zarco-Tejada et al.,

2001

Simple Ratio Index 2 (SR-2) * (R750/R550) Chl Gitelson and Merzlyak,

1996

Simple Ratio Index 3 (SR-3) * (R750/R700) Chl Gitelson and Merzlyak,

1996

Green NDVI (GNDVI) (R780 - R550)/(R780 + R550) Chla Gitelson et al., 1996

Transformed Chlorophyll Absorption

and Reflectance Index (TCARI)

3 × ((R700 - R670) - 0.2 × (R700 -

R550)) × (R700/R670)

Chl Daughtry et al., 2000

Structure Insensitive Pigment Index

(SIPI)

(R800-R445)/(R800-R680) Car/Chla Peñuelas et al., 1995b

Modified Chlorophyll Absorption in

Reflectance Index (MCARI)

[(R700 - R670) - 0.2 * (R700 - R550)] *

(R700/R670)

Green leaf area index

Chl

Daughtry et al., 2000

Soil Adjusted Vegetation Index (SAVI) 1.5 × (R800 - R670)/(R800 + R670 +

0.5)

Green biomass Huete, 1988

Plant Senescence Reflectance Index

(PSRI)

(R678 - R500)/R750 Car/Chl

Senescence

Merzlyak et al., 1999

Anthocyanin Reflectance Index (ARI) (1/R550) - (1/R700) Pigments Zarco-Tejada et al.,

2005

Salinity and Water Stress Indices 2

(SWSI 2)

(R803 - R681) /
√

(R1326 + R1507) Water content

Chlorophyll

Hamzeh et al., 2012

Salinity and Water Stress Indices 3

(SWSI 3)

(R803 - R681) /
√

(R972 + R1174) Water content

Chlorophyll

Hamzeh et al., 2012

Water Index (WI) R900/R970 Leaf water potential Zarco-Tejada et al.,

2003

Simple Ratio Water Index (SRWI) R860/R1240 Leaf water potential Zarco-Tejada et al.,

2003

Normalized Difference Water

Index (NDWI)

(R860 - R1240)/ (R860+ R1240) Leaf water potential Gao, 1996

Leaf Water Index (LWI)* (R1300/R1450) Leaf water thickness Seelig et al., 2008

Normalized Water Indices (NWI-1) R970 - R900/R970 + R900 Canopy water status Babar et al., 2006

Normalized Water Indices (NWI-2) R970 - R850/R970 + R850 Canopy water status Babar et al., 2006

Normalized Water Indices (NWI-3) R970 – R920/R970 + R920 Canopy water status Prasad et al., 2007

Normalized Water Indices (NWI-4) R970 – R880/R970 + R880 Canopy water status Prasad et al., 2007

Normalized Photochemical

Reflectance Index (PRInorm)

PRI / [RDVI×(R700/R670)] Chlorophyll fluorescence

Stomatal conductance

Berni et al., 2009a,b

Copper Stress Vegetation Index

(CSVI)

R550/R850 ×R700/R850 Copper content Zhang et al., 2017

New Vegetation Heavy Metal Pollution

Index (VHMPI)

DCR505 - DCR640/ DCR690 -DCR730 Copper content Zhang C. et al., 2019

Heavy Metal Cd Stress-Sensitive

Spectral Index (HCSI)

(R780-R712)/R678 × (R678/R550) Cadmium content Wu et al., 2019

Heavy Metal Stress Sensitive Index

(HMSSI)

CI(Red−edge)/PSRI Cadmium, lead and mercury

contents

Zhang et al., 2018

*No original index abbreviation found.
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(Hansen and Schjoerring, 2003); moreover, the predictive
performances of SRIs can be significantly influenced by genetic,
environmental, and crop management factors (Kawamura et al.,
2018). Reflectance spectrum can be also used entirely as a
“fingerprint” of the plant. Due to the large datasets, different
techniques, that involves multivariate statistical approaches,
including the stepwise multiple linear regression analysis (SMLR)
and the partial least squares regression (PLSR), were exploited
(Garriga et al., 2017). SMLR is useful in defining the relationships
between spectral reflectance and crop characteristics although
its predictive ability can be compromised when the number of
predictors (X) is higher than the number of observations (Y)
(overfitting), and when several predictors are strongly correlated
to each other (multicollinearity) (El-Hendawy et al., 2019b).
PLSR was found to effectively relate the plant responses to
spectral signatures, as in the estimation and prediction of several
crop traits in viral infection causing leafroll disease in Vitis
vinifera (Naidu et al., 2009), to predict photosynthetic activity
among six genotypes (three transgenic and three wild type lines)
of Nicotiana tabacum (Meacham-Hensold et al., 2019), and to
detect the impact of tropospheric ozone on Salvia officinalis
(Marchica et al., 2019).

Other studies reported the use of the principal component
analysis (PCA), spectral band intercorrelations and stepwise
discriminant analysis (Ray et al., 2010). Anyway, the accuracy
of the estimating proposed models depends also on the
preprocessing methods which include multiplicative scattering
correction, standard normal variate, normalization, PCA and
others (Liu et al., 2019b).

2.3. Thermal Imaging
Thermal imaging (thermography) is one of the most used
imaging techniques in agronomic and environmental sciences
as well as in the agri-food industry (Costa et al., 2013). It can
be successfully applied in the detection of stressful conditions
thanks to the significant relationships between foliar surface
temperature (Tleaf) and leaf gas exchange (CO2 and H2O
fluxes regulated by stomatal closure or aperture) or stomatal
conductance (gs) (Gutirrez et al., 2018). The physical laws that
regulate the emission of bodies in the TIR region, as well as
the atmospheric and environmental variables that condition the
Tleaf-gs relationship, are well-known and well-treated topics
(Jones and Schofield, 2008; Costa et al., 2013; Vialet-Chabrand
and Lawson, 2019) and are beyond the scope of this review.

As an imaging technique, thermography possess the advantage
to acquire geolocated data at canopy scale, overcoming the
classic handheld infrared thermometers, applied at leaf or single
plant scales (Crusiol et al., 2020), providing results on a whole
plant basis (Poirier-Pocovi et al., 2020). TIR cameras are widely
used as portable devices for both Unmanned Aerial Vehicles
(UAVs) (Sagan et al., 2019) or for agricultural vehicle proximal
to the ground, as an on-the-go system, or even involving
machine learning (Gutirrez et al., 2018), characterized by low-
cost data acquisition, easy implementation, processing and
immediate response as well as higher spatial-, spectral- and
temporal resolutions.

Over years, thermography has been applied in the early
detection and monitoring of pests and diseases (Al-doski et al.,
2016; Ahmed et al., 2019; Vidal and Pitarma, 2019; Lydia et al.,
2020), even before symptoms appearance (Chaerle et al., 2009;
Awad et al., 2015), despite its low applicability on a large
scale. Other works have shown a relationship between higher
temperature and nutrient deficiency (Costa et al., 2013).

However, its main applications is addressed toward the
sensing for crop water-stress detection, for agricultural and
phenotyping purposes: i.e., the setting-up of the irrigation
schedules (Gutirrez et al., 2018), the identification of any
anomalies in irrigation systems (Matese et al., 2018), as a part
of Cloud of Things (CoT)-based automated irrigation network
(Roopaei et al., 2017), as a powerful tool in plant breeding
activities (Shakoor et al., 2017; Sagan et al., 2019; Siddiqui
et al., 2019) and in ecological studies (Still et al., 2019). Many
studies relied on thermography in both herbaceous (Mangus
et al., 2016; Martynenko et al., 2016; Quebrajo et al., 2018) and
arboreous (Egea et al., 2017; Espinoza et al., 2017; Santesteban
et al., 2017; García-Tejero et al., 2018; Blaya-Ros et al., 2020;
Gutiérrez-Gordillo et al., 2020) cropping systems. Consequently,
a large variety of crop water-stress indices (CWSIs) have been
developed both isolating the effect of the crop water status and
normalizing the aggregated data at the canopy level (Poirier-
Pocovi et al., 2020). Some combination of well-watered and dry
reference crop temperatures, starting from the CWSI proposed
by Idso et al. (1981) till to the most recent ones developed
by Poirier-Pocovi et al. (2020), have been applied to derive the
above-mentioned indices.

