516 research outputs found

    Communication Efficiency in Information Gathering through Dynamic Information Flow

    Get PDF
    This thesis addresses the problem of how to improve the performance of multi-robot information gathering tasks by actively controlling the rate of communication between robots. Examples of such tasks include cooperative tracking and cooperative environmental monitoring. Communication is essential in such systems for both decentralised data fusion and decision making, but wireless networks impose capacity constraints that are frequently overlooked. While existing research has focussed on improving available communication throughput, the aim in this thesis is to develop algorithms that make more efficient use of the available communication capacity. Since information may be shared at various levels of abstraction, another challenge is the decision of where information should be processed based on limits of the computational resources available. Therefore, the flow of information needs to be controlled based on the trade-off between communication limits, computation limits and information value. In this thesis, we approach the trade-off by introducing the dynamic information flow (DIF) problem. We suggest variants of DIF that either consider data fusion communication independently or both data fusion and decision making communication simultaneously. For the data fusion case, we propose efficient decentralised solutions that dynamically adjust the flow of information. For the decision making case, we present an algorithm for communication efficiency based on local LQ approximations of information gathering problems. The algorithm is then integrated with our solution for the data fusion case to produce a complete communication efficiency solution for information gathering. We analyse our suggested algorithms and present important performance guarantees. The algorithms are validated in a custom-designed decentralised simulation framework and through field-robotic experimental demonstrations

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    A Survey on Sensor Networks from a Multiagent Perspective

    Get PDF
    Sensor networks (SNs) have arisen as one of the most promising technologies for the next decades. The recent emergence of small and inexpensive sensors based upon microelectromechanical systems ease the development and proliferation of this kind of networks in a wide range of actual-world applications. Multiagent systems (MAS) have been identified as one of the most suitable technologies to contribute to the deployment of SNs that exhibit flexibility, robustness and autonomy. The purpose of this survey is 2-fold. On the one hand, we review the most relevant contributions of agent technologies to this emerging application domain. On the other hand, we identify the challenges that researchers must address to establish MAS as the key enabling technology for SNs.This work has been funded by projects IEA(TIN2006-15662-C02-01), Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010), EVE (TIN2009-14702-C02-01,TIN2009-14702-C02-02) and Generalitat de Catalunya under the gran t2009-SGR-1434. Meritxell Vinyals is supported by the Spanish Ministry of Education (FPU grant AP2006-04636)Peer Reviewe

    Searching and tracking people with cooperative mobile robots

    Get PDF
    The final publication is available at link.springer.comSocial robots should be able to search and track people in order to help them. In this paper we present two different techniques for coordinated multi-robot teams for searching and tracking people. A probability map (belief) of a target person location is maintained, and to initialize and update it, two methods were implemented and tested: one based on a reinforcement learning algorithm and the other based on a particle filter. The person is tracked if visible, otherwise an exploration is done by making a balance, for each candidate location, between the belief, the distance, and whether close locations are explored by other robots of the team. The validation of the approach was accomplished throughout an extensive set of simulations using up to five agents and a large amount of dynamic obstacles; furthermore, over three hours of real-life experiments with two robots searching and tracking were recorded and analysed.Peer ReviewedPostprint (author's final draft

