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ABSTRACT

Strict requirements in the performance of future space-based observatories such as the

Space Interferometry Mission (SIM) and the Next Generation Space Telescope (NGST),

will extend the state-of-the-art of critical mission spaceflight-proven active control design.

A control design strategy, which combines the high performance and stability robustness

guarantees of modem, robust-control design with the spaceflight heritage of conventional

control design, is proposed which will meet the strict requirements and maintain traceabil-

ity to the successful controllers from predecessor spacecraft. Two principal tools are

developed: an analysis algorithm that quantifies each sensor/actuator combination's effec-

tiveness for control, and a design engine which tunes a baseline controller to improve per-

formance and/or stability robustness.

The sensor/actuator effectiveness indexing tool requires a reduced-order state-space

model of the plant. A modification of the balanced reduction method is introduced which

improves numerical conditioning so that the order of large models of flexible spacecraft

may be decreased. For each sensor and actuator an index is computed using the modal

controllability from an actuator weighted by the modal cost in the performance, and the

model observability of a sensor weighted by the modal cost of the disturbance. The special

case of actuators that are used for active output isolation is handled separately. The



4 ABSTRACT

designer makes use of the sensor/actuator indexing tool to select which control channels to

emphasize in the tuning.

The tuning tool is based on forming an augmented cost from weighting performance, sta-

bility robustness, deviation from the baseline controller, and controller gain. The tuning

algorithm can operate with the plant's state-space design model or directly with the plant's

measured frequency-response data. Two differentiable multivariable stability robustness

metrics are formed, one based on the maximum singular value of the Sensitivity transfer

matrix and one based on the multivariable Nyquist locus. The controller is parameterized

with a general tridiagonal parameterization based on the real-modal state-space form. The

augmented cost is chosen to be differentiable and a closed-loop stability-preserving

unconstrained nonlinear descent program is used to directly compute controller parame-

ters that decrease the augmented cost. To automate the closed-loop stability determination

in the measured-data-based designs, a rule-based algorithm is created to invoke the multi-

variable Nyquist stability criteria.

The use of the tuning technique is placed in context with a high-level control design meth-

odology. The tuning technique is evaluated on a sample problem and then experimentally

demonstrated on a laboratory test article with dynamics, sensor suite, and actuator suite all

similar to future spaceborne observatories. The developed test article is the first space-

telescope-like experimental facility to combine large-angle slewing with nanometer opti-

cal phasing and sub-arcsecond pointing in the presence of spacecraft-like disturbances.

The technique is applied to generate an improved controller for a model of the SIM space-

craft.

Thesis Supervisor:
Prof. David W. Miller
Dept. of Aeronautics and Astronautics
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SIM Space Interferometry Mission
SISO single-input single-output
ST star tracker
s.v. singular value
SVD singular value decomposition
SWLQG Sensitivity-Weighted Linear Quadratic Gaussian
VC Voice coil
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Symbols

z
y
w
x
U
A
B,
BU
Cz
Cy
Dzw
Dzu

D,,
D,,
G(s)
Gzw(s)
Gzu(s)
Gyw(s)
GY (s)
xc

AC
BC

K(s)
0
S(s)
A,
B,
Cs
D,
amax(-)

GminG_)

J(.)
Kb(s)
d(.)

R
Rz
Ru

R,
q
p

performance variable
sensor measurement
exogenous disturbances, including process and sensor noises
plant state vector
actuator inputs
plant dynamics matrix
plant disturbance input matrix
plant actuation input matrix
plant performance measurement matrix
plant sensor measurement matrix
plant disturbance to performance feedthrough matrix
plant actuation to performance feedthrough matrix
plant disturbance to sensor feedthrough matrix
plant actuation to sensor feedthrough matrix
plant transfer matrix
plant disturbance to performance transfer matrix
plant actuator to performance transfer matrix
plant disturbance to sensor transfer matrix
plant actuator to sensor transfer matrix
controller state variable
controller dynamics matrix
controller input matrix
controller output matrix
controller transfer matrix
frequency (radian/second)
Sensitivity transfer matrix
Sensitivity dynamics matrix
Sensitivity input matrix
Sensitivity output matrix
Sensitivity feedthrough matrix
maximum singular value operator
minimum singular value operator
maximum singular value over all frequency (H. norm)
cost function
baseline controller transfer matrix
distance function for comparing controllers
resolution-based scale factor for the sensors
performance-requirement-based scale factor for the performance variables
resolution-based scale factor for the actuators
intensity-based scale factor for the disturbances
left eigenvector of A
controller parameter vector or right eigenvector of A
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f controllability measure
h observability measure
J cost or modal control cost
V modal output state cost
a performance-weighted controllability measure

disturbance-weighted observability measure
Be output-isolation effective actuator input matrix

JA augmented tuning cost
M penalty term for control use
SR penalty term for stability non-robustness

Ss penalty term for deviations of max s.v. of Sensitivity greater than threshold
Scr penalty term for distance of Nyquist locus to the critical point

Ycr stability non-robustness term mixing parameter
p stepsize
H estimate of the inverse of the Hessian matrix
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Chapter 1

INTRODUCTION

Strict requirements on the performance of future space-based observatories such as the

Space Interferometry Mission (SIM) and the Next Generation Space Telescope (NGST),

will extend the state-of-the-art of mission-critical spaceflight-proven active control

design. A control design strategy which combines the high performance and stability

robustness guarantees of modem, robust-control design with the spaceflight heritage of

conventional control design is proposed which will meet the strict requirements, while

maintaining traceability to the successful controllers from predecessor spacecraft.

The thesis outlines a technique for tuning baseline controllers to meet strict requirements

while maintaining the heritage to previous missions. Two principal tools are developed: an

analysis algorithm that quantifies each sensor/actuator combination's effectiveness for

control, and a design engine which tunes a baseline controller to improve performance

and/or stability robustness. The designer makes use of the sensor/actuator indexing tool to

select which control channels to emphasize in the tuning. The tuning tool is flexible and

allows the alteration of the controller topology, trades of performance and stability robust-

ness, and limits of the deviation of the tuned controller from the heritage-rich baseline

controller. Further, the tuning algorithm can operate with the plant's design model or

directly with the plant's measured frequency response data.

The use of the tuning technique will be placed in context with a high-level control design

methodology. The sensor / actuator indexing tool and the tuning technique will be evalu-
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ated on a sample problem, and then demonstrated on a laboratory test article with similar

dynamics, a similar sensor suite, and a similar actuator suite to future space-based obser-

vatories. The development of the test article, the first to combine large-angle slewing with

nanometer optical phasing in the presence of spacecraft-like disturbances, is a contribution

of the thesis and will be presented in suitable detail. Lastly the tools will be applied to a

model of the SIM spacecraft.

The introduction is divided into a summary of the research objectives, a placement of the

work in the context of other dynamics and control research for space-borne telescopes, a

review of relevant previous work, and a roadmap of the thesis.

1.1 Research Objectives

The fundamental goal of the research is to improve the control technology readiness for

spaceborne telescopes. The work is motivated by three characteristics of future space-

based telescopes:

1. No 1-g deployment: Future spaceborne telescopes are large in dimension and
lightweight and will not be able to support their own weight in a gravity
field. No ground testing or model updating will be possible. The initial con-
troller must be designed with sufficient stability robustness using a non-
updated finite element method (FEM) model. Further, the controller may
require updating to handle inevitable on-orbit model/plant mismatches.

2. Tight performance requirement: The pointing and phasing requirements are
beyond the current state-of-the-art. To improve performance, the controller
should take advantage of all relevant sensor / actuator control channels and
of knowledge of disturbance statistics.

3. Mission profile: Future spaceborne telescopes are expensive and have a high
public profile. Instability and failure are not acceptable. A control strategy
with spaceflight and experimental heritage should be employed.

We wish to begin to bridge the gap between classical design with spaceflight heritage and

modern optimization-based design, with the hope to improve the achievable control per-

formance so that the tight imaging requirements can be met while maintaining the

required stability robustness. The theory/practice gap is addressed in [Bernstein, 1999] for
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general control theory. The work in this thesis attempts to link theory and practice for flex-

ible spacecraft control.

Particular objectives of this research can be summarized as:

- Outline a framework for the design of controllers for lightweight flexible
spacecraft.

- Develop a technique to quantify the suitability of a plant for local control,
and to quantify the advantages of global control. In particular we wish to

- Quantify the effectiveness of sensors and actuators for control,

- Determine the incremental effect of adding sensors and actuators.

. Develop a control design technique which takes advantage of modem opti-
mal control theory while preserving the critical mission heritage of conven-
tional, classical control designs. We adopt a strategy of tuning a baseline
controller (with mission critical heritage). The desirable features of the
methodology include:

- improvements in performance and/or stability robustness over the baseline
controller,

- an ability to control the deviation of the tuned controller from the baseline
controller,

- an ability to tune control designs using design models and experimentally
determined measurement models,

- an ability to quantify and take advantage of the addition of extra states to
the baseline controller,

- an ability to quantify and take advantage of the enhancement of coupling
in the baseline controller.

- Develop a laboratory test article which captures the relevant dynamics and
control issues anticipated for future space-based lightweight, flexible space-
craft.

- Experimentally validate the control design methodology on the laboratory
test article. We follow a procedure anticipated for the control design of the
Space Interferometry Mission: first, design and implement a baseline con-
troller with conventional, classical techniques, and then apply the developed
methodology to arrive at a tuned, final design.

- Demonstrate the application of the control design methodology to an exist-
ing integrated model of the Space Interferometry Mission. We begin with the
JPL/MIT-designed baseline controller, synthesized with conventional, classi-
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cal techniques, and then apply the developed methodology to arrive at a
tuned, final design.

1.2 Research Context

The control design for complex space structures must be placed within the context of the

entire system design [Joshi, 1999]. The MIT Space Systems Laboratory has developed a

framework for the analysis and design of the structure, dynamics and control for future

spaceborne telescopes. The framework provides a structured environment for the model-

ing, model assembly and conditioning, analysis, evaluation against requirements, and if

necessary, redesign for flexible space structures. Application of the framework to NGST is

presented in [de Weck et al., 2000]. Figure 1.1 is a framework block diagram.

MODELING MODEL BASELINE CONTROL DESIGN
PREPARATION AND ANALYSIS

Exit if the

Uncer- Uncer-
tainty i tainty
database Ianalysis

Figure 1.1 Dynamics, structures and control framework for analysis and design of flexible space struc-
tures. The thesis contributions to the framework are shaded. Models (and design data) are
shown in italics.
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The four column headings in the framework correspond to integrated modeling steps,

while the individual blocks correspond to step components (tools where applicable). The

framework is entered with an initial design. The design is modeled, and the FEM state-

space physics-based model is assembled from the avionics, disturbance, and structural

models. The model is conditioned and if a prototype is available measured data is used for

model updating. Alternately system identification can be used to estimate a state-space

measurement model from the measured data. With a state-space model a tool developed in

Chapter 3 can be used to assess the effectiveness of particular sensors and actuators for

control. The sensor/actuator effectiveness assessment along with a state-space plant model

(or measured design data) are used to design a baseline controller. The baseline controller,

sensor/actuator assessment, plant model (physics-based, measurement, or direct data), and

the result of an uncertainty analysis (to set stability margins requirements) feed the con-

troller tuning methodology of Chapter 4. The resulting controller improves the perfor-

mance and/or stability robustness of the baseline controller without losing the spaceflight

heritage of the baseline controller. By appending the controller to the physics-based model

we can assess the effect of disturbances, performance and sensitivity of the system. The

sensitivity analysis allows an isoperformance trade of the subsystem requirements, leading

to a (if necessary) plant redesign. Table 1.1 references the MIT research contributions that

make up the framework.

The tools developed in this thesis provide critical contributions to the dynamics, structures

and control framework for analysis and design future spaceborne telescopes.

1.3 Literature Review

Control design for lightweight flexible space structures and the control-structure interac-

tion is an area which has received much attention in the literature. [Crawley et al., 2001]

provides an overview of the dynamics and control of lightly damped structures. The appli-

cation and implementation of lightweight flexible space structure control was demon-

strated on-orbit with success during the Middeck Active Control Experiment (MACE)
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TABLE 1.1 Research references for the dynamics, structures and controls framework

Component Tool

Avionics modeling

Disturbance modeling

Structural modeling

Measuring plant data

Uncertainty database

Model assembly and condi-
tioning

Model updating

System identification

Referencea

Includes sensor dynamics, actuator dynamics and
delay [Glaese, 1994], Section 2.2.7

[Gutierrez, 1999] and [Masterson, 1999]

[Glaese, 1994]

As an example see Chapter 6

[Bourgault, 2000]

[Glaese, 1994], [Gutierrez, 1999], see
Section 3.1.2

[Glaese, 1994]

[Jacques, 1995]

BASELINE Disturbance, performance [Gutierrez, 1999]
CONTROL & and sensitivity analysis
ANALYSIS Sensor / actuator topology Chapter 3

assessment

Synthesize a baseline com- Standard control design, see Chapter 2. As an
pensator example, see Section 6.4

Uncertainty analysis [Bourgault, 2000]

DESIGN Isoperformance analysis and [Gutierrez, 1999] and [de Weck et al., 2000]
structural redesign

Controller tuning Chapter 4

a. References in bold are sections of this thesis which contribute to the framework. Listed ref-
erences are representative and are not meant to be exhaustive. References are principally
current and legacy research from the MIT Space Systems Laboratory which led to the devel-
opment of the framework.

program [Miller et al., 1996]. However, the techniques with the greatest performance were

modem model-based control designs which have little on-orbit heritage in non-experi-

mental applications. A tuning strategy is adopted to link modem robust optimization tech-

niques to conventional spacecraft control techniques.

An important component of the work is an algorithm to assess the suitability of sensor and

actuator combinations for control. Based on the sensor/actuator assessment, the designer

can select control channels to emphasize when applying the tuning methodology. We

review techniques to determine the suitability of actuators and sensors for control design

Step

MODELING

MODEL PREP-
ARATION
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and find that a technique which incorporates knowledge of the disturbance and perfor-

mance to index sensors/actuator combinations for control is needed.

We review controller tuning and find that an optimization-based frequency-domain strat-

egy is lacking with the following critical characteristics: (1) tunes a general baseline con-

troller, (2) allows specification of the topology (order and sensor / actuator connectivity)

of the tuned controller parameters (3) designs with an explicit metric of stability robust-

ness, (4) allows specification of the tuned controller's deviation from the baseline control-

ler, and (5) tunes with a design-model and/or measured-data.

Further, we review spacecraft-like controlled structure laboratory testbeds and demon-

strate that a testbed which captures all elements of the operation of a space-based observa-

tory: slewing, phasing, pointing, and optical capture in the presence of realistic

disturbances, has not been previously developed.

1.3.1 Sensor / Actuator Assessment for Control Effectiveness

Most relevant research in the literature for assessing sensor/actuator control effectiveness

is in the area of actuator and sensor placement for the control problem. [Anderson, 1993]

includes a detailed literature survey on the actuator placement problem for structural sys-

tems.

Closed-loop sensor / actuator assessment

Closed-loop techniques, whereby a constrained topology controller is synthesized and

evaluated, are expected to provide the most direct and accurate comparisons of sensor/

actuator topologies. [Mercadal, 1991] provides H2 optimal first-order necessary condi-

tions for block diagonal controller topologies. In practice though, the constrained topology

H 2 optimal controllers prove difficult to synthesize. Recently [Hassibi et al., 1999] devel-

oped a structural controller design technique which can be used to derive a sparse low-

authority controller based on a relaxed linear programming constraint. The sensor/actuator

topology is not pre-specified but determined simultaneous with the control design. The
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technique is extended to linear perturbations of the high-authority (performance improv-

ing) control, but does not rank the effectiveness of the sensors and actuators. The closed-

loop sensor evaluation problem is examined in [Mallory and Miller, 2000] where the abil-

ity of each sensor to H 2 optimally estimate each of the system states is determined by a

solution of a Ricatti Equation. The technique can be extended to the dual, actuator prob-

lem, but combining the sensor and actuator problems is difficult.

Open-loop sensor/actuator assessment

In open-loop techniques, the design model is analyzed without explicitly solving for the

controller. One set of strategies for the actuator/sensor placement problem involve defin-

ing a measure of controllability and observability and selecting sensor/actuator combina-

tions with the highest combined observability/controllability [Gawronski and Lim, 1996],

[Lim, 1992]. [McCasland, 1989] is similar but includes weightings by fault probabilities.

To eliminate the difficulty of discrete locations, [Maghami and Joshi, 1993] approximate

sensor measurements and actuator forces with spatially continuous functions to arrive at a

well-posed nonlinear programming problem. These approaches use the actuator-to-sensor

transfer matrix and do not exploit knowledge of the disturbance and performance charac-

teristics.

Skelton's modal cost analysis [Skelton and Hughes, 1980] breaks up the system's H 2 per-

formance cost into a sum of modal contributions. By examining the effect of each actua-

tor, and the measure of each sensor on modes of the open-loop cost, a subset of sensors or

actuators can be chosen which are determined to be effective [Skelton and Chiu, 1983],

[Lin, 1996]. The simultaneous selection of sensors and actuators is not presented. The

technique is modified to account for closed-loop effects in [Skelton and DeLorenzo, 1983]

whereby the LQG problem is solved, sensors and actuators with little contribution are

removed and the process is repeated. What results is a subset of actuators and sensors that

are suited for LQG control. The technique does not index actuators and sensors for a gen-

eral control topology.
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In [Kim and Junkins, 1991] controllability measures are combined with Skelton's modal

cost techniques to place actuators with an open-loop strategy that accounts for disturbance

and performance characteristics.

The technique developed in this thesis extends [Kim and Junkins, 1991] to the sensor

problem, and then combines sensors and actuators to account for their acting together.

Further, the technique captures the special case of actively decoupling of the uncontrolla-

ble modes from the performance.

1.3.2 Controller Tuning Strategies

Controller tuning and synthesis are differentiated in this thesis as visualized in Figure 1.2.

Controller synthesis involves designing a compensator for the open-loop system. By tun-

ing we describe the process whereby the closed-loop system is modified by perturbing a

baseline controller. In a tuning case we may limit the deviation of the tuned controller

from the baseline controller. The control synthesis of [Miotto, 1997] is based on a similar

concept whereby controllers for aircraft are tuned without changes in the control architec-

ture (i.e. preserve heritage).

open-loop baseline

plant controller
synthesis ---.

tuned
off-line controller

desg ile r o uine 1

measurement model

Figure 1.2 Controller synthesis and tuning

Many references exist for the synthesis of controllers. [Ogata, 1990] and [Van de Vegte,

1990] are complete references on the classical synthesis of controllers, applied to single-

input, single-output (SISO) systems. [Kwakemaak and Sivan, 1972] is a classic reference

on the synthesis of multiple-input, multiple-output (MIMO) H2 controllers. [Zhou et al.,
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1996] is a more modem treatment, encompassing H. and .t synthesis controllers. [Gro-

cott, 1994] compares several robust control synthesis techniques.

Off-line controller tuning

A number of control synthesis techniques can be alternately considered as tuning tech-

niques. The following section reviews a number of off-line controller tuning strategies and

places the developed tuning methodology in context with the Literature.

H2/- design weight tuning

The use of design weights in the H 2 /H. control problem allow the designer to indirectly

tune and shape the closed loop transfer matrix singular values [Gupta, 1980] and [Lublin

et al., 1996]. By iterating on the frequency domain shape of the weightings the controller

can be tuned. The technique guarantees a stable closed loop on the design model. The

technique suffers from (1) a complicated mapping through a set of Ricatti Equations from

weight adjustment to closed-loop performance, (2) the required use of a design model, and

(3) a large order since weighting states are reflected in the controller order. Further details

on loop shaping can be found in [Zhou et al., 1996] and the references therein.

Sensitivity-Weighted Linear Quadratic Gaussian tuning

A more direct controller tuning, with emphasis on improving stability robustness is given

by Sensitivity-Weighted Linear Quadratic Gaussian (SWLQG) control design, [Okada and

Skelton, 1990], [Grocott, 1994]. In this technique, the H 2 cost matrices are perturbed to

account for minimizing an approximation to a set of sensitivity states. The adjusted Ricatti

equations are solved to obtain the SWLQG controller and in the case of lightly damped

structures considerable stability robustness improvements can be achieved with only

slight performance degradation. The technique (1) requires a design model, and (2)

requires a large-order model-based controller.

We note that for the implementation of H2 and SWLQG controllers [Masters, 1997] man-

ually tuned the controller parameters, post-synthesis, to increase robustness, with little
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degradation of performance. The poles of the controller were displayed on the complex

plane and the designer perturbed the frequency and damping of controller poles near criti-

cal points on the Nichols plot. If perturbed properly, loops and near-critical-point encircle-

ments can be pushed away from the critical point, increasing robustness enough to allow

implementation of the controller. Robustness was particularly sensitive to the location of

any unstable controller poles. Though this method can be applied to any controller, it suf-

fers from (1) no explicit recipe for pole perturbation, and (2) an incomplete controller

parameterization, and (3) a capability for only small adjustments to the controller.

Youla Parameter Tuning

[Youla et al., 1976] develops the parameterization of all stabilizing controllers for MIMO

systems. The theory shows that every controller that stabilizes a plant is contained in a set

which can be parameterized by a MIMO parameter, Q. Further, the mapping from Q to

many closed-loop functions is affine, allowing the closed-loop system to be directly tuned.

The implication is that by properly applying Q, we set up a well behaved affine optimiza-

tion problem of tuning Q to directly minimize a cost. This Q parameterization tuning

approach was directly developed by [Boyd et al., 1988] and [Polak and Salcudean, 1989].

A detailed description and development of the framework is presented in [Boyd and Bar-

ratt, 1991]. Recently, [McGovern, 1996] and [Lintereur, 1998] applied the technique to the

multiple-loop SISO control design for a lightly-damped flexible laboratory structure. The

Q parameterization suffers from several critical disadvantages: (1) A generalized baseline

controller is not possible since Q must be connected to the system such that it provides no

feedback, limiting the baseline controller to be model-based, or to include a contribution

from the plant dynamics that enters the controller structure as Q becomes nonzero, and

(2) Q must be parameterized using basis functions, resulting in large-order controllers and

limitations from approximating an infinite basis set with a finite number of functions.
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SISO Classical Controller Tuning

Two tuning methods by Ziegler and Nichols are common for SISO process control [Van de

Vegte, 1990] and based upon classical control synthesis. We assume a structure for the

controller: proportional (P), proportional/integral (PI), or proportional/integral/derivative

(PID). The gains are tuned based on the step response of the plant to achieve a desired

overshoot. The method assumes a controller structure, a low-order plant, and gains are

non-optimally tuned based on heuristic rules.

Further tuning rules for low-order classical SISO controllers are present in the Literature.

The importance of P, PI, and PID control design is stressed by their abundance in indus-

trial application. [Astr6m et al., 1998] presents a technique for selecting the gains of a PI

controller to optimize a cost function based on maximizing the load disturbance rejection

while setting constraints on tracking and the sensitivity. The paper is relevant to the work

in this thesis since the control design problem is reduced to a non-convex optimization. A

family of papers by Astr6m derive methods for the optimal design and tuning of these

classical low-order controllers (see for example [Astr6m and Hagglund, 1995]). [Johans-

son et al., 1998] extends the methodology to MIMO systems in a limited manner. The

paper of [Ho et al., 1998] presents an extension of the Ziegler-Nichols tuning which

ensures robust PID controllers by optimizing a classical performance index: integral

square error (ISE), integral absolute error (IAE), or integral time absolute error (ITAE),

while directly ensuring specified gain and phase margins.

[Hjalmarsson et al., 1998] details a technique for low-order SISO controller tuning similar

to that developed in this thesis. The controller is parameterized and an optimization a car-

ried out over the parameters of the controller. The gradients of the cost function with

respect to controller parameters are computed (estimated) and a Newton-Gauss optimiza-

tion is iteratively performed. Stability robustness is not directly handled though proper

specifications by the designer will ensure suitable margins.
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The preceding SISO tuning rules perform well on the low-order, heavily damped plants of

process control, but suffer from three defects: (1) the plant is assumed to have a low-order

and is typically without lightly-damped dynamics, (2) the controller has a low-order and is

of a fixed structure (3) the SISO techniques are not easily extendable to MIMO systems.

Direct (Parameter Optimization) MIMO control

The direct synthesis of MIMO H2 controllers differs from conventional H 2 control in that

no Ricatti Equations are solved. Instead a cost function is formed, gradients with respect

to controller parameters are computed, and controller parameters are computed by

decreasing the cost function with a nonlinear program or with a homotopy algorithm. Nec-

essary conditions for H2 optimality, given a state-space design model, are derived in

[Mercadal, 1991] for the full-order, reduced-order and partially constrained controller

topology. Extending this synthesis technique to tuning is trivial. The optimal projection

equations of [Hyland and Bernstein, 1984] are similar necessary conditions for the

reduced-order H 2 control problem. Synthesizing the optimal controller by satisfying the

necessary conditions is difficult but a nonlinear program to directly improve the cost of a

baseline controller proves to be beneficial. Care must be taken to ensure that the resulting

controller stabilizes the design model. [Collins and Sadhukhan, 1998] compare the use of

homotopy algorithms with nonlinear programming techniques for the H2 optimal

reduced-order control design. [Ly et al., 1985] derive similar cost functions and gradients

for a design-model but use a reduced controller parameterization. Ly's technique is made

more general in [Ly, 1998] and includes a multiple-model capability similar to that of

[MacMartin et al., 1991] to implicitly ensure stability robustness. The main limitations of

these direct MIMO control techniques are (1) stability robustness is not captured as an

explicit element of the cost, (2) no framework for a general controller parameterization

(with variable controller order and sensor/actuator topology) seems apparent in the litera-

ture, and (3) all development is with design models: no capability to directly tune control-

lers with measured plant data is apparent. The tuning methodology developed in this thesis

will extend direct (parameter optimization) tuning and surpass these limitations.
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Measured Data-Based Control Design

Designing controllers directly with measured transfer matrix data (i.e. without a design

model) is a classical control concept. Many frequency-domain based classical graphical

design techniques such as Bode design, Nyquist design and Nichols design can be applied

without a state-space model [Ogata, 1990]. Extending these design techniques to MIMO

systems has proven to be difficult despite the existence of a MIMO Nyquist criteria [Leh-

tomaki et al., 1981].

More recently, the concept of unfalsified control has been introduced [Safanov and Tsao,

1997]. Controllers are falsified when experimental plant measures indicate that the con-

troller would lead to instability or fail to meet requirements. Falsified controllers are

removed from a set of available controllers. [Woodley et al., 1999] uses a linear program

to select an optimal SISO controller from an unfalsified set of controllers of a fixed order.

The unfalsified control concept is limited by (1) the difficulty of finding an initial set of

controllers for a general MIMO case, (2) a lack of techniques for efficiently removing fal-

sified controllers from the set, and (3) a lack of general, MIMO techniques for extracting a

good controller from the unfalsified set.

During the MACE experiment [Miller et al., 1996] measured experiment data was incor-

porated into the control synthesis strategy as an evaluation step. If the control design did

not perform well, as simulated with the measured data, then the design weights were man-

ually tuned. The work in this thesis intends to automate this ad-hoc design strategy by

directly using the measured data for control design.

Adaptive control and on-line tuning

In adaptive control, the controller is iteratively tuned on-line to ensure stability for a not-

necessarily well modeled, perhaps time-varying, plant [Narendra and Annaswamy, 1989].

Extensions of adaptive control to nonlinear plants are made [Slotine and Li, 1991]. Often,

stability is considered of primary importance, at the expense of considering guaranteed

performance secondary. The principal drawback of adaptive control for the near-term con-
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trol of future spaceborne telescopes is a lack of spaceflight heritage. Linear time-invariant

control theory is more established than its adaptive counterpart for space systems. Con-

verting some of the direct strategies discussed above to adaptive tuning is feasible with

on-line monitoring of the plant. To build spaceflight heritage [Davis et al., 1999] intend to

demonstrate a frequency-based adaptive control for a lightly damped flexible space struc-

ture on the MACE reflight program.

The proposed technique of this thesis is a degenerate case of direct adaptive control

whereby iterative tuning is performed off-line. The technique balances performance and

stability robustness in the control design. Further by designing with measurement models,

our technique comes closer to the realism of on-line tuning than standard design-model

tuning techniques. Lastly, the developed tuning technique shall be extendable to on-line

tuning with minimal alterations.

1.3.3 Experimental Test Articles

Multiple ground-based experimental facilities exist for the validation of control tech-

niques on flexible systems. [Sparks and Juang, 1992] surveys the U.S. experimental facil-

ities for control of flexible structures. In this work, experiments are categorized as control

experiments, encompassing topics such as vibration suppression, slew control, system

identification and deployment, or as test facilities for testing sensors, actuators and sys-

tems under on-orbit environmental conditions. No facility is available which includes all

elements of space telescope operation: slew, optical capture, observation control under

reaction wheel disturbance with realistic actuators and sensors.

The Jet Propulsion Laboratory (JPL), as the prime contractor for SIM spacecraft, have

developed a series of interferometer test articles culminating with the Micro-Precision

Interferometer (MPI) testbed. MPI is a technology demonstrator for validating nanometer-

level phasing control [Neat et al., 1997], [Neat and O'Brien, 1996], sub-arcsecond point-

ing control [O'Brien and Neat, 1995], and integrated modeling techniques [Melody and

Neat, 1999]. The disturbance source for regulation control experiments is a shaker emulat-
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ing on-board disturbances. MPI proves to be an extremely high-fidelity system but is lim-

ited in that (1) it cannot perform a slew maneuver and (2) reaction wheel windup

disturbances are not realistically generated by the shaker.

TABLE 1.2 Experimental test articles relevant to future spaceborne telescopesa

Fine-
Experimental Large-angle Phasing pointing Spacecraft

facility slew control control disturbance Notes and Referenceb

JPL Micropreci- None ~ 10 nm -0.4 arcsec None [Melody and Neat, 1999]
sion Interferome- (shaker) Adding reaction wheel dis-
ter turbance

Palomar testbed None - 10-20 nm Yes, with None [Colavita et al., 1999] Fringe-
interferometer unknown measuring ground-based test-

fidelity bed

Advanced space Yes None None Reaction [Vadali et al., 1995] Air force
structures tech- wheels, cold slew and structural control
nology experi- gas thrusters experiment
ments

Space integrated None None -0.04 arcsec None [Personal communication
controls experi- (shakers) with R. Ninneman]
ment

MIT multipoint None - 50 nm None None [Blackwood et al., 1991]
alignment testbed (shakers)

MIT single-axis None ~ 50 nm None None [Masters, 1997]
interferometer (shakers)

MIT Origins 30 degrees - 50 nm - 1 arcsec Reaction Detail in the thesis
Testbed wheels

a. Other relevant test articles exist, but none except the Origins Testbed are know to have (1) large-
angle slew, (2) phasing control, (3) fine-pointing control and (4) spacecraft-like disturbance.

b. Personal communication with M. Colavita of the Jet Propulsion Laboratory and S. Griffin and R.
Ninneman both of the Air Force Research Laboratory, is acknowledged.

The MIT Space Systems Laboratory has developed a family of experimental facilities

detailed in [Miller and Mallory, 1998]. A fixed closed-topology truss structure called the

multipoint alignment (MPA) testbed was designed to investigate the precision control of

optical elements in a lightweight structure. Control experiments involved rejecting the

transmission of an induced shaker disturbance to an optical pathlength performance met-

ric. The single-axis interferometer (SAI) testbed of [Masters, 1997] evolved from the
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MPA to be more SIM-like with collectors at the end of two booms reflecting to a central

combiner. An induced shaker disturbance is rejected in an optical pathlength measure with

a combination of structural and optical control. The next test article in this family can be

made more space-telescope like by including: (1) an ability to combine a regulating obser-

vation mode with an ability to slew over large angles, (2) a realistic on-board reaction-

wheel induced disturbance, (3) a combination of optical pathlength control and a fine-

pointing control system.

Table 1.2 compares an non-exhaustive list of relevant test articles in terms of there capa-

bility for large angle slew with fine phasing and pointing control in the presence of a phys-

ical spacecraft-like disturbance. The Origins Testbed is believed to be the first spacecraft-

like testbed to combine large-angle slew control with fine phasing and pointing control in

the presence of realistic disturbances.

1.4 Research Contributions

The following unique contributions were made by meeting the thesis research objectives.

The contributions are developed in the thesis and summarized in the concluding chapter of

the document

- A framework for the design of controllers for spaceborne telescopes is
developed.

- An improvement to the numerical robustness of the common balanced
reduction method is developed.

- An algorithm is developed for determining the effectiveness of particular
actuators and sensors for the regulator control problem.

- A methodology is developed for tuning baseline controllers to allow trades
of four control features: (1) performance, (2) stability robustness, (3) devia-
tion of the tuned controller from the baseline controller, and (4) control
channel magnitudes.

- An automated algorithm for determining closed-loop system stability
directly on model data is developed.
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- The sensor/actuator effectiveness matrix is validated as a guideline for deter-
mining effective channels for control, and linked with the tuning methodol-
ogy on a one-dimensional interferometer sample problem.

- The Origins Testbed, the first spacecraft-like test article with a large-angle
slew capability, a 50 nm phasing metrology system, and arcsecond pointing
optics in the presence of reaction-wheel induced disturbances is designed,
developed and experimental tested.

- The tuning methodology is experimentally validated on the Origins Testbed.

- The tuning methodology is applied to a large-order model of the SIM space-
craft.

- An optimal decentralized state estimation framework was developed.

- Necessary conditions are derived for arbitrary-topology H2 optimal control-
lers.

1.5 Thesis Overview

The flowchart of Figure 1.3 provides a sequential outline for the thesis. The work is

divided into two principal areas: development and validation.

The development flowchart provides the reader with a chronological sequence of how the

developed tools should be applied. Given a model of the plant the designer can assess the

level of coupling in the plant by applying the sensor/actuator indexing algorithm to quan-

tify the natural plant couplings. The algorithm is developed in Chapter 3. By selecting sen-

sor and actuator sets the designer breaks the system up into a set of control problems and

designs a baseline controller using a synthesis technique from Chapter 2. The designer

then checks if the system meets the requirements. If so then the control design is complete.

If not then the designer can apply the tuning methodology of Chapter 4. The sensor/actua-

tor indexing information helps the designer decide which control channels should be

emphasized in the tuning. Again the closed-loop system is checked against the design

requirements. If the requirements are still not met then the tuning process continues. States

can be added and control sensor/actuator channels can be opened. Should the designer

eventually decide that a tuned controller will never satisfy the requirements then the plant

must be redesigned following the framework of Figure 1.1.
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DEVELOPMENT Comments

(a)Determine the plant's natural level of dynamic coupling
to (1) choose baseline control strategy, and (2) quantify
non-local control advantages [Chapter 3].

(b)Synthesize the baseline controller with the required heri-
tage. A methodology is outlined in Chapter 2. Typical
designs are with local controllers.

(c)Tune the baseline controller by using a (1) design or eval-
uation model, or (2) a measurement model [Chapter 4].

(d)Use the plant's level of dynamic coupling to determine
local loops to combine for tuning [Chapter 3].

(e)Demonstrate application of controller tuning to a simula-
tion sample problem to verify function and generate intu-
ition [Chapter 5]

(f) Design and construct a testbed to capture dynamics and
control problems of space telescopes [Chapter 6].

(g)Experimentally validate developed tuning strategy on the
representative testbed [Chapter 6].

(h)Design a controller for the SIM model. Confidence in
design is increased by testbed experiments [Chapter 7].

VALIDATION

Control
finished

~~ Await final models and
control strategy selection

Figure 1.3 Thesis flow: the development and validation of global controller tuning for spaceborne
telescopes
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The developed tools must be validated. Validation is presented as a flow chart in

Figure 1.3 and in tabular form in Table 1.3. From the application of the developed tools to

a sample problem we develop an intuitive understanding (Chapter 5). Based on this under-

standing the techniques are successfully implemented on an experimental test article

designed and constructed to be traceable to spaceborne telescopes (Chapter 6). Success

with traceable experimental test articles increases our confidence of the applicability of

the techniques to the true mission spacecraft. Lastly, the techniques are applied to a con-

ceptual model of a spaceborne telescope in Chapter 7.

TABLE 1.3 Validation of developed techniques: test matrix

Assess Sensor/ Design
System Actuator Baseline Apply Tuning Experimental Thesis

Effectiveness Controller Methodology Evaluation Chapter

Sample Problem Chapter 5

Origins Testbed Chapter 6

SIM Model a Chapter 7

a. The SIM baseline controller is provided by JPL with the exception of the fine pointing
optical control, introduced in [Gutierrez, 1999] and modified in this thesis.



Chapter 2

CONTROL DESIGN FRAMEWORK

In this chapter we discuss a framework for synthesizing robust controllers for high-perfor-

mance flexible spacecraft. A similar methodology was employed during the Middeck

Active Control Experiment (MACE) to design robust, high-performance controllers

[Miller et al., 1996 and Campbell et al., 1999]. The goal of presenting a control synthesis

methodology is to present a procedure for synthesizing controllers for space structures and

to place the developed tuning methodology in context as a tool within a control design

framework.

The chapter begins with an introduction to the notation and state-space concepts that will

be used throughout the thesis. The standard control regulator problem will be introduced.

Emphasis will be placed on the use and limitations of multivariable stability robustness

metrics. These metrics will be essential for (1) the evaluation and pre-implementation

safety testing steps in the controller synthesis framework and (2) the development of the

tuning methodology that forms the focus of the thesis in subsequent chapters. A controller

synthesis framework is presented which outlines the steps in control design. The frame-

work includes: specification of the control problem, model development, control strategy

selection, synthesis, evaluation and implementation. Controller tuning is also explicitly

included in the framework. Lastly, we state the thesis problem, and place the contribution

of the thesis in context with the controller synthesis framework.
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2.1 Notation and Formulation

We begin with an introduction to the notation that will be used in the thesis. We will con-

sider linear time-invariant (LTI) systems which can be represented with constant state-

space matrices. Though classical techniques often use numerator/denominator formula-

tions, most modem techniques are developed for state-space systems. The availability of

tools (for example, MATLAB) for synthesis, analysis, and their numerical maturity (i.e.

robustness to numerical problems) also support a state-space convention.

The section begins with a description of the standard control problem and definitions of

signals that will be used in the thesis. The Sensitivity transfer matrix is introduced. Defin-

ing metrics for MIMO stability robustness is critical for the tuning methodology and sub-

sequently the issue of MIMO stability is detailed. The use of the singular values of the

Sensitivity transfer matrix as a conservative estimate of the gain and phase margins is

detailed, and the use of the multivariable Nyquist locus as a metric of stability robustness

is introduced.

2.1.1 Standard Control Problem

In Figure 2.1 we have a block diagram of the standard control problem. We have a plant,

G(s), with a set of inputs and outputs that will be represented with vectors: exogenous

disturbances w e 9n , actuator inputs u E 9", , performance variables z e 9"Z, and sen-

sor measurements y e 9n' where s represents the Laplace variable. 91 represents the

field of real numbers. A compensator, K(s), receives y as an input and generates actuator

signals, u. Tracking is enabled by introducing a reference, r E 91' at an appropriate loca-

tion in the loop.

All definitions are presented for multiple-input, multiple-output (MIMO) systems unless

otherwise noted. With the controller unconnected, we can write the open loop system as,

z = G(s) Lw (2.1)
_ _
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Figure 2.1 General control system interconnection

where we can parse the transfer matrix G(s) as,

G(s) = Gzw(s) Gzu(s) (2.2)
G,,(s) G,(s)j

We can write G(s) in state-space form with the notation,

t = Ax+Bww+BuU

z = Czx+Dzww+Dzuu (2.3)

y = Cyx+Dww+Du

where x e nX is the state variable, A e ,n, xn is the plant dynamics matrix,

B ( 9z'X n' is the disturbance input matrix, BU e ,, xu is the actuator input matrix,

CZ E 9nX nx is the performance output matrix, C, e X x is the sensor measurement

matrix, and Dzw, Dzu, D,,, and DYU are respective feedthrough matrices of commensu-

rate dimensions. With these definitions, G, (s) can be written as,

G, (s) = C,(sI-A) - 1BU+ D, . (2.4)

The remaining elements of G(s) can be similarly defined.

The controller, K(s) can be written in state-space form as

c ACxC + BCy 
(2.5)

u =Cxc
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where xC e 91n is the controller state, AC E 91 n is the controller dynamics matrix,

BCe 9 9n, is the controller input matrix, and Cc e 91" x C is the controller output

matrix.

When the controller is appended to the dynamics of Equation 2.1 with positive feedback'

we arrive at

z = [Gzw(s)+ G,,(s)K(s)(I- G,(s)K(s))-I G,,(s)]w (2.6)

y = (I - G,,(s)K(s))- G,,(s)w

in transfer function notation, which we write in state-space notation as,

S _ A BC x+ BW[-] c BCCY A+ BDYUCi xe [BCDj

z = (CZ DzU C] +Dzww (2.7)

y = C DUCC] +D,,w

We will use the notation A (ci) B(cl) C () C(cl) D(cl) D(cl) for the above state-spacew' z y' zw yw

matrices, where the (-) superscript refers to a closed-loop system.

2.1.2 Sensitivity Transfer Matrices

Our definitions of Sensitivity transfer matrices are derived from the standard feedback

configuration of Figure 2.2. In the diagram, r is a reference, d is an exogeneous process

noise, n and is an exogeneous sensor noise. Recall the positive feedback convention.

With simple block diagram manipulations we find,

1. A positive feedback convention will be used for all theoretical developments in this thesis, with the
exception of graphical displays of stability where the classical negative feedback convention will be
employed.
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d

Figure 2.2 Standard feedback configuration

e = (I - G,,(s)K(s)) (- r+ n + d) (2.8)

y = (I - G,,(s)K(s))~I d + G,,(s)K(s)(I - G,,(s)K(s)) - r + n)

The function

S(s) = (I-G,,(s)K(s))~- (2.9)

is called the Sensitivity transfer matrix'. S(s) relates the process noise d to the output y.

We can also think of the Sensitivity transfer matrix as the sensitivity of the closed-loop

response to perturbations in the open-loop [Van de Vegte, 1990]. To see this we consider a

SISO case. We derive the closed-loop function from the input r to the output y and find

that

= C(s) = .G U(s)K(S) (2.10)
r I - GYU(s)K(s)

We wish to determine the sensitivity of changes in the closed-loop tracking, AC, with

respect to changes in the open-loop plant, AG ,

SC/G = C G 1 (2.11)

By allowing the changes to become infinitessimal we differentiate to arrive at

1. Equation 2.9 is the output Sensitivity transfer function, defined by cutting the loop at the plant output. In
the thesis, Sensitivity Transfer Matrix refers to the output Sensitivity Transfer Matrix.
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SC/G = 1 (2.12)
C/G 1 _-G,(s)K(s)

which is the SISO expression for the Sensitivity transfer matrix defined above. Thus when

SC/G is small, the closed-loop transfer function is insensitive to perturbations of the open-

loop plant. The desensitization of the closed loop to perturbations in the open loop is an

advantage of feedback. Alternately when SC/G is large, the effect of open-loop plant per-

turbations is amplified in the closed loop. If Gyu(s)K(s) approaches 1 at some frequency

SC/G blows up, which is an indication of instability. Thus we have an intuitive connection

with SCIG and stability robustness. The connection will be quantified in the next section.

We should note that S(s) itself does not provide a metric of absolute stability. When

S(s) -> <x it is an indication of an ill-behaved system; one where the slightest perturbation

may lead to instability. For SISO systems an absolute measure of stabililty is given by the

Nyquist condition [Ogata, 1990].

The MIMO function relating y to r,

C(s) = -G,,(s)K(s)(I- Gyu(s)K(s))~ (2.13)

is called the Complementary Sensitivity transfer matrix. C(s) relates the sensor noise n

to the output y, and also determines the tracking performance, y = C(s)r. Further, the

identity

S(s) + C(s) = 1 (2.14)

is easily verified to hold.

To determine state-space relations for S(s) and C(s) we first form a state-space system

corresponding to the loop gain, Gyu(s)K(s):
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S A BC x+ 0e
Itc 0 AC xe BC[ .] - -A~uc x1~oj -. (2.15)

y = IC, D,,C] x

where we have d = 0 in Figure 2.2. By substituting e = r + y we can derive a state-

space model for C(s), and with Equation 2.14 we can write a state-space representation of

S(s),)

A BUC X+ 0r

Lx ci BeC, AC + BCD UCC XC BCH - -C (2.16)

y = [CDCJx + Ir

The Sensitivity state-space system of Equation 2.16 will be denoted with the matrices,

{AS, B,, CS, Ds} . We note that the state-space relations for the Complementary Sensitivity

transfer matrix {ACs, cs C , D} are related to those for S(s) by

ACS = A , B B, Cs, = CS, DC, = 0. (2.17)

[Zhou et al., 1996] demonstrates the use the sensitivity functions S(s) and C(s) for loop

shaping control design.

In the SISO case, at frequencies where the loop gain IGu,(o)K(jo) is large we have
1

S (jo)| G I which will be small and IC(jo) -> 1 . Thus where we have a
G,,U(jco)K(jo)|

large loop gain, we have a small sensitivity which corresponds to good rejection of d in y

and good stability robustness. At frequencies where the loop gain is small we have

IS(jo)| -* 1 and |C(io) - JGYU(jo)K(jto) which will be small. When the loop gain is

small we loose the benefit of feedback: the performance reduces to the open-loop case,

and the closed-loop system is as sensitive to perturbations as the open-loop system.
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2.1.3 Sensitivity as a Measure of Stability Robustness

The physical interpretation of S(s) as the sensitivity of the closed-loop system to pertur-

bations in the open-loop plant indicate that S(s) may be used as a measure of stability

robustness. In this section the use of S(s) as a stability robustness measure is developed

for SISO systems and then extended in a limited manner to MIMO systems.

SISO Development

At frequencies where the loop gain is near unity, (i.e. G, (jo)K(jo) = cc +jo with
J2-2
X + o= 1) we find that S(jco)| is very dependent on the loop gain's phase. We have

1
ISUo)| = 1 (2.18)

2(1 -cc)

where o varies from - 1 cc 1 implying that I <|S(jo)| oo. Clearly, near crossover,

where the loop gain is near unity a proper phase is important to avoid a large Sensitivity

and subsequent poor stability robustness. These SISO stability arguments are consistent

with the gain and phase margins of Bode stability theory [Ogata, 1990].

To maintain good stability robustness, it seems that we should simply ensure |S(jco)| 1

for all frequencies. Generally, this is not possible. There are design tradeoffs when we tune

the Sensitivity. For SISO linear systems the phase and magnitude are related through

Bode's gain and phase relation [Zhou et al., 1996]. This relation computes

ZGYU(jo 0 )K(jo 0 ) at a frequency o by integrating a function of the loop gain over all

frequency and correcting for the phase contributions of non-minimum phase zeros.

A further quantitative example is provided by the Bode Sensitivity Integral [Looze and

Freudenberg, 1996] which states: given a SISO loop gain, Gyu(s)K(s) with right-half

plane poles {pg, i = 1, ... , n}, then

nP

J(log|S(jo)|)do = 7 Re(p) (2.19)

i= 1
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if GY (s)K(s) has at least two more poles than zeros. The implication of Equation 2.19 is

that the area under log|S(jo) depends only on the open-loop unstable poles. Thus if

IS(jo)| is pushed down in one frequency region, it must pop up in another frequency

region. Though Equation 2.19 holds exactly only for SISO systems, the Sensitivity push-

pop also manifests itself in MIMO systems. Additional integral Sensitivity constraints are

found in [Freudenberg and Looze, 1985].

Extension to MIMO Systems

Trivial extensions of the preceding analysis to MIMO systems are not possible. In a multi-

variable example the loop gain becomes a matrix quantity which implies that singular val-

ues must be used as a measure of size along a particular y direction'. Thus, the loop gain

may be small in one y direction while it is large in another. More seriously, the loop gain

may be near unity at multiple frequencies for multiple singular values corresponding to a

particular y directions. The probabilistic occurrence of sensor inputs coinciding with

these directions is difficult to quantify. Near-unity loop gain singular values can lead to a

blow-up of Sensitivity transfer matrix singular values, indicating near-instability. To fur-

ther complicate matters, the Bode integral relations are not known to be extendable to the

general MIMO case. In practice, similar limitations are observed in MIMO systems but

they are not quantified. In the following section the MIMO extension of the use of S(s)

and the multivariable Nyquist locus as metrics of stability robustness will be explored.

To quantify stability robustness, we can use the unstructured uncertainty MIMO stability

margin as defined in [Lehtomaki et al., 1981]. The result is derived based on the Small

Gain Theorem which will be stated using Figure 2.3. Traditionally A(s) is considered to

be a perturbation to the plant M(s), and the Small Gain Theorem sets conservative limits

on the size of A(s) that can be withstood without destabilizing the interconnection. We

assume that we have little knowledge of the form of A(s) so we treat it as an unstructured

uncertainty.In the figure y = MAy.

1. In a MIMO system the sensor signal y is a vector quantity with both a magnitude and a direction.
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y

Figure 2.3 Small Gain Theo-
rem block diagram

We state the Small Gain Theorem: given that A(s) and M(s) are stable, and y> 0 then

the system of Figure 2.3 is stable for (a) |IA(s)|I 1/y if and only if I|M(s)||.< y and (b)

||A(s)|. < 1/y if and only if ||M(s)|. 7. A proof of the Small Gain Theorem can be

found in [Zhou et al., 1996].

We will assume that we cast the uncertainty of the plant as divisive uncertainty as shown

in Figure 2.4.

y

Figure 2.4 Divisive uncertainty

With a series of simple block manipulations we arrive at,

y = d+G,,(s)K(s)y

= (A(s) + Gyu(s)K(s))y
(2.20)

which we can rewrite as,

A(s)y = (I-GU(s)K(s))y. (2.21)

By setting M(s) = (I- Gyu(s)K(s)) we can use the Small Gain Theorem to define a

robust stability condition of
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(IG-G,,(s)K(s))y11 1 (2.22)
IIA(s)II.

for guaranteed stability.

By following a procedure in [Chao and Athans, 1996] we extend this result. First we

define a stable, minimum-phase, weighting scalar, m(s), such that A(s) = m(s)A,(s)

for some I|A,(s)I|. 1 . By substituting in Relation 2.22 and using the definition of the

H. norm we write a condition for stability robustness as

(Tmax[(I - G,,(jo))K(j(o))_1] < 1"~(), Vo0 > 0 (2.23)

where amax[f(jo)] is the maximum singular value of f(jo) at frequency o, and the

Laplace variable is evaluated as s = jo. Stability robustness requires that S(s) is smaller

than the uncertainty function, 1/Im(jo)I at all frequencies. We note that Im(jo)I is small

where the model is certain and approaches unity where the model is uncertain. We con-

clude that for good stability robustness we require that amax[S(jo)] remains small where

the model is uncertain.

By taking maximum singular value over all frequencies we compute the maximum singu-

lar value of the Sensitivity:

T = max(cYmax[(I- G,(jo)K(j(o))]) (2.24)

We can define a MIMO guaranteed gain margin as,

GM = (2.25)
(T± 1

and a guaranteed phase margin,

PM = ±arccos 1 - )]. (2.26)
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We are guaranteed stable if the gains of all channels or phases of all channels are changed

simultaneously within the margins [Lehtomaki et al., 1981].

In a similar sense, we can define

Y = min(Ymin[I- GU(jco)K(jo)])
(0 (2.27)

as the minimum singular value of S(jfo) . The operator aminLf(jto)] returns the mini-

mum singular value of f(jo) at frequency (o. We note that T = 1/Y.

By substituting in T into Relation 2.23 we arrive at

( < , Vo > 0 (2.28)
|m(jo0)|

as a condition for stability robustness. Condition 2.28 implies that reducing S(s) in

regions where the model is uncertain will ensure stability robustness. Through Equation

2.14 we see that C(s) can be used for alternate stability robustness relations [Chao and

Athans, 1996].

We loosely interpret a as a minimum distance to the critical point, such that if the channel

complex deviation exceeds this minimum distance, the number of encirclements (in a

Nyquist sense) of the critical points is altered and the, assumed stable, system destabilizes.

