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Abstract 

Knowing in advance vineyard yield is a key issue for growers, winemakers, policy makers, and 

regulators being fundamental to achieve the best balance between vegetative and reproductive 

growth, and to allow more informed decisions like thinning, irrigation and nutrient management, 

schedule harvest, optimize winemaking operations, program crop insurance, fraud detection 

and grape picking workforce demand. In a long-term scenario of perceived climate change, it 

is also essential for planning and regulatory purposes at the regional level. 

Estimating yield is complex and requires knowing driving factors related to climate, plant, and 

crop management that directly influence the number of clusters per vine, berries per cluster, 

and berry weight. These three yield components explain 60%, 30%, and 10% of the yield. The 

traditional methods are destructive, labor-demanding, and time-consuming, with low accuracy 

primarily due to operator errors and sparse sampling (compared to the inherent spatial 

variability in a production vineyard). Those are supported by manual sampling, where yield is 

estimated by sampling clusters weight and the number of clusters per vine, historical data, and 

extrapolation considering the number of vines in a plot. As the extensive research in the area 

clearly shows, improved applied methodologies are needed at different spatial scales. 

The methodological approaches for yield estimation based on indirect methods are primarily 

applicable at small scale and can provide better estimates than the traditional manual sampling. 

They mainly depend on computer vision and image processing algorithms, data-driven models 

based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop 

management variables that can support dynamic crop simulation models. Despite surpassing 

the limitations assigned to traditional manual sampling methods with the same or better results 

on accuracy, they still lack a fundamental key aspect: the real application in commercial 

vineyards. Another gap is the lack of solutions for estimating yield at broader scales (e.g., 

regional level). The perception is that decisions are more likely to take place on a smaller scale, 

which in some cases is inaccurate. It might be the case in regulated areas and areas where 

support for small viticulturists is needed and made by institutions with proper resources and a 

large area of influence. This is corroborated by the fact that data-driven models based on Trellis 

Tension and Pollen traps are being used for yield estimation at regional scales in real 

environments in different regions of the world. 

The current dissertation consists of the first study to identify through a systematic literature 

review the research approaches for predicting yield in vineyards for wine production that can 

serve as an alternative to traditional estimation methods, to characterize the different new 
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approaches identifying and comparing their applicability under field conditions, scalability 

concerning the objective, accuracy, advantages, and shortcomings. In the second study 

following the identified research gap, a yield estimation model based on Geospatial Artificial 

Intelligence (GeoAI) with remote sensing and climate data and a machine-learning approach 

was developed. Using a satellite-based time-series of Normalized Difference Vegetation Index 

(NDVI) calculated from Sentinel 2 images and climate data acquired by local automatic weather 

stations, a system for yield prediction based on a Long Short-Term Memory (LSTM) neural 

network was implemented. The results show that this approach makes it possible to estimate 

wine grape yield accurately in advance at different scales. 

Keywords: Vineyard; Yield; Estimation; Prediction; Forecasting; Systematic Literature Review; 

Remote Sensing; NDVI; Climate; Machine Learning 
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1. Introduction 

This chapter contextualizes the research question, main research goals, and methodological 

approach. The publications and their relationship with the research design phases are also 

presented. 

1.1 Research context 

This dissertation is within the context of information management in the area of Geoinformatics 

by contributing: first to perceive the research approaches for predicting yield in vineyards for 

wine production that can serve as an alternative to traditional estimation methods; second, to 

characterize the different new approaches identifying and comparing their applicability under 

field conditions, scalability concerning the objective, accuracy, advantages, and shortcomings; 

third, to identify research gaps for future developments and support a future research agenda 

on this topic; and fourth, to propose and evaluate a new methodology for estimating vineyard 

yield at the regional level based on Geospatial Artificial Intelligence (GeoAI), using Normalized 

Difference Vegetation Index (NDVI) and climate data with a Deep Learning (DL) approach based 

on a Long Short Term Memory (LSTM) Neural Network. 

1.2 Motivation 

The European Union is the world-leading producer of wine. Between 2016 and 2020, the 

average annual production was 165 million hectoliters. In 2020, it accounted for 45% of global 

wine-growing areas, 64% of production, and 48% of consumption. Wine is the largest EU agri-

food sector in exports (7.6% of agri-food value exported in 2020) (Eurostat, 2022b). 

Knowing in advance vineyard yield is essential for growers, winemakers, policymakers, and 

regulators. It is fundamental to achieve the best balance between vegetative and reproductive 

growth and allow more informed decisions like thinning, irrigation and nutrient management, 

scheduling harvest, optimizing winemaking operations, program crop insurance, fraud 

detection, and grape picking workforce demand. In a long-term scenario of perceived climate 

change, it is also essential for planning and regulatory purposes at the regional level. 

The traditional methods (De La Fuente et al., 2015) are considered destructive, labor-

demanding, and time-consuming (Diago et al., 2015), with low accuracy (Tardaguila et al., 2013) 

primarily due to operator errors (Carrillo et al., 2016) and sparse sampling (when compared to 

the inherent spatial variability in a production vineyard (Nuske et al., 2014b; Sun et al., 2017)). 
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Those are supported by manual sampling, where yield is estimated by sampling clusters weight 

and the number of clusters per vine, historical data, and extrapolation considering the number 

of vines in a plot. 

The main efforts towards improved yield models applied to the vineyard are, in most cases, 

focused on image analysis for grape detection at the field level, with a significant drawback 

derived from cluster occlusion (Victorino et al., 2020; Whalley and Shanmuganathan, 2013) and 

considered one of the most complex phenotypic traits in viticulture (Rose et al., 2016). The 

growing adoption of Precision Agriculture (PA) practices, closely related to the ongoing 

advances in Geospatial Technologies (GT), Remote Sensing (RS), Proximal Sensing (PS), 

Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), Big Data Analytics (BDA) and 

Artificial Intelligence (AI) (Boursianis et al., 2020; Hall et al., 2002; Linaza et al., 2021; Sishodia 

et al., 2020), are fuelling the particular application in Precision Viticulture (PV) (Arnó et al., 2009) 

where the importance of the wine industry drives the development of innovative methods and 

technologies to cope with the heterogeneity within vineyards that results from high inter-annual 

and spatial variability derived from the effects of soil and climate conditions, grapevine variety, 

biotic and abiotic stresses, vineyard management practices, among others (Hall et al., 2002; 

Lopes et al., 2016). 

But despite being a hot topic in research over the past years it still lacks solutions that can 

transfer the acquired knowledge and methods to the field and provide tools for wine-growers 

decision support. Models based on statistically significant relationships between predictors and 

grapevine parameters are increasingly being overtaken by crop models that can dynamically 

simulate and integrate into different time frames, plant traits, and other variables regarding 

management, soil, and climate data (Costa et al., 2015). This is particularly relevant as grape 

production for wine is closely related to climate variables characterized in the past years by 

high inter-annual variability with direct adverse effects for wine producers that tend to be 

amplified by future climate changes’ perceived scenarios (Cunha et al., 2015; Fraga et al., 2013; 

Padua et al., 2019; Sirsat et al., 2019). 

Nowadays, zoning the wine production areas, especially in denomination areas, is increasingly 

becoming more critical for the identification and characterization of homogenous areas that are 

the basis of regulatory measures over wine (Fernandez-Gonzalez et al., 2011),  to allow 

marketing strategies regarding controlled origins (Shanmuganathan, 2010), and also regarding 

climate changes that require decisions at a regional level concerning adaptability of different 

varieties and mitigation management options in one of the most important crops in Europe 

(Fraga et al., 2016a). PV must apply at the field level and at a larger scale, where the spatial 

variability may reveal general trends of variation not perceived at more minor scales 
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(Santesteban et al., 2013). Predicting yield at a larger scale is making more sense now than 

ever as inter-annual variations attributed to climate change are entering a complex equation 

where quality, sustainability, efficiency, commercial and marketing strategies, regulations, 

insurance, stock management, and quotas are all related with yield forecasting (Cunha et al., 

2015). 

However, there are few examples of yield forecasting at a regional level. Those can be divided 

mainly into climate-based models estimating grape and wine production (Fraga and Santos, 

2017a; Gouveia et al., 2011; Santos et al., 2020a; Sirsat et al., 2019); pollen-based models 

(Besselat, 1987; Cristofolini and Gottardini, 2000; Cunha et al., 2015; González-Fernández et 

al., 2020); a combination of one or both with phenological and phytopathological variables 

(Fernández-González et al., 2011; Fernandez-Gonzalez et al., 2011); STICS models (Fraga et 

al., 2015); and models based on correlation with indices such as NDVI, LAI, and NDWI (Cunha 

et al., 2010). All have limitations regarding data acquisition, complexity, applicability, 

transferability, prediction scale, high maintenance and operational costs, and complex 

laboratory processes to treat the data. The more commonly used for regional yield estimation 

are the ones based on the relationship between airborne pollen and yield, relying on the 

principle that more flowers per area unit in more productive years relates to higher airborne 

pollen concentrations (Besselat, 1987; Cristofolini and Gottardini, 2000; Cunha et al., 2015; 

Fernández-González et al., 2011; Fernández-González et al., 2020; Fernandez-Gonzalez et al., 

2011; González-Fernández et al., 2020). The main disadvantages/difficulties of using pollen-

based models (Barriguinha et al., 2021) are: choosing the best placement for sampling devices 

to represent effectively spatial variability; the number of observations for model calibration 

(historical data not commonly available); costly and complex laboratory processes; plant 

dynamics (high variations of the area with vineyards around the pollen traps); temperature and 

precipitation variations; vineyard management activities (fertilization impact); and identification 

of the beginning and final of the pollen season. 

In recent years, Deep Learning (DL) has been considered a breakthrough technology in 

Machine Learning (ML) and Data Mining (DM), including in the RS research field (Zhong et al., 

2019). ML methods are increasingly being used as a tool for crop yield prediction (Arab et al., 

2021; van Klompenburg et al., 2020), with Long Short-Term Memory (LSTM) and Convolutional 

Neural Networks (CNN) being the most widely used DL approaches, with better results when 

compared to traditional ML approaches for crop yield prediction, taking advantage of the ability 

to extract features from available data (Muruganantham et al., 2022). This data science 

approach based on Artificial Neural Networks (ANN), despite recent, is not new to vineyard 

yield estimation and is leading the alternative methods as one of the most utilized techniques 
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for attempting an early yield estimation. However, it has been limited to small-scale experiments, 

mostly in controlled environments associated with models based on computer vision and image 

processing (Barriguinha et al., 2021; Mohimont et al., 2022). 

GeoAI as a combination of spatial science, AI methods in machine learning (e.g., deep learning), 

data mining, and high-performance computing to extract knowledge from spatial big data 

(Kamel Boulos et al., 2019; Vopham et al., 2018) can be applied to the real-world problem such 

multiple scale vineyard yield estimation. 

To the best of the authors' knowledge this thesis represents the first systematic literature review 

fully dedicated to vineyard yield estimation, prediction, and forecasting methods and the first 

application of DL to regional vineyard yield estimation. 

1.3 Research Focus 

Traditional wine grape yield estimation methods (De La Fuente et al., 2015) are destructive, 

labor-demanding, and time-consuming (Diago et al., 2015), with low accuracy (Tardaguila et al., 

2013) primarily due to operator errors (Carrillo et al., 2016) and sparse sampling (when 

compared to the inherent spatial variability in a production vineyard (Nuske et al., 2014b; Sun 

et al., 2017)). The importance of the wine industry drives the development of innovative 

methods and technologies to cope with the heterogeneity within vineyards that results from 

high inter-annual and spatial variability derived from the effects of soil and climate conditions, 

grapevine variety, biotic and abiotic stresses, vineyard management practices, among others 

(Hall et al., 2002; Lopes et al., 2016). Nowadays, zoning the wine production areas, especially 

in denomination areas, is increasingly becoming more critical for the identification and 

characterization of homogenous areas that are the basis of regulatory measures over wine 

(Fernandez-Gonzalez et al., 2011),  to allow marketing strategies regarding controlled origins 

(Shanmuganathan, 2010), and also regarding climate changes that require decisions at a 

regional level concerning adaptability of different varieties and mitigation management options 

in one of the most important crops in Europe (Fraga et al., 2016a). PV must apply at the field 

level and at a larger scale, where the spatial variability may reveal general trends of variation 

not perceived at more minor scales (Santesteban et al., 2013). Predicting yield at a larger scale 

is making more sense now than ever as inter-annual variations attributed to climate change are 

entering a complex equation where quality, sustainability, efficiency, commercial and marketing 

strategies, regulations, insurance, stock management, and quotas are all related with yield 

forecasting (Cunha et al., 2015). 
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The focus herein is to answer the following research questions: 

What are and can the alternative methods for wine grape yield estimation provide 

better results to effectively support growers, winemakers, policy makers, and 

regulators? 

Can a Geospatial Artificial Intelligence (GeoAI) approach be used to estimate wine 

grape yield at different scales? 

1.4 Research Goals 

The main goals of this thesis include the identification of the different alternative approaches for 

predicting yield in vineyards for wine production that can serve as an alternative to traditional 

estimation methods and to develop and evaluate a new methodology for estimating vineyard 

yield at the regional level based on Geospatial Artificial Intelligence (GeoAI). The results of this 

thesis were disseminated in computer science conferences and peer-reviewed journal articles.  

The main research goals are as follows: 

1. Identify the research methodologies for predicting yield in vineyards for wine 

production that can serve as an alternative to traditional estimation methods. 

2. Characterize the different alternative approaches for estimating wine grape yield. 

3. Identify and compare the applicability under field conditions, scalability concerning the 

objective, accuracy, advantages and shortcomings of the different alternative 

approaches for estimating wine grape yield. 

4. Identify research gaps for future developments and support a future research agenda 

on predicting yield in vineyards for wine production. 

5. Propose a new methodology for estimating vineyard yield at the regional level based 

on Geospatial Artificial Intelligence (GeoAI). 

6. Evaluate the new methodology for estimating vineyard yield at the regional level. 

7. Publish the results 

1.5 Data sources  

To reach the proposed goals, the following data sources were used. 



 

 

6 

 

Doctoral Programme in Information Management 

1.5.1 Systematic Literature Review 

The Scopus, Web of Science, ScienceDirect and IEEE databases were used for the Systematic 

Literature Review. 

1.5.2 Remote Sensing Data 

The initial dataset used to produce the temporal NDVI profiles was collected from Copernicus 

Sentinel-2A and 2B, with a Level-2A of processing level and 10m spatial resolution for 2016-

2021. The Sentinel images for the study area were retrieved from the Copernicus Open Access 

Scientific Hub (https://scihub.copernicus.eu/) from January 11th, 2016, to December 30th, 

2021, from which the NDVI was calculated using Band 4 (RED) and Band 8 (NIR). 

1.5.3 Climate Data 

The climate data used resulted from observed daily values of Average annual total precipitation 

amount - mm; Average daily air temperature at 1.5m - 0C); Average daily relative humidity - %; 

and Average daily wind speed – m/s; Average daily global radiation – KJ/m2, acquired by six 

IPMA (Instituto Português do Mar e da Atmosfera - https://www.ipma.pt/pt/) automatic weather 

stations between 2016 and 2021. 

1.5.4 Phenology Data 

Phenology data used to define the different timeframes necessary for the model to predict yield 

as far in advance as possible effectively for the three main grapevine phenological stages (start):  

budburst; flowering; and veraison, were collected from the harvest report generated by ADVID 

(Association for the Development of Viticulture in the Douro Region - https://www.advid.pt/en) 

between 2016 and 2021. 

The harvest start and end dates were collected from the IVDP dataset (Instituto dos Vinhos do 

Douro e do Porto, I.P. - https://www.ivdp.pt/en) according to the registration of grape entry in 

the wine-producing facilities between 2016 and 2021. 

1.5.5 Yield Data 

Yield data was provided by IVDP for each parish from 2016 to 2021. The data was collected 

yearly in grape reception units scattered along the entire DDR, with the grapes' amount (kg) 

and origin (parish) recorded for each delivery. 
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1.6 Methodologies  

The study in chapter 2 used the Preferred Reporting Items for Systematic Reviews and Meta-

analyses (PRISMA) statement as a guideline. 

The study in chapter 3 used a satellite-based time-series of Normalized Difference Vegetation 

Index (NDVI) calculated from Sentinel 2 images and climate data acquired by local automatic 

weather stations, yield data, filtered according to phenology and harvest timeframes, on a Long 

Short-Term Memory (LSTM) neural network, implemented using the Keras framework. 

1.7 Thesis organization  

This thesis is structured into four chapters. The first chapter presents the dissertation 

motivation, the research focus question, the goals, and the methodological approach. The 

second chapter introduces the systematic literature review on vineyard yield estimation, 

prediction, and forecasting. In this chapter, the research approaches for predicting yield in 

vineyards for wine production that can serve as an alternative to traditional estimation methods 

are reviewed and characterized according to the different approaches identifying and 

comparing their applicability under field conditions, scalability concerning the objective, 

accuracy, advantages and shortcomings, allowing to identify research gaps for future 

developments and support a future research agenda on this topic. The third chapter presents 

a new model for estimating vineyard yield at the regional level, using NDVI and climate data 

with a DL approach based on an LSTM Neural Network. This model was validated using real 

data, and the results are presented and compared with other approaches, including an 

alternative methodology currently in use in the considered study area. The fourth chapter 

presents the main findings of the studies described, their contribution, limitations, and future 

research path. 
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2. Vineyard Yield Estimation, Prediction, and Forecasting: A 

Systematic Literature Review  

Knowing in advance vineyard yield is a critical success factor so growers and winemakers can 

achieve the best balance between vegetative and reproductive growth. It is also essential for 

planning and regulatory purposes at the regional level. Estimation errors are mainly due to the 

high inter-annual and spatial variability and inadequate or poor performance sampling methods 

as so improved applied methodologies are needed at different spatial scales. This paper aims 

to identify alternatives to traditional estimation methods. The study consists of a systematic 

literature review of academic articles indexed on four databases collected based on multiple 

query strings conducted on title, abstract, and keywords. The articles were reviewed based on 

the research topic, methodology, data requirements, practical application, and scale using 

PRISMA as a guideline. The methodological approaches for yield estimation based on indirect 

methods are primarily applicable at small scale and can provide better estimates than the 

traditional manual sampling. Nevertheless, most of these approaches are still in the research 

domain and lack practical applicability in real vineyards by the actual farmers. They mainly 

depend on computer vision and image processing algorithms, data-driven models based on 

vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop 

management variables that can support dynamic crop simulation models. This work is based 

on academic articles published before June 2021. Therefore, scientific outputs published after 

this date are not included. This study contributes to perceiving the approaches for estimating 

vineyard yield and identifying research gaps for future developments and supporting a future 

research agenda on this topic. To the best of the authors' knowledge, it is the first systematic 

literature review fully dedicated to vineyard yield estimation, prediction, and forecasting 

methods. 

2.1 Introduction  

With yield being considered a quality grape and wine indicator (De la Fuente Lloreda, 2014; 

Diago et al., 2015; Santesteban and Royo, 2006; Sun et al., 2017; Zabawa et al., 2019), it is 

crucial to have an early estimation of the quantity of grapes per area unit. Knowing in advance 

vineyard yield is a key issue so that growers and winemakers can achieve the best balance 

between vegetative and reproductive growth;  make more informed decisions like thinning, 

irrigation, and nutrient management; schedule harvest; optimize winemaking operations; 

program crop insurance fraud detection and grape picking workforce demand (Fernández-

González et al., 2011; Fernandez-Gonzalez et al., 2011; Nuske et al., 2014a). 
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The traditional methods (De La Fuente et al., 2015) are considered destructive, labor-

demanding, and time-consuming (Diago et al., 2015), with low accuracy (Tardaguila et al., 2013) 

primarily due to operator errors (Carrillo et al., 2016) and sparse sampling (when compared to 

the inherent spatial variability in a production vineyard (Nuske et al., 2014b; Sun et al., 2017)). 

