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Abstract

There are many systems where tasks must be allocated amongst multiple, distributed
agents, and where each participant must manage its limited resources to best com-
plete these tasks. In stable environments with low numbers of agents there are algo-
rithms to search for the best task and resource allocations. In these types of systems
strategies can be planned, and agents coordinated, in a centralised manner.

In more complex situations, such as where there are large numbers of agents, or the
environment is highly dynamic or uncertain, these types of solutions do not perform
as well. Many real-world systems however are both complex and subject to environ-
mental perturbations, e.g. wireless sensor networks, the coordination of vehicles in
smart cities, and the orchestration of drone swarms. In this thesis, we provide contri-
butions towards the challenges of task and resource allocation in dynamicmulti-agent
systems. We develop decentralised algorithms that are scalable, that work with an
agent’s local knowledge to improve task and resource allocations in order to optimise
the utility of a system in precisely these kind of realistic scenarios.

We develop three contributions to cumulatively solve these problems. As a first step,
we develop a reinforcement learning based algorithm to optimise the allocation of
tasks based on their quality of completion by agents, while adapting the algorithm in
response to an agent’s judgement of its historical performance. We next develop an
algorithm that allows an agent to allocate its limited resources in such a way as to
optimise its performance on completing tasks it has been assigned by other agents,
learning the value of these tasks to those agents through reinforcement learning. For
our final contribution, we combine these algorithms to provide a holistic solution to
the problem of task and resource allocation in dynamic environments, while also ex-
tending it to make it more robust to environmental perturbations such as communi-
cation disruptions and harsh weather conditions.

We evaluate these contributions individually, through the simulation of different rep-
resentative systems, before evaluating our holistic solution through a realistic case
study in an ocean-based environmental monitoring system.
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Chapter 1
Introduction

This chapter introduces the work that will be covered in this thesis. We will highlight
the challenges that motivate this research and the applications that make this area
of study highly relevant. Wewill also describe our research objectives, and the layout
of the thesis as a whole.

1.1 Overview
What are
multi-agent
systems?

There are many situations where different agents, entities that act autonomously, are
attempting to achieve their own goals, a shared group goal, or an overarching sys-
tem goal. It is often beneficial for agents’ actions to be coordinated, so that they can
behave cooperatively, e.g. a group of autonomous vehicles organising amongst them-
selves to avoid collisions or congestion. Whether we are talking about robots, drones,
or human societies, these can all be viewed as multi-agent systems (MAS).

Complexity in the
real world

Existing in a real-world environment adds complexity to these systems. For example,
a fleet of drones trying to organise themselves to fly in formation may experience
communication noise due to interference, or wind pushing them off course (See Fig-
ure 1.1). The failure of a drone can also impact how others in the fleet must plan their
actions. Component wear might cause actions to become non-deterministic, i.e. the
outcome of a drone taking an action becoming less predictable, or even the complete
failure of a drone in the system. To design behavioural rules to handle all these possi-
ble states and outcomes over the lifetime of a system would be exceptionally complex
and inflexible. Instead, we can design the agents to be intelligent, to learn from expe-
rience and to proactively adapt their actions to optimise their behaviour as the system
changes.
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The task allocation
problem

In many cases, there is a set of tasks and subtasks that a group of agents needs to
complete to achieve their goal. For example, a group of mobile robots are deployed in
a harsh and remote environment, then given the task of collecting soil samples across a
wide, distributed area. How then are the individual measurements or subtasks shared
out between the agents so that the overall task is completed most efficiently? What
if the robots are already spread out geographically, have different functionality, or
power supplies? This is the task allocation problem for multi-agent systems, how a set
of tasks can be best allocated amongst agents in a system to complete.

The resource
allocation problem

When completing tasks or taking other actions, agents often need to utilise some
resources. When a software agent handles a task it requires CPU time and memory
storage. A mobile robot taking measurements may need to use battery power to move
around (See Figure 1.2). If an individual agent has multiple tasks to complete, but
limited resources to do so, how does it manage the use of these resources to complete
the tasks with the best overall outcome? This resource allocation problem is common in
numerous real-world systems and represents another opportunity for agents to learn
optimisations dynamically.

Organising
multiple agents

Given a group of agents, an environment for them to operate in, and some tasks to
complete, there are numerous ways they could be organised. One could act as a leader,
ordering the others to take actions. They could all act in isolation, being purely selfish
in their choices. They could form clusters, where small groups of agents act together,
perhaps with a local leader, and communicate with other clusters to complete the
tasks. Different approaches each have their own strengths and weaknesses, however,
in realistic scenarios the system needs to be robust in the face of failures. Agents
must be able to adapt to the complex and dynamic environment they operate in. This
means that some flexibility in the organisational structure of agents is required.

One way to do this by enabling agents to self-organise, to change the network of
other agents they closely interact with, and to alter this throughout their lifetimes to
best handle changes in the system. For example, a large expanse of ocean monitoring
sensors could be formed into clusters to take measurements, aggregate the results,
and then broadcast them back to a base station inland. However, over time they may
move with currents, degrade, or fail due to the harsh environment. If they were self-
organising, they could reorganise themselves into different groupings to adapt their
structure in an attempt to continue to operate effectively.

Real-world
problems

Recently years have seen growth in the research and commercial applications ofmulti-
agent systems[1], [2]. Advancements in artificial intelligence techniques have enabled
agents to have greater learning capability. Processors, batteries, and other compo-
nents have become smaller, more powerful, and cheaper, so individual agents have
increased resources to plan their actions and adapt their behaviour. Across numerous
industries automation and robotics are increasingly commercially viable. For these
reasons, research into algorithms that can be applied to agents in distributed multi-
agent systems has grown in importance and practical uses.

Vehicle-to-
everything (V2X)

For instance, over the last few years much research has been dedicated to the devel-
opment of autonomous vehicles, with a number of well-funded companies vying for
the commercial edge. As part of this, solving vehicle-to-everything (V2X) problems,
how each autonomous vehicle communicates and plans tasks as part of a group of
mobile agents[3]–[5], has become more prominent.
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Figure 1.1: Drone usage and applications. Drones have become increasingly afford-
able, light, and powerful. Getting large swarms of drones to operate together collabora-
tively can be orchestrated through computer sequencing. However, use cases such as long
distance deliveries, or monitoring large expanses of agricultural land require much more
autonomy. (source: nasa.gov)

Figure 1.2: NASA Mars rover. Nasa’s Mars rover has many tasks to perform; moving
around the planet’s surface, sampling rocks, atmospheric experiments, etc, with limited
power availability and working lifespan. The rover can optimise performance, minimise
wear, and extend its working life, through intelligently allocating its limited resources
amongst its many functions. (source: nasa.gov)

15



Unmanned
autonomous

vehicles (UAV)

With drones becoming cheaper and more readily available, there are new uses be-
ing found for swarms of these unmanned autonomous vehicles (UAV) to cooperate
in areas from agriculture[6] to search-and-rescue situations[7]. Climate change re-
search, and the impact of changes to ocean temperatures and conditions on the natu-
ral world, has increased focus on monitoring and data gathering to understand these
often remote and harsh environments. There is a need for robustness to handle tough
conditions, and intelligence to adapt to dynamic natural environments. As a result,
the quantity of multi-agent systems research has grown, as well as specifically across
the wireless sensor networks (WSN) field as a whole[8]–[11].

We look in more detail at WSN, and their applications, in Chapter 7, some of which
we use as explanatory examples throughout the thesis, including some more specific
cases such as vehicle-to-everything (V2X) systems, and ocean-based wireless sensor
networks.

Why is this
research

important?

Tackling the challenges presented by the complexity of real-world multi-agent sys-
tems give us the goals of our research:

• Adapting to complex and dynamic environments with many interacting agents.

• Planning task allocations amongst distributed agents.

• How each agent manages its resources to complete tasks.

• How agents self-organise, adopting roles that allow them to effectively complete
tasks.

The rapid growth and spread of real-world applications motivates this work. We
believe that successful solutions to the problems we cover in this work have broad,
cutting-edge applicability across many industries and research areas.

Research
highlights

Over the course of our work we will demonstrate new algorithms designed for com-
plex, realistic, multi-agent systems. We show how our algorithms optimise for task
and resource allocation in disrupted environments, tackling the various challenges
through;

• dynamic system exploration by policy adaptation using an agent’s historical
data to predict how well its performance is in context of the whole system (the
RT-ARP algorithm, see Chapter 9, Section 9.4.5);

• enhanced recovery of performance after system perturbations by retaining in-
formation learnt about the environment (the SAS-KR algorithm, see Chapter 9,
Section 9.4.2);

• optimisation of resource allocation through learning and balancing the goals of
other agents (the MG-RAO algorithm, see Chapter 10, Section 10.3);

• the emergence of roles and self-organisation resulting from implicit coordina-
tion between agents to complete tasks (see Chapter 11, Section 11.2.3).

Where other algorithms can be seen to perform well in many systems (see Chapter 5,
Section 5.6, Table 5.3), our work focuses on the type of dynamic, and perturbed sys-
tems common to applications such as wireless sensor networks, where current state-
of-the-art algorithms are difficult to apply due to the need of a holistic solution to the
multiple problems found in such systems to enable effective performance (see Chapter
9, Section 9.6, ’Methods of analysis’). We will benchmark our work using the utility
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of our algorithms as compared to theoretical baselines such as the maximum utility
possible within a simulated system (see Chapter 9, Section 9.6, ’Theoretical system
optimal utility as a baseline comparison’), alongside sensitivity analysis approaches
such as comparing how efficiently our algorithm explores the environment given dif-
ferent initial conditions (see Chapter 9, Section 9.7).

1.2 Research Goal

The goal of this thesis is to optimise the aggregate quality of a stream of incoming
tasks through decisions on the allocation of tasks to agents within a dynamic
population and allocation of agents’ resources between tasks.

We assume tasks requiring completion to be atomic, in that they can be completed by
individual agents without collaborating with other agents, or needing to be executed
in a particular order.

1.3 Challenges
In the course of our work we focus on reinforcement learning techniques to enable
agents to learn strategies to complete tasks to best achieve system goals, where these
approaches are not restricted in applicability due to limitations on their computational
scalability. We see how learning algorithms can generate self-organisation amongst
agents, where they act autonomously and learn to assume differing roles. This leads
to a number of challenges;

1. Choosing agents to
cooperate with

A system may contain a set of agents capable of completing different tasks,
to different degrees of quality. How do agents that have been allocated a set of
tasks proactively learnwhich group of other agents can best help them complete
those tasks in order to achieve the highest aggregate quality? The introduction
of computational constraints means agents must also balance collecting signif-
icant knowledge about a small subset of agents in the system or less about a
larger set of agents;

2. Allocating limited
resources

An agent that has multiple tasks allocated to it, but finite resources available to
complete them, must prioritise its actions by allocating more resources to those
of its actions that are most useful to the achieving the goals of the system.
This may be through the prioritisation and completion of tasks itself, or co-
ordination with others to have those agents complete tasks. How can an agent
learn to adapt its resource allocation strategy to best predict what tasks it may
be asked to complete, and the value of its role in doing so?

3. Self-organisation
and roles

An individual agent can learn to provide functionality to other agents and form
complementary roles within a group that helps meet the overall goals of the
system. When an agent places a higher probability that it will take a certain
subset of available actions that proves valuable, it assumes the role defined by
that set of actions.
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1.4 Objectives
We form 3 objectives for our research that will allow us to meet our research goal.

Optimising task
allocation

Objective 1. Learning the optimal allocation of tasks in a multi-agent
system under resource constraints
A system contains a set of agents, and a set of tasks, which may be composed of
multiple subtasks. Each agent can take actions to execute or allocate subtasks
to other agents. How can they learn to distribute and complete the subtasks to
produce the optimal system utility?

Where we have a set of agents each with differing efficiency in performing a set of
actions we investigate how an agent can choose a group of other agents that help it to
achieve its goals. The locality of the other agents, and size of the group chosen to col-
laborate with, is restricted by the agent’s resource constraints. These fix the amount
of knowledge that can be collected, stored and processed by an individual agent. For
example, in real-world systems these constraints may be due to CPU, memory and
storage limits of the hardware involved. While an agent will attempt to learn its op-
timal group of agents to communicate with, those agents will also be dynamically
learning their own groups and behaviours, and optimising for their own goals.

Optimising
resource allocation

Objective 2. Learning the optimal allocation of agents’ resources to com-
plete tasks
If an agent continuously receives sets of tasks allocated to it by set of agents, how
can it learn to optimise its allocation of its limited resources amongst each type
of task it receives? In order to maximise the system utility, the agent must learn
the value of the tasks it performs to the allocating agents, and optimise for that
value. Additionally, if the allocating agents are able to allocate tasks amongst
multiple agents then the value of a task’s completion may vary depending on
the distribution of tasks amongst agents.

Assuming roles Objective 3. Self-organisation and the emergence of roles to enhance co-
operation and planning
Agents in a system can take a range of actions, executing tasks, allocating them
to other agents, or learning about other agents in the system. Given a set of
tasks, can agents self-organise and assume different roles that help to optimise
the system’s utility? For instance, an agent could focus on improving its exe-
cution of tasks, optimise its communications with other agents for the better
re-allocation of tasks, or on information collection that will allow it to improve
the overall planning coordination amongst agents.

Many tasks in a system require some level of collaboration to achieve an overall goal.
An agent that is cooperating with another agent can learn how to carry out actions
that help the other agent attain its goals. In doing so, the agent can receive rewards
depending on the value of its behaviour to the agent it is assisting. In this way, an
agent can learn to adapt its behaviour and adopt a distinctive role within the system.

Figure 1.3 shows how an agent might optimise its performance by learning the best
agents to carry out a set of actions. Figure 1.4 shows a pair of agents learning to
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Figure 1.3: Task allocation in an agent system. Agent 𝐴 repeatedly receives sets
of tasks of type 𝑇 , which requires it to carry out subtasks of type 𝑋 and 𝑌 . In the first
diagram it requests the most optimal agent, 𝐵 to carry out tasks of type 𝑋 , but requests
𝑌 from agent 𝐶 , which is not most optimal agent for these subtask types. In the second
diagram, agent 𝐴 has learned that agent 𝐷 is the best choice for tasks of type 𝑌 and has
altered its neighbourhood to exclude 𝐶 and include 𝐷 instead.
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Figure 1.4: Optimising actions in a multi-agent system. The two figures show a
pair of agents learning to optimise their actions in order to respond to incoming requests.
In the first diagram agent 𝐴 allocates subtasks of type 𝑋 to agent 𝐵, and 𝑌 to agent 𝐷 .
Neither agent has optimised its resources to prioritise either of the possible tasks. In the
second diagram, agents 𝐵 and 𝐷 have reallocated their resources to optimise the value of
them completing tasks 𝑋 and 𝑌 respectively, to agent 𝐴.

optimise their resource allocation to maximise the value of task completion to another
agent that allocated them the tasks. In Figure 1.5 we see how agents can develop roles
in the completion of tasks.
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Figure 1.5: Neighbourhoods in a multi-agent system. In the first figure, agent 𝐴
is allocating tasks of type 𝑋 to agent 𝐵, which is not optimised to perform these tasks.
An agent 𝐷 is optimised for these tasks but is not within the neighbourhood of 𝐴 and
cannot be reached by it directly. Agent 𝐶 is in the neighbourhood of 𝐴, but again, is
not optimised to perform tasks of type 𝑋 , however, it can reach agent 𝐷 . In the second
figure, agent 𝐶 has learned to adopt the role of relaying tasks for 𝐴, and as a result, 𝐴
has indirectly extended its neighbourhood to reach agent 𝐷 and have tasks 𝑋 optimally
performed.

1.5 Contributions
To create an overall algorithm to tackle our research goal we first study the objec-
tives mentioned separately, then combine the solutions we develop for each, to form
a holistic solution. Given this, we detail the three contributions of our research below.

Contribution 1. Task allocation algorithms
We present four algorithms which, in combination, enable each agent to improve
their task allocation strategy through reinforcement learning, while changing
howmuch they explore the system in response to how optimal they believe their
current strategy is, given their experience. These algorithms allow an agent to
determine the capability of other known agents to perform tasks, allocate these
tasks, and carry out other actions based on its current knowledge and the need
to explore agent capability space.

Contribution 2. Resource allocation algorithms
We introduce an algorithm to optimise resource allocation which uses multiple
function approximations of the demand on agents’ resources over time, alongside
reinforcement learning techniques. This method is applicable where there are
competing demands for shared resources, or in task prioritisation problems.

Contribution 3. A combined algorithm for hierarchical multi-objective
task and resource allocation
To adapt to the changing agent composition in a dynamic system, and the associ-
ated change in agent capabilities available, we develop an algorithm that utilises
and extends the first two contributions. The algorithm solves for the challenge
of optimising for multiple, competing objectives, while enabling agents to learn
to adopt different roles within the system.
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With these three contributions we tackle the objectives set out in Section 1.4 that arise
from the challenges we described in Section 1.3. In doing so, we develop a solution
that is capable of meeting our research goal as defined in Section 1.2.

1.6 Outline
The rest of the thesis is broadly laid out into three parts. In Part I we introduce the
relevant concepts, theory, and existingwork onmulti-agent systems. Part II covers our
main research work, the algorithms we contribute, and their evaluation in a realistic
case study. Finally, Part III examines our work, reviews what has been achieved in the
thesis, and looks towards future work and applications.

Part I -
Background

In Chapter 2 we introduce the high-level ideas and concepts around multi-agent sys-
tems, the environments they operate in, and how they apply to distributed systems.
The subsequent chapters go into detail on relevant areas such as; the problems in-
volved in task allocation in Chapter 3, the prioritised allocation of limited resources for
completing tasks in Chapter 4, and the use of reinforcement learning in multi-agent
systems in Chapter 5. In particular, we look at how such reinforcement learning algo-
rithms can be used to optimise large, distributed systems, and the problems that can
result when they are applied to real-world environments. In Chapter 6 we examine
the organisational structure of distributed agent systems, their defining characteris-
tics and self-organisational behaviours. Finally, Chapter 7 focuses on wireless sensor
networks, examples of which we use to illustrate concepts throughout our work, with
an ocean monitoring example forming our case study in Part II.

Part II - Research
contributions

Chapter 8 formally sets our agent-based system, and where we introduce the nota-
tion and concepts that define the task and resource allocation problems that we will
subsequently look to solve. To build a full solution we tackle the problem in three dis-
tinct blocks. In Chapter 9 we focus purely on algorithms to tackle the task allocation
challenge. We then develop algorithms that target the allocation of agents’ resources
to prioritise tasks in Chapter 10. This leads into Chapter 11 where both the task and
resource allocation solutions are brought together to solve the overall problem stated
in Section 1.2. In doing so, the solution is naturally extended to enable increased co-
ordination between agents, allowing self-organisational structure to develop within
the system. In the last section of work in Chapter 12, we develop a case study based
on an oceanographic environmental sensor network. Agents in this system operate in
a harsh and dynamic environment where they require autonomy in order to continue
to function reliably. This allows us to evaluate our algorithms in a realistic scenario
and judge their performance.

Part III -
Applicability and
analysis

Finally, in Part III, Chapter 13 we summarise what our research has achieved, and how
well it met our research goals. We also look at some of the possible applications of our
work, and where it could be extended or enhanced through future research directions.
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Chapter 2
Introduction to distributed
multi-agent systems

This chapter introduces the high-level concepts and definitions that apply to multi-
agent systems in general, and to distributed task allocation problems more specifi-
cally. We will talk in detail about the environments agents operate in, and how they
can be organised. This allows us to define the key characteristics of the systems we
will work with in future chapters and why those characteristics are essential to real-
world applications.

2.1 Introduction
In distributed multi-agent systems (MAS) there are interactions between many inde-
pendent actors. These systems are seen in a wide range of real world applications such
as wireless sensor networks (WSN)1[11]–[14], robotics[15], [16], and distributed com-
puting[17], [18]. The growing complexity and scope of these applications presents a
number of challenges; responding to change, handling failures, and optimisation of
agents’ actions. The performance of the system must also be scalable with growth
in the number of agents, and be able to perform tasks given constraints on computa-
tional, storage, or other resources.

The challenges summarised below are shared across many diverse subject areas, so
solutions to them are applicable across a broad range of fields;

• task allocation, how can tasks be allocated amongst agents in a system to
achieve the best results? Note, an agent may have a goal that consists of an
overarching task that requires the completion of a number of subtasks by other
agents[19] (Chapter 3);

• ad-hoc dynamic networking, how adaptable is agent discovery and communica-
tion? Agents must be able to communicate with each other while connections
are lost and created[20] (Chapter 3);

1WSN systems are covered in detail in Chapter 7.
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• resource allocation and management , how are resources best allocated by agents
to complete tasks? E.g. managing energy usage while performing a function
within a physical environment[21]–[23] (Chapter 4);

• self-organisation, how do agents autonomously adapt their organisational struc-
tures to help them complete goals? Solutions with fixed architectures are often
non-applicable to dynamic systems with many unknowns as designs would be
too complex and inflexible. To improve agents’ adaptability in these situations,
learning algorithms can be used[24]–[28] (Chapters 5 and 6).

Chapter structure In the next sections we define multi-agent systems at a high-level in Section 2.2, how
they can be designed in Section 2.3, categorise the types of environments they operate
in Section 2.4, and the challenges they face in Section 2.5.

2.2 Defining a multi-agent system
The systems we consider contain agents that are attempting to complete a range of
tasks, while operating within a dynamic environment. This makes them closely iden-
tified with concepts such as autonomy , locality of view , and decentralised planning.
Agents are autonomous and have some degree of freedom to make their own deci-
sions. Locality of view arises as agents do not have a full, over-arching knowledge
of the system that they can use to make decisions, only partial information. As the
system does not rely on centralised control or orchestration, there is decentralisation
of planning, and of organisational structure.

Systems with these properties fall naturally into the study of multi-agent systems.
We can define an agent as a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order to meet its
delegated objectives[29]. With this definition, multi-agent systems (MAS) are systems
composed of autonomous agents, with distributed control, data, and computation.

Intelligent agents Intelligence is a characteristic of agents that we need in complex systems in order
to generate adaptive autonomous behaviour without intractable amounts of initial
external design. We define these properties as2;

1. proactiveness, intelligent agents are able to exhibit goal-directed behaviour by
taking the initiative in order to satisfy their delegated objectives;

2. reactivity , intelligent agents are able to perceive their environment, and respond
in a timely fashion to changes that occur in it in order to satisfy their delegated
objectives;

3. social ability , intelligent agents are capable of interactingwith other agents (and
possibly humans) in order to satisfy their design objectives.

The need for proactivity and reactivity is inherent due to the uncertainty in a MAS
arising from the dynamism caused by the interactions of multiple agents. Agents can-
not be sure of the outcomes of their actions or that the environment has not changed
in a way they are not aware of yet. In these circumstances they must be able to react
to unexpected outcomes, and investigate ways to adapt their actions and strategies
to compensate for them.

2See Wooldridge and Ciancarini[29]
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Agent
coordination

With many agents in an environment simultaneously attempting to carry out tasks,
there is a benefit in them being able to coordinate amongst themselves. This may be
simply as they are altering the same environment, so planning actions with knowledge
of each other’s effects on the environment could produce better outcomes for each
agent. E.g. a group of mobile robots taking samples of soil across an area of land
could avoid duplication or collisions by communicating their intended actions, or the
outcomes of previous ones, amongst themselves.

For some tasks or goals the agents will have to actively orchestrate their behaviours
to achieve a mutually beneficial outcome. For a complex task composed of many
subtasks there could be a required sequence to achieve the goal, such as when a robot
must utilise a range of motors with the right order and timing to maintain its balance
while moving a leg.

2.3 Designing multi-agent systems
There are numerous ways to design MAS to have intelligent behaviours. We describe
some of the main ones below, and the reasoning behind our choice of approach.

Logic-based
strategy

One way is to use a logic-based approach, symbolically representing the state of an
environment, working with this representation to logically solve the problem speci-
fied, and then setting out the behaviours required by the agent to reach the desired
state. This method may also be used in combination with modern machine learning
techniques[30].

Reactive
architectures

Reactive architectures are based on the concept of environmental sensing and respond-
ing to actions based on pre-encoded knowledge contained within the agent, where
expert knowledge can be distilled into rules that can be activated when the system
is in certain states. These rules can be layered as in subsumption architectures[31]
to form hierarchical behaviours (e.g. decomposing the walking motion of a robot into
individual joint movements). In large dynamic systems this task of encoding rules and
logic quickly grows incredibly complex and difficult to design[32], [33].

Belief-desire-
intention

The belief-desire-intention (BDI) model[34] separates out an agent’s actions from its
planning. The belief represents the agent’s knowledge of the system, which may or
may not be true. Desires are things the agent would like to achieve, which can then
generate goals. Intentions are things the agent has chosen to do to achieve its goals,
with these leading to the choosing of actual plans to carry out. This design concept can
be extended to include obligations, social norms within an agent-based system[35].

Self-organisation
and emergence

We can also approachMAS design using self-organisation[36], [37]. In this case, the or-
ganisation and reorganisation of the system happens without any explicit commands
being given from an external source. Linked to this in multi-agent systems is the idea
of emergence, where the higher-level behaviour and properties of the system are the
result of local, low-level agent behaviours.

The complexity and distributed nature of many of the applications of multi-agent
systems makes pre-designing systems intractable in many cases, which is where self-
organising approaches become attractive for solving task and resource allocation prob-
lems in large, dynamic systems. We will discuss this area in-depth in Chapter 6 as the
basis for understanding self-organisation and emergence in our work on agent roles
in Chapters 11 and 12.
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2.4 Environments
Agents will exist in some environment in which theymust operate. There are a number
of key concepts that will be helpful in discussing the environment ofMAS systems[29],
[38], [39], which we detail below.

Global view To make decisions, agents must have a view of their surroundings. Through sensing
the state of the system they can choose actions and observe changes as the system
evolves. If agents could measure all the information about the state of the system
relevant to their action choices, the system is considered fully observable, where the
agents have a global view of the system’s state. E.g. agents controlling chess pieces
on a chess board are likely to have full knowledge of the state of all the pieces on the
board before acting.

Partial view Inmany cases agentsmay only be able to have a subset of knowledge about the system
they are operating in. If the system state is very large, then an agent might not have
the computational resources or memory to observe, and process, the full state. Its
ability to sense the system may be limited, such as when a robot’s visual detectors
are blocked from seeing further by objects in the environment. There also may be
noise resulting from sensors having limited accuracy or if they develop faults. This
means that agents must make decisions based on incomplete information, using their
partial view of the system state (See Figure 2.1).

Discrete and
continuous states

Where there is a finite set of states a system can be in, it can be said to be discrete.
Where there is no such bound it is continuous. If a set of agents were deployed in an
environmental setting there would be an infinite number of locations, and therefore
states, that each agent could be in. In practice these states can often be quantised.
In the case of locations, a granular location grid is often used instead of exact coor-
dinates, which reduces the number of states to a finite amount (See Figure 2.2). Note
that even when the set of states is finite, such as with a chess board, the number of
possible states can be so large as to be viewed as continuous from an agents perspec-
tive in terms of computational demands and complexity.

Cooperation and
Coordination

Agents working cooperatively often need to communicate their intentions, actions,
and results of those actions to other agents to enable them to work together and avoid
conflicting behaviours. E.g. autonomous vehicles can communicate their planned ac-
tions to other vehicles so that collisions and congestion can be avoided. There are
different ways agents can plan their actions together. Centralised coordinationmeans
that one agent or controller will collect information about all the other agents in the
system, construct the optimal plan for their combined actions, then communicate
these back to the agents.
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Figure 2.1: A fleet of UAVs flies in formation. Drone A can detect the other drones
immediately around it, its partial view of the system. Drone B has a different partial view
of the system, overlapping that of drone A. The agents will use these partial views to plan
their actions. As each agent’s partial views of the system may overlap, the overall, partial
global plan will approximate the optimal global plan for coordination of all the drones
movements, i.e. the plan that would be constructed if the system were fully observable.

Figure 2.2: Discretization of UAV locations. Each drone in a fleet of UAVs can have
its position described by a set of real numbered coordinates. This means that there is an
infinite set of states that each can be in, and the system is continuous. By quantising the
map of the deployment area of the drones, the set of locations becomes finite, and the
system is discrete. With the reduction in states, the demand on computational resources
to calculate planning algorithms is decreased, at the risk of a reduction in their accuracy.
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Figure 2.3: Coordination in a V2X multi-agent system. In the first figure, an au-
tonomous vehicle, B, independently plans to move into the left-hand lane, where there
are currently two other vehicles, A and C. Through exchanging information on their plans
with each other, each vehicle adapts its plan in response to the new knowledge they now
have about each others intentions. As a result, C changes its plan to slow down and make
space for vehicle B. This allows for decentralised planning, but with explicit coordination
to reduce the chances of collision between the vehicles.

Explicit and
implicit

coordination

With explicit coordination, agents will develop their plans independently, which are set
out to achieve their own individual goals. Each agent then adapts their plan through
the exchange of knowledge with other agents in the system (See Figure 2.3). In this
way a partial global plan is constructed. The plan is an approximation of the optimal
global plan, such as that created through centralised methods, as it is based on the
combination of the multiple, simpler plans that each agent has created using only
their partial information about the system.

An agent may learn information through other means that don’t involve direct com-
munications with other agents. This implicit coordination through environmental sig-
nalling is the result of agents all interacting with the same environment. E.g. when
an ant leaves a pheromones trace in the environment, this acts as a method of coor-
dination for other ants to adapt their behaviour accordingly[40].

Deterministic
actions

In a simple system the result of an agent’s action may be completely deterministic.
Given the state of a system, and an action, the subsequent state is guaranteed (See
Figure 2.4). E.g. given one state of a chess board, and a one move of a piece, the
position of all the chess pieces after the action is completely predictable. If there are
multiple agents acting within the system, but the outcome of their combined actions
in one state results in another completely predictable state given those actions, then
the environment is strategic (See Figure 2.5). However, in many systems the outcome
of an agent’s actions can be uncertain due to the environment it is operating in. For
example, an agent controlling a drone, operating in the natural environment, could
take identical actions to change direction, when in an identical state, but the outcome
could differ due to the effects of the weather blowing it off course. In this case the
system is described as stochastic (See Figure 2.6).
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Figure 2.4: Deterministic actions in a drone-based multi-agent system. An air-
borne drone,𝐴, takes an action𝑋 , in a deterministic environment. The result of the action
moves it to the predicted position 𝑙𝑜𝑐1 with probability 1.

BA X Y

A

B

loc2

loc1

Figure 2.5: Strategic actions in a drone-based multi-agent system. An airborne
drone, 𝐴, takes an action 𝑋 to move to position position 𝑙𝑜𝑐1. Simultaneously, another
drone𝐵 takes an action𝑌 , to also alsomove to location 𝑙𝑜𝑐1, pushing drone𝐴 into position
𝑙𝑜𝑐2. Although the outcome of drone 𝐴’s action is not as it planned, if both drones’
actions 𝑋 and 𝑌 were known, the outcome would have been predicted. In this case the
environment is strategic.
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Figure 2.6: Stochastic actions in a drone-basedmulti-agent system. An airborne
drone, 𝐴, takes an action 𝑋 . The predicted outcome is that it ends up in location 𝑙𝑜𝑐1,
however, a gust of wind pushes it off course and it ends up in position 𝑙𝑜𝑐2. The result of
the same action in the same state will sometimes be the desired 𝑙𝑜𝑐1, but may randomly
be another position. The environment is therefore stochastic.

Dynamic and static
environments

When an agent has a view of the state of the system, it then uses this information
to calculate its next action, before executing it. If the state of the system is the same
between it sensing it, and taking an action, the environment can be said to be static.
However, if the state changes while an agent makes a decision, perhaps as a result of
the actions of other agents, then the system is dynamic. Where changes in the envi-
ronment are caused by external effects such as weather, component failures, commu-
nication disruptions etc, we define these as perturbations to the system.

Homogeneous and
heterogeneous

agents

An agent will have a set of capabilities, the set of actions it can carry out, plus its
available computational, memory, and other resources required to perform them. If
all the agents in a MAS have the same capabilities, the system can be said to be
homogeneous. In a heterogeneous system however, agents do not have the same ca-
pabilities. As a result, the actions available to each agent may be different, as well
as their performance in completing them. Note that an environment may start off as
homogeneous and become heterogeneous over its lifetime. For example, in a WSN
system, nodes might have exactly the same range of sensors available to them when
initially deployed, and be homogeneous. However, hardware failures could lead to the
system becoming heterogeneous over time, as components degrade and each agent’s
capabilities diverge.

Sequential and
episodic events

Sometimes an agent’s actions in a state can be considered in isolation, in other words
they are not affected by that agent’s past behaviour. E.g. the outcome of moving
a chess piece in a given state will not be any different if it has been moved in the
same way previously. In a sequential case however, past performance will affect the
outcome. If an agent is given a task to perform that uses some resources for example,
its performance in carrying out the same task again may be affected by having less or
no resources available to it that are required by the task’s execution.
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2.5 Challenges
State-action space
size

Formally designed agents can perform set tasks given a well-understood system.
However, it is often not feasible to design algorithms that can predict the large va-
riety of failures or changes that may occur in large-scale, real-world operating envi-
ronments. In addition, as the systems become more complex there is an exponential
growth in the size of agents’ state-action space. This space represents the set of com-
binations of states they can be in, alongside the actions they may take in those states.
Knowing this space before deploying the agents is often unrealistic, as is understand-
ing which algorithms will perform optimally.

Central points of
failure

Introducing a centralised source of continually updated information on the environ-
ment and other agents can increase the knowledge available to an agent about their
state-action space, allowing for better optimisation. These orchestrating agents, agents
that specialise in coordinating other agents in the system, can be found in many dis-
tributed software architectures[41]–[44] and robotics[45], [46]. However, in utilising
this design, a central point of fragility is created, even if the problem can be partially
mitigated through clustering and consensus techniques to increase fault-tolerance.
As other agents’ interactions and communications are channelled through these cen-
tralised agents, congestion and bandwidth saturation problems also grow.

Multi-agent
reinforcement
learning (MARL)

Distributed agent systems with learning enhancements such asmulti-agent reinforce-
ment learning (MARL) can provide similar functionality but distributed across agents
(See Chapter 5). This removes the focal points for orchestration and mitigates con-
gestion issues while still providing the knowledge sharing and action coordination
that allow agents to optimise their actions. With an increasing number of interact-
ing agents however we see an exponential increase in the amount of communications
within the system, eventually saturating bandwidth and exhausting computational
resources. There is also an expectation of stability , that the solution to the agents
optimisation remains relatively stable, with a gradual reduction in the need for explo-
ration of state-action space over time. In dynamic systems this often does not hold.
MARL techniques also do not take account of the inherent risks involved in taking dif-
ferent types of actions, leading to catastrophic effects in areas such as robotics where
some actions may risk severe physical damage, or in financial systems where large
losses might be incurred[47]–[50].

Challenges of
decentralisation

Solutions often target specific systems and technologies but share commonalities due
to the underlying theoretical problem being similar. These can be broadly categorised
as being centralised or decentralised. In centralised solutions, the behaviour of agents
is coordinated through a shared decision-making component. As the environments
become more dynamic and the number of interacting agents expands, the complex-
ity of orchestration and communication increases[51]–[53]. The use of hierarchical
structures, such as in holonic systems, can increase the applicability of this approach,
but limits in scalability still exist due to the same issues[54]–[56].

With decentralised approaches, agents behave with at least some autonomy. They
have a local view of the system, not a global one, either due to the system being
partially observable to them or too complex for them to use system-wide knowledge
effectively. Solutions that utilise system-wide information can optimise well, but do
not easily scale as the complexity of the systems increase, with calculations becoming
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intractable. When only local-knowledge is used, scalability is increased, but optimisa-
tion can be difficult due to the use of multiple independent solutions based on agents’
local views instead of a combined global solution.

Example 2.5.1 (Examples of MAS systems). There are numerous problem areas
where scalability challenges limit the effectiveness of centralised techniques for
orchestration, or where the poor reliability of communications requires some
level of autonomous behaviour. Significant research on these problems has been
carried out in areas such as;

• Vehicular ad-hoc networks (VANET) and traffic control[3], [4], [57];

• Unmanned autonomous vehicles (UAV) communication and power man-
agement[58];

• Routing and energy distribution in wireless sensor networks[59];

• Resource allocation and service scaling in cloud computing[60];

• Quality of service in content delivery networks[61].

2.6 Summary
In this chapter we covered the basic concepts in multi-agent systems, and the broad
elements of a distributedmulti-agent system. This helps us understand the challenges
of different environments and the trade-offs in design techniques. Our work focuses
on systems with decentralised planning, using self-organisation to form emergent
roles in preference to more pre-designed strategies. The environments are partially-
observable, and dynamic, agents are cooperative and heterogeneous, and actions are
sequential with strategic outcomes. We also use an element of implicit coordination
through the use of rewards.
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Chapter 3
Task allocation

Achieving goals within a multi-agent system often requires cooperation and coordi-
nation amongst multiple agents to complete complex tasks. The problem of allocat-
ing tasks and subtasks so that agents can complete them successfully and maximise
the overall system utility is the subject of this chapter (Contribution 1).

3.1 Introduction
There are many systems containing multiple agents where it is useful for an agent to
be able to allocate tasks to other agents in order to aggregate information, or improve
the outcomes of the individual tasks. E.g. if there were a system containing multiple
vehicles communicating with each other, one vehicle may want to understand the
congestion levels in its local area. To do so it could allocate congestion measurement
tasks to other agents, then collect together the results. The question arises on which
other agents to allocate these types of tasks to get the most useful results, and how
to perform reliably in a dynamic environment.

Chapter structureIn the next section, Section 3.2, we cover the task allocation problem. We then look at
some examples of this problem in real-world fields and key considerations in solving
it in Section 3.3. Section 3.4 examines the differences between centralised and decen-
tralised task allocation. Section 3.5 introduces some of the algorithms used for this
problem, in particular multi-agent reinforcement learning, as well as their strengths
and limitations. The nature of the exploration strategies used by agents in optimising
their actions is covered in Section 3.6, followed by some important concepts particular
to algorithms operating in large, continuous systems in Section 3.7.
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Example 3.1.1 (Task allocation in an ocean-based sensor network). In a sensor
network set up to monitor ocean conditions, agents each control sensors on
individual buoys distributed across the ocean surface. Tasks in this case are
salinity measurements to be taken at locations within this area. Agents are het-
erogeneous, in that they may not perform tasks equally well, perhaps due to
component ageing or damage. The tasks are continuous as requests for mea-
surement are repeated over the lifetime of the system. The system is dynamic,
as agents’ actions may effect the value of the actions of other agents, and per-
turbed, in that there are currents and other environmental effects. With limited
power supplies, and the need for tasks involving measurements to be relatively
recent to be useful, there are natural resource constraints on the system.

3.2 Defining the task allocation problem
Given a set of tasks to execute, an agent can allocate them to other agents in the sys-
tem to help it complete those tasks. The agent can allocate tasks amongst agents it
already knows, learning which of those agents complete each different type of task
with the best results. The agent can also learn about other agents in the system,
which may help it achieve better performance, at the expense of expending more re-
sources discovering these new agents compared to focusing on task completion alone.

The task allocation
problem

Definition 3.2.1 (The task allocation problem). The task allocation problem is that of
optimising the allocation of a set of tasks in a MAS amongst agents to best achieve
the objectives of the system, given some set of constraints.

3.3 Objectives of a task allocation solution
Many different industries involve multi-agent systems where there are practical ex-
amples of task allocation problems. There are close similarities between these problem
types in terms of the algorithms that can be applied. In addition, the similarity of the
underlying systems across multiple industries makes research in one area highly rel-
evant to many others. As such, although we use multi-vehicle systems and wireless
sensor networks throughout our work as examples, many of the insights transfer to
other problem domains and industry sectors.

Task allocation in
V2X systems

Modelling and coordinating behaviours of actors in vehicle-to-everything (V2X) sys-
tems is essential for autonomous driving and interconnected transport management.
Information exchange allows for vehicles to be more aware of other vehicles[62], and
to interact with road infrastructure systems. This means they can make decisions
with increased safety and greater efficiency[63]. A request between vehicles may be
a composite set of tasks such as providing position and speed data, traffic congestion
information[64], traffic light status, roadworks in progress, and so on.
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UAV and MANETSimilar problems arise in UAV and other mobile ad-hoc networks (MANET) more gen-
erally. There may be multiple vehicle-to-vehicle and vehicle-to-ground communica-
tions, and restricted energy availability, which needs to be managed effectively[58].
The interactions of multiple mobile vehicles is an area where there is a large body of
research on artificial intelligence applications[3], [4] to develop models and predictive
solutions.

Key requirementsTo achieve a solution for these task allocation problems in multi-agent systems we
need to develop the abilities for agents to;

1. learn to make the best decisions given their current state;

2. adapt how they explore state-space depending on how successful they are in
task-allocation currently;

3. make decisions based only on a localised or otherwise partial-view of the sys-
tem;

4. maintain their resource usage within set limits.

3.4 Centralised and decentralised task allocation
Centralised task
allocation

In orchestrating the allocation of tasks we can use centralised planning, or decen-
tralised techniques. With centralisation there is central agent that coordinates the
other agents. This agent has communication channels open with all the other agents
in the system, and can use these channels to gather information about the capabili-
ties of the agents in the system, solve the problem of finding the best allocation of the
tasks amongst those agents, then distribute them accordingly[65]–[68] (See Figure
3.1).

The main drawbacks of this approach are due to the centralisation of functionality
and resource usage within a single agent. As each agent must communicate with the
central agent, scalability in number of agents in the system is limited by the resources
required by the central agent to handle the communication. Additionally, the task
allocation problem itself is solved globally by the central agent, so the complexity of
the computation possible is limited by the resources available to that specific agent.
The reliance on a coordinating agent is also a single point of failure for the system,
decreasing the robustness of the approach in environments where agent failure or
damage are real considerations1.

Decentralised task
allocation

Decentralised task allocation strategies avoid many of the issues that limit centralised
techniques, although they have their own issues to be overcome. In this case, there is
no centralised controller orchestrating the other agents. Each agent has a local view
of the system, and communicates with other agents in the system to coordinate the
allocation of tasks[70], [71] (See Figure 3.2).

As agents communicate with a local group of agents, the resources used for commu-
nication are spread out amongst agents. This is also true for computational costs as
each agent will solve a smaller task allocation problem rather than the full, global
problem. With this distribution of the problem across agents, robustness of the sys-
tem is increased as the loss of an individual agent is less likely to have a critical impact

1The use of clusters of primary controllers can be used to mitigate the robustness risk, however there
are limits to this as a solution[69].
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Figure 3.1: Coordination of task allocation in a centralised MAS. Given a set of
tasks to complete, the agent 𝑔1 collects knowledge from all agents 𝑔2 - 𝑔10 in the system.
𝑔1 then calculates the globally optimal allocation of tasks amongst the agents, before
allocating the to the agents. The majority of the communication and computation of
the global solution is with agent 𝑔1, which requires ever increasing CPU, memory, and
bandwidth, limiting the scalability of this approach.
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Figure 3.2: Coordination of task allocation in a decentralised MAS. Agents in
the system collect knowledge from a subset of other agents in their locality. Each agent
calculates its own locally-optimal view on the allocation of tasks, in coordination with
other local agents. The agents then allocate tasks amongst themselves. Communication
and computation is now distributed, increasing scalability, at the cost of a more approxi-
mate task allocation solution.
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on performance in large systems.

The negatives of this strategy come from the distribution of the task allocation prob-
lem itself. When the problem is solved centrally, the knowledge held by all the agents
in the system can be used to find the optimal solution. With decentralisation how-
ever, as each agent forms a localised view of the system, the task allocation problem is
decomposed into many smaller problems that each agent will solve individually. Each
agent has both incomplete knowledge of the system as a whole, and of other agents’
solutions to the problem. The effect of this is that the overall system solution to the
task allocation problem is likely to be suboptimal.

3.5 Multi-agent reinforcement learning algorithms
To provide some context for the work to follow we look at some relevant research in
using multi-agent reinforcement learning (MARL) to solve task allocation. Although
there are other useful strategies, such as auction-based systems, and particle swarm
optimisation techniques, these also have specific challenges. Auction-based systems
carry increasing orchestration cost as the number of agents involved increases, which
impacts the scalability of related solutions. They also suffer significant impact when
the system is dynamic as agent communication is lost. Swarm approaches can be ef-
fective under dynamic conditions but are also prone to optimising on local-optima[72].

In discussing MARL, we focus in particular at methods of allocating rewards to drive
behaviours, how allocation affects both the exploration of state-space, and coordina-
tion between agents.

Multi-agent
reinforcement
learning

Multi-agent reinforcement learning (MARL)[71], [73], [74] applies reinforcement
learning techniques to multiple agents sharing a common environment. Each agent
senses the environment and takes actions that cause a transition of the system from
one state to a new state, resulting in feedback being given to the agent in the form
of a reward. There are a number of issues that can limit the applicability of MARL
techniques which we discuss next.

Problems of high-
dimensionality

As the number of agents in these systems increase, there is a corresponding expo-
nential increase in the possible communications and actions an agent may take with
respect to other agents in the system. This increases the state-action space size, lim-
iting the scale of systems that standard learning algorithms can be applied to. There
are ways of mitigating this problem, and making large state-spaces tractable for com-
putation.

State-space
aggregation and
abstraction

Through aggregation or abstraction, the number of states can be reduced through com-
bining similar ones into a single state in the learning model[75], [76]. This simplifies
the model, but sacrifices information about the merged states. Additionally, it can
be difficult to qualify which states are similar enough to be abstracted, and the ef-
fect of doing so on the performance of agents can be unpredictable in more complex
multi-agent systems.
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State-space
generation and

adaptation

With state-space generation and adaptation algorithms, we can have the algorithm
generate its own initial state-space representation[77], and then adapting this rep-
resentation throughout its lifetime[78], [79]. This approach reduces the state-space
down to those states relevant to an agent’s learning function, while ignoring the oth-
ers.

In Chapter 9 we introduce two algorithms that develop on this approach to tackle
these problems caused by high-dimensionality. Our SAS-KR algorithm allows an
agent to not only generate and adapt its known states through its lifetime, but also
to forget state information that is judged to be less relevant. In addition, the N-Prune
algorithm reduces an agent’s state-space by restricting the number of other agents it
can observe at one time, avoiding many of the challenges of large state-spaces.

3.6 Exploration strategies
Undirected and

directed
exploration

Finding the right balance of exploration, so that agents can discover the optimal ac-
tions in expansive state-spaces, and exploitation, so that they can successfully com-
plete tasks, is difficult[80], [81]. Using undirected methods[82], where exploration is
effectively at random, is not feasible in large state-spaces where the sparseness of
action sampling slows learning. For this reason we focus on directed methods where
knowledge can be used to make algorithms more selective in searching state-space.

Exploration in
dynamic

environments

The exploration/exploitation challenge for an agent increases in difficulty with the
dynamism of other agents’ policies and actions. In stationary environments, there
is often an initial highly explorative stage, commonly using 𝜖-greedy action selec-
tion[83], which then switches off in favour of a continual exploitation stage once the
algorithm’s performance is deemed to be acceptable. This may also take the form of
a decay factor, where the degree of exploration decreases gradually over time such as
in standard Boltzmann exploration[80]. In a non-stationary environment however, the
tasks and their distribution may change. Agents may affect the environment and be
affected by the behaviours of other agents. A fixed probability or time-based switch to
exploitation risks a reduction in algorithm performance as the most optimal actions
continue to change over time, but an agent’s probabilities of choosing actions remain
static.

Adaptive
exploration

Adaptive exploration techniques[81] are designed for this non-stationary situation,
varying exploration and exploitation throughout the system lifetime[84]. Other al-
gorithms increase the exploration of infrequently sampled actions. Examples of this
are count-based approaches[85], extending Boltzmann explorationwith a state-action
visitation factor[85]. Successor representations[86] have also been used as the state-
action sampling metric to incentivise exploration[87].

While these methods can work in non-stationary environments where the degree of
change is relatively constant, often the rate of change can accelerate or decelerate, or
be relatively static in some areas of the system and highly dynamic in others. For ex-
ample, in an ocean-based environment, currents might be volatile and rapidly chang-
ing in one part of the environment, but be stable with calm seas in another. To work in
those environments, in Chapter 9 we introduce a variation of these approaches that
utilises state-action space sampling history as well as past rewards history to guide
exploration for our RT-ARP algorithm, discussed in Section 9.5.
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No-regret
exploration and
intrinsic
motivation

These exploration strategies use the principle of optimism in the face of uncertainty ,
the assumption that less well-known state-actions are worth exploring[88]. The use
of no-regret to optimise reinforcement learning algorithms is well established[89] ,
with additional work applying this to exploration strategies[90], [91]. Agents can
also be given different intrinsic motivations, underlying goals that generate rewards in
addition to immediate task-completion benefits. Methods such as knowledge acqui-
sition[92] or Bayesian curiosity[93] can then be used to drive exploration behaviours.
Short-term and long-term intrinsic rewards can be combined to encourage local, and
broader system exploration respectively[94].