However, despite technology advances of detectors as well as
of data processing, further efforts should be addressed toward
(i) the optimization of data collection (Costa et al., 2013), (ii)
the indication of a generally accepted calculations of CWSI,
to determine crop-specific thresholds for irrigation scheduling,
and (iii) the advancement of hyperspectral TIR remote sensing
(Gerhards et al., 2019).

2.4. Fluorescence Imaging
The development of new technologies has allowed building up
an image starting from the simultaneous gathering of a high
number of punctual fluorescence spectroscopy signals, which are
encoded with a color-value relation. Thanks to cameras it is
possible to repeat the measure over time very rapidly, obtaining
a comprehensive visualization of the spatial-temporal gradients
of the crop. Generally, the system is composed of a UV light
source for the excitation of the fluorescent molecules and a
charge-coupled device (CCD) camera (Sankaran et al., 2010). In
the multicolor fluorescence imaging approach, it is possible to
generate a fluorescent response from four different wavelength
bands: red, far-red, blue and green (690, 740, 440, and 520 nm,
respectively) using a single UV light source of excitation (ranging
from 340 to 360 nm).

Active ChlF sensors has been successfully applied in the
detection of the early stages of infection by fungi, viruses or
bacteria: see for example, zucchini plants affected by soft-rot
(caused by Dickeya dadantii) and powdery mildew (caused by
Podosphaera fusca) (Pérez-Bueno et al., 2016; Pineda et al.,
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2017). Fluorescence imaging represents also an useful tool for
the investigation of stressful conditions attributable to nutrient
deficiencies (Wang et al., 2018c), extreme temperatures (Dong
et al., 2019; Lu and Lu, 2020), pollution (Moustakas et al., 2019),
use of agrochemicals (Weber et al., 2017; Li et al., 2018) as well as
drought and/or salinity (Yao et al., 2018; Sun et al., 2019). Beside
active fluorescence techniques, sun induced ChlF through passive
sensors deserves to be mentioned due to its various application in
plant stress studies (Bandopadhyay et al., 2020).

2.5. Multi- and Hyperspectral Imaging
Spectral sensors are classified based on the resolution of the
measure (i.e., the wavebands density in the measure): both multi-
and hyperspectral can load data from a broader and continuous
VIS/NIR band, typically from 400 to 1,000 nm, with the most
advanced systems that reach the 350–2,500 nm band (Stellacci
et al., 2016; Maes and Steppe, 2019). Multispectral sensors reach
a spectral resolution of about 50 nm while hyperspectral sensors
provide a resolution ranging between 1 and 10 nm (Mahlein,
2016; Stellacci et al., 2016). Despite this, to date multi-spectral
sensors are mainly advantageous in agricultural applications due
to greater availability and lower costs.

The working principle of spectral imaging sensors vary from
the filter-based ones, where only the light of a specific waveband
can pass through, to the push broom and whisk broom scanners
that gather the full spectrum on one pixel than move to another,
to the most recent snapshot sensors that, using the same mosaic
principle of the common RGB (red-green-blue) camera, allows
a quicker image recording, very useful in extremely variable and
adverse sampling conditions (Thomas et al., 2017).

With the image-based VIS/NIR approach, thanks to the
combination of spectral information with the spatial and
temporal dimensions, it is possible to estimate the occurrence of
stressful conditions even at landscape scale (Zhang et al., 2019a).
Spaceborne, airborne and ground-based, help to monitor in real-
time the water status, biomass and yield, nutrient status, disease,
and pests (Xue and Su, 2017; Maes and Steppe, 2019; Zhang
et al., 2019a; Caballero et al., 2020), thanks also to combined
elaboration of ground-based hyperspectral collected data with
hand-carried radiometers and spectroradiometers and UAVs
imaging data (Zheng et al., 2018). In Table 2, an overview of the
recent literature about the application of hyperspectral imaging
for stress detection has been reported.

It is worth to highlight that the robustness of the estimation
models built from spectral imaging datasets is greatly affected
by the technical characteristics of the sensors, by environmental
factors such as temperature, humidity and wind, by the camera
settings (i.e., compression, stabilization, aperture, shutter speed),
and even by data preprocessing and processing techniques
(Barbedo, 2019; Liu et al., 2019a).

3. DISRUPTIVE QUANTITATIVE PRECISION
METHODS FOR STRESS ASSESSMENT

3.1. Molecular Methods
In the last decades, several molecular techniques have been
developed for the detection of plant stress. The most commonly

used are polymerase chain reaction (PCR and real-time
PCR) and enzyme-linked immunosorbent assay (ELISA); other
techniques, mainly applied for disease detection, include
immunoflourescence imaging (Gautam et al., 2020), flow
cytometry (Chitarra and Bulk, 2003), fluorescence in situ
hybridization (FISH; Farber et al., 2019), and DNA microarrays.

PCR screens complementary DNAs (cDNAs/cDNA) and
characterizes tissue-, organ- or development-specific cDNAs. It
allows identifying differentially induced or expressed genes and
represents a reliable and widely used method to reveal genes
and molecular mechanism which response to abiotic stress in
different plant species. It has been reported (Liu and Baird,
2003) that the genes corresponding to 13 out of 17 cDNAs
clones isolated from sunflower were confirmed to be expressed
differentially in response to osmotic stress by quantitative
reverse-transcription PCR (RT-PCR). Suitable reference genes
have also been reported in cultivated rice (Pabuayon et al.,
2016), rapeseed (Machado et al., 2015), potato (Tang et al.,
2017) and ornamental plant species (Carex rigescens; Zhang K.
et al., 2019). Real-time PCR platforms have also been used for
rapid diagnosis of plant diseases (Campos et al., 2019; Liu et al.,
2019a).

ELISA-based biotic stress detection consists in the production
of a specific antibody for a protein (antigen), associated with
a plant disease, and is used for the detection of the biotic
stress-causing microorganism inside an extracted probe from
the plant tissue. The sensitivity of ELISA varies depending on
the organism species (relatively low for bacteria, higher for
fungi), sample freshness and titre (Martinelli et al., 2015). The
main disadvantages of molecular-based approaches rely on time-
consuming and labor-intensive domains. These shortcomings
clash with the need of a rapid screening and detection and
monitoring of stress and can be overcome through the use of
detection techniques able to estimate the presence of any limiting
conditions on a plant-response basis (sections 2 and 4).

3.2. Metabolomics
Metabolomics, defined as comprehensive and quantitative
analysis of all small molecules in a biological system (Fiehn,
2001), is widely shared in studies regarding plant physiology and
biochemistry as it allows the comprehension of the regulation
of metabolic networks (Obata and Fernie, 2012). Plants rely
on specific survival strategies to react to stress. Frequently
their response leads to the synthesis of primary and secondary
metabolites (Stagnari et al., 2016), which are involved, for
example, in the regulation of osmotic pressure within cells,
cell signaling, membrane formation and scaffolding, whole-plant
resource allocation, prevention from cell oxidation, deterrence
from herbivores as well as prevention from infection and
growth of pathogenic microorganisms (Dawid and Hille, 2018).
Consequently, an adjustment of the metabolic pathways, aimed
at achieving a new state of homeostasis (referred as acclimation)
occur (Suzuki and Mittler, 2006).