Those are supported by manual sampling, where yield is estimated by sampling clusters weight 

and the number of clusters per vine, historical data, and extrapolation considering the number 

of vines in a plot. The main efforts towards improved yield models applied to the vineyard are 

in most cases focused on image analysis for grape detection at field level, with a significant 

drawback derived from cluster occlusion (Victorino et al., 2020; Whalley and Shanmuganathan, 

2013) and considered one of the most complex phenotypic traits in viticulture (Rose et al., 2016) 

The growing adoption of Precision Agriculture (PA) practices, closely related with the ongoing 

advances in Geospatial Technologies (GT), Remote Sensing (RS), Proximal Sensing (PS), 

Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), Big Data Analytics (BDA) and 

Artificial Intelligence (AI) (Boursianis et al., 2020; Hall et al., 2002; Linaza et al., 2021; Sishodia 

et al., 2020), are fuelling the particular application in Precision Viticulture (PV) (Arnó et al., 2009) 

where the importance of the wine industry drives the development of innovative methods and 

technologies to cope with the heterogeneity within vineyards that results from high inter-annual 

and spatial variability derived from the effects of soil and climate conditions, grapevine variety, 

biotic and abiotic stresses, vineyard management practices, among others (Hall et al., 2002; 

Lopes et al., 2016). But despite being a hot topic in research over the past years it still lacks 

solutions that can transfer the acquired knowledge and methods to the field and provide tools 

for wine-growers decision support. 

Models based on statistically significant relationships between predictors and grapevine 

parameters are increasingly being overtaken by crop models that can dynamically simulate and 

integrate into different time frames, plant traits, and other variables regarding management, soil, 

and climate data (Costa et al., 2015). This is particularly relevant as grape production for wine 

is closely related to climate variables characterized in the past years by high inter-annual 

variability with direct adverse effects for wine producers that tend to be amplified by future 

climate changes’ perceived scenarios (Cunha et al., 2015; Fraga et al., 2013; Padua et al., 2019; 

Sirsat et al., 2019).Nowadays, zoning the wine production areas, especially in denomination 

areas, is increasingly becoming more critical for the identification and characterization of 

homogenous areas that are the basis of regulatory measures over wine (Fernandez-Gonzalez 

et al., 2011),  to allow marketing strategies regarding controlled origins (Shanmuganathan, 

2010), and also regarding climate changes that require decisions at a regional level concerning 

adaptability of different varieties and mitigation management options in one of the most 
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important crops in Europe (Fraga et al., 2016a). PV must apply at the field level and at a larger 

scale, where the spatial variability may reveal general trends of variation not perceived at more 

minor scales (Santesteban et al., 2013). 

The purpose of the literature review is three-fold: first, to perceive the research approaches for 

predicting yield in vineyards for wine production that can serve as an alternative to traditional 

estimation methods; second, to characterize the different new approaches identifying and 

comparing their applicability under field conditions, scalability concerning the objective, 

accuracy, advantages and shortcomings, and third, to identify research gaps for future 

developments and support a future research agenda on this topic. 

2.2 Methodology  

To identify the relevant scientific work already published on vineyard yield estimation, 

prediction, and forecasting, a systematic literature review of academic articles indexed on the 

Scopus, Web of Science, ScienceDirect, IEEE, MDPI, and PubMed databases was carried out, 

using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 

statement as a guideline (Page et al., 2021). Other databases such as Google Scholar and 

ResearchGate were not considered because a preliminary study undertaken showed that they 

would only contribute to a significant increase in duplicate articles. 

Depending on the approach, the terminology behind knowing as far in advance as possible the 

quantity of grapes that will be harvested can be referred to as (1) estimation when the goal is 

to find the most suitable parameter that best describes a multivariate distribution of a historical 

dataset; (2) as prediction when a dataset is used to compute random values of the unseen data; 

(3) and as forecasting when explicitly is added a temporal dimension in a prediction problem. 

In the present review, the authors adopted the broader term of yield estimation, although the 

other terms were considered keywords in the search criteria. 

The authors adopted a search criteria query string conducted on the title, abstract, and 

keywords, using all the combinations of the following keywords: "yield" OR "production" AND 

"estimation" OR "prediction" OR "forecasting" AND "vineyard" OR "grapevine". Only peer-

reviewed journals, conference articles, and book chapters were considered for screening. 

As the goal is to perceive alternatives to the traditional manual sampling method of determining 

in advance the vineyard yield, those were excluded from the final data set. 

A total of 455 articles published between 1981 and 2021 were found. These articles were 

reviewed firstly based on title and abstract meeting the search criteria with the inclusion of the 



 

 

11 

 

Doctoral Programme in Information Management 

indicated keywords, resulting in 239 articles that were retrieved from the respective databases. 

Further reading resulted in the final 82 records included in the review that verify the research 

criteria for including scientific studies for vineyard yield estimation, prediction, and forecasting. 

(Figure 1). 

 

Figure 1 - Systematic Review Procedure for Article Selection. 

The final record data set was categorized based on ten different methodological approaches 

identified for yield estimation in the screening phase that fall into a broader group of indirect 

estimation models derived mainly from dynamic or crop simulation models and data-driven 

models. Those were subdivided according to what can be considered more specific 

approaches.: A - Data-Driven Models Based on Computer Vision and Image Processing; B - 

Data-Driven Models Based on Vegetation Indices; C -  Data-Driven Models based on Pollen; D 

- Crop Simulation Models; E - Data-Driven Models based on Trellis Tension; F - Data-Driven 

Models Based on Laser Data Processing; G - Data-Driven Models Based on Radar Data 

Processing; H - Data-Driven Models Based on RF Data Processing; I - Data-Driven Models 

Based on Ultrasonic Signal Processing; and J - Other Data-Driven Models. Data regarding the 

year, authors, keywords, countries, data sources, test environment, applicability scale, and 
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related variables used in estimation and accuracy were evaluated for each methodological 

approach. 

2.3 Results and Discussion 

Looking at the scientific peer-reviewed journals distribution it’s interesting to see the vast scope 

of this topic in the researcher’s community with publications in 38 different journals, most of 

them with diverse subjects and scopes, ranging from agronomy to robotics, climate, and 

sensors. The top six covers 45% of the total papers published, with the remaining 39 (55%) 

published in 32 different journals (Figure 2).  

 

Figure 2 - Distribution according to scientific peer-reviewed journals (top 6 highlighted). 

For an overall perception of the ten different methodological approaches identified for yield 

estimation, they are represented in Figure 3, created with Circos (Krzywinski et al., 2009). 

On the right side of the semicircle, we can see the methodologies (from A to J), and on the left 

side, the years of the publications (from 1987 to 2021 - not considering years in which there 

are no identified records). The included records are arranged circularly in segments and joined 

with scaled and colored thickness ribbons to relate the year of publication with the different 

methodological approaches quantitatively. The relationship between both appears in the inner 

circle. The thickness and the color represent the percentage of the relationship. Taking the year 

2020 as an example, we can see that a universe of 18 records was included in the present 

review. From those, 11 (61% of the year 2020 records) are related to A (Data-Driven Models 

Based on Image Processing Algorithms), representing 22% of the 50 records on Data-Driven 

Models Based on Image Processing Algorithms. Visually we can see that since 2009, there has 

been a continuous production of articles on this topic, with an increasing interest in research 

since 2018 with a peak in 2020 (for 2021, the data only covers five months). Regarding 
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methodological approaches, the focus of the researchers dealing with this complex topic is on 

Data-Driven Models Based on Image Processing Algorithms (A) (61%), followed by Data-Driven 

Models Based on Vegetation Indices (B) (9%) and Data-Driven Models based on Pollen (C) 

(9%). 

 

Figure 3 - Representation of the included records, by research methodology and year of 

publication. 

 

Crop yield estimation has a high degree of complexity. It involves, in most cases, the 

characterization of driving factors related to climate, plant, and crop management (Weiss et al., 

2020) that directly influence the number of clusters per vine, berries per cluster, and berry 

weight, as the three yield components (Nuske et al., 2014b), explaining 60%, 30% and 10% of 

the yield respectively (Cunha et al., 2015; Guilpart et al., 2014).The different general 

methodological approaches used for vineyard yield estimation can be divided firstly regarding 
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the scale (in-field level vs. regional level); and secondly, by direct (based on manual sampling) 

or indirect methods (statistical models, regression models, proximal/remote sensing, and 

dynamic or crop simulation models) that depend primarily on image identification and/or related 

climate, soil, vegetation, and crop management variables (Taylor et al., 2019; Ubalde et al., 

2007; Weiss et al., 2020) that can also support crop simulation models, data-driven (Sirsat et 

al., 2019) and mechanistic growth models (Bindi et al., 1996). 

The standard or traditional methods retrieve limited data and produce a static prediction in a 

multi-step process of determining average number of clusters per vine, number of berries per 

cluster, and weight per cluster or berry with the growth overall 10% error greatly dependent on 

adequate staffing and extensive historical databases of cluster weights and yields. (Tarara et 

al., 2004) 

Computer vision and image processing are leading the alternative methods and are one of the 

most utilized techniques for attempting an early yield estimation. Still, different approaches such 

as Synthetic Aperture Radar (SAR),  low frequency ultrasound (Parr et al., 2020), RF Signals 

(Altherwy and McCann, 2020), counting number of flowers (Aquino et al., 2015a; Aquino et al., 

2015b; Diago et al., 2014; Liu et al., 2018; López-Miranda and Yuste, 2004; Millan et al., 2017; 

Palacios et al., 2020; Rudolph et al., 2019), Boolean model application (Millan et al., 2018), shoot 

count (Liu et al., 2017), shoot biomass (Demestihas et al., 2018; Moreno et al., 2020a), 

frequency-modulated continuous-wave (FMCW) radar (Henry et al., 2019; Henry et al., 2017), 

detection of specular spherical reflection peaks (Font et al., 2014), the combination of RGB and 

multispectral imagery (Fernandez et al., 2013) along with derived occlusion ratios, are 

alternative methods. 

Whatever the indirect method used, they all allow a fast and non-invasive alternative to manual 

sampling. They allow identifying single berries in images, even taken from a simple device like 

a smartphone (Aquino et al., 2018a; Liu et al., 2020b; Silver and Monga, 2019) and then using 

different methods such as convolutional neural networks (Santos et al., 2020b; Zabawa et al., 

2019), cellular automata (Shanmuganathan et al., 2011), or even sensors capable of collecting 

phenotypic traits of grape bunches, that are known to be related with grapevine yield (Whalley 

and Shanmuganathan, 2013; Xin et al., 2020), to estimate yields. 

Approaches like non-productive canopy detection using green pixel thresholding in video 

frames, local thresholding and Self-Organizing-Maps on aerial imagery (Tang et al., 2016); light 

detection and ranging (LiDAR) for vineyard reconstruction (Moreno et al., 2020b), and map 

pruning wood (Tagarakis et al., 2018) do not allow direct estimation of the yield but instead 
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provide data layers to relate or use directly or as a correction coefficient in other methodologies, 

as they can show a relationship to yield. 

Indices have been experiencing exponential growth in research related to productive and 

vegetative parameters in vineyards (Matese and Di Gennaro, 2021; Stamatiadis et al., 2010). 

Derived from satellite imagery, UAVs (Di Gennaro et al., 2019b; Matese and Di Gennaro, 2021), 

Unmanned Ground Vehicles (UGVs), or mounted on tractors and Utility Terrain Vehicles 

(UTVs)(Arnó et al., 2013), Normalized Difference Vegetation Index (NDVI)(Carrillo et al., 2016), 

Leaf Area Index (LAI) (Arnó et al., 2013; Sun et al., 2017) and Water Index (WI) (with added 

importance in rainfed vineyards where water deficits play a significant role) (Serrano et al., 

2012), are a predictor of spatial yield variability using passive and or active sensors. 

Other indirect methods include Bayesian growth models (Ellis et al., 2020); weather-based 

models (Cola et al., 2014); models based on a combination of variables (meteorological, 

phenological and phytopathological)(Fernández-González et al., 2011; Fernández-González et 

al., 2020); dynamic crop model like the “Simulateur mulTIdisciplinaire pour les Cultures 

Standard” (STICS) (Fraga et al., 2015; Valdes-Gomez et al., 2009); crop biometric maps (Rovira-

Más and Sáiz-Rubio, 2013); and the continuous measurement of the tension in the horizontal 

(cordon) support wire of the trellis (Blom and Tarara, 2009; Tarara et al., 2014; Tarara et al., 

2004), also used to determine the best moment of hand sampling for yield estimation (Tarara 

et al., 2013). 

Predicting yield at a larger scale is making more sense now than ever as inter-annual variations 

attributed to climate change are entering a complex equation where quality, sustainability, 

efficiency, commercial and marketing strategies, regulations, insurances, stock management, 

and quotas are all related with yield forecasting (Cunha et al., 2015). However, at a regional 

level, there are few examples of yield forecasting. Those can be divided mainly into climate-

based models estimating grape and wine production (Fraga and Santos, 2017a; Gouveia et al., 

2011; Santos et al., 2020a; Sirsat et al., 2019); pollen-based models (Besselat, 1987; Cristofolini 

and Gottardini, 2000; Cunha et al., 2015; González-Fernández et al., 2020); a combination of 

one or both with phenological and phytopathological variables (Fernández-González et al., 

2011; Fernandez-Gonzalez et al., 2011); STICS models (Fraga et al., 2015); and models based 

on correlation with indices such as NDVI, LAI, and NDWI (Cunha et al., 2010). 

Harvest estimation is a problem to which machine learning, computer vision, and image 

processing can be applied using one or a combination of techniques (Ballesteros et al., 2020; 

Maimaitiyiming et al., 2019; Seng et al., 2018). In proximal sensing methods, detection, 

segmentation, and counting of either individual grapes or bunches are complex in most image-
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based methodologies (Liu and Whitty, 2015; Parr et al., 2020; Santos et al., 2020b), especially 

in non-disturbed canopies where occlusion (Coviello et al., 2020; Victorino et al., 2020), 

illumination, colors, and contrast (Font et al., 2015; Pérez-Zavala et al., 2018) are challenging 

and in most cases is only demonstrated conceptually in small scale (Liu and Whitty, 2015). 

Along with Data Science, Artificial Intelligence, and Deep Learning, vineyard yield estimation 

can be applied at larger scales, not only through image analysis algorithms but also by 

identifying relevant predictive variables using data associated with climate, yield, phenology, 

fertilization, soil, maturation (Palacios et al., 2020; Sirsat et al., 2019) and diseases (Rancon et 

al., 2019), by making use of a growing number of remote sensing (Cunha et al., 2010) and 

phenotyping platforms that allow quantitatively assessing plant traits in which yield falls 

(Kicherer et al., 2015; Milella et al., 2019). 

2.3.1 Data-Driven Models Based on Computer Vision and Image Processing 

Table 1 shows the summary of the records included in the systematic review regarding the use 

of computer vision and image processing techniques for yield estimation based on image, 

recorded mainly with still or mounted standard Red, Green, and Blue (RGB) and RGB- Depth 

Sensor (D) cameras, for the most under field conditions with local application scale. The main 

goal is to extract variables from the images that can be related to the actual yield, such as the 

number of berries, bunch/cluster area, leaf area, number of flowers, stems, and branches. This 

can be accomplished with various computer vision, machine learning, and deep learning 

approaches. 

From the retrieved results, we can say that computer vision and image processing are the most 

utilized techniques for attempting an early yield estimation alternatively to traditional sampling 

methods. The application of this type of methodology mimics for the most the manual sampling, 

removing the time-consuming and labor demanding tasks of collecting destructive samples 

from designated smart points that are weighted and used in extrapolation models adjusted with 

historical data and empirical knowledge from the viticulturist. The process can be divided into 

the actual data collection – preferably done under field conditions - and the interpretation of the 

data collected – analyzing the features collected - resulting in a yield estimation. 

The images can be acquired using a still camera (Diago et al., 2015; Ivorra et al., 2015; 

Tardaguila et al., 2013) in a laboratory or under field conditions, and also by other optical or 

multispectral proximal sensors, on-the-go using ATVs (Aquino et al., 2018b; Nuske et al., 2014b; 

Palacios et al., 2020), other terrestrial autonomous vehicles (Millan et al., 2018; Nuske et al., 

2014a) including autonomous robot systems (Kurtser et al., 2020; Riggio et al., 2018; Victorino 
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et al., 2020), UAVs (Di Gennaro et al., 2019a; Torres-Sánchez et al., 2021) that cope with the 

limitations of ground vehicles regarding field conditions (slopes and soil) or in a more simple 

way on foot with a smartphone (Liu et al., 2020b). 

Acquiring on-the-go without user intervention represents considerable expectable 

improvements regarding traditional methods as it allows in the limit to monitor the entire plot 

autonomously, creating estimation maps at earlier stages that can be updated regularly until 

harvest, permitting in some cases viticultural practices that can rectify key parameters and 

facilitate selective harvest (Aquino et al., 2018b). Also, data collection can be made 

simultaneous with other agronomic operations, reducing acquisitions costs. The data collected 

can be used to determine multiple parameters directly correlated with yield and cultural 

practices assessment, vineyard status (Tardaguila et al., 2013), and quality (Ivorra et al., 2015). 

The more challenging aspect of the approach is to transform the data collected into an actual 

yield estimation. The more common approach is to identify automatically individual grapes or 

clusters for size determination e.g., (Mirbod et al., 2016; Nuske et al., 2011; Tardaguila et al., 

2013; Victorino et al., 2020) or other vine structures (Schöler and Steinhage, 2015), along with 

3D reconstruction (Herrero-Huerta et al., 2015; Ivorra et al., 2015; Liu et al., 2020b; Marinello et 

al., 2016; Nellithimaru and Kantor, 2019; Rose et al., 2016; Schneider et al., 2020) to estimate 

the actual yield . This requires for the most, in the model development phase, training and 

validation supported by manually assessing cluster weight and berry number per cluster after 

the image acquisition. The shortcoming related to the traditional approach is that the models 

are mostly variety dependent, and a commercial solution needs to cope with all the different 

varieties in a vineyard. According to Millan et al. (Millan et al., 2017), this can be resolved using 

a base model for identifying flower number per inflorescence that has theoretical potential to 

be variety-independent. However, according to the same author, the number of flowers per 

inflorescence alone is insufficient for correct yield estimation and needs to be combined with 

the fruit set rate and/or the average berry weight. The single variety-independent linear model 

is also referred by Aquino et al. (Aquino et al., 2015b) but reported by Liu et al. (Liu et al., 2018) 

as not feasible unless a similarity in both structure and development stage occurs. Different 

authors, in fact, report flower number as an important explanatory variable for estimating yield 

(Aquino et al., 2015a; Liu et al., 2018; Palacios et al., 2020) that can give a very early estimative, 

although not very used in traditional manual approaches as it tends to amplify the already 

referred shortcomings for cluster sampling. 

Another aspect that needs to be pointed out is that a considerable part of the studies was made 

under laboratory conditions, and the results must be validated under field conditions that are 
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typically very challenging. Also, the ones made “under field conditions” have in some cases 

more similarities with controlled environments with the vineyard adapted to the methodology 

and the purposed goal, e.g., counting berry number, instead of the other way around. 