Section 2.1.4 provides an analysis of the use of the MIMO Nyquist criteria as a measure of

stability robustness.

A major problem with the Sensitivity singular value analysis for stability robustness is that

it can be extremely conservative. The deviations (uncertainty) of the plant are assumed

possible in any direction - even directions that are physically impossible. The research in

[Bourgault, 2000] and the references therein model the probabilistic uncertainty for flexi-

ble space structures and future research should couple this uncertainty research with met-

rics for stability robustness. In practice, however, [Miller et al., 1996] found that

monitoring a provided a useful indication of stability robustness where emphasis is
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placed on (1) frequency regions where the plant is not well modeled (high uncertainty),

and (2) frequency regions where the predicted Sensitivity singular values (predicted by

simulating the controller on the design model) differ from the measured Sensitivity singu-

lar values.

2.1.4 Nyquist Locus as a Measure of Stability Robustness

Analysis of the Sensitivity transfer matrix provides a measure of stability robustness, but

unless S(s) is singular, no measure of the absolute stability. The Nyquist locus provides a

graphical method to determine absolute stability. In this section the Nyquist locus is intro-

duced for SISO systems and its extension to MIMO systems is made. The use and limita-

tions of the MIMO Nyquist locus as a measure of stability robustness is explored.

SISO Development

The Nyquist locus and Nyquist stability criteria are hallmarks of classical control [Ogata,

1990]. The SISO Nyquist locus is a computed by evaluating the loop gain GYU(jo)K(jo)

along a frequency contour. A sample Nyquist locus is plotted in Figure 2.5 (for simplicity

only the positive frequency plot is drawn).

For closed-loop stability, the number of encirclements of the (-1, 0) critical point must be

equal to the number of open-loop unstable poles. Assuming the plant is stable, a change in

the number of encirclements indicates a change to instability. From this logic we can use

the Nyquist plot to determine stability margins. In Figure 2.5 the traditional gain margin is

indicated by a and the phase margin by the angle y. An alternate view on Nyquist locus

stability robustness is provided if the uncertainty in the loop gain is known as a function of

frequency. Balls of uncertainty can be drawn on the Nyquist locus [Lublin 1992] as shown

in Figure 2.5. A ball represents the possible locations of the Nyquist locus at that fre-

quency. The shape of the ball depends on the physics of the plant and needs not be circu-

lar. The research of [Bourgault, 2000] characterizes the uncertainty for flexible space

structures. If the balls of uncertainty never include the critical point then the system is

robustly stable.
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Figure 2.5 SISO Nyquist plot (positive frequency) is drawn with solid
line. The unity gain circle is indicated with a dashed circle.
The gain margin, x, and phase margin are, y, are indicted
on the figure. Small circles along the locus correspond to
balls of uncertainty at several respective frequency points.
The circle around the (-1,0) critical point indicated a guar-
anteed robustness region.

The detraction of the balls-of-uncertainty viewpoint is that: (1) the shapes of the balls are

extremely difficult to probabilistically compute, and (2) an infinite number of balls exist

(one for each frequency in the Nyquist locus). To simplify we assume that we are quanti-

fying the robustness of an already stable system. We claim to have robust stability if the

Nyquist locus never enters a ball centered at the critical point, (-1, 0). The intuitive con-

clusion is that the closer the Nyquist locus passes by (-1, 0), the closer we are to a change

in the number of encirclements which indicates a change in stability. Thus the closest dis-

tances from the Nyquist curve to the critical point provide a measure of stability robust-

ness.
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Extension to MIMO Systems

The Nyquist absolute stability criterion is extendable to the MIMO case [Lehtomaki et al.,

1981]. For closed-loop stability, the net number of counterclockwise encirclements of the

critical point of the Nyquist function,

L,(jo) = - 1 + det(I - GU(jo)K(jo)) (2.29)

must equal the number of poles of the open-loop system, Gy (s)K(s) (assuming no unsta-

ble pole/zero cancellations).

The properties of the determinant operator ensure that extending the stability robustness

results to the MIMO case proves to be problematic. Consider a loop gain evaluated at a

frequency mo:

0 0

GU(joO)K(jo) = (2.30)
E _

where E is a small real number. The resulting point of the MIMO Nyquist is

L,(joo) = 0, well away from the critical point. With an E perturbation of one entry, we

have

0 E_
GU(joo)K(jo 0 ) = [ (2.31)

and the resulting MIMO Nyquist point is L,(joo) = -I indicating instability. This exam-

ple demonstrates that in a MIMO system, maintaining a safe distance from the Nyquist

locus to the critical point is a necessary but not sufficient condition for good stability

robustness. The minimal distance from the critical point to the Nyquist locus is thus an

under-conservative measure of stability robustness. The properties of the determinant that

cause this behavior provides the impetus for the singular value analysis of Section 2.1.3.
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In practice [Masters, 1997] shows the utility of such a stability robustness metric. By man-

ually tuning compensator poles to increase the minimal distances of the Nyquist locus to

the critical point [Masters, 1997] was able to implement controllers that otherwise proved

to cause an unstable closed loop. By using a stability robustness measure based on this dis-

tance, the tuning algorithm of Chapter 4 automates his procedure.

2.2 Controller Design Methodology

A control design methodology must integrate the quantitative techniques for controller

synthesis with a heuristic set of experience and intuition-based rules employed by the

designer. Many of the capabilities that are required in the Methodology are provided in a

Graphical User Interface based toolbox discussed in [Henderson et al., 1998]. Further

work can include the development of an expert system based on a heuristic set of general

design rules, to simplify the necessary designer input to the control design process.

A control design methodology follows the flowchart of Figure 2.6. In this flowchart,

inputs to the left of the dashed line are opportunities for the designer to interface directly

with the control design methodology. This is where the designer intuition, experience, and

heuristic rules enter the design methodology. On the right we have the principle blocks

which are directly connected quantitatively (i.e. by passing models, mathematical con-

straints, etc.).

2.2.1 Problem Specification

The first step in the control synthesis methodology is to properly specify the problem. The

design must quantitatively set up the control problem from an abstract problem statement.

We require the specification of the variables in Table 2.1 to quantify the control problem.

Other requirements can be levied at this stage.

For example, stability robustness guarantees against an unknown, but bounded, plant

uncertainty may be required, or a limit on the magnitude of an actuator signal. Less
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TABLE 2.1 Variables to quantify a control problem

Vector Specification

z define performance variables

w define exogeneous disturbance

u select actuator suite

y select sensor suite

explicit requirements may be placed on the structure (for example PID) or on the com-

plexity of the controller. Controller structure requirements may be driven by implementa-

tion issues such as hardware, or by control heritage for critical applications. The

anticipated implementation of the controller also drives the design. For example, digital

implementation limits the maximum frequency of controller eigenvalues. Also, controller

input/output hardware (for example 12 bits), limits the controller's dynamic range.

The control design problem simplifies to the statement: Find a controller that meets the

requirements, if one exits. Otherwise determine that no controller exists [Boyd and Bar-

ratt, 1991].

2.2.2 Modeling for Control

The second step in the design process is to find a model of system for control design. This

step is particularly important if a modem, model-based design method is to be employed.

The model should have the following characteristics:

1. Fit the plant behavior well in the bandwidth on interest. In particular, the fre-
quency region where the controller will be adding energy to the plant should
be well modeled for stability robustness. In particular the model should
describe the behavior of the plant well at the anticipated cross-over frequen-
cies [Lintereur, 1998]. To ensure stability, particular emphasis should be
placed on the phase of the channels of the transfer matrix from the sensors to
actuators, G,,(s).

2. Should accurately capture the physical zeros of the plant. The zeros of the
plant have a major impact on the control design, and thus should be properly
modeled. Particular attention must be paid to any nonphysical nonminimum
phase model zeros.
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3. Have the lowest possible order. The design model should be as low order as
possible while still satisfying 1 and 2 above. The low-order design model
may be reduced from a higher-order evaluation model. A low-order model
eases the computational burden of the design process, and effectively
reduces the order of model-based compensators.

4. Capture the plant uncertainty. Uncertainty in the plant (and the correspond-
ing plant models) should be captured [Bourgault, 2000]. Plant uncertainty
models can be used to evaluate the stability and performance of the closed-
loop system given multiplicative and parametric uncertainty

At this stage we would ideally have three models: (1) A low-order state-space design

model, (2) A high-order state-space evaluation model, and (3) a measured plant frequency

response for each input and output of interest. Sometimes system identification experi-

ments are not possible so that (3) is not available, and we must appeal to a finite element

model (FEM) for models (1) and (2). This is true for SIM and NGST which will not be

deployable in the Earth's gravity field.

2.2.3 Plant Coupling Analysis

Based on the physics of the plant the designer can decouple the control problem into a set

of simpler problems. In this manner, a complex global control problem is cast into a set of

more tractable, simpler control problems. Well designed systems can often be partially

decoupled.

We can decouple a system in two principal ways:

1. Input/output decoupling: We select subsets of the sensor and actuator suites
for control. For example in a spaceborne telescope we decouple the attitude
control from the optical control. We assume that a sensor measures the local
characteristics of the system and that an actuator controls locally. This is the
principle behind collocated local control. A technique that provides a quanti-
tative assessment of the sensors and actuators for local control is a contribu-
tion of the thesis and is developed in Chapter 3. Appendix A develops a
technique for assessing the suitability of particular sensors for local/global
state estimation.

2. Dynamic decoupling: We transform the A matrix to be approximately block
diagonal whereby weak structural coupling is exhibited between subsystems.
For example a local power plant can be controlled by assuming that it is
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decoupled it from the power grid. [Mutambara, 1998] and [Hillier and Lie-
berman, 1995] provide techniques for dynamic decoupling.

In both cases the control designer must be careful to ensure stability by quantifying inter-

action of the local controllers.

2.2.4 Control Strategy Selection

The selection of a control strategy, such as H 2 or classical, is often driven by the require-

ments. The factors which drive the selection of a control strategy are enumerated below.

The enumeration considers requirements, and represents the first stage in a requirements

flow down from the problem statement to the controller synthesis.

1. Ease of implementation. Planned hardware may limit the structure (order and
input/output topology), bandwidth or dynamic range of a controller. A quan-
titative trades between controller complexity and computation is an area to
be researched.

2. Inherent robustness. Strategies with a built-in robustness (for example, linear
quadratic regulator (LQR) and loop transfer recovery (LTR)) are desirable
for critical applications where stability is the prime concern.

3. Desired performance. If performance is the prime design concern then opti-
mal control strategies can be employed.

4. Ease of stabilization. Some systems, in particular those with nonminimum
phase behavior prove to be difficult to stabilize. Methods which provide sta-
bility guarantees are favored in these instances.

5. Heritage for applications. Critical applications may require that a particular
control strategy be employed (for example PID) because of a heritage of suc-
cessful operation in similar systems.

6. Ease of design tuning. Certain control strategies are more easily tuned than
others during successive iterations of the design process. For example, Sen-
sitivity Weighted LQG (SWLQG) follows from a slight modification of the
design matrices of an original LQG design [Grocott, 1994]. Another exam-
ple includes the use of the Q parameterization to tune a model-based initial
design [Lintereur, 1998 and Boyd and Barratt, 1991].

7. Subsystem complexity. The complexity of each subsystem in the decoupled
system can drive compensator strategy selection. For example, simple SISO
systems are easily controlled classically, but a complex MIMO subsystem,
may require modern MIMO synthesis methods.
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Table 2.2 is a non-exhaustive list of control strategies that have experimental heritage

(with emphasis in the MIT SERC laboratory). We pay particular attention to design tuning

opportunities. No detail of the strategies is provided here, though references to theoretical

descriptions are provided.

2.2.5 Synthesizing Baseline Controller

When a control strategy has been selected, we now can synthesize a baseline controller.

Different control strategies will require different amounts of designer interaction and input

at this stage. Most strategies do not explicitly handle design constraints (with the excep-

tion of constrained optimization techniques [Boyd and Barratt, 1991]. Further, explicitly

handling stability and performance robustness can also severely complicate the design, as

in the D-K iteration of p. synthesis [Zhou et al., 1996]. In Table 2.2 we include a list of

possible synthesis methods with the necessary designer inputs for each method.

Once the controller has been designed, we must reduce it to a size that can be implemented

(most techniques do not allow a specific constraint of controller order and structure). Sim-

ilar system reduction techniques were also used for modeling for control as discussed in

Section 2.2.2.

2.2.6 Controller Evaluation

Now that a controller has been designed, its performance and stability robustness must be

evaluated. In particular, the controller is checked to see if the design requirements are met.

Evaluating the performance is difficult since w is by definition unknown. Typically, we

appeal to statistical methods. For example, for a linear (stable) system we can determine

the RMS performance and actuation use. Maximum noise amplification, 1|G l , is often

used as a metric. Typical simulation evaluation will include evaluating the controller on:

(1) the control model, (2) the evaluation model, and (3) on measured system data (if avail-

able).

To determine the stability properties of the MIMO system a set of tools is used,
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TABLE 2.2 Non-exhaustive list of control strategies with (mostly) MIT SERC experimental heritage

Design Inputs

shaped by design to
meet specifications

control model, design
weights

control model, design
weights, sensitivity
weights

set of control models,
initial stabilizing con-
troller

H_ synthesis control model, design
weights

t synthesis control model, design
weights, uncertainty
model

control model, initial
stabilizing controller,
expansion coeffi-
cients of Youla
parameterc

Control
Technique

Classical fil-
ter design

H2 synthesis

SWLQGa

Multiple
model

Theoretical
Description

[Ogata, 1990];
[Van de Vegte,
1990]

[Zhou et al.,
1996]; [Kwak-
ernaak and
Sivan, 1972]

[Grocott, 1994]

[MacMartin et
al., 1991]

Tuning Adjustments

gain, filter order, filter
parameters

design weights

design weights, sensi-
tivity weights. Used
to tune H2 design

Tunes the initial stabi-
lizing controller to
minimize a cost over
the set of models

design weights, yb

D-K iterations tunes
successive H_ con-
trollers

expansion coeffi-
cients of Youla
parameter

[Boyd and Bar-
ratt, 1991];
[Polak and Sal-
cudean, 1989]

Experiment
Heritage

[Masters, 1997];
[Mallory and
Miller, 1999]

[Grocott et al.,
1997];
[Lublin and
Athans, 1995]

[Masters, 1997];
[Grocott et al.,
1997]

[Grocott et al.,
1997]

[Lublin and
Athans, 1995]

[How, 1993]
(Popov, real pt
synthesis)

[Lintereur,
1998]d

a. Sensitivity-Weighted Linear Quadratic Gaussian

b. as y varies from a high value to a lower limit, the design goes from pure H2 to pure H_
c. We expand the infinite dimensional Youla parameter with basis functions. The coefficients of the

basis function in the expansion are termed expansion coefficients

d. Draper Laboratory experimental result

1. Stability Determination. (Section 2.1.4) To determine absolute stability, the
MIMO Nyquist Criteria is used. For graphical purposes, we can plot,
Ln(jo) on a log-magnitude versus phase plot (called a Nichols plot) to
determine absolute stability. Graphically, the closed-loop system is stable if
and only if the number of number of left to right passes over critical points
(exp(-j(l ± 2n)7r), n = 1, ... , oo) is equal to the number of open-loop sys-
tem unstable poles.

2. Stability Robustness. (Section 2.1.3) Once absolute stability has been deter-
mined, sensitivity to plant perturbations can be determined from the Sensi-
tivity transfer matrix, S(s), as detailed in Section 2.1.2. Equation 2.23 is a

[Zhou et al.,
1996]

[Zhou et al.,
1996]

Constrained
optimization
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condition for stability robustness, and Equations 2.25 and 2.26 provide Gain
and Phase Margins based on - (from Equation 2.24).

3. Stability Robustness to parametric uncertainty. The maximum singular val-
ues of S(s) provides a conservative measure of the stability robustness to
multiplicative uncertainty. To determine a less conservative measure of sta-
bility robustness to parametric uncertainty, the final controller designs
should be evaluated with the structured singular value ji or with a similar
analysis tool.

Both (1) and (2) are required since a system can be nearly singular without det(.) being

close to zero, and the value of a does not by itself determine stability. This set of stability

tests has been used to evaluate stability performance of controllers [Grocott, 1994] and

[Miller et al., 1996]. The third tool is required to capture the effect of parametric uncer-

tainty in the frequency and the damping of the structural modes [Zhou et al., 1996 and

How, 1993].

2.2.7 Controller Implementation

After the controller has been properly evaluated with simulation, it can be tested on a

physical system. Key hardware issues and the advantages of physical control experiments

are found in [Miller and Mallory, 1998] and [Bernstein, 1999]. The implementation hard-

ware for control is found in Figure 2.7. Due to its common occurrence in modem control

applications and its special hardware issues, a digital compensator is examined.

0 G(s)u

'-[D/A H K-- A/D H F(s)]-*-

Figure 2.7 Control implementation hardware.

The system G(s) is controlled by a discrete compensator K which is implemented on a

computer. In this thesis, continuous compensators will be designed and then discretized
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for implementation. The plant is considered a continuous system with actuator inputs, u

and sensor outputs, y. The computer receives analog signals through a bank of analog to

digital converters (A/D) and generates analog control signals through a bank of digital to

analog converters (D/A). The sampling A/D requires the use of antialiasing filters, F(s)

Time delay adds a unity-gain phase lag to the system, and must be accounted by the con-

troller designer. Pade approximations allow delay to be modeled with the required fidelity.

If a measurement model is to be used, then delay can be included in the model by includ-

ing the A/D, control computer, and D/A in the identification loop.

The quantization of the A/D and D/A provide fundamental limits to the resolution of the

system sensors and actuators. For example, a sensor with a range of ±10 V sampled with a

12 bit A/D, will be binned in 4 mV quanta. That is, if 12 bit quantization is used then it is

not economic to purchase sensors with resolutions better than 4 mV. Quantization often

determines the fundamental noise floor. The resolution of actuators is treated in an identi-

cal way. In an analogous fashion, quantization also provides a fundamental stroke/resolu-

tion trade. For example, if a force actuator is set up to have a 1 mN resolution then 12 bit

quantization will limit the stroke to ±2 N. Improving the stroke or resolution requires

higher resolution A/D and D/A converters or the use of multiple/staged actuators (sen-

sors). For example a coarse actuator can be used for large stroke control, while a fine actu-

ator is added to compensate for the coarse stage's quantization error. Quantization limits

the dynamic range of the compensator. Quantization effects on the compensator, K(z), are

minimized if the full quantized range (i.e. ±10 V in the example above) is utilized. It is

useful for the system, G(s), to include variable gains on each of the sensor and actuator

channels. Gain can then be distributed around the loop allowing the compensator to fill the

quantized range. Frequency dependent sensor and actuator gains can further refine this

gain distribution, showing that physical considerations can influence the selection of the

gains and frequency characteristics of the sensors and actuators.
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The compensator can be represented in state-space form as {A, Bc, C,}. This form is

non-unique and presents a trade between computational efficiency and numerical condi-

tioning. For example, the compensator dynamics matrix AC can be tridiagonalized, allow-

ing sparse computation, whereas a numerically balanced realization tends to be fully

populated. High gain and unstable compensators can kick the system with strong startup

transients. In fact, unstable compensators can be very difficult to implement in practice.

When the controller is implemented, we can perform open-loop and closed-loop identifi-

cation experiments to measure the performance and stability robustness properties. We

can experimentally plot the multivariable Nichols plot and plot the maximum singular

value of S(s).

2.2.8 Controller Redesign and Tuning

Once the baseline controller has been designed and evaluated, if it is found to meet the

design requirements then the control design is complete. More likely, certain requirements

will not be met, and the controller will need to be tuned. Developing a controller tuning

methodology is the focus of the remainder of the thesis. In the next section the tuning

problem will be specified.

2.3 Problem Specification

Formally, now that notation had been defined, and a control design methodology has been

described, we can specify the central problem that will be investigated in this thesis. We

wish to provide a methodology for controller redesign should the original controller fail to

meet requirements. In Figure 2.6 we consider the controller redesign/tuning block.

Problem 1: Given a plant, and a baseline stabilizing controller, Kb(s), design a controller,

K(s) to,
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minimize J(K(s))
K(s)

subject to S/(K(s)) < as (2.32)

d(K(s) - Kb(s)) < dmax

1Km1l(o)| < aXK, ml((G)

where J(K(s)) is the performance as an explicit function of the controller (dependent on

the selected performance variables, z), S,(K(s)) is a measure of the stability robustness

of the closed loop, as is a requirement set on the stability robustness, d(.) is a distance

metric relating the change of the tuned controller K(s) to the baseline controller Kb(s),

dmax is the maximum allowed deviation from the baseline controller, |IKml(jo)|| mea-

sures the gain of the ml -th control channel at frequency o and ag m,((o) is a constraint

on the gain magnitude of the ml -th control channel.

In words, we wish to tune the baseline controller to arrive at a tuned controller which

improves the closed loop performance subject to satisfying: a stability robustness condi-

tion, a maximum deviation from the baseline control, and frequency-dependent controller-

gain constraints. Alternately we may wish to improve the stability robustness subject to a

performance constraint.

The tuning methodology is presented in Chapter 4 where definitions for the closed-loop

cost, the stability robustness metric, deviation from baseline control metric and control

channel gain metric will be presented. To make problem 1 tractable the constraints are

assumed soft and appended to an augmented cost. Further, the methodology results in a

non convex nonlinear program which forces us to relax the problem statement to that of

decreasing an augmented cost rather than finding a global minimum.

2.4 Summary

The general control problem is introduced. The MIMO extension of the SISO Nyquist sta-

bility robustness metric is explored and found to be necessary but not sufficient. Singular
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value analysis of the Sensitivity transfer matrix provides a conservative robust stability

metric. In Chapter 4 these are combined to form a MIMO stability metric.

A control-design framework is detailed. The framework is based on successful control

design experiments from the MACE program. Critical to the framework is the utilization

of physics to determine if the plant can be decoupled to transform a global control prob-

lem into a set of simpler controllers. A tool for analyzing plant couplings is developed in

Chapter 3. The control-design framework allows controller redesign if closed-loop

requirements fail to be met or if certain controller characteristics are undesirable. A meth-

odology for redesign based on controller tuning is proposed in Chapter 4. Further the tun-

ing methodology allows the design to specify a general controller topology to take

advantage of the natural system coupling as indicated by the application of the sensor/

actuator indexing algorithm of Chapter 3.

Lastly, the central problem of this thesis research is formally specified in context of the

control-design framework with the developed notation. The remainder of the thesis is

devoted to solving the tuning problem and validating it with simulation and experiment.
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Chapter 3

DECENTRALIZING THE CONTROL
TOPOLOGY

In this chapter, a quantitative method is developed for decentralizing the control topology

for controlling a dynamic system. The goal is to provide a tool for the designer which

allows the control of a complex plant (many sensors and actuators) to be broken up into

manageable local control loops each using subsets of the available sensors and actuators.

The tool provides the control designer with a quantitative analysis of which sensors and

actuators of the complex plant work together for effective control. A side result allows the

designer to glean the penalty for neglecting sensor/actuator channels and determines the

advantage of globalizing the control design. To maintain applicability to realistic plants,

emphasis is placed on developing tools with good numerical robustness.

Linear controllers are assumed which can be written in state-space form as in Equation

2.5. In transfer function notation we can write the MIMO controller as a set of SISO trans-

fer functions by

U = Kiy 1+K 12 y2 +... +K1 yn

U2 = K 2 1 y 1 + K 12 y2 +... + K 2 ny (
y , (3.1)

Uu =Knu i + KnU22+ ... + Kn yn

where the Kjk SISO transfer function relates the k -th sensor to the j-th actuator. A con-

strained topology controller enforces that Kjk = 0 for certain sensor/actuator combina-
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tions. These topology constraints are useful since they may allow the global controller to

be decentralized into a block diagonal form. The decentralized blocks can be designed

loop-at-a-time, and implemented with decentralized real-time control computers.

The controller topology is often intuitively constrained by the large-scale control system

designer. For example control for space telescopes is decoupled into (1) attitude control,

with rate gyroscopes and star trackers as sensors and reaction wheels as actuators, and (2)

optical control, with laser interferometers and wavefront tilt detectors as sensors and

active optical elements as actuators. Typically the attitude control sensors will not provide

information to the active optical elements. Topology constraints result in a loss of perfor-

mance since global controllers are generally required for optimality (H2 and H.).

In this chapter, a quantitative matrix linking each sensor to each actuator is computed from

the system model. Large matrix entries correspond to sensor/actuator channels that are

effective for control. The sensor/actuator linking matrix is proposed as a design tool to aid

in the controller topology selection. Further utility of the sensor/actuator linking matrix

allows the designer to observe the benefit of providing additional sensors information, or

additional actuators to a decentralized local controller. Additional applications of the tech-

nique includes sensor and actuator placement (as opposed to selection) for control design

and system identification.

[Mercadal, 1991] provides H2 optimal first-order necessary conditions for block diagonal

controller topologies. The necessary conditions are extended to the general topology case

in Appendix B of this thesis. An optimization problem can be visualized where the H2

cost is appended with a term to penalize the number of non-zero sensor/actuator channels.

In practice, the constrained topology H2 optimal controllers prove difficult to synthesize.

In [Mallory and Miller, 2000] and Appendix A the closed-loop sensor evaluation problem

is examined where the ability of each sensor to H2 optimally estimate each of the system

states is determined by a solution of a Riccati Equation. The dual LQR, actuator-at-a-time
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evaluation problem can be solved but the combination problem of grouping sensors and

actuators in this context has proven to be difficult.

In [Kim and Junkins, 1991] controllability measures are combined with modal cost analy-

sis [Skelton and Hughes, 1980] to place actuators with a strategy that accounts for distur-

bance and performance characteristics. In this chapter, a technique is presented which

extends [Kim and Junkins, 1991] to the sensor problem, and then combines sensors and

actuators to account for their joint action as a controller channel. Active isolation of

uncontrollable modes from the performance is captured with the proposed technique.

The chapter begins with a section on preparing the model through proper scaling and

model reduction. A technique to compute a sensor/actuator linking matrix based on per-

formance weighted and disturbance weighted measures of the system's modal observabil-

ity and controllability is developed and then refined to capture the potential of active

output isolation. The algorithm is outlined and then applied to a model of an experiment

taken from the actuator placement literature.

3.1 Model Preparation

Model-based control design requires the use of a design model. The order of the model

should be small but capture the important dynamics, and the model should be input / out-

put scaled to avoid numerical difficulties. Scaling should also capture the relative good-

ness of sensors and actuators relative to their respective sensor and actuator noises.

3.1.1 System Input/Output Scaling

Dynamic models of a plant are often presented with little attention to numerical condition-

ing. For example, sensors which measure nanometers are presented with a measurement in

the units of meters, inducing a 10-9 scaling. Other sensors may, for example, measure

angles of degrees with measurements in units of arcseconds, inducing a 3600 scaling.

During nominal operation, the numeric output of these two sensors varies by over 12
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orders of magnitude. The large deviation in the nominal measures from the sensors (and

analogously from performance measures) causes numeric conditioning problems, and

does not allow a fair comparison to determine each sensor's importance for a control

objective, or for model reduction. Dual arguments hold for the actuators and disturbances.

These problems motivate scaling the design plant.

Output Scaling

We assume the global design model is provided in the form of Equation 2.3 where, for

convenience, all feedthrough terms are assumed to be zero. With the model, we are pre-

sented with ny sensor resolutions, one for each sensor represented in C , as elements of

the n,, x 1 vector, Ry . For example, consider an interferometer with the i -th sensor mea-

suring units of meters with a resolution of 1 nanometer then we have RY(i) = 10. Simi-

larly, we are presented with a nz x 1 vector of RMS performances, Rz

To scale the sensors, we normalize the i-th sensor according to,

Cy,,i= R,(i)Cy (3.2)

where C,,, is the i -th row of Cy. and C,, i is the i -th row of the corresponding scaled

output matrix. In this manner, the sensors are scaled such that their resolution corresponds

to a unity measure. All sensors can then be fairly compared in terms of their resolution.

To scale the performances, we employ a similar rule for the i -th performance,

CZ, i=Rz(i) CZ, (3.3)

where Cz, i is the i -th row of CZ, and Cz, is the i -th row of the corresponding scaled out-

put matrix. Thus performances are scaled such that the requirement is met by having an

RMS performance of unity for each performance metric. All performances can then be

fairly compared in terms of their requirements. Further, by invoking a design rule that sen-

sors require a resolution on the order of ten times smaller than their closed-loop require-
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ment we see that we can compare sensors and performances fairly (to within a factor of

approximately 10).

Input Scaling

In a similar manner we scale the actuator input matrix Bu, and the disturbance input

matrix, B, . For scaling actuator inputs we use

u,= Ru(i)B,, (3.4)

where Ru(i) is the actuator resolution of the i-th actuator and Bu, i corresponds to the i -

th column of the BU matrix. R(i) is set such that an input measure of unity corresponds

to the resolution of the actuator. For example if the i -th input of the nominal model

expects force inputs in units of Newtons, and the resolution of the actuator is 1 mN, then

Ru(i) = 1000. The resolution of an actuator depends of the actuator noise. Actuator noise

enters the system at the actuator and corresponds to an error in the commanded control

signal. An obvious source of actuator noise is quantization error, as discussed in

Section 2.2.7. Actuator noise is not the LQR dual of Kalman filter sensor noise.

Similarly we scale the disturbance inputs as

w,= Rw(i)B,, (3.5)

where Rw(i) is chosen such that the true disturbance corresponds to a unit intensity white

noise. The disturbance dynamics are assumed integrated with the model (pre-whitened)

[Peebles, 1987].

The scaling can be represented pictorially as seen in Figure 3.1. Overbar quantities corre-

spond to the scaled system where an identity covariance of i- is the anticipated noise

intensity, unity measures of U- are the actuator resolutions, unity measures of y are sensor

resolutions, and identity covariance of 2 is the performance requirement.
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Figure 3.1 Scaling the design model for control design

Note that the designer must be aware of the scaling values, R , Rz, R , and RU, since any

controller designed with the scaled plant will need to be scaled in an inverse manner

before the controller can be applied to the physical plant. Also, the proper representation

of the units can be restored for analysis purposes.

3.1.2 Model Reduction

Prohibitively large models need to be reduced for controller synthesis since large models

result in (1) numerical robustness and computational difficulties, and (2) large-order con-

trollers. Balanced reduction is an accepted method for reducing the order of a model

[Moore, 1981]. Ironically, the computation of a balanced realization for the large order

model to be reduced can be computationally prohibitive and numerically unstable. In this

section a numerically stable computation of the balanced realization is developed.

Balanced Reduction

Balanced realizations transform the system to normalize the influence of the inputs and

outputs on the system states. In the balanced system, states which are marginally observ-

able will be marginally controllable and they can be truncated to reduce the order of the

system. We examine the procedure for balancing the system

.t = Ax+Bu

y = Cx (3.6)
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as presented in [Zhou et al., 1996] to determine shortcomings of balanced reduction.

We assume the system is stable and minimal, and solve

ALC+ LCA + BB =0 (3.7)

for the controllability Gramian Lc, and

A LO + LA +C C = 0 (3.8)

for the observability Gramian LO .

Since the system is minimal and stable, the unique Gramians can be found, and are both

positive definite. We use a singular value decomposition on LC to write,

L = UCAC UC. (3.9)

The elements of diagonal matrix AC are the sorted controllability singular values of the

unbalanced system such that

AC = diag{c 1, ac2, ---> ocN (3.10)

with aci ! (c for i >j. Large singular values represent linear combinations of states

which are highly controllable, and small singular values represent linear combinations of

states which are slightly controllable. Slightly controllable states may still be important

since they may be highly observable.
1 1

Similarly, a singular value decomposition is used on UA 2 L A2 U to write,

UcAc2 LA2 UT = UbA U . (3.11)

where the elements of the diagonal matrix Ab are such that

Ab = diag{(b 1, Yb2, -- - bN (3-12)
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with abi _ Ybj for i >j.

We form a square transformation matrix Tb using,

1 1

Tb = A2 U TUA 2. (3.13)

The inverse can be directly computed using

1 1

Tb = A 2Uc UbAb 2. (3.14)

With this transformation we have a balanced system given by Ab = TbA T 1, Bb= TbB,

Cb = CTrb . The controllability and observability Gramians become,

LT TLb A
Lcb = TbLTb = Ab and Lob = -T 1T = Ab. The elements of the balanced control-

lability and observability Gramian, Ab are the Hankel singular values.

The computation of the inverse of the transformation induces numerical difficulties since

it requires inverting (1) the unbalanced controllability singular values, and (2) the Hankel

singular values. The numerical conditioning is made poor by the inversion of the small

singular values which we later intend to truncate. A technique which truncates during the

balancing operation proves to be more numerically robust, and allows reduced-order mod-

els of flexible space structures to be computed when standard balanced reduction fails.

Numerically Robust Balanced Reduction

To make the balanced reduction more numerically robust we divide the reduction into two

steps: (1) pre-balancing, and (2) balanced truncation.

Pre-balancing

In the balanced truncation step, we will be removing states which we find to be slightly

controllable. The implicit assumption is that those states are not strongly observable. To

ensure this, we apply a pre-balancing operation which balances the input/output of each

mode.

86



Model Preparation 87

To apply pre-balancing, we first transform the system into a modal form [Grocott, 1994].

We then balance the input/output of each complex-conjugate eigenvalue pair, and in the

case of real eigenvalues each Jordan block, by considering the system part corresponding

to those eigenvalues individually. Pre-balancing modes that are entirely uncontrollable

and/or unobservable is numerically ill conditioned but since these modes will later be

removed we need not pre-balance them.

Balanced truncation

The balanced truncation removes slightly controllable and slightly observable states as the

system is balanced to maintain good numerical conditioning. The method is similar to

replacing the inversions required in Equation 3.13 with a pseudo-inverse of Tb but allows

the designer additional insight and direct manipulation of tolerances for removal of singu-

lar values.

We begin by approximating the decomposition of Equation 3.9 for the pre-balanced sys-

tem by writing,

-T
LC ~ UCACUC (3.15)

where Uc follows from Equation 3.9 and Ac is a diagonal matrix of sorted singular values

formed by keeping diagonal elements of AC which are greater than a specified tolerance,

and setting other elements to 0,

A = diag{ ci, I c2, --- ycm, 0, ... , 0} (3.16)

where ayg < tole, Vj> m. This action effectively removes linear combinations of states

which are less controllable than the threshold set by tole. The pre-balancing operation

ensures none of the removed states are highly observable. At is the pseudo-inverse of

A,, formed by
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A = diag{ (YL, 2 . 1 ,0,
Gcm

(3.17)

(3.18)

We perform a similar operation on A b, by rewriting Equation 3.13 as

1 1

U A 2L A 2 UT Ub-2 T

where,

Ab = diag{ ab 1, ab2 , --- bq, 0, ..., 0},

where Ybj < tolb, Vj> q . We form a pseudo-inverse of Ab using

Ab t= diag, 1
Lab1 ab2

(3.19)

(3.20). ,0,
cYbq

To reduce the chance of removing a slightly controllable but highly observable state, we

choose tolb < tolc so that q < m. We then form a truncation matrix,

Tt = [IqXq Oq (n (3.21)

The balanced truncation transformation is performed with the transformation matrix,

T2 T -2
Tb= TtA,, Ub UcAc (3.22)

and the (pseudo) inverse transformation,

I I

-t - 2 T -UAt 2T
Tb = ( )UUb(Ab ) Tt- (3.23)

The n -the order system is reduced to a balanced system of order q by transforming the

system as Ab = Tb Tb , Bb = TB, Cb = CTt , and Db = D. The controllability and

observability Gramians become, Lcb = Lob = Abr where
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Abr = diag{b 1 , yb2, -, -bq} (3.24)

are the Hankel singular values of the balanced and reduced system. We use the truncation

operator to ensure that the q + 1 -th through n -th states are removed since our singular

value truncation in forming AC and Ab cause those higher states to lose accuracy.

Figure 3.2 is a plot of the transfer function of a channel from the reaction wheel distur-

bance to an internal optical pathlength measure for a model of the SIM spacecraft. The

SIM model is further detailed in Chapter 7. Conventional balancing routines fail with the

SIM model. The numerically robust balancing routine is able to balance the system whilst

removing some uncontrollable/unobservable states. In the figure a 176 reduced order

model agrees almost perfectly with the 270 state original model

40
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Figure 3.2 Channel transfer function of a balanced model. Phase is wrapped for plotting pur-
poses. The 176 state balanced model (dashed) overlays the 270 state original model
(solid). Without the numerically robust balancing technique the SIM model could not
be balanced.
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3.2 Controllability and Observability Based Technique

In this section, controllability and observability are used for the derivation of an index

which quantifies the suitability of specific sensors and actuators for effective control. The

four block regulation problem of Figure 2.1 and Equation 2.1 is considered. The selected

strategy is open-loop which limits its use for predicting the effect of closed-loop control.

The strategy uses H 2 modal costs in its development which indicates that it is best suited

for determining the suitability of sensors and actuators for LQG control. The controllabil-

ity is weighted to reflect the performance variables, z, and the observability is weighted to

reflect the disturbance characteristics, w. These weighting are determined with H 2 norms

which implicitly ties the technique to H2 control. In Section 3.4 a flow diagram of the

complete technique is presented that includes a patch to account for active output isola-

tion.

3.2.1 A Measure of Controllability and Observability

Generally, controllability and observability is considered a binary yes/no characteristic of

a system. The most well known test involves determining the rank of the Gramians of

Equations 3.7 and 3.8. The loss in rank of the controllability Gramian corresponds to the

number of uncontrollable states, and likewise, the loss in rank of the observability

Gramian corresponds to the number of unobservable states. These tests depend on the

realization of the system: in general a controllable system with unobservable states can be

made observable and uncontrollable through an invertible state transformation. We begin

with the development of an alternate test for controllability and observability.

For the system given by Equation 2.3, if we assume n -th order A has eigenvalues,

{k, i = 1, ... , n} with a set of right eigenvectors {Apg = kipi, i = 1, ... , n}, and a set of
T Tleft eigenvectors, { q A = kiq7, i = 1, ..., n }. We consider a case where all eigenvalues

have equal algebraic and geometric multiplicity with the exception of rigid-body modes.

We normalize the eigenvectors to be biorthogonal,
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q P = 5i. (3.25)

For the Popov, Belevitch and Hautus (PBH) eigenvector controllability test we note that

the i -th state is uncontrollable if and only if

qHBU = 0. (3.26)

Similarly, the i -th mode is unobservable if and only if

Cypi = 0. (3.27)

Again, this test is of the yes/no type. A measure of controllability and observability is pro-

posed in [Hamdan and Nayfeh, 1989]. For the i -th state's controllability from the j -th
actuator we define,

Hf q B1  (3.28)

which corresponds to the cosine of the angle between the i -left eigenvector and the j -th

actuator, scaled by the magnitude of the actuator input column. Intuitively, the alignment

of qi and B1 corresponds to the efficiency with which the actuator can pump energy into

the i -th state. The magnitude of B1 has been scaled in Section 3.1.1 with respect to the

actuator noise such that the actuator's signal-to-noise ratio is captured. The larger the

value of IVi, |, the larger the influence of the j -th actuator on the i -th state.

Following dual arguments, a measure of observability for the i -th mode from the k -th

sensor can be defined as,

Ckp.
h = , (3.29)

where Ck is the k -th row of C ,.

In the case of distinct eigenvalues we can expand the transfer matrix, G, (s) as
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n

GyU(s) = s (3.30)

i = 1

where the residue matrix Ri is given by

Ri = Cpiqj Bu (3.31)

where the (k, j) element correspond to the k -th sensor and j -th actuator. We substitute

Equations 3.28 and 3.29 to arrive at

jRj(k, j)|| = ' 'i .i 1hi ~ (3.32)

Now in the special case where the eigenvalues are normalized by 11pg|| = ||qjI| = 1 we

have

IIRj(k,j)| = llh,111 Ihi, k.I (3.33)

The residues of the system are an input/output characteristic of the system and are invari-

ant with respect to system state realization. Thus Equation 3.33 is invariant of realization.

In this section have defined a measure of the controllability and observability and intro-

duced an invariant method to combine these measures in terms of the design model's resi-

dues.

3.2.2 Modal Cost Analysis

The measures of controllability and observability, Equations 3.28 and 3.29, do not alone

provide an assessment of the suitability of the actuators and sensors for the four block reg-

ulation problem. Additionally, the effect of the disturbance inputs through Bw, and perfor-

mance variables through CZ, should be captured in the problem of assigning sensor and

actuator sets for control. Following the [Kim and Junkins, 1991] treatment of actuator

placement, the modal cost analysis of [Skelton and Hughes, 1980] can be used to weight
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the modal controllability and observability by the design model's modal disturbance and

performance features.

Assuming a separation property holds we examine the modal cost properties of the full-

information control problem and the state estimation problem separately. Given zero

feedthrough matrix in Equation 2.3 the important system dynamics for the full information

control system reduces to

.*=Ax + Bau
Z = AxB(3.34)
z = C x

The open-loop cost is written as

J = tr[XC Cz] (3.35)

where

AX + XA +B BT = 0. (3.36)

The cost function of the i -th state can be written as

T= [XCCz]ii. (3.37)

Clearly

n

J= J1 . (3.38)

i = 1

In the special case where the system is in a modal form the state costs, J are the modal

costs. Intuitively, the input state costs, J1 , are large for states that make a large contribu-

tion to the performance cost and are stimulated by the actuators.

The dual, estimator problem uses
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= Ax+BWW
(3.39)

y =CYX

as the subset of Equation 2.3's dynamics. The open-loop cost can be written as

V = tr[BB TY], (3.40)

where

T T
YA +A Y+CC, = 0. (3.41)

The cost of the i -th state can be written as,

T
Vi = [BWBWY]ii. (3.42)

The output state costs are large for states that are both stimulated by the disturbance and

measured by the sensors.

The solution of Lyapunov Equations 3.36 and 3.41 require an open-loop stable system.

The more difficult approximations for the modal costs in the case of closed-loop systems

are derived in [Skelton and DeLorenzo, 1983].

3.2.3 Combining the Controllability and Observability Measures

The measures of controllability and observability from Section 3.2.1 will be weighted by

the modal costs of Section 3.2.2 to arrive at performance and disturbance weighted index

of sensors/actuator groupings.

To apply the modal cost analysis, the plant must be stable. This requires careful manipula-

tion and treatment of the rigid-body modes of flexible space structures. A technique will

be applied to combine the weighted controllability and observability measures to assign

each sensor/actuator grouping with an index. The larger the index, the more suited will be

that sensor/actuator combination for control.
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Rigid-Body Mode Manipulation

The modal cost analysis used in this work requires stable dynamics for the solution. A pas-

sive structure, such as an open-loop flexible space structures, will have stable, lightly-

damped dynamics with the exception of rigid-body (RB) translation and rotation in three

axes. We will choose to operate on RB modes separately when we scale and reduce the

system. As such we require an efficient method to remove and replace RB modes.

To operate on the RB modes, first we transform the state-space system into a real block

diagonal form. [Grocott, 1994] has a comprehensive treatment of the necessary transfor-

mation matrices. Complex modes are transformed into two-by-two A matrix blocks of the

form

A = - (3.43)
Arm =[ l 2 i2

L-(o1 - 2

real modes are diagonalized as

A b (3.44)Ar=

The multiple RB modes in a flexible spacecraft cause the system to be defective (each RB

mode has a second order Jordan block) and derogatory (three translations and three rota-

tions induce six 0 eigenvalues in the dynamics matrix), so care must be taken in the trans-

formation [Horn and Johnson, 1985]. The resulting two-by-two rigid-body blocks are

written as

A b _0 1 . (3.45)
0b 00

In this system we stack the rigid-body blocks in the top left diagonal, followed by the sta-

ble complex mode blocks, and then stable real states are included at the bottom right diag-

onal.
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For a spaceborne telescope all rigid body translations will be unobservable for all sensors,

and all performance metrics. Translational rigid bodies can be immediately truncated. The

resulting system can be written as

tRB - RB 0 RB + BRwW BR~

-if 0 At xf _ Bfw Bfj(.6
- -1, (3.46)

Y CRBz Ci _xf

where (-)RB denotes the rotational rigid body dynamics, and (-)f denotes the stable

dynamics. The first nRB states correspond to the nRB rigid body states. By introducing the

nRB x n truncation operator

TRB = [RBXfnRB OnRB X (n -nRB (3.47)

we can pick off the RB states using

XRB = TRBx. (3.48)

We can form a state-space representation of the RB dynamics using, ARB = TAT T

BRBW = TRBBW, BRBu = TRBU, CRBz = CzT B, CRBy= CT 4 B.

Similarly by defining the truncation operator

Tf = [O(n -nf) X nf I(n -n(n _ (3.49)

we can extract the non-RB states with

Xf = Tx (3.50)

and form a state-space representation of the stable non-RB dynamics using Af = T14 T,,

Bf, = TfB,, B;f = TfB, Cfz = Cz TC =CT.
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If the states are not ordered with x = [T XT , the truncation operators can still be used,
_ RB If

but lose their simple forms of Equations 3.47 and 3.49. The use of the truncation operator

is introduced since (1) it allows a mathematically clean operation for picking-off states,

and (2) it can be used in an inverse manner to recombine the RB states, XRB, and non-RB

states, xf into a single system.

Computing Modal Costs

We wish to determine the modal costs for each actuator and each sensor. For the input

state cost of the j -th actuator we solve

AX 1 +XA +B B = 0. (3.51)

and form a n dimensional cost vector,

T
[X CZCZ]

J - 2 j [ J] 2 2  (3.52)

J z z nn

In the presence of rigid body modes, the solution of Equation 3.51 is not well defined.

With the partitioning of Equation 3.46, we can write a set of equations:

A X +XAT +B B T = 0 (3.53)

A c T+B T

ARBXRB 1 + XRBjARB +BRBu 1B RBu 3 = 0 (3.54)

ARBX c1 + XCIAf + BRBujBJuj = 0 (3.55)

where
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FXRBj X ci (3.56)
X [- Xfj

Af is stable such that Equation 3.53 has a unique solution. Since the eigenvalues of ARB

and Af are never equal, Xi(ARB) = 0 # XAA), then the Sylvester Equation 3.55 also has

a unique solution for Xcj -

The solution for Equation 3.54 is ill-defined due to the non-stable rigid-body modes. To

rectify this we replace the two-by-two blocks of Equation 3.45 by blocks

Ab (3.57)Adrb -)2 (3.57)
- RB -RBRB

in the matrix ARB to form a matrix AdRB . These blocks correspond to a critically damped,

( = 0.707, mode at a frequency of oRB radians per second. oRB is chosen to be much

smaller then the lowest frequency pole of Af. To transform our artificially stabilized sys-

tem into a real modal form as given by Equation 3.43, we use the transformation matrix

for each mode,

1 0

TCO = 2 _(3.58)

_ RB

and form a transformation matrix,

T0 0 0

TmRB 0 T, 0 (3.59)

0 0 T

which is a block diagonal matrix with a T, on each block corresponding to each RB

mode. We transform the RB dynamics using, AmRB mRBAdRB mRB
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BmRBw = TmRBBRB,, BmRBu = TmBRBu, CmRBz = CRBz TRB CmRBy RBy mRB*

The RB system has been artificially stabilized and transformed to a modal form.

The full system now resembles,

[tmRB [AmRB] XmRB + BmRBw

-I 0 A x B
L f _J L 1 J f

H
W + BmRBu

Bfu_
(3.60)

CmRBz Cfz XmRB

[CmRBy Cfy f

To be consistent with the notation of Equation 2.3 we have a realization with

A = AmRB 0 ,B,
0 A

=BmRBw

B _
, Bu BmRBu

LBfu _] (3.61)

CZ = [CmRB Cfz]' cY = [CmRBz Cfz

Equation 3.54 is transformed to

T T
AmRBXmRBj + XmRBjAmRB mR u, j mRu,j

which has a unique solution, XmRBj. Further, we rewrite Equation 3.55 as

-1 -T T
TmRBARB TmRB TmRBXCj + TmRBXCjAf + TmRBB B = 0 (3.63)

which justifies a transformed Xcj = TmRBXC for a o)RB parameterized solution. The

complete Lyapunov Equation 3.51 solution is given by,

Xmj = XmRBj Xcii (3.64)
Li Cj Xf

where the RB modes have been stabilized by the o)RB parameter, and the RB state-space

dynamics have been transformed to a modal form (see Equation 3.58). The designer varies
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(ORB to weight the rigid-body control, the lower the value of oRB, the more emphasis is

placed on sensors (actuators) that observe (control) RB modes. Solving the Lyapunov

Equation 3.51 by breaking into sub-equations is advantageous since (1) Equation 3.53 is

independent of oRB and needs only to be solved once, (2) Equation 3.55 is independent of

ORB and needs only to be solved once to arrive at Xcj which can be transformed by the

simple transformation, TmRB, and (3) Equation 3.54 is small, nRB x nRB, and can be

directly solved. To vary oRB, we need only a matrix multiplication and a nRB x nRB

Lyapunov equation solution. Decoupling Equation 3.51 also eliminates the numeric diffi-

culties which arise from an A matrix with very small eigenvalues, (on the order of OURB),

and large eigenvalues (the higher structural modal frequencies).

Our modal cost analysis also requires the dual Lyapunov equation,

YkA+A Yk+Cy kCyk = 0 (3.65)

be solved for each sensor, { k 1, ... , n,}. We form a n dimensional cost vector,

Vk [BWBWY ]T l

V [BWBwYk]22 . (3.66)

.. n k [BWBW

Using the partitioned and transformed system from Equations 3.60 and 3.61, we decouple

Equation 3.65 into two Lyapunov Equations and a Sylvester Equation and for a solution

given by

Ymk [T YC (3.67)
c~k Yfk

where
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YfkAf+ AfY +CCfyk = 0 (3.68)

YmRBkAmRB+ RB'mRBk +CRBy,k CmRBy, k = 0

and

-T -370

YCk = TmRB Ck

where TmRB is given in Equation 3.59, and YCk is a solution of the Sylvester equation,

Yck Af+ARYk+CRBCf 0 . (3.71)

Computing Sensor/Actuator Index

By combining the measures of controllability and observability from Section 3.2.1 with

the performances, J1 and Vk from the previous section we can index the actuators in terms

of their usefulness for the control problem, and likewise for the sensors. By combining

these the sensor and actuator indices, we develop a sensor/actuator index.

We consider the system of Equation 3.60 where the rigid body modes have been artifi-

cially stabilized as discussed in the previous section. The A matrix is in a block diagonal

form with two-by-two blocks for the complex modes, and one-by-one blocks for the real

modes. For the complex modes, in the form of Equation 3.43, we set right eigenvectors

(p, and P2) and left eigenvectors (q, , and q2 ) to be given by,

Pm1 = Pm2= , qm1 = qm2 = (3.72)

The real modes have left and right eigenvectors set to

Pr = 1, qr = 1 .7 (3.73)
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Thus the eigenvector matrices of A are block diagonal in the same form of A with ele-

ments from Equation 3.72 corresponding to complex modes, and elements from Equation

3.73 for the real modes. The right eigenvectors of A are notated by {pg, i = 1, ... , n} and

the left eigenvectors of A are notated by { qj, i = 1, ... , n

Actuator Selection

For the actuator selection (or placement) problem we modify the measure described in

[Kim and Junkins, 1991]. We generate an index for the j -th actuator. For the two states (i

and i + 1 ) corresponding to a complex mode we have

ag, = Vi, (J,j + Ji + Ij) (3.74)

ag + 1,j = Vi +j2 (Jg, + Jg + 1,)

and for the state corresponding to a real mode we have,

ag, = V, 2(J + J,, 1,) (3.75)

where Ji, j is given in Equation 3.52 and f is given in Equation 3.28.

For the j -th index we sum over all states

n

aj = ag,. (3.76)

i = 1

The complex mode treatment of Equation 3.74 accounts for equal coupling between the

two states that form the mode in the real modal form of Equation 3.43. We show this treat-

ment results in an identical contribution to a then from a diagonal system.