    Probabilistic Human-Robot Information Fusion

    Get PDF
    This thesis is concerned with combining the perceptual abilities of mobile robots and human operators to execute tasks cooperatively. It is generally agreed that a synergy of human and robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems, while also increasing their robustness and reliability. Systems which incorporate both human and robotic information sources have the potential to build complex world models, essential for both automated and human decision making. In this work, humans and robots are regarded as equal team members who interact and communicate on a peer-to-peer basis. Human-robot communication is addressed using probabilistic representations common in robotics. While communication can in general be bidirectional, this work focuses primarily on human-to-robot information flow. More specifically, the approach advocated in this thesis is to let robots fuse their sensor observations with observations obtained from human operators. While robotic perception is well-suited for lower level world descriptions such as geometric properties, humans are able to contribute perceptual information on higher abstraction levels. Human input is translated into the machine representation via Human Sensor Models. A common mathematical framework for humans and robots reinforces the notion of true peer-to-peer interaction. Human-robot information fusion is demonstrated in two application domains: (1) scalable information gathering, and (2) cooperative decision making. Scalable information gathering is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned air vehicle, and two human operators in a natural environment. Information from humans and robots was fused in a fully decentralised manner to build a shared environment representation on multiple abstraction levels. Results are presented in the form of information exchange patterns, qualitatively demonstrating the benefits of human-robot information fusion. The second application domain adds decision making to the human-robot task. Rational decisions are made based on the robots’ current beliefs which are generated by fusing human and robotic observations. Since humans are considered a valuable resource in this context, operators are only queried for input when the expected benefit of an observation exceeds the cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the adjustable autonomy system experimentally. Results from two experiments are reported: a quantitative evaluation of human-robot team effectiveness, and a user study to compare the system to classical teleoperation. Results show the superiority of the system with respect to performance, operator workload, and usability

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Active strategies for coordination of solitary robots

    Get PDF
    Thesis (PhD)--Stellenbosch University, 2020.ENGLISH ABSTRACT: This thesis considers the problem of search of an unknown environment by multiple solitary robots: self-interested robots without prior knowledge about each other, and with restricted perception and communication capacity. When solitary robots accidentally interact with each other, they can leverage each other’s information to work more effectively. In this thesis, we consider three problems related to the treatment of solitary robots: coordination, construction of a view of the network formed when robots interact, and classifier fusion. Coordination is the key focus for search and rescue. The other two problems are related areas inspired by the problems we encountered while developing our coordination method. We propose a coordination strategy based on cellular decomposition of the search environment, which provides sustainable performance when a known available search time (bound) is insufficient to cover the entire search environment. A sustainable performance is achieved when robots that know about each other explore non-overlapping regions. For network construction, we propose modifications to a scalable decentralised method for constructing a model of network topology which reduces the number of messages exchanged between interacting nodes. The method has wider potential application than mobile robotics. For classifier fusion, we propose an iterative method where outputs of classifiers are combined without using any further information about the behaviour of the individual classifiers. Our approaches for each of these problems are compared to state-of-the-art methods.AFRIKAANSE OPSOMMING: Hierdie tesis beskou die probleem van soektog in ’n onbekende omgewing deur ’n aantal alleenstaande robotte: selfbelangstellende robotte sonder voorafgaande kennis van mekaar, en met beperkte persepsie- en kommunikasievermoëns. Wanneer alleenstaande robotte toevallig mekaar raakloop, kan hulle met mekaar inligting uitruil om meer effektief te werk. Hierdie tesis beskou drie probleme wat verband hou met die hantering van alleenstaande robotte: konstruksie van ’n blik van die netwerk gevorm deur interaksie tussen robotte, koördinasie en klassifiseerdersamesmelting. Koördinasie is die hoof fokuspunt vir soek en redding. Die ander twee probleme is uit verwante areas, gemotiveer deur uitdagings wat ons ervaar het tydens die ontwikkeling van ons koördineringsmetode. Ons stel ’n skaleerbare desentraliseerde metode voor om ’n model van netwerktopologie te bou wat minder boodskappe tussen wisselwerkende nodusse hoet te verruil. Die metode het wyer potensiële toepassings as mobiele robotika. Vir koördinasie, stel ons ’n strategie voor gebaseer op sellulêre ontbinding van die soekomgewing, wat volhoubare prestasie toon wanneer ’n bekende soektyd onvoldoende is om die hele soekomgewing te dek. Vir klassifiseerdersamesmelting, stel ons ’n iteratiewe metode voor, waar klassifiseerders se voorspellings gekombineer word sonder om enige verdere inligting oor die gedrag van die individuele klassifiseerders te gebruik. Ons benaderings vir elkeen van hierdie probleme word vergelyk met stand-van-die-kuns metodes.The financial assistance of the African Institute for Mathematical Sciences (AIMS) and CSIR-SU Centre for Artificial Intelligence Research Group (CSIR-SU CAIR) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the AIMS and CSIR-SU CAIR.Doctora

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business
    • …
    corecore