In our work we adapt how optimistically an agent explores, not only based on un-
certainty in the value of its actions, but on how optimally it believes it is exploiting
the system given its past history. Whereas advantage functions (as used in actor-critic
algorithms) compare the value of an action with those of actions that can be taken in
the same state, we utilise the concept of neighbourhoods of agents2, with some key
assumptions on how these neighbourhoods change over time3 to compare an agent’s
performance in its current state with its performance in similar, and highly dissimilar
states in the past, using this comparison to influence its behaviour. The RT-ARP algo-
rithm introduces a form of regret-minimisation exploration based on a function of the
rewards over long and short-term timescales. We detail this work in Section 9.4.5 in
which we describe how our impact transformation function is used by agents to predict
the risk of taking more disruptive actions, and exploring more aggressively. This also
provides a degree of risk-based intrinsic motivation, where agents are encouraged to
explore more when their measures of short and long-term performance are unequal,
and focus more on sampling-based Boltzmann exploration when they are comparable.

3.7 Challenges in large continuous systems
The
stability-plasticity
dilemma in
continual learning

One of the challenges in non-stationary reinforcement learning is how much knowl-
edge an agent should preserve about its previous experiences compared to adapting
to more recent ones. This stability-plasticity dilemma affects howwell agents complete
new tasks they have previously seen[95], [96]. In the worst case it can result in catas-
trophic inference[97], where tasks an agent has completed in the past are treated as
completely unknown when seen again in the future. The optimal balance of stability
and plasticity is dependent on the proportion of tasks an agent sees in the future that
will be similar to ones it has seen in the past. This is often achieved through expe-
rience replay , ensuring that past events are reapplied in the current learning context
to not be completely overwritten by updates due to an agent’s present actions[98]–
[100] or localised learning updates to reduce overwriting past learned action proba-
bilities[101], [102]. There are difficulties however in selecting which experiences are
relevant in the present and should be reapplied. Successful or rewarding past actions
may not be useful in an agent’s current context given the non-stationary nature of
the environment.

The RT-ARP algorithm introduced in Chapter 9 helps to address the stability-plasticity
challenge by measuring an agent’s performance over a range of short to longer-term
timescales, then adapting the speed of the agent’s learning based on the comparison

2See Section 8.2.
3See Section 9.4.5.
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of task rewards over these periods, discussed in Section 9.4.5. The effect of this is that
plasticity is increased. Behaviours are more strongly overwritten when the current
policy of an agent is performing well in the short-term, but poorly over the longer
term. As shorter and longer-term rewards become comparable, plasticity is decreased
and learned values become more stable.

Coordination in
agent-based

systems

In general, coordination in multi-agent systems increases the optimality of solutions
found, but at the cost of increased overhead, which limits scalability. Agents in MAS
can range from being fully cooperative to fully competitive. In cooperative systems
the agents all share a common reward function and try to maximise that shared value
function. Dedicated algorithms often rely on static, deterministic, or on exact knowl-
edge of the states and actions of other agents. Coordination and maximisation of
joint-action states results in high dimensionality due to the inclusion of the actions
of other agents in calculations. To avoid this overhead, we can utilise the sparse-
ness of the interactions in large multi-agent systems to reduce the coupling between
agents by having them work independently and only collecting information about
other agents when required. For example, by learning the states where some degree
of coordination is needed[103]–[105].

Similarly, when approaching tasks that can be decomposed and allocated amongst a
group of agents in a multi-agent system, we can use decomposed reward signals to
induce some degree of coordination amongst localised agents that share those sub-
tasks[106]. In a non-stationary environment, the value of those tasks to the allocating
agent, and the capability of those agents completing subtasks, can change signifi-
cantly. This means fixed rewards will lead to non-optimal coordinated behaviour. The
combined output of our work in Chapter 9 is the ATA-RIA algorithm, designed to
mitigate this problem. It enables an agent allocating tasks to continually vary indi-
vidual decomposed reward values based on the outcomes of its allocation of subtasks
to other agents.

3.8 Summary
This chapter went into detail on the task allocation problem in multi-agent systems,
and highlighted research showing the key challenges we look to tackle in our work;

• in large or complex systems the correct policies for agents’ behaviour are not
known at system initialisation, and may be constantly changing due to system
dynamics;

• since systems may be dynamic, the optimal solution may be constantly chang-
ing;

• for a system to be scalable, system-wide knowledge is not feasible to maintain
or to compute with;

• agents have physical constraints on compute andmemory in real situations that
limit their maximum resource usage.

We briefly introduced some of the algorithms we present in Chapter 9 which are
designed to tackle these issues. In the next chapter we look at the resource allocation
and its part in optimising task executions.
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Chapter 4
Resource allocation

Tasks may require resources to be used in their execution which must be provided by
the agents who have been allocated those tasks. This chapter looks at how agents
can optimise the allocation of their resources to achieve the best performance in
completing these tasks (Contribution 2).

4.1 Introduction
In completing tasks or actions, agents need to utilise resources. These may be re-
sources shared with other agents in the environment or resources that are dedicated
to each specific agent. The resources required may be finite, being used up by the
agent completing a task, or they may be unrestricted, but are only able to be utilised
at a finite rate. E.g. a robot that makes welded repairs to pipes has a limited amount
of solder to use before that resource is used up[107], whereas an agent monitoring
ocean salinity may use up battery power in taking a measurement, but energy is con-
tinuously replenished through a solar panel[108].

Chapter structureIn the next section, Section 4.2, we briefly define the resource allocation problem. We
look at some examples in different systems, and the key elements of the problem in
Section 4.3. Section 4.4 then goes in detail to describe some algorithmic approaches
to tackle the problem, and their limitations.

Example 4.1.1 (Resource allocation in contamination monitoring). A set of sen-
sors, each controlled by an agent, are deployed across an area contaminated
with radioactive waste. The agents are repeatedly given tasks to measure the
temperature, humidity, and radiation levels in their location. The more battery
energy an agent dedicates to taking a radiation measurement, the longer the
sampling time and the greater accuracy of the measurement. However, in doing
so it has less battery power to dedicate to temperature and humidity measure-
ments, providing less accurate readings.
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Figure 4.1: The allocation of resources to prioritise tasks. An agent has been
allocated tasks 𝑇1 and 𝑇2. Both require the use of the same resource, available in fixed
quantities to the agent, however, 𝑇2’s completion is more valuable to the system’s goal
than 𝑇1. In the first figure, the resource is shared equally amongst both tasks, which are
completed at the same priority by the agent. In the second figure, the agent allocates
more of its resource to 𝑇2, which it now achieves better performance on. However, this
now means that 𝑇1 has a reduced amount of resource allocated to it and as a result the
agent’s performance on its completion is reduced. As 𝑇2 is the more valuable of the two
tasks, the overall utility of the system is increased.

4.2 Defining the resource allocation problem
When allocated a set of tasks to complete, an agent may dedicate its available re-
sources to these tasks in different quantities. In doing so, the quality of a task, the
performance achieved by the agent in executing that task, can be increased. How-
ever, increasing the resources dedicated to the completion of one task can reduce the
quality of others. As a result of these resource limitations, agents have a choice to
make on how they allocate their resources amongst their different tasks, to optimise
the outcome (See Figure 4.1).

The resource
allocation problem

Definition 4.2.1 (The resource allocation problem). The resource allocation problem
can be defined as how to allocate an agent’s available resources amongst a set of
tasks that will optimise the utility in a MAS given that; the resources may be required
for multiple different tasks, and the available amount of each resource may be fixed,
or variable, over the lifetime of the system.

4.3 Objectives in multi-agent resource allocation
Examples demonstrating the resource allocation problem exist in many applica-
tions where the actions of agents place demands on shared resources, or in task-
prioritisation problems, where multiple agents allocate tasks to an agent and compete
for it to prioritise their task. Systems such as these are often categorised as exam-
ples of multi-agent resource allocation (MARA)[52] or dynamic task-scheduling prob-
lems[109].
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Resources in V2X
systems

We discussed the types of tasks being allocated inside a V2X system, such as requests
for other agents’ locations, or congestion information, in Chapter 3, Section 3.3. Each
of these tasks requires the vehicle processing the request to dedicate resources to ac-
quiring and aggregating information. Each of these tasks also has a varying degree
of value to the vehicle receiving the data, depending on its situation. A vehicle travel-
ling at speed may prefer nearby vehicles to provide position and velocity data. When
vehicles are further away then less immediate factors such as traffic density in the
area may become more valuable[110], [111]. A vehicle may receive such tasks from
many vehicles and must decide how to prioritise and allocate the required resources
amongst these competing demands. The interactions can also be highly dynamic.
Nearby vehicles may communicate updates at a high frequency, becoming less fre-
quent as they move further away. Interruptions to connectivity can come from build-
ings, other vehicles, and interference[5], [112]. With each vehicle providing its own
set of resources, there is also the possibility of forming an ad-hoc distributed com-
pute platform amongst multiple vehicles, which requires efficient resource allocation
to handle the many distributed tasks in the system[113], [114].

Key requirementsThese examples highlight the key elements of the systems we look to provide a re-
source allocation solution for;

1. there is a distribution over time of incoming sets of tasks, which require decom-
position and prioritisation by agents;

2. the value of each task is dependent on the unknown state of the agent that
requests its completion;

3. there are multiple competing tasks demanding resources for their execution;

4. the types of tasks agents receive may vary over time, as well as the value of
those tasks.

4.4 Algorithms for resource allocation
There are established methods that can be applied to the resource allocation problem
such as auction protocols and automated negotiation schemes[51], [115], [116], e.g.
contract-net[117] and its more recent extensions[118]. In these, an agent announces
the availability of some resource it owns, agents interested in gaining access to the
resource make bids, then the resource owner makes the final allocation.

Scalability of
auctions and
negotiation

Although negotiation algorithms have been developed that are broadly used in many
areas, the limitations become apparent when applied to large-scale and complex sys-
tems in particular[119]. The first problem occurs due to the lack of scalability with
increased number of participating agents. When there are many agents bidding or al-
locating resources, the negotiation process can carry a significant overhead. This can
delay, or otherwise reduce the optimality of, the overall allocation of resources. Exten-
sions such as concurrent contract-net[53] mitigate some of those effects by extending
the negotiation protocol but inherently have the same limitations.
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Resource
allocation

complexity

The second issue comes from the effects of resource allocation complexity . The allo-
cation of resources to one agent can positively or negatively impact further agents
whose own demands rely on that agent’s ability to acquire those resources. In addi-
tion, where there are many agents requesting a resource-type, and many that can al-
locate that resource, finding the optimal distribution of those agents’ demands across
those resource-allocating agents is a challenging problem. In some cases combinato-
rial auctions[120], [121] can help develop more complex allocation strategies, but with
an associated negative impact on the scalability of solutions.

Joint and
independent

action learning

Longer-term effects, and more complex relationships, can be modelled throughmulti-
agent reinforcement learning (MARL)[71] to learn, and adapt, resource allocation poli-
cies. Broadly speaking there are two main strategies that can be adopted; joint-action
learning[122] learns a model for the system as a whole, using the combination of
knowledge from all agents in the system; and independent-action learning, where each
agent learns independently of other agents in the system using only a localised view
of the system[122], without coordination. Examples of joint-action algorithms can be
found inQ-learning[123], [124] and deep learning[125]–[127], and some independent-
action based solutions based on distributed Q-learning algorithms [128], [129]. We
will cover some state-of-the-art algorithms in Chapter 5 that often use combinations
of both strategies to achieve the best performance.

Challenges in joint
and independent-

action learning

Whereas we can best solve the problem of global resource allocation optimisation
through joint-action learning, this becomes computationally intractable as the num-
ber of agents and states increases, and so suffers from the scalability problem. Alter-
natively, independent-action learning avoids the costs of intercommunication with
other agents so is more scalable, but without a system-wide view does not optimise
as well. This is due to the lack of observability of other agents’ strategies, and risks
becoming stuck in locally-optimal solutions[109], [116], [130]. However, recent work
utilising on-policy reinforcement learning algorithms such as proximal policy optimi-
sation (PPO)[131] based approaches has shown that reinforcement learning can be
practically effective in some independent-action learning systems [132], [133].

Centralised
training with
decentralised

execution (CTDE)

Centralised training with decentralised execution (CTDE) algorithms[134], [135] look
to combine the best of joint and independent-action approaches. Agents develop local
policies, however during a training phase there is centralisation using shared, system-
wide information to learn the best policies. For example, multi-agent deep determin-
istic policy gradient (MADDPG)[136] has decentralised agents, learning a local policy
from their own observations, with a centralised critic that can use information from
all agents. After an initial training period, the agents’ localised actors are used in
isolation1

Providing
allocation
feedback

As we develop our algorithms in Chapter 10, the approach we will follow is to extend
an agent’s localised view by enabling a parent agent , the resource-requesting agent, to
feedback to a child agent , the resource-allocating agent, the value of the child agent’s
allocation strategy to the parent’s broader goals. This passes information to the child
agent on how its allocation may have affected other child agents’ task completion
qualities. Through this extension of a localised learning approachwe are able tomodel
the complex outcomes involved in multiple agents’ resource allocations. However, as
each agent’s view of the system is still constrained, it scales to large systems.

1See Chapter 5, Section 5.2, ’Actor-critic methods’ for more detail.
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4.5 Summary
In this chapter we looked at the problem of optimising resource allocation, the draw-
backs that can come from using auction-based algorithms, and the differences be-
tween agents being able to solve the problem jointly, or independently.
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Chapter 5
Reinforcement learning in agent
systems

In this chapter we introduce reinforcement learning methods, and how they can be
used to help achieve our research goals. We examine the ways these techniques are
applied to agent-based systems, and the difficulties found in doing so.

5.1 Introduction
Reinforcement learning covers a class of problems where an agent in a state takes an
action and adapts its future behaviour in response to a reward signal from the en-
vironment. Using a number of different algorithms and conceptual approaches from
this area there are many complex learning problems that can be successfully tack-
led[137]–[139].

Chapter structureIn Section 5.2 we look at the basic concepts for learning an environment, and how
to explore that environment in Section 5.3. We briefly introduce some dynamic pro-
gramming techniques that will be used later by our algorithms in Section 5.4 and key
considerations around balancing learning policies in Section 5.5. We focus in more
depth on multi-agent reinforcement learning (MARL) in Section 5.6, with considera-
tion of the challenges to successfully applying these algorithms in Section 5.7.

5.2 Modelling the system
Learning from
experience

An agent’s policy is a deterministic or stochastic mapping that relates states in an
environment to a set of actions that the agent should carry out in those states. This
policy defines the agent’s behaviour in a system. Policies can be learned and adapted
over time as the agent takes actions, and experiences the outcomes of those actions.
Rewards enable the agent to receive feedback from the environment on the success
of its policies, driving its adaptation. It is through this process that the agent learns
increasingly beneficial policies to pursue.
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Value functions The accumulation of rewards over time through taking an action is its value, often
estimated through a value function. This encourages agents to make better long-term
decisions in contrast to purely short-term ones driven by immediate rewards. The
estimation of value functions and the constant refining of them given actual outcomes
is central to the success of reinforcement learning techniques.

Modelling the
environment

In learning an optimal strategy there are two main approaches agents may take. In
model-free learning an agent has no internal map of the environment, and takes a
trial-and-error approach to learning better policies, simply reacting to the feedback it
receives as a result of its actions. However, an agent could instead attempt to predict
the outcome of its actions, which requires it to model the environment, giving model-
based learning. Using this approach allows an agent to reason about planning, before
selecting actions. In our work we focus on model-free algorithms as the systems we
will be targetting are unknown and the optimum behaviour uncertain.

Model-free algorithms fall into two main categories of reinforcement learning algo-
rithm for agents; value-based reinforcement learning, where agents learn the value
function directly, using the expected cumulative reward of taking an action in a state
to infer an action selection policy; and policy-based reinforcement learning, where the
agent directly learns a mapping from states to actions without explicitly using a value
function, instead optimising the policy by maximising rewards through the use of
techniques such as gradient ascent.

Comparison of
value-based and

policy-based
approaches

These two reinforcement learning approaches come with their own strengths and
weaknesses[140]. Value-based methods store no model and instead combine past
information into simple scalar values reflecting how good an action in a certain state
is from past trials, making them often simpler to use and more explainable. They can
store past information learned about the environment explicitly and search for the
best current policy, but at the cost of increasing computational complexity. These
methods often require a lot of trial and error to learn and adapt to changes in the
environment[141]–[143].

Policy-based approaches come with their own challenges in MARL. They inherently
suffer in non-stationary environments, where learning instability is often increased
and enhancements such as experience replay become less applicable[136], as well as
often showing high variance[144] (which can be tackled through actor-critic meth-
ods). However, they can be effective in high-dimensional or continuous action spaces
where value-based methods scale poorly.
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Actor-critic
methods

Reduction of the variance of solely policy-based algorithms can be achieved through
actor-critic based reinforcement learning methods[145]–[148]. This strategy combines
a policy-based actor, which selects the actions that dictate an agent’s behaviour, and
a value-based critic, that judges how good that action was (used in the update to the
actor’s policy). Such methods indeed reduce variance, which can be improved further
through the use of an advantage function as critic instead of the value function, so that
the action chosen at a state is compared to the average value of the state[149]–[151].
However, drawbacks such as the sample-efficiency of policy-based methods and the
bias introduced by actor-critic methods, are still considerations in their application.

The use of value-based, policy-based and actor-critic based reinforcement learning ap-
proaches can be found in recent state-of-the-art algorithms[152], [153]. For examples,
see the value-based deep-Q network (DQN)[154], and policy-based trusted region pol-
icy optimisation (TRPO)[155], and actor-critic based deep deterministic policy gradi-
ent (DDPG)[156] algorithms, as well as extensions of these, and others strategies, in
Tables 5.1, 5.2, and 5.3.

In our work we focus on improving the performance of value-based approaches in
non-stationary environments so that they can be utilised in a greater range of systems
where they previously may have been inapplicable or performed poorly.

5.3 Exploration and exploitation
An agent should not always take what it believes to be the best action in a given
state, as it may not have learned enough about the possible actions in that state to
have found the optimal one. Or indeed, the best action to take may change as the
environment evolves over time. The problem is that the agent may have a very ac-
curate estimate of the value of taking an action due to sampling that particular one
many times, but, having not chosen the alternative actions in that state very often,
very poor estimates of those other actions that may actually lead to better outcomes.

In addition, we have to view the result of actions over the long term. For example,
taking an action with a low reward could lead to states where there are actions with
high overall value yet to be explored by the agent. It is this balance between exploita-
tion, where an agent takes the current optimal action and gets the expected highest
reward, and exploration, where it has more uncertainty about the reward, that ensures
that the agent investigates the solution space for the best overall policies.

In order that the agent does not get stuck persistently taking suboptimal actions,
and explores other actions about which it has more uncertainty, we allow for some
probability that the agent will refuse to take what it believes to be the optimal ac-
tion, and take another instead. An agent can use simple methods such as probabilisti-
cally taking random, possibly suboptimal actions as used in 𝜖-greedy exploration[157],
and other, more complex adaptations of this approach[158]. Annealing methods use
a time-dependent probability distribution to select actions based on their predicted
outcomes, such as in the commonly used Boltzmann exploration[159] method. Intrin-
sic curiosity[160], [161], or intrinsic rewards[162], can push agents to explore based on
some quality internal to the agent, rather than an external reward signal. Other meth-
ods prioritise exploring the unknown, sparsely sampled areas of state-action space
more effectively and efficiently[163].
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Our work on task allocation, described in Chapter 9, utilises both 𝜖-greedy and in-
trinsic reward approaches for adaptive exploration based on an agent’s belief about
its current performance.

5.4 Dynamic programming
For an agent to discover its optimal policy it needs to calculate the value of cumulative
rewards for the actions it can take. This could mean taking into account actions and
rewards from 𝑡 = 0 to the current time, which quickly becomes intractable. If we
assume theMarkov property , that the probability distribution of future states depends
only on the current state and not on any previous ones, we can apply methods from
dynamic programming such as policy, or value iteration to find solutions. As these
methods depend on knowledge of action probabilities and state transitions they are
not directly applicable in systems where agents need to learn these from interactions
with the environment. However, they have strongly influenced the development of
reinforcement algorithms that are used in their place.

Markov Decision
Processes (MDP)

AMarkov decision process models the situation where an agent in state 𝑠 takes action
𝑎 and moves into the state 𝑠′, therefore receiving a reward 𝑟 . Using this definition the
probability of moving from the current state-action pair ⟨𝑠, 𝑎⟩ to a new one ⟨𝑠′, 𝑎′⟩ is:

𝑃 (𝑠′, 𝑟 |𝑠, 𝑎) = 𝑃𝑟 {𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (5.1)

The goal for an agent is to find an action policy 𝜋 (𝑠), for the state 𝑠 , that maximises
the accumulated reward. If we apply a discounting factor 𝛾 , then the overall sum of
rewards is:

∞∑︁
𝑡=0

𝛾𝑡𝑟𝑎𝑡 (𝑠𝑡 , 𝑠𝑡+1) (5.2)

Where a reward 𝑟𝑎𝑡 is received by an agent taking an action 𝑎𝑡 at time step 𝑡 .

Where the agent does not have certainty on the current state of the system we have
a partially observable Markov decision process (POMDP). In this case, when an agent
takes an action in state 𝑠 it does not deterministically end up in state 𝑠′. Instead
there is a probability distribution over possible subsequent states from 𝑠 and the agent
instead maintains beliefs on the current state given any observations it has of the
system.

Temporal
Difference
Methods

Combining Monte Carlo methods and dynamic programming, temporal difference
learning[164] updates an agent’s current prediction of the estimated value of tak-
ing an action based on its estimate of the value in the next time-step. This means
that the estimates of value returns can be updated in a bootstrap fashion using other
estimates without waiting for actual values to be returned[165]. The estimated value
can be updated using the value estimate of the next time step 𝑉𝑡 (𝑥𝑡+1) with discount
𝛾 , such as in the temporal value difference update, 𝑟𝑡 + 𝛾𝑉𝑡 (𝑥𝑡+1).
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eligibility tracingUsing eligibility traces[166] we can update values based on estimates across multiple
states and time-steps. This gives a family of temporal difference functions where
𝑇𝐷 (0) represents updating only the previous prediction all the way to𝑇𝐷 (𝜆) where all
previous predictions are updated[167]. For example, for the accumulative eligibility,

𝑒𝑡 (𝑥) =
{

1 + 𝛾𝜆𝑒𝑡−1(𝑥), 𝑖 𝑓 𝑥 = 𝑥𝑡
𝛾𝜆𝑒𝑡−1(𝑥) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.3)

Eligibility tracing will form part of our solution to resource allocation in Chapter 10,
Section 10.3.2.

Q-LearningQ-learning[168] is an off-policy , model-free approach that learns functions of Q val-
ues, action-values that describe the utility of the resulting outcome given optimal
choices thereafter. 𝑄 (𝑠, 𝑎) is the Q-value mapping of a state-action pair to a value, an
agent’s estimate of the future reward of taking action 𝑎 in state 𝑠 . The update uses
the current Q-value and the reward for taking the action 𝑎 in state 𝑠 and arriving in
the next state 𝑠′. The learning rate 𝛼 ∈ (0, 1] and the discount factor 𝛾 ∈ (0, 1] control
the rate at which the learned values are updated:

𝑄 (𝑠, 𝑎) ← (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾𝑚𝑎𝑥𝑄 (𝑠′, 𝑎′)] (5.4)

Where 𝑟 is immediate reward that the agent receives after taking action 𝑎 in state 𝑠
and𝑚𝑎𝑥𝑄 (𝑠′, 𝑎′) is the current estimate of the optimal Q-value that can be obtained
in the next state 𝑠′.

In Chapter 9, Section 9.4 we detail how we use Q-learning as part of our solution
to the task allocation problem, and how we adapt to handle non-stationary environ-
ments through a form of intrinsic rewards dependent on an agents belief of its current
performance.

5.5 Balancing Exploration and Exploitation
There are a number of common algorithms used to balance the needs of an agent to
exploit its perceived optimal action and exploring new pathways through the policy
space.

The Greedy policy
function

The greedy policy is simply to always take the maximal rewarding action 𝑎 in any
given state. This means that there will be no exploration of uncertain or non-optimal
paths. So, given a state 𝑠 with possible set of actions 𝐴𝑠 available to the agent in that
state:

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑏∈𝐴𝑠

𝑄 (𝑠, 𝑏) (5.5)

The 𝜖-greedy
function

If instead of choosing an action with a greedy policy we generate a small probability
0 ≤ 𝜖 ≤ 1 that we choose another action randomly from the set of possible actions
in state 𝑠 we can introduce an element of exploration into our strategy. So, if for each
time step we generate a random number 0 ≤ 𝜉 ≤ 1 then:

𝜋 (𝑠) =
{
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎 ∈ 𝐴𝑠 , 𝑖 𝑓 𝜉 < 𝜖

𝑎𝑟𝑔𝑚𝑎𝑥
𝑏∈𝐴𝑠

𝑄 (𝑠, 𝑏), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5.6)
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The Boltzmann
function

One issue with 𝜖-greedy methods is that all non-optimal actions are treated equally.
The agent will be as likely to explore what it believes to be the worst possible ac-
tion as it would a close-to-optimal one. Softmax functions help with this by making
the choice of exploration action dependent on the current estimates of their value,
meaning that high-valued actions are more likely to be chosen for exploration than
low-valued ones. The Boltzmann function is the most common algorithm for balancing
exploration/exploitation this way. Similar in concept to that of simulated annealing,
the defining characteristic is that of the temperature of the computation 𝜏 . This vari-
able dictates how equal the choice of actions will be. With a high value, all actions will
be treated as equally probable choices. The lower the value, the more the preference
for higher valued actions.

𝑃 (𝑎 |𝑠) =
exp( 1

𝜏
𝑄 (𝑠, 𝑎))∑

𝑏∈𝐴𝑠

exp( 1
𝜏
𝑄 (𝑠, 𝑏))

(5.7)

5.6 Multi-agent reinforcement learning (MARL)
MARL[71], [73], [74], [169] applies reinforcement learning techniques to systems
where many agents share a common environment, where an agent taking an action
causes a transition of the system state to a new one. There are challenges in getting
the right exploitation/exploration balance, as well as coping with the rapid increases
in state-action space size that come with realistic systems.

Curse of
dimensionality

The dimensionality explosion that occurs in state-action space for single agents is
even more prevalent in the multi-agent case. An agent may not only have to learn
about its own effects on the environment but also about the nature of other agents
in the system. The exploration/exploitation issue increases in difficulty as now there
is not only the question of the environment being stationary but also having to learn
and adapt to the dynamism of other agents’ policies and resulting actions changing
the system state. With rewards possibly being an outcome of multiple agents’ policies
there is also uncertainty in how to share those rewards fairly when the contributions
of individual agents are not always easily differentiable, or clearly correlated with a
single action.

Cooperation and
competition

MARL systems fall somewhere across a spectrum defined by full agent cooperation on
one end and agent competition on the other. In fully cooperative systems the agents
all share a common reward function and seek to maximise a shared value function.
Algorithms dedicated to these cases tend to rely on static, deterministic, or exact
knowledge of other states or agent actions. Due to the need for coordination and
maximisation of joint-action states many algorithms suffer from computational com-
plexity stemming from high dimensionality. Tables 5.1, 5.2, and 5.3 summarise some
of the algorithms designed to work in a range of multi-agent learning systems. For a
comprehensive taxonomy see Zhang et al[170]1.

1See also Reinforcement learning, comparison of reinforcement learning algorithms [171] from
Wikipedia, and ’Spinning Up in Deep Reinforcement Learning’[172] from OpenAI
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Method Authors Description

Team Q-
learning

Littman
(2001) [173]

Fully-cooperative with no coordination. Utilises joint ac-
tion learning so number of states quickly becomes large
as agent numbers increase.

Distributed
Q-learning

Lauer et al
(2000) [128]

Policy free system that makes an ’optimal assumption’
that an agent’s teammates complete what it considers
optimal actions. Even in a deterministic environment a
central plan is needed to provide some consistent coor-
dination.

Optimal
Adaptive
Learning

Wang et al
(2002) [174]

Biases so that optimal Nash equilibria are eventually se-
lected. Provably converges to an optimal Nash equilib-
rium in any teamMarkov game. Highly complex and re-
quires static games. Needs a model of agents, the game,
and each stage.

Minimax-Q Littman et al
(2001) [173].

In a competitive system an agent using this algorithm
will maximise its benefit under the assumption that the
opponent will always act to minimize it.

Correlated
equilibrium
Q-learning

Greenwald
et al [175].
(2003)

Uses the correlated equilibrium generalisation Nash
equilibria. Has four main forms utilitarian (uCE-Q),
egalitarian (eCE-Q), republican (rCE-Q) and libertarian
(lCE-Q). Shown to empirically convergence to equilib-
rium policies in general-sum Markov games.

Deep Q-
Network
(DQN)

Mnih et al
(2015) [154]

Q-learning where Q-tables are replaced by 2 neural net-
works.

Double Deep
Q-Network
(DDQN)

Hasselt et al
(2015) [176]

Extension of DQN that tackles overestimation by using
a second deep network to select actions.

Dueling DQN Wang et al
(2016) [177]

Extension of DQN that separates state-value and action-
advantage functions.

QMIX Rashid et al
(2018) [125]

Monotonic value function factorisation approach that
learns a centralised Q-function by using a mixing net-
work that allows for coordination between agents while
preserving individual control.

Table 5.1: Examples of value-based MARL algorithms (value-based). A table
covering some of the key value-based reinforcement learning algorithms developed in
recent decades.

Method Authors Description

WoLF-IGA Bowling et al
(2002) [178]

A policy search algorithm using Infinitesimal Gradient
Ascent (IGA) combined with Win-Or-Lose-Fast(WOLF).
The step size is small with a slow learning rate when
payoffs are high, with a large step size when payoffs are
low, increasing the learning pace.

continues on the next page...
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...continued from previous page

EXORL Suematsu
et al (2002)
[179]

Uses a policy that biased as to minimise another agents
drive to change its current policy.

GIGA-WoLF Bowling et al
(2004) [180]

Keeps track of the agent’s regret compared to playing a
stationary pure strategy and guarantees that regret will
be positive in the long run.

WoLF-PHC Busoniu et al
(2010) [73]

The combination of a Q-learning update rule and the
gradient-based policy update from WOLF-IGA.

Trust Region
Policy Op-
timization
(TRPO)

Schulman
et al (2017)
[155]

Improves the sample efficiency and stability of reinforce-
ment learning by constraining the policy updates to a
trust region.

Proximal Pol-
icy Optimiza-
tion (PPO)

Schulman
et al (2017)
[131]

Extension of TRPO that uses clipped surrogate objective
to improve stability.

Independent
proximal
policy op-
timization
(IPPO)

DeWitt et al
(2020) [132]

Decentralised PPO algorithm where each agent esti-
mates its local value function and learning is done in-
dependently.

Table 5.2: Comparison of MARL algorithms (policy-search). A table covering
some of the key policy-search based reinforcement learning algorithms developed in re-
cent decades.

Method Authors Description

WoLF-PHC Busoniu et al
(2010) [73]

The combination of a Q-learning update rule and the
gradient-based policy update from WOLF-IGA.

Deep De-
terministic
Policy Gradi-
ent (DDPG)

Lillicrap et al
(2015) [156]

A model-free off-policy actor-critic algorithm that uses
deep neural networks to learn a continuous policy and
Q-function in a continuous action space.

MADDPG Lowe et al
(2017) [136]

Extension of DDPG that learns decentralized policies for
multiple agents in a centralized training setting.

Counterfactual
multi-agent
policy gradi-
ents (COMA)

Foerster et al
(2018) [181]

Centralised critic with decentralised actors, incorporat-
ing counterfactual estimates of the impact of an agent’s
actions on the global reward.

Decentralized
policy op-
timization
(DPO)

Su et al (2022)
[182]

A decentralized actor-critic algorithm with monotonic
improvement and convergence guarantees.

Table 5.3: Comparison of MARL algorithms (actor-critic). A table covering
some of the key actor-critic based reinforcement learning algorithms developed in recent
decades.
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StabilityIn stationary environments we can assume that the same state-action pair will lead
to the same probability distribution over outcomes. But in multi-agent systems this is
no longer true. Each agent is continuously adapting its policies, so the environment is
by its very nature dynamic. We therefore need to balance stability , where the system
converges towards a solution, and adaptation, where an agent can react to the changes
in the policies of other agents.

ConvergenceWe can approach this by using stationary strategies as targets, isolating any depen-
dence on other agents’ policy changes. In doing so, we require an agent to have the
property of rationality , where it will converge to the best response under the assump-
tion that other agents in the system are stationary. One additional requirement if the
agents are non-cooperative is that this solution holds true no matter what strategies
the other agents choose. This requirement is added to avoid an agent being deceived
by other agents into choosing a poorly performing strategy.

RegretAnother approach is to identify the least regret in choosing a policy, in effect the differ-
ence between the performance of the dynamic strategy as compared to the best possi-
ble static strategy it could choose. An example of this approach is GIGA-WOLF[180].
This uses aWin or Learn Fast (WOLF) strategy[178], [183], which increases the learn-
ing step-size when the algorithm judges itself to be losing as compared to the equi-
librium strategy. This is combined with the generalized infinitesimal gradient ascent
(GIGA) algorithm[184] which uses the greedy projection of an unconstrained gradi-
ent ascent step onto the restricted space of constrained policies. GIGA allows for the
calculation of the regret of the step.

R ≤
√
𝑇 + |𝐴|𝑟 2

𝑚𝑎𝑥 (
√
𝑇 − 1

2
) (5.8)

GIGA-WoLF allows us to compare two strategies and increase the learning speed to
drive an adjustment to the first to bring it closer to the second only if the second
strategy is the better one.

CoordinationThere are areas of research that look to mitigate the increased complexity of com-
putation resulting from agents coordinating their actions. By utilising the sparse-
ness of interactions in large multi-agent systems, the coupling between agents can be
reduced by having them work independently and only collecting information about
other agents when required. For instance, by learning the states where some degree of
coordination is required[104], [185], or through the use of curriculum learning meth-
ods, where the agents are trained on simpler tasks before being introduced to more
complex tasks and systems[186], [187]. E.g., learning in a single-agent environment
before translating those policies into the multi-agent environment for further reward-
driven adaptation.

5.7 Challenges in real-world environments
Simulations have the benefit of being able to run repeatedly, learning in controllable,
virtual environments. In the real-world however, algorithms must adapt to noisy in-
formation, and less reliable interactions with the environment. Robotics provides ex-
amples of common challenges in real-world reinforcement learning problems. These
systems are often noisy and partially observable with a large, stochastic state-action
space. Agents are not certain of the state-space they are in and insteadmustworkwith
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belief-states based on their understanding[188]. The speed of execution of learning
algorithms becomes of practical concern with real-world learning often being time-
consuming, expensive, with real-time needs or physical risks in decision choices[15].

Differentiation of
states

One of themain issues arising in real-world systems is that of the exponential increase
in state-action space dimensionality. States that appear equivalent in an idealised sys-
tem, are in reality amultitude of distinct states due to the existence of abstracted away
dimensions in theoretical or simulated systems. In a networking simulation for exam-
ple, we might assume that temperature was a constant across our virtual network. In
practice, the existence of slight spatial differences in temperature lead to a differenti-
ation of states and a large expansion in state-space. There are strategies that enable
us to reduce real-world dimensions down to lower-dimensional state-space through
dimensionality reduction techniques such as principal component analysis (PCA)[189]
and neural network pre-processing of data[190]. However, the loss of information and
possible convergence on poor policies is a risk.

Sparse sampling Real-time interactions provide less opportunity for agents to learn from taking actions,
so understanding the impact sparse sampling can have on the quality of estimated
learning policies becomes important[191], [192]. Sometimes there are expensive and
fragile hardware components at stake, such as in robotics, therefore interactions must
be actively reduced to avoidwear. Theremay also be dangerous states and actions that
need to be precluded from learning to prevent damage or dangerous outcomes[193].

Simulation to
reality gap

We can utilise the accelerated learning times of simulations to build up agent policies
that can be transferred across into real environments. The success of this approach is
greatly dependent on the stability of these learned policies under perturbation, where
instability, inaccuracies in sensor data, lack of granularity in the model, or abstracted-
away environmental noise, can make transferring the policies very brittle[194].

Reward sparsity Providing a good reward function for successful learning has proven to be a com-
plex task[195]–[197]. If a simple reward is provided, such as for success or failure in
completing a task, but the task itself is complex, then the agent receives rewards in-
frequently and policy learning can be extremely slow. This reward sparsity can be mit-
igated through the use of methods such as knowledge transfer[198], curiosity-driven
rewards[199], curriculum learning[200], and experience replay[201], to enhance the
frequency of rewards.

Experience replay Experience replay has recently seen much development and application to deep learn-
ing systems[202], [203]. Past strategies have been extended to be more stable in large,
non-stationary systems[204] and to provide reward shaping through the generation
of sub-goals from past experiences captured in a replay buffer[205].
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Reward shapingIn order to provide more regular feedback we can use reward shaping, where inter-
mediate rewards are provided that indicate desirable steps towards achieving a goal.
For example, a mobile robot could be given a series of rewards for reaching waypoint
markers as it moves closer to its final destination. Beyond manual reward shaping
inverse reinforcement learning is also possible, providing shaped rewards by having
agents learn by demonstration[206].

We can also attempt to have the agent learn to decompose its overall goal into sub-
goals using various strategies. One approach uses differentiation of the problem into
two separate goals, a task-specific one, and a task-agnostic one. The former being
used to learn specific tasks with the latter being used to identify useful patterns in
solving tasks that can be used as dynamically generated sub-goal rewards[207] . This
does however introduce a significant design problem in setting out what that agent-
space might be and how it might be affected by sub-goal patterns that restrict the
exploration of problem space to non-useful areas[208].

Hierarchical
reinforcement
learning

The complete task can be broken up into smaller subtasks thatwe knowwill contribute
to a successful outcome through hierarchical reinforcement learning[209]. Similar to
reward shaping but more direct this again restricts the exploration of state-space by
constricting the paths through it to a successful outcome around predefined local-
ities. An example of this might be decomposing a walking task into multiple sub-
tasks that move each leg in coordination. Other approaches utilise a manager-worker
model[210], where a ’manager’ agent decomposes its own reward function into sub-
goals and rewards for ’worker’ agents. Aspects of our work has similarities to this
approach, where parent agents decompose their task into subtasks for child agents,
and allocate the resulting reward to those child agents based on the overall outcome
of the parent agent’s task2.

Reducing
state-action space
complexity

To reduce complexity and make learning tractable we generally look to reduce the
size and dimensionality of state-action space. By doing so, calculations become faster
and searching for the best actions is done in a less expansive policy space. One simple
approach is to make the continuous environment less granular by discretisation, either
by segmenting some of the dimensions of state-space[211], or by allowing an adaptive
granularity of those dimensions dependent on the learned importance of localities
within them[212].

Knowledge reuseLearning can be accelerated by providing some form of knowledge reuse[213]–[215],
reducing the search space for optimal policies by guiding algorithms into known re-
warding areas. Demonstration techniques such as apprenticeship learning[216] use
expert knowledge to lead the agent through the task directly. Imitation learning can
train agents by having them replicate human behaviour on a task[217], or that of
other agents using inter-agent learning[218]. Using these strategies, policies can start
in areas of policy space that have already proven to be successful, avoiding the agents
starting from scratch. The current research also illustrates the difficulty in carrying
out learning transfer in MARL systems. There needs to be an understanding on what
depth and detail of knowledge to transfer and how to map it to new situations. In
systems where tasks or roles change with significant frequency this is essential to pre-
vent constantly learning from zero knowledge, which degrades system performance
and convergence[219].

2See Chapter 9, Section 8.3.
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Our work in Chapter 9, in particular on the state-action space knowledge-retention
(SAS-KR) algorithm3, demonstrates a form of inter-agent learning. Agents retain pri-
oritised knowledge of other agents that helped them to perform their tasks better,
and can send this information to other agents on request. This enables the agents
that receive this information to reuse that knowledge to improve their own task per-
formance, although the agents learned about from shared knowledge may not be as
useful to the requesting agent as it was to the agent that supplied the information.

5.8 Summary
In this chapter we covered some of the main techniques using reinforcement learning
in multi-agent systems. We also highlighted where compromises in practicality and
response-time need to be balanced when applying algorithms to both simulation and
real-life systems. A major issue that needs to be considered is how computational
complexity is affected by the ’curse of dimensionality’ that is a direct consequence of
having multiple independent agents with their own policy spaces working simultane-
ously on related goals.

The ability to reduce down the space of other agents and interactions to be considered
for an agent is clearly of benefit here. By only considering a subset of other agents
in the system, or only the information necessary to complete the required tasks suc-
cessfully, we can greatly reduce the dimensionality of the problem, make the systems
more scalable, and work towards real-time responsiveness.

3See Chapter 9, Section 9.5.
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Chapter 6
Self-organisation in agent-based
systems

In this chapter we look at self-organisation and emergent behaviours, how structure
can form in multi-agent systems without a fixed, pre-determined architecture. This
is relevant to our researchwork in how agents form different roles while participating
in the completion of tasks (Contribution 3).

6.1 Introduction
To orchestrate the completion of tasks, a system often requires some degree of or-
ganisational structure and communication. For example, for an agent to discover the
capabilities of other agents to carry out a given task, or to discover more agents in
the system to collaborate with. Ways of achieving this broadly fall somewhere on a
spectrum. At one extreme, organisational structure and roles are defined at design
time, with agents in the system able to reorganise within the constraints of the struc-
ture set out, and the roles available, to adapt the system during runtime. At the other
extreme, there is little or no prior specification of organisational structure at design
time, instead the structure, and the roles agents perform, are part of the emergent
behaviour of the system.

Chapter structureWe look at how to define and categorise self-organising systems in Section 6.2 and
their properties in Section 6.3. How we can measure self-organisation and its effec-
tiveness is the topic of Section 6.4, followed by a brief introduction to holarchy as a
method of understanding self-organisational structure in Section 6.5.

6.2 Defining of a self-organising system
We can describe the method by which MAS can autonomously alter their structure
as ’...the process by which a system changes its organisation at runtime without an ex-
ternal command’[25]. However, we need to differentiate between two closely related
approaches to organisational change.
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Organisational-
centred point of

view

The first comes from a top-down view of the system, the organisational-centred point of
view (OCPV). From this perspective the system is seen as a designed organisation, with
the agents constrained or defined by the overarching organisational specifications
and schema. This means that agents can be aware of the organisational structure at
run-time as it is formally set out. With this knowledge they can reason about the
current state of the system and enact changes to adapt its structure, such as to adapt
roles, communication patterns, destroy or create new agents, and join or leave social
groupings. They cannot however create new structures outside of those prescribed by
the designer. This type of system is a reorganisational system[220], [221].

Agent-centred
point of view

From the opposite side of the spectrum comes the bottom-up behavioural viewpoint,
the agent-centred point of view (ACPV). In this case, the system’s structure is the re-
sult of agents’ local actions driving the emergence of higher level organisation and
behaviour. Since there is no prescribed model of the organisation as a whole, agents
are not aware of global structure, and cannot make the same level of reasoning as
made in OCPV systems. They can however build internal models using their partial-
view of the system, and use these models to reason about local behavioural patterns
and social structures. When environmental pressure is felt by the system, agents enact
adaptations in their local vicinity, and so organisational changes propagate through
the system resulting in global structural change. This localised, bottom-up behaviour
distinguishes these systems as self-organisational systems[37].

Strong and weak
self-organisation

Within self-organisational systems, we can also categorise by the strength of internal
decentralisation of organisational change[222]. Systems with weak self-organisation
have some degree of internal, centralised control, as exemplified by a queen ants con-
trol over an ants nest. Strong self-organisation however involves neither external nor
internal centralised control of any kind. Given our target systems, we are focused on
the strong self-organisation case for developing our algorithms in Part II.

6.3 Properties of self-organising systems
Self-organising systems share some common characteristics. There must be no exter-
nal control over the system, and the internal controls and information flow must be
decentralised. In addition, the system must be adaptable, in that this property will be
necessary for actual self-organisation during runtime to take place. We summarise
the core characteristics below, adapted from Serugendo et al[25], as well as how they
apply to our target systems.

• endogenous global order , the internal behaviour of the system drives it towards
a stable, global state. With possible variations in incoming task distribution and
changes to the environment in our dynamic MAS systems, the optimal global
structure itself may be dynamic. However, we make the assumption that in
our systems, the rate of change in optimal structural is small compared to the
ability of agents to adapt.

• emergence, local interactions produce the global behaviour, with no central con-
trol driving this behaviour. The local interactions between individual agents
that generate these global effects cannot be directly related to observed local
actions.

• simple local rules, there are simple rules that control the behaviour of individual

62



agents within the system. These rules do not contain enough information to
describe the overall global behaviour of the system. Instead, they only have
enough information contained in them to describe the individual behaviours
which will result in the generation of the global behaviour of the system.

• dissipation, without external changes, the system is expected to reach some
stable global state rather than continuously changing. However, the systems we
study do expect some external variation in the distribution of incoming tasks
during the systems lifespan. There will be changes in agent connectivity due to
the environment, and changes in population make-up due to agents leaving or
joining the system.

• instability , the system’s behaviour is non-linear and sensitive to initial condi-
tions and parameters, meaning that we can not simply examine the individual
components at system initiation and so understand the system’s future states.

• multiple equilibria, as agents can adopt a range of roles within the system,
there may be many different configurations of their actions, task allocations,
and roles that will meet the system’s goals. This means there may be multiple
equilibria that the system could be in while still meeting its goals.

• criticality , we see phase changes and threshold values within the system.

• redundancy , the system is resilient to damage in that agents’ capabilities over-
lap to the extent that the loss of an agent would still allow the completion of
the allocated tasks.

• self-maintenance, the system can self-heal. With damage to the system or com-
munications the system can introduce new agents, or route around communi-
cation disruption.

• adaptation, the system can adapt as the environment changes.

• complexity , the system cannot be defined globally in terms of simply a combi-
nation of local agent behaviours.

• hierarchies, there are multiple levels of self-organisation. Agents may be
grouped into nested hierarchies or roles in task completion.

6.4 Measuring self-organisation
There are a number of useful metrics in analysing a self-organising system that arise
from the three facets of the system, the organisational structure, the process that pro-
duces andmaintains it, and the function the system is aiming to fulfil[25]. Firstly, con-
vergence time, the time taken until convergence to an organisational structure where
the system is able to fulfil its overall goal. Next we have perturbation recovery time, the
time taken to reorganise after perturbations, and the related quality of perturbation
resilience, the stability and adaptability in the face of such perturbations[223]. Finally,
the degree of decentralisation of control, where on the spectrum from fully externally
designed to purely autonomous self-organisation the system lies. Wewill use themet-
rics of convergence, perturbation recovery, and perturbation resilience to measure our
algorithms effectiveness in Chapters 9, 10 and 12, later in the thesis. As our targeted
systems are fully self-organised and decentralised, the degree of decentralised control
metric is not relevant.
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There are known practical examples of self-organisation in areas such as adaptive
meshing in cellular networks, traffic simulation, and flood forecasting[224]. There
also exist mobile robotic applications utilising swarm behaviour[225], [226].

6.5 Holarchy
A holon is defined as something that is simultaneously a whole and a part[227].
When layers of holons occur in a system we have can have a hierarchical organi-
sational structure, or holarchy . In systems such as these, there are many nested sub-
organisations of agents[54]. These agents are autonomous, and may decide to join or
leave holons, or come together to form new holons, dependent on their goals.

As part of each holon, a holon head , an agent that represents the holon to the external
environment, is responsible for coordinating actions inside the holon[54]. Agents in
holons can be viewed as forming a super-agent, abstracted up a level, with super-
agents now communicating with each other through one holon head inside each
grouping[228]. Viewing the organisation like this, we can see how the view of the
system used by each individual agent can be restricted in size by the holon boundary.
This allows an accompanying reduction in knowledge, and communications overhead
required to function, and so computations become more feasible in larger systems as
compared to agent structures without interaction boundaries.

In practice, holonic concepts provide us with a way to model multi-agent systems and
to design them to encapsulate the necessary functionality and low coupling amongst
agents[229]. Framed in terms of the task allocation problemwe look to tackle, a holon
head would be an agent receiving a set of tasks from outside the holon, which would
then be allocated to other agents inside the holon. In turn, each agent receiving tasks
inside of the holon could be acting as a holon head for another holon (Figure 6.1). This
gives the system a hierarchical task allocation capability, which we utilise in our work
in Chapter 11. With a stream of tasks incoming to the system that change with time
however, the most efficient holonic structure itself may change.

6.6 Summary
In covering self-organisation we have looked at how structures and organisations
can be formed and understood. To do so, agents need to be able to adapt as they
gain new knowledge about their view of the system. With the application of learn-
ing algorithms, the required adaptability can be introduced, with structure and roles
within the system developing naturally as the result of the task and resource alloca-
tion strategies of each agent. This topic will be part of our work in Chapters 11 and
12.
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Figure 6.1: Overview of the holarchy structure of task allocation in a multi-
agent system. External tasks {𝑎𝑡1, 𝑎𝑡2, 𝑎𝑡3, 𝑎𝑡4, 𝑎𝑡5} arrive in the system. The head for
holon B allocates tasks to agents in that holon. Tasks {𝑎𝑡1, 𝑎𝑡2} are completed by an agent
in that holon. The remaining tasks {𝑎𝑡3} and {𝑎𝑡4, 𝑎𝑡5} are allocated by holon heads for
holon D and E respectively, reallocated to agents within those holons, and completed.
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Chapter 7
Wireless sensor networks

In this chapter we look at wireless sensor networks in order to understand the chal-
lenges our algorithms must overcome in practical MAS applications.

7.1 Introduction
Wireless sensor
networks (WSNs)

Wireless sensor networks (WSNs) are collections of independent nodes connected
through wireless transmission, often found in situations where a geographical area re-
quires monitoring using sensors[9], [12]. Due to the autonomy required of the nodes,
they are well suited to MAS applications[230]. WSN provide concrete scenarios in a
number of fields with strong commercial, or scientific uses, and where solving task
and resource allocation problems would bring significant value. As such we will use
these systems to explore how learning algorithms and multi-agent strategies can be
used as solutions to real-world problems.