Consider a 2 x 2 block system comprising a single complex mode. The system is in a real
b r T

modal form with Am = A b as in Equation 3.43, and Bm = [b 2]. By using the com-pebm tn rt

plex transformation matrix
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T =
i_

(3.77)

we can transform to a diagonal form

Ad = TAMT - (>+ io> - 2

0

0
, Bd = TBm =

The subscript (-)m notates system matrices in modal form while (.)d notates the system

in diagonal form. Following Equation 3.28 we have for the modal and diagonal represen-

tations,

b, .b 2

f+ 7 and fd _ 1 2 .
bi *b2  bi +ib 2

In modal form we write the matrix of Equation 3.52 as

(3.79)

Xm zm Cz, m
XCI Xc2 M

Xc2 Xc3

where the diagonals elements are the elements of J.. In diagonal

X C z C zd TX mTNIr CT H T -1
Xd ' dCzd = TZmLI Cm Z'mT

Xci + Xc3 Xc
2

2

2 L-Xc2 -> ( )d

XCI+ Xc3
2

form we have:

(3.81)

where the solution of Lyapunov Equation 3.51 has been transformed according to

Xd = TXMT". Now, applying Equation 3.74 in the case of the modal representation, and

bl - ib 2l
b1 + ib 2

(3.78)

Xc
[x c 3 (3.80)
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Equation 3.75 once for each state in the case of the diagonal representation, we have for

both cases,

[1 22aj [ (b + b (X + Xc3)(3.82)

2~~ 2 b+b)(Xcl +Xc3)

For actuator selection we rank actuators according to ao. The larger the value of aj the

more well suited the actuator is for directly controlling modes weighted by their impor-

tance in the performance. In Section 3.3 a modification will be made to account for the

additional spillover control action that results by indirectly controlling the coupling from

the uncontrolled states to the performance.

Sensor Selection

For the sensor selection (or placement) problem we examine the dual of the actuator selec-

tion measure. We generate an index for the k -th sensor. For the two states (i and i + 1)

corresponding to a complex mode we have

1 2
Pi, k = Ihi, kVi +Vi+)1, )

1 2 (3.83)

and for the state corresponding to a real mode we have,

Pi, k = i, k 2 i, k + Vi+ 1, k) (3.84)

where Vi, k is given in Equation 3.66 and hi, k is given in Equation 3.29.

For the k -th index we sum over all states

n

Pk = Pi,k (3.85)
i = 1
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The equivalence of Equation 3.83, applied to a system in modal form, to Equation 3.84,

applied to the two states of the system transformed into a diagonal form can be shown.

Given an output matrix in modal form, Cm = [c1 c2] , we have in diagonal form

Cd c + ic2 ci - ic2 (3.86)
-2 2

where the transformation of Equation 3.77 is used. Continuing, we can show,

.I + ic2 c + ic2

hm = /2 1 and hd 2 (3.87)
CI .C 2  C - ic2- 1 2 2

and given

BT Y1 Y Y1
Bm BmB m= c1 Y c2 m c] (3.88)

W' .Y=Ye2 Yc3 es3

where Ym satisfies Equation 3.65, we have

B, B Y -TB B mrT T rYmTW, d d w, m d w'm M

Yei~~Yc + Ye ei-Yc3

[Ycl +1Y Yl-Y 3  ] _ Y2= (Y)d 23.9Ycl + Yc3
Ycl - Yc3 . c Yc1 + Yc3 _ 2 _

2 c2 2

Combining Equation 3.89 with Equation 3.87 according to Equations 3.83 for the modal

representation and Equation 3.84 for both diagonal states, we verify the equivalence.

We rank sensors according to Pk. The greater the index value of Pk , the greater the suit-

ability of the sensor for observing the system states, weighted by the disturbability of each

state.
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Sensor/Actuator Grouping for Control

For the sensor/actuator grouping problem we assign an index using the a and P indices

from the two previous sections. We propose an index matrix S e 9 " ' " with the (k, j) -th

element given as

n

S(k, j) = . (3.90)

i = 1

Large values of the S index correspond to actuator/sensor combinations that efficiently

actuate and measure states, weighted by the states' importance in the performance and

susceptence to the disturbance.

The index S is entirely based on a weighted controllability and observability. We will see

that additional controller performance can be achieved with an actuator which does not

directly control modes. A modification to the index is made in Section 3.3 to account for

these active output isolation actuators.

Sensor/Actuator Grouping for System Identification

In the case of a system identification problem for control we can specify (measure) a dis-

turbance (B,) and a performance (Cz) and the index S can be used to determine the best

actuator and sensor types and locations. Again, S can be modified to account for active

output isolation actuators. In this context the system identification problem, and the con-

trol actuator/sensor selection and placement problem can be solved with the same frame-

work.

In the special case of modal identification, we can specify an actuator matrix BU with col-

umn corresponding to all actuator locations, types and directions and a sensor matrix Cy
with rows corresponding to all sensor locations, types and directions. A disturbance

matrix B, and performance matrix CZ are not specified. In this case the designer of the
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system identification experiment can select B, and Cz to emphasize particular modes of

interest. In the case where all modes are deemed interesting, BW = Cz = I can be used.

3.3 Correction for Active Output Isolation Actuators

In Section 3.2 an index matrix S was computed to determine actuator/sensor combina-

tions that are effective for control. S is based on observability and controllability argu-

ments. In some cases, control can be applied to decouple uncontrollable modes from the

performance. In this case, an actuator which cannot control certain modes can still be

effective in achieving a performance improvement. This section modifies S to account for

control action on uncontrollable modes.

3.3.1 Performance Improvement from Uncontrollable Modes

To explore the action of a controller on uncontrollable modes we examine a system with

dynamics given by

Atc Act 0 xc+ BW + B"" u[nc 0 An i xcj Bwn+ Bunc
(3.91)

Z = Czc CzjXc
xnc

where subscript (-)ct denotes dynamics controllable by actuator u, and subscript (-),

denoted dynamics uncontrollable by u. Without loss of generality the system is in a block

diagonal form. The H 2 performance of the system can be determined using

J = tr [CZ Cznc X(Czc Cznc (3.92)

where



DECENTRALIZING THE CONTROL TOPOLOGY

X Ct cP1  (3.93)
T
cpl nc_

satisfies the Lyapunov Equation,

Ac, ] X ] X Xc, X Px A , 0 B B T B B T n

A ~ 0 1 I T c i + cT cp 1 1 t + I c Wc BW fc 1  = 0 . (3.94)
10 AIcXT x I X AT] B B T B B TI

L CPl nc LC f- L. Fncj L WflC WC BwncBwnc]

XcP1 is a term which couples the controllable states to the uncontrollable states. It repre-

sents covariance of the controllable and uncontrollable states. Equation 3.94 can be decou-

pled into three Equations (similar to Equations 3.53 to 3.55),

T T
A CtXct + XcAct + BwcBwc = 0 (3.95)

A X +X ,iA T + B TB = 0 (3.96)

A 12Xe +X~ AT +B B = 0. (3.97)

The cost can be written as,

J = tr[CzcXCzc ] + 2 tr[CzcXcplCznc] + tr[Cznc XnCznc] (3.98)

broken in three terms as contributions from (1) the controllable states, (2) the controllable

/ uncontrollable coupling, and (3) the uncontrollable states. The third term cannot be mod-

ified by control.

By applying a feedback law to the controllable states of the form

u = [Kc t 0 Xct (3.99)
Xnc

we can modify the states to arrive at a closed loop Ac, given by
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Act -+ -XI. (3.100)

This pole placement is possible since all states of Act are assumed controllable. Lyapunov

Equation 3.95 becomes

--XXe. _ +B = 0 (3.101)

which has solution,

B BT
Xct = 2X B (3.102)

Sylvester Equation 3.96 becomes

0 = -XIX +X A T+BB T

= Xcpl -XI)+XcPIAT+B BBT (3.103)

= XcPl(An - XI) + BwcB T

which has solution (if Anc has no k eigenvalues),

X =B BB - . (3.104)

Thus both Xc, and XcP1 can be made arbitrarily small by choosing large X. The cost of

Equation 3.98 is reduced to

J - tr[ CzncXnc Cznc].(.15

Feedback control from the controllable states allows a reduction in the controllable states'

cost term and in the cost term representing coupling between controllable and uncontrolla-

ble states. By expanding the feedback law to allow feedback from the uncontrollable

states,
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U = [K, K] "', (3.106)

a further cost reduction can be achieved since the second term in Equation 3.98 can be

made negative. We can have

J< tr[C CnXe Cznc] (3.107)

This case is encountered in LQR control design when the uncontrollable disturbance states

are available for full-state feedback [Kwakernaak and Sivan, 1972].

We have shown by the preceding simple example that the control of controllable states can

have be used to actively decouple the uncontrollable states from the performance. A com-

mon control example is output isolation. In the case of an interferometer, a small mirror on

a voice coil can be a very effective actuator for optical pathlength control. In this case the

mirror's small mass does not couple to the structure, eliminating the possibility of struc-

tural control, but any measured disturbance within the actuator's bandwidth can be

directly cancelled. This control approach is active isolation. Control performance can be

realized from a sensor which observes many modes to an actuator which controls few

modes but has an extended bandwidth. We will modify S to capture this control possibil-

ity by generating a modified actuator / sensor selection matrix, SC .

By dual arguments (extending from the full state feedback case to the state estimation

case) we can show that the effect of unobservable modes on the performance can be

reduced by controlling the observable modes. Thus control performance can be realized

from a sensor which observes few modes but has an extended bandwidth to an actuator

which controls many modes. However this effect is neglected since experience shows that

most sensors used for space telescopes (rate gyroscopes, laser interferometers, and wave-

front sensors) have good modal observability properties which are already captured in S

and Sc.
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3.3.2 Effective Actuation Matrix Determination

If a disturbance is measured within the bandwidth of the actuator, then control action can

be taken. In the case of structural control, the modes of the structure can be damped or

shifted to have less contribution to the performance. The controllability/observability

actuator/sensor index S quantifies the suitability of particular sensors and actuators for

control in this case.

In the case of isolation, the actuator acts to cancel a measured disturbance without modify-

ing modal behavior. To do this the actuator must have gain within the frequency region of

interest. Further, the sensor must have gain and have an ability to observe the disturbance

that is to be cancelled. To capture the effectiveness of the actuator for active isolation con-

trol we propose computing an effective input matrix Be which depends on the actuator

gain. Using the effective input matrices for each actuator, an identical procedure to that

used to compute S in Section 3.2 can be used to compute a modified sensor / actuator

index matrix, SC which captures actuators acting as active isolators.

The system is assumed to be in the realization described in Section 3.2.3. For the j -th

actuator and k -th sensor we compute the effective input vector Bej, k e qn xi . Since the

effectiveness of an actuator for active isolation is sensor dependent an effective input vec-

tor for the j -th input is required for each sensor.

For a real state with eigenvalue, X,, we compute the l-th element of the vector Bej k

with the relation

CS + X Beljk = ICk(sI - A )--B . (3.108)

s = iX,

Thus we choose BeIj, k to be the input vector value which would set a single state transfer

function equal to the given multiple state transfer function, when evaluated at the eigen-

value of the I -th state. Ck is the row vector corresponding to the k -th sensor and B1 is the
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column vector corresponding to the j -th actuator. Thus Be,,j, k is chosen to have a mea-

sure of controllability on the 1 -th state with a magnitude reflecting the gain of the actua-

tor-j/sensor-k channel. The expression for Be 1,j, k in the case of the real state, k,, can be

written as

Belg,, k = ICkl, - . (3.109)

For a real mode corresponding to the l-th and 1+ 1 -th state, a similar philosophy is

adopted. From Equation 3.82 we see that the Pythagorean combination of the input vector

elements is used to determine the a index corresponding to the mode. Thus, without loss

of generality, we can set Bel, k = Bel+1, j, k . With this assumption we set

{Cl,[k C 1  s][ -rm 1 Bel ,= Ck(SI - A)- (3.110)

where Arm is defined in Equation 3.43. We dereverberate the single mode of Arm by set-

ting, ( = - . Belj, k = Be 1  is set to be the value of the input vector which would

equate the dereverberated single mode transfer function to the true transfer function at the

natural frequency of the mode, o. Dereverberation of the single mode ensures that

Be 1,j, k = Be,+1,j, k is weighted by the height of the resonant peak. We write

Begj, k = Bel+1,j,k = .2OCk(SI-A) IBj (3.111)
3 Cl2 + 2 C ,kCll +C 1,

Note the similarities of Equations 3.109 and 3.111. With all elements of the vector Bej, k

computed we use Equation 3.28 to calculate

H

feij, k = 'i .eq (3.112)
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Subsequently the index oxe1 k is computed with Equation 3.74 for complex modes and

Equation 3.75 for real states. We can compute a sensor/actuator index matrix, SC by mod-

ifying Equation 3.90 to read,

n

Sc(k, j) = eij, , k. (3.113)
i = 1

The final index matrix for sensor/actuator selection is defined by

S, = S+ ySc. (3.114)

S, is formed of the controllability/observability based index of Section 3.2, and corrected

with a matrix SC which accounts for actuators with good bandwidth but poor controllabil-

ity properties. y is a mixing parameter scale the terms with respect to each other. A mixing

parameter of y = 1 is found to work well in practice.

3.4 Controller Topology Determination Algorithm

Figure 3.3 is a flow diagram of the sensor/actuator indexing algorithm. Horizontal rows of

blocks refer to operations that are computed dually for both actuators and sensors. Inputs

and outputs of the model are found in Table 3.1. The algorithm generates an n Y by nu

index matrix, S,. If (k, j) entry of S, is large relative to other elements then the k -th sen-

sor and j -th actuator are considered an effective pair for control.

The algorithm begins by scaling the system and in the case of very large systems, balanc-

ing and reducing the model (Section 3.1). The system is transformed to a real model form.

For each actuator u1 , the open-loop performance is broken up into a set of modal contribu-

tions J (Equation 3.52). Dually, the modal contributions, Vk, of the disturbance to the

open-loop measure at each sensor, Yk, are computed (Equation 3.66). These quantities

require the solution of Lyapunov Equations. Decoupling the Lyapunov Equations handles

rigid body modes whose contribution to the sensor/actuator index matrix is subsequently

determined by the designer with a single parameter, oRB > 0 (Section 3.2.3). A small
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Notes

Scales system with
respect to sensor and
actuator noises and reso-
lutions

tion
Section 3.1.2

Scaled/reduced sys-
tem, in modal form,
(Section 3.2.3)

V sensors,
k = 1, ... , n,

Determine modal cost
for each sensor and
actuator. Accounts for
performance and distur-
bance characteristics.

Determine effective
input vector to account
for active isolation con-
trol

Determine a measure
of controllability for
actuator and observ-
ability for sensors

Weight controllability
and observability mea-
sures with modal costs

Determine sensor/
actuator index.

Figure 3.3 Simplified flow diagram of the sensor/actuator indexing algorithm. The manipulation
of any rigid body modes is detailed in Section 3.2.3.
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TABLE 3.1 Inputs and outputs for sensor/actuator indexing algorithm

Inputs open-loop model A, B , B, Cz, C, Equation 2.3

scaling gains R,, Ru, Rz R, Section 3.1.1

rigid-body contribution parame- ORB Section 3.2.3
ter

output isolation mixing parame- y Section 3.3.2
ter

Outputs sensor / actuator index matrix S Section 3.3.2

value of oRB, implies a heavy weighting on the rigid body modes in the indexing matrix

St.

To handle the special case of actively decoupling uncontrollable modes from the perfor-

mance (active output isolation) an effective input vector, Be1 , k, is computed for the j -th
actuator and k -th sensor. Be1 , k quantifies the suitability of an actuator for active output

isolation in terms of modal controllability. The magnitude of the actuator-to-sensor trans-

fer function, IGy, ,, k1 , is used as a weighting to ensure modes are weighted by the appro-

priate sensor/actuator gain (Section 3.3.2).

For each actuator, we compute a modal measure of controllability, f , which quantifies

how the actuator controls each mode (Equation 3.28). Dually, a modal measure of observ-

ability, hk, is computed (Equation 3.29). An effective measure of modal controllability,

fej, k, is computed for the effective input vector to handle the active output isolation con-

trol case (Equation 3.112).

The next step of the algorithm, the modal measures of controllability (observability) are

weighted by the modal performance (disturbance) contributions to form the weighted con-

trollability (observability) vector, c (p0) (Equations 3.76 and 3.85). To handle the active

output isolation case an effective weighted controllability vector is computed, ak

(Section 3.3.2).

In the final step, the elements of thee sensor/actuator control effectiveness matrix, S, are

calculated by computing the dot product of the weighted controllability and weighted
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observability vectors for each sensor and actuator (Equation 3.90). A corrective matrix,

SC, is computed using the effective weighted controllability to account for active output

isolation capabilities of the actuators (Equation 3.113). Lastly, the index matrix S, is com-

puted by mixing S and Sc (Equation 3.114).

3.5 Demonstration on a Simple Grid Structure

To demonstrate the sensor/actuator indexing algorithm we examine its applicability to the

model of a simple structure. The selected structure provides a tradeoff between reasonable

complexity and an example where engineering intuition can be validated with the sensor/

actuator selection algorithm. The discussed example demonstrates the use of the sensor/

actuator indexing matrix for the placement of a small set of sensors and actuators for LQG

structural control. The sensor/actuator index results are compared with three other meth-

ods in terms of performance and computational efficiency.

3.5.1 Structural Model

A simple grid structure which has been previously used to validate an actuator placement

algorithm is selected [Kim and Junkins, 1991]. The structure is seen in Figure 3.4.

The structure is made up from a grid of 1/8" thick aluminum beams, clamped at one end.

The numbered nodes on the structure represent locations where sensors or actuators can be

placed. Displacement sensors, and both x and y torque actuators (modeled as reaction

wheels) are selected. The structure is modeled with a FEM of Bernoulli-Euler beam ele-

ments. At each grid node location, a lumped mass is placed to account for the mass of sen-

sors and actuator. In this manner the model does not change with the sensors or actuators

selected. The first ten flexible modes of the structure are kept. The material properties of

the model are listed in Table 3.2.
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Clamned
boundlary

5cm beam
members

y

x

0

5

0

1.52m

1.52m

Figure 3.4 Test model for validating sensor/actuator indexing. Node
locations for sensors and actuators are numbered. Taken
from [Kim and Junkins, 1991].

TABLE 3.2 Material properties of grid model, [Kim and Junkins, 1991].

Bending stiffness EI 9.35 N -m2

Torsional stiffness GJ 14.19 N - m2

Mass distribution pA 0.447 kg/m

Inertia distribution pI, 9.65x10-4 kg -m

3.5.2 Problem Statement: Sensor/Actuator Placement

In this example the sensor/actuator placement for control problem is solved. The problem

can be phrased: given a control strategy and a set of sensors and actuators, select N, sen-

sors and NU actuators which achieve optimal control performance.

We select an LQG (H 2 optimal) control strategy in this example. The H 2 control synthe-

sis procedure is detailed in Appendix C, Section C. 1. For the grid we can define,

BU = [Bu, I Bu, 2 ... Bu,] e 9j u (3.115)

where BU has a column from the FEM for each of nu possible actuators. Defining a pro-

jection matrix,

16 17 18 19 2

11 12 13 14 1

6 7 8 9 1

1 2 3 4 5

- - - -
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A= - U (3.116)

0... 1 n,

where K is unity if an actuator is selected or zero if it is not selected. The matrix B A is

the input matrix of selected actuators. Dually, we define,

CYC T C CT] e9 X" (3.117)
7 y, 1 y, 2 ' C- y, nu

where C, has a row from the FEM for each possible sensor. We define

71 ... 0

,= j 9'n' (3.118)

L0 ... y

where yk is unity if a sensor is selected or zero if it is not selected. The matrix I7C, is the

output matrix of selected sensors.

Sample Problem Statement

We consider an actuator and sensor placement problem. Given the actuator cost penalty

and sensor noise intensity, we wish to select the set of N, actuators from n available, and

the set of NY sensors from ny available, to minimize the closed-loop H2 cost in Equation

C.2. Standard assumptions of reachability and detectability for all sensor/actuator combi-

nations hold. Using definitions 3.116 and 3.118 with the disturbance-to-performance

dynamics from the FEM, (A, B,, Cz), we can quantify the problem statement in terms of

Riccati equations.

{X*,yk*} = arg min Tr XBB + YXB AB X (3.119)

where X and Y solve modified versions of Riccati Equations C. 10 and C. 11,
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0 =XA+AX+Rxx- 1XBUABU X (3.120)
P

0 = AY+YA +V -- YC, TFCY. (3.121)

p and g weight control use and sensor noise respectively. Additional constraints are the

binary constraints

Ag=0 or 1,lj = 1, ...,I nu 312(3.122)
yk 0 or 1, k = 1, ... , n,

and the number of sensor and actuator constraints

Tr[A] = N,
(3.123)

Tr[F] = N

Equations 3.119 through 3.123 define a nonlinear (quadratic) integer programming prob-

lem.

3.5.3 Possible Solution Techniques

Four methods to solve the nonlinear integer programming method will be explored: (1)

complete enumeration (2) branch and bound integer programming, (3) simulated anneal-

ing, and (4) the developed sensor/actuator indexing algorithm. Given a set of 's and Yk's

that satisfy constraint 3.122, the cost can be evaluated through the solution of the two Ric-

cati equations 3.120 and 3.121. This simple cost evaluation is possible since we are con-

sidering afully connected control topology. The four methods are described below.

Complete Enumeration

This brute force approach simply uses Equations 3.119 through 3.121 to compute the H 2

cost of all possible sets of { yk } which satisfy the constraints 3.122 and 3.123. This

method will find the true global optimum. The computational cost is prohibitive however

since the number of cost evaluations is given by
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Nj = . (3.124)

For example, on the simple structure with nu = 40 actuator possibilities, and n = 20

sensor locations, choosing the optimal set of Nu = 3 actuators and NY = 3 sensors will

require an infeasible 11 x 106 solutions of both Riccati equations 3.120 and 3.121.

Branch and Bound

Branch and bound techniques can be used to efficiently solve linear integer programming

problems [Hillier and Lieberman, 1995]. In our nonlinear integer program we can use

branch and bound techniques to increase the efficiency of finding the true optimum over

the complete enumeration.

We start with a feasible first guess at the solution with cost J0 . Begin by setting all

{ y Y} to unity. In the branch step we set a or a yk parameter to zero. In the bound

step, we relax the Constraint 3.123. With Constraint 3.123 relaxed, the optimal solution is

to set all remaining k1 and yk to unity and to solve Equations 3.119 to 3.121 for a cost J

(since an additional sensor or actuator cannot degrade optimal performance). If J> J0

then the our branch is fathomed and our zero-set parameter must be unity in the solution.

We traverse the feasible tree by repeating these steps. By fathoming the feasible tree we

reduce the number of cases before we need to appeal to a complete enumeration.

This branch and bound strategy fails to provide a significant improvement over the com-

plete enumeration because for increased efficiency (1) it requires a good starting guess

(which we can find with the sensor/actuator indexing algorithm), and (2) it requires that

specific sensors and actuators dominate the achieved performance. Enhancing this branch

and bound technique is a topic of further research.

Simulated Annealing

Simulated annealing is a method to solve discrete optimization problems [Press et al.,

1992]. We begin with an initial randomly generated { k, yk } and compute J0 . Then with
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each successive iteration, we perturb the current {X , y, }m to get {k, k},k+1 and com-

pute JM+ if im+1 < m then we accept {X,yk}m+li' '- j' Yk ie+ I X ,j Ykm -

Jm+1 > Jm then we accept {, yk}m +1 with some probability p(J) <c exp - where T

is the temperature, a parameter which decreases with successive iterations. The tempera-

ture controls the rate with which parameters with greater cost are accepted. The ability to

accept greater costs reduces the chance that the solver will be trapped in a local minimum.

Simulated annealing does not guarantee a global minimum but is more efficient than com-

plete enumeration for finding a good solution. The number of iterations is controlled by

the cooling rate (i.e. the amount that T is decreased per iteration).

Sensor/Actuator Indexing Algorithm

By analyzing the sensor/actuator (S/A) index St we can choose sensors and actuators

effective for control. We solve,

ny nu

{,saysa} = arg max TjSA (3.125)

{ 7k} = im = 1

where S,, A and 17 are defined in Equations 3.114, 3.116 and 3.118 respectively. We can

solve this problem quickly with simple logic to arrive at a set of sensors and actuators,

{ 2sa sa} . The selected set is not guaranteed to be optimal since the S/A selecting index

predicts control performance based on open-loop calculations. In the next section we com-

pare the application of the S/A indexing algorithm to the three previously mentioned

methods in terms of performance and computational efficiency.

3.5.4 Method Comparison

The methods discussed in the precious section will be applied to the structure of

Figure 3.4 to determine the optimal set of sensors and actuators for LQG control.
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In Table 3.3 S/A indexing is used to determine the best set of NY = 3 sensors and

NU = 3 actuators for control. The problem involves the rejection of a x-direction white

disturbance torque applied at Node 3, while the performance to be minimized is the RMS

displacement at Node 3. For the n = 20 state system, 588 x 106 floating point operations

(flops) are required. This number of flops allows simulated annealing with only 8 itera-

tions to determine the solution, and does not even allow the complete enumeration (or

branch and bound) of a system with n, = 4 sensors and nu = 4 actuators.

TABLE 3.3 Comparison of sensor/actuator indexing with simulated annealing and complete enumeration
when the total flops is held constant. A unity white noise disturbance torque added at node 3
about the x axis. The performance is to minimize the RMS displacement of node 3.

Method Flops/step Steps Flopsa Actuator Sensor J Notes
(106) (106) Locations b Locations' (10- 2 )

S / A 588 1 588 x2,x3,x4 2,3,4 4.60
indexing

simulated 78 8 624 x18,x19,y9 6,11,19 6.54 5 simulated annealing tri-
annealing x3,x5,x12 3,6,17 5.17 als. Note that 8 iterations

xl,x3,x14 1,4,13 4.91 is not enough for the opti-
x3,x6,y13 4,6,10 5.19 mizer to anneal and corre-
x3,x15,y3 3,7,9 5.29 sponds to a premature end

for the algorithm

complete 78 8 624 N/A N/A N/A No design available since
enumerationd 8 steps does not even

allow nu = n, = 4

a. each method adjusted for approximately an equal number of floating point operations (flops)

b. x# - letter indicates direction for applied moment, number indicates node location

c. number indicates node number where a sensor is placed

d. similar conclusions apply for the branch and bound technique

S/A indexing suggests the intuitive result that x-direction torque actuators should be

included at Nodes 3, 4 and 5, with displacement sensors at Nodes 3, 4 and 5. The achieved

performance for this configuration is superior to any determined by the simulated anneal-

ing with 8 iterations. These results highlight the relative computational efficiency of the S/

A indexing algorithm.
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To compare the S/A indexing solution to the true globally optimal set of N = 3 sensors

and N. = 3 actuators we appeal to a complete enumeration. The initial problem with

nu = 40 actuator and n, = 20 sensor possibilities has a prohibitive l Ix 106 possible

cases. We reduce the set of sensors and actuators to: x-direction and y-direction torque

actuators, and displacement sensors at nodes 1, 3, 5, 11, 13, and 15. This n = 6, and

nu = 12 subset has 4400 possible cases to enumerate.

In Figure 3.5 the cost for each possible solution is ranked and plotted in terms of descend-

ing cost. Again the problem involves the rejection of a x-direction white disturbance

torque applied at Node 3, where the performance to be minimized is the RMS displace-

ment at Node 3. Three sets of control penalties (p) and sensor noise intensities (g) are

plotted. The S/A indexing result is plotted with an asterisk. In two cases the S/A indexing

solution is indeed globally optimal. In the p = p. = 0.0001 case the S/A indexing algo-

rithm solution is not globally optimal but remains a good solution with cost (relative to

worse cases) near the optimal cost value.

Table 3.4 compares the S/A indexing algorithm to the global optimum found by complete

enumeration for three disturbance/performance specifications, each with three control

penalty/sensor noise intensity settings. The S/A indexing algorithm finds the global opti-

mal in 5 of the 9 cases. In the non-optimal cases the performance calculated for the S/A

indexing algorithm configurations is close to the optimal performance, relative to the

open-loop performance and to the worse cases of the enumeration. It is important to note

that for the enumeration of this subset of the possible sensor and actuator locations, the S/

A algorithm requires 584 times fewer flops. The branch and bound technique also returns

the global optimal but is not found to provide significant computational saving over the

complete enumeration.

Table 3.5 compares the S/A indexing algorithm solutions to those found with the simu-

lated annealing method. The full nu = 40 and n = 20 case is used. Five fifty-iteration

simulated annealing trials were performed for each of the nine cases from Table 3.4. The
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Figure 3.5 Complete enumeration of a reduced set of actuators and sensors for three control penalty/sen-
sor noise settings. A unity white noise disturbance torque added at node 3 about the x axis. The
performance is to minimize the RMS displacement of node 3. The sensor/actuator indexing
algorithm choice is indicated by *.

best of the five trials was kept as the solution. Each simulated annealing solution required

33 times the flops required for the S/A indexing. In six cases the S/A indexing solutions is

superior to that found with simulated annealing. In the other three cases simulated anneal-

ing provides a marginal improvement in performance but with an increased computation

price.

The usefulness of the S/A algorithm for solving the problem of sensor/actuator selection

for full-state LQG control has been demonstrated. This problem is one application of the

S/A index matrix, S,. Though the S/A indexing solution is not necessary a global opti-

mum, in the included sample cases it is a good solution with relative cost near that of the

global optimum. Using the S/A index for this problem compares well to using simulated

annealing. Further, the S/A index computation increases only linearly with the number of

possible sensor and actuator locations compared with: (1) a factorial increase in possibili-

ties for the complete enumeration (2) a factorial increase in feasible set size for the simu-
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TABLE 3.4 Comparison of sensor/actuator indexing with complete enumeration. Three disturbance/
performance cases are tried, each at three levels of LQG control. Each complete evaluation
finds global optimum but requires 584 times more flops than the sensor/actuator indexing
algorithm.

Dist.a Perf.b J01  t = p Sensor Actuator Indexing Complete Enumeration'

Actuator Sensor J Actuator Sensor J
Loc. Loc. Loc. Loc.

x3 3 7.3 x 10- 2  1 x1,x3,x5 1,3,5 4.6 x 10-2 x1,x3,x5 1,3,5 4.6 x 102

1 x 10~2 xl,x3,x5 1,3,5 1.4 x 103 x1,x3,x5 1,3,5 1.4 x 10- 3

1 x 10-4 xl,x3,x5 1,3,5 9.9 x 10- 6  x3,y1,y5 3,5,13 9.2 x 10~ 6

x3,y3 12 - 13, 1.2 x 10-2 1 x1,x3,x5 1,3,5 1.1 x 102 xl,x3,x5 1,3,5 1.1 x 10- 2

18-13' 1 x 10-2 x1,x3,x5 1,3,5 2.0 x 10-3 x1,x5,y3 1,5,11 1.7 x 10~3

1 x 10- 4 x1,x3,x5 1,3,5 8.6 x 10~5 x1,x3,y13 1,3,6 2.8 x 10- 5

y3 1 -5 7.5 x 10-2 1 yl,y3,y5 1,5,6 7.0 x 102 yl,y3,y5 1,5,11 7.0 x 10-2

1 x 102 yl,y3,y5 1,5,6 3.5 x 10-3 x1,y l,y3 1,5,15 3.5 x 102

1 x 10-4 yl,y3,y5 1,5,6 9.7 x 10-6 xl,y1,y5 1,5,15 8.8 x 10-6

a. x# - letter indicates direction for applied moment, number indicates node location

b. number indicates node number where a sensor is placed

c. the computational burden of the complete enumeration requires the use of a subset of available
sensors and actuators

lated annealing and (3) a factorial increase in tree size for the branch and bound. The

number of computations dependence on the system order n is less for the S/A indexing

(solving Lyapunov Equations 3.51 and 3.65 nu and n, times respectively) than the other

methods (solving Riccati Equations 3.120 and 3.121 for each cost-determination itera-

tion).

3.6 Demonstration on a Simple Mass/Spring System

As a second design example, the sensor/actuator assessment matrix, S,, is determined for

a two degree-of-freedom (dof) mass/spring problem with two sensors and two actuators.

The best sensor/actuator pair as predicted by St is compared with the best sensor/actuator

pair as determined by designing SISO LQG controllers for each of the four sensor/actuator
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TABLE 3.5 Comparison of sensor/actuator indexing with simulated annealing. Three disturbance/
performance cases are tried, each at three levels of LQG control. The best of five 50
iteration simulated annealing runs is displayed for each case. Each simulated annealing
solution requires 33 times more flops than the sensor/actuator indexing.

Dist.a Perf.b J01  p. = p Sensor Actuator Indexing Simulated Annealing

Actuator Sensor J Actuator Sensor J
Loc. Loc. Loc. Loc.

x3 3 7.3 x 10-2 1 x1,x3,x5 1,3,5 4.6 x 10-2 x5,x14,x19 1,4,9 5.0 x 10~2

1 x 10~2 x1,x3,x5 1,3,5 1.4 x 10-3 x3,x4,x5 1,3,12 1.5 x 103

1 x 10~4 xl,x3,x5 1,3,5 9.9 x 10-6 x3,x14,y1 2,8,16 9.4 x 10-6

x3,y3 12 - 13 , 1.2 x 10-2 1 x1,x3,x5 1,3,5 1.1 x 102 xl,x4,y8 8,16,20 1.1 x 102
14 -13, 2,3-

8-13 1 x 10 2 xl,x3,x5 1,3,5 2.0 x 10 3 x3,x6,y4 4,11,20 1.9 x 10 -
8--3

1 x 10-4 x1,x3,x5 1,3,5 8.6 x 10-5 x3,y8,y19 1,7,8 3.6 x 10~5

y3  1-5 7.5 x 10-2 1 y2,y3,y4 1,5,6 6.8 x 10-2 x18,y3,y6 1,10,11 7.1 x 10- 2

1 x 10~2 y2,y3,y4 1,5,6 3.4 x 10~3 x12,y3,y11 1,5,6 3.7 x 10~3

1 x 10 4 y2,y3,y4 1,5,6 1.4 x 105 x5,x12,y15 2,4,5 2.6 x 10-6

a. x# - letter indicates direction for applied moment, number indicates node location

b. number indicates node number where a sensor is placed

combinations. The LQG designs validate the predictions of S, which are contrary to

design intuition. A figure of the sample problem is found in Figure 3.6.

Figure 3.6 Two mass/spring design example to
demonstrate the application of the sen-
sor/actuator assessment matrix for
selecting sensor and actuators for the
LQG control problem.
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The structural parameters and the signals for the four-block control problem are presented

in Table 3.6.

TABLE 3.6 System parameters and input/output signals for 2-dof sensor/actuator effectiveness
assessment example

Parameters mi = m2 = 1 .,ki = k2 = 1 , k12 = 10-4, b1 = b 2 = 10T

Disturbance w: force on m,

Performance z = x 2 : position of m2

Actuators U force on m, , and u2 : force on M2

Sensors y1 = x1 : position of ml , and y2 = X2 : position of m 2

We set up a sample problem whereby the control designer selects one of the two sensors

and one of the two actuators for SISO rejection of the disturbance, w, as measured in the

performance, z. Three intuitive sensor/actuator sets are obvious:

1. Input isolation: select the collocated pair u1 and y, to actively decouple the
disturbance from the performance.

2. Output isolation: select the collocated pair u2 and y2 to actively decouple
the performance from the disturbance.

3. Input/Output analogous: select the input analogous actuator, u, , to directly
control the disturbance and output analogous sensor, y2 to directly measure
the sensor.

We compare these intuitive selections with the prediction of the sensor/actuator effective-

ness matrix.

A four-state state-space model for the system is developed. Both sensors and both actua-

tors are scaled identically and the sensor/actuator assessment matrix is computed and

log (S,) is plotted in Table 3.7.

The larger the element in Table 3.7, the greater the predicted effectiveness of that sensor/

actuator combination for closed-loop control. Contrary to the intuitive predictions, St

indicates that u2 and y, are the most effective sensor and actuator for SISO control.
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TABLE 3.7 Sensor/Actuator matrix, St, for 2-dof sensor/actuator
effectiveness assessment. The channel deemed best is
shaded.

1 Y2

u1 7.9 3.2

u2 7 7.9

To validate the predictions, a SISO LQG controller is designed for each of the four sensor/

actuator possibilities. For comparison purposes each controller is designed with the same

sensor noise and control penalty. The resulting LQG costs are presented in Table 3.8.

TABLE 3.8 H2 cost for SISO LQG controllers designed for 2-dof
sensor/actuator effectiveness assessment. The channel
calculated to be best is shaded.

1 Y2

u1 0.111 0.241

u2 M0.111

We see that the relative costs agree exactly with the relative magnitude of the elements of

St from Table 3.7 (small LQG costs correspond to large elements on S,). The S, predic-

tion of u2 and y1 is validated and each of the three intuitive strategies fails. The Yi -to-u2

control strategy achieves its performance by (1) locating the sensor directly at the distur-

bance input which provides the most direct estimate of the disturbance, and (2) by locating

the actuator directly at the performance measure which provides the most direct control of

the performance variable.

On a simple 2-dof system the sensor/actuator assessment matrix demonstrates its utility

for determining the effective sensor and actuator sets for control, despite a contradiction

with standard design intuition. The predictions of the Sr matrix are shown to agree with

the costs determined by LQG controllers.
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3.7 Summary

This chapter has detailed an algorithm which computes an index which quantifies the suit-

ability of a particular sensor/actuator pair for control. Relevant applications of the index-

ing to this thesis include (1) breaking a global system into sensor and actuators set for

local control (Note (a) in Figure 1.3), and (2) quantifying the suitability of particular sen-

sor to actuator control channels for controller tuning (Note (d) in Figure 1.3).

The indexing is based on modal controllability weighted by modal contributions to the

performance, and on modal observability weighted by modal contributions by the distur-

bance. The inclusion of performance and disturbance weighting allow a controllability/

observability technique to be used with the four-block regulation problem. An additional

patch is added to handle actuators which are effective for active output isolation. The final

indexing technique is validated with an example of a sensor/actuator selection for LQG

control problem. It is shown to perform favorably with little computational burden when

compared with other solution methods. As an open-loop technique, the algorithm is lim-

ited as a predictor of closed-loop behavior. An example of the limitations will be presented

in Section 6.4.5.
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Chapter 4

CONTROLLER TUNING

In this chapter, a methodology is developed and detailed which synthesizes a controller

using an optimization-based approach that preserves the heritage of conventional control

designs. A tuning method is developed whereby the tuned controller achieves improved

performance, and/or improved stability robustness, given some allowable deviation from a

baseline controller.

Two classes of tuning are developed in parallel:

- Model-based tuning: A state-space design model of the plant is available
(A, B, C, D). Where possible, cost expressions and gradients are expressed
exactly in terms of state-space variables. Absolute stability is evaluated by
checking closed-loop eigenvalues.

- Data-based tuning: Frequency response data is available for the plant G(s).
Cost expressions and gradients are written at a discrete number of frequency
points. Absolute stability is evaluated with graphical methods such as the
MIMO Nyquist criteria.

The tuning strategy is developed for both of these cases in parallel. The tuning methodol-

ogy is developed by forming a cost function which is made up of metrics which quantify:

performance, stability robustness, deviation from the baseline controller, and controller

channel gain.

In the chapter, the costs are quantified and gradient expressions with respect to control

parameters are derived for both model-based and data-based tuning. A general parameter-
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ization of a controller is presented. A nonlinear program used for decreasing the aug-

mented cost is discussed. Applications of the tuning method will be presented for: (1)

augmenting the controller by adding states, (2) controlling the closed-loop bandwidth, (3)

adding or removing control channels, and (4) controlling the actuator use over specific

bands. As a special case, the tuning of Sensitivity-weighted LQG controllers will be dis-

cussed.

4.1 Closed-Loop Tuning Costs and Gradients

To tune the baseline controller an optimization cost must be formed. Based on the ideal

constrained optimization Problem 1 described by Equation 2.32 we form a simplified cost

that allows the solution of an unconstrained optimization problem. We form an augmented

cost:

JA(P) = J(p)+SR(p)+d(p)+M(p) (4.1)

The terms of the augmented cost are described in Table 4.1.

TABLE 4.1 Description of the terms of the augmented tuning cost. Included are references to the
equations of the mathematical definitions of the cost components for both model-based and data-based
tuning.

Definition
Cost
terms Description model data

J Closed loop performance. Smaller magnitude indicates Eq. 4.40 Eq. 4.52
improved performance

SR Stability margin. Formed from a combination of two stability (Ss): Eq. 4.9 Eq. 4.9
robustness measures(Ss and Scr). Smaller magnitude indi- (Scr) : Eq. 4.37 Eq. 4.37
cates better robustness.

d Deviation from nominal controller. Smaller magnitude indi- Eq. 4.57 Eq. 4.62
cates less deviation.

M Control channel magnitudes weighting. Smaller magnitude Eq. 4.64 Eq. 4.71
indicates that the designer-selected control channel have
decreased their gain.



Closed-Loop Tuning Costs and Gradients

By minimizing the augmented cost of Equation 4.1 we indirectly solve the constrained

optimization Problem ] specified in Equation 2.32. Selection of relative weighting vectors

allows the control tuner to trade performance, stability robustness, deviation from the

baseline control and control gain. We elect to tune with this unconstrained cost for three

reasons: (1) unconstrained optimization steps are computationally simpler, (2) relaxed

constraints allow the tuner to explore more of the controller space, and (3) relaxed con-

straints allow systems trades between the terms of the augmented cost, e.g. trading perfor-

mance with stability robustness. The third reason is important for conceptual system

design as will be demonstrated on a one-dimensional interferometer model in Chapter 5.

The vector, p, parameterizes the tuned controller. A function P is defined such that

K(s, p) = P(Kb(s), p). (4.2)

Thus, given the constant baseline controller Kb, the tuned controller is uniquely deter-

mined by the parameter vector, p.

The gradients of the augmented cost can be written as,

VJA(p) = VJ(p)+ VSR(p)+ Vd(p)+ VM(p). (4.3)

where the gradient operator, V(.) , represents a vector formed of partial derivatives with

respect to controller parameters,

V . =.. (4.4)
V() _P1 I . Pnp

In this section each term of the augmented cost will be mathematically defined as it

applies to both model-based and data-based tuning. Further, the expressions for the gradi-

ents for each of the cost terms will be developed.
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4.1.1 Stability Robustness Metrics

The second term in the augmented cost of Equation 4.1 corresponds to a measure of the

stability robustness of the system. We develop two metrics of stability robustness in this

section which are combined as

SR = ( 1 -Yr)Ss+YcrScr (4.5)

to form the stability term of Equation 4.1. Ss > 0 is a scalar which quantifies the deviation

of the maximum singular value of the system's Sensitivity transfer matrix over a threshold

in a bandwidth of interest. Scr> 0 is a scalar which corresponds to the distance of the

Nyquist locus from the critical point integrated over a bandwidth of interest (generally

near crossover). The mixing parameter Ycr e [0, 1] allows the two stability metrics to be

combined in a specified ratio. Figure 4.1 is a graphical example of the two stability met-

rics.

Sensitivity S.V. Nyquist Plot
10

-0.2 -- . . - .
0

_ ~0.4........ ...............0 .. 4 --- -

E

0 ..... . --.-.

* .- 0.8......... .....................

- 8 - -........... --.-

-5
10-2 10 100 10 102 -1.5 -1 -0.5 0 0.5 1 1.5

f (Hz) Real(GK)

Figure 4.1 Two measures of stability robustness: The left plot corresponds to S, where the shaded area

measures the deviation of the maximum singular value of the Sensitivity over the 5 dB threshold. The right

plot demonstrates Scr which measures the sum of the distances from the (-1,0) critical point to the critical

Nyquist locus points marked with circles.
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The Ss metric follows from the small gain theorem and the MIMO gain and phase margin

(Section 2.1.3). These margins are often very conservative but the MACE program dem-

onstrated the peaks in the maximum singular value of the sensitivity correspond to poten-

tial instabilities in practice. As a rule of thumb peaks greater than 10 dB, at frequencies

where we have less confidence in the model, indicate a poor controller design [Miller et

al., 1996]. The Scr metric follows from a SISO argument that crossing over away from the

critical point (on the Nyquist plot) ensures good stability margins. In general, the SISO

logic does not extend to MIMO systems [Grocott, 1994], but in practice, near passes of the

critical point often do lead to poor stability margins and should be avoided. [Masters,

1997] demonstrated the usefulness of this type of stability robustness metric by manually

tuning the controller parameters to increase robustness, with little degradation of perfor-

mance. The controller poles where perturbed to expand small loops and near encircle-

ments of the critical point, increasing robustness enough to allow implementation of the

controller.

The following development quantifies both stability robustness metrics, and derives their

gradients with respect to the controller parameters.

A) Maximum Sensitivity Singular Value Stability Metric

To determine the sensitivity of the stability robustness of the closed-loop system with

respect to the controller parameters, we appeal to the Sensitivity transfer matrix as dis-

cussed in Chapter 2. We can derive expressions for the sensitivity of S(jo, p) with

respect to the parameters, p, and the frequency w. We assume that: (1) that the system is

closed-loop and stable, and (2) that S(jo, p) is an analytic function of p and (o. Note that

undamped poles will force S(jo, p) to not be an analytic function of o, but that our sta-

bility assumption (1) forbids this. Our particular interest is with the maximum singular

value of the sensitivity amax(S(jo, p)) since the conservative MIMO gain and phase mar-

gin expressions depend on the maximum singular value of the Sensitivity transfer matrix

(Equations 2.25 and 2.26)

135



136 CONTROLLER TUNING

For analytic computation reasons an area metric is chosen to approximate the peak value

of amax(S(JO, P)) -

Ss(P) = -Jg(Tmax(S(joj,p)))do (4.6)

0

Due to the Bode integral theorem, there is a fundamental conservation of the net area of

S(jo, p) computed in decibels (dB) with respect to 0 dB (Freudenberg and Looze, 1985).

To circumvent this limitation we wish to compute the area of the Gmax(S(jo, p)) curve

which lies greater than some frequency dependent threshold, Ts(o) 0. The threshold

can be large where confidence in the model (data) is good (typically low frequency), and

should be lower near crossover and where confidence in the model is less. Thus we trade

an increase in amax(SU, p)) up to the threshold Ts(o) to push down amax(SUO, p)) in

frequency regions where amax(S(jo, P)) Ts(O). Tuning to improve the stability robust-

ness is dependent on the designer's selection of Tsf o).

From the above discussion we note that a simple implementation of the threshold is to use

logic:

2
x for x > Ts(o) 

4.7
0 for x ! Ts(*)

where x = m(ax(S(jo, p)). However, to allow the computation of gradients with respect

to controller parameters we need to preserve differentiability in the threshold. We approx-

imate the function of Equation 4.7 using the smooth function

g(x) = x 2 [arctan(+ ln.Ts()})+. (4.8)

To visualize the effect of the smooth function we plot a sample case in Figure 4.2. The

lower figure plots [ ( ( ) - T()}) + for x = 20log10 (max(S)) and

Ts(0o) = 5dB Vo as a is varied. As a is increased the function approaches the desired
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switching function of Equation 4.7. a must not set too large since near-singular gradients

at the x = Ts(o) points will result.

10

0 --

a .5

0)
Cf)

-5,

10-2 10 100 10 10

CL

C')

10-2 10- 1 10 0 10 1 10 2

f (Hz)

Figure 4.2 Stability penalty term of Equation 4.8. Upper plot: Maximum s.v. of
a Sensitivity Transfer Matrix. Bottom plot: stability penalty term plotted for three
values of a. As a is increased the stability penalty for deviations greater than the
5 dB threshold is made sharper (i.e. small deviations are penalized like large
deviations)

Our stability robustness cost is computed numerically by approximating the integral of

Equation 4.6 with a summation over a discrete set of ne frequencies, { o}

n,,

S(p) . WS(2()(rmax(S))2 arctan({ln(max(S)) - TS(Wo)}) + (4.9)

k = 1

where the o and p dependence of the sensitivity, S, has been dropped for convenience

and Ws(o) is a designer-defined frequency-dependent weighting function. Ws(w) allows

the designer to trade the relative weight of Ss(p) with the other terms of JA, and with

Ts((o) to control the bandwidth of the controller by penalizing any spikes in amax(S) at a

frequency greater than crossover.
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We compute the gradient of Ss(p) with respect to the i -th parameter

- Wsa (S) 2arctan(a[AS]) + 2 + m Ao (4.10)
Pi 72 +max 1 +(a[AS] 2 api

k = 1

where AS = ln(amax(S)) - Ts(o)). To evaluate this gradient we require an expression for

the gradient of the maximum singular value of the sensitivity with respect to the controller
daa (S)

parameters, max . The following development outlines that calculation.

Singular Value Sensitivity

We determine a relationship for the sensitivity of the singular values of a transfer matrix,

G(jo, p) e C"', with respect to a parameter vector p. In our case, p is a vector corre-

sponding to the controller parameters which will be tuned. We let n, = min(n,, ne). We

begin by decomposing G(jo, p) with a Singular Value Decomposition (SVD), [Press et

al., 1992],

G(jo,p) = U(jo,p)A(jco, p)V"(jo, p) (4.11)

where U(jo, p) e Cn" "" and V(jo, p) e C' X"' are unitary matrices: UUH = I, and

VVH = I, and A(jo,p) = diag[ai, a 2, ... an, ] E CnO x n is formed from diagonal

entries, namely the non-zero singular values, ag(jo, p), I = 1, ... , ng and zero blocks

such that the dimensions are commensurate. (.)H is the Hermitian (conjugate, transpose)

operator. We rewrite Equation 4.11, with a summation as,

n,
H

G(o, p) = u(jop)aY1(jo, p)v 1 (jop) (4.12)

where, for convenience, the summation is carried only over non-zero singular values. By

taking advantage of the unitary nature of U and V we can write,

G(jo,p)v1 (jco,p) = a1(jo,p)u1(jo,p) ,( (4.13)
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and by taking the Hermitian of Equation 4.12, we write

G H(j, p)uU(O, p) = a1 (o, p)v 1 (jOp) . (4.14)

Now we take derivatives with respect to the parameter, p, of Equations 4.13 and 4.14

respectively to arrive at,

aG av; aul ba
V1 + G =--a; + u; (4.15)

and,

,GH Haug av au,~U1+G H- = 1+v- (4.16)
api u 1  ap i ap=

where we have dropped the (jo, p) dependence for compactness. Here we have assumed

that the singular values and singular vectors are analytic (i.e. the above derivatives exist).

In general they are [Sun, 1988], though three difficulties exist: (1) small singular values

need not be analytic, e.g. the singular value of the scalar a is Ja| which is not analytic

near 0, and (2) we must pay close attention to the ordering of singular values to preserve

analyticity, and (3) the derivation holds for simple (non repeated) singular values. We con-

tinue the derivation by assuming these three conditions are held, an assumption that will

be justified in our application of the result.

H
We pre-multiply Equation 4.15 by ul to arrive at,

Ha3G H D HaUl all
U l Vl+ Ul Gb- =au + , (4.17)

p ap !3 api

H H
where ul ul = 1 has been used. Similarly we pre-multiply Equation 4.16 by vi to arrive

at,

,H
HaG H HaU, HVl (4.18

V1 -i U1+V; G - a= i + . (4.18)
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H HIn Equation 4.17 we substitute the Hermitian of Equation 4.14, ut G = ai1v1 , to get

H JG HDVl H aUl alUl V;+ aFv v; -1Yu = , (4.19)

H H H
and in Equation 4.18 we substitute the Hermitian of Equation 4.13, viG = cagu1 , to get

H3GH HaUl HaVl a61(
Vi U1 + 1Ui = v + p (4.20)

We add Equations 4.19 and 4.20, and cancel like terms to arrive at,

2al HaG HaGH
2 = U1 -vPi V1 + v u. (4.21)

By manipulation of Equation 4.21 we have the desired result:

ag(jo, p) = Re uH (fto, p)-G(jo, p)v(jo, p) (4.22)
ap; ( pi

This very useful result is proved in a more rigorous manner in [Sun, 1988] using the

Implicit Function Theorem. Alternate expressions for the singular value sensitivity based

on the generalized sine of the singular value vectors are derived in [Stewart and Sun,

1990].