The research conducted in the metabolomics field relays
principally on two different acquisition strategies: nuclear
magnetic resonance (NMR) and mass spectrometry (MS)—
gas chromatography/liquid chromatography-mass spectrometry
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TABLE 2 | Published claims of stress identification from hyperspectral imaging since 2018, along with the chosen multivariate data processing technique and accuracy

reached. “Plant stress” refers to both (i) the classification or modeling of stressful conditions and (ii) the plant phenotyping.

Plant stress Species Techniques Accuracy Reference

Chilling blueberry PLS-DA >75% Gao et al., 2019

Salinity wheat Novel approach – Moghimi et al., 2018

Drought grapevine PLS-DA

PLS-SVM

>97% Zovko et al., 2019

Drought grapevine RF (Deep learning) 80-83% Loggenberg et al., 2018

Drought rice PLSR-MLR – Krishna et al., 2019

Drought tomato Derived SRIs – Elvanidi et al., 2018

Drought-Meloidogyne incognita (Nematoda) tomato PLS-DA

PLS-SVM

90-100% Susič et al., 2018

Insect herbivory maize SLDA

Discriminant classification

model

79.0% do Prado Ribeiro et al., 2018

Powdery Mildew grapevine PLS-DA Pérez-Roncal et al., 2020

Stripe rust wheat PCA

BPNN

∼80% Yao et al., 2019

Fusarium head blight wheat Derived SRIs – Mahlein et al., 2019

Septoria tritici wheat PLS-DA 93% Yu et al., 2018

Powdery mildew barley SiVM

Non-linear SVM

∼95% Thomas et al., 2018

Magnaporthe oryzae barley LDA

CARS

>98% Zhou et al., 2019

Charcoal rot soybean SVM 97% Nagasubramanian et al., 2018

Sclerotinia stem rot oilseed rape PLS-DA

SVM

>90% Kong et al., 2018

Alternaria solani potato PLS-DA

SVM

92% Van De Vijver et al., 2020

Citrus canker tangerine RBS

KNN

94-100% Abdulridha et al., 2019

tomato spotted wilt sweet pepper OR-AC-GAN (Deep

learning)

96% Wang et al., 2019d

N content tea PLS-DA

LS-SVM

PLSR

>90% Wang et al., 2020

N content apple PLSR

MLR

77-78% Ye et al., 2020

shikimic acid concentration transgenic maize PLSR 82% Feng et al., 2018

Cadmium content (model) tomato WT-LSSVR (Deep learning) – Jun et al., 2019

Lead concentration (model) lettuce WT-SAE (Deep learning) – Zhou et al., 2020

Dicamba soybean RF (Deep learning) – Zhang et al., 2019b

BPNN, back propagation neural network; CARS, competitive adaptive reweighted sampling; FNN fully-connected neural network; KNN, K nearest neighbor; LDA, linear discriminant

analysis; LS-SVM, least squares-support vector machines; MLR, multiple linear regression; OR-AC-GAN outlier removal auxiliary classifier generative adversarial nets; PCA, principal

component analysis; PLS-DA partial least squares-discriminant analysis; PLS-SVM, partial least squares-support vector machine; PLSR, partial least-squares regression model; RBF,

radial basis function; RF random forest; SiVM, simplex volume maximization; SLDA, stepwise linear discriminant analysis; SRIs, spectrum reflectance indices; SVM, support vector

machine; WT-LSSVR wavelet transform and least-square support vector machine regression; WT-SAE wave-let transform and stacked auto-encoders.

(GC/LC-MS) (Piasecka et al., 2019). NMR allows to elucidate
the structure of metabolites and the biomolecular composition
of plant extracts (Fernie et al., 2004). GC is the most
developed analytical platform for plant metabolite profiling
and represents one of the first high-throughput approaches
applied (Roessner et al., 2001). When coupled to MS, it allows
profiling non-targeted metabolites, both thermally stable non-
polar ones and derivatized polar one. This technique has lower
efficiency for molecular compounds with molecular weight larger
than 1 kDa.

Time-of-flight (TOF)-MS has become the method of
choice thanks to its fast scan times. The crucial advantages
of this technology are his stable protocols for machine setup
and maintenance, and the chromatogram evaluation and
interpretation. LC-based methods have the advantage, over
GC-MS, to detect thermolabile, polar metabolites, and high-
molecular weight compounds without any derivatization.
Moreover, higher resolution and sensitivity have been
achieved with the development of ultraperformance liquid
chromatography (UPLC) (Rogachev and Aharoni, 2012).
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Nowadays, the progresses in analytical instrumentation and
the application of bioinformatic procedures have improved the
measurements of a higher number of plant metabolites as well
as the correlation of metabolome data with those from other
omics levels (i.e., transcriptome and/or genome). This allows
the assessment of metabolic changes and the elucidation of the
involved metabolic pathways (Parihar et al., 2019), although the
analytical sensitivity and resolution needed for the simultaneous
separation and detection of the metabolites found in plants, are
still far to be achieved.

Several metabolomic studies have revealed that many
metabolic pathways are regulated under stress (i.e., drought,
salinity, heat and chilling, nutrient deficiency, light, heavy
metals, ozone - alone or in combination). Since many
of these studies have been previously reviewed (Obata
and Fernie, 2012; Arbona et al., 2013; Li et al., 2019), we
will consider only the most recent literature on this topic.
Photosynthesis regulation and osmolytes accumulation have
been widely reported under water stress conditions. Proline,
tryptophan, L-arginine, L-histidine, L-isoleucine increased in
the tolerant line after water stress induction while choline,
phenylalanine, guanine, aspartic acid, and alpha-ketoglutaric
decreased in the case of chickpea; however, the effect of
variety (and sensitivity to drought) could have affected the
accumulation of some of them after a long-term exposition to
stressful conditions (Khan et al., 2019). Proline and arginine
accumulations were also observed in drought-tolerant sesame
genotype, besides an increase of abscisic acid, lysine, aromatic
and branched chain amino acids, 4-aminobutanoic acid,
saccharopine, 2-aminoadipate, and allantoin). Metabolomics—
also in combination with other-omics—can explain the
drought-tolerance mechanism in drought-tolerant wild
and/or ancestral genotypes, providing useful information
for breeding purposes, as wild soybean (Glycine soja) (Wang
et al., 2019a) and Brachypodium distachyon (Lenk et al., 2019),
among others, as well as the salt-tolerant mechanisms of the
halophyte for food or pharmaceutical purposes (Chen et al.,
2019).

The effect of extreme temperatures (beyond the maximum
and minimum cardinal temperatures) on plants metabolomics
responses is rather relevant (Guy et al., 2008). Cold stress—
which is one of the most damaging abiotic stresses—can alter
significantly transcriptome and plant metabolism due to the
direct inhibition of metabolic enzymes and to the reprogrammed
gene expression (Chinnusamy et al., 2007). As consequence,
the observed growth reduction reduces the capacity for energy
utilization, with a consequent inhibition of photosynthesis and
production of reactive oxygen species (ROS) (Arbona et al.,
2013). Phenolics accumulation significantly increases in the cell
wall as well as amino acids, hormones and simple carbohydrate
levels, while starch content decreases (Moura et al., 2010;
Rastogi et al., 2019). In wheat, the abundance of several simple
carbohydrates, i.e., raffinose, trehalose, maltotetraose, mannose,
and fructose follows cold acclimation (Zhao et al., 2019), with a
preeminent role played by proline-synthesis pathway, ABA and
jasmonic acid (JA) signal transduction pathways. In the freezing
tolerant potato genotypes the accumulation of putrescine via

the expression of the arginine decarboxylase gene, represents an
important response to cold stress (Kou et al., 2018).