One major disadvantage is that 2-D or even stereo images do not bring measurement data in 

the depth of the scene (Henry et al., 2019), and image analysis algorithms are very dependent 

on occlusion (Diago et al., 2012; Íñiguez et al., 2021) that can constitute self-occlusions: berries 

hidden behind berries within the same grape cluster; cluster-occlusions: berries hidden behind 

other grape clusters; and vine-occlusions: berries hidden behind the leaves and shoots of the 

vine (Nuske et al., 2014a). Furthermore, environmental dynamics such as leave movements due 

to wind and changing illumination conditions are challenging when working under field 

conditions (Nellithimaru and Kantor, 2019). This led some researchers to conduct image 

acquisition at night time (Nuske et al., 2014b), allowing to isolate vines under evaluation from 

those in the adjacent row (Aquino et al., 2018b) (more relevant in more defoliated vineyards). 

Occlusion problems can also be in part resolved detecting the specular reflection peaks from 

the spherical surface of the grapes from high-resolution images taken under artificial lighting at 

night (Font et al., 2014) or by using a Boolean model to assess berry number that can estimate 

partially hidden berries from images collected on-the-go at 7km/h (Millan et al., 2018). 

Regarding yield explanatory variables, it is unclear which provide better accuracy as the 

estimation errors presented vary in the same intervals for different variables. The accuracy 

seems to be more dependent on the methodological approach used for data collection and the 

robustness of the algorithms used to derive yield. Comparing the estimation to traditional 

methods with 0,58<R2<0,75 (De La Fuente et al., 2015), this approach can provide better but 

worse results. 

An issue pointed out by some authors (Nuske et al., 2014b) is that management practices (e.g., 

trellis, leaf-pulling, shoot/cluster thinning and shoot positioning) can directly impact data 

acquisition, mainly affecting the relation between what is measured and the predicted yield. It 

means that the choice of methodology must be aligned with the winegrower’s type of 

management. 

One important answer to give is how early we can get an accurate yield estimation. Aquino et 

al. (Aquino et al., 2018b) and Palacios et al. (Palacios et al., 2020) suggested that it is possible 

to accurately predict yield by monitoring vines at phenological stages between full flowering 

and cluster-closure (near four months preharvest at the earliest), taking into consideration that 

a global multi-varietal model requires training large datasets to be operationalized with success. 

Liu et al. (Liu et al., 2017) go further using video images to detect shoots, allowing for a five 
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months earlier yield estimation that also removes the necessity for prior training using an 

unsupervised feature selection algorithm combined with unsupervised learning. However, as 

the author points out, the approach relies heavily on an accurate estimate of the bunch to shoot 

ratio (time-consuming and prone to selection bias). 

Although not much discussed, as all of the different approaches are conducted at a small scale, 

the use of data-driven models based on computer vision and image processing at larger scales 

poses a problem regarding computational power (Liu and Whitty, 2015; Rose et al., 2016) that 

must be addressed to cope with the same limitation already identified in traditional methods 

regarding poor sampling. Rose et al. (Rose et al., 2016) proposed a pipeline for yield parameter 

estimation using 3D data for future automated high-throughput, large-data phenotyping tasks 

in the field. 

From the list of methods in Table 1, none is referenced as being used by winegrowers under 

field conditions in commercial vineyards, even the ones that resulted in APPs, despite the 

potential still lack the knowledge transfer jump required to help winegrowers. 

Table 1 - Summary of records included in the systematic review (Data-Driven Models Based 

on Computer Vision and Image Processing). 

Reference Data Sources Test environment Scale Related Variables Estimation 

(Tardaguila 

et al., 2013) 

Digital still RGB 

camera 
Field/Laboratory local 

Cluster Weight, Berry 

Number per Cluster, Berry 

Size, Berry Weight 

0,76<R2<0,96 (for all 

variables) 

(Diago et al., 

2015) 

Digital still RGB 

camera 
Laboratory-based local 

Berry number, Berry weight, 

Bunch Weight 

0,65<R2<0,97 (for 

cluster weight) 

(Ivorra et al., 

2015) 

Bumblebee2 stereo 

camera 
Laboratory-based local 

Cluster volume and 

compactness, berry number, 

size, and weight 

0,71<R2<0,82 (for all 

variables) 

(Aquino et 

al., 2018b) 

All-terrain vehicle 

(ATV) + RGB 

camera 

In-field local Berry number 
0,74<R2<0,78 RMSE (for 

yield) 

(Palacios et 

al., 2020) 

All-terrain vehicle 

(ATV) + RGB 

camera 

In-field local Number of flowers R2>0,70 (for yield) 

(Nuske et al., 

2014b) 

All-terrain vehicle 

(ATV) + RGB 

camera 

In-field local 

Berry detection, number of 

berries, cluster area, cluster 

weight 

0,41<R2<0,75 (for yield) 

(Liu et al., 

2017) 

Video with 

Commercial 

Camera (Go Pro) 

In-field local Number of grapevine shoots 

86.83% (for shoot 

detection) and 

1,18%<error<36,02% 

(for yield) 

(Moreno et 

al., 2020a) 

RGB-D camera 

(Microsoft Kinect V2 

sensor) 

In-field local Branch volume R2=0,87 (for yield) 

(Diago et al., 

2012) 

Digital still RGB 

camera 
In-field local Leaf area R2=0,73 (for yield) 
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(Millan et al., 

2017) 

Handheld RGB 

camera 
In-field local 

Number of flowers, berry 

weight 
0,49<R2<0,91 (for yield) 

(Íñiguez et 

al., 2021) 
RGB camera In-field local 

Leaf occlusion, yield, bunch 

number and bunch weight 

0,424<R2<0,871 (for 

yield) 

(Silver and 

Monga, 

2019) 

Smartphone 

camera 
In-field local Bunch area 

0,51<R2<0,5413 (for 

yield) 

(Liu et al., 

2020b) 

Smartphone RGB 

camera 
In-field local Number of berries per bunch 

91% (for berries per 

bunch) 

(Diago et al., 

2014) 

Digital still RGB 

camera 
Laboratory-based local Number of inflorescences 

R2>0,80 (for number of 

inflorescences) 

(Mirbod et 

al., 2016) 

All-terrain vehicle 

(ATV) + Stereo 

camera 

In-field local 
Berry size, volume, and 

weight 

0,76<R2<0,96 (for berry 

weight) 

(Liu and 

Whitty, 2015) 

Digital still RGB 

camera 
In-field local Bunch area 

87 to 90% (for bunch 

detection) 

(Fernandez 

et al., 2013) 

RGB + Multipectral 

camera 
In-field local 

% of leaves, stems, branches, 

fruits and background 

precision: 89.7% (for 

fruits), 57.2% (for 

stems), 87.6% (for 

leaves), 5.4% (for 

branches) 

(Font et al., 

2014) 

RGB camera at 

night under artificial 

lighting 

In-field local Berry number 
Average error=-14% (for 

number of berries) 

(Zabawa 

et al., 

2019) 

Phenoliner - Field 

phenotyping 

platform 

In-field local Berry number 
87%<berry 

identification<94% 

(Rudolph et 

al., 2019) 

Single-lens reflex 

(SLR) camera 
In-field local 

Number of inflorescences 

and single flowers 

precision<70,7% (for 

flower extraction) 

(Torres-

Sánchez et 

al., 2021) 

UAV + RGB camera In-field local Grape cluster area 
0,75<R2<0,82 (for 

harvest weight) 

(Coviello et 

al., 2020) 

Smartphone 

camera 
In-field local Berry number 

average test error<5% 

(for berry number) 

(Santos et 

al., 2020b) 

Digital still RGB 

camera 
In-field local Grape detection 

F1-score<0,91 (for 

instance segmentation) 

(Aquino et 

al., 2015b) 

Handheld RGB 

camera 
In-field local Number of flowers 

0,8588<R2<0,9912 (for 

number of flowers) 

(Kurtser et 

al., 2020) 

RGB-D camera 

mounted on a 

mobile robotic 

platform 

In-field local Cluster Size 
2.8–3.5 cm average 

error (for cluster size) 

(Milella et al., 

2019) 

Intel RealSense 

RGB-D R200 

imaging system 

In-field local 
Canopy volume, bunch 

detection and counting 

maximum accuracy of 

91.52% (for detected 

fruits) 

(Hacking et 

al., 2019) 

2-D RGB and 3-D 

RGB-D (Kinect 

sensor) 

Field/Laboratory local Bunch area and volume 

R2=0,89 (yield with RGB) 

R2=0,95 (yield with RGB-

D) 

(Marinello et 

al., 2016) 

Microsoft Kinect™ 

RGB-depth 
Laboratory-based local 

Bunch volume trough 3D 

bunch reconstruction 

10%<error<15% (for 

bunch volume) 

(Di Gennaro 

et al., 2019a) 

High resolution RGB 

images (20 MP) 

taken with a UAV 

In-field local Cluster number and size R2=0,82 (for yield) 
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(Riggio et al., 

2018) 

robot with SICK 

S300 Expert laser 

scanner +  GoPro 

Hero 4 

Field/Laboratory local Berry number 0,55<R2<0,62 (for yield) 

(Nuske et al., 

2014a) 

RGB camera + 

Stereo Camera 

mounted on UTV 

In-field local Grapes number 3%<error<4% (for yield) 

(Aquino et 

al., 2017) 

Smartphone (BQ 

Aquaris E5) RGB 

camera 

In-field local 
Berry number per cluster and 

cluster weight 

0,7485<R2<0,8292 (for 

berry numbers per 

cluster) 

(Tang et al., 

2016) 

Multispectral Aerial 

Image + RGB 

camera (GoPro) 

In-field local Non-Productive vina canopy 

0,77<precision 

(row)<0,97 (for non-

productive canopy) 

(Millan et al., 

2018) 

Cluster images, 

manually acquired 

vine images, and 

vine images 

captured on-the-go 

using a quad. 

In-field local 
Number of berries in cluster 

images 
0,50<R2<0,87 (for yield) 

(Pérez-

Zavala et al., 

2018) 

RGB images Field/Laboratory local 
Grape berries recognition 

and grape bunch detection 

Grapes bunches 

detection=88.61%; 

Single berries>99%. 

(Liu et al., 

2018) 
RGB camera Field/Laboratory local Number of flowers 

accuracy of 84.3% (for 

flower estimation) 

(Nellithimaru 

and Kantor, 

2019) 

Stereo camera In-field local 
Dense 3D model of a 

vineyard and count grapes 

R2=0,9989 (for grape 

count) 

(Xin et al., 

2020) 

2D images from 

grape bunches 
Laboratory-based local 

Three-dimensional grape 

bunch reconstruction 

-0,4%<average 

percentage error<41,1% 

(for overall Rachis 

reconstruction 

performance) 

(Rose et al., 

2016) 

Track-driven vehicle 

consisting of a 

camera system, a 

real-time-kinematic 

GPS system 

(PHENObot) 

In-field local 

Quantity of grape bunches, 

berries, and the berry 

diameter 

Average precision: 

97,8% (berry yield) 

(Schneider 

et al., 2020) 

Multi-view image 

datasets from 

grapes using close-

range 

photogrammetry 

Laboratory-based local 

Physical and morphological 

parameters from 3D grape 

models 

Close-range 

photogrammetry can be 

applied to generate 3D 

grape models 

parameters such as 

volume of the grape can 

be derived from these 

digital models 

(Font et al., 

2015) 

RGB high-resolution 

images obtained 

with artificial 

illumination at night 

In-field local 

Grape-cluster image analysis 

parameters (area and 

volume) 

Error=16% (for grape 

cluster area) -16,7% 8for 

grape cluster volume -

0,3%(average) 

(Herrero-

Huerta et al., 

2015) 

RGB images In-field local 

3d grapevine point cloud, 

volume, mass and number of 

berries per bunch 

R2=0,75 (for bunch 

weight) 

(Hacking et 

al., 2020) 
RGB camera Field/Laboratory local Bunch volume 0,70<R2<0,91 (for yield) 
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(Liu et al., 

2020a) 

RGB images with 

smartphone camera 
In-field local 

3D bunch reconstruction 

based on a single image 

0,82<R2<0,95 (for berry 

number) 0,85<R2<0,92 

(for bunch weight) 

(Aquino et 

al., 2018a) 

RGB images with 

smartphone camera 

APP (vitisBerry) 

Laboratory-based local 
Berry counting on cluster 

images 

Recall = 0.8762-0.9082 

Precision = 0.9392–

0.9508 

(Aquino et 

al., 2015a) 

RGB images with 

smartphone camera 

APP (vitisFlower) 

Laboratory-based local 
Number of Grapevine 

Flowers per Inflorescence 

84% of flowers in the 

captures were found, 

with a precision 

exceeding 94% 

(Victorino et 

al., 2020) 

Robot with RGB-D 

Kinect v2 camera 

and RGB camera 

Field/Laboratory local 

Number of spurs, shoots, 

inflorescences, bunches, 

berries. Bunch volume, max 

length, and perimeter 

0,29<R2<0,99 (between 

bunch weight and other 

bunch attributes) 

(Nuske et al., 

2011) 

Sideways-facing 

camera and lighting 

on UTV 

In-field local 
Detect and count grape 

berries 

Predict yield of 

individual vineyard rows 

to within 9.8% of actual 

crop weight 

(Dunn and 

Martin, 2004) 
RGB images In-field local 

Automatically count 'fruit' 

pixels and the total number 

of pixels for each image 

0,85<R2<0,99 (for fruit 

pixels/total image pixels 

vs fruit weight) 

(Di Gennaro 

et al., 2019b) 

High-resolution RGB 

images, acquired 

through an 

unmanned aerial 

vehicle (UAV) 

In-field local Number of clusters and size High accuracy in yield 

 

2.3.2 Data-Driven Models Based on Vegetation Indices 

Table 2 shows the summary of the records included in the systematic review regarding the use 

of data-driven models based on vegetation indices. Remote and proximal sensing are used to 

measure plant reflected light in different portions of the spectrum allowing the development of 

various vegetation indices that can provide useful information on plant structure and conditions 

(Xue and Su, 2017) in a form of mathematical expressions that produces values regarding crop 

growth, vigor, and several other vegetation properties. There are   519 different indices reported 

in the Index Database (Henrich et al., 2009). The more recently used in agriculture for yield are 

listed by Sishodia (Sishodia et al., 2020) and reported as better indicators for full cover crops 

(e.g., horticulture and cereal) than for discontinuous crops (e.g., olives and vineyards) where, 

in addition to soil effects, the spectral measurement describes only a part of the canopy, mostly 

the top (Matese and Di Gennaro, 2021), although regarding soil the impact tends to be low as 

the vineyard critical growing stage (were indices/yield correlations tend to increase) occurs 

when cover crops are in most cases, senescent (Sun et al., 2017). For vineyard yield estimation, 

the records found refer manly NDVI and LAI. (Sishodia et al., 2020; Sun et al., 2017).  

Data sources vary mainly from handheld or mounted spectroradiometer (Maimaitiyiming et al., 

2019), multispectral cameras mounted on UAV (Matese and Di Gennaro, 2021), or satellite data 
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(Sun et al., 2017). Each has its own main advantages and disadvantages: spectroradiometers 

allow a finer sampling with less noise but also a sparser one; UAVs are more practical, fast, and 

deployed as needed allowing applicability on a medium scale without the disadvantages of 

satellite temporal, spatial resolution, and cloud coverage dependency; and satellites cover 

larger areas, and their data can be accessed and processed at low/no cost. 

Using hyperspectral reflectance spectra, Maimaitiyiming et al. (Maimaitiyiming et al., 2019) 

propose an in-depth study to address the effects of irrigation level and rootstocks on vine 

productivity. As part of the study, vine productivity, including fruit yield and ripeness 

parameters, were measured with 20 vegetation indices calculated and used as input for 

predictive model calibration. The berry yield and quality prediction models were developed with 

multiple linear regression (MLR), partial least squares regression (PLSR), random forest 

regression (RFR), weighted regularized extreme learning machine (WRELM) and a new 

activation function by fusing of hyperbolic tangent (Tanh) function and rectified linear unit 

(ReLU) for WRELM (WRELM-TanhRe), demonstrating moderate to relatively strong correlations 

between berry yield and vegetation indices, namely water index (WI) (r = 0.67) modified 

triangular vegetation index (MTVI) (r=0,64) and green normalized difference vegetation index 

(GNDVI) (r = 0.53). Regarding yield estimation, RFR outperformed the different models’ 

calibration (R2 = 0,86), while in the validation test, the WRELM-TanhRe model achieved the 

highest estimation accuracy (R2 = 0,62). 

Indices as NDVI can also strengthen traditional manual sampling trough informed sampling 

strategies that may mitigate errors resulting from the within-field variability, improving yield 

estimation on average by 10% using NDVI data (Carrillo et al., 2016) 

Using satellite data allows for regional scale estimation that can cover large areas. Gouveia et 

al. (Gouveia et al., 2011) developed multi-linear regression models of wine production, using 

NDVI and meteorological variables (monthly averages of maximum, minimum, and daily mean 

temperature and precipitation) as predictors to estimate yield in a 250000 hectares region with 

R2=0.62 for early season estimation and R2=0,90 for mid-season. A similar approach was made 

by Cunha et al. (Cunha et al., 2010) with Satellite Pour l’Observation de la Terre (SPOT) ten-

day synthesis vegetation product (S10) for three different regions in Portugal with significant 

interannual variability, based on a correlation matrix between the wine yield of a current year 

and the full set of 10-day synthesis NDVI.  

Although the recognized potential of NDVI, Matese et al. (Matese and Di Gennaro, 2021) argues 

that acquiring and analyzing spectral data, besides costly (multispectral cameras), requires 

skills (“spectral know-how on radiometric correction and data analysis, primarily for filtering the 
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canopy with low-temperature sensors resolution from common multispectral cameras”) not 

often available for all farmers. As an alternative, a model based on geometric data (canopy 

thickness and volume) retrieved with RGB sensors outperformed NDVI data. However, the 

authors’ statements can be debated as low-cost NDVI cameras are becoming more available, 

namely Agrocam (https://www.agrocam.eu/) and Mapir (https://www.mapir.camera) both with 

powerful and easy to use free cloud software included, although the data quality can be argued 

and requires validation and comparison with more recognized commercial multispectral 

alternatives pricier but also with more features as, DJIMultispectral (https://www.dji.com/pt/p4-

multispectral), Micasense (https://micasense.com) Parrot Sequoia+ 

(https://www.pix4d.com/product/sequoia) and Sentera (https://sentera.com/data-capture/6x-

multispectral/). Ballesteros et al. (Ballesteros et al., 2020) used a hybrid approach combining 

NDVI (reflectance approach) with vegetated fraction cover as a measure of plant vigor 

(geometric approach) resulting in higher accuracy when compared to simple NDVI use with 

good results but requiring calibration for each season. 

An important question is the time frame for data acquisition to give the best correlation day to 

estimate yield. Matese et al. (Matese and Di Gennaro, 2021) collected data during three seasons 

in the veraison phenological stage; Carrillo et al. (Carrillo et al., 2016) before veraison; 

Ballesteros et al. (Ballesteros et al., 2020) made UAV flights in several stages: fruit set, berry 

pea size, veraison, final berry ripening and after harvest. Maimaitiyiming et al. (Maimaitiyiming 

et al., 2019) collected data during the late veraison stage and the fruit ripening stage with the 

dates determined based on the number of no-rain days after irrigation treatment initiation 

(considering that the study was not focused only on yield estimation). For NDVI Gouveia et al. 