Using the result of Equation 4.22 we can derive the sensitivity of the maximum singular

value of the Sensitivity Transfer Matrix. We divide our derivation into two cases:

(1) Design Model

In the first case, we have a state-space representation of the design model

{A, B, CY, D,,} and of the controller of Equation 2.5, {A,(p), Bc(p), C,(p)} . We can

determine the state-space representation of S(jo, p) , {A,(p), B,(p), C,(p), D, } using

Equation 2.16. We can write the Sensitivity as
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S(jw, p) = C,(p)(jwI-A,(p))~ B,(p)+I , (4.23)

where we have setDs = I.

We note that by writing MM = I for an invertible matrix M, we can apply the product

rule to write

dM -1 dM-M +M- =0
d p d p

(4.24)

which can be reduced to,

dM 1

dpi
-idM .

dp
(4.25)

By applying the chain rule to Equation 4.23 and substituting M = sI- As in Equation

4.25, we arrive at

B3S _3CS

= (jI I
i CI

+ Cs~UOI

- A) 1 Bs+ Cs(joI - As) s(jI - AS)

- AS)
api

-1

(4.26)

where we have dropped the (jw, p) dependence for convenience. From Equation 2.16 we

have

0 B cc
"api

aB aA 3B aC
-C "+ "D C +BD c
api ap p yu

DB,
api

0 1

= C I
ap,-

dCl
0 D ac .

yuag
(4.27)
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By substituting S(jo, p) = G(jo, p) in Equation 4.11 and by using Equation 4.26 in

Equation 4.22, we have a closed form expression for the sensitivity of the singular values

of S(jo, p) with respect to the parameter p, aG1 (S(jo, p))
api

In a similar manner, by using

a S(jo,p) = -jC,(p)(joI-A,(p)) B,(p) (4.28)

in place of Equation 4.26, we can derive an expression for the sensitivity of the singular

values with respect to the frequency o, -ap(S(, p)).

(2) Measurement Data

By identifying our plant with a spectrum analyzer, we can experimentally determine a

measurement model for the GYU(s) transfer matrix. G,,(jok) is measured at a set of fre-

quencies {ok, k = 1, ... , n(}. We use Equation 2.9 with our measurement model to

derive a pseudo-measured Sensitivity transfer matrix,

S(jok,p) = (I-GYU(j(ok)K(jok, p))-1, k = 1, ... , n, (4.29)

By substituting the state-space controller notation of Equation 2.5 we have,

S (jok,P) = (I- Gyu(jo)Cc(p)(jokI -AC(p))'Bc(p)) -. (4.30)

We will ensure parameter p enters the controller matrices {Ac(p), Bc(p), Cc(p) } analyt-

ically so that S(jok, p) is an analytic function of p. We apply the rule of Equation 4.25 to

the derivative of the transfer matrix corresponding to the controller and find,
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aK Cc -1 _AA -1
(joI-Ac) Bc + C (joI - Ao ) BC

+ CB(joI - A c)-1 a (4.31)
ap;

DBC + BC-A + 3B

where we have dropped the written dependence on (jwk, p) for convenience, substituted

the notation c(jok,P) = (JOkI-Ac(p))- ~. To determine the sensitivity of S(jok, p)

with respect to p again we apply the rule of Equation 4.25 and find

= (I - G K)[ (I-G C joI-A)B)] (I - GuK)-

(4.32)

= S(jok, p)G YU(jo) K(jok, p))S(jok, P)

where we have defined S(jo k, p) as in Equation 4.30.

By substituting Equation 4.30 into Equation 4.11 and Equation 4.32 into Equation 4.22 we

have the desired singular value sensitivities, al(S(jok, p)). We should note that since
api

GyU(jok) is defined only for a discrete set of frequency points, o 1, then S(jok, p) is not

an analytic function of o and analytic expressions for -a(S(j(o, p)) do not exist.

Computational Algorithm

Based on the expressions of the two previous subsections, we are prepared to outline an

algorithm for determining the sensitivity of the maximum singular value of S(s) at a vec-

tor of frequency points, { o0k, k = 1, ... , n. } in both the design model and measurement

model cases. We outline steps that are taken to increase computational efficiency.

Figure 4.3 is a flowchart of the algorithm.

The flowchart treats both design model and measurement model with a decision at the top.

We iterate over each frequency, ok, to compute the Sensitivity transfer matrix, evaluated
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Measurement model
G),(jog, p)

max(S(jok, Po)), p
apma k 1l.n

Figure 4.3 Flow chart for an algorithm to compute the sensitivity of the maximum singu-
lar value of the Sensitivity transfer matrix with respect to controller parameters. Both
design model and measurement model cases are presented.

at cok, and the corresponding singular value decomposition. We then iterate over each
asparameter, p for] = 1,..., n, and evaluate using Equation 4.26 in the design model
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case, or Equation 4.32 in the measurement model case. Equation 4.22 is used to evaluate

amax(io)-
Pi

Computing a resolvant, <D(ok) = okIo-Ar) , for k = 1, ... , nm is computationally

intensive. We assume Ar has no repeated eigenvalues, such that it can be diagonalized as

Ar = V -1 (4.33)

where Ar is a matrix with the eigenvalues, { j}, of Ar along the diagonal, and Vr is a

matrix of the corresponding eigenvectors. We rewrite the resolvant as,

CD(Ok) = (JokI- Ar)

-1 -1 -l
= (I)kVr Vr -Vr ArVr) (4.34)

= V7' diag (' X)Vr

where diag(v) is an operator which forms a matrix with the elements of the vector v

along the diagonal. Thus, a costly matrix inverse is transformed into a set of scalar divi-

sion with a sparse matrix multiplication. The eigenvalue decomposition needs only to be

performed once, independent of the frequency points ogk.

Figure 4.4 is a plot of the maximum and minimum singular values of the sensitivity of a

plant and the sensitivity as computed analytically and with finite differences. The two

methods for computing are in agreement, validating our analytic expressions for the sensi-

tivity. At a frequency of 0.033 Hz there is a discontinuity in the maximum singular value

of the sensitivity transfer matrix. The gradient is not defined at exactly the discontinuity

frequency, but the effect is very local. In our case, the discontinuities are ignored since

they occur at an exact evaluation frequency with an insignificant probability. In practice,

this oversight has not led to problems with the examples in the thesis. Subgradients [Boyd

and Barratt, 1991] can handle the discontinuities with sophistication but practical exam-

ples have not warranted the added complexity of their implementation.
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Figure 4.4 Top: singular values of a sample sensitivity transfer matrix, Bottom: sensitiv-
ity of the singular values with respect to a controller parameter. Analytic and finite differ-
ence calculation is shown.

B) Critical Point Distance Metric

A second stability metric is the distance of the MIMO Nyquist locus from the critical

point. Though [Grocott, 1994] has demonstrated that the MIMO Nyquist locus does not

provide a stability margin metric in a strict theoretical sense, in practice the distance to the

critical point does quantify stability robustness to a multiplicative uncertainty. Thus a met-

ric is created which quantifies stability robustness in terms of the minimum distance to the

critical point.

The Nyquist function is defined in Equation 2.29 to be given by

Hn(jco) = - 1 + det(I- Gu(jo)K(jo)). (4.35)

Where Hn(jo) = Re{Hn(jo)} + iIm{Hn(jo)}. The critical point is given by P, = -l

such that the distance from the Nyquist locus to the critical point is

2 H
dcr(jG) = [Pcr-Hn(jo)] [Pcr-Hn(jO) ]

= [det(I - Gyu(jo)K(jo))][det(I - Gyu(jzo)K(jo))]
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A metric which captures the distance from the Nyquist curve to the critical point is defined

to be:

1.)

Scr= - Wr(0k) 2 AOk. (4.37)

k = 1 dcr(jok)

Thus we penalize a close pass to the critical point.

In the case of a non-singular matrix M(p) with distinct eigenvalues the following result

can be shown [Athans and Schweppe, 1965]:

1-det[M(p)] = trace M
dp L dp~tMP

(4.38)

= det[M(p)]trace[M(p)1 dM(p)I

where (.)t represents the adjoint of a matrix which can be written as det in

the case of an invertible matrix (i.e. consistent with our assumption on non-singularity).

By applying Equation 4.38 to the metric of Equation 4.37 under the practical assumption

that for the frequencies of interest, { ot, k = 1, ... , n.}, HnUok) is non-singular and with

distinct eigenvalues, we have

aSc 2 1n/ - aer =- - =1 Wrk) 1 Re (I - GYUK) GA K(p))Aok (4.39)
Dpi 7k =1 '-jk)i

where aK(p) is computed with Equation 4.31.
pi

The Scr stability robustness metric is defined at a discrete number of frequency points and

is not obviously extended to a continuous metric. Thus the model-based and data-based

representations of the metric are identical.
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Stability Robustness Metric - Limitations

Both measures of stability robustness, SS and Scr, represent a trade between accuracy and

computational complexity. The application of the augmented cost in an iterative nonlinear

program requires that the stability robustness metric be computed quickly. Further, the

nonlinear program requires that the gradients of the stability metric be readily computable.

Both of these required characteristics limit the choice of a metric of stability robustness

and preclude modern measures of stability robustness such as g.

The developed stability robustness metrics, Ss and Scr capture multiplicative (and divi-

sive uncertainty). For most examples in the thesis, including SIM (and also NGST), the

GYU transfer matrix corresponds to active optics which do not strongly couple to the struc-

ture. GYU is simple, without structural flexibility, and the developed stability metrics cap-

ture stability robustness of the active optics loops.

In Chapter 5 Ss and Scr are used on a one-dimensional interferometer model to capture

structural uncertainty. There are limitations, however. For example, a slight perturbation in

the frequency of a flexible mode may cause a large spike in the maximum singular value

of the Sensitivity transfer matrix, while prior to the perturbation, the Sensitivity s.v. was

smooth. Examples of this type of system behavior are documented in [Miller et al., 1996]

and are common to the structural control of flexible systems. For parametric uncertainty,

the structured singular value, g [Zhou et al., 1996], and its easier-to-compute derivatives,

such as Popov [How, 1993] have been developed. To safeguard against the limitations of

Ss and Scr, as stability robustness metrics the use of the parametric stability robustness

measures is recommended in the evaluation of the tuned controllers (see Section 2.2.6).

4.1.2 Performance Metric

We derive an expression for the sensitivity of the performance, J(K(p)), as a function of

the controller parameters, p. To formulate the problem, we implicitly assume a regulator

control problem, and further we will use an H 2 (RMS) performance metric. Again, we
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assume the system is (1) stable so that the H2 norm exists and (2) that J(K(jo, p)) is an

analytic function of p. Again, we continue our derivation for two cases:

(1) Design Model

In this case, we have a state-space representation of the design model {A, BU, C,, D }

and of the controller of Equation 2.5, {A,(p), B,(p), C,(p)} . A similar derivation can be

found in [Gutierrez, 1999]. We set up the state-space system for the closed-loop as in

Equation 2.7. The H2 performance can be written as,

J(K(p)) = tr[Ccl)(p)Lx(p)(Cc (p)) (4.40)

where 1,(p) is the solution of the Lyapunov Equation,

A' (p)X (p)+ L,(p)(A p)) + B (p)(Bc(p)) = 0 . (4.41)

We form an augmented cost by appending Equation 4.41 with a Lagrange Multiplier

matrix, L,

J(K(p)) = tr[C" lXX(C'' ) ] + tr[L(A lXx + Exx(Ac) T+B) (BW ) )] (4.42)

where the explicit dependence on the controller parameters, p is dropped for notational

convenience.

To determine sensitivities, we take partial derivatives of the augmented cost with respect

to our set of variables, L, Lx, and p. The partial with respect to the Lagrange Multiplier,

kJ(K(p)) recovers the Constraint Equation 4.41. The partial with respect to the closed-
L

loop state covariance is 0 along the optimal trajectory and calculated as,

J(K(p)) = tr[C lI(C (c) ] + tr[LA cl ] + tr[LLxx(A ) ]

(C)(c 1) LA(cl) (ci) T (4.43)
= (C Cc +LA +(A L

=0
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where we have taken advantage of the properties of the trace operator. Finally we form the

partial with respect to the i-th parameter, p , i = 1, ..., nI,, to arrive at,

a J(K(p)) = tr L XX a{C Cl)(C(c) T

_PiI ap z z(4.44)

+ L A I(A +) La B(c)(B(cl) T
r[ L XL +LL +L B (B j

where

DA(cl) A JB~ct) 0 1C (cl) -
--- - , - - I B , - 0 D - (4.45)

3p p;a;cDY Li zud .

(Compare with Equation 4.27). To recap, we solve Constraint Equation 4.41 for LXX(p),

then we solve auxiliary Equation 4.43 for Lagrange Multiplier, L, and lastly, we evaluate

Equation 4.44 for each parameter, pi. The Lagrange Multiplier based method requires the

solution of two (n + nc) order Lyapunov equations whereas direct methods (taking gradi-

ents of the closed-loop matrices of Equation 2.7) require the solution of n, + 1 (n + n)

order Lyapunov equations.

(2) Measured Data

We have measured data for the plant transfer matrix, G(jwk) where { Wk, k = 1, ... , n, }

is the set of measurement frequency points. The performance can be experimentally deter-

mined using Equation 2.6 such that,

Z(jlok) = [GZW(jwk)+GzuU(jk)K(jok)(I-Gu(jcok)K(jok))~1 GYW(jwk)]w(j0k)

= H (cl)(jk)W 0k) 
(4.46)

The experimental H 2 cost can be written with,
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J(K(p)) = E tracefz(jwk)zwo)H AOk

_k(=1

= E L , trace H C1) GJ(Ok)WI(Ok)WUOgk)HH (wJk)H Aok (4.47)

n,,

= ( trace H l) Uwk)XwwGOk)H(cl) Uk) AOk

k = 1

where, experimentally, we assume ergodicity and approach the expectation operator, E(.),

by averaging over multiple measures. Awk represents the spacing between frequency

samples. We have defined the power spectral density of w as

lww(jlo) = E(w(jk)wozk) H) . Generally, we have no direct measure of the exoge-

nous disturbance, w, though we can measure its effects through the power spectral densi-

ties,

lzw(Jok) = GzwUWk)ww(jk)GWk) (4.48)

YW(jOk) = GYW(jOk)ww(Jwk)GYW(jOk) H(4.49)

We may also have little knowledge of the form of IX. . We resolve this by assuming I

can be written as unit intensity white noise, ww) with I (W) = I, driving a whitening fil-

ter. If we cascade the whitening filter with the dynamics, Equations 4.48 and 4.49 become

1zwG(Ok) = G (jwk)G (JWk) (4.50)

j) = (jwk)G")(jog )H (4.51)

where in these transfer matrices, the (-)(W) superscript implies plant dynamics concate-

nated with the whitening dynamics. To extract transfer matrices, G (and

G (wk) from power spectral densities, zw(jok) and XYW(jwk), we assume stable,
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minimum phase dynamics. We rewrite the cost, Equation 4.47, with the whitening dynam-

ics as,

J(K(p)) = -Xtr{

k=1I
H (cl)(jok)H(cl) Wok)H } k

where H(cl) (jo) is defined by substituting G (j) (W)
4 .6k) and pi Uerk) into Equation

4.46. By applying the product rule to Equation 4.52 we have,

+J(K(p)) (4.53)= tr Re H (cl) HCod)H (j)k)1JAUk}

k = 1

where

DH(cl)
= G aKSG(W)ZUaJp YW +Gzu GW

(4.54)

+ K G(w)ayw

where the (jok) dependence has been dropped. S(jok) is the Sensitivity transfer matrix,

Equation 4.30. We compute

Equation 4.32.

-- K(jok, P) with Equation 4.31, and -- S(jok, p) with

4.1.3 Compensator Deviation Metric

The deviation of the tuned controller, K(s, p) from the baseline controller, Kb(s), is

defined by,

d(p) = adi|K(s, p)-Kb(s)|| (4.55)

In the case of a metric comparing the baseline and tuned compensator no distinction is

made between data-based and model-based design. We can devise metrics which use

Lyapunov-based exact continuous computation or alternately a metric which evaluates the

(4.52)
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the deviation metric at the frequencies of interest. For computational ease, the 2-norm is

used. The penalty for the use of the 2-norm is that the high control gain frequency regions

are weighted disproportionately strongly. The logarithmic cost function of [Jacques, 1995]

could be used to allow the weight controller zeros. Alternately, deviations of the loop gain,

Gy1(s)K(s), corresponding to the baseline and tuned controller could be used as a metric

to allow a scaling by the plant.

The continuous computation fits naturally with model-based tuning whereas the discrete

computation fits with data-based tuning. Both cases are developed here.

(1) Continuous Computation (Stable Controller)

The state-space representation of the controllers is given by: {Ac(p), Bc(p), Cc(p) } for

K(s, p), and {Acb, Bcb, Ccb} for Kb(s). We assume both controllers are stable. To com-

pute the deviation we form an augmented state-space system with

Ad= A(P) 01, Bd = B(P), C = 1C(p) -Ccb] (4.56)
L 0 Acb] Bcb

The deviation can be computed using,

T
d(p) = Xtrace[XdCdCd] (4.57)

where Xb satisfies the Lyapunov Equation

AdXd +XdA + BdB = 0. (4.58)

By taking derivatives with respect to the i -th parameter pi we find

d(Xd T a (
-dp =~trace C +Xd Cd + TaCd1 (4.59)

_pi 1jPi P
where,
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Ad d + AX +X + d B T +B 0 (4.60)

with

aAd -- A,(p) 0 aBd ._B,(P) aCd 1
-= p; , -p , - VC (p) 0 . (4.61)

_ 0 0 _ 0 -

(2) Discrete Frequencies (Continuous Case: Unstable Controller)

To discretely determine the deviation on the set of frequencies, { , k = 1, ... , n }, con-

sistent with those used with the measurement model, we numerically compute the 2-Norm

using,

n.

d(p) = IIK(jok P) -- KbG0k) 2Ack
k 1
k = 1 

. (4.62)
n,,

= - trace[(K(jwk, p) - Kb(jk)) H(K(jok, P) - KbU0k))IAok

k = 1

We note that this deviation is identical in the case of (1) a design model and (2) a measure-

ment model. By taking derivatives with respect to the i-th parameter p , we have,

3 Ud n, (K)H H K
d(p) = -- trace (K(p) - Kb)+(K(p) -Kb)H ()A k

k =. (4.63)pixd ap Hp

=c trace Re [{ iK(juk H)(K(j P) - Kb) Aok
k= 1

4.1.4 Compensator Channel Magnitude Metric

We may wish to tune a controller to modify the gain in a particular control channel. For

example, we may wish to reduce the expected control signals below actuator saturation
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levels while maintaining stability robustness and performance. Alternately, a controller

can be decentralized by decreasing the gain in particular channels until those channels can

be removed from the controller without adversely affecting the stability or performance.

The control magnitude metric is defined using a weighted sum of the energy (H 2 norm) of

the control channels,

n, n ,co
M 

2

1 WM, ml((o)|Kml(jo) do). (4.64)

m= 1=10

The ny x nu weighting matrix WM(o)), is chosen to individually weight control channels

whose energy is to be included in the optimization cost function. The ml -th subscript indi-

cates the m x 1 controller channel is picked off. The frequency weight allows the designer

to shape the controller magnitude as a function of frequency, for example: to avoid DC

saturation of small-stroke actuators, or to specify the control bandwidth.

In the case of the metric evaluating the gain of a tuned compensator no distinction is made

between data-based and model-based design. Again, we can devise metrics which use

Lyapunov-based exact continuous computation or alternately a metric which evaluates the

the deviation metric at the frequencies of interest.

(1) Continuous Computation (Stable Controller)

In the case of a stable continuous controller, if possible, we append the stable state-space

weighting WM (s) to the ml-th control channel, where

W mM (S)W.Mi (s)H = WM, mI(o) (4.65)

to arrive at an augmented, weighted controller, given by the state-space triplet

{Aca(p), Bca(p), Cca(p) }. If the weighting cannot be represented by the state-space

model we appeal to the Discrete Frequencies case developed below.
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The cost of the {j, l} channel is given by solving the Lyapunov equation,

AaXc+ XaAT+Bea T = 0Aca ca,ji + ca,jiA ca ca, 1 ca, 1 (4.66)

where Bca, I is the / -th column of the augmented controller input matrix, and evaluating

2 T
jKajl112 = CcajXca,j1Cca,j (4.67)

where Ccaj is the j-th row of the augmented controller output matrix and Kaji is the ji -

th entry of the augmented controller.

The gradient of M with respect to the i -th controller parameter is given by,

nIIn 1 12
m a||Ka, l 2

j=ll=1

(4.68)

where

ajja jJ1 2 a
2X

-p a
T .+C 3Xc

ca,jlCca,j +Ccaj ajl"'ca,j

c 
'

+cajXcaji a,]

with ca, jl
api

satisfying the Lyapunov equation

+ jA T+ p ca + caX+ P Xca,jl

aBca 1 T
+ Bca,l1

aA T
Ca

+ca,jl g

aB T
+Bca,l 

3p i

(4.70)

= 0

(2) Discrete Frequencies (or Continuous Case; Unstable Controller)

In the case of a discrete set of frequencies, { ok}, we evaluate Equation 4.64 using

ny nu n
7 C U 0): W ' j 6 ) K ~ ~ ( ) 2 ( k

M = I WMml(O)|KmlfjO)I2Aok-

m= ll= lk= 1

(4.71)

(4.69)

Aaca, jl
ca Ii
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The gradient of M with respect to the i -th controller parameter can be evaluated using

n, n. n,
aM 2 aKU o)KH

SWM,ml(o)Re K(jo) Aok (4.72)

m = ll= lk= 1

in conjunction with Equation 4.31.

Equation 4.72 can be used for critically stable controllers as long as no ok # 0.

4.1.5 Tuning Costs and Gradients: Summary

In Section 4.1.1 through Section 4.1.4, the four terms which combine to form the aug-

mented tuning cost Ja have been defined, and their gradients with respect to the controller

parameters have been computed. The resulting cost expressions are summarized in

Table 4.2 with equation labels pointing to the introduction of the cost term in the text. If

continuous and discrete expressions (or expressions for use with design models and

expressions for use with measured data) are available for the cost terms, both are pre-

sented in the table.

The design weights and thresholds which act as knobs for the designer to control the tun-

ing are reviewed in Table 4.2. Each term in the augmented cost function can be scaled to

modify their relative weights. Further, where possible, a frequency weighted scaling on

the cost terms is introduced to specify the control bandwidth.

4.2 Controller Parameterization

The controller is broken into a set of basis functions for efficient tuning. The elements of

the state-space representation is chosen as a suitable set. Linearity and orthonormality is

sacrificed for a minimal number of parameters (basis functions) to represent a controller

of order nc . The number of parameters is further decreased by sacrificing some numerical

conditioning and requiring that the controller be represented in a particular form. This sec-
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TABLE 4.2 Summary of the terms of the augmented cost function. The table lists expressions for the cost
terms when either a state-space model is available, or when measured data only is available. Designer
thresholds and weights are all noted with an asterisk (*).

Cost 
Expression

Term Design Model or Continuous Computation Measured Data or Discrete Computation

traceI C ' ( C(c 0) with nc,) (cl) H

Z Z I ~~trace H (C (jo )H (C)(j(o )H AM(c) (c) T (ci) (c 1) T 0 c I krce k k
A 'nL,+ Yx( ) +B (B k = I

(see Eq. 4.40 and 4.41) (see Eq. 4.52)

A(CI) B c0, C (c) are closed-loop quantitates Assume a white noise disturbance input.
which include performance appended state- Summation of the closed-loop cost over the
space frequency scaling. frequency samples. H(c, m) is a closed-loop

metric relating w to z.

Ss

n,

I 2 rarctan(a{1n(ama(S))-TS()) Ii (see Eq. 
- Y Ws((O)(aYmax(S)) 1+ AO ( E

i = 1
Summation of the deviation of the maximum s.v. of the Sensitivity amax(S) over a thresh-
old in a frequency band of interest.

Ws(o) * weights the stability robustness penalty as a function of frequency, and weights the
relative contribution of the Ss term to the total cost JA . Used to specify the control band-
width

Ts(o) * threshold over which spikes in Omax (S) are penalized. Can be used to capture
uncertainty in the model or measured data (a low threshold implies less model confidence)

a * weights the penalty for deviation of the maximum s.v. above Ts(o). As a is increased
slight deviations are penalized as strongly as large deviations.

n,

IWer(Wk) Acokk= dW(() 2
k = I dcrUjO)

(see Eq. 4.37)a

Summation of the inverse of the distance from the MIMO Nyquist locus to the critical point
over a frequency band of interest. For good stability robustness we maximize this distance
near crossover.

Wcr(o) * weights and selects the frequency values of interest, and weights the relative con-
tribution of the Scr term to the total cost JA. Can be used to push importance frequency
points away from the critical point.

der(jok) is the distance from the Nyquist locus to the critical point at frequency o0
k.

adtrace[XdC Cd]with

T T
AdX +XdAT+BdBd = 0

(see Eq.4.57, 4.58)

Form an augmented state-space sys-
tem (Ad, Bd, Cd) which subtracts the outputs
of the two (stable) controllers.

ad 2
SIIK(jo, p)- Kb(jk)I Awk o

k = 1
(see Eq. 4.62)

Approximate the H2 norm of the difference
between the two controllers evaluated at the
set of critical frequencies.

I_ _ad * weights the relative contribution of the d term to the total cost JA .

SR =

(1~ cr)Ss

+ YcrScr

Scr

d
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TABLE 4.2 Summary of the terms of the augmented cost function. The table lists expressions for the cost
terms when either a state-space model is available, or when measured data only is available. Designer
thresholds and weights are all noted with an asterisk (*).

Cost 
Expression

Term Design Model or Continuous Computation Measured Data or Discrete Computation

fly nufl n n

M f WMmI((o)Km(jo) 2 d0) d WMmI((o)Kml(jo)|2 Ak
m=11=10 m=1/= Ik=I

(see Eq. 4.64) (see Eq. 4.71)

Penalize the sum of the areas under the mag- Summation of the area under the magnitude
nitude of each controller channel. Solved of each weighted controller channel.
with Lyapunov Eq. 4.66 and 4.67

Wm * is a frequency weight appended to the Wm * weights the individual controller chan-
state-space model to penalize control magni- nels as a function of frequency and weights
tude and weights the relative contribution of the relative contribution of the M term to the
the M term to the total cost JA. Can be used total cost JA . Can be used to limit actuator
to limit actuator use over critical frequency use over critical frequency bands.
bands.

a. A continuous computation of the stability robustness metrics has not been developed

tion presents the controller parameterization for the full and constrained-topology control-

ler.

4.2.1 Full State-Space Parameterization

We form a full parameterization of the state-space representation of the controller given by

Equation 2.5. Since state-space realizations are not unique, there are an infinite number of

ways to parameterize the controller.

Jordan (diagonal) state-space form

To understand the number of parameters required to specify the state-space system, we

assume it is diagonalizable, and perform a state transformation to convert to a MIMO Jor-

dan (or diagonal) form as seen in Figure 4.5.

We define the Jordan canonical form state-space matrices as
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Y11 Y

Figure 4.5 Jordan (diagonal) form for an order nx MIMO system with n, inputs
and ny outputs.

[x
j 0

Ac = .K
0

0 ...

k2

01

0

;ni

B _
BC= (4.73)

We see that nX eigenvalue parameters, 1, are necessary to specify the dynamic matrix.
J

For this system with nu inputs and n Y outputs, the input matrix, B , requires nX X nX

parameters and the output matrix, C , requires n, x n parameters. The total number of

parameters is,

nP = nx(nu + ny + 1) (4.74)

which over-parameterizes the system. By constraining two rows of C to be made up of 1

and 0, the number of parameters to completely specify of state-space system is given by

[Ly et al., 1985]:

160

big. b1nu

bl b C1C2..Cn

bnx bx -cn,1 cn,2 ... cny.
nL - ~
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nP = nx(nu + n Y - 1), for n. 2! 2 . (4.75)

The Jordan canonical form is useful for understanding the form of the parameterization,

but for our purposes it has two flaws: (1) not all systems can be diagonalized, and (2) some

eigenvalues come in complex conjugate pairs, and as such each X1 are not independent,

and made up of a real scalar and a complex scalar. The possible complex nature of the Xi

makes the real/complex transition of the eigenvalues of A awkward. We alter the Jordan

form slightly to alleviate these difficulties.

Near-modal state-space form

By forcing nX to be even, we can group complex conjugate eigenvalues,

iK + = G +jog}, together and group real eigenvalues in pairs, {K , } where

S# + . We then appeal to a second-order form whose dynamic matrix is given by,

bn
A7'" = diag[Ag ], i = 1, ...,' , (4.76)

b b
where the diag[A'] forms a block diagonal matrix with the matrix components, Ai along

the diagonal. The 2 x 2 blocks are of the form,

A = 0 1 (4.77)
aig a2i

2 2 2

where in the case of complex eigenvalues, ai = +o) = -W 2 and

a2i = -2ag = -2(oni where owg and (g are the respective natural frequency and damp-

ing ratio. In the case of real poles a1 g = -A 1 and a2 i = -(K + K+ 1). The input and

output matrices, B" and C ', remain parameterized as in Equation 4.73, though the

components of the matrices will be transformed. Because of its resemblance to modal

form with the inclusion of even pairs of real poles, we term this state-space representation

as near-modal form.
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By breaking the dynamics matrix into 2 x 2 blocks corresponding to factors of the charac-

teristic equation, s2 + a2is + a1 where a, i and a 2i are real, we maintain a smooth transi-

tion from real to complex conjugate poles. Further, most structural systems can be

transformed into this form.

For transforming the state-space system into this form we treat real and complex-conju-

gate poles separately. For complex-conjugate poles, the form is a common real modal

form, and the transformation is achieved by manipulating the appropriate eigenvectors as

discussed [Grocott, 1994]. For the real eigenvalues, we group them into non-equal pairs,

and then we concatenate two transformations. First we diagonalize using the eigenvectors,

resulting in a 2 x 2 block of the form

d
A tc (4.78)

0 X

we then apply a transformation matrix of the form

T= 1A (4.79)

lL 1 Xr

such that

b d-1
Ai= TA T . (4.80)

We have defined a state-space transformation which specifies a unique A m matrix, but

because of the non-unique normalization of the eigenvectors used in the transformation,

does not specify a unique B m or Cnm matrix. To uniquely specify them, and improve

numerical conditioning, we scale them such that the 2-Norm of the two rows of B m and

the two columns of Cnm, corresponding to the 2 x 2 Ab blocks, are equal. The scaling

uniquely specifies the near-modal state-space form, but complicates the parameterization

considerably. For controller tuning purposes, we choose to relax the input/output scaling
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and leave the controller slightly over parameterized with n, = n (n + n+ 1) parame-

ters non-uniquely specifying the controller.

The controller parameters are written in terms of a perturbation from their nominal value:

e.g. ag I = a 11, b + 8a 1 , where the ()b notation indicates the nominal (baseline) value

and 8a11 indicates the tuning parameter. The tuning parameters are placed in a vector of

the form

p = Sa 11 Sa 21 ... n, 8a nx 6bl ... Sb, 1 8b1 2 ... Sbnn
1 - 2-

T (4.81)

... Sc11 ... SCinx SC21 .. Cnyn,

where we refer to the i-th element of this vector as pi.

Our near-modal form is similar to the tridiagonal form suggested in the direct controller

design work of [Ly et al., 1985]. The principal difference is that Ly constrains the form to

be unique by setting elements of Cc to be unity or zero. In this way, Ly's form has the

minimal number of parameters for a unique state-space parameterization (Equation 4.75).

In our parameterization, we sacrifice uniqueness for improved numerical conditioning by

allowing the elements of BC and Cc flexibility in maintaining similar numerical values.

The near modal parameterization requires n , = nx(nu + n, + 1) parameters. The tridiag-

onal parameterization of [Ly et al., 1985] (similar to our near-modal parameterization)

compares favorably in terms of performance and computational efficiency to a full param-

eterization [Collins and Sadhukhan, 1998].

Near-modal form derivatives

The derivatives of the state-space representation of the controller are required to compute
JJK as required for all of the gradient computations of Section 4.1. The preceding state-

ment follows from the chain rule since the controller, K(s, p), affects all closed-loop char-
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acteristics of the system the we monitor, and since K(s, p) depends explicitly on the

parameters, p.

The near-modal form exhibits particularly simple derivatives. For example, the derivative

of the state-space matrices with respect to pI = a are given by,

c

api

O0 ... 0
1 0 0 0 0 -a0 -

:p :0 -. :p ap '3

0O 0 ... 0O

(4.82)

As another example, the derivative

pn,1= b1 ; is given by

Pn+1 5 Pn,+1

of the state-space matrices with respect to

1

0

0
0

0

0
DCn'I c = [0.

:jPn,+

0

(4.83)

In each case we find that two of the state-space matrices are zero matrices while the third

has only a single entry of unity. The sparsity of these derivative matrices can be exploited

for numerical efficiency.

We can write the state-space matrices for the tuned controller in terms of the baseline con-

troller by computing

Ac(p) = Ae~ + pi,Cb+p) =p,

cc (P) = Ccb

i = 1

nP anm

+ pcpi

i= 1

(4.84)
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Example: 4th order 2 x 2 controller

We parameterize the controller as:

0 1 0 0 bi b12

A = agI a 21 0 0 ,BC= b2 , b22, C= CII C12 C13 C14  (4.85)
0 0 0 1 b 31 b3 2  C21 C22 C23 C24

0 0 a21 a22 b41 b42

noting each parameter can be written as the sum of the nominal (baseline) parameter

summed with a perturbation e.g. al 1 = a11 b + 5al1 . The parameter vector is given by

Equation 4.81 with np = 20 parameters.

4.2.2 Constrained Topology Parameterization

By fixing certain parameters in the free-topology controller parameterization of the previ-

ous section, the controller topology can be constrained. Block diagonal controller topolo-

gies are generated by removing some controller parameters from the vector of tunable

parameters, p .

We limit the allowable controller topologies to be in a block form. A more general sensor/

actuator constrained topology can be written using the constrained Markov parameters

discussed in Section B. 1. However, general constraints can over-constrain the controller

and lead to complex constraint equations. The block form avoids the extra complexity

without sacrificing too much generality.

Each block corresponds to a subset of sensors that actuate a subset of actuators through the

action of the controller. To specify a constrained controller topology first we decide on a

number of sensor /actuator blocks { , 1 = 1, ... , ng} and for each block we assign an

even number of states, n, 1. Each pair of states is in the near-modal form. The states that

are free for tuning are included as the first elements of the p vector. For each sensor chan-

nel we determine which blocks of states are affected. The corresponding parameters of the
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BC matrix are the next parameters of the p vector. Similarly, we determine which blocks

of states control each actuator. The corresponding elements of the Cc matrix are included

as the final parameters of the p vector.

Example: 2nd order SISO controller with integral action

We wish to put a controller of the form

K(s) = - -- (4.86)
s(s + a)

into our constrained topology while maintaining integral action. The controller matrices

can be written as

A = [0 1jB= bilC = c1 c12] (4.87)
.=0 -a_ b21j C=[C 1

with a parameter vector given by p = [6a Sbi 6b 21 Sci Sc 12] . The 0 in the Ac(2, 1)

location ensures the preservation of integral action.

Example: 4th order 2 x 2 controller with sensor/actuator constraints

In this example we wish to have a 2 x 2 controller where the first sensor controls both

actuators and where the second sensor only controls the second actuator. We divide the 4

states into two 2-state blocks and write the controller in the form:

0 1 0 0 bil 0

aA -a21 0 0 0 B= cC C C12 0 0(4.88)
AC 0[ab C 10 0 c23 c 24

0 0 a21 a22] b41 b-

The tuning parameterization has been reduced from n, = 20 to n = 14 parameters.
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4.3 Tuning Iterations

The iterative Boyden-Fletcher-Goldfard-Shanno (BFGS) [Bazaraa et al., 1993] nonlinear

descent method is employed to reduce the cost of Equation 4.1. With each step, the gradi-

ents of the cost are computed with respect to the control parameters of Section 4.2 using

the relations derived in Section 4.1. The selection of the step-size is modified from the

standard algorithm to ensure that closed-loop stability (and optionally, controller stability)

is maintained. A similar nonlinear program was used for multi-model control synthesis by

[MacMartin et al., 1991] and for the MACE program [Campbell et al., 1999]. An expert

algorithm to determine stability from measured data (i.e. without evaluating the eigenval-

ues) is developed.

4.3.1 Stepping Algorithm

The standard sum-of-squares curve fitting technique is the Levenberg-Marquardt (LM)

algorithm [Bazaraa et al., 1993 and Jacques, 1995]. However, for our controller tuning a

BFGS variable metric descent is used to tune the controller with the aim of minimizing

the augmented cost of Equation 4.1. The method requires that the gradient, VJa, be com-

puted at arbitrary points using the expressions developed in Section 4.1.

The BFGS algorithm is selected over the LM algorithm for four reasons: (1) model-based

costs are not necessarily written using a sum-of-squares (Section 4.1), (2) data-based tun-

ing examples show the LM tends to rapidly converge to a greater-cost controller than the

BFGS, (3) the LM requires a n, x np matrix inversion with each iteration, and (4) the

standard LM approximation of the Hessian (ignoring second derivatives [Press et al.,

1992]) does not hold since the controller tuning problem does not necessarily go to a neg-

ligibly small cost. The BFGS algorithm is chosen over other descent methods (e.g. gradi-

ent descent) based on an informal comparison of performance and computational

complexity with the developed tuning algorithms. The superiority (performance versus

computational complexity) of the BFGS algorithm is collaborated in a similar study com-

paring direct reduced-order H2 designs [Collins and Sadhukhan, 1998].
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Following the implementation of the BFGS algorithm outlined in [Press et al., 1992], the

BFGS algorithm is coded to iteratively compute the next controller parameter vector,

Pk + 1, given the current Pk,

Pk+1 = Pk+ k+1 k) (4.89)

where pk is the adaptively selected stepsize, and

SPk = -HkVJa, k .

The BFGS updating formula for the inverse of the Hessian is written as

(Pk+ 1 Pk)(Pk+ 1 Pk)
Hkl = Hk+T

(Pk+1Pk) (Va,k+ IVa,k)

[Hk(VJa, k+ 1- Va, k)][H k(VJa, k+ 1 Va, k)] T

(Via, k + 1 Va, k)THk( VJa, k +1 - a, k)

+ (Via k+1 a k) THk(VJa, k+1 - Va, k)UU

(4.90)

(4.91)

where

u(Pk+ Pk) Hk(VJak+1VJa _ . (4.92)
(Pk+1 Pk) (Va,k+1 - Via k) (Va,k+1 Via, k) Hk(ViJa, k+ -Va,k)

With each successive step of the BFGS algorithm an approximation of the inverse of the

Hessian is iteratively constructed using Equations 4.91 and 4.92. We start the algorithm

with the baseline controller pi = 0 and with HI = I.

4.3.2 Stepsize Determination: Stability Preservation

The stepsize, , is adaptively selected. A standard cubic spline line search [Press et al.,

1992] is modified to ensure closed-loop stability is preserved. The initial stepsize is

bisected until the controller at Pk + 1 (given by Equation 4.89) displays a stable closed-

loop. In addition, the designer may wish to preserve the stability of the controller itself.
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The bisection limits the stepsize so that the tuned controller resulting from each iteration

stabilizes the plant. A backtracking algorithm is used to further refine the stepsize to

ensure the objective function, Ja(Pk + ) is decreased: (1) if the given stepsize increases

the objective function then we backtrack along the direction of descent VJa(Pk + 1), (2)

we solve for the minimum of the cubic spline made up from our initial point, first step, and

backtrack step. We iterate on subsequent splines until a suitable decrease in the objective

function is made.

Determining the stability of the closed-loop system is essential to computing the appropri-

ate stepsize. We determine the stability in both cases: (1) when the design model of the

plant is available, and (2) when frequency transfer matrix data for the plant is available.

(1) Model stability determination

In the case of model-based controller tuning, the open-loop model is available. In this

case, determining stability is a matter of ensuring all of the closed-loop poles in the left

hand plane. Mathematically for the controller at Pk,

max(Re[eig(A(Cl)(P))]) -F =o stable (4.93)
> -E => unstable (conservative)

where E is a tolerance for adjusting the allowable proximity to the jo -axis for the closed-

loop system to be considered stable. The determination of stability is conservative since a

stable closed loop may be considered unstable if it's eigenvalues are to close to the jo -

axis.

The compensator stability can always be considered with a model-based test of the eigen-

values of Ac(pk). In general though, pure integrators are allowed in the controller which

implies that E = 0 must be used in the test of Equation 4.93.
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(2) Data-based stability determination

When the model is unavailable, a graphical determination of stability is used. A knowl-

edge-based algorithm is to developed to automatically implement the rules of the MIMO

stability criterion to determine stability.

The MIMO Nyquist function can be determined at each frequency point,

{mwk, k = 1, ... , n(,

H(jo) = - 1 + det[I+ GYU(jo){-K(jo)}] (4.94)

where, as per the convention for graphical stability determination, negative feedback is

employed. The MIMO Nyquist stability requirement is that the net number of counter-

clockwise encirclements of the critical point (-1) made by the locus of H(jo) on the

complex plane must be equal to the number of unstable poles in the open loop system

G,,(jo)K(jo) [Lehtomaki et al., 1981 and Grocott, 1994].

To simplify the stability determination, the locus of H(jo) can be plotted as log-magni-

tude versus phase, commonly referred to as a Nichols plot. In the Nichols plot, encircle-

ments in the Nyquist plot become passes of the locus of H(jo) over the critical points

found at a magnitude of 1 with phase - 180 ± n360 degrees. It is much simpler to code a

rule which counts passes over the critical point than it is to count encirclements. For stabil-

ity with the Nichols plot, the net number of left to right (lower to higher phase) passes of

the locus of H(jo) over the critical points must be equal to the number of unstable poles

in the open loop system G,,(jo)K(jo).

The stability determination algorithm works by comparing subsequent points,

Hk = H(jto) and Hk , I = H(jok +1). The points are placed in their respective quad-

rant using:
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0 < ZH < 90 - q(Hk) = 1

90< ZHk<180 q(Hk) = 2

-l80<ZHk<-90=q(Hk) = 3

-90<ZHk<O= q(Hk) = 4

A right to left pass of a critical point corresponds to traversing from quadrant 3 to quadrant

2. A left to right pass corresponds to traversing from quadrant 2 to quadrant 3. Based on

this, the following rules are implemented to determine passes over the critical point:

IHkj > 1I jHk +11 > 1, q(Hk) = 3, q(Hk +1) = 2 = Right to left pass
3=~Lettrihtas (4.96)

jHkj > 1, |Hk +1I|I> 1, q (Hk) = 2, q (Hk + 1) = 3 -:> Left to right pass

In the case where the locus passes from quadrant 2 to quadrant 3 (or from quadrant 3 to

quadrant 2) and the magnitude of one of the points is greater than 1 then it is impossible to

determine if the locus has passed over or under the critical point. In this case a linear inter-

polation is used to generate points between tOk and cok + 1* The algorithm is then recur-

sively applied to determine whether a critical point crossing has occurred. Mathematically,

Hk > 1, IHk+ I < 1, q(Hk) = 3 , q(Hk + 1) = 2 => Interpolate

IHk > 1, IHk+ I< 1, q(Hk) = 2 ,q(Hk+ 1 ) = 3 * Interpolate

HkI < 1, IHk+ i > 1, q(Hk) = 3 , q(Hk+ 1 ) = 2 => Interpolate

IHkI < 1, IHk+ ii > 1, q(Hk) = 2, q(Hk + 1) = 3 => Interpolate

In the case where consecutive points skip a quadrant (e.g. q(Hk) = 1 and q(Hk + 1) = 3)

and the magnitude of one of the points is greater than unity, then the data is considered to

be bad. We have

IHkI > 1 or IHk+ II> 1, quadrant skipped =* Sparse data. (4.98)

By assessing the net number of right to left crossings of the critical point and by compar-

ing to the number of open-loop unstable poles, the stability of the closed-loop is deter-

mined.
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Limitations of a stability-preserving step

The stability-preserving step is essential to guarantee a stable closed loop. It does however

limit the feasible space of available controllers. Consider Figure 4.6, a simplified example

where all controllers which can be described by two parameters, p I and P2. The resulting

controllers are marked as stability preserving (stabilizing) and non-stabilizing.

P2
stabilizin

P1
sabilizin ,

baselinetue
controller controller

Figure 4.6 Space of parameterized controllers, two parameter example

Consider a baseline controller which by assumption lies in a stable set. By applying the

tuning algorithm a cost is minimized to determine the tuned controller. The stability-pre-

serving step ensures that all iterations occur within the stable ball that contains the base-

line controller. The dashed trajectory is not possible even if a better controller could be

found in the alternate stable ball. The limitation results from the fact that in general the

parameterization of stability-preserving controllers is not a convex set.

The limitation of the stability-preserving step highlights the dependence of the tuned con-

troller on the baseline design.

4.3.3 Controller Tuning: Summary

The tuning methodology can now be summarized with the help of the flow chart of

Figure 4.7.

We begin a tuning problem by specifying the augmented control cost by setting the design

control knobs listed in Table 4.2. We initialize out iteration counter, k to be zero and our
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Comments

Problem set-up: (a) (a)Set design weights (Table 4.2, see Section 4.4)

form cost JA (b)Compute cost function and gradient as detailed in

parameterize Kb Section 4.1.

set k = 1, H1 = (c)Stop conditions: (1) near zero gradient (IVJAI < E ) or
(2) exceed iteration number limit, (k > kMx )

(d)Check eigenvalues for the design-model case, and
use automated Nichols stability determination in the

Compute JA design-data case (Section 4.3.2)
and VJA (b) (e)Linesearch to determine stepsize [Press et al., 1992]

(f)Exit if step size is too small

if (g)Set the stepsize and update Hessian (Section 4.3.1)
VJAJ < yes |exit

or K =P(Kb~g +1)

k Eq. 4.2, 4.84

k+1t kEq. 4.89 4
k~ = k+1

K=
P(Kb, Pk+1 ~ 2

Eq. .2, 4.84

Compute JA (Pk +1) CL no
and VJA (Pk +10 (b) stable?

Cost decreases yes

iLinesearch 
ealgorithm 0

p

< Im yes
(f)

no

FPk+ Pk + 8Pk (g)
Upd ate Hk+1I Eq. 4.89, 4.91

Figure 4.7 Flow diagram of the tuning methodology including the iterative cost minimization

initial Hessian value to be the identity, Hi = I. The controller is parameterized following

the guidelines developed in Section 4.2. We determine the initial cost, JA(pI) and gradi-

ent, VJA (p1 ) with the relations introduced and derived in Section 4.1.
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The tuning iteration can now begin. Three stop conditions are defined to end the tuning

iterations: (1) the gradient magnitude can fall below a stopping threshold, i.e. |VJA| < F

indicating that further tuning steps will not affect the cost (convergence), (2) the maxi-

mum number of iterations is exceeded, i.e. k> kMx, or (3) the stepsize falls below a

threshold i.e. p < pMN. For each iteration the tuning steps of Section 4.3.1 are performed:

(1) a step size is selected, (2) the parameter vector is updated to Pk , I by Equation 4.89,

(3) the estimate of the inverse Hessian is updated with Equation 4.91, (4) the cost

(JA(Pk,1)) and gradient (VJA(pk-,1)) are evaluated, (5) the counting index, k, is

updated, and (6) the stopping criteria are checked.

For each tuning the step, the stepsize, p, must be computed. We begin with g = 1 , com-

pute the updated parameter vector using Equation 4.89. Then the stability of the closed-

loop system, and optionally that of the controller itself can be computed. Stability is veri-

fied by checking the eigenvalues if the design model is available, or by using the MIMO

Nyquist criteria if we have only plant data as discussed in Section 4.3.2. If we have an

unstable closed-loop then the stepsize, g, is decreased until we maintain stability. Our

assumption of a stabilizing baseline controller ensures that generally we can find g small

enough to maintain a stable closed-loop. Upon finding a maximal g that maintains stabil-

ity, a linesearch algorithm [Press et al., 1992] selects the final stepsize to ensure that taking

the tuning step will decrease the augmented cost, JA. If the stepsize falls below a thresh-

old then we exit the tuning iteration loop.

Once the tuning loop is exited, a tuned controller is formed from the parameter using

Equation 4.84.

The application of the tuning algorithm to a state-space model or to a measured data set is

limited by the possibility of overtraining. If the tuning algorithm is aggressively applied to

achieve a great decrease in the augmented cost then the controller may become tuned to a

particular data set and not perform well should the plant change slightly (time variation or



Controller Architecture Modifications 175

slight nonlinearity). An amplitude nonlinearity in the MACE experiment demonstrated the

danger of overtraining a control design to a particular data set [Miller et al., 1996].

4.4 Controller Architecture Modifications

The tuning methodology allows the designer to make major changes to the controller

architecture. In this section we present the capability of the methodology to: increase the

controller order, specify the use of an actuator over a band, modify the controller topology

(i.e. which sensors feed to which actuators), and alter the closed-loop bandwidth.

The flexibility of modifying the controller architecture in an optimization framework is a

strong advantage of the proposed tuning methodology. In classical control synthesis the

designer specifies an architecture (presumably made up of SISO control channels) and

manually tunes each channel, one-at-a-time until good closed-loop characteristics are

obtained. In the proposed framework any MIMO architecture may be specified and opti-

mally tuned. Further, beginning with a SISO channel classical design, sensor/actuator con-

trol channels can be opened for improved performance/stability robustness. In modem

model-based design (H 2/-) the designer has little control over the controller order (iden-

tical to that of the design plant) and control topology (generally fully connected from all

sensors to all actuators).

4.4.1 Modifying Controller Order

The tridiagonal controller parameterization of Section 4.2 allows us to easily add states to

the tuned controller. To maintain the even number of states required by the parameteriza-

tion we must add states two-at-a-time.

As an example, given the state-space representation of the initial controller (A,, Bc, C,)

which stabilizes the plant, we append two states to arrive at the increased-order controller:
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A[0 0 BOd c ib g 1 i

A> =0 0 1 ,B= bi ... b c C (4.99), i, n. c--

0 aig a2il bi+ 1,1 '-- i+1, n c cn, i , +

By specifying ali and a2 i the designer can set the initial pole locations (frequency and

damping).

To maintain stability we ensure that the added are either unobservable or uncontrollable

such that the controller with appended states has an identical transfer function to the initial

controller. For example we can set b, 1 ... , bi+1,n = 0 or alternately,

C1, i, ... c- ,, iI = 0.-

It is important to not set both bi, 1 , bi + 1,n = 0 and c1 , ... , c,1 , i+ =0, otherwise

the ubiquitous gradient of Equation 4.31 vanishes for the parameters corresponding to
api

the added states. The result is that the added state parameters will not be tuned.

To add extra states the following procedure is employed:

1. Add states (two-at-a-time) as shown in Equation 4.99

2. Set the (stable) pole locations for the added states

3. Set bg, 1, ... , b = 0 corresponding to the added states

4. Set c1, j, ... , c to values such the elements of the gradient of the aug-
mented cost with respect to the controller parameters corresponding to

Ci, - ., c + are similar in magnitude to the gradient with respect to the
original controller parameters.

With this procedure we add poles at the desired frequency and ensure by setting the initial

values of c 1 , ., c n i +I such that VJA for the added parameters will allow the added

parameters to play a significant role in subsequent tuning.
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4.4.2 Specifying Actuator Use

The fourth term, M, in the augmented cost expression of Equation 4.1 is used to penalize

control channel use. In particular we use the weighting matrix WM(o) to select channel

and frequency bands where control gain is penalized. This type of tuning allows us to han-

dle physical stroke and bandwidth limitations of actuators. Several examples are presented

here:

- Removing DC gainfor a control actuator: Some actuators are limited at low-
frequencies. To limit the 1 -th actuator's use at low frequency we increase

WM, ii(o), i = 1,..., ny to be a large value for the low-frequency band of
interest.