The metabolic regulation under heat shock has similarities
with that regarding low temperature case (Guy et al., 2008). In
recent years, metabolism reprogramming under heat stress has
been extensively studied in several agricultural crops, i.e., wheat
(Thomason et al., 2018; Wang et al., 2018a,c) and soybeans (Das
et al., 2017), among others. Tomato microspore of pollen after
2 h of heat stress increased significantly the total abundance
of flavonoids (Paupiére, 2017); pepper plants coped with heat
stress inducing the accumulation of osmotic adjusting materials
such as total soluble sugars, proline and total protein as well as
flavonoids (isorhamnetin-3-O-neohesperidoside, daidzein, 7-O-
methyleriodicty-ol, tulipanin) (Wang et al., 2019b). Heat-stress
was often studied in combination with other environmental
stressful conditions, such as elevated CO2, reproducing the
climate change scenario, as for maize (Qu et al., 2018a) and
soybeans, among others.

Heavy metal toxicity hampers the metabolic pathways,
reduces the photosynthesis, respiration or transpiration (Feng
et al., 2020) and contributes to generate ROS or non-free
radical species (i.e., singlet oxygen and hydrogen peroxide) and
cytotoxic compounds such as methylglyoxal causing oxidative
stress (Parihar et al., 2019). Plants normally react to heavy
metals toxicity by significantly increasing proline and histidine
levels (Khalid et al., 2019) as well as alanine, β-alanine,
serine, putrescine, sucrose, γ -amino butyric acid, raffinose, and
trehalose contents (Sun et al., 2010).

Regarding biotic stress, several metabolites have been
identified as metabolic biomarkers in plant species (Li et al., 2019;
Castro-Moretti et al., 2020)—also including the volatile organic
compounds (VOCs) (i.e., isoprene, methanol, phytohormone
ethylene, and some monoterpenes, terpene, methyl jasmonate,
methyl salicylate) (Ninkovic et al., 2019). In tomato bacterially
infected plants, the level of amino acids, organic acids, rutin,
and phenylpropanoids increased, while viroid infection seems
to alter only glucose and malic acid biosynthesis (López-Gresa
et al., 2010). In rice, 16 fatty acids (unsaturated linoleic acid)
together with two amino acids (glutamine and phenylalanine)
were identified as resistance markers (Agarrwal et al., 2014).
Metabolomic analysis of barley, rice and purple false brome grass,
revealed a significant accumulation in the non-polymerized
lignin precursors during infection by Magnaporthe oryzae
(Parker et al., 2009). In addition, among secondary metabolites,
phytoalexins and phytoanticipins are biosynthesized in response
or advance to pathogen perception (Schlaeppi et al., 2010).

Among the various “omics” technologies (genomics,
transcriptomics, proteomics, metabolomics, and phenomics),
metabolomic can be considered one of the most suitable
approach for the identification of phenotypic, genetic, and
biochemical changes involved in plant plasticity responses
to environmental stress conditions (Pandian et al., 2020).
However, it has a strong point of weakness due to the influence
of developmental stage and growth factors in the metabolic
responses among tissues and cells, which could compromise the
detection of secondary metabolites of complicated structure,
potentially involved in stress responses (Gokce et al., 2020).
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As a matter of facts, the complete comprehension of the
complexity of plant’ stress response and tolerance, can be
achieved integrating data from the “omics” sciences into systems
biology approaches (Gokce et al., 2020). The obtained reliable
metabolite quantitative locus (mQTL) data from metabolomic,
can be effectively combined with phenotypic data, obtained
using high-throughput technologies, so also integrates the G
× E (Genotype × Environment) interaction, and providing
insights of metabolic adaptation to the environment, crucial in
targeted breeding programs. However, it is essential to specify
that physiological, biochemical and molecular mechanisms
involved in stress tolerance can be complementary but not equal
among tissues and organs so that the novel breeding strategies
can be based on targeting specific tissues or organs (Vives-Peris
et al., 2020). Various high-throughput phenotyping technologies,
employed in the phenomics of plant above-ground organs, have
been developed over the last years (see section 2). On the other
hand, high-throughput phenotyping of below-ground organs is
still little explored and could advantage from non-destructive
3D technologies, including the tomographic and dynamic
phenotyping technologies described in the next sections (Qu
et al., 2016; Yoshino et al., 2019).

4. POSITRON EMISSION TOMOGRAPHY:
AN EMERGING NON-DISRUPTIVE
QUANTITATIVE FUNCTIONAL IMAGING
TECHNIQUE FOR STRESS DIAGNOSIS

4.1. Morphological Plant Imaging
Techniques
The frontier of plant stress diagnosis is represented by non-
disruptive and non-invasive methods, the most of which have
been originally developed for quantitative precision medical
imaging. Here it is needed to make a distinction between
morphological and functional imaging.

Morphological imaging consists of visualizing in a non-
invasive way the internal structures of the plant with a resolution
of few hundreds micrometers. X-rays (i.e., electromagnetic
radiation in the wavelength range 0.01–10 nm) have the
distinct advantage to penetrate through several objects and are
particularly suited to this purpose. The x-ray studies in the food
and agricultural sectors generally apply low-energetic x-rays (up
to 10 keV energy level, 10–0.10 nm wavelength). Moreover, x-
ray computed tomography (CT) represents a powerful strategy
for the internal quality evaluation (Kotwaliwale et al., 2014). CT
provides in fact non-disruptively a 3-dimensional measurement
of the attenuation coefficient of the tissues of the plants.
We show an example of the 3-dimensional view and the
transverse and longitudinal profiles of µ

(

x, y, z
)

in the leaf of
Epipremnum Aureum in Figures 3A–C, respectively. We report
the distribution of the value of µ

(

x, y, z
)

expressed in Hounsfield
units (HU) across the entire leaf in Figure 3D. It is possible
to distinguish two regions. In the first one µ

(

x, y, z
)

is in
the range between −550 and 0 HU. By visualizing only the
region of the leaf with µ

(

x, y, z
)

in this range (Figure 3E), we
identify the vascular system. The second one has µ

(

x, y, z
)

in

the range between −550 and −800 HU and corresponds to the
mesophyll (Figure 3F). They have been applied, for example,
to identify fungal infections in wheat (Narvankar et al., 2009)
and pest injuries by cowpea weevil in soybean (Chelladurai
et al., 2014). Under both laboratory and field conditions, x-ray
fluorescence can be used to determine the elemental spatial
distribution in plant organs, also in response to environmental
stress (Mathanker et al., 2013; Fittschen et al., 2017).

Similarly, magnetic resonance imaging (MRI) is an
application of NMR, firstly developed for medical purposes.
Since MRI necessitates of large electro-magnets (commonly
between 0.2 and 7.0 T), it cannot operate directly in the field.
The magnetic interaction between the nuclei and the magnetic
field results in a resonant absorption of certain frequencies,
characterizing elements with a non-zero magnetic momentum
nucleus (1 H, 13 C, 14 N, 15 N, and 31 P) and their bounds. The
signals intercepted by the detectors are elaborated by computing
systems into a tridimensional image. In addition to food quality
control (Chen et al., 2013; Ebrahimnejad et al., 2018), MRI
was applied in plant stress detection (water and biotic stress)
(Goodman et al., 1992; Sorin et al., 2018). Recently MRI has been
used to identify a reduction in xylem flux related to dehydration
sensitivity in potatoes (Aliche et al., 2020).