Networks are often deployed in areas that are difficult to access, such as remote loca-
tions, ocean-based monitoring, or contaminated regions. These environmental WSNs
in particular are characterised by intermittent connectivity between nodes, with harsh
environmental conditions that lead to degradation of the network, so that systems
must adapt in response to these changes to maintain functionality[231]. The energy
sources for nodes are commonly non-replaceable batteries, and the dispersal of nodes
ad-hoc, making a high level of autonomous communication, coordination, and power
consumption management essential.

WSNs can consist of static sensor deployments, or as mobile agents, adding to the
need for adaptation in the network[232], [233]. Sensors are usually small and in-
expensive, capable of utilising limited compute and storage resources. They have
one or multiple sensing devices to take measurements from the environment, rang-
ing through chemical, optical, thermal, biological, and radioactivity detection. This
collected data is often transmitted to a base station and retransmitted to be stored
remotely and analysed.
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Vehicle-to
infrastructure

(V2I)

Vehicle-to-vehicle
(V2V)

Vehicle-to-infrastructure
(V2I)

Vehicle to people
(V2P)

Vehicle to Network
(V2N)

Figure 7.1: V2X agent coordination. Agents representing vehicles can communi-
cate and coordinate with; other vehicles to avoid congestion (V2V), infrastructure such as
traffic lights (V2I), people in order to avoid accidents and arranging pick-ups (V2P), or
network transmitters to integrate with automated city planning (V2N). As these interac-
tions are between vehicles and a heterogeneous group of other agents, we use the catch-all
term vehicle-to-everything (V2X).

Chapter structure In the following section, Section 7.2, we look at practical examples of WSN systems,
which allows us to abstract out common objectives for such systems in Section 7.3. We
look at general algorithms for such systems in Section 7.4 and learning algorithms in
particular in Section 7.5. These approaches and limitations of such leads us to specify
key criteria for our algorithms in tackling task and resource allocation problems in
systems such as WSN in Section 7.6.

7.2 Examples of WSN systems
Vehicle-to-
everything
networks

As the concept of smart cities has developed, so has the desire for more intelligent
traffic management. As such, developing algorithms to utilise vehicle-to-everything
(V2X) communications has grown in relevance. V2X encompasses a set of categories of
different agent-to-agent communications, where vehicles might talk to infrastructure
such as lights and buildings, to devices such as mobile phones carried by pedestrians,
or to other vehicles to orchestrate their actions (See Figure 7.1). Not only is the suc-
cessful development of V2X systems of benefit to safety on the roads[234], but it also
allows for more efficient use of fuel for vehicles travelling[235], and better manage-
ment of traffic to reduce congestion[64].

68



Unmanned aerial
vehicles (UAV)

UAVs, or drones, have found uses in a number of areas, particularly in those that
can benefit from autonomous collection of data across a large area[236]. In agri-
culture[6], they are used to check the health of large areas of farmland, and tackle
problems early to stop them spreading and destroying crops. In the defence indus-
try swarms of UAVs are used to share logistics information and provide support in
conflict areas[237]. They are also used for environmental data collection, such as for
flood monitoring[238], or monitoring the state of forest habitats[239]. UAVs can pro-
vide an option for large-area search and rescue missions in remote areas with difficult
to reach terrain[240], or ocean rescue[241]. These uses typically require ad-hoc net-
work formation amongst the UAV to allow them to coordinate or relay information
through to a base station, resource management[58] to ensure they stay operative in
the air, and task allocation to accomplish the required goals.

Environmental
sensor networks

WSNs have many environmental monitoring applications and ongoing research in
areas such as oceanographic measurement[8], [11], [242], radioactive contamina-
tion[243], water quality[244], flood risk levels[245], volcanic activity[246], agricultural
soil[247], as well as in military uses[248]. More recently, the availability and lower
cost of low-power wireless transmitters[249], solar-harvesting components[250], and
micro-electro-mechanical systems[251] has allowed for larger deployment sizes, ex-
panding their real-world applications and opening up new areas for research[10],
[252].

Radioactive
contamination

Radioactive leaks and contamination require minimising human interaction with af-
fected areas, vital for health protection. However, there is still a need to monitor
these environments to judge the risk. By utilising WSN, at-a-distance deployments
can be made, with the networks being formed on an ad-hoc basis. In addition, the
damaging effects of radiation require robust networks that can adapt to the loss or
damage to nodes. These use cases apply to on-premise deployments inside an at-
risk facility[253], the monitoring of contamination leaks through water sources[254],
or the coverage of remote, or otherwise inaccessible areas[243] that are impacted by
radioactivity (See Figure 7.2).

Oceanographic
monitoring

Monitoring marine environments has become a focus of recent years as part of on-
going research into the impact of pollution and climate change through the mea-
surement of changes in water temperature, salinity, pH, oxygen levels, etc. Where
traditional approaches to data collection such as a research vessels can be expensive
and slow to collect data across large expanses of ocean, WSNs are hoped to be able
to provide a much more granular, cheaper, and longer duration solution to data col-
lection[11], [242]. These environments are harsh, and so sensor deployments must be
resilient. Currents and waves mean motion or drift of equipment, salinity and turbu-
lence can cause damage to components, and energy consumption must be optimised
as well, as maintenance or replacement of components is difficult in these isolated
and challenging environments.

Typical deployments range from sensor equipment attached to moored buoys, to un-
derwater autonomous vehicles[255]. Examples can be found in monitoring near-shore
lagoons for multiple factors such as temperature profile, pressure, currents, salinity,
turbidity, as well as oxygen density, giving a detailed map of the waters and how they
change over time[256]. Sensor networks have also been utilised to obtain a vertical
profile of temperature in the Baltic Sea[257], to monitor light levels and tempera-
tures around endangered coral reefs in Queensland, Australia[258], and discover the
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Figure 7.2: Map of radioactive contamination due to the Chernobyl disaster.
The map shows the concentration and distribution of radioactive contamination after the
explosion of the Chernobyl nuclear power plant in Ukraine, 1996. (source: CIA Factbook, CC

BY-SA 2.5, via Wikimedia Commons)

optimal feeding, and so reduce pollution, in marine fish farms[259].

Solar harvesting Through greater efficiency of solar-panel energy harvesting[108] and reduction of the
energy of wireless communications through acoustic signalling[260], these ocean-
based WSNs are increasingly pragmatic to use in wide-scale deployments. With the
natural dynamism of the marine environment, MARL techniques are also being ap-
plied to improve the resilience and adaptability of these networks[261].

Figure 7.3 shows some of the common components of marine WSN deployments as
demonstrated by the European Unions’ NeXOS project.

7.3 Objectives of a WSN system
The scenarios described above highlight five key requirements for a WSN, each of
which present challenges in deploying and operating a WSN system.

Energy
consumption

Each node in a WSN network has limited power available, supplied by a battery. De-
pending on the environmental conditions, there may be some form of energy-capture
component built into each node, such as solar-harvesting[250]. Batteries cannot be
easily replaced in the remote or inhospitable locations that are often the focus of
WSN, so minimising energy consumption is essential[264]. This can be done through
the use of low-power components[265], [266], as well as applying energy-aware rout-
ing protocols[267].
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Figure 7.3: A diagram of oceanographic monitoring as envisaged by the
NeXOS project. The NeXOS project is a collaborative project funded by the Euro-
pean Commission 7th Framework Programme to develop cost-effective, innovative sensor
networks for ocean monitoring and data collection[262], [263]. (source: Glynn Gorick, Eric

Delory, Jay Pearlman, CC BY-SA 4.0, via Wikimedia Commons)

Quality of
measurement

A node taking a readingmay have a faulty sensor, leading to variations in the recorded
values and lack of reliability. Sensors may get more accurate readings using more
energy or longer time scales, for example, as the sampling time of a temperature or
radiation sensor is increased, the more accurate the reading becomes[268]. Therefore,
nodesmust trade off the quality of their acquisition of data with the restricted amount
of resources available to them during their lifetime[269].

Sensor coverageIn many environmental situations sensors are distributed in an ad-hoc manner, mean-
ing their distribution is initially unknown amongst the nodes. Sensors may also have
occlusion problems due to the topography of the environment, or objects blocking
connectivity or measurement[270]. Therefore, to initialise the system, the deployed
nodes must find which other nodes to communicate with that will allow all the loca-
tions targeted by readings to be covered. They must also be resilient to temporary or
permanent outages on the network that require re-routing connectivity to maintain
this coverage.

Network resilienceWireless sensor networks add substantial additional risks to reliability over standard
networking. Nodes can run out of power, or components may fail, problems that are
often exacerbated by harsh conditions. Environmental effects or obstacles may phys-
ically impact transmission or reception of signals. Loss of communication to a node is
especially impactful as there are oftenmulti-hop routes involved, whichmultiplies the
risks[271]. To mitigate this problem, the WSN must be able to reconfigure its routing
pathways to work around nodes that are no longer functioning so that other nodes
required to take a sensor measurement can still be reached.
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System lifetime Due to the effects of environmental degradation, power exhaustion, and connectivity
loss, nodes in a network have a limited useful lifespan[272]. As nodes are lost, the
system itself becomes degraded. Eventually it is unable to achieve its goals to a suffi-
cient quality to be useful, defining the system’s lifetime. To extend this lifetime as far
as possible we try to reduce the wear on nodes, principally by ensuring that energy
consumption is distributed throughout the system[273], [274].

To summarise, we require that WSNs; minimise their energy usage, distribute that
energy usage to reduce the component wear on individual agents (to increase their
working lifetime), provide measurements of sufficient quality that cover the required
area, and adapt to network disruptions to maintain these properties.

7.4 Algorithms for WSN systems
Implementations of algorithms to WSNs can be found in a wide range of indus-
tries, from vehicle-to-vehicle communications to large-scale environmental monitor-
ing. These systems commonly need to manage energy usage, maintain availability,
distribute tasks effectively, and handle node communication failures. Decentralised
algorithms are commonly used to meet these challenges, with hierarchical cluster for-
mation or reinforcement learning techniques. There are challenges however in getting
these algorithms to perform well where there are multiple objectives, where agents
are mobile, or the connectivity between agents varies over the system’s lifetime.

WSNs consist of sets of nodes, devices that connect to each other to form the net-
work, with centralised or decentralised control. With centralisation, the controlling
node has system-wide knowledge, using this to allocate measurement tasks to other
nodes, orchestrate their communications, and handle recovery (see Figure 7.4). This
approach does not scale well to large networks due to congestion and resource ex-
haustion on the central component. Additionally, in harsh environments this central-
isation of control is not robust to damage or node loss. Although some adaptivity
can be added to these systems to help them improve their performance in meeting
their goals in complex systems, non-distributed learning algorithms suffer from the
same limitations as non-learning WSN systems[275]. For these reasons, we focus on
decentralised, autonomous methods.

With decentralised WSNs, nodes have limited knowledge of the system. Each node
acts autonomously to some degree to orchestrate the functionality mentioned above.
They are often organised into groups to decrease the cost of coordination without full
centralisation. The basis of many of these decentralised techniques is hierarchical (see
Chapter 6, Section 6.5), typically some form of clustering technique such as LEACH
or similar algorithms[276]. Nodes are formed into subgroups with designated leaders
that orchestrate the behaviours of each group of nodes and communicate with the
central controller (see Figure 7.5).

This ability for nodes to work autonomously increases resilience but introduces new
challenges. In working with local information only, nodes may take the best actions
for their local environment, but which are less beneficial to a system’s goals overall.
In addition, system-wide coordination of node behaviours is difficult when commu-
nication is limited to small sets of neighbours[277]. Reinforcement learning has seen
applications in these decentralised systems, often focused on using adaptive routing
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Sensor node

Inactive node

Sink node

Task allocation

Figure 7.4: Centralised WSN configuration for task coverage of a grid. In a
centralisedWSN, there is a coordinating agent that coordinates other agents in the system
through direct communication and orchestration of their actions.

Cluster head

Cluster membership

Cluster communication

Figure 7.5: Decentralised WSN configuration for task coverage of a grid. In
a decentralised, clustered WSN, agents in the system split into groups. One agent in the
group acts as a cluster head, an agent that coordinates the other agents in the group.
These cluster head agents themselves are coordinate by another agent higher up the hi-
erarchy.
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to optimise energy efficiency and system lifetime[278], [279], or to ensure sensor cov-
erage is maintained despite the loss of nodes over time[280]. These solutions often
look at single or complementary objective optimisation, and do not necessarily take
account of the conflicting multiple objectives commonly found in WSN systems.

7.5 Learning strategies for WSN optimisation
The nature of WSN systems fit well with work on multi-agent systems. The best
network connectivity, task allocation strategy, and assignment of resource by agents
are unknown at system initialisation, and vary throughout the system’s lifetime. As
mentioned previously, reinforcement learning techniques are useful in learning these
values as the system evolves[20]. These broadly have two main challenges; how algo-
rithms can best learn to optimise across multiple system goals, and how agents share
information and cooperate to connect their localised actions to the broader system
goals.

Evolutionary
algorithms

The problem of optimising WSN systems across multiple objectives can be tackled
through the use of multi-objective evolutionary algorithms[281], where the devel-
oped techniques have been integrated into algorithms for the WSN domain[282],
[283]. In particular, differential evolution (DE) techniques have proven a simple and
often effective way of optimising multi-agent systems[284]–[286]. These have been
utilised in both multi-objective[287], and non-stationary systems[288], [289] such as
WSNs[290].

There are factors that canmake DE algorithms less applicable in real-world situations;

• occlusion and obstruction, nodes in a WSN may be obstructed by other objects
or weather effects in an environment, making some actions less optimal or even
possible. E.g, a transmission to another node is blocked by a rock;

• bandwidth limitations, nodes have limited transmission bandwidth and process-
ing power, so its necessary to restrict the amount of information required to be
exchanged between nodes to apply algorithms. The large quantities of data
transfer to a centralised node needed to compute evolutions can become a sig-
nificant bottleneck;

• centralised coordination and reliability , with increasing system size, and as nodes
have a limited transmission range, datamust be relayed throughmore andmore
intermediate nodes. In addition, connectivity to such nodes may be intermit-
tent, disconnecting sections of the WSN;

• heterogeneity , nodes may be homogenous in specification at system initialisa-
tion, however, localised conditions, ad-hoc placement, and changing function-
ality over time, differentiates their capabilities and optimal actions over time.
E.g, the degradation in transmission power as a node’s battery wears down;

• uniqueness due to location, each node’s optimal actions are often unique, such
as having localised sensing conditions. E.g. a node in an ocean-basedWSNmay
have its temperature sensor placed in a strong current, with large variations in
subsequent readings;

• mobility , identical nodes in the same locationmay bemobile to different degrees
and would need to take differing actions. E.g. a node attached to a stationary
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buoy in an ocean environment does not need to spend as much time on actions
to discover other nodes in the network as a node in the same location that
is floating freely. A node’s mobility may also change within its lifetime, for
example with changing currents.

Distributed
algorithms

These practical questions arising from WSN applications reinforce the reasoning be-
hind the theoretical choices for our algorithms. As such, we look to distributed al-
gorithms for application to WSN[291] with a focus on learning techniques[275] for
better task scheduling and energy consumption such as cooperative Q-learning be-
tween nodes[292]. Due to the increased resources and computation required to co-
ordinate amongst multiple agents and form cooperative behaviours, we also focus on
decentralised, autonomous agents learning from localised knowledge only[293]. E.g.
individual agents optimising energy usage within a small neighbourhood of nearby
nodes to optimise the energy consumption of the system as a whole.

7.6 Key requirements of aWSNoptimising algorithm
The systems we have discussed guides the choices of some desired behaviours ofWSN
algorithms;

1. optimisation of multiple objectives, the algorithm must be able to balance learn-
ing to take actions that benefit more than one objective so that it can optimise
across energy use, task quality, etc[281], [283], [294];

2. decentralisation of coordination, with limited resources for transmission and
computation, nodes in WSN should minimise the explicit coordination of
agents. In harsh environments, and with limited possibilities for manual main-
tenance, centralised coordination or knowledge becomes both difficult and a
danger to system robustness;

3. localisation of agent knowledge, nodes have limits on transmission range and
bandwidth, which discourages the increasing resource costs of relaying trans-
missions, and the risk of network routes containing many hops. To avoid these
issues, nodes should be restricted to information available nearby[293]. For this
reason, we focus on using only the knowledge in an agent’s local neighbourhood
in our algorithm, and use this to guide coordinated behaviours in the system
overall;

4. allocation of node resources, nodes in a WSN have limited resources with which
to complete their tasks. Each node’s preference of how its available resources
are allocated amongst the tasks allocated to it will have an effect on how well
it completes those tasks. An algorithm should be able to learn the allocation of
resources at each node that optimises overall system utility.
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7.7 Summary
In this chapter we looked at how wireless sensor networks can be used, and the diffi-
culty of developing successful algorithms due to the challenges encountered in real-
world deployments. We used these justifications to develop the high-level theoretical
framework we will build on in Part II. We look to improve on previous work by devel-
oping algorithms that can meet the key objectives and requirements described, while
still giving flexibility in the optimisation balance between the multiple system objec-
tives of minimising energy consumption, while maximising system lifetime, measure-
ment quality, and sensor coverage. The problems identified in operating a WSN can
be defined as amulti-objective learning problem in a distributedMAS. From our initial
task and resource allocation solutions in Chapter 9 and 10, we combine and extend
these to tackle this problem in Chapters 11 and 12.
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Chapter 8
Distributed task allocation systems
(DTAS)

This chapter will provide the notation and concepts required to model allocating
tasks in multi-agent systems. We use this chapter’s theoretical work as the basis for
defining the task and resource allocation problems, and our solutions to them, in the
chapters that follow.

8.1 Introduction
Informally, a distributed task allocation system (DTAS) is a MAS where a set of agents
work together to perform a set of tasks[72]. The main objective of the system is to
maximise the number of successfully completed tasks, and the overall system utility,
through coordination amongst the agents. The agents can join and leave the system
at any time throughout lifetime of the system, and may be heterogeneous, i.e. have
differing capabilities in completing tasks or performing actions.

We define the task-allocation system in Section 8.2, and its state dynamics in Section
8.3. We formally lay out the actions agents can take in Section 8.4, and some useful
functions on states and actions in Section 8.5.

We will use the notation and model developed in this chapter; to define the task and
resource allocation problems in Chapters 9 and 10; to develop functions for the qual-
ity, system utility, and optimality of allocations; as well as to specify our algorithms
formally in Chapter 9, Section 9.5, Chapter 10, Section 10.4, and Chapter 11, Section
11.3.

79



8.2 Defining the DTAS
Given a set of tasks in a DTAS, there may be overlap in the results they produce,
causing duplication, and making them less valuable to the system. Some tasks may
produce unique and important results, making them more valuable. In other words,
the value of the outcome of an individual member of a set of tasks can be dependent
on the results of the other tasks in the set. Therefore, a task’s true value to the system
may only be known once all the interdependent tasks have been completed.

Atomic and
composite tasks

To allow for this we define two distinct types of tasks; atomic tasks, which are the tasks
executed by agents; and composite tasks, which are formed as sets of these atomic
tasks. As an atomic task comprising a composite taskmay be dependent on the output
of other atomic tasks of the composite task, its value must be calculated through the
value of the composite task as a whole.

System definition We define a DTAS as a set of agents working together to perform a set of composite
tasks, formed by atomic tasks that can be executed by individual agents. Each agent
has some capabilities to perform atomic tasks and is also able to coordinate and over-
see the execution of composite tasks. Agents can perform actions that will update
the system state. We use G, to denote the set of all possible agents, CT for all pos-
sible composite tasks, AT for all possible atomic tasks, and A for all possible agent
actions.

Task types Each atomic task 𝑎𝑡 ∈ AT is typed by one of the set of all atomic task types AP,
defining what repeatable activity has to be performed to complete that task. The
function 𝑡𝑦𝑝𝑒𝑎 : AT → AP maps atomic tasks to their respective task types. Sim-
ilarly, each composite task 𝑐𝑡 ∈ CT is typed by one of the set of all composite task
types, CP, defined by the types of all the atomic tasks that compose that composite
task. Therefore, a composite task can be mapped to the types of its respective atomic
tasks, 𝑡𝑦𝑝𝑒𝑐 : CT → CP, where 𝑡𝑦𝑝𝑒𝑐 ({𝑎𝑡1, .., 𝑎𝑡𝑛}) = {𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡1), .., 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡𝑛)}.

Neighbourhood We assume that for each agent in a DTAS there is a subset of other agents in the DTAS
which it can send messages to and receive messages from, called the neighbourhood
of that agent. We assume that the neighbourhood of an agent can change over time
but that it is potentially limited in size due to the agent’s software and hardware
constraints. Due to these constraints, it may not be feasible for all agents in the DTAS
to be part of an agent’s neighbourhood, therefore changing the neighbourhood can
have a cost due to the agent losing access to other, previously accessible agents.
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KnowledgeSimilarly, we assume that there is a limited number of other agents in the DTAS that
an agent can store information on, its knowledge, which also may change over time.
With limits to the amount of knowledge an agent can retain at any one time, changing
knowledge can mean that the agent loses awareness of other agents in the system it
could possibly bring into its neighbourhood.

Definition 8.2.1 (Distributed Task Allocation System). A distributed task-allocation
system (DTAS) is defined by a tuple ⟨𝐴𝑇,𝐶𝑇,𝐴,𝐺⟩ where:

• 𝐴𝑇 ∈ AT is the set of atomic tasks in the system at any point during its exis-
tence, where each task can be performed by a single agent;

• 𝐶𝑇 ∈ CT is a set of composite tasks in the system at any point during its
existence, where each composite task is formed from a set of atomic tasks;

• 𝐴 ∈ A is the set of actions that agents 𝐺 can perform;

• 𝐺 ∈ G is the set of agents that can operate in the system at any point during
its existence. Each agent 𝑔 ∈ 𝐺 is defined by a tuple ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩, where;

– 𝑖𝑑 is a unique identifier for the agent;

– 𝑐 ⊆ 𝐴𝑃 is the agent capabilities (i.e. the types of atomic task that the agent
can perform);

– 𝑟 ⊆ 𝐶𝑃 is the agent responsibilities (i.e. the types of composite task that
the agent can oversee);

– 𝛿𝑛 ∈ N, is the agent’s communication constraint;

– 𝛿𝑘 ∈ N, is the agent’s memory constraint.

Given an agent𝑔, we denote by 𝑐 (𝑔), 𝑟 (𝑔), 𝛿𝑛 (𝑔), 𝛿𝑘 (𝑔) the capabilities, responsibilities,
communication, and memory constraints of that agent, respectively.

For all atomic tasks, we assume there is at least one agent capable of performing it,
∀𝑎𝑡 ∈ 𝐴𝑇 ∃ 𝑔 ∈ 𝐺 : 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∈ 𝑐 (𝑔). Similarly, for all composite tasks in the system
there is at least one agent responsible for overseeing it, ∀𝑐𝑡 ∈ 𝐶𝑇 ∃ 𝑔 ∈ 𝐺 : 𝑡𝑦𝑝𝑒𝑐 (𝑐𝑡) ∈
𝑟 (𝑔).

Task completionWe define the atomic task completion function 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 : 2AT → B, which returns
1 if all the atomic tasks in the given set 𝐴𝑇 have been executed by agents, and the
results returned to the agent whose composite task contains the atomic task, and 0
otherwise.
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Example 8.2.1 (Atomic and composite tasks in a WSN). The agents in a marine-
based WSN system are equipped with sensors that can complete tasks to mea-
sure salinity, oxygen levels, and water acidity, so 𝐴𝑃 = {𝑎𝑝𝑠𝑎𝑙 , 𝑎𝑝𝑜𝑥𝑦, 𝑎𝑝𝑝ℎ}.
Each agent’s capabilities may be a subset of these atomic task-types depend-
ing on which sensors they have, and whether they are functional. For instance,
if an agent 𝑔 only has working sensors to measure salinity and oxygen levels
then 𝑐 (𝑔) = {𝑎𝑝𝑠𝑎𝑙 , 𝑎𝑝𝑜𝑥𝑦}. Some agents receive composite tasks from outside
the system, requests for samples of combinations of these measurements, e.g.
𝑐𝑡 = {𝑎𝑡𝑠𝑎𝑙 , 𝑎𝑡𝑜𝑥𝑦}. These agents then decompose these composite tasks into
atomic tasks and allocate them to other agents to complete. Assume one of the
agents has a composite task 𝑐𝑡 = {𝑎𝑡𝑝ℎ1, 𝑎𝑡𝑝ℎ2, 𝑎𝑡𝑝ℎ3}, where the measurement
location of 𝑎𝑡𝑝ℎ2 is nearby to 𝑎𝑡𝑝ℎ1, but that of 𝑎𝑡𝑝ℎ3 is far away from both 𝑎𝑡𝑝ℎ1
and 𝑎𝑡𝑝ℎ2. In this case, 𝑎𝑡𝑝ℎ2 may replicate data already returned from 𝑎𝑡𝑝ℎ1, and
so 𝑎𝑡𝑝ℎ2 is less valuable to the composite task. However, 𝑎𝑡𝑝ℎ3 produces unique
results and therefore has an increased value to the composite task.

For the following sections and much of the thesis we will refer to our defined system
as ’the DTAS’ to allow for brevity as we do not need to parameterise our approach
by which DTAS is under consideration. However, the specifications and contributions
apply equally to any DTAS.

8.3 Dynamics of the DTAS
Composite tasks arrive in the system with constant or slowly varying frequency dis-
tribution1. The DTAS is capable of processing these tasks in the following way:

1. a composite task (of a defined composite task type) arrives in the system;

2. the composite task is allocated to an agent that can be responsible for tasks of
that type;

3. the agent decomposes the composite task into atomic tasks;

4. the agent allocates these atomic tasks to other agents, or itself, if it has the
capability;

5. the agents that have been allocated atomic tasks complete them and return the
results of each atomic task to the agent that allocated them that task;

6. once all the atomic tasks have been completed the composite task is complete.

Agent state To be able to allocate atomic tasks, agents need to not only to be aware of the other
agents in the system and their capabilities to execute tasks, but also to have commu-
nication links with those agents. Therefore, we define the current state of an agent
by its knowledge, and neighbourhood.

Definition 8.3.1 (Agent State). Given an agent 𝑔 = ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩, we define its state
as a tuple ⟨𝐾, 𝑁 ⟩, where:

1This assumption is necessary to allow our algorithms, described in later chapters, to learn these
distribution patterns. With no variation, the DTAS can be pre-designed and non-adaptive. With too
much variation, the incoming task pattern cannot be sufficiently predictable for the system to adapt
accordingly.
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• 𝐾 ⊆ 𝐺 is the knowledge of the agent2;

• 𝑁 ⊂ 𝐾 is the neighbourhood of the agent.

Given an agent 𝑔 we denote by 𝐾 (𝑔) and 𝑁 (𝑔), its knowledge and neighbourhood.
Note that, ∀𝑔 ∈ 𝐺 , |𝐾 (𝑔) | ≤ 𝛿𝑘 (𝑔) and |𝑁 (𝑔) | ≤ 𝛿𝑛 (𝑔).
We denote by𝐺𝑆 the set formed by the states of each individual agent in the system,
and the state of a particular agent 𝑔 as 𝐺𝑆 (𝑔).

Parent and child
agents

Given a system of all possible agents G, then we define external agents E as all the
agents outside this system that can allocate the system composite tasks. Composite
tasks arrive in the system from external agents to parent agents 𝑝𝑔 ∈ 𝐺 , where parent
agent is a role that an agent plays with regard to a composite task by overseeing its
completion. A parent agent can allocate atomic tasks that compose a composite task
to other agents, or execute them itself if it is capable of doing so. An agent which has
been allocated an atomic task to complete assumes the role of a child agent for that
task, 𝑐𝑔 ∈ 𝐺 .

ActionsAgents in the system can take actions, 𝑎 ∈ 𝐴, either by executing those actions them-
selves, or by allocating certain types of actions to other agents to complete. E.g. a car
in a V2X system may take an action to update its knowledge of nearby congestion,
which involves allocating one or more actions to other cars for them to send back
information on traffic near them.

AllocationsThe state of allocations of tasks and actions within a system are defined by three
tuples, the composite allocation, the atomic allocation, and the action allocation. Each
element of a set of allocations is an assignment , a tuple of a task or action, an agent 𝑔
that it will be allocated to, and 𝑔, the agent allocating the task or action to 𝑔.

Definition 8.3.2 (Composite allocation). The composite allocation is the set of com-
posite tasks, 𝐶𝑇 , present in the system, sent by external agents, 𝐸 , and allocated to
agents,𝐺 , responsible for their completion, CL = 2(CT×G×E) , where each assignment
⟨𝑐𝑡, 𝑔, 𝑒 ⟩ represents the allocation of a composite task 𝑐𝑡 , to a system agent 𝑔, by an
external agent 𝑒 .

Definition 8.3.3 (Atomic allocation). The atomic allocation is the set of all atomic
tasks 𝐴𝑇 that are present in the system, and allocated to agents in𝐺 by other agents
(or themselves), to complete, AL = 2(AT×G×G) , where each assignment ⟨𝑎𝑡, 𝑔, 𝑔⟩
represents the allocation of an atomic task 𝑎𝑡 , to an agent 𝑔, by an agent 𝑔.

Definition 8.3.4 (Action allocation). The action allocation is the set of all actions
present in the system, 𝐴, that have been allocated to agents in 𝐺 by other agents,
to enact, ACT = 2(A×G×G) , where each assignment ⟨𝑎,𝑔, 𝑔⟩ represents the alloca-
tion of an action 𝑎, to an agent 𝑔, by an agent 𝑔.

2This definition of knowledge as agents that an agent knows about, and has retained information on,
was chosen as the most basic form of knowledge that could be exchanged, while ensuring our algorithms
demonstrated the behaviour of agents learning better optimisations of their performance through the
use of shared knowledge (therefore keeping the scope of our work focused). The exchange of more
complex types of knowledge was deferred to future work (See Chapter 13, Section 13.4).
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System state The system can be one of all possible states S. Agents can take actions that will
transition the system between states, each action performed incrementing a system
logical time counter, 𝜙 ∈ N0. Over the systems’ lifetime it will move through a set of
such states 𝑆 ⊆ S.
Definition 8.3.5 (System State). Wedefine the system state as a tuple, 𝑠 = ⟨𝐺𝑆 ,𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩
where:

• 𝐺𝑆 is the set of states of all agents in the system;

• 𝐶𝐿 is the set of composite allocations in the system;

• 𝐴𝐿 is the set of atomic allocations in the system;

• 𝐴𝐶𝑇 is the set of actions allocated in the system;

• 𝜙 is the system logical time counter.

Selecting tasks
from allocations

We define the mapping 𝑎𝑡𝑜𝑚𝑖𝑐𝑠 : AL → 2AT as the set of all atomic tasks included
in an atomic allocation, such that:

𝑎𝑡𝑜𝑚𝑖𝑐𝑠 (𝐴𝐿) = {𝑎𝑡 : ⟨𝑎𝑡, 𝑔, 𝑔⟩ ∈ 𝐴𝐿} (8.1)

Similarly, for composite tasks included in a composite allocation 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠 : CL →
2CT :

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠 (𝐶𝐿) = {𝑐𝑡 : ⟨𝑐𝑡, 𝑔, 𝑒 ⟩ ∈ 𝐶𝐿} (8.2)

Those atomic tasks in an atomic allocation that have been allocated to an agent 𝑔 are
given by its concurrent atomic allocations, 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : AL × G → 2AT where:

𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) = {𝑎𝑡 : ⟨𝑎𝑡, 𝑔, 𝑔⟩ ∈ 𝐴𝐿} (8.3)

The atomic tasks that are available to an agent 𝑔 to allocate to other agents as
a result of the decomposition of the composite tasks allocated to it are given by,
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑎𝑏𝑙𝑒 : CL × G → 2AT , where:

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑎𝑏𝑙𝑒 (𝐶𝐿,𝑔) = {𝑎𝑡 : 𝑎𝑡 ∈ 𝑐𝑡, ⟨𝑐𝑡, 𝑔, 𝑒 ⟩ ∈ 𝐶𝐿} (8.4)

8.4 Agent actions
The state of a DTAS changes as a result of external agents assigning sets of tasks to the
system, and the actions that are executed by the system’s agents. We define below
the possible actions A in the system, along with their operational semantics. These
actions are; the assignment, allocation, and execution of tasks; information request,
provision, and removal; and the addition and removal of agents from a neighbour-
hood.

Assignment action The ASSIGN action takes a composite task 𝑐𝑡 from an external
agent 𝑒 , and allocates it to an agent within the system, 𝑔 ∈𝑅 𝐺 , an arbitrarily selected
agent responsible for that composite task type3:

𝐴𝑆𝑆𝐼𝐺𝑁 (𝑒, 𝑐𝑡) ∧ 𝑒 ∈ 𝐸
∧ ∃𝑔 ∈𝑅 𝐺 : 𝑡𝑦𝑝𝑒𝑐 (𝑐𝑡) ∈ 𝑟 (𝑔)

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿 ∪ {⟨𝑐𝑡, 𝑔, 𝑒 ⟩}, 𝐴𝐿,𝐴𝐶𝑇, 𝜙 + 1⟩ (8.5)

3Using the notation 𝑥 ∈𝑅 𝑆 to represent the arbitrary selection of a member 𝑥 from a set 𝑆[295].
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Allocation action An agent 𝑔 performing an allocation action allocates an atomic
task 𝑎𝑡 to one of its neighbourhood agents, 𝑛. The atomic task must be one that is
currently allocated to the agent 𝑔 by another agent 𝑔, or as part of a composite task
allocated to the agent 𝑔 by an external agent 𝑒 :

𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) ∧ 𝑔 ∈ 𝐺
∧ 𝑎𝑡 ∈ 𝐴𝑇
∧ 𝑛 ∈ 𝑁 (𝑔)
∧ {∃⟨𝑐𝑡, 𝑔, 𝑒 ⟩ ∈ 𝐶𝐿 : 𝑎𝑡 ∈ 𝑐𝑡 ∨ ∃⟨𝑎𝑡, 𝑔, 𝑔⟩ ∈ 𝐴𝐿}

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿 ∪ {⟨𝑎𝑡, 𝑛, 𝑔⟩}, 𝐴𝐶𝑇, 𝜙 + 1⟩ (8.6)

We also define a restricted version of this action which can only be performed by
parent agents allocating atomic tasks belonging to one of their composite tasks, and
where, once allocated to an agent, that agent cannot then reallocate the task to other
agents. We use this SINGLEALLOC action in developing our work in Chapter 9 and
Chapter 10, before introducing the full solution, including the ability to reallocate
tasks using the ALLOC action, in Chapter 11.

𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) ∧ 𝑔 ∈ 𝐺
∧ 𝑎𝑡 ∈ 𝐴𝑇
∧ 𝑛 ∈ 𝑁 (𝑔)
∧ {∃⟨𝑐𝑡, 𝑔, 𝑒 ⟩ ∈ 𝐶𝐿 : 𝑎𝑡 ∈ 𝑐𝑡}

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿 ∪ {⟨𝑎𝑡, 𝑛, 𝑔⟩}, 𝐴𝐶𝑇, 𝜙 + 1⟩ (8.7)

Execution action An agent 𝑔 can perform an execution action when it has been
allocated an atomic task, 𝑎𝑡 and has that capability. The atomic task can be one
allocated by another agent 𝑔, or as part of an agent’s composite task:

𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡) ∧ 𝑔 ∈ 𝐺
∧ 𝑎𝑡 ∈ 𝐴𝑇
∧ 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∈ 𝑐 (𝑔)
∧ {∃⟨𝑐𝑡, 𝑔, 𝑒 ⟩ ∈ 𝐶𝐿 : 𝑎𝑡 ∈ 𝑐𝑡 ∨ ∃⟨𝑎𝑡, 𝑔, 𝑔⟩ ∈ 𝐴𝐿}

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿 \ {⟨𝑎𝑡, 𝑔, 𝑔⟩}, 𝐴𝐶𝑇, 𝜙 + 1⟩ (8.8)

Request information action An agent𝑔 performs an request information action, by
allocating a PROVIDE_INFO action to an agent in its neighbourhood, 𝑛, to provide
information:

𝐼𝑁 𝐹𝑂 (𝑔, 𝑛) ∧ 𝑔 ∈ 𝐺
∧ 𝑛 ∈ 𝑁 (𝑔)

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇 ∪ {⟨𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂,𝑛, 𝑔⟩}, 𝜙 + 1⟩
(8.9)

Provide information action An agent 𝑔 performs a provide information action by
sending information about an agent 𝑘 , arbitrarily selected from its knowledge4, to

4We use a simple form of knowledge here to contain the scope of our work, however this is easily
expandable to cover the exchange of more complex types of knowledge (See Chapter 13, Section 13.4).
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the agent 𝑔, that allocated it the respective PROVIDE_INFO action. The agent 𝑔 then
adds 𝑘 to its knowledge, as long as it has not reached its knowledge constraint limit:

𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂 (𝑔,𝑔) ∧ 𝑔 ∈ 𝐺
∧ 𝑔 ∈ 𝑁 (𝑔)
∧ ∃𝑘 ∈𝑅 𝐾 (𝑔)
∧ ⟨provide_info, 𝑔, 𝑔⟩ ∈ 𝐴𝐶𝑇
∧ |𝐾 (𝑔) | < 𝛿𝑛 (𝑔)

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇 \ {⟨𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂,𝑛, 𝑔⟩}, 𝜙 + 1⟩
(8.10)

where 𝐺𝑆 (𝑔) = {⟨𝐾 (𝑔′), 𝑁 (𝑔′)⟩|∀𝑔′ ∈ (𝐺𝑆 (𝑔) \ {𝑔}} ∪ {⟨𝐾 (𝑔) ∪ {𝑘}, 𝑁 (𝑔), ⟩}

Remove information action An agent 𝑔 can take a remove information action by
removing an agent 𝑘 from its knowledge as long as that agent is not in its neighbour-
hood:

𝑅𝐸𝑀𝑂𝑉𝐸_𝐼𝑁 𝐹𝑂 (𝑔, 𝑘) ∧ 𝑔 ∈ 𝐺
∧ 𝑘 ∈ 𝐾 (𝑔)
∧ 𝑘 ∉ 𝑁 (𝑔)

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙 + 1⟩ (8.11)

where 𝐺 ′
𝑆
= {⟨𝐾 (𝑔′), 𝑁 (𝑔′)⟩|∀𝑔′ ∈ (𝐺𝑆 (𝑔) \ {𝑔}} ∪ {𝐾 (𝑔) \ {𝑘}, 𝑁 (𝑔)}

Link action An agent𝑔 can add an agent 𝑘 in its knowledge into its neighbourhood,
as long as it is within its neighbourhood constraint limit, by taking a link action:

𝐿𝐼𝑁𝐾 (𝑔, 𝑘) ∧ 𝑔 ∈ 𝐺
∧ 𝑘 ∈ 𝐾 (𝑔)
∧ |𝑁 (𝑔) | < 𝛿𝑛 (𝑔)

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙 + 1⟩ (8.12)

where 𝐺𝑆 (𝑔) = {⟨𝐾 (𝑔′), 𝑁 (𝑔′)⟩|∀𝑔′ ∈ (𝐺𝑆 (𝑔) \ {𝑔}} ∪ {⟨𝐾 (𝑔), 𝑁 (𝑔) ∪ {𝑘}⟩}

Remove link action An agent 𝑔 can remove an agent 𝑛 from its neighbourhood by
taking a remove link action:

𝑅𝐸𝑀𝑂𝑉𝐸_𝐿𝐼𝑁𝐾 (𝑔, 𝑛) ∧ 𝑔 ∈ 𝐺
∧ 𝑛 ∈ 𝑁 (𝑔)

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩ → ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙 + 1⟩ (8.13)

where 𝐺 ′
𝑆
= {⟨𝐾 (𝑔′), 𝑁 (𝑔′)⟩|∀𝑔′ ∈ (𝐺𝑆 (𝑔) \ {𝑔}} ∪ {𝐾 (𝑔), 𝑁 (𝑔) \ {𝑛}}
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8.5 Grouping and filtering actions
Action categoriesIn out work in Chapter 9 we will use the outcomes of an agent’s past actions to adapt

the probability of it taking certain groups of actions in the future. To simplify this, we
define the action-category of an action as:

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑎) =



𝐴𝑆𝑆𝐼𝐺𝑁 if ∃𝑒 ∈ E, 𝑐𝑡 ∈ CT : 𝑎 = 𝐴𝑆𝑆𝐼𝐺𝑁 (𝑒, 𝑐𝑡)
𝐴𝐿𝐿𝑂𝐶 if ∃𝑔, 𝑛 ∈ G, 𝑎𝑡 ∈ AT : 𝑎 = 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛)
𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 if ∃𝑔, 𝑛 ∈ G, 𝑎𝑡 ∈ AT : 𝑎 = 𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛)
𝐸𝑋𝐸𝐶 if ∃𝑔, 𝑎𝑡 ∈ AT : 𝑎 = 𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡)
𝐼𝑁 𝐹𝑂 if ∃𝑔, 𝑛 ∈ G : 𝑎 = 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛)
𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂 if ∃𝑔,𝑔 ∈ G : 𝑎 = 𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂 (𝑔,𝑔)
𝑅𝐸𝑀𝑂𝑉𝐸_𝐼𝑁 𝐹𝑂 if ∃𝑔, 𝑘 ∈ G : 𝑎 = 𝑅𝐸𝑀𝑂𝑉𝐸_𝐼𝑁 𝐹𝑂 (𝑔, 𝑘)
𝐿𝐼𝑁𝐾 if ∃𝑔, 𝑘 ∈ G : 𝑎 = 𝐿𝐼𝑁𝐾 (𝑔, 𝑘)
𝑅𝐸𝑀𝑂𝑉𝐸_𝐿𝐼𝑁𝐾 if ∃𝑔, 𝑛 ∈ G : 𝑎 = 𝑅𝐸𝑀𝑂𝑉𝐸_𝐿𝐼𝑁𝐾 (𝑔, 𝑛)

(8.14)

Available actionsWe define the available actions of an agent 𝑔 in a state 𝑠 = ⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩,
where 𝐺𝑆 (𝑔) = ⟨𝐾, 𝑁 ⟩, as 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 : G × S → 2A , such that 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) returns the
set of all the actions that the agent 𝑔 can perform in its current state:

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) = {𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) : 𝑎𝑡 ∈ 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔), 𝑛 ∈ 𝑁 }
∪{𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) : 𝑎𝑡 ∈ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑎𝑏𝑙𝑒 (𝐶𝐿,𝑔), 𝑛 ∈ 𝑁 }
∪{𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡) : 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∈ 𝑐 (𝑔)}
∪{𝐼𝑁 𝐹𝑂 (𝑔, 𝑛) : 𝑛 ∈ 𝑁 }
∪{𝐿𝐼𝑁𝐾 (𝑔, 𝑘) : 𝑘 ∈ 𝐾,𝑘 ∉ 𝑁 }

(8.15)

Target actionsWe define target actions, 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 : G×S× 2G → 2A , such that 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (𝑔, 𝑠,𝐺) returns
the set of all the available actions for the agent 𝑔 in a state 𝑠 , that interact with an
agent in the set 𝐺 :

𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (𝑔, 𝑠,𝐺) = {𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) : 𝑎 = 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛), 𝑛 ∈ 𝐺}
∪{𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) : 𝑎 = 𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛), 𝑛 ∈ 𝐺}
∪{𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) : 𝑎 = 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛), 𝑛 ∈ 𝐺}
∪{𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) : 𝑎 = 𝐿𝐼𝑁𝐾 (𝑔, 𝑘), 𝑘 ∈ 𝐺}

(8.16)

Unknown statesThere are states an agent could be in, but lacks the knowledge to access yet. We refer
to these states as the unknown states of an agent 𝑔, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 : G×2S → 2S . Given an
agent’s current state,𝐺𝑆 (𝑔) = ⟨𝐾, 𝑁 ⟩, and a set of states 𝑆 , then for each 𝑠 ∈ 𝑆 where
the agent’s state is ⟨𝐾 ′, 𝑁 ′⟩ then the set of states which does not contain the agent’s
current knowledge is given by:

𝑢𝑛𝑘𝑛𝑜𝑤𝑛(𝑔, 𝑆) = {𝑠 : 𝐾 \ 𝐾 ′ ≠ ∅} (8.17)
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Example 8.5.1 (Actions in a WSN). An agent 𝑔1 is part of an ocean-monitoring
WSN containing agents 𝐺 = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, where the current neighbourhood
of 𝑔1 is 𝑁 (𝑔) = {𝑔1, 𝑔2}, and its knowledge is, 𝐾 (𝑔) = {𝑔1, 𝑔2, 𝑔3}. Agent 𝑔1
receives a composite task 𝑐𝑡 = {𝑎𝑡𝑠𝑎𝑙 , 𝑎𝑡𝑜𝑥𝑦}, where 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡𝑠𝑎𝑙 ) = 𝑎𝑝𝑠𝑎𝑙 and
𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡𝑜𝑥𝑦) = 𝑎𝑝𝑜𝑥𝑦 . Since agent 𝑔1 has a working salinity measuring sen-
sor, 𝑎𝑝𝑠𝑎𝑙 ∈ 𝑐 (𝑔), it can complete the task 𝑎𝑡𝑠𝑎𝑙 itself, and so performs action
𝐸𝑋𝐸𝐶 (𝑔1, 𝑎𝑡𝑠𝑎𝑙 ). As it does not have a sensor to detect oxygen levels, it cannot
complete tasks of that type, 𝑎𝑝𝑜𝑥𝑦 ∉ 𝑐 (𝑔), and so it allocates this task to an
agent in its neighbourhood, 𝑔2, through the action 𝐴𝐿𝐿𝑂𝐶 (𝑔1, 𝑎𝑡𝑜𝑥𝑦, 𝑔2). In this
case, due to its neighbourhood and knowledge, the available actions of 𝑔1 in its
current state 𝑠 are:

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔1, 𝑠) = {𝐴𝐿𝐿𝑂𝐶 (𝑔1, 𝑎𝑡𝑜𝑥𝑦, 𝑔2), 𝐴𝐿𝐿𝑂𝐶 (𝑔1, 𝑎𝑡𝑠𝑎𝑙 , 𝑔2),
𝐸𝑋𝐸𝐶 (𝑔1, 𝑎𝑡𝑠𝑎𝑙 ), 𝐼𝑁 𝐹𝑂 (𝑔1, 𝑔2), 𝐿𝐼𝑁𝐾 (𝑔1, 𝑔3)}

and its current target actions for the set {𝑔2}:

𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (𝑔1, 𝑠, {𝑔2}) = {𝐴𝐿𝐿𝑂𝐶 (𝑔1, 𝑎𝑡𝑜𝑥𝑦, 𝑔2), 𝐼𝑁 𝐹𝑂 (𝑔1, 𝑔2)}

8.6 Summary
This chapter formally defined our DTAS, its dynamics, and how agents can act within
the environment. In the next chapter we build on this to define the task allocation
problem, and the algorithms we use to solve for it.
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Chapter 9
Task allocation

In this chapter we look at the learning and optimisation of task allocation by agents
in a dynamic environment. We develop new algorithms to tackle this problem and
evaluate their performance in a range of simulated systems; a stable system to mea-
sure overall performance, i.e., how close our algorithm’s system utility approaches
the theoretical maximum achievable in the system; another to look at how our al-
gorithms’ exploration strategy performs; a volatile system to see how they adapt to
heavily perturbed systems; and a large system to examine how well the algorithms’
performance scales as the number of agents in the system increases (Contribution
1).

9.1 Introduction
In a DTAS we aim to have efficient task allocation in a dynamic multi-agent system
while ensuring scalability, even as the number of tasks increases and the availability
of agents changes. In this chapter we present four algorithms to solve this problem.
Each algorithm is focused on tackling a different aspect of the problem, then they
are combined to solve the problem as a whole. These algorithms enable each agent to
improve their task allocation strategy through reinforcement learning, while changing
how much they explore the system in response to how optimal they believe their
current strategy is, given their experience.
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Chapter structure The structure of this chapter is separable into four main areas; the task allocation
problem itself, the techniques we use to adapt Q-learning for non-stationary environ-
ments, the algorithms we develop using these techniques to solve the task allocation
problem, and their evaluation.

In the next section, Section 9.2, we describe our strategy for tackling Q-learning in a
non-stationary environment. Section 9.3 introduces the task allocation problem more
formally, alongside the notation and equations we will use to describe task allocation
and system utility within a DTAS. We define locally-optimal, and system-optimal al-
locations, concepts which we then use in extending Q-learning to non-stationary en-
vironments in the next section.

Section 9.4 focuses on Q-learning in non-stationary environments, and the problem of
agents learning a policy (their understanding of the system’s state and which actions
to take in it) which must change in response to changes in the environment. An agent
does not know how much the environment has changed, how those changes affect
the usefulness of different parts of its policy, and therefore how quickly to adapt its
learning.

In the previous chapter we defined an agent’s internal state as ⟨𝐾, 𝑁 ⟩, with system
state ⟨𝐺𝑆 ,𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝜙⟩, where an agent is learning to optimise its task allocation
through ALLOC and EXEC actions, and its internal state through LINK and INFO ac-
tions. The optimisation of task allocations does not involve decisions that will affect
the longer-term performance of the agent, and can be tackled through common re-
inforcement learning algorithms. However, the optimisation of its internal state does
affect the future decisions and performance of the agent. How the agent predicts the
impact of such decisions is detailed in Sections 9.4.3-9.4.5. The choice of the agent on
whether to focus on this allocation optimisation, or on internal state optimisation, on
each time step is part of the work of the RT-ARP algorithm.