- Decreasing the use of a stroke-limited actuator: Actuators may have limita-
tions on their stroke. We can use the WM weighting to limit the use of the 1 -
th actuator. The designer can examine u = Ky in the closed-loop system to
determine which control channel over which frequency band is causing the
actuator to saturate. A heavy penalty on that WM channel can be set over the
appropriate frequency band and tuning will ensure that the problem gain of
actuator will be decreased with minimal adverse effect on JA

4.4.3 Modifying the Controller Topology

The tuning methodology provides a framework to remove sensor/actuator channels from

the controller (decentralizing) and to add sensor/actuator channels to the controller (cen-

tralizing). Channels are removed with minimal negative impact and added with the great-

est possible impact on the augmented performance.

e Removing a control channel: Given a controller topology it is sometimes
desirable to remove a sensor/actuator connection. For example we may wish
to decentralize a fully connected controller. In fact removing channels from a
global controller may be easier than directly designing a constrained-topol-
ogy controller. The direct design of constrained-topology controllers is pre-
sented in Appendix B. The tuning methodology provides a means for
removing controller channels (if possible) such that stability is maintained
and performance is affected minimally. Using the penalty on controller gain,
M we set the design weight for the ml -th channel in question (WM, ml) to be
progressively greater. With each successive increase in WM, ml we tune the
controller until the gain of the ml -th channel is small enough that we can set
the channel to 0 without affect the performance or stability robustness.
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Adding a control channel: A controller can achieve greater performance as it
becomes increasingly connected. For this reason, given a constrained control
topology it may be desirable to open sensor/ actuator channels in the tuned
design. The methodology provides a framework for this by simply expand-
ing the constrained topology parameterization (Section 4.2.2) to include
parameters for the control channel that the designer wishes to add. Applying
the tuning methodology will bring in the added channel to maximize its
impact on the augmented performance.

4.4.4 Altering Closed-Loop Bandwidth

The tuning methodology provides two principal methods for controlling the closed-loop

bandwidth: (1) a heavy penalty on stability non-robustness (Ss(O)) at frequencies greater

than crossover, and (2) a heavy penalty on control channel use (WM(o)) at frequencies

greater than crossover.

" Stability robustness bandwidth specification: The stability robustness term in
the augmented cost can be used to specify the closed-loop bandwidth. Gen-
erally, a pop-up (greater than 0 dB) in the maximum singular value of the
Sensitivity transfer matrix is exhibited near crossover. To lower the cross-
over frequency we specify the bandwidth by using our stability robustness
penalty Ss to push the pop-up feature lower in frequency. This is done by
setting a low threshold, Ts(o) and high penalty weight, Ws(o) for frequen-
cies greater than the desired crossover frequency. Applying the tuning meth-
odology will then decrease the closed-loop bandwidth. To increase the
bandwidth we relax our stability robustness constraint and increase the
emphasis on performance improvement in JA. The bandwidth will naturally
increase as the controller is tuned.

* Control channel use bandwidth specification: The frequency weighting on
the gain of the control channels can be used to specify the control bandwidth
by forcing the controller to roll off. For each of the appropriate channels we
increase WM(co) for frequencies greater than the desired cutoff frequency.
Applying the tuning methodology will force the controller channels to roll
off with minimal adverse effect on the closed loop performance/stability
robustness.

This section demonstrates the flexibility of the tuning methodology. With specification of

the designer-defined control knobs, the tuning methodology can be used to indirectly

shape the controller. Performance and stability limitations cannot be circumvented, but the

flexibility afforded by the tuning methodology is a desired feature.
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4.5 Special Example: SWLQG

Sensitivity-weighted LQG (SWLQG) control design [Grocott, 1994] provides us with a

case where the tuning strategy can be modified to take advantage of the special properties

of SWLQG controllers. The development is detailed in Appendix C.

We can parameterize the controller with the sensitivity weights rather than the standard

control parameterization, p. For each setting of the sensitivity weights a modified LQG

synthesis returns a controller that is guaranteed to stabilize the state-space design model.

Generally, the designer manually chooses the sensitivity weights. We can form a tuning

cost as described in Section 4.1 and compute the gradients of the cost with respect to the

sensitivity weights. The gradients require the solution of a well-behaved Lyapunov equa-

tion. The tuning methodology can be used to select the sensitivity weights which uniquely

determine the controller. Further, we can employ measured data to determine the stability

robustness penalty.

In Appendix C controllers are designed for the MACE test article. The tuned SWLQG

controller is shown to achieve better performance with better stability robustness than a

baseline LQG controller. The tuning of SWLQG controllers is complicated by a restriction

that the LQG state cost matrix must be positive definite which requires the sensitivity

weights be positive (or only slightly negative).

4.6 Summary

A methodology has been developed for tuning a baseline controller. The methodology

allows trades of: (1) performance, (2) stability robustness, (3) deviation of tuned and base-

line controller, and (4) control channel gain by forming an augmented cost with weighted

contributions from each of these. A unconstrained nonlinear program iteratively reduces

the augmented cost while ensuring closed-loop stability. The tuning methodology can be

applied to a plant state-space design model, or directly to measured plant data. In the

remainder of the thesis the tuning methodology will be validated on a one-dimensional
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interferometer sample problem, experimentally on a space-telescope-like test article, and

on a full-order model of a future spaceborne telescope.
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Chapter 5

1-D INTERFEROMETER EXAMPLE

In this chapter a low-order one-dimensional interferometer is modeled and used as a sam-

ple problem to demonstrate the sensor/actuator topology selection algorithm from

Chapter 3 and the controller tuning strategies from Chapter 4. The low-order interferome-

ter model captures many elements of the SIM control problem and with twelve states is a

non-trivial sample problem. The model includes a rigid body mode, a non-white distur-

bance spectrum, and low-fidelity models of optical elements.

The model will be detailed and the application of the sensor/actuator selection algorithm

will be demonstrated. A constrained-topology baseline controller will be classically

designed. The classical baseline controller will be tuned to explicitly demonstrate the use

of the two stability robustness metrics of Section 4.1.1. By trading stability robustness and

performance, adding states, and opening sensor/actuator control channels a family of

tuned controllers will be generated from the classically-designed baseline controller. Sim-

ilarly, a global LQG-designed modern baseline controller will be designed. By applying

the tuning algorithm with the sensor/actuator index as guidance, a family of tuned control-

lers will be designed with increasingly more restrictive topology.

This chapter demonstrates the flexibility and application of the tuning methodology, and

how a control designer might apply the techniques developed in the thesis.
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5.1 Low-Order Sample Plant

Figure 5.1 is a block diagram of a one-dimensional model of a space-based interferometer

that will be used extensively as a sample problem to demonstrate the techniques

developed in this thesis. The model considers three main masses: a combiner (mi ) joined

through springs to two collectors (M 2 and M4 ). Connected through a spring on each

collector is a mass (M 3 and M5 ) which corresponds to a voice-coil activated mirror. The

actuation of the voice coils is modeled through a relative force (f2 and f3 ). The

interferometer reaction wheels are modeled with an inertial force.

f2 f3

23, C23 45, 45

k12, c12 k4, C 14

Figure 5.1 1-D Interferometer Sample Problem. Masses and springs are labeled. The position of
the masses is noted by x, where s is the mass' subscript.

Table 5.1 contains the values of the parameters indicated in Figure 5.1.

TABLE 5.1 Parameter values for the 1-D Interferometer Sample Problem.

Parameter Parameter Values Units
Type

Mass mi = 100, m2 = 10, m3 = 0.1, m4 = 9.9, m5 = 0.1 kg

Stiffness k12 = k14 =k23 = k45 = 1 x 105 N/m

Damping cJ2 = C14= 17, c23 = C45 = 20 N-s/m

The dynamics

interferometer

masses of the

of the model can be determined. The vibrational modes of the 1-D

are listed in Table 5.2. The arms have approximately 1% damping. The

collectors are slightly different to provide a greater separation of the
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symmetric and antisymmetric arm modes at 15.9 and 17.3 Hz respectively. The voice coil

mirrors have approximately 10% damping and have bandwidths greater than 100 Hz.

TABLE 5.2 Structural modes of the 1-D interferometer model

Mode f, (Hz) ((%)

Rigid body 0 NA

Arm symmetric 15.9 0.85

Arm antisymmetric - 17.3 0.93

m5 voice coil mode 160.7 10.0

m3 voice coil mode 160.7 10.0

The force input is split to include the rigid body actuation and the higher frequency

disturbance. A prewhitening filter is appended at the force input f, to simulate the

disturbance of a reaction wheel imbalance. The prewhitening filter is a bandpass given by

As
Fd(s)= 2 2

s +2xCrdwd+wd
(5.1)

with od = 2r - 16 radian/s and (d = 30 %. The second order filter is appended to the

dynamics of the model resulting in a 12 state model. Figure 5.2 is a schematic of the reac-

tion wheel as actuator and disturbance.

prewhitening
dynamics

f

Figure 5.2 The inertial force, fl. fd is a disturbance force
passing through pre-whitening dynamics. fr is the
rigid-body actuator.
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184 1-D INTERFEROMETER EXAMPLE

The sensors and actuators of the one-dimensional interferometer are listed in Table 5.3.

Included are the process noise disturbances and the performance variables. These inputs

and outputs represent the signals for the four-block regulation problem (Section 2.1.1) that

will be investigated in this chapter.

TABLE 5.3 Input and output signals for the 1-D interferometer. Resolutions are included for the
sensors and actuators, intensities for the disturbances and requirements for the
performances.

Signal Type Abbrev- Description Symbol Resol-
iation utiona

Disturbanceb w RWAd Reaction wheel imbalance disturbanceC fd 1 N

Actuators U RWA Inertial reaction wheelc fr 0.01 N

VCL Left voice coil, relative force f2 0.0001 N

VCR Right voice coil, relative force f3 0.0001 N

Performance, Z RBz Rigid body. Position of m x1 10 cm

DPLz Differential pathlength x5 - X3 0.1 mm

Sensors, y ST Star tracker analoguec X1 30 mm

RG Rate gyroscope analoguec I 1 mm/s

DPL Laser interferometer x5 -- 3 10 gim

a. The term 'resolution' applies for the actuators and the sensors. For the disturbance,
'intensity' is more appropriate and for the performance, 'requirement' is more appropri-
ate.

b. Additional disturbances include an actuator noise for each actuator and a sensor noise
for each sensor.

c. Reaction wheels actuate torques and star trackers and rate gyroscopes measure angular
quantities. In this 1-D example the translation analogue is intended. The names RWA,
ST and RG are intended only for comparison with the SIM spacecraft of Chapter 7.

Figure 5.3 is a plot of the magnitudes of the transfer function matrix of the 1-D interfer-

ometer model. In the transfer functions we see the strong observability and controllability

of the symmetric and/or antisymmetric interferometer arm modes. At higher frequency the

voice coil modes are noted in the transfer functions. The shape of the disturbance spec-

trum is noted by the RWAd to DPL transfer function. The voice coil to DPL transfer func-

tions show little controllability to the interferometer arm modes, but good authority in the

bandwidth of the disturbance.
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Figure 5.3 Magnitudes of transfer functions for the 1-D interferometer sample problem

5.2 Sensor/Actuator Assessment

The sensor/actuator algorithm of Chapter 3 is applied to the one-dimensional interferome-

ter model. The resulting sensor/actuator indexing matrix, S,, shows which sets of sensors

and actuators are most effective for control, and will be later exploited to (1) determine

which channels of the baseline controllers will benefit most from controller tuning, and (2)

which channels in a fully-connected controller contribute little and can be removed.

The 1-D interferometer of Section 5.1 is cast into the four-block control problem with the

disturbance, actuator, performance and sensor variables outlined in Table 5.3. For each of

the three actuators, an actuation noise is added to the disturbance variables. The algorithm

of Chapter 3 can now be applied. The user must supply four sets of information as shown

in Table 3.1. For the one-dimensional interferometer example:
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1. The plant model is delivered in a four-block state-space form,
(A, BW, BU, CC) .

2. The scaling gains, RW, Ry, R,, Rz are set using the resolutions (for u and y
variables), intensities (for w variables), and performance requirements (for

z variables) which are listed in Table 5.3. These scaling factors to weight the
relative importance of the sensors and actuators by capturing the anticipated
signal-to-noise. The resulting sensor/actuator indices depend on the square
of the scaling factors.

3. The standard value of y = 1 is used for the output isolation mixing parame-
ter (Equation 3.114).

4. The relative importance of the rigid body modes must be assigned by setting
the %RM parameter (Section 3.2.3). The reaction wheel control the rigid
body mode and the star tracker observed the rigid body mode indicating that
the RWA to ST index will be oRM -dependent. The rate gyro also observes
the rigid body mode which ensures the RG to RWA index will be oRM -
dependent (though its CoRM dependence is weaker than for the ST since the
RG measures only the velocity state of the rigid body mode). The impor-
tance of the rigid body mode is set by selecting ORM by equating the great-
est ORM-dependent S, index with the greatest non oRM-dependent St
index. This setting implicitly balances rigid-body and structural control
importance.

Table 5.4 displays the logarithm of the sensor/actuator indexing matrix, loglo(St) for the

1 -D interferometer.

TABLE 5.4 Sensor/Actuator matrix, St, for 1-D Interferometer Model. Shaded
blocks represent channels in used for a classically-designed local
controller.

ST RG DPL

RW 12.7 9.1

VCL 1.5 15.7

VCR 1.4 15.7

a. RB tuned until the RWA to ST index matches
the VCR - DPL index.

The largest entries in Table 5.4 are shaded. The shaded channels are deemed most effec-

tive for control and can be used to guide the topology of a local, classically-designed con-

troller. The ST-to-RWA channel and the RG-to-RWA channel are both dependent on the
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tORM parameter indicating these channels' suitability for rigid-body control. The ST-to-

RWA channel is necessary to stabilize the rigid body mode which explains its greater mag-

nitude. The high indices for the RG sensor to all actuators indicate that it is a sensor that is

useful for attitude and optical control. The DPL sensor couples strongly with the voice

coil actuators for optical control. The voice coil actuators provide an example where the

output isolation correction of Section 3.3 is important. Figure 5.3 shows that the interfer-

ometer arm modes (15.9 Hz and 17.3 Hz) are not controllable by the voice coil actuators.

The actuator does have authority in the frequency region of these modes however, and can

thus act as an output isolator. The low index for the ST to voice coil channels confirms that

the rigid body mode measured by the ST is not controllable by the voice coils. The low

index for the DPL to RWA channel results from the DPL being a relative measure that is

not controllable from the inertial RWA actuator.

The sensor/actuator matrix will be used to decouple the system into attitude (rigid body)

control and optical control. St will be used to determine sensor to actuator channels that

can be opened (or removed) to improve (or least affect) controller performance.

5.3 Example: Classically-Designed Baseline Controller

In this section a baseline controller for the 1-D interferometer sample problem will be

designed with classical techniques. The baseline controller will be tuned resulting in a

controller with better performance and improved stability robustness. Lastly, the use of the

stability metrics from Section 4.1.1 will be demonstrated.

5.3.1 Baseline Controller Design

The classical controller is designed by decoupling the system into sets of sensors and actu-

ators that are effective for control. To determine the suitability of particular sensor/actua-

tor combinations for control the St index of Table 5.4 is used. The largest index entries are

shaded, suggesting a controller topology. The intuitive decoupling of attitude control (ST -

to-RWA) and optical control (DPL-to-VCL and DPL-to-VCR)
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The low-effort controller is designed using sequential loop closure of two SISO loops:

Attitude control: ST to RWA

The attitude controller is designed to stabilize the rigid body modes, and is comprised of:

- A 1st order lead to provide phase margin with a break frequency a factor of
three below the crossover frequency,

* A 2 nd order lag to provide adequate roll-off with near-critical damping and a
break frequency a factor of three above the crossover frequency,

- A gain adjusted for a crossover frequency of 1 Hz.

Optical Control: DPL to VCL & VCR:

The two optical loops from DPL to VCL and form DPL to VCR are simplified to a SISO

loop by considering VCL - VCR as a differential actuator. The simplification is valid

since the optical sensor and performance (DPL) is a relative measure of optical pathlength.

The optical controller is comprised of:

- A low-frequency 2 "d order lag to provide gain at low frequency,

- A 1st order lead to provide gain over the frequency region where the distur-
bance significantly injects energy in the performance metric,

e A 2 nd order lead at the break frequency of the voice coil mass/spring mode to
counter the phase loss of the actuator dynamics,

- a 2 nd order lag with a break frequency after crossover to provide adequate
roll-off.

We note that the optical controller is an example of active output isolation. Small control-

lability prevents the voice coil masses from effectively modifying the frequency or damp-

ing of the structural arm modes (though structural instability is possible). Control

performance is achieved by taking advantage of the small structural coupling to directly

cancel the disturbances effect in the performance without adversely affecting the structure.

5.3.2 Family of Tuned Controllers

Starting from the classically-designed baseline controller, a family of tuned controllers can

be designed. Successive controllers are designed by tuning the parameters of the previous
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design. Features can be added to change the controller topology: states can be added, sen-

sor/actuator channels can be opened (or closed). The incremental approach allows us to

monitor the progress of the tuning algorithm as features of the controller are modified one-

at-a-time.

The tuning cost function is introduced in Chapter 4 and repeated here for convenience:

JA(P) = J(p)+SR(p)+d(p)+M(p). (5.2)

The settings of the terms of the tuning cost are tabulated in Table 5.5.

TABLE 5.5 Tuning terms (from Equation 5.2) for OT tuned controller family

Term Setting

RMS Perfor- J(p) Weighted RMS of the DPLz for white-noise disturbance
mance at the RWAd inputa

Stability SR(p) Penalize all maximum s.v. of sensitivity deviations > 10
Robustness dB threshold. Critical point distance metric is not used,

i.e. y,, = 0 .

Controller d(p) Not used
Deviation

Controller M(p) Not used
Magnitude

a. The optical performance is the critical performance metric. The baseline controller
stabilizes the rigid body mode and thus RBz need not be considered in the tuning
cost.

The control objective is to minimize the RMS DPL jitter subject to a reaction-wheel-

induced disturbance. The stability robustness metric is set to penalize maximum Sensitiv-

ity singular value spikes greater than a 10 dB threshold. The 10 dB threshold is set based

on an experimental determination of stable and robust controllers from the MACE pro-

gram [Miller et al., 1996].

The family of controllers resulting from the application of the tuning methodology to the

classically-designed baseline controller is diagrammed in Figure 5.4.
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C2

-'"- StabilityVC channels roblem((X = 0) prbe

Cla

Figure 5.4 A family of tuned controllers for the l-D interferometer sample problem: starting with the clas-
sically-designed baseline controller, states are added and additional controls channels are
added to result in a final tuned controller C4. Controllers are designed by tuning the previous
controller in the diagram.

We follow the sensor/actuator index matrix of Table 5.4 to choose which channels will

benefit from tuning. First we tune the DPL-to-VC channels. Beginning with the baseline

controller, we apply the tuning algorithm to improve the performance, with no penalty on

the stability robustness. The resulting controller, Cla, is subsequently rejected for poor

stability robustness. By adding a penalty on stability non-robustness, the controller C1

results. We then add two states by appending a second-order mode (with an initial fre-

quency where Gzw is a maximum) to controller C1 and tune to result in controller C2.

Then we choose to open up our tuning to the ST-to-RWA channel and we tune the ST-to-

RWA and DPL-to-VC channels of C2 simultaneously, resulting in controller C3. Lastly,

we add 2 more states and open the RGA-to-VC channels for tuning. The resulting control-

ler also has nonzero gain in the ST-to-VC channels, but we force those channels to be zero,

resulting in the controller C4.

Table 5.6 lists the RMS performance and maximum singular value of the Sensitivity trans-

fer matrix (a measure of stability robustness) for the family of controllers from Figure 5.4.

In Figure 5.5 the information from Table 5.6 is displayed graphically. The tuned control-

lers are able to achieve improved performance with improved stability robustness. The

Cla controller, designed without a stability robustness penalty, corresponds to the large

spike in the maximum singular value. Further tuning of controller CIa was not performed.
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TABLE 5.6 Performance and stability robustness of the family of controller of Figure 5.4.

Cont- nc a Perf. (mm) [ama,(S)]. b Notes
roller (dB)

None N/A 0.1306 N/A

BC 8 0.0176 9.0

Cla 8 0.0046 20.3 Tune DPL - VC channels with no stability robustness penalty,
i.e. a = 0.

Cl 8 0.0068 7.5 Tune DPL - VC channels with a stability robustness penalty.

C2 10 0.0025 4.0 Add 2 states and tune DPL - VC channels with a stability
robustness penalty.

C3 10 0.0022 4.3 Tune DPL - VC and ST - RWA channels

C4 12 0.0011 4.6 Add 2 states. Tune all channels with the exception of RGA -
RWA and DPL - RWA. Remove ST - VC channels form
resulting controller. We are left with a tuned controller with
nonzero DPL - VC, ST - RWA and RG - VC channels.

a. Number of controller states

b. Maximum singular value of the Sensitivity for f> 10 Hz.
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Figure 5.5 Performance and maximum s.v. of the Sensitivity
topology controllers of Figure 5.4.

Max Sensitivity s.v.

OL BC C1 C2 C3 C4 Cia

(forf>10 Hz) for the family of constrained-

E

191

--- - ---O ----



192 1-D INTERFEROMETER EXAMPLE

Figure 5.6 plots the performance, maximum singular values of the Sensitivity and the

MIMO Nichols plot for the classically-designed baseline controller and for the tuned con-

troller C4. The tuned controller sacrifices closed-loop performance at low and high fre-

quency to increase its effectiveness in the critical 17 Hz range. Controller C4 achieves a

41.5 dB performance improvement compared with 17.4 dB for the baseline controller. The

tuned controller eliminates the sensitivity spike corresponding to the interferometer arm

modes at 17 Hz and reduces the spike corresponding to the voice coil modes at 160 Hz.

The trade-off is extended bandwidth: controller C4 has a MIMO gain crossover of 107.8

Hz, compared to 55.9 Hz for the baseline controller, and a MIMO phase crossover at 321.8

Hz, compared to the baseline at 172.3Hz.
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Figure 5.6 Performance (top left), maximum and minimum singular values of the Sensitivity (bottom left)
and MIMO Nichols plot (right) for baseline classical controller (solid) and a tuned controller
C4 (dashed). Open loop performance is indicated with a light solid line.
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Figure 5.7 is a plot of the magnitudes of the controller transfer functions for the classi-

cally-designed baseline controller and the tuned controller, C4. The tuned controller

exhibits a higher gain in the DPL-to-VC channels, corresponding greatly to the improved

performance. In particular, a lightly damped mode in the performance critical 17 Hz fre-

quency range is apparent. A zero near the frequency of the mass-spring voice coil mode

corresponds to a robust pole/zero cancellation for extending the DPL-to-VC channel

bandwidth. The ST-to-RWA attitude control channel remains mostly unchanged. Opening

the RG-to-VC channels has resulted in low-pass filters in these channels for the tuned con-

troller.
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Figure 5.7 Transfer function magnitudes for the baseline
C4 tuned controller (dashed).

classical controller (solid) and
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5.3.3 Stability Robustness Tuning: Demonstration

It is instructive to analyze the particular effects of the stability non-robustness penalty,

SR(p) on tuning the controller. Recall from Equation 4.5 that SR(P) is made up from two

stability robustness metrics as

SR = - Yr)SS + YrScr (5.3)

where SS penalizes the maximum singular values of the Sensitivity transfer matrix above

a threshold, and Scr penalizes the inverse of the distance of MIMO Nyquist locus from the

critical point. In this section the use of both stability metrics will be demonstrated.

Maximum Singular Value of Sensitivity

As a demonstration of the application of the Ss stability metric a set of controllers is tuned

from the classically-designed baseline. We set Ycr = 0 in Equation 5.3. The Ss metric is

set as indicated in Table 5.5 with a threshold to penalize singular value spikes greater than

10 dB. The Ss penalty is gained by a factor, P and the controller is tuned for various P.

Figure 5.8 displays the maximum singular value magnitude versus the P value for a set of

tuned controllers with constant performance. Also displayed is the maximum Sensitivity

singular value (s.v.) as a function of frequency for various values of P.

We see that as the factor $ is increased that for a given performance the maximum ampli-

tude of the maximum Sensitivity singular value drops. This indicates improved stability

robustness to unstructured uncertainty [Lehtomaki et al., 1981]. From the plot on the right

we see that improving performance with only a small stability robustness penalty results

in a Sensitivity maximum s.v. spike at ~ 75 Hz, approximately corresponding to the base-

line crossover frequency. A second spike at ~ 160 Hz pops up as well and corresponds to

the mass/spring mode of the voice coil actuators. In fact as P increases the voice coil

spike pops up. It is important for the designer understand the nature of the spikes in the

maximum s.v. of the Sensitivity. Smooth crossover spikes such as that at 75 Hz indicate

that unstructured uncertainty in the transfer matrix at that frequency may cause instability.
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Figure 5.8 A family of controllers designed to maintain performance as stability robustness is
improved. The left figure plots the maximum spike in the Sensitivity s.v. versus the
stability robustness tuning parameter, $. The right figure plots the maximum s.v. of
the Sensitivity as P is increased (increasing P corresponds to lighter curves)

The probabilistic chance that the physical plant allows such a deviation may be very small

though. On the other hand, for the 160 Hz spike corresponding to the voice coil mode, a

physically-probable change in damping or frequency in the voice coil mass/spring mode

may result in instability. These examples demonstrate the potential conservatism of the

maximum Sensitivity singular value as a stability robustness metric (Section 2.1.3). It is

important that the designer distinguish bad spikes in the maximum Sensitivity s.v. from

acceptable ones. The following rules can be used as a guide: (1) sharp spikes tend to corre-

spond to a lightly damped pole or to a pole/zero cancellation and should be avoided, (2)

spikes should be avoided wherever there is mismatch between the design model (or design

data) and true plant dynamics, (3) wherever a spike corresponds to a pole/zero in the plant

which may have uncertain frequency or damping. Future research should address an

uncertainty model for spaceborne telescopes and link the uncertainty to the stability

robustness metrics of this thesis.
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Pushing the Nyquist Locus from the Critical Point

The Scr stability robustness metric attempts to push the Nyquist locus away from the crit-

ical point. We demonstrate its application with two examples.

Example 1: Robust to miss-modeled actuator dynamics

By setting ycr = 1 (see Equation 5.3) and by choosing Wer to be nonzero in the f= 160

Hz range, we penalize the inverse of the distance from the MIMO Nyquist locus to the

critical point near the frequency of the voice coil mass/spring mode. Thus, the tuned con-

troller is made more robust to miss-modelling the frequency and damping of the voice coil

model.

Figure 5.9 is a one-sided MIMO Nyquist plot of the baseline control and the tuned con-

troller. The loop near the critical point of the baseline control case (solid) corresponds to

the voice coil mode. By decreasing the size of the voice-coil-mode-induced loop the tuned

controller (dashed) passes farther from the critical point in the 160 Hz range.

Figure 5.10 is a plot of the performance, maximum s.v. of the Sensitivity and Nichols plot

for the baseline and improved-robustness controller. The tuned controller exhibits a per-

formance of 0.0096 mm, 5.3 dB better than the baseline controller. In the Nichols plot, we

note that the loop near the gain crossover (which corresponds to the voice coil mode) is

pushed well into the roll-off for the tuned controller. The trade-off is that the tuned locus

has a gain crossover which passes more closely to the critical point. The voice-coil mode

spike at 160 Hz in the maximum s.v. of the Sensitivity is pushed down, indicating a con-

nection between the SR and Scr stability robustness metrics. It is interesting to note that at

55.9 Hz, the tuned gain-crossover frequency is the same as for the baseline controller.

Example 2: Robust to structural damping overestimates

By again setting ye, = 1 and by choosing Wcr to be nonzero in the f= 17 Hz range, we

penalize the inverse of the distance from the MIMO Nyquist locus to the critical point near

the frequencies of the interferometer arm modes. The physical case corresponds to a
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Figure 5.9 Multivariable Nyquist plot. The classical baseline
controller is solid. The controller tuned to push
the locus away from the critical point at frequen-
cies greater than the VC mode (-160 Hz) is
dashed.

designer's concern that the structural damping may be underestimated. In this example,

we examine the applicability of the Scr stability robustness metric to capture a parametric

uncertainty in the damping of a structural mode.

Figure 5.11 plots the performance, maximum s.v. of the Sensitivity transfer matrix and the

MIMO Nichols plot for the classically-designed baseline controller and for the controller

tuned to be robust to structural damping overestimates.

The tuned controller exhibits a performance of 0.0117 mm, 3.5 dB better than the baseline

controller. In the Nichols plot, the loop corresponding to the arm modes are pulled away

from the critical point as indicated by the arrow. At higher frequencies the tuned controller

approaches the baseline. The maximum s.v. of the Sensitivity transfer matrix also remains

unchanged.
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Figure 5.10 Performance (top left), maximum and minimum singular values of the Sensitivity (bottom left)
and MIMO Nichols plot (right) for baseline classical controller (dark) and a tuned controller
(dashed). The tuned controller penalizes the distance from the critical point forf> 150 Hz. Open
loop performance is indicated with a light solid line.

To verify that the action of the Scr cost penalty does indeed improve the stability robust-

ness, Figure 5.12 repeats the Nichols plot of Figure 5.11 for three damping ratios of the

structural arm modes ((=1%, 0.01%, and 0). The resulting curves show that as ( is

decreased the radius of the loop corresponding to the arm modes increases. The baseline

case encircles the critical point and exhibits instability for sufficiently low (. The tuned

controller has a stable closed loop for all (, indicating an improved robustness.

One critical feature of the metric Scr is that it should be applied very locally in frequency.
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Figure 5.11 Performance (top left), maximum and minimum singular values of the Sensitivity (bottom left)
and MIMO Nichols plot (right) for baseline classical controller (dark) and a tuned controller
(dashed). The tuned controller penalizes the distance from the critical point for frequencies
near the arm modes (i.e. f~ 16 Hz.). The arrow in the right plot indicates a shifting away from
the critical point of the loop corresponding to the interferometer arm modes. Open loop perfor-
mance is indicated with a light solid line.

5.4 Example: LQG-Designed Baseline Controller

In this section an LQG baseline controller for the 1 -D interferometer sample problem will

be designed. The baseline controller will be tuned resulting in a controller with better per-

formance, similar stability robustness and a simplified sensor/actuator topology.

5.4.1 Baseline Controller Design

An LQG control problem is set up by specifying the weights required in the LQG synthe-

sis framework of [Lublin et al., 1996]. The synthesis of LQG controllers is briefly covered

in Section C. 1. The design weights for the baseline LQG controller are listed in Table 5.7.
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Figure 5.12 Nichols stability plots of the baseline (left) and tuned (right) case as damping
of the symmetric and antisymmetric arm modes is varied. (=1% is solid,
(=O.O1% is dashed and (=O is dash-dotted. The tuned controller is designed
to be more robust to uncertainty in the arm modes than the baseline control-
ler by penalizing the distance from the critical point for frequencies near the
arm modes (i.e. f=16 Hz)

TABLE 5.7 Weights for the baseline LQG controller

Weight Design weights Notes

Performance z DPLz is weighted with a unit Penalizes DPL error at the interferometer arm modes
intensity. RBz is weighted
less with respect to DPLz.

Disturbance w Unit intensity Pre-whitened in scaling for Section 5.2

Control Use u PRWA = 3.5 x 10-4 a Ratio of p weights identical to the ratio of actuator

PVCL PVCL = 3.5 x 10 4 noises in Table 5.3. The absolute weights are tuned until
the LQG baseline controller and the classically-designed
baseline controller have identical performance.

Sensor Noise y psT = 3 - 10-2 'RG = 103 p set with the sensor noises of Table 5.3

[DPL = 1 0 5b

a. R, from Equation C.2 is formed as Ru = diag 2 2 2 R

200
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b. VV from Equation C.4 is formed as V = diag 2ST RG DPLy

It is required for LQG synthesis that non-stable modes are observable by the sensors and

performance measures, and that all non-stable modes are controllable by the disturbances

and the actuators. If these conditions are not met, LQG synthesis will fail. The tuning

methodology does not require these strict controllability and observability requirements.

We do assume the plant is stabilized by the baseline controller however, and if a mode is

uncontrollable or unobservable the automated test for stability (for direct-data tuning) may

fail.

The baseline LQG controllers are global and allow dynamic gain from each sensor to each

actuator. The RG to RWA control channel is a low-pass filter. The DPL to voice coil chan-

nels display a high gain in the performance-critical 16 Hz frequency range. A zero near the

frequency of the voice coil modes serves the same function as a similar zero in the classi-

cally-designed baseline controller: reduce the Sensitivity of the optical loop near the voice

coil resonance. The zero-channels in the classical design are non-zero for the LQG con-

troller. The use and necessity of the channels that are deemed non-critical by the sensor to

actuator indexing (Section 5.2) will be examined.

The potential increase in performance of the LQG controllers over the classical designs is

achieved with a cost: (1) an increase in the number of states, and (2) a shift from a local

topology to a global controller topology.

5.4.2 Family of Tuned Controllers

Starting from the LQG baseline controller another family of tuned controllers can be

designed. The settings of the terms of the tuning cost (Equation 5.2) are tabulated in

Table 5.8.

The family of controllers resulting from the application of the tuning methodology to the

LQG-designed baseline controller is diagrammed in Figure 5.13. Controllers are tuned

from the previous controller in the figure. Beginning with the baseline LQG controller we
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TABLE 5.8 Tuning terms (from Equation 5.2) for OT tuned controller family

Term Setting

RMS Perfor- J(p) Weighted RMS of the DPLz for white-noise disturbance at the
mance RWAd inputa

Stability SR(p) Penalize all maximum s.v. of sensitivity deviations > 10 dB thresh-
Robustness old. Critical point distance metric is not used, i.e. y, = 0.

Controller d(p) Not used
Deviation

Controller M(p) Used to selectively penalize control use for particular sensor/actua-
Magnitude tor channels The penalized channels can subsequently be removed.

a. The optical performance is the critical performance metric. The baseline controller stabi-
lizes the rigid body mode and thus RBz need not be considered in the tuning cost.

tune all of the parameters to arrive at controller Kl. We now use the indices of the sensor/

actuator index matrix to determine which control channels are unnecessary. From control-

ler Ki, we set M(p) to penalize gain in the ST-to-VC channels (the smallest elements of

S,) resulting in controller K2. Controller K2a results from penalizing the gain of the DPL-

to-VC channel (the largest elements of S,). Controller K2a exhibits poor stability robust-

ness and is not further tuned. Following the element size of the S, entries, we penalize the

gain of the DPL-RWA channel of controller K2, resulting in controller K3. Lastly the RG-

RWA gain of controller K3 is penalized resulting in tuned controller K4.

Penalize Stability
DPL - VC + problem
channels

K2a

Figure 5.13 A family of tuned controllers for the 1 -D interferometer sample problem: starting with the
baseline LQG controller, particular control channels are penalized and removed from the con-
troller. Each controller is tuned from the previous controller in the diagram.

Table 5.9 records the performance and maximum singular value of the Sensitivity for each

controller in the family of Figure 5.13. Two cases are presented where appropriate: a fully

connected case (all non-zero control channels), and a constrained topology case. The con-
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strained topology case corresponds to forcing sensor/actuator channels of the control to 0.

Figure 5.14 is a graphical display of the information of Table 5.9 for the constrained topol-

ogy case. We see that as we move along the family of controllers, the performance is

improved with little change in the stability robustness metric. The exception (case K2a)

results when we attempt to force a large-S, index channel to zero. The resulting controller

has poor robustness as seen by a large spike in the maximum Sensitivity singular value.

We have demonstrated how to use the tuning technique to remove control channels as

guided by the sensor/actuator index matrix. Channels with a low index can be tuned out of

the controller without adversely affecting the performance and stability robustness. The

constrained-topology controller K4 is the same order and input/output topology as con-

troller C4 (Figure 5.4) and achieves the same performance and stability robustness.

TABLE 5.9 Performance and stability robustness
connected and constrained topology
controllers have 12 states.

of the family of controller of Figure 5.13. Both the fully
(channels set to 0) controller cases are considered. All

Fully connected

Cont- topology Constrained topology

roller [amax(S)], a [Omax(S)]_ a
Perf. (mm) (dB) Perf. (mm) (dB) Notes

None 0.13 N/A N/A N/A No controller

BC 0.017 2.2 N/A N/A global controller (no i/o constraint)

KI 0.0029 4.5 N/A N/A global controller (no i/o constraint)

K2 0.0028 2.3 0.0028 2.3 ST - VC channels set to 0

K2a 0.0017 0.7 0.0230 11.3 DPL - VC channel set to 0. Sharp spikes
appears in omax(S)

K3 0.0014 4.1 0.0015 4.1 ST - VC channels and DPL - RWA chan-
nel set to 0

K4 0.0011 4.6 0.0012 4.6 ST - VC, DPL - RWA, and RG - RWA
channels set to 0

a. Maximum singular value of the Sensitivity for f> 10 Hz.

Figure 5.15 plots the performance, maximum singular values of the Sensitivity and the

MIMO Nichols plot for the classically-designed baseline controller and for the tuned con-

troller K4. The tuned controller demonstrates greater performance in the critical 17 Hz

203



S 1-D INTERFEROMETER EXAMPLE

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

RMS Performance

OL BC KI K2 K3 K4 K2a

25

20

15

10

5

0

Figure 5.14 Performance and maximum s.v. of the Sensitivity
topology controllers of Figure 5.13.
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(for f> 10 Hz) for the family of constrained-

range, and achieves 40.7 dB compared with 17.7 dB. Compared with the classically-

designed baseline controllers (compare with Figure 5.6) the maximum Sensitivity singular

value of the LQG designs are much smoother. The activity in the Sensitivity singular value

plot at 18 Hz corresponds to the interferometer arm modes. The trade-off for the improved

performance and fewer control channels in K4 is that the tuned design has higher low-fre-

quency sensitivity than does the baseline design. Note that although the LQG-tuned con-

troller K4 and the classically-designed tuned controller C4 have identical structure (order

and input/output topology) and achieve the same performance with similar stability

robustness, controller K4, with a gain-crossover frequency of 18 Hz, does so with much

less bandwidth.

Figure 5.16 is a plot of the magnitudes of the controller transfer functions for the LQG-

designed baseline controller and the tuned controller K4. The tuned controller has a con-

strained topology as seen by the zero channels. The tuned controller exhibits a higher low-

frequency gain in the DPL-to-VC channels, corresponding to the improved performance.

E
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Figure 5.15 Performance (top left), maximum and minimum singular values of the Sensitivity (bottom left)
and MIMO Nichols plot (right) for baseline classical controller (dark) and a tuned controller
K4 (dashed). Open loop performance is indicated with a light solid line.

The bandwidth of the tuned ST to RWA attitude control is increased. The RG-to-VC chan-

nels exhibit lightly damped modes in the performance-critical 17 Hz frequency range.

Comparing with Figure 5.7 we see that in general the LQG-tuned controller has smaller

gains than its classically-designed counter-part. The LQG-tuned design uses its gain more

efficiently.

5.5 Summary

A one-dimensional interferometer sample problem is introduced and modeled. The model

captures key elements of future spaceborne telescopes including: band-pass disturbance,

lightly-damped structure, active optics and rigid-body modes. The effectiveness of the

sensors and actuators for control is determined by applying the algorithm of Chapter 3.
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Figure 5.16 Transfer function magnitudes for the baseline LQG controller (solid) and K5
constrained-topology tuned controller (dashed).

A baseline controller is designed with classical techniques. Starting from the classically-

designed baseline controller the tuning methodology was applied to add states, improve

performance, improve stability robustness and open control channels. The resulting con-

trollers are compared with the baseline design and shown to have improved performance

with improved stability robustness. Special examples are presented to highlight the use of

the tuning methodology's stability robustness metrics. In one example both stability met-

rics are shown to result in similar tuned controllers. Limitations of the stability metrics are

presented.

A baseline controller is also designed with LQG synthesis. Starting from the LQG-

designed baseline controller the tuning methodology is applied to improve performance

and to remove sensor/actuator controller channels without adversely affecting the stability

robustness. The sensor/actuator effectiveness matrix provides a guideline for which chan-
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nels can be removed. The final tuned controller has an identical structure (order and input/

output topology) to the classical-designed tuned controller, and achieves the same perfor-

mance and stability robustness with less control bandwidth. Extrapolating to SIM suggests

the possible advantage of a tuned-LQG control strategy. The difference between the tuned

controllers indicates the dependence of the final tuned design on the baseline controller.

With satisfactory performance on a non-trivial sample problem, we are now prepared to

experimentally validate the tuning methodology on a test article relevant to future space-

borne telescopes.
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Chapter 6

EXPERIMENTAL VALIDATION

In this chapter, we demonstrate experimental validation of the controller tuning technique

on a laboratory test article representative of future space-based telescopes. We begin the

chapter with a high-level description of space telescope control. Then a detailed descrip-

tion of the Origins Testbed is provided. The Origins Testbed captures the dynamics and

control of space-based telescopes, and allows traceable implementation of the all elements

of high-level space telescope control. A baseline controller for the Origins Testbed is then

presented. Lastly, the tuning techniques are applied to the baseline controller to arrive at a

family of tuned control designs.

6.1 Space Telescope Control

Space telescopes observe astronomical targets, and thus their performance can be quanti-

fied in terms of optical performance metrics. Two distinct, but coupled, optical perfor-

mance metrics can be identified: pointing and phasing. Pointing is an angular metric

measured in units of root-mean-squared (RMS) arc-second pointing, and refers to the jitter

present in the angular tracking of a target. In terms of science light, the pointing metric is

related to wavefront tilt. The second metric, phasing, refers to the optical differential path-

length (DPL), measured as an RMS distance, between analogous optical paths. In the case

of an interferometer, the phase error is an RMS measure of the DPL between the two inter-

fered signals. For a filled-aperture telescope, the phasing metric is more difficult to apply.
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One simplification is to consider the focus of the secondary (at a detector) as analogous to

a combiner in the interferometer case.

Three operational events have been identified as being common to space telescopes

including NGST and SIM:

1. Optical Capture: The mode of operation, after deployment or a disturbance,
where the wavefront error is too large for fine optical control. A coarse con-
trol algorithm must reduce the error to within a tolerance before the optical
control is effective. The optical fine control algorithm then maintains capture
of the fringe (image) while minimizing disturbance effects.

2. Observation: An extended interval of quiet operation where the telescope is
integrating an astronomical image. Disturbance-induced jitter (generated on-
board and externally) must be kept small to maintain resolution throughout
the period of observation. The wavefront error is minimized using optical
pathlength control and structural control as required.

3. Slewing: An operation of movement while the telescope acquires a new tar-
get. In the case of SIM, (2) and (3) are combined, since SIM executes a con-
stant rate rotational maneuver during its imaging mode.

These operational events are captured in a block diagram of Figure 6.1.

Figure 6.1 Space telescope / Origins Testbed control block diagram

The control requirements for the three telescope operational events are presented in

Table 6.1. In the thesis, Slew Control and Observation Control of space telescopes are

investigated.
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TABLE 6.1 Control requirements for space-based telescopes

Operational Event Control Requirements

Optical Capture Alignment algorithm: scan optical components through a range of

motion in a set pattern to align optical components. Optical capture
will not be developed in this Thesis, though an alignment algorithm
is introduced in [Mallory et al., 2000].

Observation Regulation and noise rejection: the telescope is holding in position as
controlled by the slew controller, and fine phasing and fine-pointing
control are enabled. The principal disturbance source is from the
RWA.

Slew Low bandwidth integral tracking control with zero steady state error

to point the telescope at a target. Nonlinear logic controls thrusters to
dump RWA momentum.

6.2 Origins Testbed

The Origins Testbed (OT) is a laboratory test article that incorporates the same quality of

dynamics and control problems that are anticipated by the Origins observatories. The OT

has the capability to operate in the three operational events Section 6.1, and is the first

spacecraft-type testbed with the capability to address the impact of slewing on nanometer

phasing and sub-arcsecond pointing. The OT evolved from the MIT Multipoint alignment

testbed, a stationary tetrahedral truss for investigating the dynamics and control of flexible

space structures [Blackwood et al., 1991] and belongs in a family of control testbeds

described in [Miller and Mallory, 1998]. The primary science objective of the OT research

program is:

To address challenges faced by NASA's Origins Program telescopes in areas related to

dynamics and control, and to ensure that the results are traceable to these missions.

A description of the requirements that drove the design of the OT is found in [deBlonk et

al., 1996]. A detailed description of the testbed and its research program is found in [Mal-

lory et al., 2000].

Figure 6.2 is a photograph of the Origins Testbed. The OT is formed by a truss structure

with four arms separated by ninety degrees, lying in a plane. Each arm is 1.375 meters in
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length from the center of the testbed. The tower rises 2 meters from the top of the arms and

is constructed from identical truss elements (struts and nodes). The arms and tower are

connected, and the entire truss is bolted to an aluminum frame. While the truss forms the

quiet, optical side of the testbed, the aluminum frame forms the spacecraft bus. The space-

craft bus is connected through a two-axis gimbal to a large support mount, fixed to the lab-

oratory floor. The gimbal houses a high-resolution encoder, which provides a measure of

the slew angle with respect the laboratory reference frame. A DC motor is housed in the

gimbal providing low-frequency torque about the slew axis. The weight of the testbed is

off-loaded from the gimbal with a bearing mechanism, which limits the slew maneuver to

a single axis. Housed at the base of the spacecraft bus is a reaction wheel mount with two

reaction wheels aligned such that their axis of rotation is parallel to the slew axis. The OT

is mass-balanced about the center of rotation to simulate the neutrally stable dynamics of a

spacecraft. To simulate the low-frequency dynamics of solar panels and heat shields, two

brass beams with 2 Hz fundamental vibration modes have been fixed to the testbed. The

vibration of these beams dominates the testbed's low-frequency response, and couples sig-

nificantly with the OT's pointing response.

The testbed's optical system is responsible for measuring the fine phasing and pointing

performance. Optical elements are placed along two opposing arms, at the center of the

testbed where all four arms and the tower meet, and at the top of the tower. Three channels

of a laser interferometer allow a high frequency, high resolution measure of the DPL. Two

flat mirrors fixed to the laboratory ceiling provides an external reference. A CCD system

provides a measure of the pointing performance by recording the position of a laser spot.

6.2.1 Structure

The truss structure is composed of aluminum tubes of 3/8" outer diameter and 0.058" wall

thickness, bolted to aluminum nodes. The struts have been designed to have local bending

resonances greater than 200 Hz, higher than the 100 Hz bandwidth of the structural and

optical control. The uncontrollable local resonances are high enough in frequency that
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Figure 6.2 Origins Testbed

they do not present a design limitation for the lower bandwidth control design. The arm

truss lattice is composed of bays of square based pyramids. Adjacent apexes are joined by

a longeron. The tower is composed of cubic bays with diagonal longerons on each face.

Detail on the characteristics of the struts, and on a finite element model of the OT is pro-

vided in [Mallory et al., 1998].

The cross-sectional dimensions of the aluminum members of the spacecraft bus portion of

the testbed were chosen to ensure that the local bending modes of the bus are as high as
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the frequency of the local bending modes of the lattice struts. The mount appears rigid in

the control bandwidth of interest.

Optics are fixed to 1/4" posts and on mounted on 1/4" aluminum plates which are bolted

to aluminum balls that make up part of the truss lattice. The local resonances of the optical

posts have been measured as low as I10 Hz. At these low frequencies, the optical post res-

onances are close to the control bandwidth, increasing the difficulty of achieving good

control performance while maintaining stability robustness.

6.2.2 Sensors and Actuators

A block diagram of the principal sensor and actuator suite for the OT is provided in

Figure 6.3. In the figure, the direction of the arrow represents the flow of information or

actuation. Information from the testbed is obtained by measuring slew angle and rate, opti-

cal phasing, and optical pointing. In addition to the sensors in the figure, a bank of acceler-

ometers and strain gauges, which can be placed on the structure, measure structural

vibration. The wheel tachometer provides a measure of the reaction wheel speed.

The real-time control computer closes the feedback loop by gathering the sensor informa-

tion, and generating actuator commands. The testbed slew angle and speed is controlled

with the reaction wheels, while the gimbal motor provides a thruster-like momentum

dump for the wheels. Optical phasing is controlled with an optical delay line. Optical

pointing is controlled by the fast steering mirrors, and is coupled to the slew angle.

In Table 6.2 and Table 6.3, the testbed actuator and sensor suites are respectively detailed.

The corresponding analogue for the SIM and NGST telescopes are provided.

6.2.3 Optical System

SIM and NGST are both telescopes whose performance is quantified optically. To this

end, the optical system for the OT is highly important, and will be further detailed. The

Testbed optical system is divided into a phasing system and a pointing system which are
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Figure 6.3 Origins Testbed subsystems block diagram

TABLE 6.2 Origins Testbed actuator suite

Stroke Resolution Primary Secondary SIM NGST
Actuator Function Function Analogue Analogue

Reaction wheels 3.9 N m 0.0020 N -m Slew space- Realistic distur- 4 wheels 4 wheels
craft bance source

Gimbal motor 2.9 N -m 0.0014 N m Momentum N/A Thrusters Thrusters
dump for
wheels

Optical delay 730 pt m 0.36 i m Coarse phas- Optical capture Voice coils No direct ana-
line: Coarse ing control logue. Active
(voice coil) primary

Optical delay 43.8 p m 46.5 nm Fine phasing N/A Piezo Mir- No direct ana-
line: Fine (piezo control rors logue. Active
mirror) primary

Fast steering 2850 arcsec 1.4 arcsec Fine pointing Optical capture Fast steer- Fast steering
mirrors control ing mirrors mirrors

Solar panel actu- 1000 gE 0.5 EiF Solar panel Pointing distur- None None
ator active damp- bance source

ing

215Origins Testbed
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TABLE 6.3 Origins Testbed sensor suite

SIM NGST
Sensor Range Resolution Function Analogue Analogue

Encoder 60 degrees 4 arcsec Rigid body slew Star tracker Star tracker
angle

Angular rate gyro 20.5 deg/sec 0.01 deg/sec Rigid body slew Angular rate Angular rate
velocity gyro gyro

Wheel tachometer 3333 rpm 1.7 rpm Reaction wheel Wheel Wheel
speed tachometer tachometer

Laser interferometer 10 m 50 nm Phasing measure Laser interfer- Laser metrol-
ometer ogy

CCD camera 195 arcsec 0.1 arcsec Fine pointing Tilt sensor Tilt sensor
measure (slow
sample)

Quad cell photodiode 194 arcsec 1.2 arcsec Fine pointing Tilt sensor Tilt sensor
measure (fast sam-
ple)

Solar panel strain 20500 E 10 pe Solar panel strain None None
gauge

used as both control systems sensors and as performance monitors. A photograph of the

OT optical system is seen in Figure 6.4, and a block diagram of the optical elements is

found in Figure 6.5. In these figures, we see that the optical paths are concentrated on two

arms of the testbed, called the optical arms.

Phasing is implemented with a heterodyne laser interferometer with a 50 nm resolution. A

laser source is mounted to the testbed. Beam splitter optics split the laser source into three

channels, providing a measure of three relevant DPL's. The internal channel, DPLi serves

as an internal reference, measures the DPL of the two optics arms, and is typically used as

a sensor. The external channel, DPLe is used for measurements with respect to the lab

frame, measures the DPL of the two optics arms as well as a contribution to a testbed-

external lab ceiling mirror and can be used as a measure of performance. A third channel,

DPLt, an internal channel which includes a testbed tower measure, is not used in the

experiments for this thesis. By forming linear combinations of the three interferometry

channels, distinct optical phasing paths for SIM and NGST can be formed as detailed in

[Mallory et al., 2000]. Both DPLi and DPLe pass through the optical delay line of
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Figure 6.4 Origins Testbed: optical system block diagram

Figure 6.6. The delay line includes a mirror mounted on a voice coil for large-stroke

coarse control and a mirror mounted on a piezo stack for fine control.