Although high-resolution structural imaging plays an essential
role in the investigation of plants, the need of additional
information is essential to properly characterize plant stress.
Therefore lower resolution imaging techniques have been
developed with the aim of a multimodal approach. THz imaging
systems and ultrasound imaging are emerging examples of such
approach. THz imaging refers to a band of electromagnetic
waves ranging from 0.1 to 10 THz (3,000–30 µm), between the
microwave and infrared regions, where the vibration and rotation
frequencies of the most polar and many organic molecules
occur (Martinelli et al., 2015; Qu et al., 2018b; Nie et al.,
2019). In the last years sources and detectors for THz region
have been developed leading to the definition of specific THz
spectroscopy (such as THz time-domain spectroscopy, THz-
TDS) and imaging techniques (Qu et al., 2018b; Wang et al.,
2018c). Nowadays, these techniques are principally used to detect
the leaf water content (Nie et al., 2017; Song et al., 2018;
Zahid et al., 2019; Li et al., 2020). Other applications include
agrochemicals detection in plant tissues and/or plant derived
foods (Lee et al., 2016; Qin et al., 2018; Nie et al., 2019),
seed inspection and soil analysis (Wang et al., 2018b) as well
as the determination of spatial distribution feature of the leaf
constituent contents (Wang et al., 2019c). Ultrasound imaging—
which implies mechanical waves at frequencies above 20 kHz,
has also been applied to plant imaging (Chen et al., 2013). It is
based on the principle that ultrasound velocity is related to the
material property or changes in material characteristics; it finds
wide application for food-quality and safety assessment (Chen
et al., 2013). Non-contact resonant ultrasound spectroscopy (NC-
RUS) allows determining surface mass, thickness and elastic
modulus of the leaves very rapidly, in-vivo and contactless
(Álvarez Arenas et al., 2016; Fariñas et al., 2019). It has been
also proposed the use of air-coupled and wide-band ultrasound
pulses (150–900 kHz) to continuously monitoring leaf properties
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FIGURE 3 | Example of CT of a leaf of Epipremnum Aureum. 3D view (A), transverse (B), and longitudinal (C) slices with visible midrib and veins, distribution of the CT

values in the leaf expressed in Hounsfield units (D). Two regions can be identified from the analysis of the CT values: −550 <HU< −50 identifies the vascular system

(E) and −800 <HU< −550 identifies the mesophyll (F).

modifications in response to environmental stimuli (Fariñas
et al., 2014).

4.2. Plant Positron Emission Tomography
The paradigm of morphological imaging techniques is that they
are able to detect non-invasively the microscopic structural
damages induced by plants stress, but sample disruptive
molecular methods (see section 3.1) and metabolomics (see
section 3.2) are needed in order to establish a functional
relationship between alterations of the molecular processes at
cellular level and of plant structures at system level.

Plant Positron Emission Tomography (Plant PET) is filling
this gap in plant science, by providing a non-disruptive technique
for the 3-dimensional quantitative and dynamic functional
imaging of plants under biotic and abiotic stress. As mentioned
in section 3.2, a large number of metabolites of interest have been
identified for the quantitative evaluation of plant stress. Chemical
compounds exist, which have the property to bind specifically
to metabolites. In PET one of the atoms of the compounds is
substituted with a β+-decaying radio-nuclide, withoutmodifying
its chemical property. The emitted positrons annihilate with
the electrons in the plant tissues, providing a clear external
signal made of two almost collinear 511 keV gamma-rays. The
collinearity angle has a variation of 0.0015 degrees, due to kinetic
energy of the annihilating positron.

D-Glucose (C6H12O6) is the main constituent of plant
biomass and can be considered here as a prototypical example
of plant metabolite. It is produced through the photosyntesis
reaction Ephot + 6CO2 + 12H2O → C6H12O6 + 6O2 + 6H2O,
initiated with the energy of optical photons Ephot . Here bothH2O

and CO2 can be used as ligands to this process. The former may
lead to a radioactive tracer [O15] − H2O, where the stable 16O
nucleus is substituted with the radionucleus 15O, undergoing the
decay 15O →1 5N + e+ + ν̄e within a half-life of 2.04 min,
where e+ is a positron and ν̄e an anti-neutrino of electron type.
The latter may lead to a radioactive tracer [C11] − CO2, where
the stable 12C nucleus is substituted with the radionucleus 11C,
undergoing the decay 11C →11 B + e+ + ν̄e within a half life
of 20.34 min. However, while [O15] − H2O can be associated
also to transport and is not specifically binding only to glucose
(Ohya et al., 2008), the involvement of [C11] − CO2 in the
photosynthetic reaction brings to the production of [11C] −

C6H12O6, which is univocally therefore tracked within the plant.
[C11] − CO2 can be therefore considered a specific tracer for
glucose (Minchin and Thorpe, 2003).

D-Fluorodeoxyglucose [18F] − C6H
18
11FO5 (2-[18F]FDG) is

an alternative, and still poorly understood, tracer for the study
of glucose metabolism in plants (Kumei et al., 1997). With
respect to 11C and 15O, 18F undergoes the decay 18F →18

O + e+ + ν̄e within a much longer half life of 109.8 min
and is therefore suited to the measurement of the dynamics of
metabolic processes during a longer observation time window.
As D-Glucose, 2-[18F]FDG is taken up by plant cells and
phosphorylated by exhokinase to FDG-6-PO4. Unlike glucose-
6PO4, FDG-6-PO4 is not further metabolized in the glycolytic
pathway and accumulates. The concentration of FDG-6-PO4 is
therefore proportional to the glucosemetabolism in the plant cell.
Besides FDG-6-PO4, F-gluconic acid, F-maltose, and UDP-FDG
have also been observed as metabolic products of 2-[18F]FDG
(Fatangare et al., 2015). While [C11] − CO2 is absorbed by
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FIGURE 4 | Example of a physical model of a leaf of Epipremnum Aureum: simulation of a positron escape in GEANT4 (A), positron annihilation probability (B), and

positron contamination probability (C).

the plant in gaseous form, following a conventional assimilation
pathway, 2-[18F]FDG is provided in liquid form and more
kinetic modeling is needed for the discrimination between water
transport and glucose accumulation.

Functional imaging of plants poses very demanding challenges
to PET technologies (Converse et al., 2013). The vascular
system of plants is in fact composed of two nested micro-
tubular sub-millimetric structures for water flow and nutrients
transportation, namely the xylem and the phloem. A quantitative
measurement of the impairments in the dynamics of the flows
within the vascular system induced by stress needs therefore
a sub-millimetric spatial resolution. Moreover, plants need to
be imaged vertically, along their entire size at the same time.
The growth of the plant should be followed from sprouting to
germination to the final evolutional stages. Therefore a vertical
system, longitudinally elongated, compact and shape adaptable
is needed.

The intrinsic physical limit of PET is represented by the
range of positrons before annihilation and the acollinearity of
the produced 511 keV γ -rays. Positrons emitted by 11C and
18F have, respectively, an average range (FWHM) of 0.92 and
0.54 mm. The acollinearity results in an additional intrinsic
blurring of the spatial resolution of 0.0044 × R, where R is
the radius of the PET system. For instance, the intrinsic spatial
resolution of a PET system with a 15 cm long radius ranges
between 0.85 and 1.1 mm. The parallax problem affecting
compact and longitudinally elongated PET systems needed for
plants represents a limitation to achieve such spatial resolution.

