36 research outputs found

    Development and experimental validation of direct controller tuning for spaceborne telescopes

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.Includes bibliographical references (p. 285-294).Strict requirements in the performance of future space-based observatories such as the Space Interferometry Mission (SIM) and the Next Generation Space Telescope (NGST), will extend the state-of-the-art of critical mission spaceflight-proven active control design. A control design strategy, which combines the high performance and stability robustness guarantees of modem, robust-control design with the spaceflight heritage of conventional control design, is proposed which will meet the strict requirements and maintain traceability to the successful controllers from predecessor spacecraft. Two principal tools are developed: an analysis algorithm that quantifies each sensor/actuator combination's effectiveness for control, and a design engine which tunes a baseline controller to improve performance and/or stability robustness. The sensor/actuator effectiveness indexing tool requires a reduced-order state-space model of the plant. A modification of the balanced reduction method is introduced which improves numerical conditioning so that the order of large models of flexible spacecraft may be decreased. For each sensor and actuator an index is computed using the modal controllability from an actuator weighted by the modal cost in the performance, and the model observability of a sensor weighted by the modal cost of the disturbance. The special case of actuators that are used for active output isolation is handled separately. The designer makes use of the sensor/actuator indexing tool to select which control channels to emphasize in the tuning. The tuning tool is based on forming an augmented cost from weighting performance, stability robustness, deviation from the baseline controller, and controller gain. The tuning algorithm can operate with the plant's state-space design model or directly with the plant's measured frequency-response data. Two differentiable multivariable stability robustness metrics are formed, one based on the maximum singular value of the Sensitivity transfer matrix and one based on the multivariable Nyquist locus. The controller is parameterized with a general tridiagonal parameterization based on the real-modal state-space form. The augmented cost is chosen to be differentiable and a closed-loop stability-preserving unconstrained nonlinear descent program is used to directly compute controller parameters that decrease the augmented cost. To automate the closed-loop stability determination in the measured-data-based designs, a rule-based algorithm is created to invoke the multivariable Nyquist stability criteria. The use of the tuning technique is placed in context with a high-level control design methodology. The tuning technique is evaluated on a sample problem and then experimentally demonstrated on a laboratory test article with dynamics, sensor suite, and actuator suite all similar to future spaceborne observatories. The developed test article is the first spacetelescope- like experimental facility to combine large-angle slewing with nanometer optical phasing and sub-arcsecond pointing in the presence of spacecraft-like disturbances. The technique is applied to generate an improved controller for a model of the SIM spacecraft.by Gregory J.W. Mallory.Ph.D

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Space station systems: A bibliography with indexes (supplement 9)

    Get PDF
    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Design Development Test and Evaluation (DDT and E) Considerations for Safe and Reliable Human Rated Spacecraft Systems

    Get PDF
    A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy

    Technology for large space systems: A bibliography with indexes (supplement 22)

    Get PDF
    This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion

    Planification de trajectoire et contrôle d'un système collaboratif : Application à un drone trirotor

    Get PDF
    This thesis is dedicated to the creation of a complete framework, from high-level to low-level, of trajectory generation for a group of independent dynamical systems. This framework, based for the trajectory generation, on the resolution of Burgers equation, is applied to a novel model of trirotor UAV and uses the flatness of the two levels of dynamical systems.The first part of this thesis is dedicated to the generation of trajectories. Formal solutions to the heat equation are created using the differential flatness of this equation. These solutions are transformed into solutions to Burgers' equation through Hopf-Cole transformation to match the desired formations. They are optimized to match specific requirements. Several examples of trajectories are given.The second part is dedicated to the autonomous trajectory tracking by a trirotor UAV. This UAV is totally actuated and a nonlinear closed-loop controller is suggested. This controller is tested on the ground and in flight by tracking, rolling or flying, a trajectory. A model is presented and a control approach is suggested to transport a pendulum load.L'objet de cette thèse est de proposer un cadre complet, du haut niveau au bas niveau, de génération de trajectoires pour un groupe de systèmes dynamiques indépendants. Ce cadre, basé sur la résolution de l'équation de Burgers pour la génération de trajectoires, est appliqué à un modèle original de drone trirotor et utilise la platitude des deux systèmes différentiels considérés. La première partie du manuscrit est consacrée à la génération de trajectoires. Celle-ci est effectuée en créant formellement, par le biais de la platitude du système considéré, des solutions à l'équation de la chaleur. Ces solutions sont transformées en solution de l'équation de Burgers par la transformation de Hopf-Cole pour correspondre aux formations voulues. Elles sont optimisées pour répondre à des contraintes spécifiques. Plusieurs exemples de trajectoires sont donnés.La deuxième partie est consacrée au suivi autonome de trajectoire par un drone trirotor. Ce drone est totalement actionné et un contrôleur en boucle fermée non-linéaire est proposé. Celui-ci est testé en suivant, en roulant, des trajectoires au sol et en vol. Un modèle est présenté et une démarche pour le contrôle est proposée pour transporter une charge pendulaire

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones
    corecore