We detail our proposed algorithms in Section 9.5. This is followed by evaluation of
the algorithms’ performance through simulating various systems in Section 9.6, with
analysis in Section 9.7. Finally, we look how this work relates to a practical application
in an ocean-based WSN in Section 9.8.

9.2 Learning in a non-stationary environment
Our strategy is to enhance Q-learning to tackle the problems resulting from non-
stationary environments by enabling agents to make predictions of the possible allo-
cation quality achievable in their current neighbourhood, and how that quality might
compare to possible values in other neighbourhoods. We briefly introduce standard
Q-learning techniques in Subsection 9.4.1 before moving on to how we adapt them to
tackle the problems resulting from non-stationary environments in Subsections 9.4.2
- 9.4.5. These subsections look at three areas;

1. the value of information in a neighbourhood , how do we enable agents to use re-
wards information from their past actions to estimate the value of their neigh-
bourhood? I.e. how much has an agent learned about a neighbourhood and the
best actions to take within that neighbourhood? The agent can use this esti-
mation to decide if it has enough information to predict whether taking actions
(that change its neighbourhood) would be beneficial to its performance. The
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agent can also decide which agents and actions it should retain information
on when managing its neighbourhood and knowledge, while keeping within
constraints (Subsection 9.4.2);

2. the impact of actions on an agent’s state, understanding this helps an agent pre-
dict how the actions it could take would change its neighbourhood and knowl-
edge, and whether the locally-optimal allocation of its tasks in this new state
would be better than in its current one. This predictive ability helps agents more
efficiently select actions that will move them towards parts of state-space where
they will achieve better performance (Subsection 9.4.3);

3. allocation quality metrics, developing allocation quality metrics allows an agent
to judge the performance of its current policy as compared to its previous ones.
In order to predict whether taking actions that would change its neighbourhood
or knowledge would be advantageous, the agent needs to predict how close it
is to the locally-optimal allocation quality in its current neighbourhood, and
how close this value is to the system-optimal allocation quality, given that both
these values are not known to it (Subsection 9.4.4).

By combining the work from these areas, the agent can then determine whether it
should take actions that it currently predicts to be non-optimal, or actions that will
substantially change its neighbourhood or knowledge base, in order to explore the
action-space and achieve better performance.

9.3 Task quality and the optimality of allocations
Permutations of
atomic tasks

Given a set of atomic tasks 𝐴𝑇 , and a set of agents 𝐺 , there are a number of differ-
ent 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 : 2AT × 2G → 2AL possible when allocating these tasks amongst
agents:

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 (𝐴𝑇,𝐺) = {𝐴𝐿 ∈ AL : ∀⟨𝑎𝑡, 𝑔, 𝑔⟩ ∈ 𝐴𝐿, 𝑎𝑡 ∈ 𝐴𝑇,𝑔 ∈ 𝐺,𝑔 ∈ 𝐺} (9.1)

Atomic task
quality

An agent completes each of its allocated atomic tasks to a quality. The definition of
this quality is system-specific, depending on the system’s goals. E.g. in an environ-
mental monitoring system, the quality of an atomic task to take ameasurementmight
have a strong dependency on the reading’s accuracy. Whereas, in a V2X system, a task
to calculate a vehicle’s location may well place more value on how quickly the task is
performed.

For our DTAS system, we make the assumption that an agent which has been al-
located multiple tasks must share its resources amongst those tasks until they are
completed, and that this will reduce the quality of completion of those tasks, i.e. the
atomic task quality decreases as the number of concurrent tasks an agent is perform-
ing, |𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) |, increases (see Example 9.3.1).

Definition 9.3.1 (Atomic task quality). The atomic task quality for an agent complet-
ing an atomic task depends on the task’s type, and the concurrent atomic allocations
of the agent, 𝑎𝑡𝑜𝑚𝑖𝑐𝑞𝑙 : AP × N0 → R
Definition 9.3.2 (Atomic allocation quality). The atomic allocation quality of a set of
atomic tasks𝐴𝑇 , given an atomic allocation𝐴𝐿, is defined as𝑎𝑙𝑙𝑜𝑐𝑞𝑙 : 2AT × AL → R,
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where:

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿) =
∑︁

𝑎𝑡 ∈𝐴𝑇,∃⟨𝑎𝑡,𝑔,𝑔⟩∈𝐴𝐿
𝑎𝑡𝑜𝑚𝑖𝑐𝑞𝑙 (𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡), |𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) |) (9.2)

Example 9.3.1 (The effect of concurrency on task quality). An agent𝑔 in an ocean
monitoring WSN is to be allocated an oxygen measurement task 𝑎𝑡𝑜𝑥𝑦 , and a
salinity measurement task 𝑎𝑡𝑠𝑎𝑙 . The quality of completing these tasks is mostly
dependent on the precision of the results rather than other factors such as how
quickly the tasks are completed. By dedicating more of its power to a mea-
surement task, the agent can increase the precision of the results of the sensor
reading.

Given allocations𝐴𝐿1 and𝐴𝐿2, where 𝑎𝑡𝑜𝑥𝑦 and 𝑎𝑡𝑠𝑎𝑙 are allocated to 𝑔 indepen-
dently (i.e. 𝑎𝑡𝑠𝑎𝑙 was only allocated to 𝑔 after 𝑎𝑡𝑜𝑥𝑦 had completed), then 𝑔 can
allocate 100% of its available power to each task, obtaining a high precision, and
therefore a high quality, for both tasks. If 𝐴𝐿1 represents the atomic allocation
where the tasks were allocated to 𝑔 at the same time (i.e. 𝑎𝑡𝑠𝑎𝑙 and 𝑎𝑡𝑜𝑥𝑦 are
performed concurrently by 𝑔), 𝑔must split its power between the two tasks, and
the precision, and so the quality, of both measurements is reduced.

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 ({𝑎𝑡𝑜𝑥𝑦}, 𝐴𝐿1) + 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 ({𝑎𝑡𝑠𝑎𝑙 }, 𝐴𝐿2) > 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 ({𝑎𝑡𝑜𝑥𝑦, 𝑎𝑡𝑠𝑎𝑙 }, 𝐴𝐿3)

To simplify the development of the algorithms in this chapter we make the assump-
tion that the quality of composite task completion is simply the sum of the qualities
returned from its allocations of atomic tasks. This assumption is reasonable if;

1. there is a minimal effect on quality due to variations in a parent agent’s aggre-
gation of atomic tasks for different composite tasks;

2. the source of a parent agent’s composite tasks does not affect the quality of its
completion;

3. the quality of atomic tasks within a composite task are not dependent on each
other.

We remove Assumption 3 once we have done the additional theoretical work in Chap-
ter 10 to allow for the interdependence of atomic task qualities within a composite
task.

System utility Over a period of time the system will progress through a number of system states as
it allocates and completes tasks, from which we can define the utility of the system.

Definition 9.3.3 (System utility). The utility of a system is the sum of atomic alloca-
tion qualities of each allocation in a set of system states, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 : 2S → R so that:

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑆) =
∑︁

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇,𝜙 ⟩∈𝑆
𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝑎𝑡𝑜𝑚𝑖𝑐𝑠 (𝐴𝐿), 𝐴𝐿) (9.3)

In defining the utility, we assume that; the atomic tasks allocated in the set of states
𝑆 are completed within that set of states; atomic tasks are instantaneously completed
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on allocation (and removed from the allocation). These are assumptions to simplify
the definition of utility, and do not limit its applicability to our work overall.

Optimality of
allocations

The range of allocations that an agent can achieve is bounded by its neighbourhood.
The allocation of tasks 𝐴𝑇

′
by agent 𝑔, to a neighbourhood of agents 𝐺

′
may be;

• non-optimal, there are other allocations of 𝐴𝑇
′
to𝐺

′
that will result in a higher

allocation quality. Given an allocation𝐴𝐿
′
of atomic tasks𝐴𝑇

′
to a set of agents

𝐺
′
by an agent 𝑔:

∃𝐴𝐿′′,∀⟨𝑎𝑡, 𝑔′′, 𝑔⟩ ∈ 𝐴𝐿′′ ∃ 𝑔′′ ∈ 𝐺 ′ : 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′′) > 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′)

• locally-optimal, the allocation achieves the highest quality possible given the
atomic tasks𝐴𝑇

′
and agents𝐺

′
. Given an allocation𝐴𝐿

′
of atomic tasks𝐴𝑇

′
to

a set of agents 𝐺
′
by an agent 𝑔:

�𝐴𝐿′′,∀⟨𝑎𝑡, 𝑔′′, 𝑔⟩ ∈ 𝐴𝐿′′ ∃ 𝑔′′ ∈ 𝐺 ′ : 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′′) > 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′)

• system-optimal, there is no other neighbourhood in the system that𝑔 could have
that would produce a higher quality given the tasks 𝐴𝑇

′
. Given an allocation

𝐴𝐿
′
of atomic tasks 𝐴𝑇

′
to a neighbourhood 𝐺

′
by an agent 𝑔, and any other

possible neighbourhood of 𝑔, 𝐺
′′
:

�𝐴𝐿′′,∀⟨𝑎𝑡, 𝑔′′, 𝑔⟩ ∈ 𝐴𝐿′′ ∃ 𝑔′′ ∈ 𝐺 ′′ : 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′′) > 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′)

• non-allocable, the agents in the existing neighbourhood do not have the neces-
sary capabilities to complete one or more of the tasks in 𝐴𝑇

′
:

∃𝑎𝑡 ∈ 𝐴𝑇 ′ : 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∉ 𝑐 (𝑔)∀𝑔
′ ∈ 𝑁 (𝑔)

Note, there may be more than one allocation (and therefore neighbourhood) that is
locally-optimal, or system-optimal. In the following equations where 𝑎𝑟𝑔𝑚𝑎𝑥 is used
to find optimal allocations, and returns multiple, degenerate values, we arbitrarily
select a single member of the returned set. I.e. if 𝑎𝑟𝑔𝑚𝑎𝑥

𝑥∈𝑋
𝑓 (𝑥) returns a set 𝑆 we then

select a member 𝑥 ∈𝑅 𝑆 .
Definition 9.3.4 (Locally-optimal allocation). The locally-optimal allocation of tasks
𝐴𝑇 to agents 𝐺 given a fixed allocation of other tasks 𝐴𝐿, is the allocation that gives
the highest quality, 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐 : 2AT × 2G × AL → AL, where:

𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐 (𝐴𝑇,𝐺,𝐴𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐴𝐿
′ ∈𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 (𝐴𝑇,𝐺 )

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝑎𝑡𝑜𝑚𝑖𝑐𝑠 (𝐴𝐿′), 𝐴𝐿 ∪𝐴𝐿′) (9.4)

The quality of this locally-optimal allocation is then 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 : 2AT×2G×AL → R:

𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐺,𝐴𝐿) = 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿′) where 𝐴𝐿′ = 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐 (𝐴𝑇,𝐺,𝐴𝐿) (9.5)

Given the agents in the system, we can define all possible neighbourhoods for a given
agent as 𝑎𝑙𝑙ℎ𝑜𝑜𝑑𝑠 : G × 2G → 22G , where:

𝑎𝑙𝑙ℎ𝑜𝑜𝑑𝑠 (𝑔,𝐺) = {𝐺𝑆 ∈ 2𝐺 : |𝐺𝑆 | < 𝛿𝑁 } given 𝑔 = ⟨..., 𝛿𝑁 , ...⟩

Of all these possible neighbourhoods, there will be one or more that will give the
locally-optimal allocation with the highest quality within the system for an agent’s
allocation of a set of tasks.
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Definition 9.3.5 (Optimal neighbourhood). In a system containing agents𝐺 with al-
location 𝐴𝐿, the optimal neighbourhood of a set of atomic tasks 𝐴𝑇 , allocated to an
agent 𝑔, will be that which gives the best quality 𝑜𝑝𝑡ℎ𝑜𝑜𝑑 : 2AT ×G×2G ×AL → 2G
where:

𝑜𝑝𝑡ℎ𝑜𝑜𝑑 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐺
′ ∈𝑎𝑙𝑙ℎ𝑜𝑜𝑑𝑠 (𝑔,𝐺 )

𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐺 ′, 𝐴𝐿) (9.6)

The system-optimal allocation, 𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐 : 2AT × G × 2G ×AL → AL is therefore the
locally-optimal allocation to this neighbourhood:

𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) = 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐 (𝐴𝑇, 𝑜𝑝𝑡ℎ𝑜𝑜𝑑 (𝐴𝑇,𝑔,𝐺,𝐴𝐿), 𝐴𝐿) (9.7)

Where the quality of this allocation will be, 𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐𝑞𝑙 : 2AT × G × 2G × AL → R,
such that:

𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) = 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝐿′) where 𝐴𝐿′ = 𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) (9.8)

If we had full knowledge of the system’s tasks 𝐴𝑇 and agents 𝐺 , we could then cal-
culate the joint-optimal allocation, the global allocation with the highest quality, the
joint-optimal quality , given by 𝑗𝑜𝑖𝑛𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 : 2AT × 2G → R:

𝑗𝑜𝑖𝑛𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐺) = 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐺, ∅)

Our aim is to optimise towards this value using distributed algorithms, where only an
agent’s local-knowledge is used.

Example 9.3.2 (Optimal allocations in multi-agent systems). In Figure 9.1 we il-
lustrate locally-optimal, system-optimal, and joint-optimal allocations in a sim-
ple multi-agent system. A parent agent, 𝑝𝑔1, allocates two tasks, {𝑎𝑡1, 𝑎𝑡2}, with
type {𝑎𝑝1, 𝑎𝑝2} in a system with 3 child agents 𝑐𝑔1, 𝑐𝑔2 and 𝑐𝑔3. Each agent can
complete tasks of these types to different task qualities,
𝑎𝑡𝑜𝑚𝑖𝑐𝑞𝑙 (𝑎𝑝, |𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) |).
If the neighbourhood of 𝑝𝑔1 is 𝑁1, then, due to the effect of concurrency the
task completion qualities of child agents, the locally-optimal allocation for 𝑝𝑔1
in that neighbourhood is {⟨𝑎𝑡1, 𝑐𝑔1⟩, ⟨𝑎𝑡2, 𝑐𝑔2⟩}, with value 6. If 𝑝𝑔1 changed
to neighbourhood 𝑁2, then the quality of its task allocations to child agents
𝑐𝑔2 and 𝑐𝑔3 is the best possible in the system (if it were the only agent allo-
cating tasks). So 𝑁2 is its optimal neighbourhood for 𝑝𝑔1 given these tasks to
allocate, and its system-optimal allocation would be {⟨𝑎𝑡1, 𝑐𝑔3⟩, ⟨𝑎𝑡2, 𝑐𝑔2⟩}, with
quality 9. However, in a multi-agent system, parent agents may independently
choose to allocate tasks to shared child agents. If 𝑝𝑔2 were also to allocate a
task 𝑎𝑡

′
1 of type 𝑎𝑝1 to 𝑐𝑔3, concurrency would cause the quality returned to 𝑝𝑔1

for 𝑎𝑡1 to drop to 1, so the actual joint-optimal allocation1 in this situation is
{⟨𝑎𝑡1, 𝑐𝑔1⟩, ⟨𝑎𝑡2, 𝑐𝑔2⟩, ⟨𝑎𝑡

′
1, 𝑐𝑔3⟩}, giving a quality of 11.

1Note that multiple degenerate joint-optimal allocations may be possible in a system.
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Figure 9.1: Types of optimal task allocations in a multi-agent system. The dia-
gram illustrates how tasks can be allocated within a system to attain local, system, and
joint-optimal solutions. We show each agent’s possible atomic task qualities for different
atomic task types and concurrent allocations.

Finding the
optimal task
allocation

Given a set of agents and a set of composite tasks, how can we then optimise towards
the joint-optimal allocation2, maximising the utility of the system? How do we do
this when the capabilities of the agents, and the quality to which each agent can
complete atomic tasks, are dynamic and unknown? We can view this as two main
sub-problems3;

1. given a fixed local neighbourhood, how can an agent find the locally-optimal
allocation of atomic tasks from a sequence of composite tasks that are assigned
to it over a period of time?

2. how does an agent find the optimal neighbourhood within the set of all possible
neighbourhoods it can achieve, containing the system-optimal allocation for a
set of atomic tasks?

9.4 AdaptingQ-learning techniques for non-stationary
environments
For all possible actions an agent can take there is a likelihood that taking that action in
the current statewill increase future rewards. When an action is taken, the accuracy of
these predicted values can be improved based on the actual rewards returned. This is
how an agent can improve its policy , themapping of its view of the state of the system,
and the actions it can take within those states, to the likelihood those actions are

2We use the joint-optimal allocation as the maximal system performance to compare our algorithms
against in Section 9.6.

3This could be viewed as a bi-level optimisation problem[296] where multiple objectives are involved,
one objective (the optimisation of an agent’s task allocations) being nested inside another (the optimisa-
tion of an agent’s neighbourhood within the system). Relevant work that could be adaptable to this use
case can be found for intrinsic reward optimisation[297], and actor-critic reinforcement learning[298].
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optimal. Q-learning methods have been successfully applied as a model-free method
of learning policies[71], however, in real-world multi-agent systems, we commonly
find state-spaces that are only partially-observable to agents, and are non-stationary,
where Q-learning is more complex to apply[73], [299].

Policy drift in
non-stationary
environments

In stationary environments an agent’s policy targets a single Markov Decision Pro-
cess (MDP) that does not change[300], [301]. Over time, actions an agent believes to
be non-optimal become increasingly unlikely to be updated. With multiple agents in-
teracting however, the environment is now non-stationary, and becomes an infinite,
and difficult to predict, sequence of MDPs[302]. Without sampling actions previ-
ously judged to be non-optimal, an agent’s policy will not adapt. Unless it can detect
changes in the sequence of MDPs, and explore new actions, it becomes stuck applying
a previous policy to increasingly different MDPs[303].

To adapt reinforcement learning algorithms for these systems, we can use experience
replay, updating the learning algorithmswith the rewards for previously taken actions
again, with the repetition frequency being inversely proportional to their likelihood
of being chosen[304], or reset values periodically to restart the learning process[305].
However, these approaches do not take account of changes in the rate of drift of the
optimal policy during the lifetime of the system, or if the change is transient (e.g.
temporary weather conditions). Our work tackles this problem in the following ways4;

1. an agentwill optimise for its partially observable state using temporal difference-
based reinforcement learning by default (as described next in this section);

2. if current rewards are good compared to historical values, the ATA-RIA algo-
rithmwe develop assumes a relatively stationary state, and continues reinforce-
ment learning updates to optimise the agent’s policy;

3. if rewards are historically poor, the RT-ARP algorithm will increase the likeli-
hood of choosing non-optimal actions, updating them more frequently. This
likelihood (and how it varies between action-categories depending on the scale
of their impact on an agent’s policy) changes with the scale of the difference
with those historical rewards (See Sections 9.4.3 - 9.4.5);

4. as the policy changes, previous knowledge becomes less valued, and is forgotten,
by the SAS-KR algorithm, gradually resetting learning.

9.4.1 Q-learning
When an agent 𝑔 carries out an action 𝑎 in system state 𝑠 , then there is an expected
value, or cumulative discounted reward to doing so5, given by the optimal Q-mapping
𝑄 (𝑔)∗ : S × 2A → 2R . With no initial knowledge of the environment, an agent
instead can learn estimated values for each action 𝑎 in a state 𝑆 by maintaining a Q-
table, a table of estimates, 𝑄 (𝑔) : S × 2A → 2R , where 𝑄 [𝑠, 𝐴] selects the estimated
values for set of actions 𝐴, in state 𝑠6. The agent then takes actions, and updates

4See Section 9.5 for more details on the ATA-RIA, RT-ARP, and SAS-KR algorithms.
5The cumulative reward is the expected rewards the agent could receive if it continued to take the

optimal actions in the future starting from its next state 𝑠
′
. The discount factor 𝛾 makes the agent

optimise for shorter time horizons over longer ones, with the assumption that there is more uncertainty
about the system state in the future than the near-term.

6Note, individual estimated values for a single action can be returned by 𝑄 (𝑔) [𝑠, 𝑎].
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these estimate values through temporal difference learning (as described in Section
5.4). These Q-table values allow the agent to choose its estimated best action given
its current state.

Updating a Q-tableIn taking an action, an agent 𝑔 will receive a reward, 𝑟 , and the system will move from
state 𝑠 to state 𝑠

′
, where the optimal action for 𝑔 to take would be 𝑎

′
. On the change of

state, the agent updates its Q-table estimate for state 𝑠 and action 𝑎 using the formula
below7:

𝑄 (𝑔)′ [𝑠, 𝑎] ← 𝑄 (𝑔) [𝑠, 𝑎]︸      ︷︷      ︸
old value

+ 𝛼︸︷︷︸
learning
rate

temporal difference︷                                                        ︸︸                                                        ︷(
𝑟︸︷︷︸

reward

+ 𝛾︸︷︷︸
discount
factor

max
𝑎′

𝑄 (𝑔) [𝑠 ′, 𝑎′]︸              ︷︷              ︸
estimate of
optimal

future value︸                                   ︷︷                                   ︸
new value (temporal difference target)

−𝑄 (𝑔) [𝑠, 𝑎]︸      ︷︷      ︸
old value

)

(9.9)

Learning rate 𝛼
and discount
factor 𝛾 constants

The learning rate 𝛼 and discount factor 𝛾 are constants set at system initialisation.
The learning rate 0 < 𝛼 ≤ 1 is a constant that controls the step-size of the update,
corresponding to how quickly an agent will alter its policy based on the rewards it is
receiving from its current actions. The discount factor 0 < 𝛾 ≤ 1 constant alters the
value of rewards depending on how recent they are. Where a smaller value focuses the
agent on learning to value actions with more immediate results, while with a larger
value it will take into account the action’s effects longer into the future.

This update process ignores the possibility that the optimal action policy can change,
however as discussed, this is mitigated by the other steps introduced in Section 9.2
and detailed in the following subsections.

Reward values for
actions

The reward for carrying out an action is dependent on the action taken. For EXEC
and SINGLEALLOC actions this is simply the quality of task completion by the agent
the task is allocated to, i.e, 𝑟 = 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 ({𝑎𝑡}, 𝐴𝐿). For INFO and LINK actions we
set a fixed, negative reward value, representing the opportunity cost of an agent
choosing these actions over actions to complete atomic tasks. We define the func-
tion 𝑟𝑒𝑤𝑎𝑟𝑑 : 𝐴→ R as the reward for an action 𝑎.

The RLUpdate
function

To help simplify our algorithmdefinitions, we define the update function, 𝑟𝑙𝑢𝑝𝑑𝑎𝑡𝑒 : G×
S×S×A×R×Q → Q, which takes an agent𝑔’s current state 𝑠 , new state 𝑠

′
, an action

𝑎, a reward value 𝑟 , and the agent’s Q-table𝑄 , and returns the Q-table as updated by
Equation 9.9.

9.4.2 The value of knowledge
Action samplesIn order to use an agent’s historical performance to alter its future behaviour we need

to explicitly store information on past actions and their outcomes. We do this by
defining an agent’s action samples, a set of tuples 𝑠𝑝 = ⟨𝑎, 𝑡, 𝑟 ⟩ for each agent, where 𝑎
is an action taken at time 𝑡 that gave reward 𝑟 . We define the action sample selection

7This standard Q-learning algorithm is adapted from the version described in Wikipedia[306], as
introduced by Watkins[168].
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function 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 : 2SP × 2A → 2SP to allow us to specify subsets of action samples
𝑆𝑃 for which the action performed was an element of a given set of actions, 𝐴:

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑆𝑃,𝐴) = {⟨𝑎, 𝑡, 𝑟 ⟩ : ∀⟨𝑎, 𝑡, 𝑟 ⟩ ∈ 𝑆𝑃, 𝑎 ∈ 𝐴} (9.10)

For convenience, we also define the latest sample time in a set of samples, 𝑙𝑎𝑡𝑒𝑠𝑡 : SP →
R, as a function that takes a set of actions samples returns the time of the most recent
sample.

Information value We first make an assumption that the more recently, and frequently, an agent takes
an action, the less uncertainty it has in predicting that action’s contribution to longer-
term rewards. If the knowledge learned about an action’s contribution is highly uncer-
tain, thenwe judge its loss to haveminimal negative effect to the agent’s performance,
and to be quickly re-learnable by the agent to the same or greater level of value.

The action information quality , 𝑎𝑐𝑡𝑣𝑎𝑙 : 2SP ×2A ×N0 → R, is a proxy for the value of
information collected about an action 𝑎 up to a time 𝑡 , given the set of action samples
𝑆𝑃 :

𝑎𝑐𝑡𝑣𝑎𝑙 (𝑆𝑃,𝐴, 𝑡) = 1
|𝐴|

∑︁
𝑎∈𝐴

|𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑆𝑃, {𝑎}) |
𝑡 − 𝑙𝑎𝑡𝑒𝑠𝑡 (𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑆𝑃, {𝑎})) (9.11)

A constant can then be chosen, the uncertain information threshold 𝜇min, as the mini-
mum value below which an agent’s information about the expected rewards of taking
an action is no longer considered useful for prediction.

The value of
neighbourhood

agents

We define neighbour information value ℎ𝑜𝑜𝑑𝑣𝑎𝑙 : 2SP ×G × 2G → R as the sum of the
quality values of all action samples 𝑆𝑃 of an agent 𝑔 that refer to actions that involve
agents in a set 𝐺 :

ℎ𝑜𝑜𝑑𝑣𝑎𝑙 (𝑆𝑃,𝑔,𝐺) =
∑︁

𝑟

⟨𝑎,𝑡,𝑟 ⟩∈𝑆𝑃, 𝑎∈𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (𝑔,𝑠,𝐺 )
(9.12)

Definition 9.4.1 (Minimum value neighbour). The minimum value neighbour of an
agent 𝑔 is the child agent that generates the least neighbour information value,
𝑚𝑖𝑛ℎ𝑜𝑜𝑑𝑣𝑎𝑙 : 2SP × G → G:

𝑚𝑖𝑛ℎ𝑜𝑜𝑑𝑣𝑎𝑙 (𝑆𝑃,𝑔) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈𝑁 (𝑔)

ℎ𝑜𝑜𝑑𝑣𝑎𝑙 (𝑆𝑃,𝑔, {𝑥}) (9.13)

9.4.3 Predicting the effect of actions
Taking actions of different categories will change an agent’s neighbourhood, 𝑁 , or
knowledge base, 𝐾 to differing degrees. Predicting how, and to what extent, each
action will impact an agent’s current policy is key to adapting Q-learning to handle
the non-stationary environment as the agent can then combine its prediction of how
much and how quickly it should change its policy (to be covered in Sections 9.4.4 and
9.4.5), with the selection of actions that will enable it to do so.

To enable agents to make these predictions we;

1. define the impact of the different categories of actions on both an agent’s neigh-
bourhood and knowledge;

2. estimate the probability that actions generating impact will actually occur;
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3. combine these factors to define action impact;

4. detail algorithms based on historical quality values to predict which action im-
pacts will have a positive effect on task completion quality.

Neighbourhood
and knowledge
impacts

There is an impact on possible allocation quality if an agent takes actions that change
its neighbourhood. This neighbourhood impact on an agent allocating atomic tasks
𝐴𝑇 from changing its neighbourhood from 𝑁

′
to 𝑁

′′
within a system with allocation

𝐴𝐿 is the difference between the locally-optimal allocation qualities of the respective
neighbourhoods, ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 : 2AT × 2G × 2G × AL → R, where:
ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′, 𝑁 ′′, 𝐴𝐿) = 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇, 𝑁 ′′, 𝐴𝐿) − 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇, 𝑁 ′, 𝐴𝐿)

(9.14)

Definition 9.4.2 (Maximum neighbourhood impact). The maximum neighbourhood
impact 𝑚𝑎𝑥ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 : 2AT × 2G × AL → R is the maximum possible neighbour-
hood impact given a set of atomic tasks 𝐴𝑇 and all combinations of neighbourhoods
that can be formed from a set of agents 𝐺 :

𝑚𝑎𝑥ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐺,𝐴𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥
∀⟨𝑋,𝑌 ⟩⊆⟨2𝐺×2𝐺 ⟩

ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝑋,𝑌,𝐴𝐿) (9.15)

Definition 9.4.3 (Knowledge impact). The knowledge impact of an agent changing its
knowledge from set of knowledge 𝐾

′
to 𝐾

′′
is the difference between the maximal

neighbourhood impacts, 𝑘𝑛𝑜𝑤𝑖𝑚𝑝𝑎𝑐𝑡 : 2AT × 2G × 2G × AL → R, where:

𝑘𝑛𝑜𝑤𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐾 ′, 𝐾 ′′, 𝐴𝐿) =𝑚𝑎𝑥ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐾 ′′, 𝐴𝐿)
−𝑚𝑎𝑥ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐾 ′, 𝐴𝐿)

(9.16)

Example 9.4.1 (Neighbourhood impact in a WSN). An agent 𝑔 in an ocean mon-
itoring WSN system has a knowledge base from which it can form 3 distinct
neighbourhoods; 𝑁1, which is the current neighbourhood, 𝑁2, and 𝑁3. 𝑔 needs
to allocate an oxygen reading task, 𝑎𝑡𝑜𝑥𝑦 . The locally-optimal allocation quality
of 𝑁2 is worse than that of 𝑁1 (e.g., due to low battery levels of agents in 𝑁2),
whereas that of 𝑁3 is much better. In this case, if 𝑔 was to take an action to
replace 𝑁1 with 𝑁2, then this would give 𝑛𝑖 ({𝑎𝑡𝑜𝑥𝑦}, 𝑁1, 𝑁2, 𝐴𝐿) < 0, a nega-
tive impact. In contrast, taking an action that replaces 𝑁1 with 𝑁3 would give
𝑛𝑖 ({𝑎𝑡𝑜𝑥𝑦}, 𝑁1, 𝑁3, 𝐴𝐿) > 0, which is then the maximum neighbourhood impact,
given the knowledge base 𝑁1 ∪ 𝑁2 ∪ 𝑁3.

The probability of
impact effects

Since neighbourhoods and knowledge are dynamic, agents are continually added and
removed from both sets. Therefore there is a probability that agents in a neighbour-
hood never contribute to the quality of a composite task before they are removed or
the task is completed. In other words, when an agent moves from a neighbourhood
𝑁
′
to 𝑁

′′
, it will lose access to actions involving agents in the set 𝑁

′ − 𝑁 ′′ , and gain
access to actions involving those agents in the set 𝑁

′′ − 𝑁 ′ . If actions due to agents
in those sets are never taken, there is no overall impact to allocation qualities on
changing the neighbourhood or knowledge base. We define the probability an agent
takes actions involving its neighbourhood agents in the sets 𝑁

′ − 𝑁 ′′ or 𝑁 ′′ − 𝑁 ′ as
the neighbourhood impact probability , 𝑃 (𝑁 ′, 𝑁 ′′). Similarly we define the knowledge
impact probability as 𝑃 (𝐾 ′, 𝐾 ′′).
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Estimating the
impact of taking

an action

The action impact is the expected value of the change in possible allocation quality if
an action 𝑎 is taken. On taking the action the neighbourhood is changed from 𝑁

′ →
𝑁
′′
and the knowledge base from𝐾

′ → 𝐾
′′
. We define this function 𝑎𝑐𝑡𝑖𝑚𝑝𝑎𝑐𝑡 : 2AT×

2G × 2G × 2G × 2G × AL → R, where:

𝑎𝑐𝑡𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′, 𝑁 ′′, 𝐾 ′, 𝐾 ′′, 𝐴𝐿) = 𝑃 (𝑁 ′, 𝑁 ′′).ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′, 𝑁 ′′, 𝐴𝐿)
+ 𝑃 (𝐾 ′, 𝐾 ′′) .𝑘𝑛𝑜𝑤𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐾 ′, 𝐾 ′′, 𝐴𝐿)

(9.17)

The probability an agent will take different actions, and how those types of actions will
impact the possible qualities of the atomic task completions in a changed neighbour-
hood or knowledge base, are generally unknown and difficult to predict in complex,
dynamic systems. In order to calculate action-impact values we therefore make some
simplifications, allowing us to estimate these values. Using estimations allows us to
focus on the core algorithm behaviours without adding complexity.

The estimations are chosen such that the different types of action are separable based
on their impact values. Since these values are combined with dynamically learned
values in the RT-ARP algorithm, as long as the estimated action-impact values are
ordered the same way as the actual values, the algorithms should work as expected.
The more accurate the estimations, the more quickly we should expect learning to
proceed, and so implementing more granular impact prediction in future work could
be expected to improve the algorithms’ performance.

As a first approximation, we estimate action-impacts 𝑎𝑖 , based on whether each
action-category changes the state of neighbourhoods or knowledge bases, and the
probability of the impacts described given a system’s size. We detail how these esti-
mations are calculated in Appendix C.3.

The set of action-impact values,𝑊 , are estimated values for maximum action impacts
for each action-category, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑎). We assume that both |𝑁 ′′ − 𝑁 ′ | ∈ {0, 1} and
|𝐾 ′′ − 𝐾 ′ | ∈ {0, 1} for all actions. We also assume that the size of the overall sys-
tem allocation of atomic tasks, 𝐴𝐿, is large enough to remain approximately constant
despite any allocation change or resource pressure resulting from the action.

𝑊 = {⟨𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑎), �𝑎𝑐𝑡𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′, 𝑁 ′′, 𝐾 ′, 𝐾 ′′, 𝐴𝐿)⟩ : ∀𝑎 ∈ 𝐴} (9.18)

9.4.4 Measuring relative allocation optimality
For an agent to know the optimal task quality it could achieve in its current neigh-
bourhood we use a metric to measure how far its current quality values are from
optimal.

Definition 9.4.4 (Locally-optimal allocation metric). The locally-optimal allocation
metric 𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 : 2AT × G × AL → R is the difference between an agent’s cur-
rent allocation quality of atomic tasks 𝐴𝑇 to agents in its neighbourhood, and the
locally-optimal allocation quality:

𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 (𝐴𝑇,𝑔,𝐴𝐿) = 𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇, 𝑁 (𝑔), 𝐴𝐿) − 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿) (9.19)

Definition 9.4.5 (System-optimal allocation metric). The system-optimal allocation
metric 𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑖𝑠𝑡 : 2AT × G × 2G × AL → R is the difference between an agent’s
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current allocation quality and the system-optimal allocation quality given the set of
agents in the system, 𝐺 :

𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑖𝑠𝑡 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) = 𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) − 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿) (9.20)

9.4.5 Predicting impact from historical performance
An agent 𝑔 allocating a set of atomic tasks𝐴𝑇 in a system of agents𝐺 with allocation
𝐴𝐿, wants to know before taking an action 𝑎 that will change its neighbourhood 𝑁 or
knowledge 𝐾 , if doing is likely to improve its future performance in allocating 𝐴𝑇 . To
predict this likelihood, we define a function 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑎𝑐𝑡 : A× 2AT ×G × 2G ×AL →
R that maps these variables to the probability that the outcome of action 𝑎 will be
positive in terms of the future atomic allocation quality of 𝑔’s allocation of atomic
tasks 𝐴𝑇 .

Predicting
beneficial actions

Knowing the value of 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑎𝑐𝑡 would depend on an agent having knowledge of
𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 and 𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑖𝑠𝑡 , however, with only partial-knowledge of the non-stationary
environment,𝑔 does not know the locally-optimal allocation of𝐴𝑇 in its current neigh-
bourhood, or the system-optimal allocation of𝐴𝑇 overall. Therefore 𝑔 cannot directly
calculate if taking an action 𝑎 that changes its 𝑁 or 𝐾 would be beneficial.

In this subsection we use action-samples (Subsection 9.4.2), over multiple time-scales,
as a proxy for the values of 𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 and 𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑖𝑠𝑡 (Subsection 9.4.4). Combining
these proxy values with the impact of actions (Subsection 9.4.3) allows us to formulate
the impact transformation function as a method of estimating 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑎𝑐𝑡 .

Assumptions in
using historical
rewards

An agent needs to know the locally-optimal allocation quality for both the current
and the future neighbourhoods to predict whether the impact of changing neighbour-
hoods from 𝑁

′
to 𝑁

′′
would be positive. This is difficult since the agent is uncertain

of 𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 and so does not know the best values it can obtain in the current neigh-
bourhood. However, it is likely to have less samples of the actions available in 𝑁

′′

so may have even more uncertainty in future values if it changed neighbourhoods.
To find proxies for these values we make the following assumptions based around
time-based trends in action-samples.

Assumption 1. (Likelihood of neighbourhood change) The more actions an agent
takes the greater the likelihood that it will have taken actions that change its neigh-
bourhood.

If there is always some exploration of the action-space this assumption is reasonable.
In our algorithmswe utilise Boltzmann selectionwith a fixed temperature so this holds
true. In some annealing-based learning algorithms, exploration of the action spacewill
decrease over time and this may not hold true. However, in dynamic systems these
non-adaptive, time-based approaches would not be applicable in any case.

Assumption 2. (Variation of neighbourhoods) Samples in a large set of historical
action-samples will come from many different neighbourhoods.

Making this assumption allows an agent to compare its current performance with his-
torical values and assume it represents a statistical comparison of its current neigh-
bourhood to others in the system. Where an agent has access to all its possible neigh-
bourhoods, our algorithms should find the system-optimal neighbourhood for that
agent. If the agent can only access a small subset of neighbourhoods, it should find
the best in that subset. As such, the algorithms should performwell in both scenarios.
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Assumption 3. (Time-dependent similarity of neighbourhoods) Action-samples sep-
arated by short spaces of time are likely to be from similar neighbourhoods. Those
separated by large amounts of time are more likely to represent very different neigh-
bourhoods.

Using this assumption, if an agent has had much better rewards in the past, it can use
these to infer that its current neighbourhood might benefit from being substantially
changed to improve performance. However, in systems where agents can only reach
a very limited possible set of neighbourhoods (e.g. due to their static location and
limited broadcast range), this may not be reasonable. In such systems our algorithms
would push agents to take risky actions that substantially alter their neighbourhoods
and knowledge, when exploitation of the current one may be the better choice.

By making these assumptions we can estimate the relative locally-optimal allocation
and system-optimal allocation metric values. As recent action-samples with small-
time separations come from the same or similar neighbourhoods we compare their
quality value statistics to estimate 𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 . As action-samples over the long-term
come from many different neighbourhoods, we compare their values to estimate
𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑖𝑠𝑡 .

Methods to
estimate

action-impacts

To predict which actions will have a positive impact we firstly use historical action-
sample quality values to estimate action-impacts. Based on these values we increase
or decrease the probabilities of taking different categories of action. Whether an im-
pact is estimated to be positive or negative will alter the agent’s likelihood of taking
actions that explore allocation within the current neighbourhood or change its neigh-
bourhood or knowledge base8. The process is as follows;

1. we define the time-summarised quality matrix (TSQM), a method of summaris-
ing historical quality returns over multiple time scales. This uses a resampling
technique where each row in the matrix is the result of downsampling the time-
series data of the previous row[307]. The update period for each row’s recalcu-
lation, and the frequency of downsampling is dictated by thematrix dimensions
(see Section 9.4.5);

2. using this matrix we generate the impact interpolation function;

3. we then define the impact transformation function using a ratio of integrations
over the impact interpolation function;

4. finally we use the action-impact values for each action-category that that will
be used to as the input for the impact transformation function.

8Note, this has similarities to policy-based reinforcement learning strategies. In this case however,
the policy targets broad categories of actions based on how they are predicted to affect the agent’s
knowledge. The policy is informed by the agent’s prediction of its possible performance within its neigh-
bourhood, as well as the predicted quality of that neighbourhood overall within the system, which is
then used to alter the actions chosen through the agent’s value-based strategy.
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Time-summarised
quality matrix
(TSQM)

A TSQM Λ has shape (𝑚 × 𝑛) with all values initially null9. Time-ordered actions-
sample reward values {𝑟𝑡 , 𝑟𝑡−1 . . . , 𝑟𝑡−𝑛} for all actions of a specific agent are added to
the first row Λ (0, 𝑗 ) as they are sampled such that, Λ (0,) ← {𝑟𝑖}𝑛𝑖=0. Each subsequent
row is the result of averaging and pooling values in the previous row. This approach
allows each row to represent the quality trends across different time-scales. If ℎ is the
number of quality values added to the matrix then we update the elements as follows:

Λ (𝑖+1,𝑘 ) ←
∑
Λ (𝑖,)��Λ (𝑖,) �� , if ℎ mod (𝑘

��Λ (𝑖,) ��) = 0 (9.21)

To summarise the process of updating the matrix,

• each new value of 𝑟 updates the first cell of the initial row ofΛ, row 0. As this cell
is updated, the other values in the row are moved along by one to accommodate
it, with the last value being discarded;

• after 𝑛 new values of 𝑟 have been added to row 0, an average of row 0 is taken
and added as the first cell of the row 1. All values on row 1 are moved along
by one, and the last value discarded. The same process will happen after the
addition of each batch of 𝑛, 𝑟 values to row 0;

• after𝑛 new average values have been added to row 1, row 2will have the average
of row 1 added to its first cell, moving all the others along and discarding the
last;

• the same process continues for all other rows. Where each will update its first
cell with the average of the previous row after 𝑛 values have been added to that
row.

We use the function updatetsqm(Λ(𝑔), 𝑟 ) as shorthand for the full update process of
the TSQM of an agent𝑔, denoted byΛ(𝑔). Note that the values of (𝑚×𝑛) will alter the
behaviour of the TSQM in the following ways. Increasing the value of𝑚 will increase
the number of trends over different timescales that the agent will use. Whereas the
larger the value of 𝑛, the greater the number of quality values the agent must receive
before it updates each of these longer-term trends.

Impact
interpolation
function

The impact interpolation function, 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 (𝑥), is generated by taking a linear
interpolation10 over the rows of a TSQM (see Figure 9.2). A decay factor 𝛿 ∈ [0, 1] is
chosen to dampen the values of longer time-scales (exponentially by the row exponent
𝑖) to allow more recent trends to have a stronger impact. For a TSQM of shape (𝑚×𝑛)
a value 𝑥 ∈ R [0, 1] will be transformed as:

𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 (𝑥) = interpol
[{(

𝑖

𝑁
, average(Λ (𝑖,) )𝛿𝑖

)}𝑁
𝑖=0

]
(𝑥), for layers 0 to 𝑁

(9.22)
The effect of this is to dynamically generate a function from the TSQMmatrix where
a parameter 𝑥 will be mapped to reward-value trends, with larger values of 𝑥 mapping
to longer-term trends.

9Where𝑚 and 𝑛 are values chosen at system initialisation.
10We use a 1-d linear interpolation, implemented using the python scipy.interpolate.interp1d

method. Where interpol[{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)}] (𝑥) = 𝑦 estimates the value 𝑦, from 𝑥 , using an
interpolated function generated from a known set of values, {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)}.
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Figure 9.2: Transforming the TSQM. The impact transformation function is gener-
ated from the TSQM through a process of convolution of prior rows in thematrix, followed
by interpolation over the rows as a whole.

Impact
transformation

function

The impact transformation function estimates the probability that taking an action
from an action-category in the current neighbourhoodwill be positive by taking a ratio
over the integrals of the interpolation representing the fraction of historical quality
values that occur up to the input value. For any 𝑦 ∈ R [0, 1] this is given by:

𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (w) = 1 −

∫ w

𝑦=0 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 (𝑦) 𝑑𝑦∫ 1
𝑦=0 𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 (𝑦) 𝑑𝑦

(9.23)

Given a value 𝑥 , if 𝑖𝑡 (w) is close to 0, then the quality values generated by the system
have been better than over the time period represented by the range [w, 1], than over
the shorter time period [0, w]. This shows the system’s near-term performance is
worse than its longer-term performance. Conversely, if 𝑖𝑡 (w) is close to 1, then the
short-term performance of the system is better than its previous longer-term trends.

Impact exploration
factor

Weuse this balance of the impact transformation function between shorter and longer
timescales to adapt the exploration behaviour of our reinforcement learning model.
We choose a constant 𝑘𝑖𝑒 𝑓 at system initialisation11 to define the impact exploration
factor : 𝜖𝑖𝑒 𝑓 = 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (𝑘𝑖𝑒 𝑓 ). Higher values of 𝜖𝑖𝑒 𝑓 mean the agent is attaining
better performance now than in the past and should exploit rather than explore the
system further. Lower valuesmean its exploration of the system should be increased12.

11We use the midway value of 𝑘𝑖𝑒 𝑓 = 0.5, as an impact exploration factor for our simulations.
12We multiply this by a constant factor 𝜖base in the RT-ARP algorithm to ensure a useful scale on

exploration (See Algorithm 2).
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Finally we can use the interpolation of action-impact values w of action-categories of
each action 𝑎 to estimate the probability that taking those type of action will have a
positive impact,

𝑃 (ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′, 𝑁 ′′, 𝐴𝐿) > 0 | 𝑎) ≈ 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (w) (9.24)

Using this method, agents will prefer lower-risk actions when the system is perform-
ing well, 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (w) → 0, and higher-risk actions when the systems performing
historically poorly, 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (w) → 1.

9.4.6 Extending the agent state for task allocation
In Chapter 8, Section 8.3 we defined the state of an agent in terms of its neigh-
bourhood and knowledge only. We now extend this definition to incorporate the
agent’s action samples (Section 9.4.2), TSQM (Subsection 9.4.5), and Q-table (Sub-
section 9.4.1).

Definition 9.4.6 (Agent State (Extended)). Given an agent 𝑔 = ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩, we
define its state as a tuple ⟨𝐾, 𝑁, 𝑆𝑃,Λ, 𝑄⟩, where:

• 𝐾 ⊆ 𝐺 is the knowledge of the agent.

• 𝑁 ⊂ 𝐾 is the neighbourhood of the agent.

• 𝑆𝑃 is the set of action samples of the agent.

• Λ is the TSQM of the agent.

• 𝑄 is the Q-table of the agent.

As with the notation for an agent’s neighbourhood 𝑁 (𝑔) and knowledge 𝐾 (𝑔) used in
our definition of agent state in Chapter 8, Section 8.3, we will use the notation 𝑆𝑃 (𝑔),
Λ(𝑔), and 𝑄 (𝑔) to refer to the action samples, TSQM, and Q-table, respectively, of an
agent 𝑔.

9.5 Algorithms for optimal task allocation
Wenow introduce our algorithms for solving the task-allocation problem. The solution
presented in this section allows an agent to determine the capability of other known
agents to perform tasks, to allocate these tasks, and to carry out other actions based
on the agent’s current knowledge and the need to explore the capabilities of agents
in the system.

Strategy of the
algorithms

To tackle the problems as defined in Section 9.3, as well as handle the resource con-
straints of agents, we utilise two high-level approaches:

1. an agent should adapt its selection of actions based on how it good it judges its
current performance to be. This judgement should take into account;

(a) the agent’s performance in its present neighbourhood compared to its past
performance;

(b) the agent’s prediction of whether the locally-optimal allocation of its
atomic tasks in its current neighbourhood (which it may not have found
yet) is better orworse than that of previously experienced neighbourhoods;

(c) the agent’s prediction of the likelihood of neighbourhoods existing in the
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system with locally-optimal allocations of its atomic tasks better than any
it has experienced so far.

2. an agent should keep its resource usage within its constraints by only retaining
the neighbourhood agents and knowledge it considers the most useful to its
performance. In doing so, an agent will be able to find neighbourhoods where
it performs well more efficiently as it does not need to learn from performing
task and action allocations to less useful agents.

Purpose of the
algorithms

To achieve (1), we introduce the RT-ARP algorithm, for (2), we see the N-Prune and
SAS-KR algorithms. To orchestrate the process and maintain the information needed
for it to function, we use the ATA-RIA algorithm. This forms the basis of our first
contribution (see Chapter 1, Contribution 1). At a high-level, the purpose of each of
the algorithms introduced are;

• the agent task allocation with risk-impact awareness (ATA-RIA) algorithm enables
each agent to choose a subset of other agents in the system based on howmuch
it predicts those agents will help complete the atomic tasks that comprise the
composite tasks that are allocated to them. They can learn the best task allo-
cation strategy for these agents, but can also change which agents comprise
the group to improve performance. It integrates the RT-ARP, SAS-KR, and N-
Prune algorithms, as well as updating an agent’s Q-table to reflect the rewards
it receives for taking actions, and the action-sample data with these rewards;

• the reward trends for action-risks probabilities (RT-ARP) algorithm gives agents
the ability to transform their exploration strategies given the trends in how
well the atomic tasks they have allocated in the past have been performed.
Using this algorithm, agents can increase or decrease the likelihood of them
taking actions that may cause larger changes to their task allocation strategy.
The algorithm increases the probability of an agent taking neighbourhood and
knowledge-altering actions and increasing exploration when the possible allo-
cation quality achievable in its current neighbourhood is relatively poor com-
pared to previous neighbourhoods;

• the state-action space knowledge-retention (SAS-KR) algorithm implements a
knowledge retention scheme under dynamic neighbourhood changes, optimis-
ing an agent’s knowledge while keeping it within its size constraints. It selec-
tively retains the most useful information the agent has learned about state-
action space, and of its past actions, removing knowledge that is considered to
have been less useful to the agent in optimising task allocation in the past;

• the neighbourhood update (N-Prune) algorithm selectively removes agents from
the group considered for task allocation by an agent while keeping the agent’s
neighbourhood within its size limitations. This selection is based on not only
how much the agent predicts the other agents will contribute to its composite
task, but also how much uncertainty it has about that prediction.