Plant PET signals are very weak. Emitted positrons in fact are
energetic enough to escape before annihilating in the thin and
soft plant tissues. An example of the physical process is shown
in Figure 4A, where two β+ decays of the 18F radio-nucleus

in a leaf of Epipremnum Aureum are visible. The emitted
positrons, represented as the blue tracks, do not annihilate with
the electrons in the thin and soft material composing the leaf but
are energetic enough to escape. The 3-dimensional view of the
annihilation probability is shown in Figure 4B. It depends on the
thickness and composition of the leaf, reaching approximately
20% in the mesophyll and 65% in the vascular system. It
follows that positron escape probability the ranges approximately
between 80% in the mesophyll and 35% in the vascular system.
An additional effect leading to mis-interpretation of plant PET
data is the self-contamination due to the interaction of escaping
positrons with plant tissues far away from the emission point.
The 3-dimensional view of the contamination probability is
shown in Figure 4C. We note that it has a clear dependence
on the geometry of the leaf. In fact, while it is uniform and
approximately equal to 20% in the upper flat part of the leaf,
it approaches 70% in the lower part of the leaf. The two lower
ends of the leaf are in fact folded and enhance the capture
of escaping positrons. Plant PET systems require therefore an
excellent sensitivity to cope to the weak plant signal.

While the design of dedicated plant PET systems optimized
for the demanding requirements of quantitative dynamic
functional plant imaging is still in a preliminary stage (Keutgen
et al., 2005; Alexoff et al., 2011; Wang et al., 2014), first results
and proof of principles are obtained with existing micro PET/CT
systems originally developed for small animal imaging (Hubeau
and Steppe, 2015).

PET is considered a key-technology for the quantitative
measurement of the transport and assignment of metabolites in
plants under stress condition (Kiser et al., 2008). A prototypical
example of a transport dynamic study is shown in Figure 5,
where the three dimensional view of the corrected 2-[18F]FDG
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FIGURE 5 | Example of a [18]F-FDG PET of a leaf of Epipremnum Aureum: 3-dimensional view of the corrected tracer concentration 10 min (A), 70 min (B), 130 min

(C), and 190 min (D) after the beginning of the scan. The average standard uptake value of the measured (empty markers) and corrected tracer distribution (filled

markers) in the two ROIs identified in (A) are shown in (E) as a function of the acquisition time.

tracer activity in the leaf of Epipremnum aureum 10 min (a),
70 min (b), 130 min (c), and 190 min (d) after beginning of the
PET scan is shown (Liang et al., 2020). The time dependence
of the average tracer activity uncorrected and corrected for
positron escape in two ROIs expresses the interplay between
water transport and tracer decay. At first the two quantities
increase, reaching a maximal value approximately 60 and 30
min after the start of the scan in the midrib and in the
lateral vein, respectively. At this time the water flow in the
two ROIs reaches a steady state and the tracer decay with an
half-life of approximately 110 min dominates. As the midrib
is responsible of the main water support to the entire leaf,
it reaches the steady state flow regime shortly later than the
smaller lateral vein. The ratio of the average Tmeas (wi) and
Ttrue (wi) in the two ROIs is approximately 5 and 2.5, respectively.
This implies that, without considering the effect of positron
annihilation and escape, the difference of water flow in the two
region of the plants would be over-estimated of approximately a
factor 2.

Water transport in plants is in fact very sensitive to biotic and
abiotic stress factors (Schmidt et al., 2020).Modifications of water
uptake have been observed in tomato, rice (Mori et al., 2000),
and Vigna unguiculate (Furukawa et al., 2001), among others.
The nitrogen channel is also sensitive to plant stress, being this
element a key nutrient for plants. By using root-applied [13N]-
NO3 tracer, it is possible to visualize the modification in uptake
and translocation of NO3 in stressed plants (Ohtake et al., 2001;
Li et al., 2014).

[C11]−CO2 and [O15]−H2O have been used to visualize the
photoassimilate translocation in intact eggplant fruit (Kikuchi
et al., 2008) and the variation of water flow in tomato and
rice under different illumination conditions (Mori et al., 2000;
Nakanishi et al., 2002), respectively. Kinetic modeling of the
measured flow in plants is needed in order to extract quantitative
parameters (Matsuhashi et al., 2010). The quantitative assessment
of the effects of stress on the photosynthetic rate plays also an
important role in prevention and cure. Prototypical studies using
[C11] − CO2 have been performed to verify the relationship
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between drought and photosynthesis in the African african
tropical tree species Maesopsis Eminii Engl. (Hubeau and
Steppe, 2015; Epila et al., 2018). [18F]-FDG has been used
to associate water movement to the leaf in acid soil-tolerant
rice varieties (Kang et al., 2009) and to study plant signal and
response to defense from biotic stress (Ferrieri et al., 2012).
However, the ability of PET to provide a quantitative dynamic
measurement of the metabolic pathways and transport processes
in plants opens a new perspective in plant science, with a
large number of unsolved research questions ranging from the
development of a proper plant PET system, to novel specific
plant tracers, to more advanced modeling of plant PET data
for the establishment of a truly quantitative functional imaging
technique for plants. Due to its demanding performances,
plant PET represents nowadays one of the frontiers of PET
technology and plant science research (Hubeau and Steppe,
2015).

5. CONCLUSIONS AND FUTURE
PERSPECTIVES

Imaging technologies became an essential tool for the assessment
and monitoring of stress, supporting agronomist, breeders and
physiologists both for in-field and for laboratory experiments.
Stress manifests itself over a wide length scale ranging from the
microscopic cellular to the macroscopic plant and field level. An
imaging technology able to cover quantitatively the entire scale
does not exist.

Whole field sensing is naturally attractive in the agricultural
practice. The rapidity in detection is a characteristic of
qualitative remote sensing techniques and technologies, which
also have the great advantage of providing indications on
scales ranging from microscopic to landscape levels. Moreover,
it allows monitoring continuously vegetation thanks to the
adoption of robotic platforms. Due to the large versatility,
however, the most important limits are related to the correct
definition of protocols for measurements, processing and pre-
processing of collected data, that should take into account the
variability of the environmental conditions that occur during
measurements, and that can compromise the goodness and
reliability of the obtained results. Managing enormous amount
of data is still an open matter as well as the specificity
of genotype-stress combinations needs further investigation.
Finally, the scarce application maturity of some remote sensing
technologies, beyond research purposes, should be emphasized.
For example, for hyperspectral imaging there are currently
no cameras in the full range of 350–2,500 nm, which would
require the simultaneous use of two sensors, even very
expensive (see SWIR); similarly, most current fluorescence
and thermal systems are characterized by high price and
poor applicability.

Quantitative information is obtained at the expenses of
portability, restricting the analysis to the plant scale.Morphologic
imaging techniques, such as CT or MRI, provide non-disruptive,

quantitative and precise information of the plants structure.
However they do not provide any information about the
functions within plants and therefore can only address structural
damages induced by stress, but cannot provide any information
on the functional basis of the physiological mechanisms of
reactions to both biotic and abiotic stressors at cellular level. For
this purpose, metabolomics is an essential tool to enhance the
results obtained withmorphologic imaging techniques. However,
it is time-consuming, requires considerable use of reagents
and chemicals, and, above all, it is not able to provide timely
indications to support early interventions both in open-field
and controlled conditions. Finally, if not associated with other
detection techniques, it provides indications on a small scale,
from cell to tissue.