The fine-pointing optics are split off the external DPLe path as seen in Figure 6.5. Beam

splitters extract light from the external path, pass it through a focusing lens, and reflect it

from a convex mirror onto a CCD camera. Both optical arms generate a dot on the CCD

camera. The convex mirror acts as an optical amplifier to increase the system's sensitivity

to jitter. A PC, fitted with a framegrabber, processes the images with a centroiding algo-

rithm and passes the (x, y) position corresponding to each dot to the real-time control

computer. Before reaching the CCD camera, some light from each channel is redirected

with a beamsplitter onto a pair of quad-cell photodiodes. The quad cells provide a second

measure of fine pointing. The CCD has a low bandwidth and high resolution while the

quad cell photodiodes have a high bandwidth and low resolution. Details on the fine-

pointing system, the centroiding algorithm, and an automated optical alignment algorithm

are found in [Mallory et al., 2000]. A small mirror mounted on a tip/tilt piezo stack acts as

a fine steering mirror (FSM) actuator for the pointing channels.
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Figure 6.5 Origins Testbed: optical system block diagram
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Figure 6.6 Optical delay line implementation

6.3 Testbed Identification and Sensor/Actuator Assessment

To assess the suitability of the Origins Testbed's sensor/actuator sets for control, the anal-

ysis techniques developed in Chapter 3, will be applied. The resulting sensor/actuator
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indexing matrix, St , shows which sets of sensors and actuators are most effective for con-

trol, and will be later exploited to determine which channels of the baseline controllers

will benefit most from controller tuning. The sensor/actuator indexing algorithm requires

a state-space model. This section will present the identification of a state-space measure-

ment model of the OT, and analyze the application of the OT's sensor/actuator suite for

control.

6.3.1 Control Problem Specification

Section 6.1 details three modes of operation for telescope control. In the thesis we will

design controllers for the observation mode of operation. An attitude (slew) control is

required to coarsely point the telescope during the observation. Optical capture for the

Origins Testbed is introduced in [Mallory et al., 2000]

A subset of the actuators and sensors of Table 6.2 and Table 6.3 respectively, are selected

for the observation control examples. We specify the four-block telescope observation

control problem in Table 6.4.

Observation control for the Origins Testbed is a MIMO control problem with four actua-

tors and four sensors. The observation control problem is a regulator problem with the

goal of minimizing the transmission of the reaction wheel imbalance disturbance fd to the

optical performance metrics, ZDPL, and zQc.

6.3.2 Open Loop Dynamics and System Identification

The open loop dynamics of the OT can be determined. A rudimentary finite element

model is discussed in [Mallory et al., 1998] but not adopted in this thesis. Control tuning

will be performed directly on measured data, without a model. This section discusses the

measurement of the OT dynamics, and develops a technique for identifying a state-space

measurement model when disturbance transfer matrices cannot be directly measured.
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TABLE 6.4 Signal definitions for the four-block control problem for the Origins Testbed
observation control. Resolutions are included for the sensors and actuators,
intensities for the disturbances and requirements for the performances.

Signal Type Abbrev- Description Resolutiona
iation

Disturbanceb w RWAd Reaction wheel imbalance disturbance 1 V

Actuators u RWAu Inertial reaction wheel 10.0 mV

VC Mirror on voice coil, relative force 4.9 mV

PZT Mirror on piezo stack, relative force 4.9 mV

FSM Single axis of a fast steering mirror 4.9 mV

Performance z DPL Internal laser interferometer 250 nm

QC Single axis of quad cell pointing sensor 5 arcsec

Sensors y ENC Star tracker analogue 4 arcsec

RGA Rate gyroscope assembly 0.01 deg/s

DPL Laser interferometer 50 nm

QC Laser interferometer 1.2 arcsec

a. The term 'resolution' applies for the actuators and the sensors. For the distur-
bance, 'intensity' is more appropriate and for the performance, 'requirement' is
more appropriate.

b. Additional disturbances include an actuator noise for each actuator, sensor
noise for each sensor, and room noise from building disturbances. The reaction
wheel imbalance strongly dominates the other disturbance sources.

Measuring Testbed Dynamics

Transfer function identification is typically performed using a signal analyzer. White noise

is applied to each actuator, one-at-a-time, and the corresponding sensor output is trans-

formed to a transfer function measure. Averaging improves the transfer function signal-to-

noise. These techniques can be applied to measure the transfer matrices from the actuators

to the sensors, GYU(0k) and from the actuators to the performance variables, GZU(0k),

where {wk, k = 1, ... , n. } is the set of measured frequency points. The magnitudes of the

GYU(ok) transfer matrix are plotted in Figure 6.7.

Note that the input units of each actuator are given in terms of actuation Volts applied to

the amplifier. We verify the presence of the rigid body mode in the RWA to ENC transfer
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Figure 6.7 Measured GY(ok) magnitudes for the Origins Testbed. A low frequency loop (bandwidth ~
0.1 Hz) is closed from the encoder to gimbal to remove rigid-body drift during system identifi-
cation.

function with a -40 dB/decade slope at low frequency. Similarly the RWA-to-RGA func-

tion has a -20 dB/decade slope (angular velocity), and the RWA-to-QC function has a

-40 dB/decade slope. The optical actuators, VC, PZT and FSM are decoupled from the

ENC and RGA measure, due to their small actuated mass. The phasing actuators, VC and

PZT, are strongly coupled to the DPL sensor, while the fine pointing actuator, FSM is only

lightly coupled to DPL. Likewise for the fine pointing sensors, the FSM is strongly cou-

pled to QC, while the VC and PZT are weakly coupled. The natural sensor/actuator decou-

pling is a desired feature of a telescope system since it simplifies control design. The

reaction wheel couples strongly to all sensors indicating a strong disturbance in the perfor-

mance measures.
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The optics actuators, VC, PZT and FSM do not couple strongly with the dynamics of the

structure as seen by their simple G,, transfer matrix. These actuators are effective for

active output isolation though. Further, the simple Gy. transfer matrix indicates that the

active optics are unlikely to destabilize the structural modes despite the possibility of

modal (parametric) uncertainty. For these active optics channels our developed metrics of

stability robustness, Ss and Scr are adequate.

As mentioned in Section 4.1.2, in most physical systems the disturbance node is not

exposed and we cannot apply white noise to an actuator to directly measure the G,,(O)

and Gzw(co) transfer matrices. Input analogous systems are an exception (where the con-

trol actuators double as the disturbance source). The OT reaction wheels act as both con-

trol actuator and the primary disturbance source, but are not input analogous. The physical

mechanism that actuates and disturbs the system are not the same. The actuation is

achieved through a single torque axis, and is a torque proportional to the acceleration of

the wheel, whereas the disturbance enters the system through the two remaining torque

axes and three relative force axes, and are engendered by wheel imbalances and bearing

noise. Without a physical model of the OT, the disturbance inputs are not accessible for

system identification.

By measuring data as the wheels wind-up through a simulated observation, the power

spectral density of each sensor can be measured and is plotted in Figure 6.8.

The auto-spectra are the product of the transfer-matrices under the assumption of a pre-

whitening filter. Thus, for the i -th sensor and the j -th disturbance

AyW.(ok) = G, ~.(co)G,(o)* = IG YiW.(o)1 2. (6.1)

Similar relations hold for the elements of Gz.( o). The magnitudes of the transfer func-

tions are measured, but phase information is lost. We will use the transfer function magni-

tudes for measured-data control design.



Testbed Identification and Sensor/Actuator Assessment 223

10

0) 8
10

1z 0 0

.. . . .

CCi d0

10

.' . ... . . . . .... ....... . .

E

10 - - .. -. .- ... - -

CL 0. . . . . . . . . .

110... .................. .. .............

10 0

100 101 102

Freq (Hz)

Figure 6.8 Autospectra of output measures during an observation. The disturbance is the average
effect of the wheel imbalance as the wheel winds up to maintain accurate pointing.

Determining a State-Space Model

In the case where a state-space model is required we now develop a technique for fitting a

model to the measured auto-spectra data. Though control design and tuning will be per-

formed without a model, the sensor/actuator selection algorithm requires a state-space

model.

In our case the complex transfer function data can be directly measured for the actuator-to-

sensor channels, but not for the disturbance-to-sensor channels. [Jacques, 1995] presents a

brief discussion on the identification of GY, which is expanded here. By taking the square

root of the disturbance-to-performance autospectra however, the magnitude of GY, can be

determined. By concatenating the measured |GY) real data with the measured G,, com-

plex data a measured-data matrix is formed. The state-space measurement model can be
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computed by fitting frequency response data using the Frequency Domain Observability

Range Space Extraction (FORSE) algorithm coupled with logarithmic least squares tuning

as detailed in [Jacques, 1995]. We must be careful to ensure that the missing phase infor-

mation corresponding to the IGYI does not corrupt the fit. Careful iteration accomplishes

this. Further, numerous non-structural states, corresponding to the disturbance model

states, must be added to our fit.

Our state-space model fits the measured data reasonably well, but is empirical and not

physics-based. An example of the fit is seen in Figure 6.9 which overlays the measured

autospectra to the identified state-space autospectra. Actuator to sensor channels are also

well fit with additional emphasis place on fitting the phase.

101
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Figure 6.9 Measured (solid) and identified (dashed) disturbance to performance autospectra

An alternate technique which relies on a physical model of the reaction wheel disturbance

to identify a state-space model to the measured data is developed in Appendix D. The

physics-based technique relies on a state-space approximation to the anticipated wheel

-.-.--.-

- - - -- - - - - - -- - - - - - - - - - - - - - - - -- - - -N
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spectrum which does not allow an adequate high-frequency roll-off and does not prove to

be as accurate as the direct identification presented in this section. The identified model

will now be used with the sensor/actuator algorithm of Chapter 3 to identify sets of sen-

sors and actuators that are effective for control.

6.3.3 Origins Testbed Sensor/Actuator Index

The sensor/actuator algorithm of Chapter 3 is applied to the OT. The resulting sensor/actu-

ator indexing matrix, S,, shows which sets of sensors and actuators are most effective for

control, and will be later exploited to determine which channels of the baseline controllers

will benefit most from controller tuning.

The OT is cast into the four-block control problem with the disturbance, actuator, perfor-

mance and sensor variables outlined in Table 6.4. The model identified with the technique

developed in Section 6.3.2 is used. The algorithm of Chapter 3 can now be applied. The

user must supply four sets of information as shown in Table 3.1. For the OT example:

1. The plant model is delivered in a four-block state-space form,
(A, BW, Bl, Cz, CY) (Section 6.3.2).

2. The scaling gains, RW, RY, RW, Rz are set using the resolutions (for u and y
variables), intensities (for w variables), and performance requirements (for
z variables) which are listed in Table 6.4. These scaling factors to weight the
relative importance of the sensors and actuators by capturing the anticipated
signal-to-noise. The resulting sensor/actuator indices depend on the square
of the scaling factors.

3. The standard value of y = 1 is used for the output isolation mixing parame-
ter (Equation 3.114).

4. The relative importance of the rigid body modes must be assigned by setting
the oRM parameter (Section 3.2.3). In the OT control example, ORM is set
to 0.1/21r rad/sec corresponding to the anticipated 0.1 Hz bandwidth of the
attitude control loop. The disturbance-to-performance spectra (the DPL and
QC plots of Figure 6.8) do not exhibit a strong dependence on the OT rigid
body since the wheel disturbance has greatest energy at higher wheel speeds.
For this reason, the S, matrix for the OT is not very sensitive to the ORM
parameter.
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To determine the suitability of particular sensor/actuator combinations for control the S,

index is used. Table 6.5 displays the sensor/actuator effectiveness matrix (log 0 (S,) for

the OT.

TABLE 6.5 Sensor and Actuator indexing matrix for OT Model.

ENC RGA DPL QC

RWA 20.3a 19.1a 12.2 17.4b

VC 5.0 8.8 22.8c 8.9

PZT 10.2 12.7 26.3c 13.7

FSM 6.3 11.4 14.5 20.6d

a. Attitude control sensor and actuator. The low relative magni-
tude corresponds to the unimportance of the rigid body mode
in this particular OT control problem.

b. Use QC with RWA for active disturbance isolation

c. Phasing control sensor and actuators.

d. Fine pointing control sensor and actuator

The largest index entries are indicated with superscripts, suggesting a controller topology.

When interpretating the S, matrix we must recall the defined performance variables: a

combination of the modeled wheel disturbance to DPL and of the wheel disturbance to

QC. Attitude control is not included in the performance. The intuitive decoupling of phas-

ing control (DPL to VC and DPL to PZT) and fine-pointing control (QC to FSM) is appar-

ent. The highest value in the matrix corresponds to the use of the high-bandwidth PZT

with the low-noise DPL. The ENC and RGA couple strongly with the RWA for control of

the rigid body and 2 Hz solar panel mode that are strongly observable in the QC. The table

indicates the QC could also be used with the RWA for a strategy whereby the wheel is

used with the RGA to cancel disturbance at the source (the wheel). This strategy is not

adopted due to interference with the attitude control loop
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6.4 Baseline Testbed Controller

Using classical control techniques, a fully decoupled, baseline controller (BC) for the

observation operational mode has been designed and implemented on the OT. The BC has

been broken up into attitude control and optical control. Optical control is further broken

up into phasing control and fine-pointing control. The sensors/actuators for the three

stages of observation control for the testbed: (1) attitude control, (2) phasing control, and

(3) fine pointing control, are summarized, with abbreviations, in Table 6.6:

TABLE 6.6 Actuators and sensors for the Origins Testbed control examples

Control
Stage Actuators Sensors

Attitudea Reaction wheel (RWA) Encoder (ENC)
Rate Gyro (RGA)b

Phasing Mirror on voice coil (VC) Internal laser interferometer (DPL)
Mirror on piezo stack (PZT)

Fine pointing One fast-steering mirror axis (FSM) One quad-cell fine-pointing axis (QC)

a. Not included in the table are the gimbal motor actuator and the RWA tachometer sen-
sor. These are used together for momentum dumping the RWA and are treated as an
external disturbance to the attitude control loop.

b. The rate gyro sensor is traditionally used with attitude control. Its utility for phasing
and fine-pointing control will be investigated in the sequel.

The closed-loop performance of the four-block control problem is given by Equation 2.6.

In the special case where the performance variables are a linear combination of the sensor

variables, z = Ny (output analogous), we have,

y = G,,w + Gu =>z = Ny = NGWw + NGu (6.2)

which implies Gzw = NG,, and Gzu = NGzw. Substituting into Equation 2.6 results in

z = [Gzw(s)+Gzu(s)K(s)(I-G,(s)K(s))-I G,,(s)]w

= [NG,,(s)+NG,,(s)K(s)(I-G,,(s)K(s)) G,(s)]w

= N[I+ G,(s)K(s)(I -G,(s)K(s))-1 ]G,,(s)w

(6.3)
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which, by the application of the Matrix Inversion Lemma, results in

z = N[I-G,,(s)K(s)] GY,(s)w. (6.4)

Figure 6.10 is a block diagram representation of Equation 6.4.

w

IG,,( s)

UGs) + Y Nz

K(s)

Figure 6.10 Block diagram of output analogous control

In this case the control objective (minimize the effect of w on z) can be achieved by hav-

ing a high controller gain over the bandwidth of interest. Effectively we minimize the

[I - GYU(s)K(s)]1 factor to actively decouple w from z. This active output isolation is

achieved regardless of the spectral shape GY,. If IG,,j is known then performance can be

enhanced by choosing K(s) to ensure that [I- Gyu(s)K(s)] I is minimized in the band-

width where the magnitude of G,, is large. Active output isolation is independent of the

phase of G,.. If the phase of GY, is known then the controller can approach a pole/zero

cancellation strategy to achieve performance with less control authority. The baseline con-

troller employs an output isolation control strategy.

The BC structure is given by,

usC Ksc 0 0 yc
uph = F Kph 0 Yph1, (6.5)

uL 0 0 K y
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where u corresponds to actuator inputs, y to sensor outputs, and K to controller transfer

matrices. The subscript sc corresponds to slew control, ph to phasing control, and pn to

fine-pointing control such that usC is the command to the RWA, uph are the commands to

the VC and PZT, un is the command to the FSM, ys, is the measured ENC signal, Yph is

the measured DPL signal and ypn is the measured fine-pointing signal. The RG is not used

by the BC. We note the presence of the zeros, enforcing the decoupled nature of the BC.

Implementation Consideration

Section 2.2.7 highlights implementation considerations for running a controller on a digi-

tal control system, including the Origins Testbed.

The controller is converted from the continuous design to a discrete design by employing

the nonlinear weighted least-squares identification software designed for [Jacques, 1995].

A frequency response of the continuous controller is generated and fit with a discrete

model. A logarithmic cost function is used to fit zeros well. In practice, system-ID based

continuous-to-discrete conversion performs better than standard (ZOH, Tustin, etc.) meth-

ods with the additional computational cost of the nonlinear optimization.

6.4.1 Slew Control

To design a slew controller for the OT, (Ksc from Equation 6.5) we begin by measuring

the slew dynamics of the OT and fitting them with a low-order measurement model. Clas-

sical control synthesis is used to design the controller, which is then tested on the OT. The

design of the baseline slew controller is completely decoupled from the phasing and fine-

pointing controllers. We further break up the slew controller into a component with the

RWA as an actuator, Kc, ,, and a component with the gimbal motor as an actuator, Ksc,,g

A block diagram of the slew control structure is found in Figure 6.11.

Ksc, generates a torque for the RWA, based on an error, e = O, - 0SC between a

reference command, Or, and the OT encoder angle, OSC* Through the inertia of the

wheels, IW, T, causes the RWA to rotate at an angular velocity of O,. KSC, g generates a
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T

Or

Figure 6.11 Baseline slew controller structure

torque for the gimbal actuator, g , based on 0,. In the figure, GSC are the OT slew

dynamics.

Origins Testbed Slew Dynamics

The slew dynamics of the OT are identified by applying white noise to the RWA and

recording the encoder angle and rate gyro angular velocity. A spectrum analyzer is used to

record the transfer functions from the RWA to encoder and RWA to rate gyro. The result-

ing transfer functions are plotted in Figure 6.12

The RWA-to-ENC transfer function displays a -40 dB/decade rolloff at low frequency,

characteristic of the angular position measure of a rigid body, given a torque input. At 2

Hz we see the first resonance of the OT's solar panels (brass beams) which couple in to the

pointing transfer function. At 10 Hz, we see an increase in modal density. The encoder

data becomes noisy at higher frequency. The RAW-to-RG transfer function displays a -20

dB/decade rolloff at low frequency, characteristic of the angular rate measure of a rigid

body, given a torque input. Again we see the solar panel 2 Hz mode. At frequencies above

10 Hz we have an increase in modal density corresponding to the flexible modes of the

reaction wheel assembly.

A 22 state high-order model fits the transfer functions of Figure 6.12 almost exactly. For

the slew controller, when we use the encoder as the primary feedback sensor, a much

lower order model can be used for controller design. A fourth order model is selected,
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Figure 6.12 Origins Testbed slew dynamics

with 2 states corresponding to the OT rigid body mode and 2 states assigned to the observ-

able brass beam resonance mode. We determine a model of the form,

G,, '(s) =

2 2K(s + 2(nmnms + (onm)

2 2 2 2
(s + 2(rb)rbS + orb)(S + 2(bbwbbs + obb)

where s is the Laplace Transform variable. We fit the model to the transfer function and

find K = 2.5. A zero in the system response is governed by: (nm = 0.47 %,

Onm = 2n - 1.90. Due to friction, the OT slewing rigid body is modeled with a low-fre-

quency, heavily damped pole with (rb = 70 %, 0rb = 2n - 0.1 . The brass beam flexibil-

ity is modeled with a lightly-damped pole with (rb = 1 %, (orb = 2n - 2. A static

correction dm = -1.25x10- 3 is added to account for the low frequency effect of the

neglected higher-order dynamics.

RWA Slew Controller

To design the RWA slew controller, K,,,,, we formulate the design requirement as: track

targets with zero steady-state error to a step while maintaining good stability margins. For
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a sensor we select the angular encoder (4 arcsecond resolution) and for the actuator the

reaction wheels.

The SISO control design consists of:

" a pure integrator which eliminates steady-state tracking error to a step at the
expense of stability margin,

" a 2 nd order lead filter provides phase at cross-over, negating the phase loss
from the integrator, and providing good stability margins, and

* a 2 nd order lag filter at high frequency to avoid exciting neglected high-fre-
quency dynamics.

The controller is thus in the form,

K,",,(s) =
s(

with Kk = 170, kn = 70.7 %, kn =

tains the controller transfer function.
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Figure 6.13 Baseline RWA slew controller, Kscw
lated with measured data.

and encoder to RWA control loop gain, calcu-

(6.7)
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Momentum Dumping

To hold the OT in position while countering residual gravity and friction torques, the reac-

tion wheel speed to wind up. The gimbal actuator is controlled to desaturate the RWA

through K,,, g. The OT wheel desaturation is analogous to the spacecraft case where

thrusters are fired to desaturate the wheels. We select the reaction wheel tachometer as the

sensor and the gimbal torque motor as the actuator.

Nonlinear switching logic controls the gimbal actuation with the rules,

- If 0, > o then apply a step to the gimbal and hold until Ow < o.

- If OW < -(o then apply a negative step to the gimbal and hold until Ow > -<o

where 0o is an upper wheel speed threshold, and o is a lower speed threshold.

The gimbal step is prefiltered with a fourth order filter which is shaped to minimize inter-

action with the RWA/encoder loop. The SISO prefilter design consists of:

- a 2nd order notch at the frequency where the RWA-to-ENC pointing is most
sensitive to the gimbal torque, T9, and

- a 2 nd order lag at high frequency to eliminate high frequency torque spikes.

The pre-filter dynamics and the T to RWA-to-ENC pointing loop dynamics, with the

ENC-to-RWA loop closed, are seen in Figure 6.14. To the RWA-to-ENC loop, the gimbal

torque appears as a disturbance. The presence of the integrator eliminates low-frequency

coupling from r to OC.

The pre-filter is in the form,

K, 2 + (~g+ m02n
Ks, ((S) =S+2tgnjJgn + n (6.8)

(S 2 +2(giwgi +o21)(s 2 +2(g2g2+og2)

with KW = 0.032, (gj = 0.7, og = 2T -0.07, (g2 = 0.7, Og2 = 2c - 0.04,

(gn = 0-1 .and ogn = 2c - 0.05.
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Figure 6.14 Gimbal momentum dump prefilter. Dashed: gim-
bal torque to RWA-to-ENC pointing with ENC-
to-RWA loop closed, and solid: gimbal pre-filter
magnitude dynamics

Performance and Stability

Figure 6.15 is a plot of the time-domain data for representative actions of the slew control-

ler. The testbed slews to a 30' position, holds 130 seconds, returns to its initial position

and holds for 100 seconds. At 60 seconds the wheel pass the speed threshold and the gim-

bal turns on. The wheel speed shows reaction to rotation of the testbed, holding torques,

and gimbal torques.

The stability of the r to OC loop can be determined from a SISO attitude control gain/

phase plot with a realistic assumption that the phasing and fine pointing actuators do not

have couple enough with the structure at low frequency to destabilize the attitude loop.

Further, we assume that the gimbal momentum dump appears as an external disturbance

(despite the presence of the wheel speed driven nonlinear feedback logic). The 2 Hz mode

of the brass beams is gain stabilized above the bandwidth of the control loop. Since this is

a SISO loop, we determine stability margins of 40 dB gain margin and 40' phase margin

directly from the plot.
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6.4.2 Phasing Control

To design the phasing control, KPh, we choose a structure from the literature with heritage

on several interferometry testbeds [Melody and Neat, 1999, Masters, 1997, and O'Neal

and Spanos, 1991]. This control structure is also used for the baseline SIM phasing con-

troller in Chapter 7. The phasing control structure is seen in Figure 6.16.

Phasing control is achieved through the delay line. We divide the phasing control amongst

two actuators, a mirror mounted on a voice coil (denoted with a subscript v), and a mirror

mounted on a piezo stack (denoted with a subscript p). An internal loop is formed by

feeding back the internal metrology interferometer measure, DPLi to a voice coil filter,

KPh vand a piezo filter KPh connected in parallel. The respective plant dynamics are

U)

0

1

0
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ext DPL

Kph~ G

y z-
Kphh~p

Kprp. Gph,p

DPLj

Figure 6.16 Baseline phasing controller structure. The loop indicated with the light line
is closed in the SIM control strategy, but will not be closed in the simplified
OT demonstration experiments.

denoted by Gph v and Gph, p for the voice coil and the piezo mirror respectively. The

internal loop is corrupted by the external contribution to differential pathlength, ext. DPL.

In the experiments that will be detailed in this chapter, the internal DPL is the differential

pathlength performance metric, i.e. ZDPL = zi = DPLj. In the above figure, the baseline

controller is formed by cutting the external ze feedback, and for simplicity by setting

Kphf = 1-

The higher bandwidth piezo controller is designed first with:

" a 1st order lead at f = 0 Hz to eliminate DC gain,

- a 1st order lag to flatten gain over region of desired authority,

" a 1 st order lead to provide phase lead at crossover,

- a 1st order lag to roll-off after crossover, and

- a 2 nd order lag for increased roll-off.

The resulting controller has the form,

K phs(s+0 Z)
K ph s ) (6.9)ph,p (s+ + 2+ 2wpop3 +(629

with Kph,p = 1500, (op2 = 27- 20, opz = 27c-50, o, = 27c- 60, (gn =0.4, and

Cogn = 2n - 120.
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The piezo control loop achieves performance over the 15 to 40 Hz range while the voice

coil is used over the 0 to 20 Hz range. The lower bandwidth voice coil loop is designed

with:

- a low frequency 2 nd order lag well below crossover,

- a 1st order lead to provide phase near crossover,

- a 2 nd order lead to negate the phase lag of the 2 "d order voice coil mass/
spring dynamics, and

- a 2 nd order lag after crossover to provide adequate roll-off.

The resulting controller is in the form,

K h vs+ vzs2 + 2co + (02n
Kh(s) = P '(s + + + (6.10)

(s + 2(v 1 ov 1 + OVl )(s 2 + 2v 2 v 2 + v2

with KPh v 1800, ( = 0.9, o,1 = 27 -2, ovz = 27 -23, ov, = 27 -40,

(v2 = 0.7, and ov 2 = 27 - 320.

The voice coil and piezo controller transfer functions are plotted in Figure 6.17 along with

the loop gain cut at the sensor (single channel DPL),

The bandwidth of the phasing control loop can be measured to be -45 Hz with a gain mar-

gin of 10 dB, and a phase margin of -40 degrees. (Note that by measuring stability of the

phasing loop we are implicitly neglecting interaction with the attitude and fine-pointing

loops)

6.4.3 Fine-Pointing Control

The fine-pointing controller employs the structure of Figure 6.10. From Figure 6.8 we see

that the G, for the fine-pointing loop is maximum over the 10 to 20 Hz band. The fine-

pointing controller, Kf ,(s), is designed to have gain over that frequency region.

The controller is designed with:

- a 1st order lead at f = 0.1 Hz to eliminate DC gain,



EXPERIMENTAL VALIDATION

VC Controller
20

1 5 - - .-.- . -. -

10

5 - --... . - -. - -. -. -.

0 -..- .---. .- .- -- .. -.5 -

- 10 -.- . --. -. -. -. -.-.

-15,
10 100 10 102

200

150 .. .

100 . . .. . . . .. .

-1__0

10-1 10 10
f (Hz)

PZT Controller
10.

5

0

-5

-10

-15

-20

Loop Gain

30

20

10

0

-10

10 100 10 102
-50

-100.. .. .

-150 -- . . . . . . .

-200 --.-----.-.- . -. -

-250
10~ 100 10 102

f (Hz)
10 100 10 102

f (Hz)

Figure 6.17 Baseline phasing controller for the voice coil actuator, Kph,v baseline controller for the piezo
mirror actuator Kp, and the phasing loop gain

- a 2 st order lag well below crossover,

- a 1st order lead to provide phase lead near crossover, and

- a 2 nd order lag after crossover for adequate roll-off

The resulting controller is in the form,

Kfp, (s) =
Kf ,(s + (ofz)(s + ofn)

(s 2 +2l(0o +o/2)(s 2 +2;(op + o 2 )
(6.11)

with Kfpn = 6 x 105 , -f = 2n -0.1, (f1 = 0.9, (of = 2n - 6,

(f = 0.9, and o, = 2c -400.

The fine-pointing controller transfer function and the associated loop gain transfer func-

tion is plotted in Figure 6.18.

The bandwidth of the fine-pointing control loop can be measured to be from 2 to 70 Hz

with a gain margin of 9 dB, and a phase margin of -40 degrees. (Note that by measuring
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Figure 6.18 Baseline fine-pointing controller and fine-pointing loop gain

stability of the fine pointing loop we are implicitly neglecting interaction with the attitude

and phasing loops)

6.4.4 Baseline Performance and Stability

In this section we present the optical performance and global stability robustness of the

BC applied to the Origins Testbed.

Figure 6.19 is a plot of the autospectra of the DPL and the QC, and compares the open-

loop (straight line) and the closed-loop (dashed line) performance. We see that the phasing

and fine-pointing controllers achieve performance in the 10 to 20 Hz band where the dis-

turbance is dominant. At high frequency, after controller roll-off there is no observed per-

formance change.

The broadband performance of the baseline controller is summarized in Table 6.7.

From studying Figure 6.19 we see that most performance is obtained by decreasing the

disturbance of moderately narrow spikes at 9 and 18 Hz. The baseline level of perfor-
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TABLE 6.7 Measured and predicted performance of baseline controller

OL RMS Performance BC RMS Performance
Meas. imp.

Perf Variable Predict Meas Predict Meas over OL

DPL 4.31 pm 4.77 pm 1.81 p m 1.62 pm 9.4 dB

QC 6.97a arcsec 7.05 arcsec 1.64 arcsec 1.81 arcsec 11.8 dB

a. The data is measured by averaging 40 spectra allowing the quad cell resolution
to surpass the instantaneous resolution of 0.1 arcseconds (asec).

10

T 10
E

_j -3
iL 10
a

1 06

N

10 -80

100 101

Freq (Hz)

Figure 6.19 Open-loop (solid) and closed-loop (dashed) performance of the baseline controller for the dif-
ferential pathlength and fine pointing metrics as measured by the laser interferometer (DPL)
and the quad cell (QC)

mance achieves an approximately factor of four improvement over the open-loop. The

baseline performance achieved on the OT is less than achieved by Neat et al. on JPL's

Micro-Precision Interferometer (MPI) testbed [Melody and Neat, 1999], [Neat and

O'Brien, 1996]. Multiple factors contribute to the difference in achieved performance:

1. Figure 6.19 shows that the performance autospectra of the OT have negligi-
ble energy at low frequency. Contrarily, MPI has 76% of its performance
energy below 10 Hz. The low-pass nature of the classical MPI controllers

240
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allows considerable performance to be achieved at these easy-to-control low
frequencies.

2. The natural bandwidth of the MPI actuators allows a 500 Hz crossover of the
phasing loop, compared to 70 Hz for the OT. The fundamental limit is the
mass of the mirror affixed to the PZT that causes a roll-off (i.e. phase loss) of
the PZT to DPL channel at - 170 Hz.

3. The MPI sensors have higher resolutions and bandwidths than their OT
counterparts, corresponding to a capability for higher bandwidth control and
less sensor noise injected by closing the loop.

4. The OT control computer is sampling at 1000 Hz, forcing a practical control
bandwidth of 200 Hz. MPI's control computer samples at 8000 Hz.

5. The OT disturbance is a real-world, difficult-to-model reaction wheel imbal-
ance disturbance. The MPI testbed uses a shaker to emulate the reaction
wheel disturbance which allows for a direct measure of G, and G,, and a
good understanding of the disturbance source.

6. The phasing control of MPI has an additional low-frequency actuator to
form a three-tier delay line, compared to the two-tier delay line of the OT
(VC and PZT).

The nature of the OT disturbance source and bandwidth limitations of the OT sensors and

actuators do not allow the fidelity of the MPI testbed. Based on these physical constraints,

we conclude that the OT baseline control performs well and provides a suitable platform

for the demonstration of the tuning methodology. Future work should include a demon-

stration applying the tuning methodology to the MPI baseline controller presented in

[Melody and Neat, 1999] and [Neat and O'Brien, 1996].

Figure 6.20 plots the MIMO Nyquist locus of the BC applied to the OT and the corre-

sponding maximum and minimum singular values of the sensitivity transfer matrix. The

Nichols plot shows a bandwidth of approximately 68 Hz with a roll-off at higher frequen-

cies. Small spikes in the maximum singular value correspond to frequency points with

measurement noise. The large, smooth spike near crossover (-68 Hz) corresponds to a

pop-up region where noise may be amplified.
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Figure 6.20 Absolute stability and robustness of the baseline controller: simulated with data from the Ori-
gins Testbed, and experimentally measured (dashed)

6.4.5 Baseline Control: Sensor/Actuator Index

Upon the application of the baseline controller, the input/output characteristics of the plant

change. The sensor/actuator indexing algorithm can be applied to the closed loop system

to provide a guide for further tuning. Figure 6.21 is a block diagram of the system used for

sensor/actuator indexing in the presence of a feedback controller. The sensor and actuator

noise are denoted by w, and w respectively.

GY

K

Figure 6.21 Sensor Actuator Indexing in the presence of
a controller

242

-10

-15

-20

-25

-30

-D

CM
as
(U

0

-10

-20



Baseline Testbed Controller 243

In the closed-loop case, the sensor noise is fed back, and enters the plant as additional

actuator noise. The closed loop actuator signal is written as

uC= Ky + Kw, +wU +u. (6.12)

The first term (Ky) can be rewritten into the closed loop dynamics as in Equation 2.6. The

fourth term (u) is the closed-loop actuator command signal. The second and third term

(Kwy + wu) enter as the actuator noise. In the algorithm of Chapter 3 the importance of

scaling with the sensor and actuator resolutions (noises) is emphasized. In the closed-loop

case we must capture the degradation of actuator resolution brought by feeding back the

sensor noise. We adopt a worse-case strategy to write for the j-th actuator noise standard

deviation, 1
R,(j)

fly

1 1 1 (6.13)
Ru(j) K7R (i) + YR (j)),'

i= 1

where K' is the maximum (over frequency) absolute value of the ij -th channel of the

controller, 1/(R,(i)) is the standard deviation of the i-th sensor noise (the notation is

introduced in Section 3.1.1), and (1/(RUj))) is the standard deviation of the j-th open-

loop actuator noise. With the modified input scaling the sensor/actuator indexing algo-

rithm can be applied to the closed loop system. For the OT example with the baseline con-

troller in place the resulting indexing matrix is shown in Table 6.8.

TABLE 6.8 Modified Sensor and Actuator indexing matrix for the closed-loop,
baseline-controlled OT Model

ENC RGA DPL QC

RWA 12.3 17.8 10.1 8.0

VC 5.1 9.4 21.9 9.9

PZT 10.3 12.7 26.3 13.4

FSM 6.2 11.4 14.4 19.0
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Comparing the BC case of Table 6.8 to the OL case of Table 6.5 we note several differ-

ences: (1) The ENC-to-RWA index has decreased as the rigid body mode is controlled, (2)

the DPL-to-VC and QC-to-FSM indices have dropped indicating a slight decrease in their

potential for additional control benefit (3) No change in the DPL-to-PZT channel reflects

the low PZT control gain.

The sensor/actuator index matrix of Table 6.8 can be used as a guideline for tuning the

baseline controller. With each tuned controller a further sensor/actuator index matrix can

be computed to ascertain which sensors and actuators can be employed for further tuning.

Some problems with the algorithm are associated with this:

1. As detailed in Chapter 3 the sensor/actuator indexing algorithm is an open-
loop method and does not attempt to capture the effect of loop closing.

2. The plant scaling is based on an implicit assumption that the actuator and
sensor noises are white. Feeding back the sensor noise as actuator noise in
the manner of Equation 6.13 does not capture the spectral shape that the con-
troller applies to the fed back sensor noise.

3. The sensor/actuator indexing algorithm is a guideline and has no capability
to capture the real world nonlinearities in the sensors and actuators. For
example, the saturation limit of the PZT limits its use for control, but is not
captured by the algorithm.

4. The sensor/actuator indexing algorithm is a guideline and has no capability
to capture the stability limitations of poorly modeled (measured) dynamics,
or missing and nonminimum phase zeros in structural control systems.

Future research should address the resolution of these limitations.

6.5 Tuned Controllers

Starting from the baseline controller, a family of controllers for the OT is designed. Suc-

cessive controllers are designed by tuning the parameters of the previous controller while

adding features to change the controller topology: adding states, actuators, sensors and

control channels. This incremental approach is favored for two reasons: (1) it is instructive

to monitor the synthesis of the tuning technique as features are changed and added and (2)

it is computationally simpler to tune individual control channels separately before com-
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bining to tune the controller globally. The second reason allows the tuning algorithm to be

less likely to falter in a local minimum.

The tuning cost function is introduced in Chapter 4 and repeated here for convenience:

JA(P) = J(p)+SR(p)+d(p)+M(p). (6.14)

The settings of the terms of the tuning cost are tabulated in Table 6.9.

TABLE 6.9 Tuning terms (from Equation 6.14) for OT tuned controller family

Term Setting

RMS Perfor- J(p) Weighted RMS of the phasing (DPL) and pointing (QC)
mance autospectra from a observation RWA disturbance

Stability SR(p) Penalize all maximum s.v. of sensitivity deviations > 10
Robustness dB threshold. Increase penalty at f> 100 Hz to provide

margin near roll-off. Critical point distance metric is not
used, i.e. y, = 0.

Controller d(p) Not used in the OT examples
Deviation

Controller M(p) Penalize low-frequency (f< 1 Hz) PZT and FSM use
Magnitude (avoid saturating small-stroke actuators with DC control)

The control objective is to minimize the RMS performance of the phasing and fine point-

ing while maintaining similar stability robustness to the baseline controller. As such the

stability robustness weighting vector, (Ws(o)), is adjusted to maintain robustness. Based

on engineering conclusions from the MACE program, a 10 dB threshold is set as the

accepted maximum Sensitivity singular value at frequencies where the plant is not well

measured or modeled [Miller et al., 1996]. A penalty on the low frequency control magni-

tude of the piezo actuators (PZT and FSM) is used to ensure that the small-stroke actuators

are not saturated with DC control.

The interrelation of the controllers forming the family of controllers for the OT are shown

in the block diagram of Figure 6.22. Table 6.10 lists the performance (predicted and

experimental) for the tuned controllers and details the incremental changes to the control-

ler topology.
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Single Channel Add Actuator Add Channel Add Sensor
Tuning (PZT) (QC to FSM) (RGA)
(DPL to VC)

BC T1T78
W tune DPL tune phas- tune QC

to VC ing block to FSM

Add 2states tu LAdd 2 states

T3 T6 T10 T11
tune phas- tune optical tune RGA

Add 2 states ing block block parameters final
design

T4 poor stability
characteristics:

Add 2 state no further tuning

poor stability
characteristics:
no further tuning

Figure 6.22 OT tuned controller family: controllers are synthesized by tuning the previous controller in the
block diagram.

The path through Figure 6.22 from the baseline controller (BC) to a tuned design is chosen

based on information from the sensor/actuator indexing matrix of Table 6.8. We are tuning

the optical control block which corresponds to the lower 3 x 3 block of the indexing

matrix. In this block, we see that the DPL-to-PZT and DPL-to-VC channels have the high-

est entry, motivating our initial tuning to focus on phasing control. Though the DPL-to-

PZT block has the greatest entry in the indexing matrix, we are concerned with the nonlin-

ear saturation limitation of the PZT and thus we choose to initially tune the DPL-to-VC

block, resulting in the second column of Figure 6.22. In the third column PZT tuning is

performed, where we are careful to avoid saturation. The third column also corresponds to

tuning the entire optical control block, i.e. simultaneous tuning of the DPL-to-VC and

DPL-to-PZT channel. Again where care must be take to avoid saturating the PZT. Con-
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TABLE 6.10 OT tuned controller family: description and performance

RMS DPL Perf RMS QC Perf.
#tuned # cont.

Cont- Tuned Predict Meas Predict Meas param. states
roller from (lim) (gm) (arcsec) (arcsec) n, nc Notes

None N/A

BC N/A

TI

T2

BC

Ti

T3 T2

T4 T3

T5 T2

T6 T2

17 TI

T8 T7

T9 T8

T1O T9

T11 T1O

4.31 4.77

1.81 1.62

1.47 1.29

1.09 0.97

0.97 0.89

0.90 0.87

1.06 0.98

0.81 0.66

0.86 0.76

0.86 0.71

0.86 0.69

0.86 0.76

0.66 0.77

6.97 7.05

1.64 1.81

1.59

1.60

1.63

1.68

1.56 1.62

1.56 1.70

1.59 1.68

1.58 1.85

1.55 1.88

1.19 1.34

1.02 1.18

0.98 1.00

0.86 0.98

tinuing, the fourth column of Figure 6.22 corresponds to the next highest value in the

indexing matrix block; the QC-to-FSM channel. Lastly (in the fifth column) we add the

RGA sensor.

N/A N/A Closed-loop predictions and con-
troller tuning is based on the
open-loop data

N/A 20 Classically designed controller,
detailed in Section 6.4

12 20 Tune DPL-to-VC channel

18 22 Add 2 states and tune DPL-to-
VC channel

24 24 Add 2 additional states and tune
DPL-to-VC channel

30 26 Add 2 additional states and tune
DPL-to-VC channel

12 22 Tune DPL-to-PZT channel.
Penalize PZT use at low fre-
quency.

40 22 Tune phasing block: DPL-to-VC
& PZT block. Penalize PZT use
at low frequency

40 22 Add 2 states. Tune phasing
block: DPL-to-VC & PZT block.
Penalize PZT use at low fre-
quency

12 22 Tune QC-to-FSM block. Penal-
ize FSM use at low frequency.

18 24 Add 2 states and tune QC-to-
FSM block. Penalize FSM use at
low frequency.

96 24 Tune entire optical control block:
DPL & QC-to-VC, PZT and
FSM. Penalize PZT and FSM
use at low frequency.

16 24 Tune RGA parameters for the
optical control block. Penalize
PZT and FSM use at low fre-
quency.

247
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Appendix E compiles the result of applying the tuned controllers, TI through T 11, to the

Origins Testbed. For each controller the controller gains, measured performance autospec-

tra, and measured stability robustness plots are recorded. Where appropriate either the

measured and predicted results, or the current and previous controller (from Figure 6.22)

results are compared.

Figure 6.23 is a plot of the performance autospectra for the final controller, T 11. For com-

parison purposes, the open-loop DPL and QC autospectra are plotted as well as those cor-

responding to the baseline controller. From the autospectra plots, we see that the tuned

controller achieves a significant level of performance over the baseline controller by tar-

geting the peaks in the autospectra. From Table 6.10 we see the improved performance is

achieved with 4 more states than the order of the baseline controller.

10

M 1 0 - .- .- - . .- - - - -. .-- - - -- - - - -.. .

CL 10 ~ ... ...............

C\118

10 
10

Freq (Hz)

Figure 6.23 Experimental performance autospectra: open-loop (light), baseline controller (solid), T11I con-
troller (dashed)
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Figure 6.24 is a plot of the stability of the final Ti 1 design. Also plotted is the stability

plot of a design which achieves the same theoretical performance as T 11, but which is

designed by tuning the BC without penalizing our stability metric (i.e. by setting

Ws(co) = OVo). In the Nichols plot, we see that the locus passes very close to the critical

point. This corresponds to a 15 dB spike at in the maximum singular value of the sensitiv-

ity at 75 Hz. The high sensitivity spike is an indication of likely stability problems and for

safety the controller was not implemented on the OT. The tendency towards designs with

poor stability reinforces the need to tune with a penalty on stability non-robustness.

Nichols Sensitivity S.V.
50 20

15 --
40.....................40 -
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Figure 6.24 Stability plots for T 11 controller (solid) compared with a controller designed without the sta-
bility penalty, i.e. Ws(o) = OVo, (dashed) that achieves similar simulated performance. An
expanded view new the critical point of the Nichols plot shows the dashed curve approaching
dangerously close to the critical point.

Figure 6.25 summarizes the performance attained by the tuned controllers as listed in

Table 6.10 and plots the maximum singular value of the Sensitivity transfer matrix, a mea-

sure of stability robustness. For presentation purposes, the family of tuned controllers are

broken up into three sets. Each set corresponds to a pass along the arrows of Figure 6.22.



EXPERIMENTAL VALIDATION

RMS DPL (pn)

j Predict
- --..--... Measure

OL BC T1 T2 T3 T4

5

4

3

2
1-

0

5

4

3

5

4

03
2-

r2

F)

0

OL BC T1 T7 T8 T9 T1OT11

RMS OC (arcsec)

OL BC T1 T2 T3 T4

OL BC T1 T2 T5 T6

OL BC T1 T7 T8 T9 T1OT11

12

10

8

6

4.

2

0

10"

12

10

8

6

4

2

0

Max Sensitivity S.V. (dB)

101 102

f (Hz)

. .

10 10 10

f (Hz)

12 .

f (Hz)

Figure 6.25 Plots of performance and maximum Sensitivity s.v. for each of three incremental tuner control-
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performance are listed with predicted and measured values. For the maximum Sensitivity s.v.,
progression along a path in Figure 6.22 is indicated with a progression towards a lighter curve.
For presentation purposes not all maximum s.v. plots in the set of controllers are displayed.

The initial set begins with the baseline controller and ends at controller T4: BC-T1-T2-T3-

T4 and involves progressive tuning of the DPL-to-VC control channel. The DPL perfor-

mance increases for the controllers while the QC performance remains approximately

constant. As we progress along this set of controllers, a spike in the maximum s.v. of the
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Sensitivity transfer matrix ((Y(S)) at 60 Hz indicates that we may have decreasing stabil-

ity robustness should we tune further. The second set of controllers is: BC-Tl-T2-T5-T6

which involves successively complicated tuning of the phasing loop (DPL to VC and DPL

to PZT). A spike in ((T(S)) at 190 Hz cause us to abandon this set. The final set begins

with phasing control tuning, followed by fine-pointing control tuning, and ends with the

addition of the RG sensor. The set includes: BC-T1-T7-T8-T9-T10-T11. Spikes in (Y(S))

at 22 Hz and 190 Hz cause us to finish tuning with controller T 11. The performance

curves show that this tuning set has achieved considerable performance improvement over

the baseline controller for both the DPL and QC performance channel (6.5 dB and 5.4 dB

respectively).

6.6 Summary

The Origins Testbed was developed as a ground-based test article which captures the

dynamics and control issues of future space telescopes. The OT was detailed with particu-

lar emphasis on its traceablility to SIM and NGST in terms of its dynamics, sensor suite,

and actuator suite. The OT was modeled with state-space dynamics and the sensor/actua-

tor indexing algorithm of Chapter 3 was applied to rank the effectiveness of sets of actua-

tors and sensors for control. From the sensor/actuator indexing, the topology of the

baseline controller was selected. The baseline controller design was detailed as a demon-

stration of the OT control complexity, and its performance experimentally measured. The

baseline OT control is compared to the control of JPL's MPI test article. From the baseline

controller, the tuning algorithms of Chapter 4 are applied to create a family of tuned con-

trollers for the OT. The effect of the addition of states and sensor/actuator control channels

are demonstrated and experimentally validated on the OT. With an experimental valida-

tion of the tuning algorithms on the traceable test article, we are now confident to apply

the methodology to the control of the SIM spacecraft model.
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Chapter 7

APPLICATION TO SIM

In this chapter, the tuning framework is demonstrated on a model of the Space Interferom-

etry Mission (SIM) spacecraft. The applicability of the developed tools to large-order flex-

ible models is confirmed. In particular, the tuning strategy allows an improved

performance with little stability robustness degradation over the JPL-designed baseline

controller, emphasizing its usefulness for future spaceborne telescopes.

The chapter begins with a quick introduction to the SIM and the SIM spacecraft. The con-

ceptual FEM model of the SIM Classic spacecraft is introduced and prepared for use with

the tuning framework. Techniques used for improving the numerical conditioning of the

model are presented. The sensor/actuator suite of the conditioned model is analyzed for

control effectiveness and a block-decoupled control structure is shown to be effective. A

baseline controller is designed that includes elements from a JPL-designed controller.

Lastly, the baseline controller is tuned and significant improvements in performance are

achieved with little degradation in stability robustness.

7.1 SIM Description

The Space Interferometry Mission (SIM) is the first observatory in NASA's Origins pro-

gram. It is a spaceborne 10 m baseline Michelson optical interferometer. The SIM science

goals include furthering astrometry by (1) searching for planetary companions to nearby

stars, and (2) providing 4 garcsec precision absolute star position measures. Further, SIM
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will provide a technology demonstration for other telescopes in the Origins family includ-

ing the Next Generation Space Telescope (NGST) and the Terrestrial Planet Finder (TPF).

Both optical (such as the nulling interferometer mode for TPF) and controlled-structure

(such as quieting a spacecraft to nm RMS levels of phasing jitter) technologies will be

necessary for the operation of SIM, and will be demonstrated on SIM for application to

future missions. Further details on SIM science goals can be found in [Unwin et al., 1999].

Figure 7.1 is a concept drawing of the SIM Classic spacecraft.1 The optical side of the

spacecraft is formed from a truss structure with seven collector apertures. In the standard

observation mode, the collectors work in pairs, with two pairs imaging bright guide stars,

and the third pair imaging the science target. The seventh aperture is redundant. A metrol-

ogy tower rises from the truss structure. Four beam launchers at the tip of the tower are

used to provide four measures of the position of each of the collectors. At the base of the

telescope is the spacecraft bus, housing the attitude control system, communication hard-

ware and electronics.

Figure 7.1 SIM Classic: one Possible design of the Space Inter-
ferometry Mission spacecraft. (Graphic courtesy of
JPL)

1. The SIM model and ensuing description is for SIM Classic, an early SIM design concept. Current design
iterations may result in a spacecraft physically quite different from this. The techniques applied to the
SIM classic model are general enough to be applied to future SIM models and other large-scale systems.
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The control actuators for the SIM spacecraft include mirrors mounted on voice coils, mir-

rors mounted on piezo stacks, fast-steering mirrors, and reaction wheels. The sensors

include star trackers, rate gyroscopes, interferometers, wavefront tilt sensors and fringe

trackers. Physical descriptions of the sensors and actuators are found in [Gutierrez, 1999].

The control problem that will be considered is the regulation problem of minimizing root-

mean-square performance jitter as the telescope performs an observation. The torques and

forces from reaction wheel imbalances are the primary disturbance source.

7.2 Model Preparation and Conditioning

The Finite Element Method (FEM) model of SIM Classic is utilized in the ensuing design

example. The model was created as JPL using the Integrated Modeling of Optical Systems

(IMOS) software toolbox. The model is a stick representation of SIM Classic, with trusses

modeled with Bernoulli-Euler beam elements and optics modeled as lumped masses.

Modal damping is specified to be 0.1%. The reaction wheel assembly (RWA) acts on the

structure through a modeled 6-axis isolator with a 5 Hz corner frequency. Optical ray trac-

ing is used to model the optical sensor and performance output matrices A detailed discus-

sion of the model is found in [Gutierrez, 1999].

The raw model is particularly ill-conditioned. Initially the full-order FEM is truncated to a

model preserving the first 113 modes with additional dynamics to capture actuator roll-off

for the large bandwidth actuators (256 states total). In the current incarnation of the model

the roll-off modes for the piezo stacks and the fast-steering mirrors are far too high in fre-

quency and too lightly damped. Future versions of the model should realistically model

high-frequency actuators. The six states corresponding to rigid-body translation modes are

removed since they are neither observable nor controllable by any sensor/performance or

actuator/disturbance. Further preparation of the model for application of the sensor/actua-

tor indexing technique and for the application of the tuning algorithm is seen in the block

diagram of Table 7.2.
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High order Select set of Append Balance and Close atti- Reduced order
FEM -- b sensors and + RWA dist. +reduce stable+ tude control +and conditioned
model actuators dynamics dynamics loops model

Figure 7.2 Preparing the SIM model for control examples

Sensors and actuator selection

The raw SIM model has a total of 24 actuators and 39 sensors. For demonstration purposes

a reduced subset of the full sensor and actuator suite will be used in the ensuing examples.

The optical control problem will be considered on the model with the attitude control

loops are closed. At this stage we can remove some attitude control sensors (three rate

gyroscope channels) from the problem. The remaining attitude control sensors and actua-

tors are removed by closing the attitude control loop. Six disturbance inputs (three reac-

tion wheel forces and three reaction disturbance torques) will be linked together and fed

with a single noise spectrum driven by white noise.