(Gouveia et al., 2011) identified through comparing NDVI cycles and meteorological parameters 

for years of low and high wine production significant differences during three stages: (1) from 

dormancy; (2) from budbreak and (3) starting with flowering and continuing during veraison, 

with a maximum at the end of spring and a minimum during winter for the selected vineyard 

area pixels, also indicating that good years for wine production reflect high photosynthetic 

activity during the previous autumn and spring followed by reduced greenness and reduced 

growth during summer (considering the Douro region in Portugal where the study was 

conducted). Sun et al. (Sun et al., 2017) found similar performance in NDVI and LAI regarding 

spatial yield variability, with peak correlations during the growing season that differed in different 

years. Maximum and seasonal-cumulative vegetation showed slightly lower correlations to yield. 

The authors state that the best time interval depends on the crop type, climate/weather 

conditions and management practices. Cunha et al. (Cunha et al., 2010) used NDVI 

measurement 17 months before harvest with very good results in obtaining very early forecasts 

https://www.agrocam.eu/
https://micasense.com/
https://www.pix4d.com/product/sequoia
https://sentera.com/data-capture/6x-multispectral/
https://sentera.com/data-capture/6x-multispectral/
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of potential regional wine yield (model explained 77– 88% of the inter-annual variability in wine 

yield). 

In line with what has already been mentioned for the data-driven models based on computer 

vision and image processing this approach can provide better results on estimation yield. As 

pointed out by Sun et al. (Sun et al., 2017), performance is very dependent on environmental 

conditions and management strategies. For satellite data, spatial resolution can be the major 

bottleneck in smaller scales (Cunha et al., 2010) along with less flexibility derived from temporal 

resolution and soil effect (Ballesteros et al., 2020). However, presently there are alternatives 

like Sentinel-2 with 12 spectral bands in 10-20 m spatial resolution, with global coverage and a 

5-day revisit frequency. 

Table 2 - Summary of records included in the systematic review (Data-Driven Models Based 

on Vegetation Indices). 

Reference Data Sources 
Test 

environment 
Scale Related Variables Estimation 

(Maimaitiyi

ming et al., 

2019) 

Vegetation indices 

derived from canopy 

spectra 

In-field local 

Vegetation indices 

derived from canopy 

spectra 

0,52<R2<0,68 (for berry 

yield and quality 

parameters) 

(Gouveia et 

al., 2011) 

Corine Land Cover 

map, wine statistics, 

monthly means of 

climate variables and 

NDVI 

Simulated Regional 
tmax, tmin, tavg, prec, 

NDVI 

0,62<R<0,90 (for wine 

production) 

(Matese 

and Di 

Gennaro, 

2021) 

UAV multispectral 

camera 
In-field local 

NDVI, Canopy Geometry-

Based Indices 
R2<0,85 (for yield) 

(Sun et al., 

2017) 

Satellite-based (NDVI) 

and (LAI) 
In-field Regional NDVI, LAI 

0,66<R<0,83 (for NDVI 

and Yield) and 

0,66<R<0,83 (for LAI and 

Yield) 

(Carrillo et 

al., 2016) 

Multispectral airborne 

imagery 
In-field local 

NDVI, berry weight at 

harvest, bunch number 

per vine, and berry 

number per bunch 

-0,04<r<0,81 (for NDVI vs 

yield) 

(Cunha et 

al., 2010) 

Satellite data from 

vegetation (NDVI from 

SPOT) 

In-field Regional NDVI 0,73<R2<0,84 (for yield) 

(Ballesteros 

et al., 2020) 

Quadcopter md4-1000 

with a multispectral 

Sequoia camera 

In-field local 

Radiometry and 

geometry-based 

parameters (NDVI and 

Fc), water regime, 

fertilization, climate data 

0,60<R2<0,96 (for yield) 
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2.3.3 Data-Driven Models based on Pollen 

Table 3 shows the summary of the records included in the systematic review regarding the use 

of data-driven models based on pollen. These models rely on the relationship between airborne 

pollen and yield (Besselat, 1987). The assumption is that there are more flowers per area unit 

in more productive years, thus higher airborne pollen concentrations (Cunha et al., 2015). 

Pollen monitoring and the determination of the pollen index (annual sum of the daily pollen 

concentrations in m3/year) was done by Cristofolini et al. (Cristofolini and Gottardini, 2000) 

between the days when 5 and 95% of the seasons total pollen concentration were found 

(between 12 and 29 days per season) with very good results (R2=0,92). The combination of 

aerobiological, phenological, and meteorological data used by Gonzaléz et al. (González-

Fernández et al., 2020) and Fernandez et al. (Fernández-González et al., 2011; Fernández-

González et al., 2020; Fernandez-Gonzalez et al., 2011) also allowed an accurate production 

estimated more than one or two months in advance, with Fernandez et al. (Fernández-González 

et al., 2020) achieving better results from an hirst trap (volumetric) for local predicting and with 

cour (passive) trap for regional yield predictions. Cunha (Cunha et al., 2015) made a more 

comprehensive study to assess the model adaptability in fast expanding regions (regarding area 

and technology) with non-irrigated areas, with heavy water and thermal stress during summer. 

The study resulted in a regional forecast model to determine the potential yield at flowering 

through airborne pollen concentration and climate impact, applied to Alentejo in Portugal (one 

of the aridest wine regions of Europe). The determined regional pollen index (RPI) and fruit-set 

data as explanatory variables allowed a very good regional estimation (R2=0,86) 

Choosing the best placement for sampling devices at the regional level representing effectively 

spatial variability, the number of observations needed for model calibration (usually years as 

historical data, as opposed for instance to weather data, is not commonly available), costly and 

complex laboratory processes, plant dynamics (e.g., high variations of the area with vineyards 

around the pollen traps) are the main disadvantages of using data-driven models based on 

pollen (Cunha et al., 2010; Cunha et al., 2015). The number of pollen traps must be related to 

the area of influence and the availability of grapes or wine production at the relevant spatial 

scale (Cunha et al., 2015). Rainfall and temperature (primarily average and maximum) have an 

influence on pollen season, and so in pollen index values, typically higher temperature 

increases pollen concentration in the vineyard, and rainfall leads to less airborne pollen 

concentrations (Cristofolini and Gottardini, 2000; Fernández-González et al., 2020). Also, 

fertilization during the flowering period can negatively decrease the airborne pollen 

concentrations (González-Fernández et al., 2020). For regional estimative, the models’ 

performance is linked with the different approaches on calculating RPI, and special care must 
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be taken regarding the identification of the beginning and final of the pollen season to avoid 

pollen deposition, recirculation, and long-distance transport that does not contribute effectively 

to local pollination but increases RPI (Cunha et al., 2015). 

In line with what has already been mentioned above these approaches can provide better 

results on estimation yield with application to local and regional scales. 

Table 3 - Summary of records included in the systematic review (Data-Driven Models based on 

Pollen). 

Reference Data Sources 
Test 

environment 
Scale Related Variables Estimation 

(Cristofolini 

and 

Gottardini, 

2000) 

Hirst type sampler 

volumetric spore trap 

(Lanzoni VPPS-2000) 

In-field Regional Airborne pollen concentration 
R2=0,92 (for grape 

production) 

(Fernandez

-Gonzalez 

et al., 2011) 

Aerobiological data 

(Lanzoni VPPS-2000 

volumetric trap) 

In-field Regional 
Meteorological and 

phytopathological variables 
R2=0,98 (for yield) 

(Fernández

-González 

et al., 2020) 

Pollen Hirst volumetric 

sampler and Cour 

passive trap 

In-field Regional 
Airborne pollen concentration, 

weather data 

R2=0,96 (Cour); 

R2=0,99 (Hirst) 

(Besselat, 

1987) 

Pollen concentration 

data 
In-field Regional Airborne pollen concentration R2<0,98 (for yield) 

(Cunha et 

al., 2015) 
Airborne pollen trap Simulated Regional Airborne pollen concentration 

0,71<R2<0,86 (for 

annual wine 

production) 

(Fernández

-González 

et al., 2011) 

Aerobiological 

(Lanzoni VPPS-2000 

volumetric trap) 

Phenological (BBCH 

standardized scale) 

Meteo data 

In-field local 

Meteorological, phenological 

and phytopathological 

variables 

0,79<R2<0,99 (for 

yield) 

(González-

Fernández 

et al., 2020) 

Aerobiological data 

(Lanzoni VPPS-2000 

volumetric sampler), 

Meteorogical data 

In-field Regional 
Airborne pollen concentration 

and Meteorologic data 
R2=0,99 (for yield) 

 

2.3.4 Crop Simulation Models 

Table 4 shows the summary of the records included in the systematic review regarding the use 

of crop simulation models. Crop models are important decision-support systems in agriculture 

(Fraga et al., 2016a) that allow the simulation through mathematical equations of plant 

development and the interaction with the environment by integrating phenotypic traits along 

with climate, soil, management decisions, and others variables considered to be related to yield 

estimation in this particular case. This approach is becoming more popular because it allows 

for virtual experiments that can be made in a specific phenological stage testing hypothesis that 



 

 

28 

 

Doctoral Programme in Information Management 

could take years under real field conditions. Another advantage is the possibility of integrating 

decision support systems (DSS) (Cola et al., 2014; Fraga et al., 2015). 

The retrieved studies are complex and not limited to yield estimates as they simulate grapevine 

growth and development. The models need to be appropriately calibrated and validated. That 

is one of the disadvantages of using this approach, as it needs to be adapted for new 

environments with distinct climate, soil, grapevine varieties, training systems and management. 

As so, complexity and cost in terms of time and biophysical data requirements turn 

operationality and transferability very difficult (Sirsat et al., 2019). 

The model developed by Cola et al. (Cola et al., 2014) achieved good results in a five-year 

validation assessment demonstrating flexibility and thrift regarding meteorological data. The 

approach used to simulate the fruit load was based on light interception derived gross 

assimilation and thermal and water limitations. 

Sirsat et al. (Sirsat et al., 2019) focused on grape yield predictive models for flowering, coloring 

and harvest phenostages (due to lack of data regarding other phenostages, namely setting, 

berries pea-size and veraison) using machine learning techniques and climatic conditions, 

grapevine yield, phenological dates, fertilizer information, soil analysis and maturation index 

data to construct the relational dataset. The authors stated that meteorology data is the critical 

element for measuring the quantity of grapes, as the derived features of dew point, relative 

humidity, and air temperature were identified as the most favorable variables in constructing 

the model. 

Some models like the STICS have been used for different types of crops with good results: 

Fraga et al. (Fraga et al., 2015) used it for three Portuguese native varieties. The application of 

this model requires thorough parameterization regarding yield components and historical 

phenological data computed by STICS using a concept called growing degree day (GDD). The 

results for simulating yield demonstrated a good capability of the model, with an overestimation 

in one of the regions studied and underestimation in the other. The authors pointed out a critical 

factor related to the duality between quality and yield and the need for viticultural practices such 

as cluster thinning to be included in the model parametrization. The same model was used by 

Valdes et al. (Valdes-Gomez et al., 2009) in non-irrigated and irrigated vineyards in Chile and 

France, with similar results for yield estimation with an overestimation, that resulted from the 

underestimation of moderate water stress simulated by STICS after veraison. 
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Table 4 - Summary of records included in the systematic review (D - Crop Simulation Models). 

Reference Data Sources Test environment Scale Related Variables Estimation 

(Cola et al., 

2014) 

Weather data and 

plant characteristics 

Simulated/In-field 

Validation 
Regional 

Weather data and plant 

characteristics 

R2=0,96 (for yield in 

low-density canopies) 

R2=0,94 (for yield in 

high-density canopies) 

(Fraga et 

al., 2015) 

Climate, soil, and 

management 

practices 

Simulated/In-field 

Validation 
Regional 

Climate data, soil and 

terrain parameters, water 

stress indices, 

management practices 

R2=0,86 (for yield) 

(Valdes-

Gomez et 

al., 2009) 

Phenology and 

harvest date, Soil 

water content, water 

stress, and grapevine 

growth and yield 

Simulated/In-field 

Validation 
Regional 

Phenology and harvest 

date, soil water content, 

water stress, and 

grapevine growth and 

yield 

R2=0,85 (for yield) 

(Sirsat et 

al., 2019) 

Weather, yield, 

phenological dates, 

fertilizer information, 

soil analysis, and 

maturation index data 

Simulated/In-field 

Validation 
Regional 

Weather, phenological 

dates, fertilizer 

information, soil analysis, 

and maturation index data 

24,2%<RRMSE<28,6% 

 

2.3.5 Data-Driven Models based on Trellis Tension 

Table 5 summarizes the records included in the systematic review regarding using data-driven 

models based on trellis tension, all from the same author. This approach is an indirect real-time 

method that uses sensors in the wires to measure the production in each vine row. The changes 

in tension are recorded by automated data systems connected to the load cells installed in-line. 

Each line needs calibration, the data must be corrected to remove the effects of temperature 

(using a 48 h moving average), and the effects of wind gust are negligible because 

measurements are not made in continuous periods (Tarara et al., 2004). The linear regression 

found in the studies demonstrates good results and estimation with better results than the 

traditional manual sampling. 

The trellis tension methodology can also be used to determine the timing for traditional hand 

sampling for yield estimation to determine the lag phase, thus eliminating the field scouting 

subjective visual and tactile assessments to assess whether berries are at lag phase (Tarara et 

al., 2013). 

Despite the better estimative that can be achieved and the ability to monitor near to real-time, 

the applicability of this method to commercial vineyards still needs to be evaluated regarding, 

needed calibration for different vineyards and trellis systems, consistency across seasons, 

installation costs, number of sensors and spatial deployment (Tarara et al., 2004). 
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The trellis tension monitor (TTM) as a spatial response to removing uniformly distributed fruit 

load of up to ~24 m or ~12 m to either side of the sensor. This means that 8 to 10 vines are a 

meaningful sample size (Tarara et al., 2014). 

Table 5 - Summary of records included in the systematic review (E - Data-Driven Models based 

on Trellis Tension). 

Reference Data Sources 
Test 

environment 
Scale Related Variables Estimation 

(Tarara et 

al., 2004) 

Load cells installed 

in−line with the 

cordon wire 

In-field local 

Tension in the horizontal 

(cordon) support wire of the 

trellis 

0,99<R2<0,99 (for 

tension and yield) 

(Tarara et 

al., 2013) 

Tension Sensor in 

main load-bearing 

wire 

In-field local Timing for hand sampling nd 

(Tarara et 

al., 2014) 

Trellis Tension 

Monitors (TTMs) 
In-field local 

Tension in the horizontal 

(cordon) support wire of the 

trellis 

0,81<R2<0,98 (for 

yield) 

 

2.3.6 Data-Driven Models Based on Laser Data Processing 

Table 6 shows the summary of the records included in the systematic review regarding using 

data-driven models based on laser data processing with only one study identified. Vine canopy 

properties are a good indicator of quality and yield (Tagarakis et al., 2018). The application 

retrieved shows the potential of laser scanner technology to collect plant geometric 

characteristics with sufficient precision capable of being correlated with yield using a shoot 

sensor called Physiocap®, de-signed and developed by the CIVC (Comité Interprofessionel du 

Vin de Champagne) that maps vigor spatial variability used during winter just before pruning 

(Demestihas et al., 2018). In this study, the authors refer that at the scale of the Champagne 

(region in France where the study was conducted) vineyard, the aboveground biomass 

estimation was strongly correlated with the yield of the following year. The estimation results 

are good, but extreme climate events tend to lower the correlation found at a more local scale. 

Being the only study regarding this approach and dependent on data from a single region that 

has been collected since 2011, applications to other regions must be evaluated. 

Table 6 - Summary of records included in the systematic review (F – Data-Driven Models Based 

on Laser Data Processing). 

Reference Data Sources 
Test 

environment 
Scale Related Variables Estimation 

(Demestiha

s et al., 

2018) 

Physiocap® - 

optical laser 
In-field local Shoot biomass R2=0,98 (for yield) 
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2.3.7 Data-Driven Models Based on Radar Data Processing 

Table 7 summarizes the records included in the systematic review regarding the use of data-

driven models based on radar data processing, all from the same author. 3-D radar imagery 

techniques for yield determination are reported here as an alternative to remote estimations 

based on proximal optical or multispectral proximal or remote sensors to deal with limitations 

regarding performance, occlusion, and light issues in field conditions. 

Henry et al. (Henry et al., 2019; Henry et al., 2017) used ground-based frequency-modulated 

continuous-wave radars operating at 24, 77, and 122 GHz to contact-less estimate grape mass. 

The major advantage is that most grapes can be detected under field conditions even if leaves, 

shoots, or other grapes partially or fully hide them. As for limitations, the study only addressed 

yield estimation at the maturation phase for five different varieties. 

Table 7 - Summary of records included in the systematic review (G - Data-Driven Models Based 

on Radar Data Processing). 

Reference Data Sources Test environment Scale Related Variables Estimation 

(Henry et 

al., 2019) 

3-D radar imagery (FM-

CW radar) 
In-field local 

Polarization and magnitude of 

radar echoes 

0,79<R2<0,97 (for 

yield) 

(Henry et 

al., 2017) 

24 GHz frequency-

modulated continuous-

wave (FMCW) radar 

In-field local 

Grapes in grapevines from the 

radar echoes distribution in the 

interrogated 3D scene 

R2=0,947 (for grape 

volume) 

 

2.3.8 Data-Driven Models Based on Radio Frequency Data Processing 

Table 8 shows the summary of the records included in the systematic review regarding the use 

of data-driven models based on radio frequency data processing, with only one record 

retrieved. It relies on a new exploratory approach using a scheme that senses grape moisture 

content by utilizing Radio Frequency (RF) signals to estimate yield without physical contact in a 

laboratory environment. According to the authors, it can be used for early yield 

estimation(Altherwy and McCann, 2020). The study represents an exploratory approach in a 

laboratory environment that does not provide an actual yield estimative. Therefore, its 

applicability to real world scenarios needs to be addressed. Nevertheless, it could be an 

alternative path for one of the main issues reported in data-driven models based on computer 

vision and image processing, occlusion. 
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Table 8 - Summary of records included in the systematic review (H - Data-Driven Models Based 

on Radio Frequency Data Processing). 

Reference Data Sources Test environment Scale Related Variables Estimation 

(Altherwy and 

McCann, 2020) 
RF signals Laboratory-based local Grape moisture content 

Degree of accuracy=90% 

(for moisture content) 

2.1.9 Data-Driven Models Based on Ultrasonic Signal Processing 

Table 9 summarizes the records included in the systematic review regarding the use of data-

driven models based on ultrasonic signal processing, with only one record retrieved. Using low-

frequency ultrasound is an alternative approach to detect grape clusters in the presence of 

foliage occlusion at a lower cost compared to alternatives like Synthetic Aperture Radar (SAR) 

(Parr et al., 2020). Despite not being a study to determine yield and, being developed in a 

laboratory environment, the results are very interesting as they can provide an alternative for 

one of the main issues reported in data-driven models based on computer vision and image 

processing which is occlusion. 

Table 9 - Summary of records included in the systematic review (I - Data-Driven Models Based 

on Ultrasonic Signal Processing.). 

Reference Data Sources 
Test 

environment 
Scale Related Variables Estimation 

(Parr et al., 

2020) 
Ultrasonic Array Laboratory-based local 

Grape cluster 

detection 

Ability to propagate through 

foliage and reflect of grapes 

behind 

2.3.10 Other Data-Driven Models 

Table 10 summarizes of the records included in the systematic review that did not fall into one 

of the previous identified groups.  