Figure 9.3 shows the steps of the ATA-RIA algorithm at a high-level, and how the other
algorithms are integrated into its workflow.

Standard functions In developing our algorithms we use some standard functions for normalisation, and
selection, as shown in Tables 9.1, and 9.2 respectively. In addition we introduce the
agent wait function, 𝑤𝑎𝑖𝑡 (𝑔), to set an agent 𝑔 to wait for the state of the system to
progress by one step of the system counter, i.e. 𝜙 → 𝜙 + 1.
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Figure 9.3: Flowchart of the ATA-RIA algorithm. On receiving a composite task, an
agent can carry out EXEC or PROVIDE_INFO actions immediately, or will choose amongst
SINGLEALLOC, INFO and LINK using the RT-ARP algorithm. Taking an INFO or LINK
action will lead to knowledge removal through the SAS-KR algorithm or neighbourhood
pruning through the N-Prune algorithm respectively.
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Function Definition Summary

sumnorm𝑝 (𝑄) 𝑄
′ ←

{
⟨𝑎𝑖 , 𝑝𝑖∑𝑁

𝑗=1 𝑝 𝑗
⟩
}
∀⟨𝑎𝑖 ,𝑝𝑖 ⟩∈𝑄

sum normalisation, scales 𝑝 values in
a set𝑄 = {⟨𝑎𝑖 , 𝑝𝑖⟩}𝑁𝑖=1 uniformly into
the range R [0, 1], where the result-
ing 𝑝 values sum to 1.

softmax𝑝 (𝑄) 𝑄
′ ←

{
⟨𝑎𝑖 ,

𝑒𝑝𝑖∑𝑁
𝑗=1 𝑒

𝑝 𝑗
⟩
}
∀⟨𝑎𝑖 ,𝑝𝑖 ⟩∈𝑄

softmax normalisation, converts a set
𝑄 = {⟨𝑎𝑖 , 𝑝𝑖⟩}𝑁𝑖=1, into a probabil-
ity distribution. However, softmax
is a non-linear transformation where
large values at the extremes are dis-
torted to be relatively larger, making
their respective actions even more
likely to be selected, and smaller val-
ues smaller, making those actions
even less likely to be selected.

Table 9.1: Summary of normalisation functions.

Function Definition Summary

rand(𝑄) 𝑎 ←−
𝑃 (𝑋 )

𝑄, 𝑃 (𝑋 ) =
{

1
|𝑋 |

}
uniform selection, selects a
value 𝑎 in set𝑄 = {⟨𝑎𝑖⟩}𝑁𝑖=1 us-
ing the uniform distribution.

max𝑏 (𝑄) 𝑎 ← argmax𝑏𝑄 maximum selection, returns a
value 𝑎 in set 𝑄 = {⟨𝑎𝑖 , 𝑏𝑖⟩}𝑁𝑖=1
with the maximum value of 𝑏.
Randomly selects between de-
generate values.

boltzmann𝑏 (𝑄) 𝑎 ←−
𝑃 (𝑋 )

𝑄, 𝑃 (𝑋 ) =
{
𝑒 (𝑏𝑖/𝜏 )

𝑁∑
𝑗=1
𝑒 (𝑏 𝑗 /𝜏 )

}
∀⟨𝑎𝑖 ,𝑏𝑖 ⟩∈𝑄

Boltzmann selection, returns a
value 𝑎 in set 𝑄 = {⟨𝑎𝑖 , 𝑏𝑖⟩}𝑁𝑖=1,
chosen using the Boltzmann
distribution of 𝑏 values with
absolute temperature value 𝜏 .
This means that, by alter-
ing the value 𝜏 , the trans-
formation can increase or de-
crease the likelihood of select-
ing higher valued members of
the set (and their correspond-
ing actions) over lowered val-
ued ones.

Table 9.2: Summary of selection functions.
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The ATA-RIA
algorithm

The agent task allocation with risk-impact awareness (ATA-RIA) algorithm (Algorithm 1)
integrates the RT-ARP (Algorithm 2), SAS-KR (Algorithm 3), and N-Prune (Algorithm
4) algorithms to provide a framework for optimising task-allocation in a multi-agent
system. It chooses between actions an agent can take, then updates the Q-values of
each action selected using the Q-learning update algorithm13 based on the reward
values returned. We detail the steps when an agent is allocated a composite task
below.

1. if there is at least one composite task allocated to the agent, and at least one
atomic task it is composed from that has not yet been completed, then carry
out the following steps.

2. if the agent has the capability to do so, execute an atomic task and wait for its
completion [lines 3-8].

3. otherwise choose an action based on RT-ARP (Algorithm 2) [line 10].

4. carry out an action depending on the selection in the previous step;

(a) if action selected is SINGLEALLOC:

• allocate an atomic task [line 12].

• wait for its completion [line 14].

(b) if action selected is INFO:

• request information from a neighbourhood agent [line 18].

• then prune the knowledge base using SAS-KR (Algorithm 3) to keep
within the agent’s resource bounds [line 20].

(c) if action selected is LINK:

• add an agent from the knowledge of the agent 𝑔 to its neighbourhood
[line 22].

• then prune the neighbourhood using N-Prune (Algorithm 4) to keep
within agent 𝑔’s resource bounds [line 23].

5. update the agent’s Q-table mappings for the action taken and reward received
using the 𝑟𝑙𝑢𝑝𝑑𝑎𝑡𝑒 algorithm, therefore updating the agent’s policy based the
outcome of the action taken [line 26].

6. update the TSQM matrix [line 27].

7. update the action samples [line 28].

8. repeat until there are no atomic tasks that compose the composite task which
have not yet been completed.

13See Section 9.4.1.
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ALGORITHM 1: The agent task allocation with risk-impact awareness (ATA-RIA)
algorithm
Input: 𝑔, an agent allocated an composite task 𝑐𝑡 .
Input: 𝑐𝑡 , a composite task allocated to agent 𝑔.
Input:𝑊 , the potential change on neighbourhoods on taking an action.
Input: ⟨𝐾, 𝑁, 𝑆𝑃,Λ, 𝑄⟩, the agent state of 𝑔.
Output: ⟨𝐾 ′ , 𝑁 ′ , 𝑆𝑃 ′ ,Λ′ , 𝑄 ′ ⟩, the updated agent state of 𝑔.

1 for 𝑎𝑡 ∈ 𝑐𝑡 do
// Store current system state

2 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑠

// Execute atomic task if agent has capabilities
3 if 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∈ 𝑐 (𝑔) then
4 𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡)
5 while ¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ({𝑎𝑡}) do
6 𝑤𝑎𝑖𝑡 (𝑔)
7 end
8 𝑐𝑡 ← 𝑐𝑡 \ {𝑎𝑡}
9 else

// Select an action given system state
10 𝑎 ← RT-ARP(𝑔,𝑊 ,𝑄)
11 if 𝑎 = 𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) then
12 𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛)
13 while ¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ({𝑎𝑡}) do
14 𝑤𝑎𝑖𝑡 (𝑔)
15 end
16 𝑐𝑡 ← 𝑐𝑡 \ {𝑎𝑡}
17 else if 𝑎 = 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛) then

// Get new agent 𝑘 from action
18 𝑘 ← 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛)

// Add new agent to the knowledge of 𝑔

19 𝐾
′′ ← 𝐾 ∪ {𝑘}

// Prune knowledge base

20 ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩ ← SAS-KR(𝑔, ⟨𝐾 ′′ , 𝑆𝑃,𝑄⟩)
21 else if 𝑎 = 𝐿𝐼𝑁𝐾 (𝑔, 𝑘) then

// Add new agent to neighbourhood
22 𝐿𝐼𝑁𝐾 (𝑔, 𝑘)

// Prune neighbourhood based on resources

23 𝑁
′ ← N-Prune(𝑔, ⟨𝑁, 𝑆𝑃⟩)

24 end
// Store new system state

25 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒 ← 𝑠

// Update Q-value mappings using reward generated by action

26 𝑄
′ ← 𝑟𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑔, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, 𝑎, 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑎), 𝑄)

// Use the reward value to update the TSQM

27 Λ
′ ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑡𝑠𝑞𝑚(Λ, 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑎))

// Update action samples

28 𝑆𝑃
′ ← 𝑆𝑃 ∪ {(𝑎, 𝜙, 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑎))}

29 end
30 return ⟨𝐾 ′ , 𝑁 ′ , 𝑆𝑃 ′ ,Λ′ , 𝑄 ′ ⟩
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The RT-ARP
algorithm

The reward trends for action-risks probabilities (RT-ARP) algorithm judges the perfor-
mance of an agent’s current neighbourhood relative to previous ones using a TSQM. It
then takes the current Q-values for an agent and transforms them through the impact
transformation function. The effect is to increase the probability of an agent taking
neighbourhood-altering actions, and increasing the exploration factor, when the cur-
rent neighbourhood is estimated to have a lower possible locally-optimal allocation
than historical neighbourhoods (See Algorithm 2).

1. select the agent’s available actions and Q-values associated with the current
state [line 1].

2. generate an impact transformation function from the current TSQM and use it
to transform the set of action/Q-value tuples, into action/likelihood tuples [line
2].

3. sum-normalise the resulting tuples to bound the sum of their values to 1, and
generate probabilities [line 3].

4. transform the exploration factor of the agent using the impact transformation
function and use this for e-greedy action selection14. This means more ex-
ploration when recent neighbourhoods have lower quality optimal allocations
achievable [lines 4-5].

5. either take the maximum-probability action or use Boltzmann selection based
on the transformed exploration factor [lines 7-9].

ALGORITHM 2: The reward trends for action-risks probabilities (RT-ARP) algo-
rithm
Input: 𝑔, an agent to select an action for.
Input:𝑊 , the potential change on neighbourhoods on taking an action.
Input: 𝑄 , the Q-table of agent 𝑔.
Output: 𝑎, the action for the agent to carry out.

// Generate a set of tuples of the available actions in the agent’s current state,
// mapped to their respective Q-values in the agent’s Q-table

1 𝐴𝑉𝐴𝐼𝐿 ← {(𝑎,𝑄 [𝑠, 𝐴]) : 𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠)}
// Scale the set of tuples element-wise using impact-transformation,
// and sum-normalise the values

2 𝑆𝐶𝐴𝐿𝐸𝐷 ← (𝐴𝑉𝐴𝐼𝐿 ◦ 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (𝑊 ))
3 𝑁𝑂𝑅𝑀𝐸𝐷 ← sumnorm𝑝 (𝑆𝐶𝐴𝐿𝐸𝐷)
// Calculate the impact exploration factor

4 𝜖ief ← 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (0.5)
// Scale the base exploration value

5 𝜖 ← 𝜖base × 𝜖ief
// Select best action or explore with boltzmann selection

6 if rand(R[0, 1]) < 𝜖 then
7 𝑎 ← max𝑏 (𝑁𝑂𝑅𝑀𝐸𝐷)
8 else
9 𝑎 ← boltzmann𝑏 (𝑁𝑂𝑅𝑀𝐸𝐷)

10 end
11 return 𝑎

The SAS-KR
algorithm

The state-action space knowledge-retention (SAS-KR) algorithm removes learned knowl-
edge based on action information quality 15 to the most useful information to the

14The exploration base constant 𝜖base is defined in Section 9.4.5.
15See Subsection 9.4.2.
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agent’s performance is retained, and the least useful lost, while staying within the
bounds of an agent’s resource constraints (See Algorithm 3).

1. find non-empty state-actions in agent 𝑔’s Q-table [line 1].

2. iterate through each of these states if they are now unknown to 𝑔 [line 2].

3. for each of these states, check if the action information quality of the state’s
actions fall below the threshold value16 [line 4].

4. remove all the action samples associated with the actions in these states [line
5].

5. remove the Q-table data associated with these states [line 6].

6. remove all knowledge of an agent if there are no actions in the stale set of actions
that target that agent [lines 7].

7. if the size of the agent 𝑔’s knowledge is greater than the limit 𝛿𝑘 (𝑔), remove
arbitrary agents from 𝑔’s knowledge until its within constraints [line 10-11].

ALGORITHM 3: The state-action space knowledge-retention (SAS-KR) algorithm
Input: 𝑔, an agent whose knowledge should be managed.
Input: ⟨𝐾, 𝑁, 𝑆𝑃,𝑄⟩, the knowledge, neighbourhood, actions samples, and Q-table of agent 𝑔.
Output: ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩, the updated agent state knowledge, actions samples, and Q-table of agent 𝑔.

// Select all states of 𝑔 in its Q-table that are non-empty

1 𝑆
′ ← {𝑠 : 𝑠 ∈ 𝑆,𝑄 [𝑠, 𝐴] ≠ ∅}

// Select all currently unknown states of 𝑔 that are in its Q-table

2 for 𝑠
′ ∈ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛(𝑔, 𝑆 ′ ) do
// Get actions that are only available to 𝑔 in unknown states

3 𝑈𝑁𝐴𝑉𝐴𝐼𝐿 ← 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠)
// Test the actions are below the information retention threshold

4 if 𝑎𝑐𝑡𝑣𝑎𝑙 (𝑆𝑃,𝑈𝑁𝐴𝑉𝐴𝐼𝐿, 𝜙) < 𝜇min then
// Remove all samples of actions in 𝑈𝑁𝐴𝑉𝐴𝐼𝐿

5 𝑆𝑃
′ ← 𝑆𝑃 \ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑆𝑃,𝑈𝑁𝐴𝑉𝐴𝐼𝐿)

// Remove actions and learned Q-values

6 𝑄
′ [𝑠′,𝑈 𝑁𝐴𝑉𝐴𝐼𝐿] ← ∅

// Remove agents in 𝑔’s knowledge that are targets of an action in an
unavailable state

7 𝐾
′ ← 𝐾 \ {𝑔 : 𝑔 ∈ 𝐾, 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (𝑔, 𝑠 ′ , {𝑔}) ∈ 𝑈𝑁𝐴𝑉𝐴𝐼𝐿}

8 end
9 end
// Check if knowledge size exceeds resource limit

10 while |𝐾 | > 𝛿𝑘 (𝑔) do
// Remove an arbitrary agent in the knowledge base but not neighbourhood

11 𝐾
′ ← 𝐾 \ rand(𝐾 \ 𝑁 )

12 end
13 return ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩

The N-Prune
algorithm

The neighbourhood update (N-Prune) algorithm ensures that the neighbourhood
agents that are considered most useful to an agent’s performance are the ones pre-
ferred to be retained when information must be lost due to the neighbourhood size
being kept within resource constraints. Each child agent’s contribution to task quality
values are summed. Decay is used to reduce the relevance of older values. The infor-

16The uncertain information threshold constant 𝜇min is defined in Section 9.4.2.
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mation on the agents with the lowest contribution is then removed (See Algorithm
4).

1. compare the neighbourhood size with the resource limits [line 1].

2. if the neighbourhood size would exceed resource constraints, and we have ac-
cumulated some quality values, then select the agent that has produced the
poorest task qualities and remove it from the neighbourhood [lines 2-3].

3. if there are no quality values available then remove an arbitrary agent [line 5].

ALGORITHM 4: The neighbourhood update (N-Prune) algorithm
Input: 𝑔, an agent whose neighbourhood should be managed.
Input: ⟨𝑁, 𝑆𝑃⟩, tuple of agent state actions samples, neioghbourhood of 𝑔.
Output: 𝑁

′
, updated agent state neighbourhood of agent 𝑔.

// Check if neighbourhood size exceeds resource limit
1 while |𝑁 | > 𝛿𝑛 (𝑔) do
2 if |𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑆𝑃,𝐴) | > 0 then

// Find the neighbourhood agent that has returned the lowest total quality
3 𝑛 ←𝑚𝑖𝑛ℎ𝑜𝑜𝑑𝑣𝑎𝑙 (𝑆𝑃,𝑔)
4 else

// Choose an arbitrary neighbourhood agent
5 𝑛 ← rand(𝑁 )
6 end

// Remove the neighbourhood agent

7 𝑁
′ ← 𝑁 \ {𝑛}

8 end
9 return 𝑁

′

9.6 Evaluation
Systems and
algorithms

We simulated four dynamic systems to evaluate the performance of our algorithms:
the stable, exploration, volatile, and large systems, with each simulation being run
100 times. Each run consisted of 100 episodes each17, with an episode being defined
by the completion of 10 composite tasks by the system (of the same composite task
types in each episode).

All systems were perturbed environments, with the volatile system being more
strongly perturbed than the rest. In all systems, to simulate realistic communication
and environmental effects, each agent in the system had a 0.1% chance being unavail-
able for each episode. This value was chosen as a reasonable failure rate given the
possible component failure modes of ocean-based WSN hardware, and the current
and salinity effects that can disrupt communications[11], [308]–[310].

In the stable system we look at the performance of the ATA-RIA algorithm on the task
allocation problem overall, when agents’ neighbourhoods were randomly assigned on
initialisation. The exploration system focuses on how the RT-ARP algorithm alters the
probability of exploring system space to find the best neighbourhood for each agent.
In this system we initialise parent agents’ neighbourhoods to contain child agents

17An exception was made for the exploration system, which was run for 500 episodes, in order to
illustrate the convergence properties of each algorithm given sufficient time to explore the system.
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with atomic task qualities that are more or less than the average in the system18. We
then investigate how agents adapt these neighbourhoods to improve performance.
The volatile system examines the adaptability of the algorithms when the system is
highly perturbed, such as during transient environmental events, by randomly mak-
ing 1% of each parent agent’s neighbourhood agents unavailable per-episode during
a defined period of disruption between episodes 25 and 75. This represents a 10𝑥 in-
crease in failure rates as compared to the stable system, a value chosen to simulate
the increased component and communication failures possible in a harsh environ-
ment such as an ocean-based WSN in rough seas. Finally, in the large system we look
at scalability, the performance of the algorithms as we increase the number of agents
in the system.

Methods of
analysis

The solutions we develop work as a combination of multiple algorithms, each tar-
geting an aspect of the problems in the systems we study. These involve the opti-
misation of task performance, resilience to perturbation, handling the loss of agent
connectivity, etc., as well as taking into consideration the impact on an agent’s state,
neighbourhood, knowledge, and learnt values, of choosing different categories of ac-
tions. Although other algorithms were considered as comparisons, they were found
to perform too slowly to complete in a practical amount of time, primarily due to the
repeated selection of actions relating to agents that had become unavailable due to
perturbations, and the time spent on exploration of knowledge and neighbourhood
changing actions (e.g., see Section 9.7, ’Limitations of comparison’). Adding enhance-
ment or extensions to other algorithms to cover more aspects of the problem and
allow for reasonable completion times would have replicated our work into these al-
gorithms, which would not lead to meaningful comparisons. We leave it to future re-
search to do this integration of state-of-the-art algorithms, such as those mentioned
in Chapter 5, Section 5.6, into different parts of our work to replace elements such
as; Q-tables with deep learning neural networks, policy-search over Q-learning, etc.,
in order to develop new and possibly better performing versions of our work. For the
reasons above, in this chapter’s evaluation, and that of Chapters 10 and 12, we utilise
theoretical baselines and sensitivity analysis, to measure algorithm performance.

Theoretical system
optimal utility as a

baseline
comparison

In a systemwith a single task to complete there will be an agent that can complete the
task to the best or equal quality of all the available agents. With no resource sharing
amongst task executions (as there are no concurrent tasks being executed by agents),
enumerating the possible solutions to the allocation of tasks,𝐴𝐿, within the simulated
systems is greatly simplified. We use this approach to give us the theoretical optimum
utility in a system where atomic tasks are completed in isolation, which we then use
as an easily computable comparison set of data for our simulation systems:

𝑢𝑡𝑖𝑙𝑖𝑡𝑦∗(𝑆) =
∑︁

⟨𝐺𝑆 (𝑔),𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇,𝜙 ⟩∈𝑆
𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝑎𝑡𝑜𝑚𝑖𝑐𝑠 (𝐴𝐿), ∅) (9.25)

In our simulations we have detailed knowledge of the state and the quality of task
completion of all the agents in the system. With the removal of any resource compe-
tition these will not change with concurrency, and we can enumerate these at system
initialisation to calculate 𝑢𝑡𝑖𝑙𝑖𝑡𝑦∗(𝑆) for each allocation during each episode. We can
then use the utility loss w.r.t. the theoretical optimal as a baseline comparison, as
used in Figures 9.4, 9.5, 9.6, and 9.7.

18Child agents’ atomic task qualities were set at system start time from values in the range (0, 1]
drawn randomly from the normal distribution defined by values in 𝑋 ∼ N(𝜇, 𝜎2), 𝜇 = 0.5, 𝜎 = 0.2
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Comparison
algorithms

As additional comparisons, we implement two Q-learning based algorithms in the
stable environment. The <qlboltz> algorithm19 uses the reinforcement learning up-
date strategy shown in Section 9.4.1, with the addition of Boltzmann exploration (See
Table 9.2). The temperature used to reduce exploration over the lifetime of the simu-
lation [122] was the episode count. We also used the <qlreset> algorithm for com-
parison, based on work extending Q-learning to non-stationary systems[305], [311],
[312] as described in Section 9.4. Extending the <qlboltz> algorithm, we add a sim-
ple memory-resetting strategy that partially resets an agent’s learned Q-values each
episode by updating every value in the agent’s Q-table with half the value’s difference
from the average for that state.

Configuration of
algorithms

Labels for the algorithms and configurations used in the simulations are described in
Tables 9.3, 9.4, 9.5, and 9.6. System parameters are included in Appendix C.1, with
general and individual system values shown in Tables C.1, and C.2 respectively. The
TSQMuses (𝑚×𝑛) parameters of (3×10)20. The composite task frequency distribution
introduced the same fixed set of tasks over a specified period, defining each episode
of the system.

Label Summary

<optimal> This algorithm is used as a performance comparison as it provides the
theoretical optimum system utility. Its parent agents are initialised with
the most optimal neighbourhoods available in the system, and always
allocate tasks to the agents that will complete them to the highest quality.

<qlboltz> Q-learning algorithm with Boltzmann exploration using episode count
temperature values.

<qlreset> Q-learning algorithmwith fixed-temperature Boltzmann exploration and
episodic reset of learned Q-values.

<ataria> The ATA-RIA algorithm.

Table 9.3: Summary of labels for the stable system. Labels and descriptions of the
optimal, qlboltz, qlreset, and ataria algorithms.

Data presentationResults for each system are shown in Figures 9.4, 9.5, 9.6, and 9.7. Values are shown
for the percentage increase or decrease in system utility with the given algorithms
in comparison to the baselines described21. In the stable system, the baseline is the
<optimal> algorithm, <rtrap0> in the exploration system, <nodrop> in the volatile
system, and <large-optimal> in the large system. 75th percentile bands over the 100
repetitions of each simulation run are shown for Figure 9.4.

Tables of detailed results can be found in Appendix C.2 in Tables C.3, C.4, C.5, and C.6
for the stable, exploration, volatile, and large systems respectively. Statistics for each

19Note, we use the notation ⟨𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚⟩ to denote the names of algorithms as they appear in our
figures and tables of results.

20For a larger range of tasks, and a greater number of agents in the system, larger values of (𝑚 × 𝑛)
may be preferable to allow each agent to use trends over longer-term timescales as it will have a greater
range of actions it can take.

21After the initial use of both variance plots and p-values on the overall utility graph in Figure 9.4,
only p-values are used to show the statistical significance of results shown in other graphs in order to
keep those graphs easily readable.
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Label Summary

<rtrap0> ATA-RIA when the system is initialised with random neighbourhoods
then explores with a constant 𝜖 factor, RT-ARP is disabled. This is used
for a baseline comparison.

<rtrap+> ATA-RIA when the system is initialised with neighbourhoods containing
75% of the optimal neighbourhoods’ agents and explores using RT-ARP.

<rtrap-> ATA-RIA when the system is initialised with neighbourhoods containing
75% of the least optimal agents and explores using RT-ARP.

Table 9.4: Summary of labels for the exploration system. Labels and descriptions
of the rtrap0, rtrap+, and rtrap− algorithms.

Label Summary

<nodrop> ATA-RIA when the system has no network instability.

<drop> ATA-RIAwhen 1% of agents leave/rejoin the system each episode between
episodes 25 and 75.

<nosaskr> ATA-RIAwhen 1% of agents leave/rejoin the system each episode between
episodes 25 and 75 but the RT-ARP and SAS-KR algorithms are disabled.

Table 9.5: Summary of labels for the volatile system. Labels and descriptions of
the nodrop, drop, and saskr algorithms.

comparison algorithm’s utility values are also shown in Appendix C.2, Table C.7. The
p-values showing the statistical significance of the system utility values22 for each
simulation datasets’ final episodes are shown in Table C.8.

9.7 Analysis and discussion
We now look in detail at our simulation results for each system and analyse the ob-
served behaviours.

Stable system As seen in Figure 9.4, the <ataria> algorithm performs to 6.7% of the <optimal> algo-
rithm after 100 episodes in the stable system. Initially ∼ 30% of the attempted atomic
task allocations made by the parent agents are not successful23, but the failure rate
rapidly falls to < 2%. Although exploration is reduced as the algorithm approaches
the optimal task allocation strategy, it never fully exploits the best strategy due to the
effect of RT-ARP, which generates a low level of non-optimal actions. The <qlreset>
performs 1.8x worse than <optimal>. Since values in agents’ Q-tables are partially
reset each episode, the algorithm fails to use knowledge from past experiences opti-
mally while adapting its policy. Initially the <qlboltz> algorithm behaves similarly
to <qlreset>. However, it explores and learns a policy early in the system’s lifetime.

22These are calculated using T-tests for the null hypothesis that the expected value (mean) of a sample
of independent observations is equal to the given population mean, computed using the SciPy statistics
library, scipy.stats.ttest_1samp.

23Where the parent agent allocates a task 𝑎𝑡 to an agent 𝑔 that lacks the capability to execute tasks
of that type, 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∉ 𝑐 (𝑔).
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Label Summary

<large-optimal> ATA-RIAwith 10 agents, configured to give themost optimal possible
RT-ARP performance in the given system.

<large-25> ATA-RIA in a system of 25 agents

<large-50> ATA-RIA in a system of 50 agents

<large-100> ATA-RIA in a system of 100 agents

Table 9.6: Summary of labels for the large system. Labels and descriptions of the
large-optimal, large-25, large-50, and large-100 algorithms.

As the system ages, the algorithm’s exploration reduces, and it becomes stuck choos-
ing actions based on the initial policy, rather than adapting to changes in the system.
As a result, it reaches 2.3x of optimal performance by episode 25, but then worsens
to 3.0x by episode 100 as the difference between its stationary policy and the newer,
more optimal ones increases24.

Overall, these results show that the <ataria> algorithm can optimise system utility
well in a stable system. Although the effect of RT-ARPmeans that ATA-RIA is not fully
optimal under these conditions, it also improves its ability to adapt to changes as the
environment becomes more dynamic.

Limitations of
comparisons

The average time taken for each algorithm to complete an episode in the stable system
as the parent agent count increases is shown in Table 9.7. As the large system involves
more parent agents, and the volatile system is increasingly non-stationary, the episode
times involved for the comparison algorithms proved intractable for useful simulation
runs. Due to this, we only simulate the ATA-RIA algorithm for the systems that follow.
For further discussion see Appendix B, Section B.2.

Algorithm Average time per-episode by parent agent count (secs)

1 agent 2 agents 3 agents 5 agents 10 agents

<ataria> 0.7 1.6 2.9 3.7 6.4

<qlboltz> 1.1 19.6 162.9 223.7 2302.0

<qlreset> 1.2 16.7 141.8 171.5 1862.2

Table 9.7: Runtimes of algorithms in the stable system. Data shows the average
time taken to complete episodes in each of our target systems. The comparison was carried
out using a AMD Ryzen 9 3900X 12-Core Processor, 3793 Mhz, 12 Core(s), 24 Logical
Processor(s) Processor with NVIDIA GeForce RTX 2070 SUPER GPU acceleration.

Exploration systemNext we examine the exploration of state-space in the exploration system, in Figure
9.5. The <rtrap+> algorithm gains a 67.0% improvement in system utility compared
to <rtrap0> after 500 episodes. <rtrap-> improves 62.7% in task completion perfor-
mance, with the expectation that this would merge with the utility levels of <rtrap+>
given more episodes. The RT-ARP algorithm acts of a proxy comparison of the current

24Due to the dynamic agent composition of the system, and other parent agent changing their allo-
cation strategies over time.
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Figure 9.4: System utility comparison to the system optimal in the stable system, as
measured by the percentage difference in utility between the specified algorithms and the
<optimal> baseline algorithm.

allocation quality for an agent, to the locally-optimal allocation, and system-optimal
allocation qualities for that agent. It drives the agent into better neighbourhoods for
its task allocations and increases the system’s utility. As the current neighbourhood
nears the optimal neighbourhood for that agent and its tasks, the rate of exploration
falls.

Volatile system In the volatile system in Figure 9.6 we see the SAS-KR algorithm’s effect on system
resilience and recovery. Before the disruption to agent connectivity is introduced at
episode 25, the algorithms’ performances are equivalent. On introducing instability,
the performance of the <drop> and <nosaskr> algorithms deteriorate by 72.5%, grad-
ually improving to 59.7% over the course of the disruption. After instability stops at
episode 75 <drop> recovers to 9.7% of the performance of the non-impacted <nodrop>
algorithm by episode 100, as compared to 54.6% for <nosaskr>.

As the SAS-KR algorithm retains the most up-to-date, and least uncertain actions
and associated Q-values, better information about past actions and neighbourhoods
is kept by the agent as compared to with it disabled. When the instability is removed,
the quality of knowledge kept by the <drop> algorithm is higher than in <nosaskr>,
allowing a quicker recovery to more optimal neighbourhood formations, and so task-
allocation quality and overall system utility.
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Figure 9.5: System utility comparison to the system optimal in the exploration system,
as measured by the percentage difference in utility between the specified algorithms and
the <rtrap0> baseline algorithm.

Learning under
uncertainty and
disruption

In the stable system, this ability of SAS-KR algorithm to retain higher quality knowl-
edge helps guide exploration. When the environment is more disrupted however, it
has a greater effect as agents’ knowledge changes more rapidly. The RT-ARP algo-
rithm increases exploration during the early episodes when there is large uncertainty
in which action choices are optimal. This enables the agent to learn quickly, and slow
down learning as performance improves. Similarly, it will increase exploration during
disruptions as the performance of agents in these environments is most likely less re-
warding than in the past. If the disruption is transient, the agent can quickly re-apply
its retained knowledge to recover performance. There may be improvements possible
in how well these algorithms perform with further research, however, how the quality
of knowledge is judged, and how aggressively the RT-ARP algorithm moves between
exploration and exploitation, is dependent on the desired behaviour of the specific
multi-agent system they are applied in.
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Figure 9.6: System utility comparison to the system optimal in the volatile system, as
measured by the percentage difference in utility between the specified algorithms and the
<nodrop> baseline algorithm.

Large system The large system is shown in Figure 9.7. Here we see the <large-25> algorithm per-
form within 3.6% of the <large-optimal> algorithm, the optimal performance pos-
sible for the ATA-RIA algorithm in the system. The <large-50> and <large-100> al-
gorithms optimise system utility to within 7.2% and 8.6% of <large-optimal> by the
completion of 100 episodes. As expected, the system utility of the ATA-RIA algorithm
is initially poorer with increasing number of agents in the system. On initialisation
of the system, there is a greater likelihood of parent agents being in neighbourhoods
with agents that have lower than average atomic task qualities available. There is also
a larger system space for the algorithm to search. Even so, the ATA-RIA algorithm
shows good performance in optimising the system utility to within 10% of optimal
with a system of 100 agents.

Although there is a more rapid improvement in utility with fewer agents since the
system-space to learn is smaller, further investigation shows that the performance of
the three systems converges with increasing episodes. However, due to the compute
and storage limitations of running the simulations repeatedly for longer periods, we
have limited the comparisons to 100 episodes. Further research on more powerful
simulation platforms would be expected to show a similar behaviour and convergence
properties for larger systems.
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Figure 9.7: System utility comparison to the system optimal in the large system, as
measured by the percentage difference in utility between the specified algorithms and the
<large-optimal> baseline algorithm.

SummaryOverall, the evaluation of the algorithms presented shows that they perform well at
task allocation in both stable and unstable environments, as well as scaling to larger
systems. The ATA-RIA algorithm improved system utility to 6.7% of the optimal in the
simulated system. The RT-ARP algorithm reduced exploration as the system utility
approached optimal, and adapted well in response to disruption. It allowed agents
to alter their neighbourhoods from areas of state-action space that would not allow
task completion to those where it would be possible. In environments with disrupted
connectivity, the retention of learned knowledge through SAS-KR allowed for quicker
re-optimisation and adaptation of neighbourhoods, over 5× better than when RT-ARP
and SAS-KR were disabled, and there was no adaptive exploration or knowledge re-
tention strategy.

9.8 Discussion of the applicability of algorithms to
an ocean-based WSN
We now describe a system inspired by a real-world use case to which our work could
be applied, relating the behaviour of our algorithms experimentally to the challenges
presented. Previously, we have briefly given examples of realistic WSN systems (See
examples 8.2.1, 8.5.1 in Chapter 8 and Example 9.4.1 in this chapter). These examples
have been chosen to illustrate the theoretical concepts discussed, the challenges, and
key properties of dynamicmulti-agent systems. They require ad-hoc learning of agent
neighbourhoods. Agents enter and leave the system through component failure and
re-deployments. The capabilities of different agents to complete tasks and the qual-
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Figure 9.8: An illustration of a common ocean-based WSN system deploy-
ment. In Figure 9.8a, the nodes are deployed and an initial task optimisation is learned.
In Figure 9.8b, the ATA-RIA adapts the actions of nodes to account for movement due to
currents, and passing UAVs. In Figure 9.8c, nodes are highly disrupted and some fail. The
SAS-KR and RT-ARP algorithms work to quickly re-establish an optimal configuration
from past knowledge and the prioritisation of exploration as the environment stabilises.

ities they can complete them to can vary due to placement, obstructions, different
instrumentation, and wear and tear of components. Our work focuses on adapting to
this changeability in the optimal allocation of tasks within a system. However, these
examples are also relevant to highlight the types of existing, real-world systems that
our work could be applied to, and verified against.

We focus on a sub-category of these systems that contain complex deployments of
sensor nodes for ocean monitoring, often described as the Internet of Underwater
Things, or the Ocean of Things[8], [11], [255], [313], [314]. The networks built for
these systems are termed UnderwaterWireless Sensor Networks (UWSN)[315], [316].

Challenges in
underwater

wireless sensor
networks

Figure 9.8 shows a common UWSN scenario[256], [317]–[320] where the deployed
nodes can be tethered buoys or submerged sensors, as well as mobile Unmanned Au-
tonomous Vehicles (UAV). In the system shown, all the nodes form ad-hoc commu-
nication groups to carry out ocean monitoring tasks such as temperature and salin-
ity measurement[321]. Since radio transmissions are absorbed quickly underwater,
acoustic transmission is used. This change affects key properties of the UWSN[318],
[322] that our multi-agent algorithms must adapt to if they are to remain useful.

• Acoustic signals have a much lower bandwidth, 10kbps compared to 250kbps
for radio transmission.

• Signals propagate over 100,000 times slower than radio.

• Signals travel much further, ~10km compared to 100m for radio.

• The nodes’ transmission components are hard to recharge, so good power effi-
ciency is essential.

• Underwater links are more unreliable due to corrosion, variable salinity den-
sity, and absorption of signals through water. Bit rate errors can be high, and
connectivity intermittent.
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• Nodes can move under currents, often severely during rough seas, affecting the
optimal network configuration.

Initial deploymentThe nodes need to form an ad-hoc network to receive task requests and return mon-
itoring data from their sensors (Figure 9.8a). The ATA-RIA algorithm enables nodes
to discover each other, establish the capabilities of other nodes, and form groups to
optimise their ocean monitoring tasks. Energy resource usage can form part of the
quality metric of task completion, encouraging the agents to learn better policies for
power efficiency. RT-ARP will ensure that they prioritise discovery at this initial stage,
and move towards the efficient completion of temperature and salinity sensing tasks
as nodes learn more about the system. In our simulations this is the behaviour shown
in Figure 9.4 up to approximately episode 25.

Behaviour in calm
weather

In stable conditions there will still be some movement of nodes due to currents, re-
placement of buoys and sensors due to wear, and intermittent mobile nodes such as
UAVs (Figure 9.8b). The RT-ARP algorithmmaintains a small amount of exploration to
not only optimise communication between nodes that have established a neighbour-
hood group, but also cautiously discover other nodes to add to the group. The SAS-KR
algorithm helps with transient impacts such as high salinity corrupting node-to-node
communications, or UAVs moving in and out of the system. It does so by allowing
nodes to retain selective knowledge between last known sightings, so that when these
nodes or UAVs reappear, agents can recall that knowledge and quickly re-adjust. In
Figure 9.6 in Section 9.7 we see how the RT-ARP and SAS-KR algorithms achieve this.
They help adapt to the intermittent loss of nodes during the period between episodes
25 and 75 by continuing to optimise agents’ task completions during that period.

TheN-Prune algorithmmakes sure that throughout the discovery process and adapta-
tion, a node’s limited resources are not overstretched, and the least useful other nodes
known to it are removed from its memory to keep within its resource constraints.

Behaviour in
rough seas

During instability, the effects seen in calm weather are magnified (Figure 9.8c). In
this situation, current reward trends are likely less favourable than those in the past,
during calmer conditions. This pushes the RT-ARP algorithm towards more extreme
exploration as nodes are lost, destroyed, or displaced. As the storm passes and the
position of nodes, currents, and salt density stabilises, SAS-KR allows the nodes to
remember previous nodes it may have lost contact with, or whose capabilities had
been disrupted. As RT-ARP will accelerate exploration until the system’s performance
is comparable to historical values, the use of existing knowledge increases the speed
of this recovery by removing the need for nodes to re-learn everything they learned
about other nodes prior to disruption. For example, the period of the storm would
be similar to the episodes 25 − 75 in Figure 9.6 in our simulation, with the ocean
calming after 75 episodes. The behaviour of the RT-ARP and SAS-KR algorithms in
accelerating recovery in the simulation should be equivalent to our UWSN system
after a disruptive storm.
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9.9 Summary
As we have shown in this chapter, with the ATA-RIA algorithm optimising agents’ task
allocations, RT-ARP adapting exploration based on reward trends, and the SAS-KR and
N-Prune algorithms managing knowledge and neighbourhood retention respectively,
the contributions presented here combine to optimise task-allocation in multi-agent
systems. The results of our evaluation show that the combined algorithms give good
task allocation performance compared to the theoretical optimal available in the sim-
ulated systems, and are resilient to system change with constrained computational
cost and other resource usage. This indicates a good basis for successful application
to real-life systems where there are resource constraints, and dynamic environments.
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Chapter 10
Resource allocation

This chapter examines how agents can allocate their available resources in order
to optimise the completion of the incoming tasks being allocated to them by other
agents. We evaluate the performance of our developed solution using a uniform
resource allocation baseline alongside sensitivity analysis (Contribution 2).

10.1 Introduction
The allocation of resources by an agent to improve its performance in completing cer-
tain tasks over other ones is a key element of problem domains such as; information
exchange and coordination amongst autonomous vehicles[3], and the allocation of
shared resources in cloud computing[60]. The challenge in developing efficient and
robust algorithms stems from the dynamic nature of these systems, with many com-
ponents communicating and interacting in complex ways. The algorithm we develop
in this chapter tackles this problem by;

• estimating the demand for an agent’s resources to complete tasks allocated by
groups of other agents;

• combining these multiple per-group estimates into an aggregated estimate of
the best allocation of its resources to meet the needs of all these groups of
agents;

• in doing so, the agent learns to allocate its resources to complete atomic tasks
in such a way as to maximise the utility of the system as a whole.

Our algorithm is designed to overcome the issues of other approaches described in
Chapter 4 Section 4.4 such as lack of scalability, complex resource allocation side ef-
fects, and the trade-off between joint and independent action learning. This solution
is useful where;

• there are competing demands for shared resources in a MAS;

• agents can prioritise amongst the tasks allocated to them;

• the environment is dynamic, for instance, agents join and leave the system;

• the distribution pattern of the allocation of atomic tasks to the agent allocating
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its resources changes over time.

Chapter structure The rest of the chapter will introduce the resource allocation problem, defining re-
sources and their allocation in Section 10.2. We build on the work from Chapter 9
in this section to include resource usage as a factor in atomic task completion, and
examine how this affects the quality of composite tasks and overall system utility. In
summary, we;

• extend the system definition in Definition 8.2.1 to include types of resource;

• extend the system state from Definition 8.3.5 to include the availability of re-
sources to agents, and their allocation of those resources amongst atomic task
types;

• extend the atomic task quality in Definition 9.3.1 to include the effect of an
agent’s allocation of resources;

• define the quality of a composite task, and how we can derive values from it as
a reward signal for agents that complete corresponding atomic task;

• define system utility using composite task qualities, rather than the sum of
atomic task qualities as previously in Chapter 9.

We develop intuition for our strategy for resource allocation optimisation in Section
10.3, including our method of grouping and modelling agents for learning in Subsec-
tions 10.3.1 and 10.3.2. Following that work, we extend our definition of agent state
to include these new elements in Section 10.3.3. We formally lay out our algorithms
in Section 10.4 before evaluating their performance through simulation and analysis
in Section 10.5.

We formulate the resource allocation problem in a generally applicable way so that it
can be applied to multiple domain-specific use cases without modification, as well as
being easily integrated with the previous task allocation work in Chapter 9 in subse-
quent chapters.

10.2 Resource allocation in a multi-agent system
Resources We define a resource 𝑟𝑒𝑠 ∈ RES as a quantity of one of the possible resource types,

RP, in the system, where 𝑡𝑦𝑝𝑒𝑟 : RES → RP maps the domain of resources to re-
source types. In this work we define resources with common characteristics such as
being;

• isolated, a resource is dedicated to a single agent and not accessible to other
agents in the system (i.e. one agent cannot utilise energy from another agent’s
battery);

• statically assigned, resources cannot be moved or reallocated to other agents;

• non-differentiable, resources of given resource type are indistinguishable by any
other characteristics beyond quantity (i.e. if two quantities of a resource are
equal, they will make an identical contribution to atomic task quality);

• divisible, an agent with an available resource can split the usage of that resource
between multiple tasks.

In defining our solution to the resource allocation problem we make no assumptions
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about whether the resources described are finite and will therefore run out, or infinite
in supply.

Example 10.2.1 (Energy resource in a WSN system). AWSN system is deployed
in the environment surrounding a nuclear waste store. Each node in the system
carries a sensor to measure radioactive contamination, powered by a battery
that is regularly recharged by a solar panel attached to the node. In this case,
the resource to be allocated by the agent in order to complete tasks is energy
from the battery. This energy resource cannot be accessed or delivered to an-
other node in the system as nodes are isolated apart from wireless communica-
tions and not part of a connected power grid. The energy resource does not run
out (as long as there is sufficient time and sunlight for the battery to recharge
more quickly than it is used up). Each agent’s energy is identical to that of every
other agent, and achieves the same amount of work by their sensors (ignoring
other effects such as manufacturing variability, and differing levels of compo-
nent degradation amongst agents).

The unknown
value of resource
allocations

The aim of individual agents in the system is to ensure those atomic tasks that are of
most value to a composite task are performed to the highest quality, thus ensuring
the composite tasks produce the best results. For child agents enacting atomic tasks,
this means allocating more resources to high value tasks.

There are obstacles to this goal. First, the value of the atomic task to the composite
task may not be known in advance, as said above. Second, a given child agent cannot
know when it will receive atomic tasks to enact because, even if the frequency by
which composite tasks are received by the system is constant and known, it is a choice
of a parent agent as to who to allocate atomic tasks to in any given instance. If a child
agent has already allocated resources to one atomic task under execution, then it
cannot use those resources for a new task of potentially higher value.

To address this latter point, we assume that each child agent allocates in advance a
portion of its resources to each atomic task type. We are agnostic whether tasks are
then executed sequentially or in parallel, which will vary per application. An agent’s
resource allocation can change over time: specifically, the solutions presented later
in this chapter allow an agent to learn a good resource allocation for the tasks it is
assigned and the value they have to composite tasks. Which child agents will carry
out the atomic tasks of a composite task are determined by the task allocation of the
parent agent enacting the composite task.

Resource
availability

Each agent has a varying amount of each resource type available for it to allocate to
completing its tasks (e.g. available battery power that changes over time with usage).
We denote all these possible resource availabilities for agents in the system, RAV =

2(G×RES) . How much resource of a given type 𝑟𝑝 an agent has available in a resource
availability 𝑅𝐴𝑉 is given by 𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 : G × RP × RAV → RES.
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Resource
allocation

An agent 𝑔 can share its available resources amongst each type of atomic task it
could perform, giving a set of tuples ⟨𝑔, 𝑎𝑝, 𝑟𝑒𝑠⟩ of each atomic task type 𝑎𝑝 and
the quantity of each resource type, 𝑟𝑒𝑠 allocated to completing tasks of that type.
The set of these tuples for a set of agents 𝐺 , defines the set of resource allocations,
RAL = 2(G×AP×RES) . The resources allocated to an agent 𝑔, for task type 𝑎𝑝 , by a
resource allocation 𝑅𝐴𝐿 are given by 𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 : G × AP × RAL → RES.

System definition We extend our system from Definition 8.2.1 to include the use of the resources types
that will be used in the completion of atomic tasks, and also add resource availability
and allocation to the system state from Definition 8.3.5.

Definition 10.2.1 (System (resource allocation)). The distributed task-allocation sys-
tem (DTAS) is defined by a tuple ⟨𝐴𝑇,𝐶𝑇,𝐴,𝐺, 𝑅𝑃⟩, where 𝑅𝑃 is a set of resource types
needed to perform tasks.

Definition 10.2.2 (System State (resource allocation)). Given a DTAS we define its
state as a tuple 𝑆 = ⟨𝐺𝑆 ,𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝑅𝐴𝑉 , 𝑅𝐴𝐿, 𝜙⟩ where 𝑅𝐴𝑉 is the set of resource
availabilities, and 𝑅𝐴𝐿 the set of resource allocations, in the system.

Example 10.2.2 (Resource availability and allocation in a radioactive contami-
nation monitoring WSN). Two agents are deployed in an environment to mon-
itor radioactive contamination, 𝐺 = {𝑔1, 𝑔2}. The agents can perform tasks to
take radiation measurements, or to sample oxygen quality,𝐴𝑃 = {𝑎𝑝𝑟𝑎𝑑 , 𝑎𝑝𝑜𝑥𝑦}.
Each task requires the use of an energy resource type, 𝑅𝑃 = {𝑟𝑝𝑝𝑜𝑤}, which
is available to an agent solely from its own battery. Agent 𝑔1 has a quan-
tity of energy available 𝑟𝑒𝑠1 : 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠1) = 𝑟𝑝𝑝𝑜𝑤 , and 𝑔2 has quantity
𝑟𝑒𝑠2 : 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠2) = 𝑟𝑝𝑝𝑜𝑤 . Using our definition of resource availability pre-
viously:

𝑅𝐴𝑉 = {⟨𝑔1, 𝑟𝑒𝑠1⟩, ⟨𝑔2, 𝑟𝑒𝑠2⟩}

𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑔1, 𝑟𝑝𝑝𝑜𝑤, 𝑅𝐴𝑉 ) = 𝑟𝑒𝑠1

𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑔2, 𝑟𝑝𝑝𝑜𝑤, 𝑅𝐴𝑉 ) = 𝑟𝑒𝑠2

Agent 𝑔1 allocates half of its available energy resource 𝑟𝑒𝑠1 to each of the two
task types it can perform. Whereas agent 𝑔2 dedicates all of its available energy
resource 𝑟𝑒𝑠2 to radiation sensing tasks, giving the resource allocations:

𝑅𝐴𝐿 = {⟨𝑔1, 𝑎𝑝𝑟𝑎𝑑 , 𝑟𝑒𝑠1/2⟩, ⟨𝑔1, 𝑎𝑝𝑜𝑥𝑦, 𝑟𝑒𝑠1/2⟩, ⟨𝑔2, 𝑎𝑝𝑟𝑎𝑑 , 𝑟𝑒𝑠1⟩, ⟨𝑔2, 𝑎𝑝𝑜𝑥𝑦, ∅⟩}

𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑔1, 𝑎𝑝𝑟𝑎𝑑 , 𝑅𝐴𝐿) = {𝑟𝑒𝑠1/2}
𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑔1, 𝑎𝑝𝑜𝑥𝑦, 𝑅𝐴𝐿) = {𝑟𝑒𝑠1/2}

𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑔2, 𝑎𝑝𝑟𝑎𝑑 , 𝑅𝐴𝐿) = {𝑟𝑒𝑠2}
𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑔2, 𝑎𝑝𝑜𝑥𝑦, 𝑅𝐴𝐿) = ∅
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Atomic task
quality (extended)

Given our definition of resources and their allocation by agents, we can now extend
our definition of atomic task and allocation quality given in Definitions 9.3.1 and 9.3.2.

Definition 10.2.3 (Atomic task quality (extended)). The atomic task quality for an
agent completing a task depends on the type of the task, the agent’s concurrent
atomic allocations, and the amount of each resource it has allocated to completing
that type of task:

𝑎𝑡𝑜𝑚𝑖𝑐𝑞𝑙 : AP × N0 × 2RES → R (10.1)

Aswell as the quality of atomic task completions, theremay be domain-specific contri-
butions to allocation quality, dependent on the requirements of each specific system.
E.g. to better distribute resource usage amongst agents when completing a composite
task.