PET is by far the only quantitative functional imaging
technique, which provides a non-disruptive information of the
modifications of functional mechanisms in response to biotic and
abiotic stress. The interesting aspect of PET is time-dynamical
acquisition for the measurement of transport fluxes within the
vascular system. New technologies will allow PET systems to be
compact and portable, enabling in-field measurements and, even,
PET-on-platform (RPA, remotely piloted aircraft) possibilities.
Furthermore, it is expected that the combination of PET scan
with tissue/site/cell specific metabolomics and transcriptomics
analyses will be a powerful tool for the understanding of the
stress responses of plants. We are therefore confident that
plant PET will cross-fertilize disciplines, driving new research in
agriculture, supported by the development of new specific tracers
for plant science, new mathematical models for a more precise
quantitative approach, and new high resolution compact portable
PET technologies.
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(2018). Discrimination between abiotic and biotic drought stress in
tomatoes using hyperspectral imaging. Sens. Actua. B Chem. 273, 842–852.
doi: 10.1016/j.snb.2018.06.121

Suzuki, N., and Mittler, R. (2006). Reactive oxygen species and temperature
stresses: a delicate balance between signaling and destruction. Physiol. Plant.
126, 45–51. doi: 10.1111/j.0031-9317.2005.00582.x

Sylvain, T., and Cecile, L.-G. (2018). “Chapter 8: Disease identification: a
review of vibrational spectroscopy applications,” in Vibrational Spectroscopy

for Plant Varieties and Cultivars Characterization Comprehensive Analytical

Chemistry, eds J. Lopes and C. Sousa (Amsterdam: Elsevier), 195–225.
doi: 10.1016/bs.coac.2018.03.005

Tang, X., Zhang, N., Si, H., and Calderon-Urrea, A. (2017). Selection and validation
of reference genes for rt-qpcr analysis in potato under abiotic stress. Plant
Methods 13, 1–8. doi: 10.1186/s13007-017-0238-7

Thomas, S., Behmann, J., Steier, A., Kraska, T., Muller, O., and Rascher, U. (2018).
Quantitative assessment of disease severity and rating of barley cultivars based
on hyperspectral imaging in a non-invasive, automated phenotyping platform.
Plant Methods 14, 1–12. doi: 10.1186/s13007-018-0313-8

Thomas, S., Wahabzada, M., Rascher, M. T. K. U., and Mahlein, A. K. (2017).
Observation of plant-pathogen interaction by simultaneous hyperspectral
imaging reflection and transmission measurements. Funct. Plant Biol. 44,
23–34. doi: 10.1071/FP16127

Thomason, K., Babar, M. A., Erickson, J. E., Mulvaney, M., Beecher, C., and
MacDonald, G. (2018). Comparative physiological and metabolomics analysis
of wheat (triticum aestivum L.) following post-anthesis heat stress. PLoS ONE

13:e0197919. doi: 10.1371/journal.pone.0197919
Van De Vijver, R., Mertens, K., Heungens, K., Somers, B., Nuyttens, D., Borra-

Serrano, I., et al. (2020). In-field detection of Alternaria solani in potato
crops using hyperspectral imaging. Comput. Electron. Agric. 168:105106.
doi: 10.1016/j.compag.2019.105106

Vialet-Chabrand, S., and Lawson, T. (2019). Dynamic leaf energy balance: deriving
stomatal conductance from thermal imaging in a dynamic environment. J. Exp.
Bot. 70, 2839–2855. doi: 10.1093/jxb/erz068

Vidal, D., and Pitarma, R. (2019). Infrared thermography applied to tree health
assessment: a review. Agriculture 9:156. doi: 10.3390/agriculture9070156

Visioli, G., Galieni, A., Stagnari, F., Bonas, U., Speca, S., and Faccini, A. (2016).
Proteomics of durumwheat grain during transition to conservation agriculture.
PLoS ONE 11:e0156007. doi: 10.1371/journal.pone.0156007

Vives-Peris, V., M. F. Lopez-Climent, M. F., Perez-Clemente, R. M., and
Gomez-Cadenas, A. (2020). Root involvement in plant responses to
adverse environmental conditions. Agronomy 10:7. doi: 10.3390/agronomy100
70942

Wang, C., Qin, J. Y., Xu, W. D., Chen, M., Xie, L. J., and Ying, Y. B. (2018a).
Terahertz imaging applications in agriculture and food engineering: a review.
Trans. ASABE 61, 411–424. doi: 10.13031/trans.12201

Wang, D., Vinson, R., Holmes, M., Seibel, G., Bechar, A., Nof, S., et al. (2019d).
Early detection of tomato spotted wilt virus by hyperspectral imaging and
outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN).
Sci. Rep. 9, 1–14. doi: 10.1038/s41598-019-40066-y

Wang, H., Qian, X., Zhang, L., Xu, S., Li, H., and Xia, X. (2018b). A method of
high throughput monitoring crop physiology using chlorophyll fluorescence
and multispectral imaging. Front. Plant Sci. 9:407. doi: 10.3389/fpls.2018.
00407

Wang, J., Lv, J., Liu, Z., Liu, Y., and Ma, J. S. Y. (2019a). Integration of
transcriptomics and metabolomics for pepper (Capsicum annuum L.) in
response to heat stress. Int. J. Mol. Sci. 20:5042. doi: 10.3390/ijms20205042

Wang, Q.,Mathews, A. J., Li, K.,Wen, J., Komarov, S., O’Sullivan, J. A., et al. (2014).
A dedicated high-resolution pet imager for plant sciences. Phys. Med. Biol. 59,
5613–5629. doi: 10.1088/0031-9155/59/19/5613

Wang, X., Guo, R., Li, M., Liu, Y., Zhao, M., and Fu, H. (2019b). Metabolomics
reveals the drought-tolerance mechanism in wild soybean (Glycine soja). Acta
Physiol. Plant. 41, 1–11. doi: 10.1007/s11738-019-2939-1

Wang, X., Hou, L., Lu, Y., Wu, B., Gong, X., Liu, M., et al. (2018c). Metabolic
adaptation of wheat grain contributes to a stable filling rate under heat stress. J.
Exp. Bot. 69, 5531–5545. doi: 10.1093/jxb/ery303

Wang, Y.-J., Li, T.-H., Jin, G., Wei, Y.-M., Li, L.-Q., Kalkhajeh, Y. K., et al. (2020).
Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under
field condition using hyperspectral imaging coupled with chemometrics. J. Sci.
Food Agric. 100, 161–167. doi: 10.1002/jsfa.10009

Wang, Z. Z. J., Cui, H. L., and Yan, S. (2019c). Terahertz spectral imaging based
quantitative determination of spatial distribution of plant leaf constituents.
Plant Methods 15, 1–11. doi: 10.1186/s13007-019-0492-y

Weber, J. F., Kunz, C., Peteinatos, G. G., Santel, H. J., and Gerhards, R. (2017).
Utilization of chlorophyll fluorescence imaging technology to detect plant
injury by herbicides in sugar beet and soybean. Weed Technol. 31, 523–535.
doi: 10.1017/wet.2017.22

Wu, C., and Liu, M., Liu, X., Wang, T., and Wang, L. (2019). Developing a new
spectral index for detecting cadmium-induced stress in rice on a regional scale.
Int. J. Environ. Res. Public Health 16:4811. doi: 10.3390/ijerph16234811

Xue, J., and Su, B. (2017). Significant remote sensing vegetation indices: a review of
developments and applications. J. Sens. 2017, 1–17. doi: 10.1155/2017/1353691

Yang, J., Du, L., Shi, S., Gong, W., Sun, J., and Chen, B. (2019). Potential of
fluorescence index derived from the slope characteristics of laser-induced
chlorophyll fluorescence spectrum for rice leaf nitrogen concentration
estimation. Appl. Sci. 9:916. doi: 10.3390/app9050916

Yao, J., Sun, D., Cen, H., Xu, H., Weng, H., and Yuan, F. (2018).
Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll
fluorescence and multicolor fluorescence imaging. Front. Plant Sci. 9:603.
doi: 10.3389/fpls.2018.00603