The SIM model has a complete sensor/actuator suite for three interferometer channels:

guide star 1 interferometer, guide star 2 interferometer and the science interferometer. The

function of the guide interferometers are to lock onto bright guide stars with a high band-

width and feed forward control action to the lower-bandwidth science interferometer. The

SIM classic model baseline control does not capture this feedforward control and thus the

science interferometer will not be considered in out examples. From the model we remove

the actuators (a mirror mounted on a voice coil, a mirror mounted on a piezo stack, and

four axes of fast-steering mirror wavefront tilt) and sensors (an external differential path-

length measure, an internal interferometer channel and four wavefront sensors) particular

to the science interferometer channel.

Our final simplification is to difference the absolute wavefront sensors from each arm to

produce differential wavefront tilt. For each interferometer channel we reduce four abso-

lute sensors to two relative (x and y direction) sensors. Similarly, for each interferometer

channel, we reduce four absolute fast-steering mirror actuators to two relative (tip/tilt)

actuators.
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Table 7.1 is a list of the remaining suite of actuators and sensors for the examples in this

chapter. Also included is the disturbance channel and the six performance variables. An

abbreviated name is presented for each input and output. Where available, resolutions are

included for use with the sensor/actuator indexing algorithm.

TABLE 7.1 Signal definitions for the four-block control problem for the SIM observation control.
Resolutions are included for the sensors and actuators, intensities for the disturbances and
requirements for the performances.

Signal Type Abbrev- Description Resol-
iation utiona

Disturbance w RWA d Reaction wheel imbalance disturbance 1

Actuators u VC Gi Mirror mounted on voice coil. Guide interferometer 1 N/Ab

PZT G1 Mirror mounted on a piezo stack. Guide interferometer 1 N/A

VC G2 Mirror mounted on voice coil. Guide interferometer 2 N/A

PZT G2 Mirror mounted on a piezo stack. Guide interferometer 2 N/A

Tip GI Fast-steering mirror tip axis.Guide interferometer 1 N/A

Tilt GI Fast-steering mirror tilt axis.Guide interferometer 1 N/A

Tip G2 Fast-steering mirror tip axis.Guide interferometer 2 N/A

Tilt G2 Fast-steering mirror tilt axis.Guide interferometer 2 N/A

Performance z T DPL GI Total differential pathlength. Guide interferometer 1 4.4 nm

T DPL G2 Total differential pathlength. Guide interferometer 2 4.4 nm

DWFTx GI Differential wavefront tilt, x axis. Guide interferometer 1 0.33 asec

DWFTy GI Differential wavefront tilt, y axis. Guide interferometer 1 0.33 asec

DWFTx G2 Differential wavefront tilt, x axis. Guide interferometer 2 0.33 asec

DWFTy G2 Differential wavefront tilt, y axis. Guide interferometer 2 0.33 asec

Sensors y T DPL GI

I DPL GI

T DPL G2

I DPL G2

WTXG1

WT YG1

WT X G2

WT Y G2

Total diff. pathlength. Guide interferometer 1 (fringe tracker)

Internal differential pathlength. Guide interferometer 1

Total diff. pathlength. Guide interferometer 2 (fringe tracker)

Internal differential pathlength. Guide interferometer 2

Wavefront tilt sensor, X axis. Guide interferometer 1

Wavefront tilt sensor, Y axis. Guide interferometer 1

Wavefront tilt sensor, X axis. Guide interferometer 2

Wavefront tilt sensor, Y axis. Guide interferometer 2

5 nm

5 nm

5 nm

5 nm

0.1 asec

0.1 asec

0.1 asec

0.1 asec
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a. The term 'resolution' applies for the actuators and the sensors. For the disturbance, 'intensity' is
more appropriate and for the performance, 'requirement' is more appropriate. The resolutions
listed here are estimates, the true resolutions for SIM are classified and unavailable in the open
literature.

b. Actuator resolutions for SIM are unavailable.

It is essential to strip away unused sensors and actuators from a model for two reasons: (1)

unnecessary sensors and actuators slow further computation, occupy additional memory

and increase the modeler's bookkeeping burden (2) further model-conditioning steps may

take advantage of knowledge of the sensor and actuator suite to scale or balance the sys-

tem, resulting in a system erroneously scaled with unused sensor/actuator characteristics.

Disturbance modeling

The primary disturbance source is the reaction wheel assembly whose harmonic distur-

bances are averaged over their frequency range with a low-order pre-whitening filter, rep-

resented with four states [Gutierrez, 1999]. The six disturbance inputs, (reaction wheel

forces and torques in each direction) are then driven by the pre-whitening filter which is

driven by a unit intensity white noise.

In [Gutierrez, 1999] a RWA pre-whitening filter is given as

A2
Gd(s) = As 4 (7.1)

(s +o)

where wo = 2t - 100 (compare with Equation D.1). This four repeated real poles cause

the filter to be numerically ill-conditioned. Real poles and pole repetition create difficulty

for eigensolvers and for matrix inversion algorithms, and should be avoided if possible.

An improved filter is designed with four complex poles; for example with four poles

placed in a stable Butterworth configuration. In the redesigned filter the roll-off character-

istics are sharper, and more closely represent the physical wheel disturbance.
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Model reduction

The order of the model is typically larger than required. For example the optics controllers

of this chapter are examples of active output isolation. The relevant actuator-to-sensor

channels tend to be simple which implies that a low-order model can be used for stability-

preserving control design. Additional modes in the model can be used to design the con-

troller to emphasize noise rejection in specific frequency bands. In this case model reduc-

tion represents an engineering trade between model fidelity and model accuracy.

The removal of unnecessary sensors and actuators from the model may leave uncontrolla-

ble actuator dynamics and unobservable sensor dynamics. It is essential that these states

be removed since (1) they burden the model (computationally and memory intensively)

and (2) they can result in numerical ill-conditioning (possible singularity in some algo-

rithms, e.g. standard model balancing).

The rotational rigid body modes are critically stable and are essential to the model. Thus

we consider only reduction of the stable modes. To extract the stable modes we transform

the model to a 2 x 2 block real-modal form. After checking to ensure that the transforma-

tion does not affect the model transfer matrix we apply a truncation transformation (Equa-

tion 3.49) to extract the stable dynamics.

Balanced reduction can be used to reduce the order of the model. However for numeric

conditioning reasons the SIM model cannot be balanced with conventional (MATLAB)

balancing tools. The developed balanced truncation technique of Section 3.1.2 allows us

to balance and reduce the SIM model with little loss in accuracy. The model is reduced

from 256 states to 138 states. The result of applying the technique to the SIM model is

seen in Figure 3.2.

Attitude control

The model is provided with JPL-designed attitude controllers. The attitude controller is

made up of a lead near crossover followed by a double-pole lag to ensure appropriate roll-



260 APPLICATION TO SIM

off. A 3 x 3 constant matrix multiplies the controller to account for the off-axis principal

axes of the SIM spacecraft. The attitude control loop has a bandwidth of 0.1 Hz and damps

and stiffens the three rotational modes to 0.1 Hz.

The system can be transformed to a modal form. Further balancing on the now-stable sys-

tem may be erroneous since there is a large frequency separation between the lowest fre-

quency modes (stabilized attitude modes at 0.1 Hz) and the highest frequency modes (fast-

steering mirror roll-off modes at ~ 5 kHz).

We now have a stable open-loop (optical control) system with 148 states. In the sequel we

will refer to this model as the open-loop SIM model.

7.3 SIM Dynamic Coupling

In this section we apply the sensor/actuator indexing technique to the open-loop SIM

model. First we briefly analyze the dynamics of one of the guide interferometer channels.

Figure 7.3 plots the magnitudes of a subset of the transfer functions for the guide 1 inter-

ferometer channel. The outputs are plotted in appropriate units (nm phasing and arcsec-

onds pointing) while the inputs are scaled for display purposes.

We see the disturbance input channels display a high modal density. The disturbance has

no energy at DC and rolls-up with frequency. For DPL measures the transfer functions

peak around 20 Hz, while wavefront tilt measures peak around 30 Hz. The disturbance

input channels roll-off with the wheel pre-whitening dynamics at around 100 Hz. We note

that the y-direction disturbance to wavefront tilt is an order in magnitude lower than its x-

direction counterpart. The voice coil input transfer function display strong coupling to the

DPL measures. A lightly damped voice coil mode is apparent - 4 Hz which limits the

bandwidth of the voice coil actuator. The voice coil is only lightly coupled to the wave-

front tilt measures, likely through the motion of a small mass. If we compare to the voice

coil transfer functions for the Origins Testbed (Figure 6.7) we see the SIM model voice

coil damping may be underestimated. In the plotted bandwidth the piezo mirror actuators
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Figure 7.3 Subset of the magnitude of the transfer matrix for guide interferometer 1 of the SIM model.
Attitude control loops are closed but the optics loops are open.

resembles a feedthrough term to the DPL measures. The piezo mirror (as scaled for the

plot) also appears to couple to the x-direction wavefront tilt. The sensor/actuator indexing

algorithm will quantify this coupling with proper scaling. Lastly, the tip and tilt actuators

appear as feedthrough terms to the wavefront measures. Tip actuation couples to the x-

direction while tilt couples to the y-direction with cross terms down two orders of magni-

tude. Reciprocally to the piezo/y-direction wavefront tilt coupling, the tip actuator shows

Tip (mN-m) Tilt (mN-m)
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some scaled coupling to the interferometer channels. We note that all of the feedthrough

terms are modeled as lightly damped second order channels with a frequency much

greater than the band of interest. Compared with the OT we see that the feedthrough chan-

nels of SIM are modeled with a roll-off higher in frequency and with less damping.

We now apply the actuator/sensor indexing algorithm of Chapter 3 the SIM model. The

resulting sensor/actuator indexing matrix, S,, shows which sets of sensors and actuators

are most effective for control.

The SIM model is cast into the four-block control problem with the disturbance, actuator,

performance and sensor variables outlined in Table 7.1. The algorithm of Chapter 3 can

now be applied. The user must supply four sets of information as shown in Table 3.1. For

the open-loop SIM example:

1. The plant model is delivered in a four-block state-space form,
(A, BW, B , Cz, CY) (Section 7.2).

2. The scaling gains, RY, R,, Rz are set using the resolutions (for u and y vari-
ables), intensities (for w variables), and performance requirements (for z
variables) which are listed in Table 7.1. The actuator resolutions are not
available and must be estimated. Approximate actuator resolutions are calcu-
lated by scaling the actuator until a unit-DC signal provides a unit-resolution
response in the appropriate sensor. The voice coil resolution is gained by an
additional factor of 100 to allow coarse/fine handoff with the piezo actuator.
The scaling factors weight the relative importance of the sensors and actua-
tors by capturing the anticipated signal-to-noise.

3. The standard value of y = 1 is used for the output isolation mixing parame-
ter (Equation 3.114).

4. The relative importance of the rigid body modes must be assigned by setting
the o0 RM parameter (Section 3.2.3). In the SIM model the rigid body modes
are stabilized by the attitude control system so WORM is unused.

To determine the suitability of particular sensor/actuator combinations for control the S,

index is used. Table 7.2 displays the S, matrix for the open-loop SIM model.

The largest indices couple into blocks indicated with the shading, suggesting a control

topology. S, indicates that both guide interferometers can be decoupled. Further, phasing
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TABLE 7.2 Sensor and Actuator indexing matrix for the SIM model. Light shading corresponds to
phasing control channels. Dark shading corresponds to fine-pointing control channels.

TDPL IDPL TDPL IDPL WTX WTY WTX WTY
G1 GI G2 G2 G1 G1 G2 G2

VC G1 3.7 4.9 0.9 2.1 -13.4 -14.7 -12.9 -15.6

PZT G1 6 67 6.4 3.2 3.4 -3.6 -23.3 -7.5 -23.9

VC G2 0.9 2.1 4-8 -15.0 -15.5 -14.0 -16.4

PZT G2 3.2 2.9 69 -7.1 -22.7 -4.0 -23.4

Tip G1 4.2 4.5 -0.1 0.1 0.5 0.5 -1.4

Tilt G1 -1.8 -1.4 -1.5 -1.7 -0.6 -1.5 -2.9

Tip G2 0.3 0.4 3.8 4.4 -0.3 -2.2 1.2

Tilt G2 -3.1 -2.1 -0.2 0.5 -3.4 -3.6 1.4

control (T DPL and I DPL to VC and PZT) and fine-pointing control (WT X and WT Y to

Tip and Tilt FSM's) are decoupled and indicated with light and dark shading respectively.

The highest value in the matrix corresponds to the use of the high-bandwidth PZT with the

low-noise DPL channels. We note the x-direction wavefront tilt to tip actuation blocks are

much greater than the y-direction wavefront tilt to tilt actuation blocks. This is consistent

with the appropriate transfer functions of Figure 7.3 considering the performances of dif-

ferential wavefront jitter in x and y directions are weighted equally. Some cross-coupling

of the two interferometers is observed for the phasing control, far less for fine-pointing

control. The effect of this will be exposed in the presentation of the tuned SIM controllers.

St also indicates that the DPL sensors couple with the tip actuators. This is consistent with

feedthrough terms that we see in the transfer matrix of Figure 7.3.

The shaded blocks in the S, matrix indicate the topology of the SIM baseline controller.

7.4 Baseline Controller

The baseline controller is classically designed with the topology -of the shaded boxes in the

St matrix of Table 7.2. The phasing control is designed by JPL and is included with the

SIM Classic model. The fine-pointing controller is designed at MIT.



264 APPLICATION TO SIM

Phasing control

The structure of the phasing controller is diagrammed in Figure 6.16. A similar phasing

controller is designed for each guide interferometer channel. The controller is made up of

three blocks:

1. Kph, v * Control from the internal differential pathlength measure to the voice
coil actuator. Five-state SISO controller intended for mid-frequency (0.1 to 5
Hz) pathlength control.

2. Kh, p'Control from the internal differential pathlength measure to the piezo
stack actuator. Five-state SISO controller intended for high-frequency
(greater than 4 Hz) pathlength control. Avoids stroke limitation with zero
DC gain.

3. Kph,f. Control from the fringe tracker (measures total differential path-
length) to the voice coil and piezo controllers. Five-state SISO controller
intended for low-frequency (below 0.1 Hz) pathlength control.

Additional detail can be found in [Gutierrez, 1999]. Though the individual controllers are

designed as SISO, the formulation of the final controller is a fifteen-state 2 x 2 MIMO

controller. Balanced model reduction allows the controller to be reduced to twelve states.

The bandwidth of the baseline phasing controller is approximately 60 Hz.

Fine-pointing control

For each guide interferometer and for each direction (x,y) a fourth-order SISO controller

is designed for controlling the x-direction (y-direction) wavefront tilt sensor to tip (tilt)

actuator. The control design consists of:

* a complex second-order lag filter with a break frequency two orders of mag-
nitude below the desired crossover frequency,

- a zero at a frequency a factor of three below the desired crossover frequency,
and

s a complex second-order lag filter for roll-off with a break frequency a factor
of five a above the desired crossover frequency.

The controller is an improvement on the design by [Gutierrez, 1999] since it (1) achieves a

similar performance with similar stability margins with one less state, and (2) numerical
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conditioning is improved by replacing real poles with a complex pole pair to achieve the

desired roll-off.

Baseline control performance

The baseline controller can be applied to the SIM model and the performance and stability

robustness can be measured. The performance is computed through a Lyapunov tech-

nique. For guide channel 1 the open-loop jitter on the external DPL is 60 nm RMS. The

baseline controller reduces it to 3.8 nm RMS, a 24.0 dB improvement. The open-loop jit-

ter on the x-direction differential wavefront title is reduced from 0.343 arcsec RMS (open

loop) to 0.047 arcsec RMS, a 17.3 dB improvement. Similar improvements are computed

for the other performance measures. Figure 7.4 is a plot of the performance autospectra

and Sensitivity singular values of the SIM model with the baseline controller.

Considerable improvement in the phasing plot is observed up to approximately 60 Hz,

while the fine-pointing controller bandwidth is seen to be 30 Hz. The phasing control

rejects all of the highest-energy autospectrum peaks in the differential pathlength (2 to 20

Hz). Alternately the high-energy peak at 46 Hz in the differential wavefront tilt is beyond

the bandwidth of the fine-pointing control. The maximum singular values of the Sensitiv-

ity demonstrate smooth behavior not much exceeding 12 dB. A small spike at 500 Hz cor-

responds to the roll-off of the fine-pointing loops marginally exciting the lightly-damped

500 Hz FSM mode.

7.5 Ined Controller

The tuning cost function is introduced in Chapter 4 and repeated here for convenience:

JA(P) = J(p)+SR(p)+d(p)+M(p). (7.2)

The settings of the terms of the tuning cost for the SIM control tuning are tabulated in

Table 7.3.
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Figure 7.5 is a block diagram of the family of tuned controllers that are designed for the

SIM model. From the baseline controller the phasing blocks are tuned (maintaining the

block separation of guide channels 1 and 2) to form controller S 1. The phasing control

poles are fixed and the relevant input and output matrix elements are tuned. Numerical
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TABLE 7.3 Tuning terms (from Equation 7.2) for SIM tuned controller family

Term Setting

RMS Perfor- J(p) Weighted RMS of the phasing six performance metrics, z
mance of Table 7.1

Stability SR(p) No penalty for low-frequency deviations, f< 120 Hz.

Robustness Penalize all maximum s.v. of sensitivity deviations > 10
dB threshold in the band 120 <f< 2000 Hz. Decrease
threshold to 5 db for f> 2000 Hz. Increase penalty at f> 2
kHz to provide margin near roll-off. Critical point dis-
tance metric is not used, i.e. Yer = 0.

Controller d(p) Not used in the SIM examples

Deviation

Controller M(p) Not used in the SIM examples

Magnitude I

conditioning issues caused by (1) large frequency separation in the poles of the phasing

controller and (2) the large dynamic range of the phasing controller do not allow tuning of

the controller poles. From the S1 controller, the fine-pointing controller is tuned to form

controller S2. We keep the cross-channel (guide channel 1 and guide channel 2) separation

but allow the controller cross terms from the x-direction (y-direction) wavefront sensor.

From controller S2, all previously tuned blocks are tuned to results in the final controller,

S3.

Open (BC) (Sl) (S2) (S3) Final

loop Baseline Tune Tune fine- Tune all control

1'Controller +-0 phasing + pointing + blocks
blocks blocks

Tune lightly Tune darkly shaded Tune all shaded
shaded blocks blocks (Table 7.2) blocks (Table 7.2)
(Table 7.2) of BC. and each channel's and each channel's

fine-pointing cross fine-pointing cross
terms of SI terms of S2

Figure 7.5 SIM tuned controller family: controllers are synthesized by tuning the previ-
ous controller in the block diagram.

The performances of the tuned controllers are tabulated in Table 7.4.



268 APPLICATION TO SIM

TABLE 7.4 Performance variables for the family of tuned SIM controllers. All absolute measures are
RMS quantities. Decibel quantities are improvements of the controlled performance relative
to the appropriate open-loop performance variable.

Performance Variable

Controller num' T DPL G1 T DPL G2 DWFTx Gi DWFTy G1 DWFTx G2 DWFTy G2
states

n_ (nm) (dB) (nm) (dB) (asec) (dB) (asec) (dB) (asec) (dB) (asec) (dB)

None 60.0 0 41.1 0 0.343 0 0.0209 0 0.282 0 0.0184 0

BC 40 3.8 24.0 3.1 22.4 0.047 17.3 0.0047 13.0 0.037 17.6 0.0047 11.9

SI (Tuned 40 1.4 32.6 1.8 27.2 0.047 17.3 0.0046 13.1 0.037 17.6 0.0047 11.9
phasing)

S2 (Tuned 40 1.5 32.0 1.8 27.2 0.034 20.1 0.0021 20.0 0.028 20.1 0.0019 19.7
pointing)

S3 (Tune all 40 1.2 34.0 1.6 28.2 0.034 20.1 0.0018 21.3 0.028 20.1 0.0014 22.4
blocks) I I IIIII

In Figure 7.6 two performance channels and the Sensitivity singular values are plotted for

the S 1 case. The tuned controller achieves greater phasing performance without much

affecting the fine-pointing performance. Small changes in the fine-pointing performance

result from coupling in the plant. In the phasing autospectra plot we see that the tuned con-

troller sacrifices low frequency performance to improve the performance in the critical 20

Hz range. The tuned controller increases the performance without extending the baseline

phasing control's 60 Hz bandwidth. The maximum singular value of the Sensitivity trans-

fer matrix remains unchanged indicating that the additional performance has been

achieved without sacrificing stability robustness.

The corresponding performance and stability robustness plots for the S2 case are plotted

in Figure 7.7. In this case the fine-pointing control is tuned from the S1 design. The phas-

ing performance is made marginally worse from fine-pointing/phasing cross-coupling.

The fine-pointing performance is improved particularly at higher frequency. The tuning

algorithm recognizes the large bandwidth of the fine-pointing actuators and extends the

control bandwidth. The bandwidth is extended until the high-frequency FSM mode at 500

Hz pops up in the Sensitivity singular value plot. The 5 dB threshold in the maximum sin-
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Figure 7.6 Performance and stability of tuned phasing controller S1. The top plot is the autospectrum of
the external DPL of guide interferometer 1, the middle plot is the autospectrum of the differen-
tial wavefront tilt of guide interferometer 2, and the lower plot are the maximum and minimum
singular values of the Sensitivity transfer matrix. The open loop is plotted in light solid, the
baseline control case in dark solid and the tuned controller is dashed.

gular value for frequencies greater than 2 kHz limits the bandwidth of the tuned fine-

pointing controller to approximately 150 Hz.

The performance and stability plots for the final design, S3, are plotted and compared with

the baseline controller in Figure 7.8. In this final design the stability penalty was
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Figure 7.7 Performance and stability of tuned fine-pointing controller S2. The top plot is the autospec-
trum of the external DPL of guide interferometer 1, the middle plot is the autospectrum of the
differential wavefront tilt of guide interferometer 2, and the lower plot are the maximum and
minimum singular values of the Sensitivity transfer matrix. The open loop is plotted in light
solid, the tuned phasing control case is dark solid and the tuned controller is dashed.

decreased allowing an improved performance at the expense of an increase in the Sensitiv-

ity maximum singular value at a frequency of 30 Hz. The phasing gives up performance at

5 Hz to increase the control gain in the 20 Hz band. The phasing bandwidth is increased to

approximately 90 Hz. The tuned fine-pointing control improves the performance in the 20
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to 150 Hz band with only a slight low-frequency performance degradation. The 1.2 nm

phasing achieved in guide channel 1 is roughly the requirement for star nulling.
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Figure 7.8 Performance and stability of final tuned controller S3. The top plot is the autospectrum of the
external DPL of guide interferometer 1, the middle plot is the autospectrum of the differential
wavefront tilt of guide interferometer 2, and the lower plot are the maximum and minimum
singular values of the Sensitivity transfer matrix. The open loop is plotted in light solid, the
baseline control case in dark solid and the tuned controller is dashed.
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The performance and stability of the family

marized in Figure 7.9. The final design, S3

an increase in the maximum singular value

of tuned controllers for the SIM model is sum-

achieves the greatest performance by allowing

of the Sensitivity transfer matrix.

RMS phasing

Z3

LL

OL BC S1 S2 S3

RMS pointing
14

12

10

8

6

2

0

OL BC S1 S2 S3

Max Sensitivity S.V.

10 102 103 104

f (Hz)

Figure 7.9 Plots of performance and maximum Sensitivity s.v. for the incremental tuned controller
designs from the controller family of Figure 7.5 (following arrows on the figure). RMS phas-
ing and pointing performance are listed.

The deviation of the tuned controller from the baseline is plotted. In Figure 7.10 the mag-

nitudes of the baseline and S3 phasing controller transfer functions are plotted. The total

DPL sensor channels are only marginally tuned while the channels that use the internal

DPL are greatly modified, particularly with more low-frequency gain. Physically, the low-

frequency gain of the baseline controller results from the fringe tracker control, KPhf,

which uses only sensor measurement from the total DPL. The tuned controller improves

performance without extending the bandwidth by taking greater advantage of the internal

DPL measure at low frequency. Figure 7.11 plots the magnitudes of the baseline and S3

fine-pointing controller transfer functions. Aside from the addition of slight cross terms,

the tuned controller improves the performance by increasing the bandwidth without
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increasing the low frequency gain. Taking advantage of the natural bandwidth of the actu-

ators is essential to meeting the tight SIM control requirements.
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Figure 7.10 Tuned and baseline phasing controller for guide interferometer 1. The base-
line controller is light solid and the tuned controller is dashed

7.6 Summary

The tuning methodology is applied to the FEM model of the SIM Classic spacecraft. The

Space Interferometry Mission is introduced. The JPL-designed model is numerically con-

ditioned and reduced with the balanced truncation algorithm of Chapter 3. The sensor/

actuator indexing algorithm of Chapter 3 is applied to the model and suggests a block

structure for the baseline controller. The baseline controller is composed from a JPL-

designed phasing controller and a classical fine-pointing controller designed for the thesis.

The tuning methodology of Chapter 4 is applied to the baseline controller. Substantial

if
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Figure 7.11 Tuned and baseline fine-pointing controller for guide interferometer 1. The
baseline controller is light solid and the tuned controller is dashed

closed-loop improvements are achieved with the phasing and fine-pointing performance

with little degradation in stability robustness. The phasing performance of one channel is

reduced to 1.2 nm, near the requirement for parent star nulling. Insight from the tuned con-

troller indicates the usefulness of using the internal interferometer as a low-frequency

phasing sensor, and of extending the fine-pointing bandwidth. With the successful applica-

tion of the tools developed in this thesis to the SIM model we demonstrate their applicabil-

ity to large-order systems and to future spaceborne telescopes.
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Chapter 8

CONCLUSIONS AND
CONTRIBUTIONS

The concluding chapter summarizes the sensor/actuator effectiveness assessment algo-

rithm and the tuning methodology that has been developed and experimentally validated

in the preceding chapters. Special attention is given to the application of the developed

techniques to future spaceborne telescopes. Major research contributions and recommen-

dations for further work are highlighted.

8.1 Thesis Summary and Conclusions

Future spaceborne telescopes have optical performance requirements that will extend con-

trol capabilities beyond the current state-of-the-art. Non-updated FEM models and high

mission cost drive the space telescope controller to be conservative and robust while the

performance requirements drive the space telescope controller to have high

performance. Further, conservatism constrains the controller topology and synthesis tech-

nique to have heritage to predecessor missions. There is a need for a control design tech-

nique which tunes a heritage-rich baseline controller for improved performance. The

developed tuning satisfies this need. An optimization-based tuning strategy represents a

compromise between a low-performance, classically-designed controller with a con-

strained sensor/actuator topology and a high-performance modern controller with a fully

connected input/output structure. The thesis develops and experimentally applies such a
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control design strategy and sets it within the framework of the dynamics, modeling and

control of future spaceborne telescopes.

In Chapter 2 a framework is developed for the design of controllers. Initially some nota-

tions are introduced. The use of (1) the maximum singular value of the Sensitivity transfer

matrix as a conservative measure of stability robustness an (2) the inverse of the distance

from the MIMO Nyquist locus to the critical point as a necessary but not sufficient mea-

sure of stability robustness are discussed. The use of both metrics are supported by previ-

ous experimental results in the Literature. The control design framework captures and

organizes the design and synthesis strategy for controllers that is practiced with the exper-

imental programs of the MIT Space Systems Laboratory. The framework structures the

critical steps of control design: problem specification, plant modeling and analysis, con-

trol strategy selection and synthesis, and controller evaluation and implementation. Hard-

ware dependent issues are highlighted. Tuning is introduced as a design iteration in the

framework. Lastly, the controller tuning problem is rigorously specified.

In Chapter 3 an algorithm is presented which characterizes the effectiveness of sensor/

actuator pairs for control of the open-loop plant model. The work follows some decentral-

ized state estimation work that is included as Appendix A and some sensor/actuator place-

ment work from the Literature. By combining metrics of modal observability and

controllability with metrics of modal disturbance and performance contributions, an index

can be computed for each sensor and actuator that quantifies how well an actuator can

control modes that are important in the performance and how well a sensor can observe

modes that are disturbed. A correction is added to account for actuators that are designed

for active output isolation. These actuators are decoupled from the structure and have little

controllability to important modes but have actuation bandwidth in the important fre-

quency range. The correction uses an artificial controllability for the actuator based on its

gain. It is important to capture the special case of active output isolation actuators since

the optical control actuators of space telescopes tend to be of this type. The sensor/actuator

effectiveness matrix is tested on a sample structure and shown to suggest a control topol-
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ogy with LQG performance similar to one found by a complete enumeration of all possi-

ble topologies. In future chapters the sensor/actuator index is used a a guide for selecting

the topology of baseline controllers and for applying the tuning methodology.

In Chapter 4 a methodology for tuning a baseline controller is developed. The tuning strat-

egy is a direct nonlinear optimization that iteratively computes controller parameters to

improve a cost. The cost is made up of four terms: a performance penalty, a stability

robustness penalty, a deviation of the baseline and tuned controller penalty, and a control-

ler channel gain penalty. Each of the penalty terms is quantified by an expression for con-

troller tuning with a plant design model and for tuning directly with measured plant data.

Appropriate gradients with respect to the controller parameters are derived. The stability

robustness penalty is captured through the proximity of the MIMO Nyquist locus to the

critical point and the maximum singular value of the Sensitivity transfer matrix. A gen-

eral, real, controller parameterization is developed which allows the addition of controller

states and constraints on the controller sensor/actuator topology. A nonlinear minimization

algorithm is described which reduces the augmented cost while maintaining a stable

closed loop. Examples of applying the tuning methodology to modify the controller archi-

tecture are provided. The tuning methodology is general and need not be restricted in

application to spaceborne telescopes. Limitations of a nonlinear descent approach include

a dependence on the feasible space of tuned controllers parameterized from the baseline

controller. With the tuning algorithm developed, the remainder of the thesis is devoted to

validation.

A one-dimensional interferometer sample problem is developed in Chapter 5. The sample

problem, with twelve states, a rigid-body mode, modeled optical sensors and actuators,

and a modeled reaction-wheel-like disturbance is a non-trivial analogue to a future space-

borne interferometer. The effectiveness of the sensors and actuators for control was deter-

mined with the algorithm of Chapter 3 and used to guide control design. A baseline

controller was classically designed and then the tuning methodology of Chapter 4 was

applied to improved the closed-loop performance and stability robustness. The tuning
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methodology was used to add states and open sensor/actuator control channels. Addition-

ally a second baseline controller was designed with LQG synthesis. The resulting control-

ler was tuned to remove sensor/actuator control channels. Comparing the two tuned

controllers, we find that despite a similar structure (order and sensor/actuator topology)

the LQG-tuned controller achieves the same performance and stability robustness with

less bandwidth. We conclude that it may be advantageous to design a global modem con-

troller for SIM and then apply the tuning methodology to design a controller with the

desired sensor/actuator topology.

The development and construction of the Origins Testbed, the first spacecraft-like test arti-

cle with: (1) large-angle slew capability, (2) high-resolution optical phasing metrology

with coarse and fine actuators, (3) arcsecond optical pointing, and (4) realistic spacecraft-

like disturbance sources (reaction wheels), is detailed in Chapter 6. The OT is designed to

capture the three elements of space telescopes operation: (1) target acquisition (slew), (2)

optical alignment, and (3) observation. The sensor and actuator suite of the Origins Test-

bed is detailed. The sensor/actuator indexing algorithm is applied to identify sensor and

actuator combinations that are effective for control. The effective sensors and actuators are

grouped and a baseline controller is classically designed and experimentally implemented.

The baseline slew controller provides integral control of the OT's rigid-body dynamics

while the baseline optical controller achieves a 9.4 dB phasing performance improvement

and a 11.8 dB pointing improvement to jitter induced by a reaction wheel windup distur-

bance during an observation. By applying the tuning methodology to add states and open

control channels the performance could be improved to 15.8 dB in the phasing channel

and 17.1 dB in the pointing channel with little degradation in stability robustness. Experi-

mentally, the developed techniques are demonstrated to perform with physical real-world

system.

With the confidence generated by the successful application of the tuning methodology to

a physical spacecraft-like system, we demonstrate its applicability to a large-scale model

of a future spaceborne telescope in Chapter 7. The SIM model is introduced and its
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numerical conditioning is improved through the removal of unnecessary states and remod-

eling of the disturbance source. The sensor/actuator indexing algorithm is applied to eval-

uate sensors and actuators for control and a classically-designed baseline controller is

formed from JPL-designed attitude and phasing control and a MIT-designed fine-pointing

controller. The performance of the baseline controller is analyzed and shown to achieve

24.0 dB phasing performance improvement. The baseline controller is tuned and without

adding states or adversely affecting stability robustness 34.0 dB of phasing performance

improvement is achieved. Similar results are achieved with the fine pointing control. The

additional phasing performance results from increasing the low-frequency control gain on

the internal interferometer channels. With 1.2 nm RMS phasing, the tuned controller is

close to meeting the 1 nm requirement for SIM's nulling mode. With a demonstration of

the developed techniques on a SIM model we hope that the techniques and insight from

this thesis will practically help the engineering of future spaceborne telescopes.

All of the thesis objectives were achieved and are abridged and repeated here:

- Outline a framework for the design of controllers for lightweight flexible
spacecraft.

- Develop a technique to quantify the suitability of a plant for local control,
and to quantify the advantages of global control. In particular we wish to

- Quantify the effectiveness of sensors and actuators for control,

- Determine the incremental effect of adding sensors and actuators.

- Develop a control design technique which takes advantage of modern opti-
mal control theory while preserving the critical mission heritage of conven-
tional, classical control designs. The desirable features of the methodology
include:

- improvements in performance and/or stability robustness over the baseline
controller,

- an ability to control the deviation of the tuned controller from the baseline
controller,

- an ability to tune control designs using design models and experimentally
determined measurement models,

- an ability to quantify and take advantage of the addition of extra states to
the baseline controller,
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- an ability to quantify and take advantage of the enhancement of coupling
in the baseline controller.

- Develop a laboratory test article which captures the relevant dynamics and
control issues anticipated for future space-based lightweight, flexible space-
craft.

" Experimentally validate the control design methodology on the laboratory
test article.

- Demonstrate the application of the control design methodology to an exist-
ing integrated model of the Space Interferometry Mission.

8.2 Contributions

The following unique contributions were made by meeting the thesis research objectives.

- A framework for the design of controllers for spaceborne telescopes is
developed. The framework follows from experience gained from previous
research and includes the steps of: defining the problem, modeling for con-
trol, determining plant couplings, selecting a control strategy, synthesizing a
controller, reducing the controller order, evaluating the controller, and imple-
menting the controller. Controller tuning is included in the framework as an
iteration loop.

* An improvement to the numerical robustness of the common balanced
reduction method is developed. The method is termed balanced truncation
and involves truncating modes whose controllability and/or observability are
below a threshold, before computing the balancing transformation matrix.
An optional pre-balance improves accuracy by balancing the 2 x 2 modal
blocks of the system individually. While conventional balancing fails, the
balanced truncation algorithm is demonstrated to accurately reduce the SIM
FEM model.

- An algorithm is developed for determining the effectiveness of particular
actuators and sensors for the regulator control problem. A measure of modal
observability (controllability) is weighted by a measure of the modal distur-
bance (performance) cost for each sensor (actuator). The resulting vectors
are combined to compute an index for each sensor/actuator pair. The index is
adjusted to account for active output isolation actuators with poor structural
mode controllability but high gain in the control bandwidth. A control topol-
ogy suggested by the algorithm compares favorably on a sample structure to
the optimal topology found with a complete enumeration.

" A methodology is developed for tuning baseline controllers to allow trades
of four control features: (1) performance, (2) stability robustness, (3) devia-
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tion of the tuned controller from the baseline controller, and (4) control
channel magnitudes. The baseline controller is parameterized in a general
form that enables the addition of states, and the enforcement of a controller
sensor/actuator topology. The tuning algorithm uses a nonlinear program to
select control parameters to decrease an augmented cost with terms corre-
sponding to a penalty for each of the four control features listed above. Each
penalty term is described by a function and the corresponding gradients with
respect to control parameters are derived. Penalty term expressions are
developed in parallel for tuning plants characterized by a design model or
without a model, directly on measured data. Two stability robustness metrics
are developed, one which penalizes the deviation of the maximum singular
value of the Sensitivity transfer matrix over a threshold, and the other which
penalizes the closeness of a pass of the MIMO Nyquist locus to the critical
point.

- An automated algorithm for determining closed-loop system stability
directly on model data is developed. The technique automates the rules of
MIMO Nyquist stability determination as plotted on a Nichols plot. If dis-
crete frequency points are sparse near a critical point pass then a linear inter-
polation is used to increase the density of points and the automated stability-
determination algorithm is called recursively.

e The sensor/actuator effectiveness matrix is validated as a guideline for deter-
mining effective channels for control, and linked with the tuning methodol-
ogy on a one-dimensional interferometer sample problem.

- The first spacecraft-like test article with a large-angle slew capability, a 50
nm phasing metrology system, and arcsecond pointing optics in the presence
of reaction-wheel induced disturbances is designed, developed and experi-
mental tested. The test article has utility beyond validating of the techniques
developed in the thesis, including: optimal slewing experiments, modeling
and model updating, characterizing the interaction of the structure and reac-
tion wheels, operating telescopes remotely and autonomously, automating
optical alignment, and validating alternate control methodologies.

* The tuning methodology is experimentally validated on the Origins Testbed.
Following a procedure anticipated for control design for future spaceborne
telescopes a classical baseline controller is designed and then tuned. The
sensor/actuator effectiveness matrix for the OT provides a guideline for tun-
ing control channels. The tuning methodology was experimentally shown to
improve closed-loop performance without affecting the stability robustness.

. The tuning methodology is applied to a large-order model of the SIM space-
craft. The SIM model is numerically conditioned. By following the guidance
of the sensor/actuator effectiveness matrix the SIM baseline controller is
tuned to improve the performance without affecting the stability robustness.
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Successful application of the developed techniques to the large-order SIM
model highlights their practical usefulness for control design.

- An optimal decentralized state estimation framework was developed. Given
a plant model, a technique is suggested that, based on balanced model reduc-
tion theory, computes a local model corresponding to each sensor. The
reduced models are selected to satisfy a dynamics exactness relation which
allow the local models' state estimates to be combined into an optimal global
model state estimate with the developed decentralized state estimator. A tool
is developed that quantifies the suitability of each sensor for global state esti-
mation through an analysis of the estimate error of the local models' global
state estimates.

- Necessary conditions are derived for arbitrary-topology H 2 optimal control-
lers. The developed conditions extend the necessary conditions for a control-
ler constrained to be block diagonal by augmenting the cost function with a
Lagrange multiplier term that constrain particular controller input/output
channels. The controller's Markov parameters are used for the topology con-
traint.

8.3 Recommendations for Future Work

The work of this thesis can be extended and complemented with research in a number of

areas:

- A connection between the developed stability robustness metrics and model
uncertainty for future spaceborne telescopes [Bourgault, 2000] should be
made. With an uncertainty model for space telescopes, the inherent conser-
vatism of the use of the MIMO Nyquist locus as a measure of stability
robustness could be countered. Perform trades of computational complexity
(ease of use within the tuning framework) and quality of stability robustness
measure for the developed metric and conventional robustness metrics (j,
Popov) given a space telescope uncertainty model.

- The feasible set of available tuned controllers should be expanded. The non-
linear program computes controller parameters to minimize the augmented
cost. The standard BFGS algorithm is modified to ensure the stepsize is cho-
sen small enough to ensure the tuned controller maintains stability. The
implication of this constrains the feasible set of available tuned controllers to
be only those which stabilize the plant which are connected (through the
controller parameters) to the baseline controller. Expanding the feasible set
to include all stability-preserving controllers, or to allow some searching
through the space of non-stability-preserving controllers would allow
improved tuned designs.
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- The numerical conditioning of the reduced near-modal controller parameter-
ization could be improved by allowing alternate (e.g. balanced) forms. A
technique which allows improved conditioning while maintaining the
reduced parameter set of the near-modal form would be ideal.

- The application of the tuning methodology to an LQG-designed baseline
controller for SIM should be compared to the designs tuned from SIM's clas-
sically-designed baseline controller. The one-dimensional interferometer
design example demonstrated that a controller tuned from an LQG-designed
baseline controller could exhibit identical performance and stability robust-
ness but with much less bandwidth than an controller tuned from a classi-
cally-designed baseline controller with the same order and input/output
structure.

- The tuning methodology should be developed directly in the discrete-time
domain. Most control applications, including those anticipated for future
spaceborne telescopes, implement control laws on an inherently digital real-
time computer. The development in this thesis is in the continuos-time
domain, and using a nonlinear least-square identification routine, the tuned
continuous controllers are converted to discrete-time controllers. This final
step and the loss of accuracy associated with it, can be eliminated by directly
designing in the discrete domain. The conversion to the discrete domain
should be straightforward since many of the tuning costs are computed as
summation over discrete frequency samples.

- The controller tuning methodology should be tested for the design of con-
troller for additional plants. The MACE reflight provides a near-term oppor-
tunity where the tuning methodology can receive its first spaceflight tests.
Experimental heritage of the technique should be built.

- The dynamics of the Origins Testbed should be scaled and compared to the
anticipated dynamics of future spaceborne telescopes. This scaling analysis
would allows us to quantify traceability of the OT to SIM and NGST.

- The tuning methodology should be extended to allow on-line or adaptive
tuning. SIM and NGST may require controller tuning while on-orbit. Two
steps are suggested for extending the developed tuning technique to allow
on-orbit controller updates: (1) develop a capability to stop operation of the
telescope, perform identification experiments, and tune the controller
directly with the measured data, off-line, and (2) develop a capability to tune
on-line directly with measured data that results from normal telescope opera-
tion.

- The sensor/actuator effectiveness algorithm should be extended for deter-
mining the optimal placement of disturbances and sensors for the system
identification problem. A comparison of the developed technique to conven-
tional strain-energy techniques is warranted.
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Appendix A

DECENTRALIZED STATE
ESTIMATION

In Chapter 3 techniques for breaking a system up into a set of reduced-order local models

is presented. This allows the global control problem to be broken up into a set of simpler

local control problems. Despite the decentralized control, certain high-level monitoring

tasks such a fault detection and isolation may require a global estimate of the system's

state. The development in this appendix allows the state estimates of reduced-order local

models to be fused into the optimal global state estimate. A slight restriction on the form

of the reduced-order models is required and is satisfied by the reduced-order model deter-

mination technique of Section 3.1.2. The development of the decentralized state estimator

is a condensed version of that presented in [Mallory and Miller, 2000].

Given a linear system and the correct system model, a Kalman filter provides the state

estimate which minimizes the root-mean-squared error. This global Kalman filter must use

the full-state system model, and it must have access to the noisy measurements from all

sensors. In certain large-scale systems, the high order of the system and the large number

of sensors can make the traditional global estimator intractable. Complete communication

of all sensor information can be expensive. The problem is further compounded by geo-

graphically separated sensors, as in, for example, a power network, or multiple scanning

sensors in a multiple target radar tracking problem. The high system order and strict

requirement on sensor communication favor a decentralized estimation approach.
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Decentralized estimation involves the estimation of the state at each sensor node. Each

node is assumed to have an associated local model and a processor. The i -th node estimate

is updated from only measurements generated at the i -th node in the completely decen-

tralized case, but more generally some internodal communication may be allowed.

A.1 Global Estimators

Consider the state estimation problem posed for the continuous system given by Equation

2.3,

.(t) = A(t)x(t)+B (t)w(t)

y(t) = C,(t)x(t) + D,(t)w(t)

where, without loss of generality, we continue our development without the control input,

u. Further, we allow the system to be linear time-varying. Since decentralized estimation

is performed on a real-time computer, and further to preserve the decoupling of the tradi-

tional predict and update cycles, we develop the decentralized estimator for a discrete-

time system. Thus we transform Equation A. 1 to discrete-time [Astr6m and Wittenmark,

1990] to arrive at,

x(k) = A(k)x(k) + Bw(k)w(k)
(A.2)

y(k) = C,(k)x(k)+n(k)

where the state-space matrices are the discrete-time equivalent of those introduced in

Equation A. 1. The state initial condition, xO - N(xo, PO), is a normal white noise process

of mean x0  and symmetric, positive-definite covariance, PO. Similarly,

w(k) - N(0, E(k)) is the process noise and n(k) - N(0, E(k)) is the sensor noise. w(k)

and n(k) are assumed independent from each other, and from the initial condition, xO.
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A.1.1 Kalman Filter

The Kalman filter is a global state estimator which provides the RMS optimal estimate of

the state. Given the system model of Equation A.2, the discrete Kalman filter [Gelb, 1974]

is generated by,

x(k+ 1|k) = A(k)x(k) (A.3)

Pm(k+ 1) = A(k)P(k)AT(k) +B,(k)E(k)BT(k) (A.4)

forming the predict cycle, and,

x(k + 1) = x(k + 1|lk) + K(k + 1)[y(k + 1) - CY(k + 1)x(k + 1|k)] (A.5)

P(k + 1) = [I - K(k + 1 )Cy(k + 1)]Pm

= Pm-PmC ,(k+ 1)[C(k+1)PmC, (k+ 1)+O(k+ 1)] Cy(k+ 1)Pm (A.6)

K(k+1) = P(k+1)CT(k+1)0-1(k+ 1)

= PmCT(k+ 1)[C,(k + 1)PmCT(k+ 1)+O(k+ 1)]-'

forming the measurement update cycle. In Equation A.6, we drop the index of the k + 1

predict cycle state estimate error covariance Pm = P(k + 1|k).

A.1.2 Information Filter

The information filter is an alternate form of the Kalman filter [Mutambara, 1998]. It is

algebraically equivalent to the Kalman filter, producing the optimal state estimate and

covariance matrix at each time step. More accurately, an information matrix is generated

at each step, and is defined by the relation,

(A.8)L (il1j) = P-1I(il1j)
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where P(ij) is the i-th error covariance, given the j-th measurement. This information

matrix has the property that when it is large then we have much information about the

state, and that the state estimate is good. The information state is defined from the system

state with the transformation:

1(il1j) = L(ilj)x(ilj). (A.9)

We begin the derivation of the information filter by defining the invertible term,

S(k) = Cy(k)Pm(k)C,(k)+E(k) (A.10)

and rewriting a term of Equation A.6 as

I-KC, = (I-KC)PmPM1 (A.11)

= (Pm- KSS-1CPm )P-1

where, for simplicity, the index dependence has been suppressed. Now, we substitute

Equation A.7 for K to write

I - KC, = (Pm - PmCS- 1 CPm)p- 1

= PP-1

Rewriting Equation A.5 and substituting Equation A.7 results in,

x(k+ 1) = (I-KC,)x(k+1Ik)+ Ky(k + 1)

= PP-'x(k+1|k)+Ky(k+ 1)

by multiplying by P-1 , and substituting Equation A.7 for K, we can rewrite in terms of

information variables as,

1(k + 1) = 1(k + I1k) + CTe-y(k + 1) (A.14)

By applying the Matrix Inversion Lemma to Equation A.6 we can write,

P-1(k + 1) = p-1+ CTO-1C m y y (A. 15)
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By substituting the information definitions into Equation A.3 and Equation A.4, we can

write for the predict cycle of the information filter

1(k + Ilk) = LmA(k)L(k)l(k), (A.16)

Lm = [A(k)L(k)-1AT(k) + Bw(k)E(k)BT(k)]-1 (A.17)

and for the update cycle,

1(k + 1) = 1(k + lIk) + CT(k + 1) -1(k + 1)y(k + 1), (A.18)

L(k + 1) = Lm + CT(k + 1)E(k + 1)C (k + 1). (A.19)

The information filter has a simpler (from a computational point of view) update cycle

than the traditional Kalman filter, but suffers from a more complex predict cycle.

A.2 Decentralized State Estimator

We develop a decentralized filter which is a hybrid of the Kalman and information filter,

derived from combining two filters presented in [Roy et al., 1991]. Consider the measure-
T

ment vector, y = 12- yJ , where we have partitioned the vector into a column of

single sensor measurements. The development holds equally for multiple sensor parti-
Tan

tions. The output equation is thus partitioned as C= C C ... T and the sensor[ Y Y ... Y
noise as n = [n n 2 ... n . We make the assumption that each sensor has an inde-

pendent noise process, and thus, the sensor noise covariance can be decoupled as

e = diag{01, 02, ... q} -

The assumption of independent sensor noises allows us to decentralize the update (mea-

surement) cycle of the Kalman filter while maintaining local estimates which can be glo-

bally recombined into the optimal state estimates. The assumption of independent sensor

noise is valid if the sensors indeed generate their own noise, in the form of quantization
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error for example, but does not hold if the sensor noise is generated by some underlying

process.

Assume we have the i -th local model, corresponding to the y; measurement. The local

model of order mi is given by,

xi(k+ 1) = Ai(k)xi(k)+Bi(k)v(k)

yi(k) = ci(k)xi(k) + ng(k)

The local models may be formed using the balanced reduction techniques of Chapter 3.

For the measurement equation to hold we must have

Cyi(k)x(k) = ci(k)xi(k) (A.21)

which is a type of dynamics exactness relation [Sandell et al., 1978].

A.2.1 Local Model State Estimation

At the i-th local node, we implement an optimal local filter, combining elements of the

Kalman and information filter, resulting in a predict cycle given by,

x (k + Il Ik) = Ai(k)xi(k), (A.22)

Pmi(k + 1) = Aj(k)Pj(k)AT(k) + B, (k)E(k)B T(k), (A.23)

and a local measurement update cycle given by,

1(k + 1) = li(k + l k) + cT(k + 1)0 7
1(k + 1)y (k + 1) (A.24)

Fi(k + 1) = Fmi + cT(k + 1)O;(k + 1)ci(k + 1) (A.25)

where we have substituted our appropriate i -th local model parameters into the global

optimal filter. The information matrices and covariance matrices are related by

Y (k) = P I(k) and Ymi(k) = Pmi(k).
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A.2.2 Decentralized Global State Estimator

With the partition of measurements, we can rewrite Equation A. 18 for the global informa-

tion update as

1(k + 1) = 1(k + I|k) + CT ... CT diag{e-1, ... , 0-1} y

q (A.26)
= 1(k + 1lk) + CT(k + 1)e 1 (k + 1)yi(k + 1)

i = 1

We assume the following relation holds between the i -th global output vector, C,, and the

i -th local output vector, ci:

Cyg(k) = cg(k)Tcj(k). (A.27)

If the local and global state are related through the transformation x;(k) = T,(k)x(k), and

the transformation has a unique pseudo-inverse, Tit, then by using Equation A.21, we

have Tci(k) = Ti(k). If the state transformation does not have a unique pseudo-inverse,

then we can often use Tci(k) = cit(k)C Y(k), where the right pseudo-inverse of ci has

been used. Since we have decoupled single sensors, such that Cyg has full row rank, then

we can find a relation, Tcj, such that Equation A.27 holds.

Substituting Equation A.27 into Equation A.26 we have

q

1(k + 1) = 1(k + 1|k) + TcTi(k + 1)cT(k + 1)0- 1(k + 1)yi(k + 1). (A.28)

i = 1

Substituting Equation A.24 results in

q

l(k + 1) = l(k + 1lk) + TTi(k + 1)[li(k + 1) - li(k + lI k)], (A.29)

i = 1

a decentralized version of Equation A.18.
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Using a similar approach we write Equation A. 19 as,

q

L(k+ 1) = Lm+ CT(k+ 1)EO(k+ 1)Cyi(k+ 1)

~= 1 (A.30)
q

= Lm+ TcT(k+ 1)c(k+1)ei(k+ 1)c(k+1)Tci(k+1)

i= 1

which, when we substitute Equation A.25 results in

q

L(k + 1) = Lm(k + 1) + YTT (k + 1) [Li(k + 1) - Lmi(k + 1) ] TC,(k + 1) (A. 31)

i=1

Equation A.29 and Equation A.31 are decentralized measurement update equations in

information form. This filter preserves the optimality of the global estimator. To recover

the decentralized measurement update equations in conventional notation, it is a matter of

substituting conventional states and covariance matrices for the information state and the

information matrices respectively. It should be noted that compared with other techniques,

this decentralized filter sacrifices local estimate performance, to allow the recovery of the

optimal global estimate.