Domain-specific
allocation quality
components

To provide a generalised formulation of allocation quality we introduce two elements
into our definition of allocation quality from Chapter 9, Definition 9.3.2; a domain-
specific atomic quality component, 𝑑𝑜𝑚𝑡𝑎𝑠𝑘 : AT × G → R, which scales the atomic
task quality; and a domain-specific allocation quality component, 𝑑𝑜𝑚𝑞𝑙 : AT ×G →
R, which extends our allocation quality definition to include other factors.

Atomic allocation
quality (extended)

Definition 10.2.4 (Atomic allocation quality (extended)). The atomic allocation quality
of a set of atomic tasks 𝐴𝑇 , their atomic task allocation 𝐴𝐿, and resource allocation
𝑅𝐴𝐿 is given by 𝑎𝑙𝑙𝑜𝑐𝑞𝑙 : 2AT × AL × RAL → R, such that:

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿, 𝑅𝐴𝐿) =
∑︁

∀𝑎𝑡 ∈𝐴𝑇,∃⟨𝑎𝑡,𝑔,𝑔⟩∈𝐴𝐿

𝑎𝑡𝑜𝑚𝑖𝑐𝑞𝑙 (𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡), 𝑡𝑛𝑢𝑚, 𝑅𝐸𝑆
′) .𝑑𝑜𝑚𝑡𝑎𝑠𝑘 (𝑎𝑡, 𝑔)
+ 𝑑𝑜𝑚𝑞𝑙 (𝑎𝑡, 𝑔) (10.2)

where 𝑡𝑛𝑢𝑚 = |𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) | and 𝑅𝐸𝑆 ′ = 𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑔, 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡), 𝑅𝐴𝐿).
In this chapter we will focus purely on the resource allocation problem and assume;

1. the quality of atomic task completion is independent of task concurrency,
|𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) | = 1;

2. all agents complete tasks to the same quality if they use the same amounts of
the same resources;

3. there are no domain-specific contributions to allocation quality,
𝑑𝑜𝑚𝑡𝑎𝑠𝑘 (𝑎𝑡, 𝑔) = 1 and 𝑑𝑜𝑚𝑞𝑙 (𝑎𝑡, 𝑔) = 0.

Under these assumptions, in this chapter Equation 10.2 is simplified to:

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿, 𝑅𝐴𝐿) =
∑︁

∀𝑎𝑡 ∈𝐴𝑇,∃⟨𝑎𝑡,𝑔,𝑔⟩∈𝐴𝐿
𝑎𝑡𝑜𝑚𝑖𝑐𝑞𝑙 (𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡), 1, 𝑅𝐸𝑆

′)

Note that assumptions 1 and 2 above are to simplify this chapter’s work only, we
remove these assumptions and combine our work both task and resource allocation
in Chapter 11. Assumption 3 is only in place until our algorithms are applied to specific
domains, as in our WSN case study in Chapter 12.

Component tasks
proportional value

Each atomic task in a composite task will give some value to the outcome of that
composite task, corresponding to how significantly it contributed relative to other
atomic tasks. This is not the same as result quality, e.g. an atomic task may have been
performed to exceptionally high quality but produced results that were replicated by
other successful tasks, whereas another task performed at lower quality may have
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produced an important and distinct product/finding. In general, the value of each
atomic task to a composite task may be unknown until the composite task is com-
pleted.

Definition 10.2.5 (Component tasks proportional value). The proportional value of
each component atomic task of a composite task 𝑐𝑡 is expressed by amapping from the
atomic tasks comprising 𝑐𝑡 to the fractional value each atomic task contributed to 𝑐𝑡 as
judged after 𝑐𝑡 ’s completion, 𝑝𝑟𝑜𝑝𝑣𝑎𝑙 : AT×CT → R, where ∑

𝑎𝑡 ∈𝑐𝑡
𝑝𝑟𝑜𝑝𝑣𝑎𝑙 (𝑎𝑡, 𝑐𝑡) = 1

and the value of an atomic task to a composite task of which it was not part is zero.

Composite task
quality

The results of atomic tasks are returned to the parent agent enacting their encapsu-
lating composite task. The resulting qualities of these tasks are determined from the
corresponding task and resource allocations (using the quality function). The quality
of result of a composite task depends on the qualities of its component atomic tasks
and the value of each to the composite task, i.e. it is higher where the most important
tasks were performed well.

Definition 10.2.6 (Composite task quality). The composite task quality of a set of com-
posite task 𝐶𝑇 , performed under atomic task allocation 𝐴𝐿 and resource allocation
𝑅𝐴𝐿 is given by 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑞𝑙 : 2CT × AL × RAL → R, such that;

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑞𝑙 (𝐶𝑇,𝐴𝐿, 𝑅𝐴𝐿) =
∑︁
∀𝑐𝑡 ∈𝐶𝑇

∑︁
∀𝑎𝑡 ∈𝑐𝑡

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 ({𝑎𝑡}, 𝐴𝐿, 𝑅𝐴𝐿) .𝑝𝑟𝑜𝑝𝑣𝑎𝑙 (𝑎𝑡, 𝑐𝑡)

(10.3)

Absolute value of a
component task

From this we can define, first, the absolute value of each atomic task to the system
being the product of the composite task’s quality and the atomic task’s relative value
in generating that quality and, second, the utility of the system during a time period
as being the total qualities of the composite tasks it executes in that period.

Definition 10.2.7 (Absolute value of a component task). The absolute value of each
component atomic task of a composite task 𝑐𝑡 executed under atomic task allocation
𝐴𝐿 and resource allocations 𝑅𝐴𝐿 is expressed by a mapping from the atomic tasks
comprising 𝑐𝑡 to the actual value provided by that task according to the quality of the
composite task and the proportional value of the atomic task within the composite
one, 𝑎𝑏𝑠𝑣𝑎𝑙 : CT × AT × AL × RAL → R, so that;

𝑎𝑏𝑠𝑣𝑎𝑙 (𝑐𝑡, 𝑎𝑡, 𝐴𝐿, 𝑅𝐴𝐿) = 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑞𝑙 ({𝑐𝑡}, 𝐴𝐿, 𝑅𝐴𝐿) .𝑝𝑟𝑜𝑝𝑣𝑎𝑙 (𝑎𝑡, 𝑐𝑡) (10.4)

Child agents can use the absolute value of component tasks to learn the value of their
actions to the completion of the composite task of a parent agent.

Example 10.2.3 (The absolute value of a component task in a V2X system). Vehicle
A is moving within a vehicle-to-everything (V2X) communication system with
another vehicle B. Each vehicle can complete atomic tasks to provide their po-
sition, tasks of type 𝑎𝑝𝑝𝑜𝑠 , and local congestion information, of task type 𝑎𝑝𝑐𝑜𝑛 ,
to other vehicles. Both types of atomic task require use of an agent’s energy
resource 𝑟𝑒𝑠𝑝𝑜𝑤 . As it has a fixed capacity, if more energy is allocated to tasks
of type 𝑎𝑝𝑝𝑜𝑠 , then the vehicle can provide more frequent and accurate posi-
tional updates to other vehicles, but less is allocated to 𝑎𝑝𝑐𝑜𝑛 tasks, and traffic
congestion information is less regular and less detailed.
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Vehicle B has composite task 𝑐𝑡 = {𝑎𝑡𝑝𝑜𝑠 , 𝑎𝑡𝑐𝑜𝑛} and allocates both of the com-
ponent atomic tasks to vehicle A. Vehicle B is moving away from vehicle A, and
so may be affected more by congestion than the location of vehicle B, so it val-
ues congestion information more than positional updates from vehicle A, which
are less relevant. In other words, 𝑝𝑟𝑜𝑝𝑣𝑎𝑙 (𝑎𝑡𝑐𝑜𝑛, 𝑐𝑡) > 𝑝𝑟𝑜𝑝𝑣𝑎𝑙 (𝑎𝑡𝑝𝑜𝑠 , 𝑐𝑡). There-
fore, vehicle A can increase the overall sum of component task values of vehicle
B’s composite task 𝑐𝑡 by allocating proportionally more of its 𝑟𝑒𝑠𝑝𝑜𝑤 to 𝑎𝑝𝑐𝑜𝑛
tasks. This will increase the composite task quality of 𝑐𝑡 , and so the utility of
the system overall.

System utilityIn Chapter 9 we assumed that there was no interdependence between the value of
different atomic tasks composing a composite task, and so we could use the simple
sum of atomic task qualities to judge the utility of the system. By including a parent
agent’s judgement of the relative value of atomic tasks composing its completed com-
posite tasks, we now need to use the composite task quality to measure the utility of
the system.

Definition 10.2.8 (System utility (extended)). The utility of a system is then the
sum of composite allocation qualities of each allocation in a set of system states,
𝑢𝑡𝑖𝑙𝑖𝑡𝑦 : 2S → R so that:

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑆) =
∑︁

⟨𝐺,𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇,𝑅𝐴𝐿,𝑅𝐴𝑉 ,𝜙 ⟩∈𝑆
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑞𝑙 (𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠 (𝐶𝐿), 𝐴𝐿, 𝑅𝐴𝐿) (10.5)

10.3 Learning high value resource allocations
The utility of the system can be improved by child agents preferring to allocate their
resources to completing atomic tasks that will be of more value to the corresponding
composite tasks of parent agents. A child agent allocates resources to atomic task
types in advance of being allocated tasks of those types to complete due to the un-
predictable nature of the allocation from its perspective. Our solution is influenced
by three problems arising from the problem domain.

Unknown task
value

The first problem is that the value of an atomic task to its corresponding composite
task is unknown in advance to the agent it is allocated to. We assume that, while the
value of may not be known, there may be biases or patterns to be learnt. We further
assume that these patterns will correspond to the parent agents from whom atomic
tasks are allocated, i.e. a given parent agent will typically be performing composite
tasks for a given purpose within the system, the relative value of each atomic taskmay
have similarities across the composite tasks allocated by that parent agent. Much of
the solution below would apply equally should a particular system have another way
to categorise incoming tasks, other than the parent agent, relevant to learning their
likely value.

Varying task
allocation
frequencies

The second problem is that a parent agent will be making atomic task allocation de-
cisions that change which atomic tasks a given child agent receives, and the parent
agent’s strategy could vary over time. Additionally, the frequencies at which compos-
ite tasks of each type arrive in the system may change. This means that a child agent
will not consistently receive atomic tasks of different types at the same rate and their
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arrival will not be uniform. As a child agent can only have one resource allocation, it
will not be beneficial to allocate many resources to a task type for which tasks of that
type are likely to be high value if arriving from a given parent agent, but that parent
agent is not allocating the child any tasks at this time.

Learning resource
cost

The final problem is that learning requires resources and child agents have limited
resources, as specified in the previous section. A system may be large in the number
of parent agents, therefore it may not be feasible for a child agent to learn patterns of
which atomic tasks types are most valuable for every parent agent due to its memory
or computational limitations.

Learning adaptive
resource

weightings

The solution we propose uses reinforcement learning to adapt weightings that mea-
sure the value of each type of resource when allocated to the completion of each
atomic task type, to the value of the atomic tasks the agent receives from parent
agents. We take the approach that;

1. each child agent will allocate an amount of resources to learning parent agent
task value patterns. In this section, the resource availability will be fixed in
advance. In our work in Chapter 12 we allow the resource availability to vary,
simulating the use of energy from batteries in a WSN system1;

2. a child agent groups parent agents in the system and treats each group as if it
was one parent agent for the purposes of learning. The number of agents per
group is dictated by the resources allocated to learning: more resources allows
for an increased number of smaller groups;

3. for each parent agent group there is a learnt model of the value of each atomic
task type. When a parent agent completes a composite task, the child agents
that completed the corresponding atomic tasks are sent the absolute values for
those tasks. The child agent then adjusts its model for the relevant parent agent
group;

4. the child agent regularly aggregates the learnt models to determine a resource
weighting across atomic task types and adjusts its resource allocation accord-
ingly for subsequent tasks.

10.3.1 Modelling the resource allocation for groups of agents
As learning requires the use of limited resources, a solution that models the value of
resource allocation for each parent agent individually would be limited in scalability,
as the resources required for learning increase with the number of parent agents. In
contrast, if the solution used the incoming atomic tasks for all parent agents andmod-
elled them as-one, it would be unlikely to provide optimal results where there were
many agents making requests, due to the problems of unknown atomic task values,
varying allocation frequencies, and learning resource cost as described previously in
Section 10.3.

Parent groups To mitigate these problems we combine parent agents into multiple groups. Tasks
allocated from each group of parent agents are treated as the same distribution for
resource allocation modelling by the child agent. Resource weightings for atomic task
types are similarly defined for each parent agent group rather than for each parent

1We leave varying the balance of resources allocated to learning versus task execution to future
work. When referring to the resources possessed by an agent, we will exclude the resources allocated to
learning for simplicity
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agent individually. This approach allows us to constrain the usage of resources for
modelling by the child agent, while retaining information on parent agents’ requests
over longer time periods.

Definition 10.3.1 (Parent group). A parent group is defined as a fixed mapping for
each child agent to sets of parent agents that are grouped together for atomic task
value modelling, 𝑔𝑟𝑜𝑢𝑝 : G × 2G → 2G

Figure 10.1 illustrates how the distribution of task types amongst two parent groups
affects the allocation of resources.

Example 10.3.1 (Information loss with time). A parent agent 𝑝𝑔1 allocates an
atomic task𝑎𝑡1 to a child agent 𝑐𝑔 at time𝜙1, which obtains the best results given
a certain resource allocation by 𝑐𝑔. This atomic task is followed by atomic task
allocations from many other parent agents. After a period of time, 𝑝𝑔1 allocates
another task 𝑎𝑡2 of the same type 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡2) = 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡1) at time 𝜙2. If all
parent agents were modelled as one group, since there would be many changes
to the model between each request by 𝑝𝑔1, the resource allocation strategy of
𝑐𝑔 at 𝜙2 is unlikely to be close to optimal for the demands of 𝑝𝑔1. This causes a
loss of knowledge between 𝜙1 and 𝜙2 of the weightings that would give the best
atomic task value for atomic task types 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡2), when allocated by the parent
agent 𝑝𝑔1. By using smaller groups of agents for modelling, the changes in the
model caused by other parent agent task allocations can be lessened between
the similar task allocations from 𝑝𝑔1 at 𝜙1 and 𝜙2.

Parent group
weights

We then assign weights to each parent group and resource type to represent the learnt
value of allocating each resource type to the atomic tasks arriving from that group.

Definition 10.3.2 (Parent group task weights). For each parent group of an agent 𝑔,
there is a set of parent group weights for each type of resource 𝑟𝑝 , representing the
estimated value of allocating resources of that type to each type of atomic task, to
that group of agents, 𝑤𝑒𝑖𝑔ℎ𝑡 : G × 2G × AP × RP → R. Where, given an agent can
accept tasks in the set 𝐴𝑃 ,

∑
𝑎𝑝∈𝐴𝑃

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺, 𝑎𝑝, 𝑟𝑝) = 1.

Parent group
weights matrix

To simplify some future equations for the blending and combination of weight values
we combine the parent group weights into a matrix.
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Definition 10.3.3 (Parent group weights matrix). If an agent has 𝑚 parent agent
groups {𝐺1, ...,𝐺𝑚}, with 𝑛 atomic task types {𝑎𝑝1, ..., 𝑎𝑝𝑛}, and 𝑟 types of resource
to manage {𝑟𝑝1, ..., 𝑟𝑝𝑟 }, we define the parent group weights matrix of an agent 𝑔 as:

PW =


PW𝑟𝑝1

PW𝑟𝑝2
...

PW𝑟𝑝𝑟


(10.6)

where, ∀PW𝑟𝑝 ∈ {PW𝑟𝑝1,PW𝑟𝑝2, ...,PW𝑟𝑝𝑟 }:

PW𝑟𝑝 =


𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺1, 𝑎𝑝1, 𝑟𝑝) . . . 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺1, 𝑎𝑝𝑛, 𝑟𝑝)
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺2, 𝑎𝑝1, 𝑟𝑝) . . . 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺2, 𝑎𝑝𝑛, 𝑟𝑝)

... . . .
...

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺𝑚, 𝑎𝑝1, 𝑟𝑝) . . . 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺𝑚, 𝑎𝑝𝑛, 𝑟𝑝)


(10.7)

In future definitions, we use the shorthand PW𝑟𝑝 for the row matrix in PW corre-
sponding to the resource type 𝑟𝑝 . We additionally define a helper function to index
into PW.

Parent group
weights index

Given a parent agent 𝑔, a task type 𝑎𝑝 , and a resource type 𝑟𝑝 , we define an index into
the matrix PW as 𝑖𝑛𝑑𝑒𝑥 : G × AP × RP → N0 × N0 × N0.

10.3.2 Combining resource allocation models
Although a child agent models resource allocations for each of its parent agent group
individually, we assume its real resource allocation cannot be instantly changed (e.g.
a car in a V2X system may allocate some battery power to its wireless transmitter,
however, to reallocate this resource to another component such as a LIDAR system,
would involve a delay, and is not instantaneous). Due to this reallocation delay, the
child agent must choose a single model, an aggregate of all of its parent agent groups’
models, to allocate its available resources. To do this, we use the frequency of incom-
ing atomic task types, and the entropy of the differing models, to weight the contri-
bution of each of the models to the single model.

Incoming task
frequency

The reasoning for using task frequency is as follows. In a situation where we have two
sets of parent agents groups𝐺1 and𝐺2 allocating tasks of type𝑎𝑝 to a child agent𝑔, we
will have corresponding sets of resource weights𝑊1 and𝑊2 respectively for a resource
𝑟𝑒𝑠 . If the frequency of incoming tasks from group𝐺1 is significantly greater than that
of 𝐺2, we want the child agent’s actual resource allocation to be closer to the values
in𝑊1 as we will generate more system utility through applying that allocation given
the overall distribution of incoming tasks.

Parent agent
sample count

To have the preferred resource allocation of some parent agent groups contribute to
the child agent’s aggregate resource allocation more strongly than that of others, we
utilise sample counting to measure the relative frequency of all tasks received from
each parent agent group. So we define the parent agent allocation count as a count of
the number of times any task has been allocated to an agent 𝑔 from a member of a
given set of agents 𝐺 , 𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚 : G × 2G → N0.
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Figure 10.1: Resource allocation using parent groups. An agent 𝑔 is allocated
atomic tasks from two parent groups𝐺1 and𝐺2. Agents in𝐺1 allocate the agent tasks of
type 𝑎𝑝1 and 𝑎𝑝2, requiring the use of an agent’s resource 𝑟𝑒𝑠𝑎 . Agents in 𝐺2 allocate 𝑔
tasks of type 𝑎𝑝1 and 𝑎𝑝3, requiring resource 𝑟𝑒𝑠𝑏 , where 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠𝑎) ≠ 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠𝑏). As-
suming all tasks are of equal frequency and value to the parent agents, 𝑔 will weight
resources of type 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠𝑎) uniformly between task types 𝑎𝑝1 and 𝑎𝑝2 for parent
group 𝐺1, and fully weight the resource to 𝑎𝑝1 for 𝐺2. There will be a full weighting
of 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠𝑏) for 𝐺2 with task type 𝑎𝑝3 as its the only parent group allocating a task
type that requires it. However, there will also be a uniform weighting of 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠𝑏) for
𝐺1 as weighting per parent group for each resource must sum to 1 (See Definition 10.3.2).
Since this resource is never required by this group, the weighting is ignored by 𝑔 when
actually allocating its resources. How this is done is covered in Section 10.3.2 on resource
weight blending.
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The entropy of
resource

weightings

We justify using the relative entropy of resource weightingmodels as a factor in aggre-
gating them together from the observation that low relative entropy2 across a parent
group can indicate one or more of the following situations;

• the overall outcome of the combined tasks in that group are not strongly influ-
enced by the resource allocation policy of the child agent;

•

• the distribution of incoming tasks for that model is less predictable than the
others, possibly due to the changing atomic task allocations of parent agents,
or those parent agents receiving varying composite tasks.

Parent group
weights entropy

We therefore use the principle of maximum entropy of resource allocation[323] to
increase the influence of the resource weightings of parent agent groups where;

• the value of composite tasks for agents in that group are strongly impacted by
the child agent’s resource allocation policy;

• where the atomic tasks the parent agents are allocating to the child agent do
not result in atomic task values that are very similar;

• the group provides stable distributions of atomic task allocations to the child
agent[324], [325].

Definition 10.3.4 (Parent group weights entropy). Given an agent 𝑔 with a parent
group𝐺 , that can receive atomic task types𝐴𝑃 , then the parent group weights entropy
for a resource type 𝑟𝑝 , is the relative entropy3 of the parent group’s resource weights,
given by 𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 : G × 2G × 2AP × RP → R, where:

𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺,𝐴𝑃, 𝑟𝑝) =
∑︁
𝑎𝑝∈𝐴𝑃

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺, 𝑎𝑝, 𝑟𝑝) . log
(
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺, 𝑎𝑝, 𝑟𝑝)

1/|𝐴𝑃 |

)
(10.8)

Aggregating
models with a

blending function

To aggregate the learnt models of resource allocation for each parent agent group into
one model we define the resource weights blending function, a function that balances
the relative sample counts and entropy of each parent group as defined previously.
We use sum-normalisation4 to balance the impacts of entropy and relative sample fre-
quency on the final resource weights.

Definition 10.3.5 (Resource weights blending function). Given an agent 𝑔 with parent
agent groups, 𝑔𝑟𝑜𝑢𝑝 (𝑔,𝐺) = {𝐺1, . . . ,𝐺𝑚}, weighting the allocation of a resource of
type 𝑟𝑝 , amongst a set of atomic task types𝐴𝑃 , the resource weights blending function
is defined by:

𝑏𝑙𝑒𝑛𝑑 (𝑔,𝐺,𝐴𝑃, 𝑟𝑝) = 𝑠𝑢𝑚𝑛𝑜𝑟𝑚(
[
𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺1, 𝐴𝑃, 𝑟𝑝) . . . 𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺𝑚, 𝐴𝑃, 𝑟𝑝)

]𝑇 )
+ 𝑠𝑢𝑚𝑛𝑜𝑟𝑚(

[
𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚(𝑔,𝐺1) . . . 𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚(𝑔,𝐺𝑚)

]𝑇
We use the shorthand 𝐵𝐿 for the vector generated by this function.

2As compared to a uniform distribution of resources amongst task types.
3The relative entropy or Kullback-Liebler divergence of distribution 𝑃 from the uniform distribution,

𝑈 is defined as
∑
𝑃 (𝑥) log 𝑃 (𝑥 )

𝑈 (𝑥 )
4Sum-normalisation as defined by the equation 𝑠𝑢𝑚𝑛𝑜𝑟𝑚(𝑋 ) =

{ 𝑥𝑖∑
𝑋

}
∀𝑥𝑖 ∈𝑋
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Combining
resource weights

With the grouping of parent agents’ respective resource weights, and a blending ma-
trix based on relative parent-group task frequency and per-group entropy of these
resource weights, we can now define a function that will combine the two to give a
single resource allocation model for each child agent.

Definition 10.3.6 (Combined resource weights function). The combined resource weights
function takes a blending vector 𝐵𝐿, a resource weights matrix PW, and a resource
type 𝑟𝑝 and outputs a vector of resource weights for the given resource for atomic
task types {𝑎𝑝1, . . . , 𝑎𝑝𝑛}5:

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝐵𝐿,PW, 𝑟𝑝) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑢𝑚𝑛𝑜𝑟𝑚(𝐵𝐿𝑇 )PW𝑟𝑝) (10.9)

These values are used by the child agent as its resource allocation model to apply to
real resources. Softmax normalisation6 is used to ensure the final resource weights
sum to 1 as required.

Example 10.3.2 (Model aggregation in a V2X system). An agent 𝑔 controlling
a vehicle is receiving tasks from other vehicles combined into three separate
parent groups. Vehicles in parent group 𝐺1 frequently request position and
speed updates as they are near to 𝑔, giving a high sample count. Those in
𝐺2 are not nearby, but are entering a congested area so congestion task re-
sults are more valuable to them than others, so their resource weights have
a high relative entropy. Finally, vehicles in parent group 𝐺3 are neither nearby
nor nearing congestion so tasks are of relatively equal value to them. In these
circumstances, where 𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚(𝑔,𝐺1) ≫ 𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚(𝑔,𝐺2), 𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚(𝑔,𝐺3), the
combined resource weight function will output an aggregated model that more
closely resembles the individual model for 𝐺1, maximising the absolute values
returned from highly frequent tasks. Similarly, as 𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺2, 𝐴𝑃, 𝑟𝑝) ≫
𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺1, 𝐴𝑃, 𝑟𝑝), 𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺3, 𝐴𝑃, 𝑟𝑝), the combined resource weight
function will be closer to that of 𝐺2, to maximise the value returned due to
tasks that are more important to their respective parent agents. As the resource
model from 𝐺3 is neither frequent, nor generates significantly more value if a
particular resource model is applied, it has low sample count and low relative
entropy and so has its impact on the final model reduced in both cases.

Past resource
allocation effects

Over a period of time a child agent’s resource allocationmodel will change as it adapts
to the absolute task values returned by multiple parent agents, with each change in
value for one atomic task type necessarily changing the values for the other atomic
task types in the same group. This means the weight of an atomic task may have
had contributions to it arising from other, previous atomic task values used to alter
other tasks (see Figure 10.2). This challenge in attributing value to actions when mul-
tiple past actions may have contributed to an outcome is an example of the credit
assignment problem[326] commonly found in reinforcement learning systems.

5Note that the blending matrix 𝐵𝐿 has dimension 1× |𝑔𝑟𝑜𝑢𝑝 (𝑔,𝐺) |, and the resource weights matrix
PW for a given resource type 𝑟𝑝 , a dimension of |𝑔𝑟𝑜𝑢𝑝 (𝑔,𝐺) | × |𝐴𝑃 |, resulting in the function output
being of dimension 1 × |𝐴𝑃 |.

6Softmax normalisation is defined as 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋 ) = { 𝑒𝑥𝑖∑|𝑋 |
𝑗=1 𝑒

𝑥𝑗
}∀𝑥𝑖 ∈𝑋
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Figure 10.2: Model updates with asynchronous task allocation. A parent
agent 𝑝𝑔1 allocates an atomic task 𝑎𝑡1, of type 𝑎𝑝1 to a child agent 𝑔, and parent
agent 𝑝𝑔2, an atomic task of type 𝑎𝑝2. On completing the corresponding compos-
ite task 𝑐𝑡 , 𝑝𝑔 returns the component task absolute values 𝑎𝑏𝑠𝑣𝑎𝑙 (𝑐𝑡1, 𝑎𝑡1, 𝐴𝐿1, 𝑅𝐴𝐿1)
and 𝑎𝑏𝑠𝑣𝑎𝑙 (𝑐𝑡2, 𝑎𝑡2, 𝐴𝐿2, 𝑅𝐴𝐿2) to 𝑔, which updates the weights for its resource al-
location model. Next, a new task of type 𝑎𝑝3 is allocated and completed. When
𝑎𝑏𝑠𝑣𝑎𝑙 (𝑐𝑡3, 𝑎𝑡3, 𝐴𝐿3, 𝑅𝐴𝐿3) is returned there is a problem in deciding which, and how
much, each previous model update affected the value of 𝑎𝑝3.

Eligibility trace
update

To take account of this effect we use a standard technique, a replacement eligibility
trace matrix[166], to apply the effect of absolute task values backwards through past
model changes. This enables the MG-RAO algorithm to attribute some of the current
model quality to past resource allocation changes.

Definition 10.3.7 (eligibility tracematrix). A child agent’s eligibility tracematrix E has
the same shape as the parent group weights matrix PW with each element initialised
to 0. Given an atomic task type 𝑎𝑝 , a parent agent 𝑝𝑔, and a fixed decay factor 𝛾 ′,
updates are carried out to each element ⟨𝑖, 𝑗, 𝑘⟩ of the eligibility trace matrix using
the eligibility trace update defined below.

𝑢𝑝𝑑𝑎𝑡𝑒𝑡𝑟𝑎𝑐𝑒 (E, 𝑝𝑔, 𝑎𝑝, 𝑟𝑝,𝛾 ′) = 𝑒𝑖 𝑗𝑘 ←


1 if ⟨𝑖, 𝑗, 𝑘⟩ = 𝑖𝑛𝑑𝑒𝑥 (𝑝𝑔, 𝑎𝑝, 𝑟𝑝)
𝛾 ′𝑒𝑖 𝑗𝑘 if 𝑒𝑖 𝑗𝑘 > 0
0 otherwise

(10.10)
This sets the ⟨𝑖, 𝑗, 𝑘⟩ element in the eligibility trace matrix that corresponds to the
element 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔,𝐺𝑖 , 𝑎𝑝 𝑗 , 𝑟𝑝) in the parent group weights matrix PW to one. Where
all other elements are multiplied by the decay factor 𝛾 ′. The effect of this is that the
eligibility trace matrix measures how recently each task type has been allocated by
each parent agent group.
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Updating a
resource weights
matrix

When an absolute value 𝑎𝑏𝑠𝑣𝑎𝑙 is received by an agent as a reward from a parent agent
for completing a task, the resource weights matrix PW is updated using the eligibility
trace E to define which indices in the resource weights matrix are updated, and by
what fraction of the absolute value:

𝑢𝑝𝑑𝑎𝑡𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑎𝑏𝑠𝑣𝑎𝑙,PW,E) = PW + 𝛼 ′ .𝑎𝑏𝑠𝑣𝑎𝑙 .E (10.11)

Where 𝛼
′
is a constant value that defines the rate of update of the resource weight

matrix.

10.3.3 Extending agent state for resource allocation
Initially in Chapter 8, Section 8.3, the state of an agent contained its neighbourhood
and knowledge. In Chapter 9, Section 9.4.6, we extended this state to include an
agent’s action samples, TSQM, and Q-table, in order to use the ATA-RIA algorithm
for task allocation. As our final extension to the agent state we include the agent’s
resource weights and eligibility trace as part of its state.

Definition 10.3.8 (Agent State (Extended)). Given an agent 𝑔 = ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩, we
define its state as a tuple ⟨𝐾, 𝑁, 𝑆𝑃,Λ, 𝑄,PW,E⟩, where:

• 𝐾 ⊆ 𝐺 is the knowledge of the agent.

• 𝑁 ⊂ 𝐾 is the neighbourhood of the agent.

• 𝑆𝑃 is the set of action samples of the agent.

• Λ if the TSQM of the agent.

• 𝑄 is the Q-table of the agent.

• PW is the parent group weights matrix of the agent.

• E is the eligibility trace matrix of the agent.

Wewill use the notation PW(𝑔), and E(𝑔) to refer to the resource allocations, resource
weights, and eligibility trace, respectively of an agent 𝑔.

10.4 Themulti-group resource allocation optimisation
(MG-RAO) algorithm
With parent groups, resource weights, blending vectors, and the combined resource
weights function defined, we can bring these together to form themulti-group resource
allocation optimisation (MG-RAO) algorithm to optimise for system utility. This algo-
rithm solves the problem of resource allocation in dynamic systems through the use
of two sub-algorithms. The MG-RAO (update) algorithm learns the resource weight-
ings that maximise the component task values of parent groups’ atomic task alloca-
tion distributions. The MG-RAO (weight) algorithm combines these into a resource
weightingsmodel that is applied across all incoming tasks. The process followedwhen
a task is assigned to a parent agent is shown in Figure 10.3 with the flow of weight
modelling and combination shown in Figure 10.4.
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Figure 10.3: High-level view of the MG-RAO algorithm. This diagram illustrates
how MG-RAO algorithm workflow progresses as atomic tasks are allocated to an agent,
and how it uses the algorithm to update its weighting of resource allocations to optimise
performance.
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Figure 10.4: MG-ROA algorithm weight blending. Weight blending allows agents
to model their resource allocation for multiple parent agent groups, and then combine
these separate models into a final model that will decide the actual resource allocation
enacted.
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The MG-RAO
update algorithm

The MG-RAO update algorithm is applied when a child agent 𝑐𝑔 receives an absolute
task value from a parent agent 𝑝𝑔, in a parent agent group𝐺 , for completing an atomic
task type 𝑎𝑝 = 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) of the parent’s composite task 𝑐𝑡 .

1. We update the eligibility trace matrix using Equation 10.10 [line 2].

2. The updated eligibility trace matrix is then multiplied by the value of 𝑎𝑏𝑠𝑣𝑎𝑙 ,
and a fixed learning rate factor 𝛼

′ ∈ [0, 1], then added to resource weights
matrix of the agent 𝑔, for the resource 𝑟𝑒𝑠 , PW𝑟𝑝 (𝑔) [line 3].

3. The resulting matrix of weights is then sum-normalised row-wise for each re-
source type [line 4].

ALGORITHM 5: The multi-group resource allocation optimisation (MG-RAO) update
algorithm
Input: 𝑎𝑡 , an atomic task allocated to agent 𝑔.
Input: 𝑝𝑔, the parent agent that allocated the atomic task 𝑎𝑡 .
Input: 𝑟𝑒𝑠 , the resource requiring allocation.
Input: 𝑎𝑏𝑠𝑣𝑎𝑙 , the absolute value returned for the completed atomic task.
Input: ⟨PW,E⟩, the agent state resource weight matrix and eligibility trace for agent 𝑔.
Output: ⟨PW′

,E
′ ⟩, updates to the resource weight matrix and eligibility trace for agent 𝑔.

// Get the atomic task’s type
1 𝑎𝑝 ← 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡)
// Update the eligibility trace

2 E
′ ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑡𝑟𝑎𝑐𝑒 (E, 𝑝𝑔, 𝑎𝑝, 𝑟𝑝,𝛾 ′)

// Apply the eligibility trace to resource weights

3 PW
′′ ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑎𝑏𝑠𝑣𝑎𝑙,PW,E)

// Sum-normalise resource weight matrix rows per PW𝑟𝑝
4 PW

′ ← 𝑠𝑢𝑚𝑛𝑜𝑟𝑚(PW′′ )
5 return ⟨PW′

,E
′ ⟩

The MG-RAO
weighting
algorithm

The MG-RAO weighting algorithm is used when an atomic task is being performed
by a child agent.

1. We first generate the resource blending function from the set of atomic task
types in the system and the type of the resource [line 3].

2. We use the combined resourceweight equation to generate the 1×|𝐴𝑃 |matrix of
combined resource weights from the resource weights matrix PW of the agent
𝑔 [line 4].

3. We get the total resource availability of resource 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠) [line 5].
4. For each of the atomic task types in the system, we do the following steps:

(a) We find the parent-task type index for the specific parent agent 𝑝𝑔, atomic
task type 𝑎𝑝 , and resource type 𝑟𝑝 [line 7].

(b) We then use the index values to select the correct weight from the com-
bined resource weights, then multiply this value by the total available re-
source to the child agent [line 8].

(c) The resource allocation is updated with the new weighting for the agent
𝑔 and atomic task type 𝑎𝑝 [lines 9 - 10].
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ALGORITHM 6: The multi-group resource allocation optimisation (MG-RAO) weighting
algorithm
Input: 𝑔, an agent that is performing the task 𝑎𝑡 .
Input: 𝑝𝑔, the parent agent that allocated the atomic task 𝑎𝑡 .
Input: 𝑟𝑒𝑠 , the resource requiring allocation.
Input: ⟨PW,E⟩, the agent state resource weight matrix, and eligibility trace for agent 𝑔.
Result: updates to the resource allocation of the system, 𝑅𝐴𝐿.

1 𝑎𝑝 ← 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡)
2 𝑟𝑝 ← 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠)
// Calculate the resource weights blending vector

3 𝐵𝐿 ← 𝑏𝑙𝑒𝑛𝑑 (𝑔,𝐺,𝐴𝑃, 𝑟𝑝)
// Calculate the combined resource weights of the resource 𝑟𝑒𝑠

4 C← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝐵𝐿,PW, 𝑟𝑝)
// Get the total resource available for the agent’s resource type 𝑟𝑝

5 𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑠 = 𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑔, 𝑟𝑝, 𝑅𝐴𝑉 );
6 foreach 𝑎𝑝 ∈ 𝐴𝑃 do

// Find the index of the column for 𝑟𝑝 in the resource matrix
7 ⟨𝑖, 𝑗, 𝑘⟩ ← 𝑖𝑛𝑑𝑒𝑥 (𝑝𝑔, 𝑎𝑝, 𝑟𝑝)

// Multiply the agent’s resource availability for 𝑟𝑒𝑠 by its weighting for 𝑎𝑝

8 𝑤 ← 𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑠 × C𝑖 𝑗
// Remove previous weight for 𝑎𝑝 and 𝑟𝑝 from system state resource allocation

9 𝑅𝐴𝐿 ← 𝑅𝐴𝐿 \ {⟨𝑔, 𝑎𝑝,𝑤 ′ ⟩ : ⟨𝑔, 𝑎𝑝,𝑤 ′ ⟩ ∈ 𝑅𝐴𝐿, ∃𝑤 ′ ∈ R}
// Update the system state resource allocation with the new weight

10 𝑅𝐴𝐿 ← 𝑅𝐴𝐿 ∪ {⟨𝑔, 𝑎𝑝,𝑤⟩}
11 end

10.5 Evaluation
We simulated four systems to evaluate the MG-RAO algorithm. A single-child system
was used to evaluate the performance of MG-RAO where a child agent’s incoming
tasks had a stable distribution, as the parent agents competed over the resource al-
location of one agent only. In the multi-child system parent agents could choose be-
tween a number of child agents to allocate atomic tasks to, with a random probability,
𝜖 , that they would allocate to a non-optimal child agent. Non-optimal child agents
were selected based on fixed-temperature Boltzmann selection7 of their absolute task
values, as found by the parent agent’s previous task allocations. This system tested
theMG-RAO algorithmwhere child agents’ parent groups had variable incoming task
distributions. To evaluate the effect of dynamism on performance we simulated a
volatile system where parent agents had a fixed probability of leaving or re-joining
the system each episode. Finally, the large system tested the effect of varying parent
group size when there were many parent agents allocating tasks to each child agent,
to examine the scalability of the algorithm.

Labels for the algorithms and configurations used in the simulations are described in
Table 10.1. General system parameters and individual system parameters are shown
in Tables D.1 and D.2 respectively, included in Appendix D. The composite task fre-
quency distribution introduced the same fixed set of tasks over a defined period, giv-

7The probability of choosing a child agent 𝑐𝑔 with atomic task quality 𝑞𝑐𝑔 from 𝑁 other agents is,

𝑃 (𝑎𝑖 ) =
𝑒 (𝑝𝑖/𝜏 )∑𝑁
𝑗=1 𝑒

(𝑝 𝑗 /𝜏 )
𝑐𝑔
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Algorithm Summary

<uniform> Resource allocation weights of child agents are fixed to uniform values.

<mgrao-1:1> This system uses only one parent agent group per-child agent rather than
multiple groups. This is similar to state-of-the-art distributed Q-learning
algorithms.

<mgrao-max> Every parent agent is placed in its own parent-agent group.

<mgrao-x:y> These algorithms have an 𝑥 :𝑦 ratio of parent-agent groups to each child-
agent.

Table 10.1: Summary of algorithm labels. Label and descriptions of the uniform,
mgrao-1:1, mgrao-max, and mgrao-x:y algorithms

ing each episode of the system. The parent agent groups for each child agent were
fixed throughout the simulation. Each child agent’s available resources were set at
system start time in the range (0, 1] ∈ R>=0 drawn randomly from a normal distribu-
tion8.

Algorithm % from <uniform> % from <mgrao-max> % of <mgrao-max>

<mgrao-max> 28.0% −0.0% 100.0%

<mgrao-1:1> 23.4% −4.6% 83.7%

Table 10.2: Experimental results for single child system after 100 episodes.

Algorithm % from <uniform> % from <mgrao-max> % of <mgrao-max>

<mgrao-max> 23.8% −0.0% 100.0%

<mgrao-1:1> 21.4% −2.4% 90.0%

Table 10.3: Experimental results for multi-child system after 100 episodes.

Results for the single-child, multi-child, volatile and large systems are shown in Tables
10.2, 10.3, 10.4 and 10.5. The percentage system utility improvement for the system us-
ing the algorithm specified rather than uniform resource allocation is shown. Percent-
age utilities are also included for each algorithm in comparison to the <mgrao-max>
algorithm for each system. The p-values showing the statistical significance of the
system utility values are shown in Appendix D Table D.3.

Single child agent
performance

As seen in Figure 10.5, <mgrao-max> shows a 28.0% improvement in performance as
compared to the <uniform> case. It also performs 4.6% better than <mgrao-1:1> after
100 episodes. Although the <mgrao-1:1> algorithm initially learns to improve its allo-
cation policy more quickly than <mgrao-max>, by episode 10 its performance flattens
out and <mgrao-max> surpasses it. As well as the performance improvements in al-
location optimality, these results demonstrate how the learning of multiple resource

8A normal distribution defined by values in 𝑋 ∼ N(𝜇, 𝜎2), 𝜇 = 0.5, 𝜎 = 0.2
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Algorithm % from <uniform> % from <mgrao-max> % of <mgrao-max>

<mgrao-max> 7.1% −0.0% 100.0%

<mgrao-1:1> 3.3% −3.8% 46.5%

Table 10.4: Experimental results for volatile system after 100 episodes.

Algorithm % from <uniform> % from <mgrao-max> % of <mgrao-max>

<mgrao-1:1> 14.7% −4.9% 75.1%

<mgrao-2:1> 17.2% −2.4% 87.7%

<mgrao-5:1> 17.9% −1.8% 91.0%

<mgrao-10:1> 18.9% −0.6% 96.6%

<mgrao-25:1> 19.5% −0.1% 99.4%

<mgrao-max> 19.6% −0.0% 100.0%

Table 10.5: Experimental results for large system after 100 episodes.

allocations for groups of agents before blending allows the algorithm to learn a more
complex function approximation.

Performance with
choice of multiple

child agents

From Figure 10.6 we can see that <mgrao-max> performs 23.8% better than <uniform>
and 2.4% better than <mgrao-1:1> after 100 episodes. As the <mgrao-1:1> simulation
treats all of a child agent’s incoming atomic tasks as one, it does not retain parent
agent task allocation patterns through time as well as when multiple parent agent
groups are used. Therefore, when a parent agent stops allocating tasks to it, knowl-
edge of the learnt task allocation distribution for that agent is quickly lost. With
<mgrao-max>, different optimal resource weighting distributions are learned for each
parent-agent group. When a parent agent’s task allocations are intermittent, the child
agent’s knowledge of that agents best-known resource weightings distribution per-
sists for longer. Thus, when a parent agent’s task allocation to a child agent is tem-
porarily disrupted through effects such as exploring allocating atomic tasks to other
agents, or losing connectivity, the child agent is able to reuse past learnt information
when the parent agent start allocating tasks to it again.

Performance
under agents
leaving and

joining the system

In the volatile system simulation, shown in Figure 10.8, we see <mgrao-max> perform
7.1% better than <uniform>. In contrast, <mgrao-1:1> only achieves 46.5% of the im-
provement of <mgrao-max> under the same conditions. As parent agents leave and
join the system at random, the use of parent-agent groups allows MG-RAO to retain
the knowledge the child agent has about these agents’ task allocation patterns for a
longer period of time than when using fewer parent-agent groups. As agents that had
previously left the system rejoin (or regain connectivity), the child agent can re-apply
this previous knowledge without having to entirely re-learn the parent agent’s task al-
location distribution. This means <mgrao-max> will have a higher system utility under
volatile conditions than <mgrao-1:1>, which loses this knowledge more quickly.
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Figure 10.5: System utility comparison to uniform allocation - single child agent

Performance
changes with
parent-agent
group size in a
large system

In the large system <mgrao-max> uses the maximum number of parent-agent groups
and achieves the best performance, at 19.6% over <uniform>. The algorithms
<mgrao-25:1>, <mgrao-10:1>, <mgrao-5:1>, <mgrao-2:1>, <mgrao-1:1> achieve 99.4%,
96.6%, 91.0%, 87.7%, and 75.1% of the performance of <mgrao-max> respectively.
Though <mgrao-1:1> was still 14.7% above <uniform> performance. These results
demonstrate how the performance of themore scalable, size-constrained parent agent
group algorithms still perform close to the algorithm’s best evaluated performance,
given by <mgrao-max>, where unlimited resources dedicated to learning are assumed.
In the <mgrao-x:y> configurations, MG-RAO optimises its resource usage based on
the distribution of task allocations and the per-parent agent component task values
that result from them, rather than requiring individually learnt values for each agent.
As such, modelling based on aggregations of these values can performwell, depending
on factors such as their similarity, or how stable the values are for individual parent
agents.
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Figure 10.6: System utility comparison to uniform allocation - multiple child agents

Overall
performance

Overall, the MG-RAO algorithm shows a 23 − 28% improvement over fixed resource
allocation in the simulated environments. Results also show that, in a volatile system,
using the MG-RAO algorithm configured so that child agents model resource alloca-
tion for all agents as a whole has 46.5% of the performance of when it is set to model
multiple groups of agents. These results demonstrate the ability of the algorithm to
perform well in optimising for resource allocation problems in dynamic multi-agent
systems.

As a child agent learned models of the value to the parent agents of the tasks assigned
to it, it was able to better distribute its resources to maximise utility. The use of mul-
tiple models of incoming tasks split across parent groups allowed a more detailed
resource allocation model to be learned than when only one group was used, and also
gave the algorithm robustness under volatility and variations in the distribution of
tasks.

Evaluation was performed in systems ranging from 1− 3 child agents being allocated
tasks from between 10−50 parent agents, representing common ranges found in real-
world multi-agent problems such as those found in V2X[327] and warehouse automa-
tion systems[328]. The addition of parent groups, and their scalable performance, is
important to the algorithm’s applicability across a large range of system sizes. As they
aggregate parent agents into a fixed number of groups, they act as a constraint on the
resource overhead required to run the algorithm. This helps the solution be applicable
to larger systems.
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Figure 10.7: System utility comparison to uniform allocation - volatile system
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Figure 10.8: System utility comparison to uniform allocation - large system
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10.6 Summary
The work in this chapter looked at the problem of how agents can distribute their
resources across multiple tasks, which have been allocated to them as part of other
agents’ composite tasks, to improve the utility of the system. In the next chapter
we will combine the work from Chapter 9 alongside that of this chapter, to form a
combined solution to task and resource allocation.
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Chapter 11
Hierarchical task allocation

In our previous algorithms on task and resource allocations, agents coordinated with
each other directly. The following chapter extends this coordination so that, in order
to find better quality task allocations, agents can learn to allocate tasks indirectly,
to agents beyond their immediate, known neighbours. In doing so, we develop self-
organising structures based around completing tasks, where agents can assume a
variety of possible roles (Contribution 3).

11.1 Introduction
In Chapter 9 we introduced the task allocation problem and our algorithms to tackle it.
Chapter 10 extended the system, and we developed our solution to the optimisation
of the allocation of resources by agents when completing tasks. In this chapter we
integrate these two solutions and enhance it further to allow agents to reallocate
atomic tasks to other agents1. This means there can now be a chain of atomic task
allocations of atomic tasks in the system before they are finally executed.

We progress our work on our hierarchical task allocation solution as follows2; by defin-
ing roles and task paths for atomic tasks; then we develop a unified algorithm (HTAO)
where the rewards for task completion are shared amongst agents that participated in
a task path for the completion of that atomic task. This includes the integration of our
previous algorithms on task allocation (ATA-RIA) and resource allocation (MG-RAO).

Chapter structureSection 11.2 covers the roles, task paths, and specialisms. In Subsection 11.2.1 we
define the roles agents can assume in completing an atomic task. We develop task
paths in Subsection 11.2.2 to take account of these roles. In Subsection 11.2.3 we
explore the strategies that agents may develop when taking part in task paths and
in interacting with other agents in general. For clarity, we restate the final system

1i.e. where we have been using the restricted SINGLEALLOC action to allocate tasks we now use the
full ALLOC action, see Chapter 8, Section 8.4.

2Note, we use the term ’hierarchical’ in the context of the self-organisational structure of agents
(see Chapter 6, Section 6.5) resulting from task allocation, rather than its use in reinforcement learning
literature. Each agent that receives a task from a parent, has responsibility for its allocation selection
to a child agent, the return of those results to its parent, as well as the passing of the reward from its
parent to its children, forming the hierarchical structure for that task.
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definition, agent state, and system state notation in Subsection 11.2.4. Section 11.3
introduces the HTAO algorithm specification, followed by a short explanation of the
behaviour of the algorithm in Section 11.4. The performance of the HTAO algorithm
is evaluated as part of Chapter 12.

11.2 Coordinating agents to complete atomic tasks
In this chapter, we enable child agents to reallocate atomic tasks to other agents,
which means that parent agents can explore the system for better agents to allocate
tasks to, beyond those in their neighbourhoods that they know about directly. The
cost of these chained allocations is the use of resources by the intermediary relay
agents (e.g. using energy for extra transmissions between agents in a WSN) that are
reallocating atomic tasks and returning results.

11.2.1 Roles in a task allocation
Roles For each atomic task, agents involved in its execution can have different roles, be-

haviours they take on to help complete the task. The roles agents can assume are
dynamic, dependent on the actions chosen by each agent. Agents also assume a sin-
gle role for each atomic task completion they participate in, but may be part of many
different atomic task completions, and so may play multiple, different roles. The ag-
gregation of these roles they choose to play in the system will define an agent’s spe-
cialism.

Sinks, relays, and
executors

Chapter 9 introduced the role of parent agent, agents who allocated atomic tasks to
other agents for completion, and child agents, who were allocated tasks, then com-
pleted those tasks, returning the results to parent agents. Parent agents learnedwhich
other agents to allocate atomic tasks to achieve the best performance, and child agents
learned how to best allocate their resources to complete those tasks.