Yao, Z., Lei, Y., and He, D. (2019). Early visual detection of wheat
stripe rust using visible/near-infrared hyperspectral imaging. Sensors 19:952.
doi: 10.3390/s19040952

Ye, X., Abe, S., and Zhang, S. (2020). Estimation and mapping of nitrogen content
in apple trees at leaf and canopy levels using hyperspectral imaging. Precis.
Agric. 21, 198–225. doi: 10.1007/s11119-019-09661-x

Yoshino, K., Numajiri, Y., Teramoto, S., Kawachi, N., Tanabata, T., Tanaka,
T., et al. (2019). owards a deeper integrated multi-omics approach in
the root system to develop climate-resilient rice. Mol. Breed. 39:165.
doi: 10.1007/s11032-019-1058-4

Yu, K., Anderegg, J., Mikaberidze, A., Karisto, P., Mascher, F., McDonald, B. A.,
et al. (2018). Hyperspectral canopy sensing of wheat septoria tritici blotch
disease. Front. Plant Sci. 9:1195. doi: 10.3389/fpls.2018.01195

Zahid, A. T., Abbas, H., Imran, M. A., Qaraqe, K. A., Alomainy, A., and Cumming,
D. R. S. (2019). Characterization and water content estimation method of
living plant leaves using terahertz waves. Appl. Sci. 9:2781. doi: 10.3390/app91
42781

Zarco-Tejada, P. J., Berjón, A., López-Lozano, R.,Miller, J. R., Martín, P., Cachorro,
V., et al. (2005). Assessing vineyard condition with hyperspectral indices: Leaf
and canopy reflectance simulation in a row-structured discontinuous
canopy. Remote Sens. Environ. 99, 271–287. doi: 10.1016/j.rse.2005.
09.002

Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., and Sampson,
P. H. (2001). Scaling-up and model inversion methods with narrowband
optical indices for chlorophyll content estimation in closed forest canopies
with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 39, 1491–1507.
doi: 10.1109/36.934080

Zarco-Tejada, P. J., Pushnik, J. C., Dobrowski, S., and Ustin, S. L. (2003).
Steady-state chlorophyll a fluorescence detection from canopy derivative
reflectance and double-peak red-edge effects. Remote Sens. Environ. 84,
283–294. doi: 10.1016/S0034-4257(02)00113-X

Zhang, C., Ren, H., Dai, X., Qin, Q., Li, J., Zhang, T., et al. (2019). Spectral
characteristics of copper-stressed vegetation leaves and further understanding
of the copper stress vegetation index. Int. J. Remote Sens. 40, 4473–4488.
doi: 10.1080/01431161.2018.1563842

Frontiers in Plant Science | www.frontiersin.org 21 January 2021 | Volume 11 | Article 609155

https://doi.org/10.1007/s10661-016-5171-0
https://doi.org/10.1002/ecs2.2768
https://doi.org/10.3390/s19122649
https://doi.org/10.1016/j.chemosphere.2009.11.045
https://doi.org/10.1016/j.snb.2018.06.121
https://doi.org/10.1111/j.0031-9317.2005.00582.x
https://doi.org/10.1016/bs.coac.2018.03.005
https://doi.org/10.1186/s13007-017-0238-7
https://doi.org/10.1186/s13007-018-0313-8
https://doi.org/10.1071/FP16127
https://doi.org/10.1371/journal.pone.0197919
https://doi.org/10.1016/j.compag.2019.105106
https://doi.org/10.1093/jxb/erz068
https://doi.org/10.3390/agriculture9070156
https://doi.org/10.1371/journal.pone.0156007
https://doi.org/10.3390/agronomy10070942
https://doi.org/10.13031/trans.12201
https://doi.org/10.1038/s41598-019-40066-y
https://doi.org/10.3389/fpls.2018.00407
https://doi.org/10.3390/ijms20205042
https://doi.org/10.1088/0031-9155/59/19/5613
https://doi.org/10.1007/s11738-019-2939-1
https://doi.org/10.1093/jxb/ery303
https://doi.org/10.1002/jsfa.10009
https://doi.org/10.1186/s13007-019-0492-y
https://doi.org/10.1017/wet.2017.22
https://doi.org/10.3390/ijerph16234811
https://doi.org/10.1155/2017/1353691
https://doi.org/10.3390/app9050916
https://doi.org/10.3389/fpls.2018.00603
https://doi.org/10.3390/s19040952
https://doi.org/10.1007/s11119-019-09661-x
https://doi.org/10.1007/s11032-019-1058-4
https://doi.org/10.3389/fpls.2018.01195
https://doi.org/10.3390/app9142781
https://doi.org/10.1016/j.rse.2005.09.002
https://doi.org/10.1109/36.934080
https://doi.org/10.1016/S0034-4257(02)00113-X
https://doi.org/10.1080/01431161.2018.1563842
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Galieni et al. Plant Stress Detection

Zhang, C., Ren, H., Qin, Q., and Ersoy, O. K. (2017). A new narrow band
vegetation index for characterizing the degree of vegetation stress due to
copper: the copper stress vegetation index (CSVI). Remote Sens. Lett. 8,
576–585. doi: 10.1080/2150704X.2017.1306135

Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., and Wu,
K. (2019a). Monitoring plant diseases and pests through remote
sensing technology: a review. Comput. Electron. Agric. 165:104943.
doi: 10.1016/j.compag.2019.104943

Zhang, J., Huang, Y., Reddy, K. N., and Wang, B. (2019b). Assessing crop
damage from dicamba on non-dicamba-tolerant soybean by hyperspectral
imaging through machine learning. Pest Manag. Sci. 75, 3260–3272.
doi: 10.1002/ps.5448

Zhang, K., Cui, H., Cao, S., Yan, L., Li, M., and Sun, Y. (2019). Overexpression
of CrCOMT from Carex rigescens increases salt stress and modulates
melatonin synthesis in Arabidopsis thaliana. Plant Cell Rep. 38, 1501–1514.
doi: 10.1007/s00299-019-02461-7

Zhang, Z., Liu, M., Liu, X., and Zhou, G. (2018). A new vegetation index based on
multitemporal Sentinel-2 images for discriminating heavy metal stress levels in
rice. Sensors 18:2172. doi: 10.3390/s18072172

Zhao, D., Reddy, K. R., Kakani, V. G., Read, J. J., and Koti, S. (2005).
Selection of optimum reflectance ratios for estimating leaf nitrogen and
chlorophyll concentrations of field-grown cotton. Agron. J. 97, 89–98.
doi: 10.2134/agronj2005.0089

Zhao, Y., Zhou, M., Xu, K., Li, J., Li, S., and Zhang, S. (2019). Integrated
transcriptomics and metabolomics analyses provide insights into cold
stress response in wheat. Crop J. 7, 857–866. doi: 10.1016/j.cj.2019.
09.002

Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., and Cao, W. (2018). Combining
unmanned aerial vehicle (UAV)-basedmultispectral imagery and ground-based
hyperspectral data for plant nitrogen concentration estimation in rice. Front.
Plant Sci. 9:936. doi: 10.3389/fpls.2018.00936

Zhou, R.-Q., Jin, J.-J., Li, Q.-M., Su, Z.-Z., Yu, X.-J., Tang, Y., et al. (2019).
Early detection of magnaporthe oryzae-infected barley leaves and lesion
visualization based on hyperspectral imaging. Front. Plant Sci. 9:1962.
doi: 10.3389/fpls.2018.01962

Zhou, X., Sun, J., Tian, Y., Lu, B., Hang, Y., and Chen, Q. (2020).
Development of deep learning method for lead content prediction of
lettuce leaf using hyperspectral images. Int. J. Remote Sens. 41, 2263–2276.
doi: 10.1080/01431161.2019.1685721
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