For regional level decision support, Fraga et al. (Fraga and Santos, 2017b) proposed a simple 

grape production model based on favorable meteorological conditions. This model runs on a 

daily step, comparing the thermal/hydric conditions in a given year against the average 

conditions in high and low production years in three regional wineries, allowing one to perceive 

regional heterogeneity. The recognition of the importance of climate data for estimating yield at 

the regional level was also addressed by Santo et al. (Santos et al., 2020a) with an empirical 

model where temperature and precipitation averaged over the periods of February–March, 

May–June, and July–September, along with the anomalies of wine production in the previous 5 

years, were used as predictors. At a local level, both climate and soil data were considered by 

Ubalde (Ubalde et al., 2007) as yield predictors, with Cation Exchange Capacity (CEC) and 

Winkler Index providing the best correlations with similar importance. 
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A different approach was made by Ellis (Ellis et al., 2020), collecting bunch mass data during 

three seasons and using a Bayesian growth model, assuming the double sigmoidal curve that 

characterizes grape growth according to literature, to predict the yield at the end of those 

seasons. The author advocate using Bayesian methods due to the capability of systematically 

incorporate prior knowledge and update the model with new data. The study is not very clear 

regarding yield estimation and does not indicate the accuracy. 

By determining water status, leaf area (LA), and fruit load influence on berry weight (BW) and 

sugar accumulation, Santeesteban et al. (Santesteban et al., 2013) found that average leaf water 

potential in summer and LA/BN ratio, when considered together, estimated BW properly (R2 = 

0,91), showing that under semiarid conditions, water availability plays the primary role in 

regulation of berry growth. 

Table 10 - Summary of records included in the systematic review (J - Other Data-Driven 

Models). 

Reference Data Sources 
Test 

environment 

Applicability 

Scale 
Related Variables Estimation 

(Fraga and 

Santos, 

2017b) 

Daily historic meteorological 

conditions, yield data 
In-field Regional 

Temperature and 

Precipitation 

0,68 ≤ r ≤ 0,84 

(for grapevine 

production) 

(Ubalde et 

al., 2007) 
Edapho-climatic data In-field Local 

Cation exchange 

capacity (CEC), Winkler 

index 

R2=0,88 (CEC and 

Winkler Index for 

yield) 

(López-

Miranda 

and Yuste, 

2004) 

Number of flowers per 

cluster, fruit-set percentage, 

berry weight 

In-field Local 

Number of flowers per 

cluster, fruit-set 

percentage, berry 

weight 

0,54<R2<0,93 (for 

number of flowers 

and yield) 

(Santos et 

al., 2020a) 

Monthly mean air 

temperatures and monthly 

total precipitation data 

Simulated Regional 

Monthly mean air 

temperatures and 

monthly total 

precipitation 

Wine production 

classes (1-low, 2-

normal, 3-high): 

average 

estimation ratio of 

79%(calibration) 

67%(validation) 

(Ellis et al., 

2020) 
Bunch mass data In-field Local Bunch mass data n.d. 

(Santesteb

an and 

Royo, 

2006) 

Leaf area, berry number, 

yield, water potential in 

summer, berry weight, sugar 

concentration 

In-field Local 

Leaf area, berry 

number, yield, water 

potential in summer, 

berry weight, sugar 

concentration 

LA/BN ratio 

estimated 

properly BW (R2 = 

0,91)) 
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2.4 Final Considerations and Future Work 

As an overall conclusion, the alternative methodologies for yield estimation mentioned in this 

paper can, as demonstrated by the revised articles, surpass the limitations assigned to 

traditional manual sampling methods with the same or better results on accuracy. They all have 

advantages and shortcomings, but more importantly, they still lack a fundamental key aspect: 

the real application in a commercial vineyard. 

Despite extensive research in this area, adoption at an operational level to effectively substitute 

the manual sampling estimation is residual. Methods made available to winegrowers should 

estimate production as far in advance as possible must be as simple as possible and with little 

data as possible, preferably with data that producers can access quickly, easily, and cheaply 

and if possible, without the need for intensive training or validation. The best approach must 

consider the availability and/or possibility to have the required inputs (required data is 

sometimes not available), the adequate spatial resolution (field level or regional level), the 

necessary granularity (information regarding the spatial variability in each area) and required 

precision (e.g., a simple smartphone camera, despite the loss in quality, can be in many cases 

a cost-effective alternative to hyper and multispectral cameras, LiDAR, ultrasonic and radar 

sensors). 

The synergistic use of proximal and remote sensing with AI can be one of the best ways to 

model a vineyard production system. Still, due to its inherent complexity, it is a difficult challenge 

to apply because of the diversity of field conditions, as remote sensing data is dependent on 

spatial, temporal, and spectral resolution; and yield is correlated with an extensive list of climate, 

soil and plant variables that have high temporal and spatial heterogeneity. Also, the relation to 

quality is one of the biases that yield estimation needs to deal with, as the producer's 

management decision directly impacts both quality and yield. 

For local estimation at the farm level, data-driven models based on computer vision and image 

processing are the ones the researcher’s community is putting more effort and can be classified 

as the easiest to deployed by growers under real field conditions. Data acquisition can be made 

easily on the go with a vast array of solutions ranging from a simple smartphone to an 

autonomous robot platform, a UAV, or even agriculture equipment. Despite good results in 

estimating yield, these methods are not fully matured yet. Management practices (e.g., trellis, 

leaf-pulling, shoot/cluster thinning and shoot positioning) can directly impact data acquisition 

by affecting the relationship between what is measured and the predicted yield. There are still 

problems with occlusion, algorithms are generally variety dependent, and environmental 

dynamics are challenging. Data acquisition speed, computational processing constraints, and 
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the availability of predictive yield maps as output should be addressed in commercial 

applications. 

Vegetation indices are also a good alternative as they can be easy to deploy and used at 

different scales with good results, especially NDVI. Data acquisition is, generally feasible, and 

affordable, but transforming data into usable information requires technical knowledge not often 

available for all farmers. The past limitations linked to the direct use of multispectral satellite 

remote sensing data, such as insufficient spatial resolution, inadequate temporal resolution, and 

complex data access and processing, were significantly overcome since the launch in mid-2015 

of the EU Copernicus Program’ Sentinel-2 mission combined with the development of 

appropriate desktop and cloud-based data processing platforms (e.g., Google Earth Engine: 

https://earthengine.google.com/ (Johnson and Mueller, 2021); Sen2-Agri: http://www.esa-

sen2agri.org/ (Defourny et al., 2019); and Sen4CAP: http://esa-sen4cap.org/(López-Andreu et 

al., 2021)). As for models based on computer vision and image processing, correspondent 

operational solutions are not yet available for growers as needed. Future commercial solutions 

can pass by including yield estimation algorithms in UAVs data management software or web 

platforms like EO Browser (https://apps.sentinel-hub.com/eo-browser/) or EOS Platform 

(https://crop-monitoring.eos.com/) providing multispectral satellite data and derived products 

and indices, with required parametrization when needed. 

Crop models were also referenced as one of the best alternatives for estimating yield. Still, few 

examples were identified, mainly because of the complexity of their development, especially 

hard in vineyards because of the inherent specificities and the required data for calibration in 

different locations and for different varieties. 

There is also a lack of solutions for estimating yield at broader scales (e.g., regional level). The 

perception is that decisions are more likely to take place at a smaller scale, which in some cases 

is not accurate. It might be the case in regulated areas and areas where support for small 

viticulturists is needed and made by institutions with proper resources and a large area of 

influence. This is corroborated by the fact that data-driven models based on Trellis Tension and 

Pollen traps are being used for yield estimation at regional scales in real environments in 

different regions of the world. 

Other more residual approaches like laser, radar, radio frequency and ultrasonic data can 

provide new alternatives to cope with some of the difficulties encountered especially in 

computer vision and image processing approaches. 

https://earthengine.google.com/
http://www.esa-sen2agri.org/
http://www.esa-sen2agri.org/
http://esa-sen4cap.org/
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Despite the use of remote and proximal sensing models with an inherent spatial component, 

predictive yield maps are scarcely referenced and used as an output of yield estimation models. 

New approaches like GeoAI (Janowicz et al., 2020) are not yet referred to in the reviewed 

articles. As spatial variability and heterogeneity are some of the more critical parameters for 

decision-making in PV (the producer wants to know the quantity and where that quantity is), it 

is a relevant research gap that must be addressed appropriately. 
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3. Using NDVI, climate data and machine learning to estimate yield 

in the Douro wine region 

Estimating vineyard yield in advance is essential for planning and regulatory purposes at the 

regional level, with growing importance in a long-term scenario of perceived climate change. 

With few tools available, the current study aimed to develop a yield estimation model based on 

remote sensing and climate data with a machine-learning approach. Using a satellite-based 

time-series of Normalized Difference Vegetation Index (NDVI) calculated from Sentinel 2 images 

and climate data acquired by local automatic weather stations, a system for yield prediction 

based on a Long Short-Term Memory (LSTM) neural network was implemented. The study was 

conducted in the Douro Demarcated Region in Portugal over the period 2016-2021 using yield 

data from 169 administrative areas that cover 250,000 ha, in which 43,000 ha of the vineyard 

are in production. The optimal combination of input features, with an Mean Absolute Error 

(MAE) of 672.55 kg/ha and an Mean Squared Error (MSE) of 81.30 kg/ha, included the NDVI, 

Temperature, Relative Humidity, Precipitation, and Wind Intensity. The model was tested for 

each year, using it as the test set, while all other years were used as input to train the model. 

Two different moments in time, corresponding to FLO (flowering) and VER (veraison), were 

considered to estimate in advance wine grape yield. The best prediction was made for 2020 at 

VER, with the model overestimating the yield per hectare by 8%, with the average absolute error 

for the entire period being 17%. The results show that with this approach, it is possible to 

estimate wine grape yield accurately in advance at different scales. 

3.1 Introduction 

Because yield is a quality grape and wine indicator (De la Fuente Lloreda, 2014; Diago et al., 

2015; Santesteban and Royo, 2006; Sun et al., 2017; Zabawa et al., 2019) an early estimation 

allows growers to find the best balance between vegetative and reproductive growth and make 

better management and planning decisions (Fernández-González et al., 2011; Fernandez-

Gonzalez et al., 2011; Nuske et al., 2014a) that can directly impact the business model. 

Estimating yield is complex and requires knowing driving factors related to climate, plant, and 

crop management (Weiss et al., 2020) that directly influence the number of clusters per vine, 

berries per cluster, and berry weight. These three yield components (Nuske et al., 2014b) 

explain 60%, 30%, and 10% of the yield, respectively (Cunha et al., 2015; Guilpart et al., 2014). 

The different approaches for vineyard yield estimation depend on the scale of implementation, 

and from there, direct (based on manual sampling) or indirect methods (statistical and 
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regression models, proximal/remote sensing, and dynamic or crop simulation models) are used 

(Bindi et al., 1996; Sirsat et al., 2019; Taylor et al., 2019; Ubalde et al., 2007; Weiss et al., 2020). 

The first represent the traditional method (De La Fuente et al., 2015) susceptible to spatial and 

temporal variability and dependent on historical data (Victorino et al., 2022), costly and time 

consuming (Diago et al., 2015), with low accuracy (Tardaguila et al., 2013) and limited to small-

scale application. On the other hand, indirect methods can cope with the limitations off the 

traditional manual sampling methods and with better results on accuracy, despite the low 

adoption in real commercial vineyards (Barriguinha et al., 2021). 

At a regional level, the vineyard yield estimation goals are more related to regulation and 

monitoring activities (Barriguinha et al., 2021), with yield estimation becoming more and more 

relevant due to inter-annual variability attributed to climate change's impact on quality, 

sustainability, efficiency, commercial strategies, regulations, and management of insurance, 

stock, and quotas (Cunha et al., 2015; K. Newlands, 2022). The decisions made on this scale 

can have a large impact, especially in terms of vineyard area and the number of producers 

involved. A clear example are the Wine Protected Designation of Origin (PDO) label as an 

European quality scheme that protects high quality wines by linking them to legally defined 

geographic areas and a set of specific production practices that covers 21 countries (Candiago 

et al., 2022) with more than 2,1 million hectares of PDO vineyards (Eurostat, 2022a). 

From previous works, the authors found few examples of yield estimation for regional scales 

(Barriguinha et al., 2021), divided mainly into climate-based models (Fraga and Santos, 2017a; 

Gouveia et al., 2011; Santos et al., 2020a; Sirsat et al., 2019); pollen-based models (Besselat, 

1987; Cristofolini and Gottardini, 2000; Cunha et al., 2015; González-Fernández et al., 2020); a 

combination of one or both adding phenological and phytopathological variables (Fernández-

González et al., 2011; Fernandez-Gonzalez et al., 2011); Simulateur mulTIdisciplinaire pour les 

Cultures Standard, or multidisciplinary simulator for standard crops (STICS) models (Fraga et 

al., 2015); and models based on correlation with Vegetation Indices (VI) (Arab et al., 2021; 

Cunha et al., 2010). Only a few are referenced for real environment, producing estimation for 

decision-making (Barriguinha et al., 2021). 

The more commonly used for regional yield estimation are the ones based on the relationship 

between airborne pollen and yield, relying on the principle that more flowers per area unit in 

more productive years relates to higher airborne pollen concentrations (Besselat, 1987; 

Cristofolini and Gottardini, 2000; Cunha et al., 2015; Fernández-González et al., 2011; 

Fernández-González et al., 2020; Fernandez-Gonzalez et al., 2011; González-Fernández et al., 

2020). The main disadvantages/difficulties of using pollen-based models (Barriguinha et al., 

2021) are: choosing the best placement for sampling devices to represent effectively spatial 
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variability; the number of observations for model calibration (historical data not commonly 

available); costly and complex laboratory processes; plant dynamics (high variations of the area 

with vineyards around the pollen traps); temperature and precipitation variations; vineyard 

management activities (fertilization impact); and identification of the beginning and final of the 

pollen season. 

Another relevant approach for large areas is the combination of meteorological data and 

Remote Sensing (RS), based on satellite imagery products such as VI to effectively estimate in 

advance vineyard yield (Cunha et al., 2010; Gouveia et al., 2011; Sun et al., 2017), with VI 

explaining crop characteristics and climatic conditions directly influencing crop yield prediction 

(Muruganantham et al., 2022). 

Regarding climate, wine grapes are susceptible and dependent on a region's climatic 

environment and weather dynamics, with climatic variables impacting vine and grape growth 

and development (Anderson et al., 2012; Badr et al., 2018; Fraga et al., 2013). Precipitation, 

humidity, temperature, radiation, and wind have the more influence grapevine phenology, yield, 

and wine quality (Badr et al., 2018; Parker et al., 2022; Santos et al., 2012). 

VI, as mathematical expressions corresponding to values of growth, vigor, and other vegetation 

properties, can be derived from satellite time-series images (Di Gennaro et al., 2019b; Matese 

and Di Gennaro, 2021) and are related to vineyard productive and vegetative parameters 

including yield (Matese and Di Gennaro, 2021; Stamatiadis et al., 2010; Xue and Su, 2017). 

These indices have been widely implemented within remote sensing (RS) applications (Murali 

et al., 2021; Snevajs et al., 2022) using multiple satellite platforms. Giovos et al. (Giovos et al., 

2021) traced their origin to 1968 with RVI (Birth and McVey, 1968) and in 1973 with NDVI (Rouse 

et al., 1974). There are unlimited combinations for creating different VI, but regarding viticulture, 

NDVI is the most used (Giovos et al., 2021). The Index Database (Henrich et al., 2009) has over 

500 different indices extensively used in applications of RS for precision agriculture (Sishodia 

et al., 2020), with the Normalized Difference Vegetation Index (NDVI) considered a critical 

parameter (Carrillo et al., 2016; Pelta et al., 2022) capable of reliable yield prediction models 

(Arab et al., 2021). For discontinuous crops such as a vineyard, proximal data acquisition with 

spectroradiometers (Maimaitiyiming et al., 2019) or with multispectral cameras mounted on 

Unmanned Aerial Vehicles (UAV) (Matese and Di Gennaro, 2021) can overcome the limitations 

attributed to satellite data, namely the soil effects (low for the vineyard as the critical growing 

stage - were indices/yield correlations tend to increase - occurs when cover crops are in most 

cases, senescent (Sun et al., 2017)), cloud coverage, or the fact that spectral measurement 

only describes the top part of the canopy, being nevertheless of limited use in large areas due 
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to sparse sampling and high acquisition costs. Gouveia et al. (Gouveia et al., 2011) developed 

multi-linear regression models of wine production, using NDVI and meteorological variables as 

predictors to estimate yield (e.g., monthly averages of maximum, minimum, and daily mean 

temperature and precipitation). A similar approach was made by Cunha et al. (Cunha et al., 

2010) with Satellite Pour l'Observation de la Terre (SPOT) ten-day synthesis vegetation product 

(S10) for three different regions in Portugal with significant interannual variability, based on a 

correlation matrix between the wine yield of a current year and the full set of 10-day synthesis 

NDVI. 

In recent years, Deep Learning (DL) has been considered a breakthrough technology in 

Machine Learning (ML) and Data Mining (DM), including in the RS research field (Zhong et al., 

2019). ML methods are increasingly being used as a tool for crop yield prediction (Arab et al., 

2021; van Klompenburg et al., 2020), with Long Short-Term Memory (LSTM) and Convolutional 

Neural Networks (CNN) being the most widely used DL approaches, with better results when 

compared to traditional ML approaches for crop yield prediction, taking advantage of the ability 

to extract features from available data (Muruganantham et al., 2022). This data science 

approach based on Artificial Neural Networks (ANN), despite recent, is not new to vineyard 

yield estimation and is leading the alternative methods as one of the most utilized techniques 

for attempting an early yield estimation. However, it has been limited to small-scale experiments, 

mostly in controlled environments associated with models based on computer vision and image 

processing (Barriguinha et al., 2021). 

The purpose of the present paper is two-fold: first, to evaluate a new methodology for estimating 

vineyard yield at the regional level, using the Douro Demarcated Wine Region as a study area 

with readily available data, and allowing transferability to other regions, to give decision-makers, 

as far in advance as possible, a good estimation, not only for the total regional and sub-regional 

wine grape production areas but also at a more detailed scale, considering three sub-regions 

and 169 sub-administrative regions where there are vineyards in production. Secondly, to cope 

with the limitations identified in the current model in use in the study area, based on the work 

of Cunha et al. (Cunha et al., 2003; Cunha et al., 1999), which relies on the relationship between 

airborne pollen and wine production, namely: predicting only for the entire region; predicting 

wine production instead of wine grape production; the need to maintain representative pollen 

sampling devices with high maintenance and operational costs, and complex laboratory 

process to treat the data; and a wide prediction interval. The proposed model using NDVI and 

climate data with a DL approach based on a Long Short Term Memory (LSTM) Neural Network 

can produce an adequate estimation of wine grape yield up to 1-2 months before harvest. To 
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the best of the authors' knowledge, it is the first application of DL to regional vineyard yield 

estimation. 