As we now extend atomic task allocation to include reallocation of tasks, we need
to be more granular in our definition of agent roles in the system. We distinguish
between three roles assumed by participating agents in an atomic task execution;

• A sink is an agent that receives composite tasks from outside the system3. This
agent is the sink agent for all atomic tasks that comprise the composite tasks it
receives 𝑎𝑡 ∈ 𝑐𝑡 , 𝑠𝑖𝑛𝑘 : AT → G;

• A relay is an agent that is allocated an atomic task, but does not complete it,
instead it reallocates it to other agents. Given an atomic task 𝑎𝑡 , the ordered
sequence of agents who act as relays is given by 𝑟𝑒𝑙𝑎𝑦𝑠 : 𝐴𝑇 → 𝑠𝑒𝑞 G, where
the final agent in the sequence is that which allocates the task to the agent that
completes the task;

• An executor is the agent that completes the atomic task. Given an atomic task
𝑎𝑡 , this agent is given by the mapping 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 : AT → G.

3Note, we use the term ’sink’ remain consistent with the standard WSN definitions of nodes such as
the base stations[9].
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Figure 11.1: Types of agent role. Agents can play multiple roles in the allocation of
atomic tasks and their execution. The illustration shows 𝑔1 receiving a composite task
𝑐𝑡 from outside the system, it is the sink agent for all the atomic tasks that comprise 𝑐𝑡 :
∀𝑎𝑡 ∈ 𝑐𝑡, 𝑠𝑖𝑛𝑘 (𝑎𝑡) = 𝑔1. 𝑔1 allocates one of the atomic tasks 𝑎𝑡 ∈ 𝑐𝑡 to the agent 𝑔2. In
this step 𝑔1 acts as a parent agent to 𝑔2 for the task 𝑎𝑡 , and 𝑔2 as the child agent. 𝑔2 then
allocates 𝑎𝑡 to an agent 𝑔3, acting as the parent agent, and 𝑔3 as the child agent in this
step. 𝑔3 then allocates 𝑎𝑡 to 𝑔4, so is the parent and 𝑔4 the child. 𝑔4 executes the atomic
task. Agents 𝑔2 and 𝑔3 are relays for the atomic task 𝑎𝑡 : 𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡) = ⟨𝑔2, 𝑔3⟩, and 𝑔4 the
executor: 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡) = 𝑔4.

Relationship to
parent and child
agents

Note that all parent agents are still solving the task allocation problem, but only parent
agents that receive component tasks from outside the system are sink agents as well.
Similarly, agents who have atomic tasks allocated to them are child agents, but only
those who actually complete the tasks are executor agents4, and therefore must tackle
the resource allocation problem of Chapter 10. Relay agents are both child agents in
the sense they are allocated atomic tasks to complete (which they then reallocate) and
parent agents, as they allocate tasks to other agents. Figure 11.1 shows the different
roles and how they overlap in the course of completing composite and atomic tasks.

11.2.2 Task paths
The sequencing of agents assuming a role in a given atomic task execution defines the
task-path, a mapping of an atomic task to the ordered sequence of agents that work
together to complete that task, 𝑝𝑎𝑡ℎ : AT → 𝑠𝑒𝑞 G. In completing an atomic task,
the first agent in the sequence is the sink that received the associated composite task,

4Note, with no reallocation of atomic tasks possible, all parent agents were sink agents in Chapters
9 and 10, and all child agents were executor agents.
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Figure 11.2: Task paths in a WSN. A sink receives a composite task from an external
agent, decomposes it into the single atomic task 𝑎𝑡 , and allocates this to the agent 𝑔𝑏 , so
𝑠𝑖𝑛𝑘 (𝑎𝑡) = 𝑔𝑎 . 𝑔𝑏 relays the task to 𝑔𝑐 , an agent in its current transmission range and its
neighbourhood, then finally to𝑔𝑑 . 𝑔𝑑 completes the task therefore 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡) = 𝑔𝑑 and
𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡) = ⟨𝑔𝑏, 𝑔𝑐⟩. The results of the tasks are then passed from𝑔𝑑 to𝑔𝑐 , then𝑔𝑏 before
arriving back at 𝑔𝑎 for aggregation and return of the composite task results to the external
agent that first made the request. This task path of 𝑎𝑡 is 𝑝𝑎𝑡ℎ(𝑎𝑡) = ⟨𝑔𝑎, 𝑔𝑏, 𝑔𝑐 , 𝑔𝑑⟩.

the last is the executor that completes the atomic task5. (See Figure 11.2):

𝑝𝑎𝑡ℎ(𝑎𝑡) = ⟨𝑠𝑖𝑛𝑘 (𝑎𝑡)⟩, 𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡), ⟨𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡)⟩ (11.1)

Task path cost There is a cost to an agent in assuming a role in a task path, the resources that must be
used by agents to participate in the process. For example, a sink must communicate
with other agents, decompose composite tasks, and assemble the results. Relays must
communicate with both sinks, other relays, and executors for the given atomic task.
An executor will utilise some of their resources to enable the task to be performed
(e.g. activating sensors), and communicate the results.

Definition 11.2.1 (Task path cost). Given a task path containing a sequence of agents
𝐺 , for completing an atomic task 𝑎𝑡 , the task path cost for the resource of type 𝑟𝑝 is
given by, 𝑝𝑎𝑡ℎ𝑐𝑜𝑠𝑡 : AT × 2G × RP → R.

Example 11.2.1 (Example of a task path execution flow). We can describe an
example of one possible flow of a composite task execution in a system of agents
𝐺 as follows;

1. An external agent 𝑒 sends a composite task 𝑐𝑡 to an agent 𝑔𝑎 , which has
a neighbourhood 𝑁 (𝑔) = {𝑔𝑎, 𝑔𝑏, 𝑔𝑐 };

5We use tuple notation for lists of sequences[329]. I.e., the concatenation of three sequences is rep-
resented as: ⟨𝑎1, 𝑎2, . . .⟩, ⟨𝑏1, 𝑏2, . . .⟩, ⟨𝑐1, 𝑐2, . . .⟩
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2. 𝑔𝑎 decomposes the composite task into atomic tasks {𝑎𝑡1, 𝑎𝑡2, 𝑎𝑡3};
3. 𝑔𝑎 can allocate atomic tasks to agents in its neighbourhood, including

itself, so;

(a) 𝑔𝑎 allocates 𝑎𝑡1 to the agent 𝑔𝑏 which completes the task and returns
the results to 𝑔𝑎 :

𝑠𝑖𝑛𝑘 (𝑎𝑡1) = 𝑔𝑎, 𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡1) = ∅, 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡1) = 𝑔𝑏

(b) 𝑔𝑎 allocates 𝑎𝑡2 to an agent 𝑔𝑐 , which then reallocates it to another
agent 𝑔𝑑 that is not in the neighbourhood of the sink agent 𝑔𝑎 . 𝑔𝑑
then reallocates to a further agent 𝑔𝑒 . The agent 𝑔𝑒 completes the
task, and returns the results to 𝑔𝑑 then 𝑔𝑐 , which in turn, returns
them to 𝑔𝑎 :

𝑠𝑖𝑛𝑘 (𝑎𝑡2) = 𝑔𝑎, 𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡2) = ⟨𝑔𝑐 , 𝑔𝑑⟩, 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡2) = 𝑔𝑒

(c) 𝑔𝑎 allocates 𝑎𝑡3 to itself and completes it:

𝑠𝑖𝑛𝑘 (𝑎𝑡3) = 𝑔𝑎, 𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡3) = ∅, 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡3) = 𝑔𝑎

4. 𝑔𝑎 aggregates the results of the atomic tasks in 𝑐𝑡 and returns them to the
external agent 𝑒 . The task paths of the atomic tasks are therefore:

𝑝𝑎𝑡ℎ(𝑎𝑡1) = ⟨𝑔𝑎, 𝑔𝑏⟩, 𝑝𝑎𝑡ℎ(𝑎𝑡2) = ⟨𝑔𝑎, 𝑔𝑐 , 𝑔𝑑 , 𝑔𝑒⟩, 𝑝𝑎𝑡ℎ(𝑎𝑡3) = ⟨𝑔𝑎, 𝑔𝑎⟩

.

11.2.3 Developing strategies
As sink, relay, and executor roles are assumed by agents per-atomic task, and agents
may participate in multiple task paths, agents may form strategies that take account
of these multiple roles. An agent may develop a strategy of knowledge acquisition
so that it can improve its task reallocations when acting as a relay in a task path.
Whereas an agent that is mainly an executor in multiple task paths may ignore sys-
tem exploration actions and focus purely on optimising its atomic task completion.
Agents that perform different roles in multiple task paths need a strategy that is more
generalist, taking actions that improve their knowledge of agents in the system, opti-
mise allocation of tasks, and the execution of tasks (see Figure 11.3). Not all strategies
are reliant on being part of a task path, e.g. an agent may also prioritise acquiring
knowledge so that it can provide a knowledge-sharing service to other agents so that
those agents can request information from it, and in so doing, learn to improve their
task allocations.

SpecialismsWe refer to these strategies as specialisms, which are distinct from roles, where certain
groups of actions are prioritised by agents over others in order to receive rewards,
either through improving their performance as part of a task path, or providing a
service to agents that do. We can classify specialisms into three broad categories6;

6Note that specialisms are in reality a continuous spectrum rather than being distinct.
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ALLOC

ALLOC ALLOC

ALLOC

EXEC

EXEC

strategy to ignore system exploration and 

focus on task execution

strategy to take actions such as LINK and 

INFO to explore the system

Figure 11.3: Roles and specialisms - agent strategies. This diagram shows two
task paths, where 𝑝𝑎𝑡ℎ(𝑎𝑡1) = ⟨𝑔1, 𝑔3, 𝑔4, 𝑔5⟩ and 𝑝𝑎𝑡ℎ(𝑎𝑡2) = ⟨𝑔2, 𝑔3, 𝑔4⟩. Agents 𝑔1 and
𝑔2 assume the role of sinks in both task paths, so their strategies focus on taking actions to
learn improvements to their neighbourhoods and knowledge, so they can better allocate
their atomic tasks. Agent 𝑔3 acts as a relay for both atomic tasks, so has also developed
a strategy to learn better neighbourhoods and knowledge with which to provide a better
relaying service to agents𝑔1 and𝑔2. Agent𝑔4 is a relay for atomic task 𝑎𝑡1 and an executor
for atomic task 𝑎𝑡2, and so balances its strategy between task execution, optimising its
neighbourhood for allocation, and both relaying and providing knowledge to 𝑔3. Agent
𝑔5 is an executor for both 𝑎𝑡1 and 𝑎𝑡2 and so it carries out few actions to explore possible
neighbourhoods and knowledge in the system and primarily focuses on task execution.
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ALLOC
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Figure 11.4: Roles and specialisms - agent actions. This figure shows how agents
can develop different specialisms based on their roles in multiple task paths (see Figure
11.3). Agents 𝑔1 and 𝑔2 are sink agents and focus on ALLOC actions to allocate their
atomic tasks to 𝑔3 (unaware that these tasks are actually being relayed by 𝑔3 to other
agents). Agent 𝑔3 reallocates atomic tasks, but also carries out INFO and LINK actions
to improve its allocation performance and so, a better relaying service to the sink agents.
Agent 𝑔4 has multiple differing roles and so takes a balanced range of actions, with a
noticeable percentage of PROVIDE_INFO actions to provide a knowledge-sharing service
to 𝑔3 . Agent 𝑔5 is focused on EXEC actions as it acts mainly as an executor of tasks in
the system.

• information speciality , the agent focuses on INFO actions, so that it can PRO-
VIDE_INFO to other agents, enabling those agents to explore the system better;

• allocation speciality , the agent balances INFO and LINK actions to optimise its
allocation of atomic tasks. This is the case if it were acting as a sink, however,
this can also be a strategy developed so that the agent can provide a better
target for ALLOC actions by other agents, as is the case when acting as a relay;

• execution speciality , the agent mainly ignores system exploration actions such
as INFO and LINK and instead targets optimisation of atomic task execution;

We illustrate this concept in Figures 11.3 and 11.4, showing how agents might share
their time between actions dependent on their speciality.

11.2.4 Restating the system definition
We restate the system, agent state, and system state definitions here that apply to
our final solution as described in the following section.

Definition 11.2.2 (Distributed Task Allocation System (complete)). A distributed task-
allocation system (DTAS) is defined by a tuple ⟨𝐴𝑇,𝐶𝑇,𝐴,𝐺, 𝑅𝑃⟩ where:

• 𝐴𝑇 is the set of atomic tasks 𝑎𝑡 (or tasks for short), where each task can be
performed by a single agent;
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• 𝐶𝑇 is the set of composite tasks 𝑐𝑡 , where each composite task is formed by a
set of atomic tasks;

• 𝐴 is the set of actions that agents can perform;

• 𝐺 is the set of agents, where each agent 𝑔 is defined by a tuple ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩;
• 𝑅𝑃 is a set of resource types needed to perform tasks.

See Chapter 8, Section 8.2 for base system definitions, and Chapter 10, Section 10.2
for the definition of resource types 𝑅𝑃 .

Definition 11.2.3 (Agent State (complete)). Given an agent 𝑔 = ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩, we
define its state as a tuple ⟨𝐾, 𝑁, 𝑆𝑃,Λ, 𝑄,PW,E⟩, where:

• 𝐾 ⊆ 𝐺 is the knowledge of the agent.

• 𝑁 ⊂ 𝐾 is the neighbourhood of the agent.

• 𝑆𝑃 is the set of action samples of the agent.

• Λ if the TSQM of the agent.

• 𝑄 is the Q-table of the agent.

• PW is the parent group weights matrix of the agent.

• E is the eligibility trace matrix of the agent.

Chapter 8, Section 8.3 contains the base agent state definitions. See Chapter 9, Section
9.4.2 for the definition of action samples 𝑆𝑃 , Section 9.4.5 for the TSQMΛ, and Section
9.4.1 for the Q-table definition. See also Chapter 10, Definition 10.3.3 for the definition
of parent group weight matrices PW, and Definition 10.3.7 for eligibility traces E.

Definition 11.2.4 (System State (complete)). Given a DTAS we define its state as a
tuple 𝑆 = ⟨𝐺𝑆 ,𝐶𝐿,𝐴𝐿,𝐴𝐶𝑇, 𝑅𝐴𝑉 , 𝑅𝐴𝐿, 𝜙⟩ where;

• 𝐺𝑆 is the set of states of all agents in the system;

• 𝐶𝐿 is the set of composite allocations in the system.

• 𝐴𝐿 is the set of atomic allocations in the system.

• 𝐴𝐶𝑇 is the set of actions allocated in the system.

• 𝑅𝐴𝑉 is the set of resource availabilities in the system.

• 𝑅𝐴𝐿 is the set of resource allocations in the system.

• 𝜙 ∈ N0 is the current system counter.

Chapter 8, Section 8.3 contains the base system state definitions. See also Chapter 10,
Section 10.2 for the definition of resource availability 𝑅𝐴𝑉 and allocations 𝑅𝐴𝐿.
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11.3 Thehierarchical task allocation optimisation (HTAO)
algorithm

Integrating task
paths

The HTAO algorithm integrates the ATA-RIA algorithm from Chapter 9, with theMG-
RAO algorithms of Chapter 10 to optimise the utility of the system as described in
Equation 10.2.8 (See Chapter 10, Section 10.2). The ATA-RIA algorithm is split into two
as compared to Chapter 9 in order to orchestrate the flow of the HTAO algorithm;

• the ATA-RIA (select) algorithm selects actions for agents (See Algorithm 8);

• the ATA-RIA (update) updates the action samples, Q-tables, and TSQM values
of agents after they have taken actions (See Algorithm 9).

Note that the combination of the ATA-RIA (select) and ATA-RIA (update) algorithms
is equivalent to the ATA-RIA algorithm of Chapter 9, Section 9.5.

The HTAO
algorithm

To successfully complete a composite task, a sink must decompose the composite
task it received from an external source into atomic tasks. It then selects whether to
execute the tasks itself, or allocate them to further agents (See Algorithm 7).

1. initially, the sink receives a composite task 𝑐𝑡 comprising of a set of atomic tasks
to be completed.

2. to track completion and the outputs of tasks throughout the algorithm we list
the atomic tasks that are yet to be performed [Line 1] and use a store for the
state changes and agent state updates resulting from the agent 𝑔 taking actions
[Line 2].

3. while there are atomic tasks not yet completed or allocated, the ATA-RIA algo-
rithm runs to select an action for the agent 𝑔 [Line 4];

(a) if the action chosen is for the agent to execute the atomic task itself,
𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡), the atomic task is removed from the list of tasks to be com-
pleted by the agent [Line 6], and the results of ATA-RIA (select) stored
[Line 7].

(b) if the action chosen is for the agent 𝑔 to allocate the atomic task, the
𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) action, then 𝑎𝑡 is removed from the list of tasks to be
completed by the agent [Line 9], and the results of ATA-RIA (select) stored
[Line 10].

(c) if a 𝐿𝐼𝑁𝐾 (𝑔, 𝑘) or 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛) action is executed, these will update the
agent’s neighbourhood and knowledge base respectively using the ATA-
RIA algorithm. There is no effect on atomic task execution or allocation in
that case, and the algorithm runs ATA-RIA (update) using the rewards for
those actions [Line 13], then loops round to choose another action.

4. the selection and execution of actions using the ATA-RIA (select) algorithm is
repeated until the tasks are either executed or allocated. Once this is done, the
agent waits for them to complete [Line 16].

5. for each of the atomic tasks that comprise the composite task 𝑐𝑡 , if the agent is
the sink agent for that atomic task, the following steps are performed to allocate
rewards [Line 19];
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(a) when all the atomic tasks in the composite task have completed, the ab-
solute value7 for each atomic task is calculated [Line 20]. The agents
in each atomic task’s task-path are updated using ATA-RIA (update) with
these values as rewards for the actions they took in completing the atomic
task [Line 23].

(b) finally, for each atomic task, and for each of the resources agent 𝑔 allo-
cates for task completion, a corresponding reward value (derived from the
absolute value of component tasks) is used to update the executor agent’s
resource weighting model using the MG-RAO (update) algorithm [Line
26], and the new weightings applied to the resource allocation of the sys-
tem, 𝑅𝐴𝐿, using the MG-RAO (weight) algorithm [Line 27].

7See Chapter 10, Definition 10.2.7.
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ALGORITHM 7: The HTAO algorithm
Input: 𝑔, an agent allocated the composite task 𝑐𝑡 .
Input: 𝑐𝑡 , a composite task allocated to agent 𝑔.
Input:𝑊 , the potential change on neighbourhoods on taking an action.
Input: ⟨𝐾, 𝑁, 𝑆𝑃,Λ, 𝑄,PW,E⟩, the agent state of agent 𝑔.
Output: ⟨𝐾 ′ , 𝑁 ′ , 𝑆𝑃 ′ ,Λ′ , 𝑄 ′ ,PW′

,E
′ ⟩, updates to the agent state of agent 𝑔.

// List atomic tasks to be performed
1 𝑐𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑐𝑡

// Save the state sequence of all selected actions of tuples.
2 𝐶𝑈𝑅 ← ∅
3 foreach 𝑎𝑡 ∈ 𝑐𝑡𝑎𝑐𝑡𝑖𝑣𝑒 do

// Select and execute action through ATA-RIA

4 ⟨𝑔, 𝑎, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩⟩ ← ataria-select(𝑔, 𝑎𝑡,𝑊 , ⟨𝐾, 𝑁, 𝑆𝑃,𝑄⟩)
5 if 𝑎 = 𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡) then

// Remove the atomic task from the list of atomic tasks to be performed
6 𝑐𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑐𝑡𝑎𝑐𝑡𝑖𝑣𝑒 \ {𝑎𝑡}

// Store the state change and agent state updates

7 𝐶𝑈𝑅 ← 𝐶𝑈𝑅 ∪ ⟨𝑔, 𝑎, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩⟩
8 else if 𝑎 = 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑔′ ) then

// Remove the atomic task from the list of atomic tasks to be performed
9 𝑐𝑡𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑐𝑡𝑎𝑐𝑡𝑖𝑣𝑒 \ {𝑎𝑡}

// Store the state change and agent state updates

10 𝐶𝑈𝑅 ← 𝐶𝑈𝑅 ∪ ⟨𝑔, 𝑎, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩⟩
11 else

// Update 𝑔 with rewards immediately non-EXEC or ALLOC actions
12 𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑎)
13 ⟨𝑆𝑃 ′ , 𝑄 ′ ,Λ′ ⟩ ← ataria-update(𝑔, 𝑎, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝑆𝑃,𝑄,Λ⟩)
14 end

// Wait for all the atomic tasks to be completed
15 while ¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (𝑐𝑡) do
16 𝑤𝑎𝑖𝑡 (𝑔)
17 end
18 foreach 𝑎𝑡 ∈ 𝑐𝑡 do

// Run reward updates only if this agent is a sink agent
19 if 𝑔 = 𝑠𝑖𝑛𝑘 (𝑎𝑡) then

// Calculate each atomic tasks’ absolute task value
20 𝑡𝑎𝑠𝑘𝑣𝑎𝑙 ← 𝑎𝑏𝑠𝑣𝑎𝑙 (𝑐𝑡, 𝑎𝑡, 𝐴𝐿, 𝑅𝐴𝐿)

// Calculate a simple reward based on a fraction of the composite task
reward

21 𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑡𝑎𝑠𝑘𝑣𝑎𝑙/|𝑐𝑡 |
// Send a proportion of the component task value to each task-path agent

22 foreach ⟨𝑔, 𝑎, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝐾 ′′ , 𝑆𝑃 ′′ , 𝑄 ′′ ⟩⟩ ∈ 𝐶𝑈𝑅 do
// Update the Q-values for ALLOC or EXEC actions taken by agents

23 ⟨𝑆𝑃 ′ , 𝑄 ′ ,Λ′ ⟩ ← ataria-update(𝑔, 𝑎, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝑆𝑃 ′′ , 𝑄 ′′ ,Λ′′ ⟩)
24 end
25 foreach 𝑟𝑒𝑠 ∈ 𝑅𝐸𝑆 do

// Run the MGRAO update for the agent that completed the 𝑎𝑡

26 ⟨PW′
,E
′ ⟩ ← mgrao-update(𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡), 𝑎𝑡, 𝑟𝑒𝑠, 𝑡𝑎𝑠𝑘𝑣𝑎𝑙, ⟨PW,E⟩)

// Run the MGRAO weighting
27 mgrao-weight(𝑎𝑡, 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡), 𝑝𝑔, 𝑟𝑒𝑠, 𝑅𝐴𝐿, ⟨PW,E⟩)
28 end
29 end
30 return ⟨𝐾 ′ , 𝑁 ′ , 𝑆𝑃 ′ ,Λ′ , 𝑄 ′ ,PW′

,E
′ ⟩
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ALGORITHM 8: The ATA-RIA (select) algorithm
Input: 𝑔, an agent allocated an atomic task 𝑎𝑡
Input: 𝑎𝑡 , an atomic task allocated to agent 𝑔.
Input:𝑊 , the potential change on neighbourhoods on taking an action.
Input: ⟨𝐾, 𝑁, 𝑆𝑃,𝑄⟩, agent state knowledge, neighbourhood, actions samples, and Q-table of

agent 𝑔.
Output: 𝑔, the agent that selected the action.
Output: 𝑎, the action that was selected by the agent 𝑔.
Output: 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒 , the previous state of the system before action 𝑎 was selected.
Output: 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒 , the new state of the system after action 𝑎 was selected.
Output: ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩, the updated agent state knowledge, neighbourhood, and actions samples of

agent 𝑔.

// Store current system state
1 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑠

// Execute atomic task if agent has capabilities
2 if 𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡) ∈ 𝑐 (𝑔) then
3 𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡)
4 while ¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ({𝑎𝑡}) do
5 𝑤𝑎𝑖𝑡 (𝑔)
6 end
7 𝑐𝑡 ← 𝑐𝑡 \ {𝑎𝑡}
8 else

// Select an action given system state
9 𝑎 ← RT-ARP(𝑔,𝑊 ,𝑄)

10 if 𝑎 = 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) then
11 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛)
12 while ¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ({𝑎𝑡}) do
13 𝑤𝑎𝑖𝑡 (𝑔)
14 end
15 𝑐𝑡 ← 𝑐𝑡 \ {𝑎𝑡}
16 else if 𝑎 = 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛) then

// Get new agent 𝑘 from action
17 𝑘 ← 𝐼𝑁 𝐹𝑂 (𝑔, 𝑛)
18 𝐾

′ ← 𝐾 ∪ {𝑘}
// Prune knowledge base

19 ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩ ← SAS-KR(𝑔, ⟨𝐾, 𝑁, 𝑆𝑃,𝑄⟩)
20 else if 𝑎 = 𝐿𝐼𝑁𝐾 (𝑔, 𝑘) then

// Add new agent to neighbourhood
21 𝐿𝐼𝑁𝐾 (𝑔, 𝑘)

// Prune neighbourhood based on resources

22 𝑁
′ ← N-Prune(𝑔, ⟨𝑁, 𝑆𝑃⟩)

23 end
// Store new system state

24 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒 ← 𝑠

25 return ⟨𝑔, 𝑎, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, ⟨𝐾 ′ , 𝑆𝑃 ′ , 𝑄 ′ ⟩⟩
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ALGORITHM 9: The ATA-RIA (update) algorithm
Input: 𝑔, an agent to be updated.
Input: 𝑎, the action taken by agent 𝑔.
Input: 𝑟𝑒𝑤𝑎𝑟𝑑 , the reward for agent 𝑔 as a result of action 𝑎.
Input: 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒 , the state the agent was in when it took action 𝑎.
Input: 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒 , the state the agent was in after it took action 𝑎.
Input: ⟨𝑆𝑃,𝑄,Λ⟩, the agent state of action samples, Q-table, and TSQM, of the agent 𝑔.
Output: ⟨𝑆𝑃 ′ , 𝑄 ′ ,Λ′ ⟩, updates to the action samples, Q-table, and TSQM, of the agent 𝑔.

// Update Q-value mappings using reward generated by action

1 𝑄
′ ← 𝑟𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑔, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, 𝑎, 𝑟𝑒𝑤𝑎𝑟𝑑,𝑄)

// Use the reward value to update the TSQM

2 Λ
′ ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑡𝑠𝑞𝑚(Λ, 𝑟𝑒𝑤𝑎𝑟𝑑)

// Update action samples

3 𝑆𝑃
′ ← 𝑆𝑃 ∪ {(𝑎, 𝜙, 𝑟𝑒𝑤𝑎𝑟𝑑)}

4 return ⟨𝑆𝑃 ′ , 𝑄 ′ ,Λ′ ⟩

11.4 Optimisation using HTAO
The HTAO algorithm optimises performance in 3 main ways;

1. selecting actions, when agents have a composite or atomic task allocated to
them, they can choose from a range of actions. By utilising reinforcement learn-
ing, with the component task values of atomic tasks as rewards8, HTAO adapts
the probability of agents’ taking actions to optimise these values;

2. resource allocation, as an agent completes an atomic task it will use some re-
sources to do so. The HTAO algorithm predicts the agent’s optimal allocation
of these resources, given the different atomic tasks it is allocated, and their dis-
tribution over time. This allows it to complete the incoming tasks to obtain the
best atomic task values overall;

3. forming task-paths, the algorithm allows agents to reallocate atomic tasks to
other agents, relaying them through the network. It also distributes the reward
for completing these tasks across agents in these task paths to optimise the
actions that were taken by all agents that participated in the task.

The high-level flowchart in Figure 11.5 shows how sinks decompose composite tasks,
choose actions to take, allocate atomic tasks, update Q-tables, updates resource al-
location weights and applies them. An example of how the algorithm is applied to a
network of agents executing an atomic task is shown in Figure 11.6.

8See Chapter 10, Section 10.2, Definition 10.2.7.
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Figure 11.5: HTAO execution flowchart. Shows the flow of execution for the HTAO
algorithm, and how it utilises the ATA-RIA and MG-RAO algorithms.

162








(2)





 

Executor agent,


Task-path agent,


 
 

Target for sensor

reading

(5)

 Allocation

(1)

(1)  

receives a
composite task 

of atomic tasks of
sensor reading
measurements 

at demand points

(3)-(4) As  is far from
the task's target for a
sensor reading, if it
executed the task itself,
the quality would be
low.    allocates the
atomic task to agent 

(2)  

runs the 

The HTAO 

algorithm and 

allocates an

atomic task to
agent 

(5)  relays
the task to 

(6)  

executes the task and
returns the results

Agent transmission

range

Sensor reading

(4)

(3)

Return to   Return to   Aggregation

Sink agent, 




Return to   

(6)

Figure 11.6: Allocation along a task-path. An agent allocates tasks composed of sen-
sor readings at specified locations using the HTAO algorithm. The example task-path has
two re-allocations before the specific atomic task is allocated to an agent that completes
the task by taking a measurement, then returns the results back along the task path.

11.5 Summary
In this chapter we brought together the work of Chapters 9 and 10 and integrated
the previous ATA-RIA and MG-RAO algorithms to form part of our HTAO algorithm,
our holistic solution to the research challenges described in Chapter 1. Using ATA-
RIA solves for the task allocation side of the problem, while MG-RAO solves for the
resource allocation side. Additionally, we added task paths, allowing agents to reallo-
cate atomic tasks. This adds fault tolerance to the algorithm, as well as an additional
route for task allocation optimisation. With the definition of task path roles, we now
also have the possibility of agents assuming multiple different roles in completing
atomic tasks, the aggregation of these roles giving the agent a specialism, a set of
behaviours learned by the agent in order to optimise the utility of the system.

In the next chapter we take the HTAO algorithm and apply it to a WSN simulation.
In doing so we evaluate the effectiveness of the algorithm and its behaviour under
different conditions.
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Chapter 12
Case study: wireless sensor networks
(WSN)

In this chapter we apply our HTAO algorithm from Chapter 11 to a simulated envi-
ronmental monitoring WSN. This enables us to see how well our solution performs
in a realistic scenario with the associated complexities, noise, and dynamism that
are typical in practical applications.

12.1 Introduction
In Chapter 7 we described some of the applications of WSNs, as well as the chal-
lenges they face. In this chapter we use the hierarchical task allocation optimisation
(HTAO) algorithm from Chapter 11 to optimise WSN systems based on maximising
energy availability, distribution, and task quality, while maintaining task coverage in
a dynamic network. We evaluate the algorithm’s performance in a simulated envi-
ronmental monitoring system where there are a number of measurement tasks to be
completed.

Chapter structureIn Section 12.2 we cover the high level goals of the WSN. Section 12.3 introduces the
common components and resources in our WSN, and how they relate to the concepts
described in previous chapters. Section 12.4 focuses on defining the domain-specific
components of allocation quality in a WSN. We establish some metrics to measure
performance of our algorithms in Section 12.6, which we use in our evaluation of our
algorithm in the simulated WSN in Section 12.7, alongside discussion of the results.
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12.2 Goals for the WSN system
The goals of the WSN system, as covered in detail in Chapter 7, Section 7.6, are;

1. energy consumption, to minimise the energy consumption of the network;

2. quality of measurement, to obtain the highest quality of sensor measurements;

3. sensor coverage, to obtain the best measurement coverage;

4. network resilience, to maintain system performance when there are component
failures or environmental effects that reduce agents’ abilities to execute tasks;

5. system lifetime, to prolong the time in which the system operates within accept-
able performance bounds.

We will use these goals to shape the quality of composite tasks, which define the
utility of the system. These goals also guide us in specifying metrics used to study
the performance of the HTAO algorithm.

12.3 Components, resources, and actions in a WSN
Agents and nodes A WSN consists of a set of interconnected hardware nodes. Each node is equipped

with the following components[330];

1. a microcontroller for computation;

2. memory storage for holding the results of measurements and knowledge about
the system;

3. battery storage, providing power for operational functions, sensor measure-
ments, and communication;

4. sensors for measuring properties of the environment such as temperature or
radiation levels;

5. a solar panel for recharging the battery;

6. a wireless transceiver for transmitting and receivingmessages from other nodes.

Each node has an agent 𝑔, a software controller that instructs its actions. For sim-
plicity, we will use the term ’agent’ to refer to both the software controller and the
hardware node it controls.

Example 12.3.1 (Example of an ocean-based WSN). An ocean-monitoring WSN
system has 100 agents, each with a sensor to measure salinity, deployed into
an ocean bay 1 𝑘𝑚2 in area. Each agent is attached to a buoy to maintain its
position. The agents each have availability of multiple resource types; energy
𝑟𝑝𝑝𝑜𝑤 , compute 𝑟𝑝𝑐𝑝𝑢 , and memory 𝑟𝑝𝑚𝑒𝑚 . To meet its performance goals, the
system needs to;

• form and maintain an ad-hoc communication network, adaptable to
changes in the environment.

• return the most accurate results, from the desired locations, every hour
to the base station;
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• minimise the energy used by agents so that their batteries can charge
enough between repeated requests, in order to maintain coverage;

• distribute the tasks so that there is broad sensor coverage for the mea-
surement tasks;

• distribute the energy usage so that the wear and subsequent failure of
agents is reduced, meaning the system’s lifetime exceeds the operational
design of 6 months.

Every hour, an agent acting as a sink receives a composite task from an on-shore
base station to measure the salinity in 10 specific locations, or demand points.
The sink has knowledge of another 20 agents in the system that can help it
with its task, however, it has only established communication links with 5 of
these agents, which is its neighbourhood. The sink decomposes the composite
task into atomic tasks {𝑎𝑡𝑖}10

𝑖=1, then allocates these tasks to other agents in its
neighbourhood.

Executor agents use their sensors to take the measurements, and return the
results to the agent that allocated them the task, until it reaches the sink. The
sink agent then aggregates the data and broadcasts it back to the base station.

ResourcesTo complete tasks WSN agents will need to allocate resources, of one of those shown
below (alongside their main use cases);

• compute resources, used in general calculations, activating sensors and process-
ing readings. Each agent has the same fixed amount of compute resource, which
it must share amongst its current tasks;

• memory resources, needed to store knowledge about other agents, network
routes, and the results of tasks. Each agent has the same fixed amount of this
resource. This restricts the amount of knowledge of the system that an agent
can have at any one time;

• energy resources, required to transmit and receive task requests, results, and
knowledge between agents, as well as in the utilisation of sensors for taking
measurements. Each agent has the same, fixed battery capacity at system ini-
tialisation. Each action uses some of this energy, which is gradually replenished
by a solar panel.

We categorise resource usage by the following criteria1;

1. operational cost, resource usage resulting from an agent’s general operations
that are not part of a task execution (e.g. using energy moving between idle
and sleep modes[331], or the computational and memory storage costs of back-
ground functions);

2. dominant cost, resource usage that is significantly larger than others in com-
parison (e.g. when completing tasks, the energy used to transmit and receive
results is much larger than the energy used to construct the message);

3. optimisable cost, resource usage that can be actively optimised by the agent,

1For many systems the simplifications discussed are reasonable, but not for all. For example, some
sensors may have significant energy requirements beyond their activation costs. This increases the
complexity of the modelling but can be incorporated into the same framework we present.
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and so can be used by the agent to learn new strategies (e.g. agents could com-
municate with other agents to which there is a shorter transmission range, or
reduce the sampling time of a sensor to use less energy).

We focus onmodelling dominant and optimisable costs in ourWSN simulation, ignor-
ing the complexities that would be introduced through operational costs. There exists
other work that covers this area such as on the topics of battery duty-cycling[332],
transmission algorithms[333], [334], and solar-energy harvesting optimisation[335],
[336].

Modelling actions
in a WSN

With the justification on resource costs described above, we give examples of the types
of actions agents might take in aWSN, and the resultant resource usage, in Table 12.1.

Action
Example Resource usage

𝐴𝑆𝑆𝐼𝐺𝑁 a ground station broadcasts a request
to buoys holding sensors in an ocean
monitoring WSN[337].

computational and memory
resources are used by the
agent receiving the request
to store the composite task
and aggregated results.

𝐸𝑋𝐸𝐶 an agent takes a temperature sensor
measurement in its location.

the agent can adapt the
amount of computational
resource allocated to this
type of task, increasing
their quality the more that
it allocates.

𝐴𝐿𝐿𝑂𝐶 the agent allocates ameasurement task
to another agent. Allocating to nearer
agents can reduce energy use but may
increase the distance from the sensor to
the desired target location for the mea-
surement.

this uses energy resources
to transmit tasks and re-
ceive results, increasing
with the distance between
the two agents.

𝐼𝑁 𝐹𝑂 the agent asks for routes to other
agents from another agent. New routes
could give higher quality sensor read-
ings, or access to geographical areas
that were previously unreachable.

this uses energy to transmit
and receive messages.

𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂 an agent returns knowledge of other
agents in the system.

uses memory storage for
the knowledge received.

𝑅𝐸𝑀𝑂𝑉𝐸_𝐼𝑁 𝐹𝑂 an agent deletes knowledge about net-
work routes to reach agents that it con-
siders less useful to improving its per-
formance.

frees up memory storage
that can be used for new
knowledge.

𝐿𝐼𝑁𝐾 an agent carrying out a link action
will instantiate a connection to another
agent it knows of, allowing it to send
and receive messages to that agent.

computational resource and
memory storage are allo-
cated to maintain the con-
nection.

continues on the next page...
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...continued from previous page

𝑅𝐸𝑀𝑂𝑉𝐸_𝐿𝐼𝑁𝐾 an agent disables keep-alive signalling
to another agent agent, an removes it
from route calculation and task alloca-
tion selection[338]

CPU resource usage is re-
duced as less routes are
searched and allocation cal-
culations required for each
atomic task allocated.

Table 12.1: Modelling actions in a WSN. Examples of actions that agents in a WSN
could take, and the corresponding effects of resource management

12.4 The allocation quality of sensor measurement
tasks
We now derive the domain-specific allocation quality, driven by the desired goals de-
scribed for the WSN system in Section 12.2.

GeographyThe WSN is deployed over a finite geographical area, with agents arbitrarily located
within this bounded area (as occurs in an aerial deployment[339]), where they form
an ad-hoc communication network[277]. This area is overlaid by a 2-dimensional
Cartesian coordinate system, R ×R that covers all agents and possible measurement
locations in the system.

DeploymentAn agent’s deployment is its mapping to a specific (𝑥,𝑦) location in this coordinate
system; 𝑑𝑒𝑝𝑙𝑜𝑦 : G → R × R. To simplify calculations, the coordinate system is as-
sumed unit-normalised (i.e. R [0, 1] ×R [0, 1]), so the maximum distance between any
two locations is

√
2.

Demand pointsWe assume that each atomic task to take a sensor measurement within a geograph-
ically based WSN, such as the one in this case study, specifies a demand point[340],
[341], a specific location targeted for that measurement: 𝑑𝑒𝑚𝑎𝑛𝑑 : AT → 2R×R .

In the context of our WSN case study, the further away an agent is from an atomic
task’s demand point, the less value completing an atomic task has to the system. E.g.
an agent taking a measurement of ocean temperature when 100 metres away from
the demand point of the corresponding task may result in a very different reading
than the actual value at the targeted point.

Execution rangeTo capture this, we add a dependency to the allocation quality of atomic tasks2, the
execution range of an atomic task, which measures the distance between an executor
agent𝑔 and the demand point of the atomic task 𝑎𝑡 that it is completing, 𝑟𝑎𝑛𝑔𝑒 : AT×
G → R, where:

𝑟𝑎𝑛𝑔𝑒 (𝑎𝑡, 𝑔) = 1 − |𝑑𝑒𝑚𝑎𝑛𝑑 (𝑎𝑡) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔) |√
2

(12.1)

As we specify a unit-normalised coordinate system, the maximum distance between
any agent this point is

√
2, a value of 1 would mean that the agent is at the demand

point of 𝑎𝑡 , decreasing towards 0 as the separation increases 3.

2See Chapter 10, Section 10.2.
3We assume a linear drop-off in quality, but this is not a requirement and more complex modelling

could be used.
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Example 12.4.1 (Demand points and allocation quality). Two identical agents
𝑔1 and 𝑔2 are allocated an atomic task 𝑎𝑡 to take a salinity measurement in an
ocean-monitoring system, where 𝑔1 is much closer to the demand point of 𝑎𝑡
than 𝑔2 (i.e. |𝑑𝑒𝑚𝑎𝑛𝑑 (𝑎𝑡) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔1) | ≪ |𝑑𝑒𝑚𝑎𝑛𝑑 (𝑎𝑡) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔2) |). Since
𝑟𝑎𝑛𝑔𝑒 (𝑎𝑡1, 𝑔) is then closer to 1 than 𝑟𝑎𝑛𝑔𝑒 (𝑎𝑡2, 𝑔), all other considerations being
equal, the allocation of 𝑎𝑡 to 𝑔1 would give the higher allocation quality than to
𝑔2.

12.5 Energy availability, distribution, and costs in a
task path
In order to define the domain-specific allocation quality components in a way that
will meet the WSN goals of Section 12.2 we use three factors;

1. average resource availability , by increasing this value, the system will be be less
likely to become optimised towards using focusing resource usage on a small
subset of agents in the system (See Figure 12.1);

2. resource usage distribution, increasing this value spreads resource usage more
equally amongst agents, improving resilience, and system lifetime by reducing
wear (See Figure 12.2);

3. task path cost , by decreasing the cost of the path used to complete an atomic
task, less resources will be used in each task completion.

Average resource
availability

We define the average resource availability of a resource type 𝑟𝑝 amongst a group of
agents 𝐺 , 𝑟𝑒𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 : 2G × RP × RAV → R:

𝑟𝑒𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐺, 𝑟𝑝, 𝑅𝐴𝑉 ) = 1
|𝐺 |

∑︁
∀𝑔∈𝑝𝑎𝑡ℎ (𝑎𝑡 )

𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑔, 𝑡𝑦𝑝𝑒𝑟 (𝑟𝑒𝑠), 𝑅𝐴𝑉 ) (12.2)

Resource
distribution

The distribution of a resource of type 𝑟𝑝 across a group of agents𝐺 can be measured
using the variance of the set of the individual resource availabilities of the agents4.
Given a maximum possible availability of a resource type of value 𝑚𝑎𝑥𝑟𝑒𝑠𝑟𝑝 (e.g.
the capacity of a battery), we can reshape this as the distance between the variance
and the maximum bound

𝑚𝑎𝑥𝑟𝑒𝑠𝑟𝑝

4 , so distribution can be optimised by maximisation
of the function. This gives us the resource distribution across a group of agents 𝐺 ,
𝑟𝑒𝑠𝑑𝑖𝑠𝑡 : 2G × RP × RAV → R:

𝑟𝑒𝑠𝑑𝑖𝑠𝑡 (𝐺, 𝑟𝑝, 𝑅𝐴𝑉 ) =
𝑚𝑎𝑥𝑟𝑒𝑠2

𝑟𝑝

4
− 𝜎2

({
𝑟𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑔, 𝑟𝑝, 𝑅𝐴𝑉 )

}
∀𝑔∈𝐺

)
(12.3)

4Where we use the standard definition of variability of a discrete set 𝑋 , 𝜎2 (𝑋 ) =
∑(𝑥𝑖−𝑥 )2
|𝑋 | .
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Path a2

Path b1

Path b2










0.75 Ah 0.50 Ah 0.25 Ah

Battery levels

Path a1

Figure 12.1: Domain-specific allocation quality - energy availability. Agents
𝑔1 and 𝑔2 are allocating 2 atomic tasks 𝑎𝑡1 and 𝑎𝑡2. As the 𝑟𝑒𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 of the paths b1/b2
is higher than those of the paths a1/a2, the energy usage in the system overall is better
distributed if path options like b1/b2 are preferentially chosen over those like a1/a2.

Path c1 Path c2

 


Figure 12.2: Domain-specific allocation quality - energy distribution. The
paths c1 and c2 have the same 𝑟𝑒𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 , however, 𝑟𝑒𝑠𝑑𝑖𝑠𝑡 is higher for path c2, meaning
the energy distribution is more balanced. Choosing more paths like c2 can reduce the
wear on individual agents, and so their failure rate, therefore improving the lifetime of
the WSN.
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Example 12.5.1 (Resource distribution in a WSN). Agents 𝐺 = {𝑔1, 𝑔2, 𝑔3} in a
system each have a battery with amaximum capacity of 1𝐴ℎ. Agent𝑔1 currently
has 10% of its energy available to use, 𝑔2 has 90%, and 𝑔3 has 40%, so:

𝑟𝑒𝑠𝑑𝑖𝑠𝑡 (𝐺, 𝑟𝑝, 𝑅𝐴𝑉 ) = 1
4
− 𝜎2

({
0.10, 0.90, 0.40

})
≊ 0.14

Task path cost in a
WSN

To calculate the cost of task paths in a WSN we look at the dominant costs involved
as a simple first approximation of the overall costs[342];

• communication cost , the energy cost to an agent of making an outgoing com-
munication with another agent. We assume this is invariant both across atomic
task types (i.e. the energy to transmit an atomic task message to another agent
is not dependent on the type of task), as well as the energy used by agents to
send a message. We further assume that there is a linear relationship between
the distance separating agents and the energy cost, so that in transmitting a
message from 𝑔1 to 𝑔2, there is a fixed amount of energy resource 𝑟𝑒𝑠𝑡𝑥 such
that the communication cost is 𝑟𝑒𝑠𝑡𝑥 |𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔2) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔1) |;

• execution cost , the energy cost to an agent of executing an atomic task, invariant
for each atomic task type (i.e. the energy used to activate a radiation sensor is
the same for all atomic tasks of the type that require that sensor, and no matter
which of the agents is operating the sensor)5. Wemake the common assumption
that sensor activation is the dominant energy cost when taking measurements,
with multiple sampling being less significant[343]. This means that the overall
energy use of a sensor while executing a task remains approximately constant
for each type of atomic task, and quality of its completion. I.e. ∀𝑎𝑝 ∈ 𝐴𝑃 there
is a fixed amount of energy resource for each atomic task type 𝑎𝑝 given by
𝑟𝑒𝑠𝑒𝑥𝑒 (𝑎𝑝).

There are other possible costs such as the cost to process the results of an atomic task
execution and assemble a message. We assume these other costs are of negligible
impact to the overall cost in comparison to the dominant costs mentioned. Therefore,
the task path cost for the WSN system can be approximated by:

𝑝𝑎𝑡ℎ𝑐𝑜𝑠𝑡 (𝑎𝑡,𝐺, 𝑟𝑝𝑝𝑜𝑤) = 𝑟𝑒𝑠𝑡𝑥 |𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔2) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔1) |︸                                   ︷︷                                   ︸
sink cost

+
𝑛−1∑︁
𝑖=2

2𝑟𝑒𝑠𝑡𝑥 |𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔𝑖+1) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔𝑖) |︸                                      ︷︷                                      ︸
cost per relay agent

+ 𝑟𝑒𝑠𝑡𝑥 |𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔𝑛) − 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔𝑛−1) | + 𝑟𝑒𝑠𝑒𝑥𝑒 (𝑡𝑦𝑝𝑒𝑎 (𝑎𝑡))︸                                                                  ︷︷                                                                  ︸
executor cost

(12.4)

where, 𝑠𝑖𝑛𝑘 (𝑎𝑡) = 𝑔1, 𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡) = ⟨𝑔2 . . . 𝑔𝑛−1⟩, 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡) = 𝑔𝑛 .
5Note, this is a separate and additional resource cost to the resources allocated and utilised by agents

to increase atomic task quality as discussed in Chapter 10.
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Example 12.5.2 (Types of energy cost for agents in a WSN). An agent 𝑔1 allo-
cates atomic tasks 𝑎𝑡1 and 𝑎𝑡2 to an agent 𝑔2. These tasks are of types 𝑎𝑝𝑟𝑎𝑑 to
take a radiation measurement, and 𝑎𝑝𝑜𝑥𝑦 to measure oxygen level, respectively.
The allocation of each task requires the agent 𝑔1 to activate its transceiver and
broadcast a message to 𝑔2. The same amount of energy, or communication cost,
is used no matter the type of the atomic task. To carry out task 𝑎𝑡1 the agent
𝑔2 expends energy to activate its radiation sensor. The oxygen sensor required
for task 𝑎𝑡2 has a much lower energy requirement for activation, therefore the
execution cost of 𝑎𝑡1 is much greater than that of 𝑎𝑡2. When measuring radia-
tion levels for 𝑎𝑡1, 𝑔2 uses a long sample time to increase the accuracy, therefore
increasing that task quality on completion but at the cost of using more of its
energy resource, this is its resource allocation for tasks of this type.