We note that each local Kalman filter must pass two information state variables, l(k + 1)

and l(k + 1k), both of size, mg x 1, as well as two information matrices, Li(k + 1) and

L,(k + lI Ik), both of size mg x mg . Of course symmetry of the information matrix requires

that only a triangular partition be passed. If the filter is implemented with conventional

variables, we must pass the corresponding system state and covariance matrices. This fil-

ter is advantageous since it passes data one-way, from the local estimators to the fusion

center.

The filter is only partially decentralized. The local estimates are recombined in the mea-

surement update cycle, but the predict cycle still requires the use of Equation A.3 and

Equation A.4. In the special case where the process noise decouples in analogous way to
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our assumption of measurement noise decoupling, i.e., E = diag{E, 72, -- m}, and

further we have

xj(k + 1) = Ai(k)xi(k) + B, g(k)wi(k) (A.32)

with independent local process noises, w1 , then further decentralization of the time update

equation can be achieved [Roy et al., 1991]. However, decoupling the process noise is not

a valid assumption in flexible space-structure applications. For example, the reaction

wheels of a space telescope are the primary disturbance source, and their effect can be

observed by all system sensors. Thus, when local models are formed, the individual pro-

cess noises are strongly correlated.

To summarize, as long as we choose local models such that Equation A.27 is satisfied,

then through Equation A.29 and Equation A.31 we maintain a way to combine the local

estimates into an optimal global estimate. Figure A. 1 is a schematic of the recombination

of local estimates into the global estimate.

local lg(k + 1), l (k + 1|k)
estimators-
esimLi(k + 1), Lmi(k + 1)

E

estimate optimal
fusion estimate

Yq E Equations A.29
Eq and A. 31

Equations A.22
through A.25

Figure A.1 Recovering optimal estimates from local estimates

The developed estimator allows us to obtain a local estimate of the state at each sensor

node which could be used by a local controller. If the global estimate is required, one-way

communication from the sensor nodes to the central estimator allows recovery of the opti-

mal global estimate. By computing the number of multiplications at each time-step, the
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traditional Kalman filter and the developed decentralized filter can be compared in terms

of computational complexity. Following the development of [Bierman, 1972] the number

of computations per-cycle for both methods can be compared. The decentralized filter

requires more total computations since local estimates must be computed along with the

global estimate. If we assume the local estimates are computed on parallel processors,

then most multiplications take place at the estimation fusion processor. For a standard

implementation, the decentralized central processor requires marginally more computa-

tions than the global optimal filter. Other computation algorithms exist (e.g. square-root

methods), and thus numerical complexity is more a function of implementation than of

method.

A.3 Local Model Selection

We now develop a technique for selecting local models. The technique is founded on

model-reduction. The local models are not optimal, but are selected using a sound engi-

neering method which we will later demonstrate applies to large-scale physical systems

and in particular to flexible space structures. One technique uses physical coordinates for

selecting reduced-order models for decentralized estimation [Mutambara, 1998]. A prob-

lem with this method is that large-scale systems are rarely described by physical models.

They are typically described with a reduced-order FEM. Other techniques, such as E-

decomposition to extract local dynamics based on the size of elements of the A matrix, are

plagued with similar difficulties [Finney and Heck, 1995]. We present an alternate tech-

nique.

A.3.1 Local Balanced Truncation

By examining the dynamics of Equation A.2, we conclude that coupling can be achieved

through four mechanisms: (1) mechanical coupling through the structure (non block-diag-

onal A), (2) measurement coupling through sensors (Ci), (3) disturbance input matrix

coupling, (B,), and (4) sensor noise coupling through non-diagonal sensor noise covari-

ance (0). We need not consider coupling through the positive semidefinite process noise
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covariance since it may be transformed as E = UA UT with diagonal A so that we can

write BW = B, UA1 2 with a transformed uncorrelated process noise covariance, E = I.

Thus process noise correlation has an analogous effect as BW matrix coupling. We make

the assumptions that the first three sources of coupling are dominant and that sensors have

independent sensor noise.

Consider a full-order model at the i-th sensor node. This model has the state equation from

Equation A.2 and

z;(k) = CY, gx(k) + ng(k) (A.33)

as the measurement equation. For stable, LTI discrete systems, the controllability Gramian

satisfies the following discrete-time Lyapunov equation

W = AA B T (A.34)

which provides a relative measure of the controllability of the states from the process

noise. The larger the j-th diagonal of W, (relative to other diagonals) the more controlla-

ble the j-th state will be (relative to other states). In a dual sense, the observability

Gramian for our full-order model satisfies,

W, = ATWA+CT.C, 1  (A.35)

where the diagonals of W, correspond to measures of relative observability for the i-th

sensor.

Consider a general state transformation of the form, x = Tx. By substituting into Equa-

tion A.2, a transformed state-space system can be obtained,

x(k + 1) = Ax(k) + Lw(k) (A.36)

z(k) = Cx(k) + n(k) (A.37)



306 APPENDIX A

with A = TAP, L = TL, and C = CT. We note the use of the pseudo-inverse for

cases were T is not necessarily invertible. For example, to truncate modes we can use a

non-square T matrix.

For stable LTI systems, there exists an invertible state transformation matrix, Tbi, such that

the resulting transformed system has equal and diagonal controllability and observability

Hankel singular values,

W, = WL = diag{a,a 2, G }...Ia (A.38)

with Hankel singular values, a;> oa for I<j. The large cY values correspond to states

which are well disturbed and observed. Small values of a correspond to states which are

not disturbed, and/or not observed. Following model reduction arguments, these states can

be removed from the model, since their effect will not be seen in the measurement. Bal-

ancing ensures a proper input/output scaling. System balancing and model reduction is

presented in Section 3.1.2 where a balancing algorithm for continuous systems with

improved numerical robustness is developed. A second state transformation matrix, Tki,

(in this case state truncation) can be formed such that Xbi = Tix = Tk1Tbix where

Tki = [I 0 is a ng x n matrix formed with a ni x ni identity matrix and conformable zero

matrix. This transformation extracts the first ni states, corresponding to the n; largest Han-

kel singular values.

If this model-reduction is applied to the i-th full-order system, we obtain A, = T;A Tt,

BW i = TBw, and cy, g = C,, T~t (See Equation A.21). Balanced reduction of the full-

order local models provides a method to reduce the local models such that the disturbance

to input characteristics are approximately preserved. What remains to be outlined is a tool

to determine the order of the reduced-order local models.

Assuming the local models are formed using the balanced truncation, we are interested in

recovering the best global state estimate from each local estimator. The local Kalman filter

at each sensor node produces an estimate of the reduced and balanced state. To recover the
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i-th estimate of the global state, we use the properties of the pseudo-inverse to 'invert' the

state transformation, resulting in xg = Titxbi, with system matrices Ag = TgiAiTi,

Bg = TtB, I, Cg = c, Tj, and Kg = TitKg. We note that since information has been

lost in the state truncation, we do not recover the global state uniquely.

A.3.2 Performance Evaluation

We develop a method to quantify the performance of the global state estimates from using

the reduced order models. The true steady state discrete time Kalman filter follows from

combining Equation A.3 and Equation A.5, resulting in

i(k + 1) = Ai(k) + K[z(k + 1) - CA(k)] (A.39)

which, upon substitution of Equation A.2 results in,

i(k+ 1) = [A -KCA]i(k) +KCAx(k) +KCBww(k) +Kv(k+ 1) (A.40)

The filter gain is obtained through solving the familiar algebraic discrete Riccati equation

for the steady-state predict error covariance.

Similarly, the non-optimal, decentralized filter can be written as,

iXg(k+ 1) = Agi(k)+Kg[z(k+ 1)-CgAgxg(k)] (A.41)

where decentralized dynamics are written with a g subscript. The gain, Kg, is again com-

puted by obtaining the solution of an algebraic discrete Riccati equation, where care is

taken to ensure the decentralized (from the local estimator) noise covariance is used. Sub-

stitution of the true measurement equation from, Equation A.2, and the dynamics leads to

iXg(k+ 1) = Ag g(k)+K[Cx(k+1)+n(k+ l)-CgXg(k+1)]
(A.42)

= [Ag -K9 CAg]x(k)+ KgCAx(k)+KgCBwW(k)+Kgv(k+ 1)

Generalizing the approach of [Gelb, 1974] to discrete systems, we can determine the state

estimate error for filtering with the incorrect decentralized model. Subtracting the state

equation from Equation A.2 from Equation A.42 results in an estimation error, given as
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i(k+1) = X(k+1)-x(k+1)

= [Ag-KgCgAg]i(k)+[(Ag-A)+Kg(CA -CgAg)]x(k) (A.43)

+(Kg C- I)Bw(k) + Kgv(k + 1)

The state equation of Equation A.2 and Equation A.43 can be combined to form the state-

space system given by

[(k+ 1)] A-KgCgAg (Ag-A)+Kg(CA-CgAg) (k)
x(k+ 1)] _ 0 A _ (k)

(A.44)

+ (KgC-I)UA1/2 KgEl/2 w(k)

L KUA1/2 0 vy(k + 1)

where the process noise and sensor noise processes have been transformed into unit-inten-

sity white noise processes through diagonalization of their respective covariance matrices.

Equation A.44 is in the form

q(k+1) = Aaq(k)+Ba (k) (A.45)

where (k) is a unit-intensity, white noise process. The steady-state covariance can be

found by solving the discrete-time Lyapunov equation,

Pa =AaTaA+BaBT (A.46)

In this case the solution is partitioned as

Pa = 9 ,T (A.47)
V PX

where Pg corresponds to the state estimate variances of the Kalman filter with incorrect

dynamics, Px corresponds to the variance of the system state, and V corresponds to their

correlation. We note that the block triangular form of Aa allows solution of the 2n x 2n

Lyapunov Equation A.46, to be computed by successively solving three n x n Lyapunov
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equations. However, this method requires the solution of a generalized Lyapunov equation

of the form X = AXB + C, where B # AT. The generalized Lyapunov equation is numer-

ically more difficult to solve than the standard form, and thus we elect to solve Equation

A.46 directly.

We can evaluate the performance of the local estimators by comparing the local state esti-

mate error variances, diag(Pg), with the global, optimal, state estimate error variances.

A.4 Example

A simple example will be conducted, to demonstrate and explain the technique. The sam-

ple system is shown in Figure A.2. The dynamics for the system are obtained. We first

write the continuous-time matrix, Ac, such that the homogenous dynamics are -i = A x

where x = x X2 X3 X4 t1 t2 x3 ] . A zero-order-hold discretization of AC is per-

formed, resulting in a discrete A matrix. The other model elements for the example include

B, = [0 1]T and C = [I 0], where 0 is a 4 x 4 zero matrix and I is a 4 x 4 identity

matrix. Thus, the four sensors directly measure the positions of the four masses respec-

tively. The model parameters are {i, M2, M 3, M4 } = {50, 20, 6, 1},

{k 1 , k2, k3, k4 } = {1, 3, 7, 10}, and the noise covariance is given by 5 = I, and

e = LI.

X4

Figure A.2 Four spring design example to demonstrate a technique for
selecting reduced-order local models
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The system is transformed into a real-modal form, with the block-diagonal dynamics

matrix made up of 2 x 2 blocks of the form

Abl = (A.48)

Proportional damping is chosen by assigning (. The modes are ordered with frequency,

e.g. states 1 and 2 correspond to the first mode's states.

Figure A.3 is a plot of the Hankel singular values corresponding to each full-order local

model of the example of Figure A.2. We see that sensor 1 has four large singular values

which implies that four states are necessary to preserve reasonable local state estimates in

the reduced-order local model. Likewise, sensor 2 requires six states, sensor 3 requires 6

states, and sensor 4 requires all eight states.

Sensor1
10 0

10 2.

-32
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10'
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2 4 6 8
State

Figure A.3 Hankel singular values for balanced full-order local mod-
els corresponding to each sensor
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In Figure A.4, for the system with ( = 0.001 proportional damping, we plot the j-th

state's normalized accuracy,

A PU ) (A.49)
P U, j)

formed by the error covariance of each state's local estimator global estimate Pg, ju, j),

normalized by the estimate error covariance of each of the states from the fully central-

ized, optimal Kalman filter, P(j,j). A value of 1 corresponds to an optimal estimate of the

state. The partitions of the bar chart correspond to increasing the order of the local estima-

tors from 2,4,6 to 8. The peak value of each state's estimate correspond to the full-order

local model estimate of the global state estimates corresponding to a particular sensor, and

provides an upper-bound on the achievable performance for a local state estimator of the

form required by the development of Section A.2. For example, looking at the Sensor 1

chart, we see that a full-order local model can achieve an estimate for state 2, 38% as well

as the centralized Kalman filter. That is, the variance of the optimal error for state 1 is 62%

better than our best estimate variance from the sensor 1 local filter. (We emphasize that we

are now examining local estimates of the global state, and not the optimal global esti-

mate). When compared with the optimal filter, the high-order local filters can only capture

the states directly measured. We also note that the high-order local estimates do not

achieve the performance obtained by the global estimator. The global estimator does

indeed use some information from Sensors 2,3 and 4 to estimate the position and velocity

of MI.

Figure A.4 provides an engineering design tool to determine the order of the reduced-

order models. A trade-off of order and global state estimate accuracy is presented. The

global estimator performs the best with an optimal normalized accuracy of 1. The deriva-

tion of Section A.2 shows that a decentralized filter can be designed with one-way com-

munication from the local nodes to recapture the optimal state estimates. In Figure A.4 the

bars correspond to the cumulative accuracy of the local estimators as the local model order

increases. The maximum value of the bars correspond to the accuracy of the best possible
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Sensor 1 Sensor 2
1 -1 -

0.8 0.8

0.6 0.6

0.4 0.4

0.2- 0.2

01 0

Sensor 3 Sensor 4
1 1 -

0.8 0.8

<8 0.6 0.6

00.4 0.4
z

0.2 0.2

0 - -0 -0---
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

State State

Figure A.4 Plot of normalized local estimator's global state estimate
accuracies as the order of the local models is increased for
proportional damping of (=0.001. 1 corresponds to global
fully coupled estimation. The order (2,4,6,8) of the local
models increases as we ascend from light to dark.

estimates given single sensors. The loss in performance compared with the global estima-

tors corresponds to the effect of limiting the local estimator to the use of a single sensor.

The reduced-order balanced decoupled models show further performance degradation. We

note that the effect of model reduction varies from state to state. Time series simulations

validate the computed variances to within 2%.

In the case of Sensor 1, we see that a point of diminishing returns is reached with a fourth-

order local model such that marginal benefit is achieved by using an sixth order model.

This conclusion verifies the claim of four important singular values captured in

Figure A.3. The figure also can show which states are not measured well by any sensor

(e.g. state 1), and are thus estimated well only by the global filter. From examining eigen-

vectors, we see the first mode corresponds to a motion of all four masses which is mea-

sured equally well by all sensors, allowing the global filter to leverage averaging to
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minimize the effect of sensor noise. This explains the poor local estimates of states 1 and

2. As we increase in frequency the modeshapes become more local, until the fourth mode

is mainly a motion of M4 , well measured by sensor 4. However, this mode is not a domi-

nant mode which explains why a full eighth-order local model is required by sensor 4 to

estimate states 7 and 8.

In Figure A.5 we plot the corresponding chart for the system as (-+ 1. In the case of

higher damping we see local estimates approach the global estimates with low order local

models. This is attributed to each mode having a less local (in frequency) effect which

increases the correlation between states.

Sensor1 Sensor 2
1 - .. -1 - - - - - - . -

0.8 0.8

0.6 0.6

0 0.4 0.4

0.2 0.2

0 0

Sensor 3 Sensor 4
1 - - - - - - - .. 1- -

0.8. 0.8 M

0.6 0.6

80.4 0.4 M
z

0.2 0.2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
State State

Figure A.5 Plot of normalized local estimator's global state estimate
accuracies as the order of the local models is increased for
proportional damping of -* 1. 1 corresponds to global
fully coupled estimation. The order (2,4,6,8) of the local
models increases as we ascend from light to dark.
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A.5 Summary

A decentralized estimator which preserves the optimal global estimates has been detailed.

The estimator combines local estimates made at each sensor node to recover the optimal

estimates. A technique based on model reduction theory is introduced for determining the

local models. In addition, a technique to determine the best global state estimates from lin-

ear combinations of a local mode is derived. Further, the technique suggests a tool to eval-

uate the suitability of particular sensors to estimate the system state. A dual development

can determine the suitability for the system to decentralized control.

As an extension of the work in this appendix [Mallory and Miller, 2000] apply the decen-

tralized estimation framework to the SIM spacecraft model and conclude that SIM is not a

good candidate for local state estimation.



Appendix B

CONSTRAINED TOPOLOGY LQG
CONTROL DESIGN

In Chapter 3 an algorithm for the assignment of a sensor/actuator topology is developed.

Dynamic coupling in the design plant is exploited to assign sensors and actuators for

effective control design. We assume local controllers for assigned sensor/actuator sets are

designed set-at-a-time, and the global system controller is built from the local controllers.

In this appendix, the synthesis of global H2 controllers with a constrained topology is

explored.

The optimal projection equations of [Hyland and Bernstein, 1984] derive first-order nec-

essary conditions for the optimal H2 compensator whose order is constrained to be less

than the plant. The resulting controller is, in general, fully connected from sensors to actu-

ators. Following a more general strategy, [Mercadal, 1991] derives first-order necessary

conditions for the optimal H2 controller for a controller constrained to be a given order

and a given block diagonal sensor/actuator topology.

B.1 Controller Topology Constraints

The standard H2 or Linear Quadratic Gaussian controller for the n -th order design plant

given in Equation 2.3 has an order n and is fully connected. The controller K(s) relates

the ny sensors to the nu actuators and can be written with SISO transfer function as given

by Equation 3.1 where K 1 represents the SISO transfer function relating the j-th sensor to

the i -th actuator. We can write,

315
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K;. = (B.1)

In state-space form, we borrow from the notation of Equation 2.5 to write

Kij(s) = Cc j(sI-Ac)-1Bcj , (B.2)

where Cc,, is the i -th row of the controller output matrix, and B, j is the j -th column of

the controller input matrix and AC is the nc -th order controller dynamics matrix.

A control topology constraint on the i, j channel forces the controller to not use sensor j

to influence actuator i. In transfer function notation we have

K. (s) = 0, (B.3)

or

= 0. (B.4)
ayj

In terms of the state-space parameters we can constrain the first nc Markov parameters for

the i, j channel to be given by a sequence { kg}:

C A"'B, = kVm= 0, 1, ... , nc - 1. (B.5)

If Equation B.5 holds then C A kBcj for k > ne can be written as a weighted sum of the

elements of { k11} by the Cayley Hamilton Theorem. In this manner, a particular control

channel can be pre-specified to an impulse response while the remaining control parame-

ters are kept free. In the special case of constrained control topology we set { kg } = 0.

For each element of the controller that we wish to constrain to zero we have nc Markov

parameter constraint equations. We can reduce the number of constraint equations by not-

ing that
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nc 1

(C, A"Be,) = 0 (B.6)

m=O

is uniquely satisfied by the nc - 1 constraint equations of Equation B.5. Thus we have a

single constraint equation for each controller channel that we constrain to be zero.

In the trivial case where a sensor or actuator is not to be used we can remove the particular

sensor or actuator from the design model.

B.2 First Order Necessary Conditions

We expand upon a similar derivation in [Zhou et al., 1996] to derive the first-order neces-

sary conditions for the constrained topology controller.

Given the design plant of Equation 2.3 with D, = 0 we close the loop with the controller

of Equation 2.5, resulting in the close-loop system of Equation 2.7. The closed-loop H 2

cost can be written as

J = tr[Bl) B l)X(cl)] (B.7)

where X(cl) satisfies the Lyapunov Equation,

X(cl)A(cl) +A (cl) X(cl) + C(cl)-C(cl) 0. (B.8)

We can partition X(cl) as

(cl) XII X12
X , (B.9)

X 1 2 X 22j

where X1I is of dimension n x n, X12 is of dimension n x nc and X22 is of dimension

nc X nc.
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We augment the cost by the Lyapunov Equation B.8 with the Lagrange multiplier matrix

Y(c), and by a constraint Equation B.6 with Lagrange multiplier kgg for each zero-con-

strained channel. The augmented cost is written as,

a = tr[B B X ' + [X(cl) A(c +A(4T X(cl) + C lC") (cl) Y(cl) +

nc - I 2(B.10)

ij I(c, iA TBC,j)
{i,j} r A m = 0

where A is the set of { i, j} that are constrained to be zero channels.

We assume the controller is parameterized with respect to state-space parameters, and we

define the matrix Ekl as the matrix of similar dimension to AC with a unity entry at the

k x 1 location, while all other entries are zero. E B and E k are defined similarly for the

BC and Cc matrices respectively. Thus the k x 1 element of the controller dynamics

matrix can be extracted using aki = EiA Y(cl) is partitioned as is X(cl) in Equation

B.9.

By taking derivatives of the augmented cost with respect to Y(cl) we recover the

Lyapunov equation:

a = 0 > X(cl)A(cl) + A(cl) TX(cl) + C(cl)T C(cl) = 0 (B.11)
y(cl) Z Z

By taking derivative with respect to X we recover the dual Lyapunov equation,

(cl = 0 => A(cl)X(c) + Xccl)A(c T + B(c) B (cl) = 0. (B. 12)

By taking derivatives with respect to the Lagrange multipliers, kXi we recover the con-

straint Equations B.6.
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We also must take derivatives with respect to the controller parameters. For the controller

dynamics matrix parameters we have,

akl

nc-1 (B.13)

tr[E +[X Y 12 + X 22Y 22 ]]I+ tr[B~ C, gA - 1]tr[E[CT- Be,] = 0
{i,j} E A m = 1

Similar expressions can be derived for a = 0 and a = 0, the input matrix and out-
Dbkl a CH

put matrix parameters of the controller, respectively.

The preceding set of conditions comprise the first-order necessary conditions for the con-

strained topology H 2 optimal controller. These conditions expand on those derived in

[Mercadal, 1991] since the controller need not be pre-specified as block diagonal. The

controller order is pre-specified.

B.3 Synthesis

Synthesizing a controller using the first order necessary conditions is difficult since (1) the

optimization problem can be shown to be nonconvex, and (2) the necessary conditions do

not guarantee a stable closed loop system.

Homotopy algorithms have been employed with limited success for solving the optimal

projection equations for reduced-order H2 design [Richter and Collins, 1989], and for the

block diagonal constrained H2 controller, [Mercadal, 1991]. Homotopy does not guaran-

tee the solution is a global minimum. Further, successful application of the technique has

been limited to small order problems. An alternate approach to determining solutions to

the first-order conditions of Section B.2 is to include Equation B.6 as a constraint and to

use a constrained optimization algorithm to minimize J. This approach suffers similar dif-

ficulties to the homotopy algorithm.
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In practice, developing a practical method to synthesize an optimal controller which satis-

fies the necessary conditions of Section B.2 is an area of further research. As such there is

no direct method to verify the topologies selected by the algorithm of Chapter 3



Appendix C

SENSITIVITY WEIGHTED LQG
CONTROLLER TUNING

In this appendix a special case of tuning is developed for sensitivity weighted linear qua-

dratic Gaussian (SWLQG) controllers. We begin with an introduction to the standard LQG

methodology. With the design plant in a modal form we present a simple adjustment to the

LQG state weighting which results in a SWLQG controller. Sensitivity weights are used to

penalize deviations in states that are uncertain. To tune a SWLQG controller, we abandon

our standard parameterization of Section 4.2, and parameterize with respect to the sensi-

tivity weights. The tuning algorithm can then be developed for this special case. An exam-

ple is presented whereby a SWLQG controller, designed for the MACE test article, is

tuned.

C.1 Linear Quadratic Gaussian Control

Linear Quadratic Gaussian (LQG or H2 ) synthesis provides a foundation for SWLQG,

and will be introduced. We assume that the system is imperfectly modeled as,

x=A l)x + B()w+ B'd)u
(d) xB(d) w B(d)

z = Cd) x+D~ (w+D(u (C.1)

y = D dux+D w+D(uy C ' x+ w w+
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where the superscript d notation, (.) (d), indicates the non-necessarily perfect design

model. Under standard assumptions of controllability and observability, we wish to find a

compensator to minimize the quadratic cost,

J = lim -
T --+oolL

(xTRxxx+2xTR u
0o

D (d)zw

+u TRuU)dt}

= 0,

Bd~
V B (d) T (D ) T

D L(B ) (D )
L ywj

R = [dC D (

(dS) T C U

V VTx O' y > 0 ,Y> and

R , x R x >_0 U > 0

xy U

(C.4)

(C.5)

The cost can also written as,

T

J = zdt
T -+oo1[

The solution compensator is in the form of Equation 2.5, with the matrices,

A =A(d) (d) F+LC(d) +LD)FAC = +BUF+LC + LyuF

(C.6)

(C.7)

Cc = F

where

F = -R-[RT+ (B X] (d)

with,

(C.2)

(C.3)

(C.8)
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L = Y( (d)T -1 (C.9)

with, X and Y, the unique positive-definite solutions to the following Riccati equations,

-1 T (d 1-I(d) T
0 = X A,.+A,.X +Rx- RXURUR - XBU RU(B B X (C. 10)

0 = AY+YA+VxxVxyV-1V Y(C) V, CI( Y (C.11)

where,

Ar = A(d)-B (d)RR T (C.12)
rU UU XU

Ae A (d) V C . (C.13)

The LQG controller provides a closed loop system with optimal H2 performance, but has

no guaranteed stability margin. LQG synthesis will provide the designer with valuable

insight into the potential stability problems. For example, if the LQG closed loop has a

high sensitivity near the frequency of a flexible mode then we may wish to modify the

design to sacrifice some H2 performance for improved robustness against uncertainty in

that flexible mode.

C.2 Sensitivity Weighted LQG

To derive the sensitivity weighted LQG (SWLQG), we follow [Grocott, 1994]. First we
ax

define a quadratic cost which will penalize state sensitivities, . We add an additional

term to the cost functional of Equation C.2 to arrive at:

n.,
1i T Tx T T

J = lim-E xTRXx + I - -R + 2xTRu+ Ru dt (C.14)
{ _ Efo ax

i=1 can t Rsanor

We can take derivatives of the state equation of Equation C. 1, to arrive at:
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(d) a3x aA (d) (da~u aB (d)

= A _+ Adx+Bdb + B UdU. (C. 15)
ag a ao ag " ay i ac

To avoid the cost of augmenting with the sensitivity states, we make two simplifying

assumptions: (1) we assume the contribution of -- is small, and (2) that ~ 0 (a simi-
acti acti

lar assumption to the neglect of high frequency dynamics). C. 15 simplifies to,

(x A(d) B (d)
0 = A (d) + x + U u, (C.16)

(d) --and if (A ) exists,

ax (d) -1 3A(d) B(d)
- -(A) x + U . (C.17)

BagX - ag aac;

Substituting Equation C. 17 into Equation C. 14 we arrive at

T'c (d) T _IJA (d)
I 1 T R(A ) (d) -T (d)-

j= lim - [X R,+ (A Raj(A )x

i= 11)

T., (d)T -T (d -B(d)'

+ 2x TRXU + i(A (A d Ra(dA )) U u (C.18)

n.r ~ c B(d)) TaB~d))
T+L n+ D(BU (d) -T (d) -1IB

+u RUU+ (A Rap( u ]dt
i= 1i

By examining the cost function of Equation C. 18 and that of Equation C.2, we see that the

SWLQG problem is reduced to the LQG problem with weighting matrices modified as,

RXX = R + ( A'' Raip Aa(C.-19A
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sw ( -T -1B(d)
R( ) = R)+ A ) Rai(A (d) (C.20)

i= 1

R S = R, + A (d) TRa(A(d) 1DB (C.21)

i= 1

In a dual sense, we modify the Kalman filter weighting matrices to be,

V = V+ nA Va(A )TA (C.22)

i= 1

V = d+ A () VA (C.23)

i= 1

V = + (A Vai(A a( (C.24)

With the modified weighting matrices, the LQG framework is used to determine a com-

pensator. The closed-loop system is no longer H 2 optimal, but if the sensitivity weighting

matrices, Raj and Va, are chosen appropriately, considerable improvements in stability

margin can be achieved with only a slight degradation of H 2 performance.

Special Case: Frequency Uncertainty in Flexible Structure

In the special case of frequency uncertainty in the complex modes of a flexible system,

considerable simplifications result. If we put the system in real modal form we have
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A(d) = diag<

If we consider the modal frequencies unknown, we have cxi

sensitivity derivatives reduce to

aA(d)
= x diag- 0

B(d)
"= 0, and

dag

With this assumption, R SW
xU

we find,

=R, R SW
xU UU = RUU

= -diag 0

= oz . We find the necessary

... J
(C.26)

D = 0

V w = V, andVys' = Vxy Vxy yy = Y Further,

(C.27)

By substituting into Equation C. 19 and Equation C.22, we have for the i-th uncertain

mode,

SW
R,,

V W
xx

1 F= R, + 1diag
(0i

=Vx + 1 2 diagf
= X 2

0

0 ... Vxi

(C.28)

(C.29)

where (-)J is the j-th 2 x 2 sub-block. To preserve the relative weighting of modes we

make the final simplification, R',= o R, , and V i V, where ; is a sensi-

-tiwi

)~ ~ 1*. . (C.25)
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tivity weighting factor. As Pi is increased, the penalty on the uncertainty of the i-th mode

is increased, improving robustness to variations in the frequency of that mode.

We have reduced the SWLQG problem to the traditional LQG problem with the additional

selection of a set of sensitivity weights, { Pi } which penalize uncertainty in the flexible

modes. The selection of these weights is the topic of research and will be further detailed.

C.3 SWLQG Tuning Gradients

With the SQLQG controller specified in the previous section, we are now in a position to

compute the gradients for the tuning cost expressions as in Section 4.1. The cost expres-

sions are defined in an identical manner where the baseline SWLQG controller (Equation

C.7) is substituted for the controller and the sensitivity weights, { } are substituted for

the controller parameters p .

In the tuning cost expressions, it is only the controller that explicitly depends on p ({ P }
is the current case). Thus, computing the gradients of the tuning costs for the special

A 3JBC 3C
SWLQG case reduces to computing -, -, -c and substituting into expressions such

as Equation 4.31.

We make the simplifying assumption that there is no state-control cross weighting

(R,, = 0), and that the sensor and process noise are uncorrelated, (V', = 0). We write

the gradient of the SWLQG controller as

-Ac (d) F +L C(d) +L (d) (d)aF
-= B + CY+ D,, F +LDY

BC - (C.30)

c 3c F

Now, we apply the chain rule. The derivatives of the LQ gain and the filter gain becomes,
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S=-RN1 (B (d))T (C.31)

and

= - Y( C(d) V .I (C.32)
apf ap Y VYY

To continue our development, we take derivatives of the Riccati equation (when

R = 0), Equation C.10, and arrive at,

D3X (d) (d) T aX R__~ ()1dT d)( T X
0 = A +(A ) B R(Bd) TX-XB R(Bu) (C.33)

By substituting Equation C.8, we have,

0 (A(d) +B F)+(A +B F + . (C.34)

This is a Lyapunov equation. Further, in the case of uncertain modal frequencies, we have

from Equation C.28,

aRSwx=diag{ Ri 0 . (C.35)

which will be positive semidefinite if RXX = (Cd) Cd). Also, by the properties of the

Riccati equation, under standard assumptions of controllability and observability, the

matrix A (d)+ B (d)F will be guaranteed stable. Thus, the Lyapunov equation, Equation

C.34, is guaranteed to have a unique positive semidefinite solution. The dual Lyapunov

equation for the observer is given by

(A) ( d+ LC aX (d) (d) T + (VC.36(A(d;))-+j(A( +LC;d)7 + ai(C.36)
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where again the term A(d) + LC (d) is guaranteed to be stable. From Equation C.29, the

driving term can be written as,

DVmc
a -diag 0 ... VX ... 0

which is positive semidefinite ensuring a unique solution for Equation C.36.

With these gradients, the tuning methodology of Chapter 4 can be applied to compute the

sensitivity weights. The sensitivity can be used to directly compute the SWLQG controller

by applying the relations of Section C.2.

C.4 Example: MACE

SWLQG was demonstrated to be an effective robust control synthesis technique during

the MACE experiment [Grocott, 1994]. A critical design issue remains choosing the sensi-

tivity weights, { i}, A special case of the tuning algorithm of Chapter 4 provides a

method for determining the weights.

We consider a state-space model and measured data for the MACE test article and set up a

control problem as specified in Table C. 1. Additional detail on the MACE test article is

found in [Miller et al., 1996] and [Grocott et al., 1997].

TABLE C.1 Input and output signals for the MACE example

Signal Type Abbrev- Description
iation

Disturbance, w SGZ White noise in the secondary gimbal

Actuators, u PGZ Primary gimbal, z direction

Performance, z JPRZ Integral of the primary rate gyro, z direction

Sensors, y PRZ Primary rate gyro, z direction

An LQG controller can be designed. The performance, maximum singular value of Sensi-

tivity (magnitude in this SISO case) and Nichols stability plot are shown in Figure C. 1.

(C.37)
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Figure C.1 Performance (top left), maximum singular value of the Sensitivity (bottom left) and Nichols
plot (right) for the baseline LQG controller on the design model (solid) and measured data
(dashed). The open loop is plotted with the light line in the performance plot.

The controller achieves a performance of 0.00139 counts RMS which is a 11.6 dB

improvement. The spikes in the Sensitivity singular value indicate a lack of robustness,

particularly near roll-off, in the 20 to 50 Hz range. Deviations between the model plot and

the measured data plot also signify a potential lack of robustness. To improve the robust-

ness we design a SWLQG controller.

After some design effort we choose sensitivity weights such that the 20 - 50 Hz spikes in

the Sensitivity are greatly reduced, however, we find that the performance has crept up to

0.00161 counts RMS. To refine our weights and improve the performance to that of the

baseline LQG controller, we apply the tuning methodology to improve the performance

while we enforce a penalty on any increase of the maximum Sensitivity singular value. We

form a hybrid tuning strategy where the state-space design model is used for performance

metric and the measured data is used for the stability robustness metric. We note that a
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design model is necessary to form the SWLQG controllers. The performance and stability

robustness of the initial and tuned SWLQG controllers are plotted in Figure C.2.

Performance

- - -

.-

10 0 10 1

Sensitivity sv.

100 10 1
Frequency (Hz)

Nichols

-0

10a)

-400 -200
Phase (deg)

Figure C.2 Performance (top left), maximum singular value of the Sensitivity (bottom left) and Nichols
plot (right) for the initial SWLQG controller (solid) and for the tuned SWLQG controller
(dashed). Plots are generated with the measured plant data. The open loop is plotted with the
light line in the performance plot.

As desired the SWLQG controllers both push down the Sensitivity s.v. in the critical 20-

50 Hz range. The tuned controller exhibits improved performance over the initial SWLQG

design. The resulting 0.00130 counts RMS is a 0.6 dB improvement over the baseline

LQG design, a 1.8 dB improvement over the baseline SWLQG design, and a 12.2 dB

improvement over the open-loop system. To achieve this increased performance, the tuned

SWLQG controller sacrifices a pop-up of the Sensitivity spike at 3 Hz, a low frequency

where we assume we have a good measure of the MACE structure. The three MACE con-

trollers are summarized in Table C.2.
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TABLE C.2 Performance and stability robustness summary of the MACE controllers: Baseline LQG,
Initial SWLQG and tuned SWLQG.

Performance
Controller Stability Robustness Comment

Counts Imp.
(RMS) (dB)

Baseline LQG 0.00139 11.6 Large spikes in the critical 20-50 Hz region cor-
respond to poor robustness, particularly a sharp
spike at 40 Hz.

Initial SWLQG 0.00160 10.4 Push down Sensitivity s.v. in the 20-50 Hz

Tuned SWLQG 0.00130 12.2 Keep Sensitivity down in the 20-50 Hz range but,
pop-up at 3 Hz.

One special consideration is that the stability weights must be positive (or slightly nega-

tive) to maintain the positive semidefinite requirement of the RXX matrix. Our uncon-

strained optimization does not guarantee this, which limits the application of the SWLQG

tuning methodology.

C.5 Summary

The tuning of SWLQG controllers provides a special case of the tuning methodology.

Rather than using the standard controller parameterization, we parametrize with the sensi-

tivity weights. The tuning cost gradients with respect to the sensitivity weights are com-

puted and found to result from the solution of well-behaved Lyapunov equations. An LQG

controller is designed for a MACE control design example. The desired performance is

obtained but with poor stability robustness. With SWLQG synthesis, a controller is

designed with better stability behavior but without maintaining the desired performance.

By applying the tuning methodology, the SWLQG controller is tuned to obtain the desired

performance with good stability behavior.
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IDENTIFYING WITH A PHYSICAL
DISTURBANCE MODEL

In general it is impossible to characterize the effect of the disturbance on the plant. Two

measurement limitations are responsible:

1. It is impossible to directly measure the disturbance states.

2. It is impossible to measure the transfer function from the disturbance to the
sensors or performance (G,, and Gzw)-

We can, however usually measure the disturbance-to-performance and disturbance-to-sen-

sor autospectra. The limitation is that a measured autospectra contains no phase informa-

tion. We can, also, physically model the disturbance such as the broadband reaction wheel

model of [Masterson, 1999]. In this appendix, the use of a BGFS nonlinear programming

method similar to that employed by the tuning of Chapter 4, will be demonstrated for

identifying the state-space representation of the G,, and Gzw dynamics.

Actuator to Sensor Identification and Underlying Assumptions

The measurement model can be computed by fitting frequency response data using the

Frequency Domain Observability Range Space Extraction (FORSE) algorithm coupled

with logarithmic least squares tuning as detailed in [Jacques, 1995]. Using this nonlinear

system identification routine a state-space model can be fit to the measured Gyu(ok) and

Gzu(0Ok) data resulting in {A, Bu, Cz, C,} matrices. We now make two assumptions (in

addition to a insisting on a stable system)

333
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1. The set of actuators controls all plant modes (with the exception of the dis-
turbance uncontrollable pre-whitening filter dynamics).

2. The system has no feedthrough term (D = 0).

The first assumption ensures that all of the plant dynamics are captured in the determined

A matrix, and ensures that { BU, Cz, C, } need not be modified with the addition of the dis-

turbance channel. The second assumption is for simplification. Based on the two assump-

tions, the problem of system identification is reduced to determining pre-whitening

dynamics and to determining the B, matrix.

Broadband RWA Disturbance Model

During an observation, the wheels spin from 0 to 1100 revolutions per minute. Following

the physical argument that the fundamental harmonic of the reaction wheel disturbance

increases as wheel frequency squared [Masterson, 1999], a low-order state-space prefilter

for the wheel disturbance can be formed as in [Gutierrez, 1999]. The transfer function for

the prefilter is given by,

K 2
H (s) P 4 (D.1)

(s +%o)

1100
where o, = 27 60 is the cut-off frequency of the disturbance spectrum and K is

60
approximately set (it will later be tuned). The state-space representation of the pre-whiten-

ing filter is given by {A,, Bp, C, }. The state-space reaction wheel disturbance is plotted

in Figure D.1.

Appending the plant with the disturbance mode we obtain an augmented system given by

the state-space matrices:

Aa = ABWP ,Ba ,Ca =CZ . (D.2)
0 Ad _ Bs C, O

In Equation D.2, the remaining unknown is BW.
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Figure D.1 Reaction wheel disturbance prefilter autospec-
trum. The disturbance increases as wheel speed
squared and cuts off sharply at the highest wheel
speed frequency.

Estimating the Disturbance Input Matrix

To compute B, we develop a nonlinear optimization strategy similar to that developed in

Chapter 4 for controller tuning. The model transfer matrix can be computed as,

G(M)
zw (wO)

G(m)(Gk
G, W i

-1
= CaGjkIAa) Ba (D.3)

where the (-)(m) superscript indicates the model.

For the i -th sensor and j -th actuator, the model autospectra is determined as in Equation

6.1,

(M) (M) (M)
Aij (mOk) = GY.,.((o)GY,(W ) .O (D.4)

We define a cost function as
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{y, zI{w} l n

JID I ij m)(AJ(wk) -A g(ok))2, (D.5)

i= lj= lk= 1

where the summation is performed over each output (sensor and performance), and a sum-

mation is performed over each input (disturbance). The weighting elements, F are tuned

to capture the relative importance of specific channels.

If we define the elements of the B, as optimization parameters p we can compute the gra-

dient of the cost with respect to the 1 -th parameter as:

{y, Z} {w} nk-=-4 I Fj(A A)( )A (ok))Re [(Gm) (o))H G G ((o) ( D.6)

i= lj= 1k= 1

a (in) (in)where G is computed using Equation 4.31 with Equation D.3's expression for Gim

substituted for K. Since the parameters are the elements of B, we have,

BAa F B B B 3JCa
a_ 0 C a-0 a _0. (D.7)

ap, Ip ' apj' ap

_0 0 _

Now we have a well-defined cost and analytic expressions for the gradient so we may

apply the BFGS algorithm of Section 4.3.1 to estimate BW. In this case, there is no need to

check for stability preservation since the block-diagonal formation of stable dynamics pre-

serves stability.

Example: Application to the OT

Figure D.2 is a plot of the measured DPL and QC autospecta during an observation. The

autospectra resulting from the identified state-space model is overlaid.

The modeled spectra is seen to have significant differences from the measured data, but

has the same general shape. The maxima of the autospectra at 10 and 20 Hz strongly dom-
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Figure D.2 Autospectra of the DPL and QC performance variables as the wheel winds-up during
an observation. Measured data is indicated with the solid line, and the estimated state-
space model is indicated with the dashed line. The modeled spectra has the rough
shape of the measured spectra.

inate the measured performance and we see that both spectra have maxima over the same

frequency bands. The magnitudes are inaccurate for three principal reasons: (1) the model

of the broadband wheel spectrum is inaccurate: the sharp roll-off is impossible to captured

with a low order state-space model and the spectrum is built on the assumption that the

wheel spends the same amount of time at each speed during the observation, (2) the non-

wheel disturbance sources have been neglected, and (3) the B, is under-parameterized to

trade optimization convergence with accuracy. The complete parameterization of B,

would require 6 non-independent wheel spectra PSD's [Gutierrez, 1999].

In our case, the roll-off limitations of the broadband wheel model force us to not use this

wheel physics-based determination of the G, and G, dynamics for the sensor / actuator

ranking algorithm in Chapter 6.
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Appendix E

ORIGINS TESTBED: TUNED
CONTROLLER FAMILY

The experimentally measured results of the application of the family of tuned controllers

to the Origins Testbed are presented in this appendix. The controllers are related as

depicted in Figure 6.22 and annotated in Table 6.10. A description of the controllers is

found in Section 6.5.

Three plots are presented for each of the 11 tuned controllers:

1. Controller magnitudes: The magnitudes of the controller gains are pre-
sented and compared with the magnitudes of the previous controller in the
family of Figure 6.22.

2. Performance autospectra: The autospectra of the DPL and QC perfor-
mance variables are plotted for the tuned controller, the previous controller
in the family of Figure 6.22, and compared with the open-loop case.

3. Stability plots: The absolute stability (Nichols) plot and the stability robust-
ness (singular values of the sensitivity) plot are presented for the tuned con-
troller as determined by simulation (applying the controller to the design
data), and as experimentally measured.

For each controller a table presents the predicted performance (predicted by applying the

controller to the design data) and the measured performance. Also the decibel change in

the performance as compared to the previous controller in the family of Figure 6.22 is

recorded.
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The DPL-to-VC channel is tuned to increase the bandwidth and provide additional author-

ity over the bandwidth of interest and without adversely affecting stability robustness.

TABLE E.1 Measured and predicted performance of controller TI

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over BC

DPL 1.47 gm 1.29 gm 11.4 dB 2.0 dB

QC 1.59 arcsec 1.63 arcsec 12.7 dB 0.9 dB
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Figure E.2 Experimental performance autospectra:
troller (dashed)
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Figure E.3 Stability plots for TI controller: simulated control on design data (solid), and measured
(dashed)
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Figure E.4 T2 controller magnitudes (dashed), and TI controller magnitudes (solid)

The DPL (phasing) performance is improved with a slight sacrifice of performance in the

QC (fine pointing). The extra state provides gain in the performance-critical 10 Hz band.

TABLE E.2 Measured and predicted performance of controller T2

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T1

DPL 1.09 Am 0.97 pm 13.8 dB 2.4 dB

QC 1.60 arcsec 1.68 arcsec 12.4 dB -0.3 dB
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Figure E.5 Experimental performance autospectra: open-loop (light), TI (solid), T2 controller (dashed)
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Figure E.6 Stability plots for T2 controller: simulated control on design data (solid), and measured
(dashed)
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Controller T3
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Figure E.7 T3 controller magnitudes (dashed), and T2 magnitudes (solid)

Additional tuning of the DPL-to-VC channel sacrifices low frequency control to achieved

greater authority in the performance-critical 10 Hz frequency band.

TABLE E.3 Measured and predicted performance of controller T3

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T2

DPL 0.98 gm 0.89 gm 14.6 dB 0.8 dB

QC 1.56 arcsec 1.62 arcsec 12.8 dB 0.3 dB

102



APPENDIX E 345

100 101

Freq (Hz)

Figure E.8 Experimental performance autospectra: open-loop (light), T2 (solid), T3 controller (dashed)
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Figure E.9 Stability plots for T3 controller:
(dashed)
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Controller T4
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Figure E.10 T4 controller magnitudes (dashed), and T3 controller magnitudes (solid)

Further low-frequency performance is sacrificed to increase the gain slightly in the perfor-

mance-critical 10 Hz band. A marginal DPL performance improvement is recorded. The

QC performance decrease is likely measurement error.

TABLE E.4 Measured and predicted performance of controller T4

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T3

DPL 0.90 gm 0.87 gm 14.8 dB 0.2 dB

QC 1.56 arcsec 1.70 arcsec 12.3 dB -0.3 dB

RGA DPL QC

20

0

-20

-40

20

0

-20

-40



APPENDIX E

Figure E.11 Experimental performance autospectra:
(dashed)
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Figure E.12 Stability plots for T4 controller:
(dashed)
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Controller T5
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Figure E.13 T5 controller magnitudes (dashed), and T2 controller magnitudes (solid)

The DPL-to-PZT channel is tuned slightly to increase the gain near the performance-criti-

cal 20 Hz band. A slight (0.1 dB) DPL performance improvement was predicted. The

measurement recorded a 0.1 dB performance decrease in the DPL.

TABLE E.5 Measured and predicted performance of controller T5

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T2

DPL 1.06 Rm 0.98 urm 13.7 dB -0.1 dB

QC 1.59 arcsec 1.68 arcsec 12.4 dB 0.0 dB
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Figure E.14 Experimental performance autospectra: open-loop (light), T2 controller (solid), T5 controller
(dashed)
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Figure E.15 Stability plots for T5 controller:
(dashed)
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Controller T6

20

0

-20

-40

20

0

9- -20

-40

20 20

0 0

-20 -20

-40 -40'
100 10 102 100 10 102

Freq (Hz) Freq (Hz)

20

0

-20

-40
100 10 102

Freq (Hz)

Figure E.16 T6 controller magnitudes (dashed), and T5 controller magnitudes (solid)

The entire phasing block is tuned simultaneously. Low-frequency PZT use is penalized

heavily in the design. A considerable improvement in DPL performance is obtained by

allowing the PZT increased authority in the performance-critical 18 Hz band.

TABLE E.6 Measured and predicted performance of controller T6

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T5

DPL 0.81 gm 0.66 gm 17.1 dB 3.4 dB

QC 1.58 arcsec 1.85 arcsec 11.6 dB -0.8 dB

RGA DPL QC
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Figure E.17 Experimental performance autospectra: open-loop (light), T5 controller (solid), T6 controller
(dashed)

Nichols

-300 -200 -100 0 100
Phase (deg)

Figure E.18 Stability plots for T6 controller:
(dashed)
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Controller T7
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Figure E.19 T7 controller magnitudes (dashed), and TI controller magnitudes (solid)

Low frequency phasing control is sacrificed to increase the gain in the performance-criti-

cal 10-20 Hz band. The performance improvement comes with little change in the stability

robustness of the baseline controller.

TABLE E.7 Measured and predicted performance of controller T7

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T1

DPL 0.86 gm 0.76 pm 16.0 dB 4.6 dB

QC 1.55 arcsec 1.86 arcsec 11.6 dB 0.3 dB
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Figure E.20 Experimental
(dashed)

performance autospectra: open-loop (light), TI controller (solid), T7 controller
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Figure E.21 Stability plots for T7 controller: simulated control on design data (solid), and measured
(dashed)
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Controller T8
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Figure E.22 T8 controller magnitudes (dashed), and T7 controller magnitudes (solid)

The gain of the QC-to-FSM channel is increased in the performance-critical 10 Hz band.

The performance is obtained with no sacrifice in measured stability robustness. Low fre-

quency use of the FSM piezo is penalized in the design.

TABLE E.8 Measured and predicted performance of controller T7

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over BC

DPL 0.86 gim 0.71 pim 16.5 dB 0.5 dB

QC 1.19 arcsec 1.34 arcsec 14.4 dB 2.9 dB
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Figure E.23 Experimental performance autospectra: open-loop (light), T7 controller (solid), T8 controller
(dashed)
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Figure E.24 Stability plots for T8 controller: simulated control on
(dashed)

Sensitivity S.V.

10 010 1102
f(Hz)

design data (solid), and measured

101

3 10
E

CL 10
0

106

N 0) 10

10

.* . . . . .. .

.* . . ...H

- - .- *I- -/

arm
- - - -II -

---- - - - -f- --

- - -



356 APPENDIX E

Controller T9
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Figure E.25 T9 controller magnitudes (dashed), and baseline
(solid)

controller magnitudes

The addition of two states allows the peak control channel gain to closer approach the per-

formance-critical 10 Hz band, while only slightly affecting the stability robustness. Fur-

ther the bandwidth of the QC-to-FSM channel is increased.

TABLE E.9 Measured and predicted performance of controller T9

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T8

DPL 0.86 prn 0.69 mtn 16.7 dB 0.2 dB

QC 1.02 arcsec 1.18 arcsec 15.5 dB 1.1 dB
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Figure E.26 Experimental
(dashed)

performance autospectra: open-loop (light), T8 controller (solid), T9 controller
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Figure E.27 Stability plots for T9 controller: simulated control on design data (solid), and measured
(dashed)
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Controller T10
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Figure E.28 T1O controller magnitudes (dashed), and T9 controller magnitudes (solid)

Tuning the entire optical phasing block allows the phasing control and the fine pointing

control to share states to achieve greater performance. Some phasing (DPL) performance

is sacrificed for an improvement in pointing (QC) performance.

TABLE E.10 Measured and predicted performance of controller T10

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over T9

DPL 0.86 gm 0.76 im 15.9 dB -0.8 dB

QC 0.98 arcsec 1.00 arcsec 16.9 dB 1.4 dB
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Figure E.29 Experimental
(dashed)

performance autospectra: open-loop (light), T9 controller (solid), T1O controller

C
2)

50

40

30

20

10

0

-10

-20

Nichols

-300 -200 -100

-- ,

15

10

5

0

-5

-10

-15

-20

-25

-30
0 100

Phase (deg)

Figure E.30 Stability plots for T1O controller:
(dashed)
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Controller T11

RGA

20

:a.0

-20

-40

20

0

2- -20

-40

20

0

-20

-40
100 10 102

Freq (Hz)

20

0

-20 -

-40
100 10 102

Freq (Hz)

20

0

-20

-40
100 10 102

Freq (Hz)

Figure E.31 T 11 controller magnitudes (dashed), and T10 controller magnitudes (solid)

The RGA sensor is incorporated. Low frequency use of the PZT and FSM are penalized in

the design. The predicted performance improvement is greater than that experimentally

achieved. Further a measured sensitivity spike at 22 Hz indicated a model/measurement

mismatch which may lead to problems should the design be further tuned.

TABLE E.11 Measured and predicted performance of controller TI

RMS Performance
Meas. imp. Meas. imp.

Perf Variable Predict Meas over OL over BC

DPL 0.66 pm 0.77 pm 15.9 dB 0.1 dB

QC 0.86 arcsec 0.98 arcsec 17.2 dB 0.3 dB
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Figure E.32 Experimental performance
ler (dashed)
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