3.2 Materials and methods 

3.2.1 Study area 

The study was carried out using the different datasets described in the next points, covering six 

years (2016-2021). The study area is covered by the Douro Demarcated Wine Region (DDR), 

which is the oldest wine-demarcated region in the world. It is located in the northeast of Portugal 

(Figure 4) in the Douro watershed, surrounded by complex terrain with unique orographic, 

mesological and climatic characteristics. The region extends over a total area of about 250,000 

ha and is divided into three naturally distinct sub-regions ("Baixo Corgo", "Cima Corgo" and 

"Douro Superior"), not only due to climatic factors but also socio-economic ones. Regarding 

regulatory purposes, the DDR has some specificities. From the total area planted with vines 

(about 43,000ha), only 26,000ha are authorized to produce Port Wine. In fact, the vineyards 

suitable for production are selected according to qualitative criteria (classified through a scale) 

that consider soil, climate, and cultural parameters with decisive importance in the qualitative 

potential of the plots. Only vineyards with more than five-year-old can be considered for 

producing Port Wine. According to the cadastral elements, each plot is entitled to a certain 

benefit coefficient that needs to be determined every year and indexed to the classification 

scale. The vineyard areas are divided into 104,000 individual plots (47% on "Cima Corgo"; 39% 

on "Baixo Corgo", 14% on Douro Superior) spread into 169 administrative regions called 

"Freguesias" (Parishes). These were considered for the present study as the minimum scale 

areas for grape yield estimation, followed by the sub-regions and the entire DDR. 
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Figure 4 - Study area overview with the three sub-regions, vineyard plots locations (provided 

by the IVV - Instituto da Vinha e do Vinho, IP (Portuguese Institute of Vine and Wine), and 169 

administrative regions considered for the present study as the minimum scale areas for grape 

yield estimation 

Each year the vineyard area in production varies since there are new areas, areas not yet in 

production, and areas considered unsuitable for producing wine with denomination of origin. 

This was considered for the present study due to the impact on determining the grape yield per 

area unit (kg/ha) for each year and each parish. Table 11 shows the aggregated data for the 

three sub-regions and the entire DDR. 

Table 11 - Vineyard area distribution in the DDR sub-regions (2016-2021) 

Year 
BC (57 parishes) CC (64 parishes) DS (48 parishes) DDR (169 parishes) 

sum avg sd sum avg sd sum avg sd sum avg sd 

2016 12808 224.7 165.7 19700 307.8 318.5 9598 200.0 171.0 42106 249.1 240.0 

2017 12842 225.3 166.2 19778 309.0 319.9 9600 200.0 170.4 42220 249.8 240.8 

2018 12794 224.5 165.0 19899 310.9 322.9 9661 201.3 174.0 42354 250.6 242.8 

2019 12740 223.5 164.9 19958 311.8 325.8 9684 201.7 175.3 42382 250.8 244.6 

2020 13202 231.6 171.1 20429 319.2 334.2 10078 210.0 181.4 43709 258.6 251.3 

2021 12966 227.5 166.5 20510 320.5 335.7 10207 212.6 182.1 43683 258.5 251.3 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior sub-region); DDR (Douro Demarcated 

Region); sum (productive vineyard area - hectare); avg (average productive vineyard area/parish – hectare); sd 

(standard deviation) 

3.2.2 Remote sensing data 

For the present study, the initial dataset used to produce the temporal NDVI profiles was 

collected from Copernicus Sentinel-2A (launched on June 23rd, 2015) and 2B (launched on 

March 7th, 2017), with a Level-2A of processing level and 10m of spatial resolution, for the 

period 2016-2021. A total of 686 usable Sentinel images were retrieved from the Copernicus 

Open Access Scientific Hub (https://scihub.copernicus.eu/), corresponding to 343 different 

acquisition dates (two images per acquisition date due to the study area extension), from 

January 11th, 2016, to December 30th, 2021, from which the NDVI was calculated using Band 4 

(RED) and Band 8 (NIR) as described in equation 1. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷) (1) 

Where: NIR is the reflectance in the near-infrared channel and RED is the reflectance in the red 

channel. 

From the initial dataset, as explained in 3.2.4, only values between March (when on average, 

budburst occurs, marking the beginning of seasonal grapevine growth and resumed 

physiological activity) and October (when most of the harvest has already taken place) were 
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considered (Table 12). Those were used to build a spatiotemporal cube by clipping the areas 

of each parish with the vineyard in production, resulting in the average NDVI values for each 

parish at each date used in the model described in 3.2.6. 

Table 12 - Descriptive statistics of NDVI data from the entire DDR for the areas with vineyards 

(2016-2021) – from March to October 

Year 
CC MIN MAX MEAN PCT90 

avg sd avg sd avg sd avg sd avg sd 

2016 34.8 39.0 0.026 0.062 0.648 0.224 0.303 0.126 0.420 0.165 

2017 23.7 32.1 0.009 0.070 0.603 0.218 0.250 0.117 0.348 0.153 

2018 25.3 33.7 -0.002 0.086 0.628 0.222 0.275 0.136 0.393 0.176 

2019 30.3 34.0 -0.002 0.076 0.569 0.242 0.233 0.129 0.334 0.172 

2020 42.5 37.5 -0.006 0.096 0.540 0.283 0.234 0.154 0.332 0.202 

2021 34.0 35.6 0.001 0.077 0.606 0.241 0.272 0.139 0.385 0.182 

CC (Average Cloud Coverage - %); MIN (Average Minimum NDVI value); MAX (Average Maximum NDVI value); MEAN 

(Average NDVI value); PCT90 (Average NDVI value 90 percentile); sd (standard deviation) 

With both satellite data, the best average temporal resolution for the study area is five days from 

2018, 2020, and 2021 (71 images retrieved) followed by 2019 with six days (60 images 

retrieved). The lower temporal resolutions in 2016 (15 days – 25 images retrieved) and 2017 (8 

days – 43 images retrieved) are related to the inexistence of the Sentinel-2B sensor until March 

2017. 

Regarding the expected negative effect of cloud coverage, we first considered all images for 

conducting the evaluation of the yield prediction model through a stepwise backward feature 

selection process, thus allowing us to assess the true impact and the limit to which we might 

consider the validity (or not) of each image. 

3.2.3 Climate data 

The DDR climate is the Mediterranean, with continental influence and marked annual thermal 

contrast and water stress, especially during summer with the vineyards located in some of the 

aridest regions in Europe, with strong and consistent post-flowering vine water and thermal 

stress (Cunha et al., 2010). 

The climate data used in the present study resulted from observed daily values of the 

parameters described in Table 13 acquired by six IPMA (Instituto Português do Mar e da 

Atmosfera - https://www.ipma.pt/pt/) automatic weather stations between 2016 and 2021. The 

considered areas of influence of every station (closest distance to the plot's polygons) are 

shown in Figure 5. For the present study, the climate data computed in the prediction model 
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described in 3.2.6 follows the same date range (March-October), similar to the approach made 

regarding remote sensing data. 

 

Figure 5 - Considered areas of influence for the six weather stations used in the present study 

 

Table 13 - Descriptive statistics of climate data for the six areas of influence, considering the 

data from the six automatic weather stations used for the present study (2016-2021) – from 

March to October 

 
P (mm) T (0C) H (%) W (m/s) R (KJ/m2) 

avg sd avg sd avg sd avg sd avg sd 

Area 1 429 152 16.7 4.5 66.0 8.6 1.6 0.3 19813 5878 

Area 2 256 110 19.8 4.8 55.3 9.6 1.7 0.3 20251 5045 

Area 3 438 187 16.1 4.8 64.3 9.3 2.3 0.4 20062 4283 

Area 4 364 181 15.5 4.6 67.1 8.8 1.5 0.3 20025 5489 

Area 5 258 110 18.4 5.0 63.1 10.2 2.1 0.4 20255 5213 

Area 6 298 108 17.8 5.0 57.5 9.9 2.2 0.4 21125 5371 

P (Average annual total precipitation amount - mm); T (Average daily air temperature at 1.5m - 0C); H (Average daily 

relative humidity - %); W (Average daily wind speed – m/s); R (Average daily global radiation – KJ/m2); sd (standard 

deviation). 

3.2.4 Phenology data 

Phenology data was used to define the different timeframes necessary for the model to predict 

yield as far in advance as possible effectively. The three main grapevine phenological stages 

are (1) budburst (BUD), which marks the beginning of seasonal grapevine growth and resumed 
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physiological activity after a long period of winter dormancy; (2) flowering (FLO), which is crucial 

for the reproductive cycle and closely followed by the fruit set stage;  and (3) veraison (VER), 

which initiates the ripening stage, correlated to wine grape quality attributes (Fraga et al., 2016b; 

Jones and Davis, 2000). The dates for the beginning of each stage were collected from the 

harvest report generated by ADVID (Association for the Development of Viticulture in the Douro 

Region - https://www.advid.pt/en) each year (ADVID, 2016, 2017, 2018, 2019, 2020, 2021). The 

harvest (HAR) start and end dates were collected from the IVDP dataset (Instituto dos Vinhos 

do Douro e do Porto, I.P. - https://www.ivdp.pt/en) according to the registration of grape entry 

in the wine-producing facilities (Table 14). 

Table 14 - Average start date for the main phenological stages and harvest in the DDR (2016-

2021) 

Year BUD FLO VER HAR (start) HAR (end) 

2016 >15 Feb >15 May >15 Jul >18 Aug <17 Nov 

2017 >15 Mar >15 Apr >15 Jun >07 Aug <21 Nov 

2018 >22 Mar >19 May >26 Jul >14 Aug <15 Nov 

2019 >12 Mar >06 May >13 Jul >12 Aug <15 Nov 

2020 >04 Mar >08 May >07 Jul >05 Aug <18 Nov 

2021 >06 Mar >07 May >08 Jul >26 Jul <16 Nov 

BUD (budburst); FLO (flowering); VER (veraison); HAR (harvest) 

3.2.5 Yield data 

Yield data was provided by IVDP for each parish from 2016 to 2021. The data is collected yearly 

in grape receptions units scattered along the entire DDR, with the grapes' amount (kg) and 

origin (parish) recorded for each delivery. The evolution through the different years is 

aggregated by sub-region and for the entire DDR in Table 15. This same table also shows the 

average production in kg/ha. 

Table 15 - Wine grapes yield in the sub-regions of the DDR (2016-2021) 

Year 
BC (57 parishes) CC (64 parishes) DS (48 parishes) DDR (169 parishes) 

Sum avg sd sum avg sd sum avg sd sum avg sd 

2016 43747 3223 539 79329 3427 806 32430 2969 819 155506 3228 750 

2017 57671 4258 1017 76524 3565 1161 34551 3342 816 168746 3736 1088 

2018 41828 3197 769 67487 3047 863 33297 3104 803 142611 3114 813 

2019 64514 4747 1124 95523 4370 1132 44187 4212 1214 204024 4452 1167 

2020 44824 3171 737 73819 3200 931 35129 3194 968 153771 3189 877 

2021 55723 4083 957 95896 4233 1148 44167 3846 1149 195787 4073 1092 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior sub-region); DDR (Douro Demarcated 

Region); sum (total annual wine grape production in tons); avg (average annual wine grape production in kg/ha); sd 

(standard deviation). 
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3.2.6 Yield prediction model 

The system implemented for yield prediction is a Long Short Term Memory (LSTM) Neural 

Network (Hochreiter and Schmidhuber, 1997) implemented using the Keras framework 

(https://keras.io/), an open-source software library that provides a Python interface for artificial 

neural networks, part of TensorFlow library (https://www.tensorflow.org/).  

This model was chosen since its architecture is designed to learn long-term dependencies in 

sequences like time series. The LSTM can process sequences of variables by holding a cell 

state 𝑐𝑡  that carries information across the different time steps of the sequence, receiving 

minimal updates based on three different gates, namely the forget gate (Equation 2), the input 

gate (Equation 3), and the output gate (Equation 4).  

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1;  𝑥𝑡  ] + 𝑏𝑓) (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1;  𝑥𝑡] + 𝑏𝑖) (3) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1;  𝑥𝑡] + 𝑏𝑜 ) (4) 

Figure 6 displays the system's architecture. The network receives an input 𝑥𝑦𝑝 =

 [𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑛], a sequence of 49 vectors (sequence length corresponding to the number of 

observations between March and October), each containing the observed values of every input 

(NDVI, Rad., Temp., CC, Hum., Prec., Wind – see  

Table 19) at a point in time 𝑡, for a given year 𝑦 and parish 𝑝. 

 

Figure 6 - Yield prediction model overview. The model is divided into two parts: 1) a time-series 

encoder module that uses an LSTM to generate dense representations; and 2) a regressor 
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module that receives the last hidden state of the LSTM and calculates the yield volume for a 

year and location (parish). 

This input, together with a cell state 𝑐𝑡−1 and the hidden state ℎ𝑡−1, of the previous time step 𝑡, 

are passed through the network. The forget gate 𝑓𝑡 , a sigmoid layer, takes ℎ𝑡−1 and 𝑥𝑡  and 

computes what information should be erased from the previous steps at the current one. 

Similarly, the input gate 𝑖𝑡 , another sigmoid layer, decides what information from the input 

𝑥𝑡  should be kept. Next, 𝑥𝑡 passes a tanh layer that computes new candidate values 𝑐̃𝑡 for the 

cell state (Equation 5). The cell state 𝑐𝑡 is updated by multiplying the old one with the output of 

the forget gate 𝑓𝑡, and adding the resulting value with the product of the input gate 𝑖𝑡 result and 

the candidate values 𝑐̃𝑡 (Equation 6). This process enables the network to store the information 

from the current time step and pass it to future steps. 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1;  𝑥𝑡] + 𝑏𝑐  ) (5)        

𝑐𝑡  =  𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡 (6) 

Lastly, 𝑥𝑡  goes through the output gate 𝑜𝑡. The resulting value is multiplied with the cell state 

value squashed by a tanh layer (Equation 7). 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (7) 

Through this calculation, we obtain the output value of the network at the current time step ℎ𝑡. 

The hidden state of the last time step, ℎ𝑦𝑝, goes through a linear activation layer that computes 

the Yield Production in Kg/ha for that year 𝑦 and parish 𝑝. 

3.3 Results and Discussion 

LSTM is one of the most widely used deep learning algorithms in crop yield prediction, along 

with CNN and Deep Neural Networks (DNN), with temperature, precipitation, and humidity 

among the most used independent variables (van Klompenburg et al., 2020) to predict yield 

(dependent variable). This is consistent with the developed model as all three variables are part 

of the model with the best metrics, with NDVI and wind also as explanatory features (also 

referenced by T. van Klompenburg, et al.(van Klompenburg et al., 2020) as commonly used for 

the same purpose). 

The average annual wine grape production inter-annual variability can be observed in Table 15 

and Figure 7 and is transversal to the different scales of observation, namely DDR, the three 

subregions (BC, CC and DS), and the 169 parishes. The lowest total production occurred in 

2018, with 142,611 tons of grapes for the entire DDR, reaching its peak in the following year 
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(2019) with a value of 204,024 tons of grapes. The behavior of each sub-region reveals the 

same tendency registered for the entire DDR either in total aggregated value or production per 

area unit (kg/ha). 

Figure 7 displays the spatial distribution of the average wine grape yield production in kg/ha for 

each year and each parish. The variability between years and parishes is visible (the values are 

related to the areas with vineyards and are represented by parish administrative boundaries for 

easier visualization). 

This variability was identified by Cunha et al. (Cunha and Richter, 2011) for the DDR and other 

regions (Cunha et al., 2010). It can be explained by the spatio-temporal distribution that 

characterizes agricultural systems as a whole and vineyards in particular, with vulnerability to 

inter-annual climate variability, especially in the case of our study area, where the vineyards 

grow under marginal conditions for production with distinctive climatic, topographic and soil 

characteristics (Gouveia et al., 2011) with temperature and precipitation having a deep 

connection to yield variability (Camps and Ramos, 2012). 

The range between minimum and maximum production per area unit also shows high inter-

annual variability, reaching higher values in years when total productivity was higher, namely in 

2017, 2019, and 2021. 

The spatial autocorrelation was evaluated using Global Moran's I, showing the randomness of 

the yield data for all years (Table 16). 

Table 16 - Spatial autocorrelation assessment (with Global Moran's Index) regarding parish-

based wine grape yield in kg/ha (2016-2021) 

 Moran's Index z-score p-value 

2016 -0.003765 0.171343 0.863954 

2017 0.017237 1.042057 0.297385 

2018 -0.024546 -1.010945 0.312043 

2019 -0.022819 -0.833334 0.404656 

2020 -0.002469 0.144244 0.885308 

2021 -0.005352 0.026708 0.978693 

(Spatial relationships: Inverse distance; Distance method: Euclidian; Standardization: Row; Distance threshold: 14187m) 
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Figure 7 - Spatial distribution of the average Yield Production in kg/ha by year and parish 

Calculated NDVI values show a great inter-annual variability throughout the six years between 

March and October of each year (Table 12), with a strong standard deviation, in the vineyard 

areas of each parish. Being a region with a low precipitation level, low NDVI values were 

expected. 

The spatial distribution considering the average NDVI values for the period between March and 

October from vineyard plots represented at the parish level is shown in Figure 8. The identifiable 

clusters in the different sub-regions, with BC showing higher average values throughout the 

vegetative cycle, followed by CC and DS with the lower scores, were evaluated using Global 

Moran's Index, indicating a clustered pattern of the average NDVI values for all years (Table 

17). As already mentioned, these values represent the average pixel values inside the areas 

with vineyards in production in each parish. 
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Table 17 - Spatial autocorrelation assessment (with Global Moran's Index) regarding parish-

based average NDVI (2016-2021) 

 Moran's Index z-score p-value 

2016 0.522983 21.769401 0.000000 

2017 0.591388 24.319456 0.000000 

2018 0.367304 15.532358 0.000000 

2019 0.536924 22.273663 0.000000 

2020 0.532426 22.293926 0.000000 

2021 0.380097 16.151957 0.000000 

(Spatial relationships: Inverse distance; Distance method: Euclidian; Standardization: Row; Distance threshold: 14187m) 

 

Figure 8 - Spatial distribution of the average NDVI for each year and each parish (March-

October) 

The NDVI profile over the crop vegetative cycle tends to increment after BUD, reaching its 

highest values between FLO and VER and decreasing after harvest. This is consistent with the 

work of several authors (Boulton et al., 1996; Cunha et al., 2010; Gouveia et al., 2011) and 

associated with the growing period of the vineyards until flowering in May. 
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Vineyard growth could be restricted in the early stages of the growing season due to the soil 

water content frequently low at BUD and the lack of winter rainfall (Cunha et al., 2010). The 

higher average NDVI values demonstrate this in 2016 and 2018, where winter rainfall was more 

elevated. The highest average NDVI value was recorded on July 9th of 2018, with a 2% cloud 

coverage value. The effect of cloud coverage is very noticeable, as expected, although the 

cloud coverage percentage is related to the entire image (to cover the whole DDR spatially, two 

Sentinel-2 scenes are required). It is usually not noticeable if it concerns areas effectively 

occupied by vineyards. 

Climate plays a fundamental role in the productivity of the vineyard (Fraga et al., 2013; Fraga et 

al., 2016b) as phenological events and composition are significantly influenced by the climate 

of preceding months, especially during the growing season (Bock et al., 2011). Weather 

variables can explain 57.3%, 64.3%, and 57.8% of the variance in yield, sanitary status, and 

grape composition (Ferrer et al., 2017). According to Gouveia et al.(Gouveia et al., 2011), low 

rainfall in March positively affects vegetative growth, and high temperatures in late spring are 

beneficial. This can be seen in the year 2018, where abnormal high precipitation in March 

accompanied by below-average mean temperatures (Figure 9) was reflected in the production, 

being the year with the lowest production according to the series considered in the present 

study (Table 15).  

 

 

Figure 9 - Average monthly precipitation and mean temperature (2016-2021); Average monthly 

precipitation and mean temperature (30-year climatological series for 1931-1960 and 1970-

2000); Phenology (BUD: 1; FLO: 2; VER:3) for DDR 

Although the precipitation throughout the cycle allowed the recovery from water stress that 

occurred in 2017 (the driest year of the analyzed time range, with lower NDVI values, especially 



 

 

52 

 

Doctoral Programme in Information Management 

in CC and DS sub-regions, as visible in Figure 8), its volume and timing had a negative impact 

through an increase in the phytosanitary pressure, scorching and dehydration at a later stage 

(ADVID, 2018). Precipitation stands out in the years of the present study not only by the high 

variability between the different areas, months, and years but also from the difference in the 

available 30-year climatological series (1931-1960 (ADVID, 2016) and 1970-2000 (ADVID, 

2021)). 

The year 2016 was characterized by a warm and rainy winter, a cold and extremely rainy spring, 

and very hot and dry summer, contributing to an earlier BUD and a later delay in the previous 

phenology stages. Intense precipitation in a sensitive phase of the vegetative cycle gave rise to 

the strong pressure of mildew (ADVID, 2016). Regarding yield, it was the third lowest year of 

the studied period and below the average of 170,074 tons (-9%) for the entire DDR. 

The year 2017, as already stated, was an arid and hot year where the climatic conditions 

contributed to a significant advance in the vegetative cycle. The prolonged scarcity of 

precipitation and very high temperatures led to intense hydric and thermal stress at an early 

stage of the cycle, conditioning the evolution of the vegetation wall and impacting production 

(ADVID, 2017). Despite that, according to the data provided by IVDP, 2017 had a grape 

production higher than the one recorded in 2016, but still under the average for the six years (-

1%), which can be justified by the quasi-absence of pressure on the phytosanitary aspect. 

As already stated, the year with the lowest total production was 2018 (-16% from the average), 

with a cold and dry winter, cold and extremely rainy spring, and, in its first phase, a cold and 

rainy summer, and in its second phase, a hot and arid one. Despite the perceived high 

production potential, climate instability significantly reduced it due to the abnormal harmfulness 

of the downy mildew (ADVID, 2018). 

The years with the highest production were 2019 (+17% from the average) and 2021 (+15% 

from the average). Both years are characterized by standard dry years with low disease impact 

(ADVID, 2019, 2021) and are the closest to the 30-year Climatological Normals series. This is 

also true for the year 2020, although in this case, the spring precipitation led to high pressure 

regarding the phytosanitary aspect (namely mildew and powdery mildew (ADVID, 2020), which 

could explain the lower total production (-11% from the average). 

Testing for normality through the D'Agostino's (D'AGOSTINO, 1970) and Shapiro-Wilk Test 

(Shapiro and Wilk, 1965), we concluded that none of the variables was normally distributed, 

despite some of them, namely Yield Production, Temperature, and Relative Humidity, showing 

a Gaussian pattern. We calculated the Pearson correlation to assess how the different 

explanatory variables are related (Table 18). 



 

 

53 

 

Doctoral Programme in Information Management 

Table 18 - Pearson correlation between the variables used for Yield Prediction. 

Pearson Correlation NDVI R T W P H CC 

NDVI 1.00       

Radiation 0.75 1.00      

Temperature 0.47 0.61 1.00     

Wind -0.19 -0.07 -0.28 1.00    

Precipitation -0.51 -0.49 -0.36 0.36 1.00   

Humidity -0.61 -0.65 -0.61 0.07 0.49 1.00  

Cloud Coverage -0.87 -0.66 -0.43 0.11 0.38 0.65 1.00 

NDVI (Normalized Difference Vegetation Index); R (Global radiation); T (Air temperature); W (Wind speed); P 

(Precipitation); H (Relative humidity); CC (Cloud Coverage) 

NDVI presents a negative correlation of -0.87 with Cloud Coverage, -0.61 with Humidity, -0.51 

with Precipitation and -0.19 with Wind Intensity. On the other hand, NDVI has a positive 

correlation of 0.75 with radiation and 0.47 with Temperature. The polarity of the correlations 

provides a clear distinction between variables that exhibit a similar pattern to NDVI, namely 

Radiation, and variables that present almost an opposite behavior, namely Cloud Coverage and 

Humidity. It is also possible to conclude that radiation values vary inversely to Cloud Coverage 

and Humidity. 

3.3.1 Yield prediction model optimization 

Yield prediction was evaluated for the period between March and October by performing a 

random training/test split, leaving 80% of the observations to train the model and 20% to test it. 

The metrics used to evaluate the prediction performance were the MAE and the MSE. The 

different number of LSTM layers and 8, 16, 32, 64, and 128 hidden units were tested during the 

training setup. We also introduced a dropout layer with different values and experimented with 

different learning optimization methods and rates. Ultimately, a small model with only one layer 

and 16 hidden units, no dropout, using the Adam optimizer (Kingma and Ba, 2014) and a fixed 

learning rate of 0.001, yielded the best performances (execution environment: GPU; Loss 

Function: MSE). Moreover, to understand the impact of each input variable on the yield 

prediction performance and find the best combination of variables, we ran a stepwise backward 

feature selection process, in which we started by evaluating the model using all variables as 

input and gradually removing one at the time, based on their correlation with NDVI (higher 

absolute correlations were removed first). Table 19 summarizes these experiments.  

 



 

 

54 

 

Doctoral Programme in Information Management 

Table 19 - Evaluation of Yield prediction model through a stepwise backward feature selection 

process. Best metrics highlighted. 

Step Variables MAE (kg/ha) MSE (kg/ha) 

1. All variables NDVI, Rad., Temp., CC, Hum., Prec., Wind 688.29 83.77 

2. Remove Cloud Coverage NDVI, Rad., Temp., Hum., Prec., Wind 678.84 81.80 

3. Remove Radiation NDVI, Temp., Hum., Prec., Wind 672.55 81.30 

4. Remove Relative Humidity NDVI, Temp., Prec., Wind 685.28 82.80 

5. Remove Precipitation NDVI, Temp., Wind. (+) Hum. 680.05 82.64 

6. Remove Temp NDVI, Hum., Wind., (+) Prec. 698.93 83.73 

7. Remove Wind NDVI, Hum., Prec., (+) Temp. 823.49 106.85 

8. Only NDVI NDVI 766.59 99.24 

In the scenario in which the model's performance increases or remains the same after removing 

a variable, we excluded the variable for the next tests. Alternatively, the variable would be added 

in the following experiment if the performance decreased. We also ran the model considering 

only NDVI as input (step 8). The optimal combination of input features, with an MAE of 672.55 

and an MSE of 81.30, considered NDVI, Temperature, Relative Humidity, Precipitation, and 

Wind Intensity (step 3). The removed variables in the best model, Radiation, and Cloud 

Coverage, were the ones with the highest correlation with NDVI (see Table 18). This was 

expected since their explanatory power is already expressed in NDVI. On the other hand, the 

most significant drop in model performance seems to be when removing the feature Wind, the 

one with the lowest correlation with NDVI. Wind influence can be negative (e.g., physiological 

effects of photosynthesis disruption, breaking off new shoots, increasing evapotranspiration) 

and positive (e.g., reduced disease infestations, limiting the occurrence of radiation frosts) on 

vine health and yield. The data referring to this variable shows high interannual variability 

between areas of influence, where areas 3 and 6 stand out with consistently higher values than 

the other areas. Also, it is worth noting that the model using only NDVI as a feature for yield 

prediction achieves higher performance than the one using NDVI, Humidity, Precipitation, and 

Temperature. 

3.3.2 Yield prediction model analysis 

The model with the best metrics was run to analyze in more detail its prediction performance. 

The prediction was made for each year, using it as the test set, while all other years were used 

as input to train the model. We considered two different moments in time, corresponding to 
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FLO (May) and VER (July) phenology stages, considering the main characteristics of vineyards 

at DDR (Table 14). 

The model's performance at the FLO stage is considered very poor with an average absolute 

prediction error for the entire DDR between 2016 and 2021 of 38% against the 17% average 

error achieved when the same model is run at the VER stage. This error represents the deviation 

regarding kg/ha from the actual average of wine grapes collected. 

Analyzing each year for the entire DDR and the different sub-regions at the FLO stage (Table 

20), the best prediction was made in 2021 for the whole DDR, with the model underestimating 

the yield per hectare at 25% and 19% for the DS sub-region. In 2016, we can see the most 

significant difference between predictions in sub-regions, with DS showing almost twice the 

error as CC. The worst performances are for 2017, an arid year, and 2019, the year with the 

highest productivity per hectare compared to the other years. 

Table 20 - Prediction for the DDR and sub-regions made at the FLO stage 

Year Region AVG PRED DIF DIF_abs DIF_% DIF_abs_% 

2016 

DDR 3228 4196 968 968 30 30 

BC 3223 4157 934 934 29 29 

CC 3427 4194 767 767 22 22 

DS 2969 4245 1276 1276 43 43 

2017 

DDR 3736 1873 -1863 1863 -50 50 

BC 4258 1921 -2337 2337 -55 55 

CC 3565 1865 -1700 1700 -48 48 

DS 3342 1827 -1515 1515 -45 45 

2018 

DDR 3114 4124 1010 1010 32 32 

BC 3197 4286 1089 1089 34 34 

CC 3047 3983 937 937 31 31 

DS 3104 4118 1013 1013 33 33 

2019 

DDR 4452 1779 -2673 2673 -60 60 

BC 4747 1711 -3036 3036 -64 64 

CC 4370 1751 -2619 2619 -60 60 

DS 4212 1897 -2315 2315 -55 55 

2020 

DDR 3189 4127 939 939 29 29 

BC 3171 4110 939 939 30 30 

CC 3200 4121 920 920 29 29 

DS 3194 4156 962 962 30 30 

2021 

DDR 4073 3071 -1001 1001 -25 25 

BC 4083 2999 -1084 1084 -27 27 

CC 4233 3090 -1143 1143 -27 27 

DS 3846 3132 -714 714 -19 19 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior sub-region); DDR (Douro Demarcated 

Region); AVG (Real wine grape production average in kg/ha); PRED (Estimated wine grape production in kg/ha); DIF 

(PRED-AVG in kg/ha); DIF_abs (DIF in absolute value); DIF_% (PRED-AVG in %); DIF_abs (DIF_% in absolute value) 

The results mainly improved at the VER stage (Table 21) and didn't follow the same FLO 

estimation pattern. The best prediction was made in 2020 for the whole DDR, with the model 
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overestimating the yield per hectare at 8% and 6% for CC and DS sub-regions, respectively, 

followed by the results for 2019. These years are less deviant from normal climate variables, 

despite having the higher production (in 2019) and the second lower production (in 2020). This 

is also true for 2021, but with a worst prediction. The biggest difference between predictions in 

sub-regions is in 2017, with CC and DS having almost triple of error value as BC, in 2020 where 

the error in BC doubles the one in the other sub-regions. The worst performances are for 2016, 

with the model underestimating yield, characterized by climate conditions that favored 

phytosanitary problems, and in 2017, especially arid in CC and DS sub-regions. 

Table 21 - Prediction for the DDR and sub-regions made at VER stage 

Year Region AVG PRED DIF DIF_abs DIF_% DIF_abs_% 

2016 

DDR 3228 2459 -769 769 -24 24 

BC 3223 2454 -769 769 -24 24 

CC 3427 2460 -967 967 -28 28 

DS 2969 2463 -505 505 -17 17 

2017 

DDR 3736 4441 706 706 19 19 

BC 4258 4605 347 347 8 8 

CC 3565 4392 826 826 23 23 

DS 3342 4312 970 970 29 29 

2018 

DDR 3114 3621 507 507 16 16 

BC 3197 3730 533 533 17 17 

CC 3047 3552 505 505 17 17 

DS 3104 3583 479 479 15 15 

2019 

DDR 4452 3827 -625 625 -14 14 

BC 4747 4000 -747 747 -16 16 

CC 4370 3737 -633 633 -14 14 

DS 4212 3741 -470 470 -11 11 

2020 

DDR 3189 3446 257 257 8 8 

BC 3171 3549 378 378 12 12 

CC 3200 3399 198 198 6 6 

DS 3194 3385 191 191 6 6 

2021 

DDR 4073 3312 -761 761 -19 19 

BC 4083 3226 -857 857 -21 21 

CC 4233 3373 -860 860 -20 20 

DS 3846 3333 -513 513 -13 13 

BC (Baixo Corgo sub-region); CC (Cima Corgo sub-region); DS (Douro Superior sub-region); DDR (Douro Demarcated 

Region); AVG (Real wine grape production average in kg/ha); PRED (Estimated wine grape production in kg/ha); DIF 

(PRED-AVG in kg/ha); DIF_abs (DIF in absolute value); DIF_% (PRED-AVG in %); DIF_abs (DIF_% in absolute value). 

Table 22 illustrates the descriptive statistics at parish level. Furthermore, Figure 10 shows the 

spatial distribution by parish of the average absolute errors for the six-year analyzed period. 

The model's overall performance at the parish level is considered poor, not only regarding the 

error but also the high inconsistency when we look at individual parishes and the error behavior 

for each year. 
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Between the two stages, it is clear that also at the parish level, the model works better at VER 

stage, although in 36% of the parishes the error is lower if the model is run in the FLO stage, 

with an average difference of 10%, being the lowest 2% and the highest 23% 

Table 22 - Descriptive statistics for average absolute error in each parish (2016-2021) 

 avg sd median min max 

2016 0.26 0.14 0.27 0.00 0.80 

2017 0.38 0.58 0.22 0.00 6.55 

2018 0.32 0.36 0.22 0.00 2.21 

2019 0.24 0.21 0.20 0.00 1.51 

2020 0.29 0.38 0.18 0.00 3.11 

2021 0.26 0.23 0.22 0.00 2.10 

avg (Parish average absolute error); sd (standard deviation); median (Parish average median absolute error); min 

(Parish average minimum absolute error); max (Parish average maximum absolute error) 

 

Figure 10 - Spatial distribution of the average absolute error (%) in each parish for the period 

2016-2021 at FLO (left) and VER (right) 

3.3.3 Comparative study and discussion 

To further evaluate our model, we conducted a comparative study regarding other alternatives 

for regional vineyard yield estimation (Table 23). A more in-depth comparison was made 

considering the model currently used in the study area by the local authorities. 

Table 23 - Different methodological approaches for regional vineyard yield prediction 

(Barriguinha et al., 2021) 

Reference 
Methodological 

Approach 
Data Sources 

Test 

environment 
Related Variables Estimation 

(Cristofolini 

and 

Gottardini, 

2000) 

Pollen Based 

Hirst type sampler volumetric 

spore trap 

(Lanzoni VPPS-2000) 

In-field 
Airborne pollen 

concentration 

R2=0,92 (for grape 

production) 

(Fernandez-

Gonzalez et 

al., 2011) 

Pollen Based 
Aerobiological data (Lanzoni 

VPPS-2000 volumetric trap) 
In-field 

Meteorological and 

phytopathological 

variables 

R2=0,98 (for yield) 
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(Fernández-

González et 

al., 2020) 

Pollen Based 

Pollen Hirst volumetric 

sampler and Cour passive 

trap 

In-field 

Airborne pollen 

concentration, weather 

data 

R2=0,96 (Cour); 

R2=0,99 (Hirst) 

(Besselat, 

1987) 
Pollen Based Pollen concentration data In-field 

Airborne pollen 

concentration 
R2<0,98 (for yield) 

(Cunha et 

al., 2015) 
Pollen Based Airborne pollen trap Simulated 

Airborne pollen 

concentration 

0,71<R2<0,86 (for 

annual wine 

production) 

(Cunha et 

al., 1999) 
Pollen Based Pollen concentration data In-field 

Airborne pollen 

concentration 
R2=0,93 (for yield) 

(Cunha et 

al., 2003) 
Pollen Based One Cour Pollen Trap In-field 

Airborne pollen 

concentration 

0,66<R2<0,99 (for wine 

production) 

(González-

Fernández 

et al., 2020) 

Pollen Based 

Aerobiological data (Lanzoni 

VPPS-2000 volumetric 

sampler), Meteorogical data 

In-field 

Airborne pollen 

concentration and 

Meteorologic data 

R2=0,99 (for yield) 

(Gouveia et 

al., 2011) 
Vegetation Indices 

Corine Land Cover map, wine 

statistics, monthly means of 

climate variables and NDVI 

Simulated 
tmax, tmin, tavg, prec, 

NDVI 

0,62<R<0,90 (for wine 

production) 

(Sun et al., 

2017) 
Vegetation Indices 

Satellite-based (NDVI) and 

(LAI) 
In-field NDVI, LAI 

0,66<R<0,83 (for NDVI 

and Yield) and 

0,66<R<0,83 (for LAI 

and Yield) 

(Cunha et 

al., 2010) 
Vegetation Indices 

Satellite data from vegetation 

(NDVI from SPOT) 
In-field NDVI 

0,73<R2<0,84 (for 

yield) 

(Cola et al., 

2014) 
Crop Simulation Model 

Weather data and plant 

characteristics 

Simulated/In-

field 

Validation 

Weather data and 

plant characteristics 

R2=0,96 (for yield in 

low-density canopies) 

R2=0,94 (for yield in 

high-density canopies) 

(Fraga et al., 

2015) 
Crop Simulation Model 

Climate, soil, and 

management practices 

Simulated/In-

field 

Validation 

Climate data, soil and 

terrain parameters, 

water stress indices, 

management practices 

R2=0,86 (for yield) 

(Valdes-

Gomez et 

al., 2009) 

Crop Simulation Model 

Phenology and harvest date, 

Soil water content, water 

stress, and grapevine growth 

and yield 

Simulated/In-

field 

Validation 

Phenology and harvest 

date, soil water 

content, water stress, 

and grapevine growth 

and yield 

R2=0,85 (for yield) 

(Sirsat et al., 

2019) 
Crop Simulation Model 

Weather, yield, phenological 

dates, fertilizer information, 

soil analysis, and maturation 

index data 

Simulated/In-

field 

Validation 

Weather, phenological 

dates, fertilizer 

information, soil 

analysis, and 

maturation index data 

24,2%<RRMSE<28,6% 

(Fraga and 

Santos, 

2017b) 

Other Models 
Daily historic meteorological 

conditions, yield data 
In-field 

Temperature and 

Precipitation 

0,68 ≤ r ≤ 0,84 (for 

grapevine production) 

(Santos et 

al., 2020a) 
Other Models 

Monthly mean air 

temperatures and monthly 

total precipitation data 

In-field 

Monthly mean air 

temperatures and 

monthly total 

precipitation 

Wine production 

classes (1-low, 2-

normal, 3-high): 

average estimation 

ratio of 

79%(calibration) 

67%(validation) 

 

Comparing our results with the works of Cunha et al. (Cunha et al., 2003; Cunha et al., 1999), 

that developed and used an estimation model in the same study area (DDR) and relied on the 

relationship between airborne pollen and yield (Table 24), we can state that our results are very 
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satisfactory. The pollen-based model predicts wine production for the whole DDR with a 

minimum and maximum threshold, and ADVID has used it since 1992 with the predictions made 

yearly at the VER stage. To compare both errors, we considered the average absolute error 

and a conversion factor of 750kg of grape for 550 liters of wine (average based on the IVDP 

data set for the six years). 

Table 24 - Prediction for the DDR based on pollen model made at the VER stage (prediction 

data from ADVID reports (ADVID, 2016, 2017, 2018, 2019, 2020, 2021)) 

Year PROD PRED 
(min) 

DIF 
(min) 

DIF (min) 
(%) 

PRED 
(max) 

DIF 
(max) 

DIF (max) 
(%) 

PRED 
(avg) 

DIF 
(avg) 

DIF (avg) 
(%) 

2016 158677 143727 -14950 -9% 158318 -359 0% 151023 -7654 -5 

2017 171413 199500 28087 16% 215864 44450 26% 207682 36269 21 

2018 145282 190636 45355 31% 204955 59673 41% 197795 52514 36 

2019 207900 197318 -10582 -5% 216273 8373 4% 206795 -1104 -1 

2020 153940 148364 -5576 -4% 168136 14197 9% 158250 4310 3 

2021 195802 176455 -19347 -10% 191045 -4756 -2% 183750 -12052 -6 

DDR (Douro Demarcated Region); PROD (wine grape production for the entire DDR in tons/year); PRED(min) (minimum 

estimated wine grape production in tons/year considering a conversion factor of 750kg of grape for 550 liters of wine); 

PRED(max) (maximum estimated wine grape production in tons/year considering a conversion factor of 750kg of grape 

for 550 liters of wine); PRED(avg) (average estimated wine grape production in tons/year considering a conversion 

factor of 750kg of grape for 550 liters of wine); DIF(min) (PRED(min)-PROD in kg/year); DIF(min)(%) (PRED(min)-PROD 

in %); DIF(max) (PRED(max)-PROD in kg/year); DIF(max)(%) (PRED(max)-PROD in %); DIF(avg) (PRED(avg)-PROD in 

kg/year); DIF(avg)(%) (PRED(avg)-PROD in %). 

Since the pollen model only estimates the whole DDR, the comparison was only made 

considering that at the VER stage. According to the authors, both models can obtain very good 

results. In the study's time frame, the pollen model achieved a lower average error for the years 

2016 and 2019 to 2021 and a worse result for the years 2017 and 2018. Considering the 

average differential for the pollen model, both models coincide in the years in terms of 

underestimation and overestimation yield. The worst performance could be attributed in 2017 

due to early flowering and in 2018 due to significant variation in water stress as discussed by 

the authors, stating that additional parameters, such as disease occurrence, agronomic, and 

weather conditions after flowering are required (Cunha et al., 2003). 

The model developed in the present study can deliver prediction at a sub-regional level. 

Implementing the pollen model would require a more comprehensive network of pollen traps 

with cost implications. Furthermore, developing a model estimating grape yield in kg/ha and not 

in wine production can be seen as an advantage for being more comprehensive for the different 

actors in the DDR and for other regions where the regulations are not so specific and focused 

on the Port wine. 

The current model also performs well when referring to other pollen-based models (and without 

the limitations mentioned above) with estimations in line with the work of Cunha et al., (Cunha 

et al., 2003; Cunha et al., 1999; Cunha et al., 2015) for the DDR. The different studies for 
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regional-scale applications identified in the authors' previous work (Barriguinha et al., 2021) 

have an overall average R2 between 0,71 and 0,99. Cristofolini et al. (Cristofolini and Gottardini, 

2000) determination of the pollen index between the days when 5 and 95% of the season's total 

pollen concentration were found achieved very good results, similarly to the work of Besselat 

(Besselat, 1987). With a different approach, Gonzaléz et al. (González-Fernández et al., 2020) 

and Fernandez et al. (Fernández-González et al., 2011; Fernández-González et al., 2020; 

Fernandez-Gonzalez et al., 2011) combined aerobiological, phenological, and meteorological 

data achieving equally accurate production estimations more than one or two months in 

advance. 

Compared with other models based on vegetation indices applied to vineyard yield estimation 

at the regional level, the current model also performs well. Gouveia et al. (Gouveia et al., 2011) 

worked on multi-linear regression models using Corine Land Cover, wine statistics, NDVI, and 

meteorological variables (monthly averages of maximum, minimum, and daily mean 

temperature and precipitation) to estimate yield with 0,62<R2<0,90 in a simulated test 

environment. Using Satellite Pour l’Observation de la Terre (SPOT) ten-day synthesis 

vegetation product (S10) Cunha et al. (Cunha et al., 2010) based on a correlation matrix 

between the wine yield of a current year and the full set of 10-day synthesis NDVI also achieved 

good results (0,73<R2<0,84). Sun et al. (Sun et al., 2017) combined satellite-based NDVI from 

Landsat and MODIS with LAI obtained using a Li-Cor LAI-2000 instrument with good results, 

0,66<R<0,83 (for NDVI and Yield) and 0,66<R<0,83 (for LAI and Yield) although the validation 

was made locally in a small area. 

At the regional scale, crop simulation models are also an alternative for vineyard yield estimation 

(Barriguinha et al., 2021). This approach allows virtual experiments that can be made, for 

example, at specific phenological stages for testing hypotheses that could take years under real 

field conditions, with the added capability of integrating the findings in decision support systems 

(DSS). Cola et al. (Cola et al., 2014) achieved good results simulating the fruit load based on 

light interception derived gross assimilation and thermal and water limitations with R2=0,96 (for 

yield in low-density canopies) and R2=0,94 (for yield in high-density canopies). Sirsat et al. 

(Sirsat et al., 2019) focused on grape yield predictive models for flowering, coloring, and harvest 

phenostages using ML techniques and climatic conditions, yield, phenological dates, fertilizer 

data, soil analysis, and maturation index data to construct the relational dataset. The authors 

identified dew point, relative humidity, and air temperature as the most favorable variables in 

building the model, with 24,2%<RRMSE <28,6% for yield estimation. Fraga et al. (Fraga et al., 

2015) and Valdes et a. (Valdes-Gomez et al., 2009) used a similar approach using STICS models 

with R2=0,86 and R2=0,85 respectively both with overestimation and underestimation, 
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depending on the regions. In terms of performance, the current model can perform as well as 

the crop simulation alternatives. Those are much more complex as they are not limited to yield 

and simulate plant growth and development. They need to be calibrated and validated, requiring 

adaptability for new environments (distinct climate, soil, varieties, and management), making 

operationality and transferability difficult, complex, and costly in terms of time and biophysical 

data requirements (Sirsat et al., 2019). 

The current model outperforms other models, such as the simple grape production model 

(PGP) based on favorable meteorological conditions, developed by Fraga et al. (Fraga and 

Santos, 2017b), and the empirical model proposed by Santos et al. (Santos et al., 2020a) where 

temperature and precipitation averaged over different periods, along with the anomalies of wine 

production in the previous five years, were used as predictors. 

Models based on computer vision and image processing (by extraction of variables that can be 

related to the actual yield: number of berries, bunch/cluster area, leaf area, number of flowers, 

stems, and branches), trellis tension, laser, radar, and radio frequency data processing also 

constitute viable approaches for estimating vineyard yield. Nevertheless, those are not suitable 

for regional-scale implementation. Apart from the trellis tension approach, the real applicability 

under field conditions in commercial vineyards is not referenced for the most part (Barriguinha 

et al., 2021). 

3.4 Conclusions 

The use of LSTM neural network can be applied to vineyard yield prediction at the regional 

scale. It can perform as well as the other identified methodologies, outperforming some of them 

while dealing with some of the above-mentioned limitations. This and other ML-based methods 

can help study complex interactions between biotic and abiotic systems to understand and 

make predictions (Thessen, 2016), as in the current study. 

The developed model allows for an early yield estimation with better results at the VER stage 

(one month before harvest start) when compared to the FLO stage (3 months before harvest 

start), with an absolute error for the whole study region between 8% and 24%, and between 6% 

and 29% for the sub-regions. The estimation range is much broader regarding estimations 

made at higher spatial resolution (parish level). Although 68% of the parishes have an average 

error below 20%, we consider that the model is not yet capable of predicting at that more 

detailed scale. 
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Despite the good results, the fact that there are no production data at the plot level (limiting the 

size of the dataset), a short time series of yield data, and a low number of weather stations 

(limiting the size and quality of the dataset considering the size and characteristics of the study 

area), are factors perceived as sources of error and limitations for the current model, and the 

reason for not being able to go further for larger scales. This is consistent with the limitations 

identified for this type of model applied to yield prediction (van Klompenburg et al., 2020). 

Being a prediction model, this DL approach falls short of interpretability and, unlike more 

common inferential models, is a black-box model for making predictions (Emmert-Streib et al., 

2020). 

The variability and randomness of the yield and the different explanatory variables used 

between seasons, sub-regions, and parishes make the challenge of rapidly estimating yield very 

complex (Cunha et al., 2010). For the present study, we concluded that using NDVI alone is 

insufficient for a robust and accurate model developed with this methodology. As climatic 

variables have a strong correlation to yield (Badr et al., 2018; Ferrer et al., 2017), using satellite 

data and meteorological variables constitutes a better strategy for regional scale estimation of 

wine production (Gouveia et al., 2011). The performance is also very dependent on 

environmental conditions and management strategies (Sun et al., 2017), with yield correlated 

with an extensive list of climate, soil, and plant variables with high temporal and spatial 

heterogeneity. Also, the relation to quality is one of the biases that yield estimation needs to 

deal with, as the producer's management decision directly impacts quality and yield. 

The integration of more specific multispectral based VI data, such as Leaf Area Index (LAI), or 

the use of Synthetic Aperture Radar (SAR) and Light Detection And Ranging (LIDAR) data can 

be tested as potential future developments in this field. 
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4. Final Considerations 

4.1 Summary of findings 

To date, the alternative methodologies for yield estimation, as demonstrated in the first study, 

surpass the limitations assigned to traditional manual sampling methods with the same or better 

results on accuracy. They all have advantages and shortcomings, but they still lack a 

fundamental key aspect: the real application in commercial vineyards. Despite extensive 

research in this area, adoption at an operational level to effectively substitute the manual 

sampling estimation is residual. Methods made available to winegrowers to estimate production 

as far in advance as possible must be simple and with little data, preferably with data that 

producers can access quickly, easily, and cheaply and, if possible, without the need for intensive 

training or validation. The best approach must consider the availability and/or possibility of 

having the required inputs (required data is sometimes not available), the adequate spatial 

resolution (field level or regional level), the necessary granularity (information regarding the 

spatial variability in each area) and required precision (e.g., a simple smartphone camera, 

despite the loss in quality, can be in many cases a cost-effective alternative to hyper and 

multispectral cameras, LiDAR, ultrasonic and radar sensors). 

The synergistic use of proximal and remote sensing with AI can be one of the best ways to 

model a vineyard production system. Still, due to its inherent complexity, it is a difficult challenge 

to apply because of the diversity of field conditions, as remote sensing data is dependent on 

spatial, temporal, and spectral resolution; and yield is correlated with an extensive list of climate, 

soil and plant variables that have high temporal and spatial heterogeneity. Also, the relation to 

quality is one of the biases that yield estimation needs to deal with, as the producer's 

management decision directly impacts quality and yield. 

For local estimation at the farm level, data-driven models based on computer vision and image 

processing are the ones the researcher’s community is putting more effort into and can be 

classified as the easiest to deploy by growers under real field conditions. Data acquisition can 

be made easily on the go with a vast array of solutions ranging from a simple smartphone to an 

autonomous robot platform, a UAV, or even agriculture equipment. Despite promising results 

in estimating yield, these methods are not fully matured yet. Management practices (e.g., trellis, 

leaf-pulling, shoot/cluster thinning, and shoot positioning) can directly impact data acquisition 

by affecting the relationship between what is measured and the predicted yield. There are still 

problems with occlusion, algorithms are generally variety-dependent, and environmental 

dynamics are challenging. Data acquisition speed, computational processing constraints, and 
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the availability of predictive yield maps as output should be addressed in commercial 

applications. Vegetation indices are also a good alternative as they can be easy to deploy and 

used at different scales with good results, especially NDVI. Data acquisition is generally feasible 

and affordable, but transforming data into usable information requires technical knowledge not 

often available to all farmers. The past limitations linked to the direct use of multispectral satellite 

remote sensing data, such as insufficient spatial resolution, inadequate temporal resolution, and 

complex data access and processing, were significantly overcome since the launch in mid-2015 

of the EU Copernicus Program’ Sentinel-2 mission combined with the development of 

appropriate desktop and cloud-based data processing platforms (e.g., Google Earth Engine: 

https://earthengine.google.com/; Sen2-Agri: http://www.esa-sen2agri.org/; and Sen4CAP: 

http://esa-sen4cap.org/. As for models based on computer vision and image processing, 

correspondent operational solutions are not yet available for growers as needed. Future 

commercial solutions can pass by including yield estimation algorithms in UAVs data 

management software or web platforms like EO Browser (https://apps.sentinel-hub.com/eo-

browser/) or EOS Platform (https://crop-monitoring.eos.com/) providing multispectral satellite 

data and derived products and indices, with required parametrization when needed. Crop 

models were also referenced as one of the best alternatives for estimating yield. Still, few 

examples were identified, mainly because of the complexity of their development, especially 

hard in vineyards because of the inherent specificities and the required data for calibration in 

different locations and for different varieties. Other more residual approaches like laser, radar, 

radio frequency, and ultrasonic data can provide new alternatives to cope with some of the 

difficulties encountered, especially in computer vision and image processing approaches. 

As demonstrated in the first study, there is a lack of solutions for estimating yield at broader 

scales (e.g., regional level). The perception is that decisions are more likely to take place on a 

smaller scale, which in some cases, is inaccurate. It might be the case in regulated areas (82,4% 

of vines in the EU are dedicated to the production of ‘quality wines’ planted for wines under the 

Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) 

classification) and areas where support for small viticulturists is needed and made by institutions 

with proper resources and a large area of influence. This is corroborated by the fact that data-

driven models based on Trellis Tension and Pollen traps are being used for yield estimation at 

regional scales in real environments in different regions of the world. The main 

disadvantages/difficulties of using pollen-based models are: choosing the best placement for 

sampling devices to represent spatial variability effectively; the number of observations for 

model calibration (historical data not commonly available); costly and complex laboratory 

processes; plant dynamics (high variations of the area with vineyards around the pollen traps); 

temperature and precipitation variations; vineyard management activities (fertilization impact); 

https://earthengine.google.com/
http://www.esa-sen2agri.org/
http://esa-sen4cap.org/
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and identification of the beginning and final of the pollen season. As for Trellis Tension models, 

despite the better estimative that can be achieved and the ability to monitor near to real-time, 

the applicability of this method to commercial vineyards still needs to be evaluated regarding 

needed calibration for different vineyards and trellis systems, consistency across seasons, 

installation costs, number of sensors and spatial deployment. 

In recent years, DL has been considered a breakthrough technology in ML and DM, including 

in the RS research field. ML methods are increasingly being used as a tool for crop yield 

prediction, with LSTM and CNN being the most widely used DL approaches, with better results 

when compared to traditional ML approaches for crop yield prediction, taking advantage of the 

ability to extract features from available data. Despite being recent, this ANN-based data 

science approach is not new to vineyard yield estimation. It is leading the alternative methods 

as one of the most utilized techniques for attempting an early yield estimation. However, it has 

been limited to small-scale experiments, mostly in controlled environments associated with 

models based on computer vision and image processing. Despite its use in remote and proximal 

sensing models with an inherent spatial component, predictive yield maps are scarcely 

referenced and used as an output of yield estimation models. New approaches like GeoAI are 

not yet referred to in the literature. As spatial variability and heterogeneity are some of the more 

critical parameters for decision-making in PV (the producer wants to know the quantity and 

where that quantity is), it is a relevant research gap that is addressed in the second study with 

the use of LSTM neural network yield estimation model with remote sensing (satellite-based 

time-series of NDVI calculated from Sentinel 2 images) and climate data (local automatic 

weather stations) applied to vineyard yield prediction at the regional scale. It can perform as 

well as the other identified methodologies, outperforming some while dealing with some of the 

limitations mentioned above. This and other ML-based methods can help study complex 

interactions between biotic and abiotic systems to understand and make predictions, as in the 

current study. 

The developed model allows for an early yield estimation with better results at the VER stage 

(one month before harvest start) compared to the FLO stage (3 months before harvest start) 

and can be applied at different scales. The variability and randomness of the yield and the 

different explanatory variables used between seasons make the challenge of rapidly estimating 

yield very complex. Using NDVI alone is insufficient for a robust and accurate model developed 

with this methodology. As climatic variables have a strong correlation to yield, satellite data and 

meteorological variables constitute a better strategy for regional scale estimation of wine grape 

production. 
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4.2 Contributions 

The research approaches for predicting yield in vineyards for wine production have the potential 

and can, for the most, serve as an alternative to traditional estimation methods based on manual 

sampling, with better results, but they lack practical applicability under field conditions in 

commercial vineyards. Choosing the right approach and ensuring the applicability under field 

conditions depends on the availability of data at the adequate spatial and temporal resolution 

for the required accuracy and precision of the estimation in a cost-effective model capable of 

justifying the advantage of knowing in advance the quatity of grapes in a given area. 

The proposed model using NDVI and climate data with a DL approach based on an LSTM 

Neural Network can produce an adequate estimation of wine grape yield up to 1-2 months 

before harvest. To the best of the author's knowledge, it is the first application of DL to regional 

vineyard yield estimation. 

The developed estimation model can cope with the limitations identified in the current model in 

use in the study area, which relies on the relationship between airborne pollen and wine 

production, namely: predicting only for the entire region, predicting wine production instead of 

wine grape production; the need to maintain representative pollen sampling devices with high 

maintenance and operational costs, and complex laboratory process to treat the data; and a 

wide prediction interval. 

The developed model can be transferred to other regions, giving decision-makers at different 

levels a good estimation, not only for the total regional and sub-regional wine grape production 

areas but also at a more detailed scale (depending on the granularity of the available datasets). 

4.3 Limitations and future research 

Despite the good results, at the regional level, aggregated production data limits the size and 

quality of the dataset with an impact on the model accuracy, constituting a limitation to go further 

for larger scales (parcel level) with good results. This limitation is difficult to overcome since, 

contrary to continuous annual crops, such as corn, spatial yield data for perennial crops (like 

vineyards) is much more complex to acquire due to the lack of mechanical harvesters with yield 

sensors that are essential for building and validating models. In the specific case of the present 

study area, as in many others, mechanical harvest is not even an option for the majority due to 

terrain limitations concerning the production model. 

Climatic data from the automatic weather stations available did not have the ideal granularity 

(regarding quantity, location, and available variables), considering the size and heterogeneity 
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of the study area. Further research should evaluate more robust models in defining the weather 

stations' areas of influence. Also, integrating satellite and model-based products like the NASA 

Power project (https://power.larc.nasa.gov/) with long-term climatologically averaged estimates 

of meteorological quantities can be helpful and constitutes a future research line for generating 

weather data sets where ground weather station data is missing or unavailable. 

Regarding remote sensing data, the temporal NDVI profiles collected from Copernicus Sentinel-

2A and 2B only allowed the model to train after 2016, despite having production data for a much 

broader time interval. For the current methodological approach, this is considered a limitation. 

The Sentinel-2 images provide information on 13 spectral bands from 443 to 2190 nm, including 

the red-edge band, the short-wave infrared band, and the near-infrared narrow band. These 

bands benefited the prediction of vegetation variables and have been used in yield estimation 

in continuous annual crops. Even though vineyard is a discontinuous and perennial crop that 

lasts decades, with a particular management system (more so in the study area of the present 

study) very different from corn, wheat, or other similar crops (with 47 development stages and 

a myriad of interventions with potential impact on the outcome); where the goal, contrary to 

most annual crops, is not to maximize production (due to the quality aspects of the final product 

- wine); and, being perennial, it can, for example, carry-over effects from previous seasons, 

future research should evaluate the integration of alternative and/or more specific multispectral 

based VI data, such as LAI, or even explore the use of SAR and LIDAR data as potential future 

developments in this field for estimating in a wide scale range. 

Finally, being a prediction model, this DL approach falls short of interpretability and, unlike more 

common inferential models, is a black-box model for making predictions. 
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