Example 12.5.3 (Task path cost in a WSN). A sink 𝑔1 in an ocean monitoring
WSN has been allocated an atomic task 𝑎𝑡𝑠𝑎𝑙 tomeasure the salinity of the water
at a specific location. It allocates the task to an agent 𝑔2, which reallocates it
to an agent 𝑔3, and then to 𝑔4, which makes the measurement (i.e. 𝑝𝑎𝑡ℎ(𝑎𝑡) =
⟨𝑔1, 𝑔2, 𝑔3, 𝑔4⟩). The energy cost of broadcasting a message between 𝑔1 and 𝑔2
is 40𝑚𝐴, and between 𝑔2 and 𝑔3, 60𝑚𝐴, and 𝑔3 and 𝑔4, 50𝑚𝐴. Activating 𝑔3’s
salinity sensor takes energy, 200𝑚𝐴. Therefore, the overall task path cost for
the energy resource is:

𝑝𝑎𝑡ℎ𝑐𝑜𝑠𝑡 (𝑎𝑡, 𝑝𝑎𝑡ℎ(𝑎𝑡), 𝑟𝑝𝑝𝑜𝑤) = (2 × 40) + (2 × 60) + (2 × 50) + 200
= 400𝑚𝐴

Domain-specific
allocation quality
component (WSN)

We can now expand the domain-specific atomic task and allocation quality compo-
nents as defined in Chapter 10, Section 10.2 to include the execution range, as well as
the average availability, distribution, and task path cost of the energy resource type
𝑟𝑝𝑝𝑜𝑤 :

𝑑𝑜𝑚𝑡𝑎𝑠𝑘 (𝑎𝑡, 𝑔) = 𝑐
𝑞𝑙
𝑟𝑎𝑛𝑔𝑒 (𝑎𝑡, 𝑔)

𝑑𝑜𝑚𝑞𝑙 (𝑎𝑡, 𝑔) = 𝑐𝑝𝑜𝑤 𝑟𝑒𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑝𝑎𝑡ℎ(𝑎𝑡), 𝑟𝑝𝑝𝑜𝑤, 𝑅𝐴𝑉 )︸                                        ︷︷                                        ︸
average energy available in task path

+ 𝑐
𝑑𝑠𝑡

𝑟𝑒𝑠𝑑𝑖𝑠𝑡 (𝑝𝑎𝑡ℎ(𝑎𝑡), 𝑟𝑝𝑝𝑜𝑤, 𝑅𝐴𝑉 )︸                                  ︷︷                                  ︸
energy distribution across task path

+ 𝑐𝑐𝑜𝑠𝑡
1

𝑝𝑎𝑡ℎ𝑐𝑜𝑠𝑡 (𝑎𝑡, 𝑝𝑎𝑡ℎ(𝑎𝑡), 𝑟𝑝𝑝𝑜𝑤)︸                                  ︷︷                                  ︸
energy cost of task path

(12.5)

Where 𝑐
𝑞𝑙
is a constant chosen at system initialisation to scale the value of atomic task

qualities, and 𝑐𝑐𝑜𝑠𝑡 , 𝑐𝑝𝑜𝑤 and 𝑐
𝑑𝑠𝑡

, are constants to weight the influence of path cost,
energy availability, and distribution respectively, depending on the desired properties
of the specific system. e.g. if 𝑐

𝑞𝑙
≫ 𝑐𝑐𝑜𝑠𝑡 , 𝑐𝑝𝑜𝑤, 𝑐𝑑𝑠𝑡 then the system will optimise
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allocation quality for the atomic task quality, to the detriment of energy consumption
and usage distribution, with the resulting effect on resilience and lifetime.

12.6 Metrics for WSN analysis
In order to understand the system’s performance against the goals of Section 12.2 we
develop coverage, resilience, and lifetimemetrics in this section. To measure coverage,
we must first define what it means for a task to be completed successfully in the
context of our WSN.

Atomic task
success

An atomic task is considered successful if the agent that completes it is within a max-
imum range,𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒 (defined on system initialisation), of the task’s demand point,
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 : AT → B:

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑎𝑡) =
{

1, if 𝑟𝑎𝑛𝑔𝑒 (𝑎𝑡, 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡)) < 𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒
0, otherwise

(12.6)

In many scenarios, when the quality of an atomic task completion falls below a certain
threshold the result is no longer be useful or relevant to the system; e.g. when an
agent takes a sensormeasurement of such low quality that it is masked by background
variations in the environment. These scenarios could be simply accounted for through
a different domain-specific definition of the success function above.

Coverage Given a completed set of composite tasks,𝐶𝑇 , then the system coverage, 𝑠𝑦𝑠𝑐𝑜𝑣 : 2CT →
R [0, 1] is the fraction of those atomic tasks composing the composite tasks which
were completed successfully:

𝑠𝑦𝑠𝑐𝑜𝑣 (𝐶𝑇 ) = 1
|𝐶𝑇 |

∑︁
∀𝑐𝑡 ∈𝐶𝑇

∑︁
∀𝑎𝑡 ∈𝑐𝑡

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑎𝑡)
|𝑐𝑡 | (12.7)

Example 12.6.1 (Success and coverage). An ocean-monitoring system has a de-
ployment area of 1 km2. A sink agent receives a composite task 𝑐𝑡 = {𝑎𝑡1, 𝑎𝑡2}
where both the atomic tasks specify taking salinity measurements at different
demand points. An agent 𝑔 is allocated both tasks, and so takes a salinity mea-
surement 1 metre away from a demand point of a task 𝑎𝑡1, and 100 metres from
that of 𝑎𝑡2. The result of 𝑎𝑡1 is likely to be close to the actual value at its de-
mand point location, whereas that of 𝑎𝑡2 is so far away as to uncorrelated, and
not a practically useful measurement to the system. In this case, we might have
𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒 = 10, so that 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑐𝑡, 𝑎𝑡1) = 1 and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑐𝑡, 𝑎𝑡2) = 0. The system
coverage is then 𝑠𝑦𝑠𝑐𝑜𝑣 ({𝑐𝑡}) = 1

2 (1 + 0) = 0.5

Resilience Agents in a system may become either permanently or temporarily unavailable for
the allocation of tasks through events such as component failures, communication
problems, or weather disruption. In these circumstances, being able to allocate atomic
tasks to agents that can successfully complete them6 can become impossible. The
ability to maintain coverage under these circumstances defines a system’s resilience.

6As in the definition given by Equation 12.6.
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Specifically, if a set of composite tasks 𝐶𝑇 is completed by a set of agents 𝐺 , where
only agents in the set,𝐺

′ ⊆ 𝐺 were functional and able to complete atomic tasks, then
the resilience of the system is defined by the function 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 : 2CT ×2G ×2G → R,
where:

𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 (𝐶𝑇,𝐺 ′,𝐺) = 𝑠𝑦𝑠𝑐𝑜𝑣 (𝐶𝑇 )
|𝐺 ′ |/|𝐺 | (12.8)

Therefore, a system whose coverage remains high as the number of available agents
falls has a higher resilience that a system whose coverage drops lower under the same
circumstances.

LifetimeAs the system’s lifespan increases, more agents will become permanently unavailable
for allocation (e.g. agents suffering complete sensor or battery failures), and there will
be a progressive overall deterioration in coverage. A minimum coverage value𝑚𝑖𝑛𝑐𝑜𝑣
for some set of composite tasks 𝐶𝑇 can be chosen below which the system is judged
to be no longer useful. The lifetime of the system can then be defined as the time until
𝑠𝑦𝑠𝑐𝑜𝑣 (𝐶𝑇 ) < 𝑚𝑖𝑛𝑐𝑜𝑣 .

Example 12.6.2 (Resilience and lifetime in an ocean WSN). 100 agents attached
to buoys are deployed into an ocean bay to carry out salinitymeasurement tasks,
so |𝐺 | = 100. Due to rough weather, the sensor equipment on 10 of the agents
is non-functional at the time a composite task 𝑐𝑡 is carried out, so |𝐺 ′ | = 90.
As a result, 2 of the 10 atomic tasks of a composite task being performed in the
system during this period are not successful, due to being executed by agents
that are far away from their demand points. Therefore, the resilience is:

𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 ({𝑐𝑡},𝐺 ′,𝐺) = 8/10
90/100

≊ 0.89 (12.9)

The system stops being useful when less than 50% of the measurements are suc-
cessful, i.e. the salinity is not measured at enough locations for useful analysis,
𝑚𝑖𝑛𝑐𝑜𝑣 = 0.5. After 22 weeks, less than 50% of atomic tasks are being completed
to a successful value, defining the system’s lifetime.

12.7 Evaluation
The simulation framework to evaluate our solution’s performance was based on a re-
alistic deployment scenario as covered by[243] and others[254], [344]. In this scenario
a UAV is used to deploy numerous sensors over an expansive and remote geographical
area, giving an ad-hoc, randomised placement of devices. Solar power cells are used
to maintain enough energy to power the agents over a number of months, given low
enough power consumption.

Baseline algorithmFor comparison, we use a Q-routing-based algorithm[20], [345], [346], utilising com-
posite task quality from Chapter 10, Section 10.2.6 as a reward function, along with
the domain-specific components for allocation quality from Section 12.4. This gives a
connectionless, multi-objective variant of Q-routing7. Although agents use only local
information to make routing decisions, they used full system knowledge and neigh-

7See Appendix E.1.
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bourhood information, limiting this comparison algorithm’s applicability to large sys-
tems due to WSN resource limitations8.

Simulation types We ran 3 simulations to evaluate the performance of our algorithm, with each run
replicated 100 times, and the data aggregated for each simulation type. In the first
simulation, the stable system, the HTAO algorithm had equal weighting for each of
the domain-specific allocation quality components 𝑐𝑐𝑜𝑠𝑡 , 𝑐𝑝𝑜𝑤 , 𝑐𝑑𝑠𝑡 , and 𝑐𝑞𝑙 to examine
system utility and energy optimisation in comparison to the Q-routing baseline algo-
rithm. We then looked at the same configuration in the biased system but where the
energy, quality, and distribution composite task quality components were each given
an 80% dominance over the other components in three separate configurations of the
algorithm (see Table 12.2). By evaluating the algorithm in different configurations we
could see how adaptable it was to differing system goals such as when more quality,
energy-efficiency, or distribution focused. Finally, we looked at the degraded system
which simulated system degradation through gradual, permanent loss of agent avail-
ability. This studied how the deterioration of agent availability effects optimisation
efficiency and the coverage of tasks.

General
environment

In all systems there was 1 sink and 25 other agents distributed randomly. Each was
initially connected to 3 other agents that were randomly chosen with a bias towards
nearby agents9. The sink was given 3 composite tasks to complete sequentially, each
consisting of 10 different atomic tasks for taking sensor measurements. The demand
points of the atomic taskswere distributed further away from the sink rather than ran-
domly spread. The completion of the 3 composite tasks marked the end of an episode,
and the process was repeated for 1000 episodes. Each non-sink agent was capable of
completing an atomic task, or allocating it to any of 3 agents it was connected to.
They could complete any measurement task with an allocation quality dependent on
their closeness to the demand point associated with the task (see Section 12.4, Eq.
12.5). The energy stored in the batteries of agents in the system was increased by
25% of their capacity (up to the maximum) at the end of each episode, representing
solar harvesting. An example of this initial system state can be seen in Figure 12.3.
Note, this represents the initial configuration of the system, which is then adapted by
agents as they learn to optimise their neighbourhoods.

The degraded system introduced randomised, permanent loss of agent availability
over time, showing how each algorithm maintains coverage and optimises for qual-
ity and energy while agent availability is lost. The simulation ran for 100 episodes,
where for each episode between 20 and 40 a randomly chosen single agent might fail
with probability 0.25. Once an agent was unavailable, it remained so for all further
episodes. An example of this initial system state is shown in Figure 12.4.

System
configurations and

results

Labels, descriptions, and configurations for each algorithm are shown in Table 12.2,
with system constants in Table 12.3. Table 12.4 shows the average and cumulative sys-
tem utility, and Table 12.5 energy available values, for both algorithms in the stable
and degraded systems. For the degraded system, it also includes the percentage drop
in these values during the period of agent availability loss. The impact of these failures
on the percentage coverage (Section 12.6, Eq. 12.7) for tasks is shown in Table 12.6.

8As discussed in Section 12.3.
9The probability of initial agent selection used the standard gamma distribution 𝑓 (𝑥 ;𝛼, 𝛽) =

𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

Γ (𝛼 ) . Where Γ(𝛼) is the gamma function 𝛼 = 1.8, 𝛽 = 0.5, and 𝑥 is the unit distance between
the two agents.
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(a) stable system

Figure 12.3: Stable system type. The diagram shows an example of a stable system,
there are 25 agents that can execute the measurement tasks. The tasks’ demand points
are clustered away from the sink.






(b) degraded system

Figure 12.4: Degraded system type. The diagram shows an example of a degraded
system. A number of agents are unavailable, reducing the choice of task-paths as com-
pared to the stable system of Figure 12.3.
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The results for the htao (energy), htao (quality), htao (distribution) configurations of
the HTAO algorithm in the biased system are shown in Table 12.7.

The average utility is shown in Figures 12.5 and 12.11 for the stable and degraded
systems with the corresponding cumulative sums in Figures 12.6 and 12.12. For the
degraded system we graph the percentage of agents unavailable for task allocations
in the system in Figure 12.9 and its effect on percentage coverage (Section 12.6, Eq.
12.7) in Figure 12.10. For the biased system we compare the different biases for opti-
misation across the composite task quality components using quality-energy balance,
task distribution, and task-path depth results. The quality-energy data shown in Fig-
ure 12.15 uses the htao (energy) algorithm as a baseline, with the percentage increase
or decrease in the average composite task quality over energy availability. The task-
distribution in Figure 12.16 shows the variation in the agents that are completing
the tasks10, with higher values representing more tasks being completed by distinct
agents, and lower values meaning more agents are completing multiple tasks. Task-
path length data in Figure 12.17 captures howmany agents recursively allocated each
task before it was completed. The p-values showing the statistical significance of the
system utility values are shown in Appendix E Table E.1.

Algorithm Summary Agent
count

Atomic
tasks

(𝑐𝑐𝑜𝑠𝑡 , 𝑐𝑝𝑜𝑤, 𝑐𝑑𝑠𝑡 , 𝑐𝑞𝑙 )

htao (stable) HTAO with balanced objectives. 25 10 (0.25, 0.25, 0.25, 0.25)

q-routing
(stable)

Q-routing with balanced objec-
tives.

25 10 (0.25, 0.25, 0.25, 0.25)

htao
(energy)

HTAO with 80% bias for energy
consumption minimisation

25 10 (0.40, 0.40, 0.10, 0.10)

htao
(distribution)

HTAO with 80% bias for energy
distribution maximisation.

25 10 (0.05, 0.05, 0.80, 0.10)

htao
(quality)

HTAO with 80% bias for task
quality maximisation.

25 10 (0.05, 0.05, 0.10, 0.80)

htao
(degraded)

HTAO with balanced objectives. 25 10 (0.25, 0.25, 0.25, 0.25)

q-routing
(degraded)

Q-routing with balanced objec-
tives.

25 10 (0.25, 0.25, 0.5, 0.0)

Table 12.2: WSN: Summary of algorithm and system configurations. Configu-
rations for the stable, energy, quality, distribution, and degraded systems for the HTAO
and Q-routing algorithms.

10Calculated as the fraction of unique sensing agents completing all the atomic tasks during an
episode. I.e, if a set of atomic tasks 𝐴𝑇 is completed by agents 𝐺

′
, which may contain duplicates of

the same agent completing different tasks, then the fraction of unique agents would be |𝑠𝑒𝑡 (𝐺 ′ ) |/|𝐺 ′ |
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Constant Summary value

𝑚𝑎𝑥𝑟𝑒𝑠𝑝𝑜𝑤 The maximum availability of the energy resource type per-
agent.

1.0

𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒 The maximum range between an atomic task’s demand point
and the location of the agent completing that task for the result
to be considered successful in terms of the coverage of the sys-
tem.

0.25

𝑚𝑖𝑛𝑐𝑜𝑣 The minimum coverage of the system before it is considered to
have reached the end of its useful lifetime.

0.8

Table 12.3: WSN: Summary of constants. Fixed constants for the WSN system.

Algorithm Utility (average) Utility
(impact)

Utility
(cumulative)

start finish

htao (stable) 18.2 21.1 n/a 138

q-routing (stable) 18.0 20.8 n/a 0.0

htao (degraded) 17.9 18.3 −2.1% 40

q-routing (degraded) 17.6 17.8 −6.0% 0.0

Table 12.4: WSN: Average and cumulative system utility. Cumulative values are
from the comparison of the HTAO algorithm against Q-routing. Percentage losses for
both the system utility and energy results are from the end of the agent loss episode
range of the degraded system.

Algorithm Energy (average) Energy
(impact)

Energy
(cumulative)

start finish

htao (stable) 81.5% 84.4% n/a 600%

q-routing (stable) 81.5% 83.8% n/a 0.0

htao (degraded) 77% 77% −15% 230%

q-routing (degraded) 72% 72% −20% 0.0

Table 12.5: WSN: Average and cumulative energy values. Cumulative energy
values are from the comparison of the HTAO algorithm against Q-routing. Percentage
losses for energy are from the end of the agent loss episode range of the degraded system.
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Algorithm Failed agents Coverage

htao (degraded) 35% 78.5%

q-routing (degraded) 35% 73.0%

Table 12.6: WSN: Impact of loss of agents on coverage. Impact on the average
coverage in the degraded system when agents permanently fail over each subsequent
episode.

Algorithm Quality
energy

Task-path
depth

Energy
distribution

htao (energy) n/a 2.50 0.488

htao (quality) 11% 3.38 0.552

htao (distribution) 3% 3.06 0.572

Table 12.7: WSN: Effect of the composite task quality balance. Results of varying
the balance of the quality and energy components of the composite task quality equation
and its impact on system utility optimisation and energy distribution.
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Figure 12.5: Average system utility per-episode in the stable system.

180



100 200 300 400 500 600 700 800 900 1000

episode

50

0

50

100

150
sy

st
em

 u
ti
lit

y

htao
q-routing

Figure 12.6: Cumulative system utility in the stable system.
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Figure 12.7: Percentage energy available per-episode in the stable system.
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Figure 12.8: Cumulative percentage energy available in the stable system.
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Figure 12.9: Percentage of unavailable agents per-episode in the degraded system.
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Figure 12.10: System coverage in the degraded system.
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Figure 12.11: System utility per-episode in the degraded system.
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Figure 12.12: Cumulative system utility in the degraded system.
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Figure 12.13: Percentage energy available per-episode in the degraded system.
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Figure 12.14: Cumulative percentage energy available in the degraded system.
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Figure 12.15: Task quality to energy available ratio with htao (energy) as the baseline
in the biased system
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Figure 12.16: The variance of unique sensor agents completing atomic tasks in the
biased system.
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Figure 12.17: Comparison of task-path depths in the biased system.
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Optimisation of
utility, energy
availability, and
the impact of agent
loss on coverage

In the stable system, the HTAO algorithm optimised the system utility by 15.9% over
1000 episodes, compared to 15.4% for the q-routing algorithm (Figures 12.5 and 12.7).
Energy availability also increased by 3.6% for htao algorithm and 2.8% for q-routing.
Over the lifetime of the system the htao algorithm accumulated 138 more in utility
than the q-routing comparison algorithm and 600% more energy availability (Figures
12.6 and 12.8).

From Figure 12.9 we can see that, in the degraded system, as we gradually simu-
late the loss of agents from episode 20 to 40, 35% of them become unavailable. The
coverage of tasks using the htao algorithm falls by −21.5% during this period, a 5.5%
improvement on the −27.0% drop of the q-routing algorithm. The ability of the sys-
tem when utilising the htao algorithm to absorb agent availability loss better than
the q-routing algorithm is also seen in both the impact on system utility, −2.1% as
compared to −6.0%, and for the energy available, −2.1% compared to −6.0%.

Algorithm
adaptability

We now look at the biased system in detail to examine how the algorithm varies
the balance of optimisation over the composite task quality components, allowing
multiple-objectives to be targeted. Figure 12.15 shows the task quality to energy avail-
ability ratio. As quality is optimised preferentially over energy availability, its values
range higher. The htao (quality) algorithm configuration, with its higher 𝑐

𝑞𝑙
value, op-

timises for atomic allocation quality and so these are increased by 13% over the htao
(energy), and the htao (distribution) algorithm configurations by 3%.

In Figure 12.16 we see how completed atomic tasks are distributed in the system.
This is measured by the variance in the individual agents that complete atomic tasks,
where lower values indicate some agents are completing multiple tasks. In the htao
(distribution) algorithm configuration, values remain relatively steady throughout the
system lifetime at 0.579 to 0.572, dropping only −0.9%. The htao (quality) algorithm
configuration starts slightly lower than this at 0.560 and falls 1.4% to 0.552. Notably
the htao (energy) algorithm configuration starts and remains at a significantly lower
distribution than both the other configurations at 0.488, dropping 3.4%. Figure 12.17
shows the related effect on task-path depths for each algorithm. htao (quality) and
htao (distribution) have relatively stable task-path depths at 3.38 and 3.06 respectively.
The average task-path depth of htao (energy) however drops from 3.02 to 2.50 over
the system’s lifetime, a 17.2% decrease.
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(a) Energy-optimised system (b) Quality-optimised system

(c) Distribution-optimised system

Figure 12.18: Three sample task-path patterns in the biased system. In the
htao (energy)-optimised configuration (a), the agents taking measurements are near the
sink. Energy use is minimised but the atomic task-values are low. In the htao (quality)-
optimised configuration (b) the agents taking measurements are close to the correspond-
ing tasks’ demand points, maximising their task-values. However, there is an increase in
energy usage as they are more distant from the sink, with increased task-path depth. In
the htao (distribution)-optimised configuration (c), the agents taking measurements are
a mix of distances away from demand points, with the agents participating in the task-
paths changing with different measurements.
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System behavioursWe use the illustrations in Figure 12.18 to give some intuition to our results. The re-
sults seen for htao (energy) relate most closely to the configuration in Figure 12.18(𝑎),
where energy consumption is reduced by using shorter task-paths and so, the amount
of energy used by agents in the system to broadcast atomic task re-allocations is also
decreased. The cost of this strategy is that the atomic tasks are completed to a lower
quality. In Figure 12.18(𝑐), task-path depths are large so that atomic tasks can be
completed by agents close to the tasks’ respective demand points, increasing atomic
task quality as well as consumption, as seen in the results for htao (quality). The sys-
tem in Figure 12.18(𝑏) explains the results seen with the htao (distribution) algorithm
configuration, where atomic tasks are completed by an increased number of different
agents with different task-path depths and task qualities, giving a greater distribution
of task completions and energy usage, but withmore energy consumption overall than
htao (energy), and less task-quality than htao (quality).

Summary of
performance

Overall, the HTAO algorithm increased the utility of the realistic systems considered,
reducing energy consumption while improving the quality of completed tasks. As
compared to a multi-objective Q-routing algorithm, there was a 15.9% system utility
improvement in the stable 25 node system over 1000 episodes, with energy availability
increased by 3.6%. Evaluation of changing algorithm parameters to balance between
energy availability, distribution, and task quality showed that these individual com-
ponents could be prioritised in different ratios depending on the requirements of the
optimisation required in the system. As seen in both the stable and degraded sys-
tem configurations, utility and energy availability are both increased by the algorithm,
and performance is improved as compared to the q-routing algorithm. Through the
results of the degraded simulation we see that this performance extends to realis-
tic system instability, adapting task routing to maintain coverage as agents are lost.
Additionally, the results of the HTAO energy, quality, and distribution-optimised al-
gorithm configurations in the biased system show that we can adapt the balance of
the composite task value components through varying values of 𝑐𝑝𝑜𝑤 , 𝑐𝑑𝑠𝑡 , and 𝑐𝑞𝑙 , to
achieve an adaptive multi-objective optimisation of the system. These results show
that the algorithm optimises for the system goals forWSNs as laid out in Section 12.2,
and is an improvement on the Q-routing approach used as a baseline.

Comparison to
other algorithms

With a composite task value balance optimised solely to minimise energy consump-
tion (i.e. 𝑐𝑝𝑜𝑤 = 1, 𝑐

𝑑𝑠𝑡
= 0, 𝑐

𝑞𝑙
= 0), the HTAO algorithm behaves similarly to energy-

aware algorithms applied to WSN. In this configuration comparisons can be made
with algorithms such as PEGASIS[347], or more closely to Q-routing algorithms like
Q-probabilistic routing[348]. However, the task allocation and resource optimisation
component of the HTAO algorithm is not accounted for in these implementations so
provides only a comparison for the energy and route adaptation properties.
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12.8 Summary
In this chapter the HTAO algorithm was evaluated on a model WSN system based on
a realistic situation where agents would be randomly distributed across a geographi-
cal area, where maintenance and management would be challenging due to harsh or
dangerous conditions. Our evaluation showed that the HTAO algorithm optimised
for the composite task quality, energy available, and its distribution in the system,
and that these components could be varied in their priorities through altering the
domain-specific components of the allocation quality. This allowed the algorithm to
balance across these different properties in the given systems and optimise for these
multiple objectives in different ratios.
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Applicability and analysis





Chapter 13
Conclusions and future work

In this final chapter we summarise our work and how this relates to our goals for
this research. We also look at possible areas for future investigation.

13.1 Introduction
There are many systems that require the allocation of tasks amongst multiple agents
in order for the system to meet its goals. These agents have dedicated access to their
individual resources, which can be limited due to several factors; they possess fixed
amounts of a resource that runs out, the bandwidth usage of the resource is con-
strained, or the resource is replenished at a fixed rate. Additionally, agents must form
ad-hoc and adaptable communication networks amongst themselves to orchestrate
and coordinate task completions.

When strategies for organising agents are planned centrally, the scale and complexity
of the applicable systems is limited. However, with more decentralised approaches,
the autonomy of agents means that the alignment of each agent’s goals to that of the
system is challenging. As agents use their own localised knowledge of the system for
planning, they have a partial-view of the system, and therefore limited information on
which they can base their choice of actions. As we move into real-world systems, we
see an increased dynamism in the environment. With component and communication
failures, as well as the loss and introduction of new agents to the system, agents
cannot be relied on to be available to take part in tasks.

As we developed solutions that can be applied to systems with environmental dy-
namism and agent change, we chose wireless sensor networks (WSN) as our case
study. These are large, distributed, agent-based systems found in a wide range of in-
dustries from vehicle-to-vehicle communications to large-scale environmental moni-
toring. Agents in these systems need to manage energy usage, maintain availability,
distribute tasks effectively, and handle node communication failures. Decentralised
algorithms are commonly used to meet these challenges, with hierarchical cluster for-
mation or reinforcement learning techniques. There are challenges however in getting
these algorithms to perform well where there are multiple objectives, agents are mo-
bile, or connectivity varies over the lifetime of the system. These factors make them
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particularly useful to evaluate our work and its ability to meet our objectives for the
research.

These are themotivations that led us to develop our original resource goals, objectives,
and contributions (see Chapter 1, Sections 1.2, 1.4 and 1.5 respectively). In the next
section, Section 13.2, we discuss the outcomes of our research as they relate to our
contributions. We look at some possible applications of our work in Section 13.3,
followed by future work on task and resource allocation, as well as improving our
overall solution in Section 13.4.

13.2 Research and contributions
Contribution 1.
Algorithms for
task allocation

In Chapter 9 we developed the ATA-RIA algorithm as our first contribution (see Chap-
ter 1, Contribution 1). This algorithm allowed each agent to improve their strategy for
allocating tasks to other agents through the use of reinforcement learning. This al-
gorithm used a number of sub-algorithms to achieve its performance, the RT-ARP, N-
Prune, and SAS-KR algorithms. The RT-ARP algorithm used historical rewards trends
as a form of intrinsic motivation to adapt the behaviour of agents, exploring the sys-
tem for better agents to allocate tasks to when it was performing poorly, and focusing
on task completion when it was performing well. In addition, the N-Prune and SAS-
KR algorithms were used to manage the knowledge and neighbourhood of agents
in order to ensure better quality retention of information while meeting the agent’s
constraints (e.g. such as CPU or memory limits).

Based on our evaluation in Chapter 9, Section 9.7, our solution performed to within
6.7% of the theoretical optimal with the system configurations considered. It provided
5× better performance recovery over no-knowledge retention approaches when sys-
tem connectivity was disrupted. Overall the results demonstrated that the ATA-RIA
algorithm met the desired objective of solving the task allocation problem in MAS.

Contribution 2.
Algorithms for

resource allocation

We introduced the MG-RAO algorithm in Chapter 10 as our second contribution (see
Chapter 1, Contribution 2). This algorithm utilised reinforcement learning applied
to estimates of the resource allocation demands of the task allocations coming from
groups of agents. Each agent’s estimates for multiple groups was then combined by
using both the number of times different types of tasks had been allocated to it from
each group, and the entropy of its resource allocation estimates.

The evaluation in Chapter 10, Section 10.5 was carried out in a simulated environment
where multiple agents were allocated atomic tasks by other agents in the system. The
MG-RAO algorithm showed a 23− 28% improvement over fixed resource allocation in
the simulated environments. Results also showed that, in a volatile system, using the
MG-RAO algorithm configured so that child agents model resource allocation for all
agents as a whole had 46.5% of the performance of multiple group modelling. These
results demonstrated the ability of the algorithm to solve resource allocation problems
in multi-agent systems and to perform well in dynamic environments.
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Contribution 3.
Algorithms for
hierarchical
multi-objective
task allocation

Tomeet our final contribution (see Chapter 1, Contribution 3), we combined our previ-
ous work from Chapters 9 and 10 to develop the HTAO algorithm of Chapter 11. This
used the ATA-RIA algorithm for improving the allocation of tasks, and the MG-RAO
algorithm for the allocation of an agent’s limited resources to enhance the perfor-
mance of atomic tasks with respect to groups of tasks with interdependent outcomes
(see composite tasks, Section 8.2). Additionally, the HTAO algorithm added the ability
for atomic tasks to be reallocated, so agents could form chains of task-relaying agents
when finding the best way to complete an atomic task. Using this method, agents al-
locating tasks could extend their exploration of allocation policies across the system.
This also allowed the development of more complex composite task quality functions
that took into account system goals such as resource availability and resource usage
distribution across the system, which we then went on to use for managing energy
use in our WSN system in Chapter 12.

Application to a
WSN system

Our case study was based on a realistic ocean-based WSN system, where not only
was the quality of task completions an objective of the system, but where energy
utilisation and distribution were also important. This tested our algorithms’ ability
to optimise toward multiple objectives. Overall, the HTAO algorithm increased the
utility of the simulated systems considered, reducing energy consumption while im-
proving the quality of completed tasks. As compared to a multi-objective Q-routing
algorithm, there was a ∼ 15.9% system utility improvement in the stable 25 node
system over 1000 episodes, with energy availability increased by ∼ 3.6%. Evaluation
of changing algorithm parameters to balance between energy availability, distribu-
tion, and task quality showed that these individual components could be prioritised
in different ratios depending on the requirements of the optimisation required in the
system.

13.3 Applications
Application to
real-world
problems

The HTAO algorithm is applicable to a general class of problems where there are dy-
namic, self-organising networks, and where multiple agents need to learn to associate
other agents with subtasks necessary for completion of a composite task. This work
may be especially applicable to systems where there are changeable conditions that
cause instabilities and where only limited maintenance or human intervention is pos-
sible. Future work would look at applying the HTAO algorithm to a larger scale, real-
world system, testing how the algorithm performs in more complex environments.

There are examples of these in wireless sensor networks (WSN)[349], [350] where
adaptive networking and optimisation are essential to keep usage and maintenance
costs minimal. Similarly, there are uses in systemswhere agents aremobile such as ve-
hicular ad-hoc networks (VANET)[114] and vehicle-to-vehicle communications (V2X)
systems[4], [351]. Cloud computing service composition[352], [353] systems also pro-
vide real-world task allocation applications. As the HTAO algorithm is designed to
work in dynamic environments, where optimisation targets are non-stationary, we
expect that it will also be useful in these types of system.

We expect that testing practical deployment this work in the case of oceanographic
or other environmental monitoring would be a productive next step[11]. The com-
bination of harsh environmental conditions, difficulty of providing maintenance for
remote agents, and mobility at slow speeds, should provide ideal conditions for suc-
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cessful use of HTAO.

13.4 Future work
Learning action

impacts
In Chapter 9, Section 9.4.3 we developed our understanding of how to measure the
likelihood that taking a LINK action that changes an agent’s neighbourhood com-
position, or an INFO action that changes its knowledge, will impact the choices of
actions available to the agent in the future. This was based on the changes such ac-
tions made to neighbourhood and knowledge, and the probability that these changes
would influence the performance of the agent when allocating tasks. However, in re-
stricting the scope of this work we used estimated values for this impact for each type
of action.

In future work we would expect to expand our research in this area to enable the
agent to learn the impact of taking neighbourhood or knowledge-changing actions
dynamically. Where an agent’s actual experience of how its view of the system was
altered, and how its performance changed on taking different types of actions would
enable it to make more accurate predictions of the impact of doing so in the future.
This should not only allow for an improved performance on the systems as evaluated
in Chapter 9, but also enable the algorithm to be applied to systems with a greater
number of differing task types, and where pre-calculating good values for their impact
would be difficult.

Expansion of
knowledge

In Chapter 8, Section 8.2 we limited knowledge to the simple existence of other agents
in the system. This meant that an agent that requested information from another
agent in its neighbourhood gained a very limited amount of knowledge on doing so,
the ability to link to new agents that were previously unknown to it. However, there is
likely to be performance benefits achievable by expanding this knowledge to include
other useful factors such as;

• performance characteristics, when an agent allocates tasks, it constructs a model
through reinforcement learning of the ability of agents it allocates to to com-
plete those tasks. However, this information is currently isolated to that agent,
and eventually lost if it moves an agent out of its knowledge base. If we expand
knowledge to include information on the learned performance of other agents,
then this can be shared on request. If an agent that is allocating tasks then re-
quests information, it then not only gains knowledge on the existence of other
agents, but their relative abilities in performing specific task types, meaning
the agent could improve its neighbourhood more quickly, compared to simply
randomly searching the system for the best agents to allocate to;

• resource availability, we saw in Chapter 12 how agents could learn to min-
imise and balance energy use in a WSN system. This was done through adding
domain-specific factors relating to that resource into the allocation quality of
a set of atomic tasks, so as agents learned to allocate tasks, those factors were
part of its understanding of the quality of the allocation of its tasks. Adding
resource availability of neighbourhood agents to the knowledge shared on re-
quest would allow these agents to accelerate this learning and discover parts of
the system with lower resource usage more quickly;

• agent reliability, component failure or degradation can make agents unreliable
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in completing tasks they have been allocated. This unpredictability makes
learning models for both task allocation, and resource allocation, more difficult
for agents interacting with such an agent. Information an agent has accumu-
lated on other agents about their reliability in completing its tasks for it, could
be added to our definition of knowledge, and shared between agents when re-
quested. This would enable agents to learn better models for both task and
resource allocation, and more quickly.

Dynamic parent
group assignment

In our work on parent groups of Chapter 10, Section 10.3.1, a child agent’s parent
groups were arbitrarily assigned. This rigid choice affects the ability of an agent to
model each group’s resource allocation needs well. There are a number of ways this
approach to grouping could be improved, and made more adaptive to changes to the
environment. For instance;

• allocation stability grouping, with parent-agent groups as currently specified, a
parent agent with an unpredictable task allocation distribution would be as-
signed a parent-agent group randomly, which may contain agents with stable
distributions. E.g. a parent-agent could be a faulty node in a network, making its
task allocations unpredictable compared to fully working nodes. As these dis-
tributions are combined for modelling, the more random distribution reduces
a child agent’s ability to learn a useful model for that parent-agent group. To
overcome this, parent agents can be grouped by a child agent by the variability
in their atomic task allocations. By grouping together parent agents who reli-
ably allocate them the same atomic tasks, the child agent can create a better
model of the expected resource demands of that group compared to combining
reliable and unreliable allocations in the same group;

• predictive grouping, a child agent can learn a model which predicts which par-
ent agents should be grouped together to achieve the best allocation of its re-
sources. Agents may have allocations of tasks that change in a predictable pat-
tern, meaning a child agent can adapt its parent groups based on its prediction
of these patterns. E.g. environmental monitoring agents that take more light
sensor measurements during the day, or agents in a V2X system may allocate
more tasks when they are non-stationary during predictable periods during the
day;

• similarity grouping, there will be less change to the child agent’s resource alloca-
tion model for a group of parent agents who have similar resource allocation re-
quirements, than groups containing agents with very different demands. When
parent agents’ resource demands are very different, a child agent will alter its
resource allocation model of that group significantly between one task allo-
cation from a specific parent agent, and the next, due to the allocations from
other parent agents in the intervening period. This problem could be signifi-
cantly lessened by adapting parent agent groups composition as this similarity
is learned.

Work to extend the arbitrary, fixed parent groups used in our work towards an adap-
tive algorithm that utilised some or all of the concepts above could be expected to
achieve better performance in the resource allocation problem.
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Appendix A
Mathematical notation

A.1 System and state

Symbol Description

𝐴𝑇 a set of atomic tasks, typed by one of a set of atomic task types 𝐴𝑃

𝐶𝑇 a set of composite tasks, typed by one of a set of composite task types 𝐶𝑃

𝐴 the set of actions that agents in the system can perform.

𝐺 a set of agents, with each agent defined by a tuple ⟨𝑖𝑑, 𝑐, 𝑟, 𝛿𝑘 , 𝛿𝑛⟩

𝑖𝑑 a unique identifier for an agent

𝑐 ∈ 𝐴𝑃 an agent’s capabilities

𝑟 ∈ 𝐶𝑃 an agent’s responsibilities

𝛿𝑛 ∈ N an agent’s neighbourhood constraint, its communication constraint

𝛿𝑘 ∈ N an agent’s knowledge, its memory constraint.

𝑅𝐸𝑆 a set of resources needed to perform tasks.

Table A.1: Summary of system notation.

Symbol Description

𝐾 ⊆ 𝐺 the knowledge of an agent.

𝑁 ⊂ 𝐾 the neighbourhood of the agent.

𝐺𝑆 the set of states of all agents in the system.

𝐶𝐿 the set of composite allocations in the system.

𝐴𝐿 the set of atomic allocations in the system.

𝐴𝐶𝑇 the set of action allocations in the system.

continues on the next page...
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...continued from previous page

𝑅𝐴𝐿 the set of resource availabilities in the system.

𝑅𝐴𝐿 the set of resource allocations in the system.

𝜙 ∈ N0 the current system counter.

𝐺𝑆 (𝑔) the agent state for an agent 𝑔.

Table A.2: Summary of state notation.

A.2 Actions

Equation Description

𝐴𝑆𝑆𝐼𝐺𝑁 (𝑒, 𝑐𝑡) An assign action taken by an agent 𝑒 , external to the system,
to allocate a composite task 𝑐𝑡 .

𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) An allocation action taken by an agent 𝑔 to allocate an atomic
task 𝑎𝑡 to an agent in its neighbourhood 𝑛.

𝑆𝐼𝑁𝐺𝐿𝐸𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) A single allocation action taken by an parent agent 𝑔 to allo-
cate an atomic task 𝑎𝑡 to an agent in its neighbourhood 𝑛,
which may not then be reallocated by that agent.

𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡) An exec action taken by an agent𝑔 to execute the atomic tasks
𝑎𝑡 .

𝐼𝑁 𝐹𝑂 (𝑔, 𝑛) An info action taken by an agent 𝑔 to request information
from an agent 𝑛 in its neighbourhood.

𝑃𝑅𝑂𝑉 𝐼𝐷𝐸_𝐼𝑁 𝐹𝑂 (𝑔,𝑔) A provide information action taken by an agent 𝑔 to provide
information to another agent 𝑒𝑝𝑔 .

𝑅𝐸𝑀𝑂𝑉𝐸_𝐼𝑁 𝐹𝑂 (𝑔, 𝑘) A remove information action taken by an agent 𝑔 to remove 𝑘
from its knowledge.

𝐿𝐼𝑁𝐾 (𝑔, 𝑘) A link action taken by an agent 𝑔 to add an agent from its
knowledge to its neighbourhood.

Table A.3: Summary of actions.

Equation Description

𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝐿,𝑔) The concurrent atomic allocations of an agent𝑔 are the atomic
tasks currently allocated to that agent.

𝑎𝑡𝑜𝑚𝑖𝑐𝑠 (𝐴𝐿) The atomics are the set of all atomic tasks included in an al-
location.

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠 (𝐶𝐿) The set of all composite tasks included in an allocation.

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑎𝑏𝑙𝑒 (𝐶𝐿,𝑔) The atomic tasks available to allocate of an agent𝑔 as a result
of a composite task allocation 𝐶𝐿.

Table A.4: Summary of allocation selection equations.
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Equation Description

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (𝐴𝑇 ) The atomic task completion function returns 1 if all of the
atomic tasks in the given set 𝐴𝑇 have been executed by
agents, and the results returned to the agent whose compos-
ite task contains the atomic task, and 0 otherwise.

𝑤𝑎𝑖𝑡 (𝑔) The agent wait function sets an agent𝑔 to wait for the system
time counter to move one step, 𝜙 → 𝜙 + 1.

Table A.5: Summary of orchestration equations.

Equation Description

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑎) The action category of an action 𝑎, its action type.

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑔, 𝑠) An agent 𝑔’s available actions, all the actions that the agent
𝑔 can perform in its current state.

𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (𝑔, 𝑠,𝐺) An agent 𝑔’s target actions, all the available actions for the
agent when in a state 𝑠 , that interact with an agent in the set
𝐺 .

𝑢𝑛𝑘𝑛𝑜𝑤𝑛(𝑔, 𝑆) An agent 𝑔’s unknown states, states an agent could be in, but
lacks the knowledge to access.

Table A.6: Summary of action equations.

A.3 Task allocation

Equation Description

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 (𝐴𝑇,𝐺) The task permutations, the possible different ways of allocat-
ing a set of atomic tasks 𝐴𝑇 amongst a set of agents 𝐺 .

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿) The allocation quality of a set of atomic tasks 𝐴𝑇 is the com-
bined atomic task quality of their completions.

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑆) The utility of the system over a set of states 𝑆 .

𝑢𝑡𝑖𝑙𝑖𝑡𝑦∗ (𝑆) The theoretical optimal utility of the system over a set of
states 𝑆 .

Table A.7: Summary of task quality equations.

Equation Description

𝑜𝑝𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐺,𝐴𝐿) The locally-optimal allocation of tasks 𝑇 to set of agents 𝐺 is
the allocation that gives the maximum quality.

𝑎𝑙𝑙ℎ𝑜𝑜𝑑𝑠 (𝑔,𝐺) Returns all the possible neighbourhoods of an agent 𝑔 given
a set of agents 𝐺 .

continues on the next page...
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𝑜𝑝𝑡ℎ𝑜𝑜𝑑 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) The optimal neighbourhood returns the neighbourhood in a
set of agents 𝐺 of the an agent 𝑔 that gives the best quality
given a set of atomic tasks 𝐴𝑇 and an allocation 𝐴𝐿.

𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) The system-optimal allocation is the locally-optimal alloca-
tion to the optimal neighbourhood.

𝑠𝑦𝑠𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) The system-optimal quality is the quality of the system-
optimal allocation.

𝑗𝑜𝑖𝑛𝑡𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐺) The joint-optimal allocation is the maximum theoretical qual-
ity of allocation of atomic tasks 𝐴𝑇 amongst agent 𝐺 .

Table A.8: Summary of task allocation equations.

Equation Description

𝑟𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑔, 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, 𝑎, 𝑟𝑒𝑤𝑎𝑟𝑑,𝑄) The reinforcement learning function up-
dates the Q-table values of an agent 𝑔 as
it transitions from state 𝑠𝑡 to 𝑠𝑡+1 through
taking action 𝑎 for which it received re-
ward 𝑟 .

Table A.9: Summary of reinforcement learning equations.

Equation Description

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑆𝑃,𝐴) The action sample selection function returns the action sam-
ples of a set of actions 𝐴.

𝑎𝑐𝑡𝑣𝑎𝑙 (𝑆𝑃,𝐴, 𝑡) The action information quality function is a proxy for the
value of information collected about an action 𝑎 up to a time
𝑡 , given the set of action samples 𝑆𝑃 .

ℎ𝑜𝑜𝑑𝑣𝑎𝑙 (𝑆𝑃,𝑔,𝐺) The neighbour information value as the sum of the quality
values of all action samples 𝑆𝑃 of an agent 𝑔 that refer to
actions that involve agents in 𝐺 .

𝑚𝑖𝑛ℎ𝑜𝑜𝑑𝑣𝑎𝑙 (𝑆𝑃,𝑔) The minimum value neighbour of an agent 𝑔 is the agent that
generates the least neighbour information value.

Table A.10: Summary of action value equations.

Equation Description

ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′ , 𝑁 ′′ , 𝐴𝐿) The neighbourhood impact is the difference be-
tween the locally-optimal allocation qualities be-
tween neighbourhoods 𝑁

′
and 𝑁

′′
given a set of

atomic tasks 𝐴𝑇 and allocation 𝐴𝐿.

continues on the next page...
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𝑚𝑎𝑥ℎ𝑜𝑜𝑑𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐺,𝐴𝐿) The maximum neighbourhood impact is the maxi-
mum possible neighbourhood impact given a set of
atomic tasks𝐴𝑇 and all combinations of neighbour-
hoods that can be formed from a set of agents 𝐺 .

𝑘𝑛𝑜𝑤𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇,𝐾 ′ , 𝐾 ′′ , 𝐴𝐿) The knowledge impact of an agent changing its
knowledge from set of knowledge 𝐾

′
to 𝐾

′′
is

the difference between themaximal neighbourhood
impacts of the respective sets of agents in each
knowledge base.

𝑎𝑐𝑡𝑖𝑚𝑝𝑎𝑐𝑡 (𝐴𝑇, 𝑁 ′ , 𝑁 ′′ , 𝐾 ′ , 𝐾 ′′ , 𝐴𝐿) The action impact is the expected value of the
change in possible allocation quality if an action 𝑎
is taken.

Table A.11: Summary of action impact equations.

Equation Description

𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑠𝑡 (𝐴𝑇,𝑔,𝐴𝐿) The locally-optimal allocation metric is the difference be-
tween an agent’s current allocation quality of atomic tasks
𝐴𝑇 to agents in its neighbourhood, and the locally-optimal
allocation quality.

𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑖𝑠𝑡 (𝐴𝑇,𝑔,𝐺,𝐴𝐿) The system-optimal allocation metric is the difference be-
tween an agent’s current allocation quality and the system-
optimal allocation quality given the set of agents in the sys-
tem, 𝐺 .

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑎𝑐𝑡 (𝑎,𝐴𝑇,𝑔,𝐺,𝐴𝐿) The likelihood that an agent 𝑔 allocating a set of atomic
tasks 𝐴𝑇 in a system of agents 𝐺 with allocation 𝐴𝐿 will
improve its performance by taking an action 𝑎.

𝑖𝑚𝑝𝑎𝑐𝑡𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙 (𝑥) The impact interpolation function is generated by taking a
linear interpolation over the rows of a TSQM.

𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑟𝑎𝑛𝑠 (w) The impact transformation function estimates the probabil-
ity that taking an action from an action-category in the cur-
rent neighbourhood will be positive .

Table A.12: Summary of action metrics equations.

205



A.4 Resource allocation notation

Equation Description

𝑟𝑒𝑠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑔, 𝑎𝑝, 𝑅𝐴𝐿) An agent’s resources mapping is the amount of resources
allocated to that agent for a specific task type.

𝑎𝑙𝑙𝑜𝑐𝑞𝑙 (𝐴𝑇,𝐴𝐿, 𝑅𝐴𝐿) The allocation quality of a set of atomic tasks𝐴𝑇 is the com-
bined atomic task quality of those atomic tasks’ comple-
tions, given the resource allocation 𝑅𝐴𝐿.

𝑑𝑜𝑚𝑡𝑎𝑠𝑘 (𝑎𝑡, 𝑔) The domain-specific atomic quality component, scales the
atomic task quality, specific to a particular application.

𝑑𝑜𝑚𝑞𝑙 (𝑎𝑡, 𝑔) The domain-specific allocation quality component, captures
additional characteristics of allocation quality specific to a
particular application.

𝑝𝑟𝑜𝑝𝑣𝑎𝑙 (𝑎𝑡, 𝑐𝑡) The proportional value of a component atomic task of a
composite task 𝑐𝑡 is the fractional value each atomic task
contributed to 𝑐𝑡 as judged after 𝑐𝑡 ’s completion.

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑞𝑙 (𝐶𝑇,𝐴𝐿, 𝑅𝐴𝐿) The composite task quality is the quality given by a set of
composite task𝐶𝑇 performed under atomic task allocation
𝐴𝐿 and resource allocations 𝑅𝐴𝐿.

𝑎𝑏𝑠𝑣𝑎𝑙 (𝑐𝑡, 𝑎𝑡, 𝐴𝐿, 𝑅𝐴𝐿) Component tasks absolute value, The absolute value of
each component atomic task 𝑎𝑡 of a composite task 𝑐𝑡 .

Table A.13: Summary of resource task value equations.

Equation Description

𝑔𝑟𝑜𝑢𝑝 (𝑔,𝐺) A parent group is defined as a fixed mapping for each child
agent to sets of parent agents that are grouped together for
task value modelling.

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑐𝑔,𝐺, 𝑎𝑝, 𝑟𝑝) The parent group task weights, for each parent group of an
agent 𝑔, there is a set of weights for each of its resources 𝑟𝑒𝑠 .

PW𝑟𝑝 The parent group task weights matrix , the parent group task
weights for all parent groups of an agent 𝑔 and resource 𝑟𝑒𝑠 .

Table A.14: Summary of resource group equations.
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Equation Description

𝑎𝑙𝑙𝑜𝑐𝑛𝑢𝑚(𝑔,𝐺) The parent agent sample count is a mapping of a set of
agents𝐺 to a count of tasks allocated to an agent 𝑔 by a
member of that group.

𝑘𝑢𝑙𝑙𝑏𝑎𝑐𝑘 (𝑔,𝐺,𝐴𝑃, 𝑟𝑝) The parent group weights entropy is the relative entropy
of the resource weights of a parent group 𝐺 of an agent
𝑔.

𝐵𝐿 = 𝑏𝑙𝑒𝑛𝑑 (𝑔,𝐺,𝐴𝑃, 𝑟𝑝) The resource weights blending vector is a vector that com-
bines sample counts and resource weight entropy for
each parent-group.

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝐵𝐿,PW, 𝑟𝑝) The combined resource weights function takes the parent
group weights matrix PW𝑟𝑝 and the blending matrix 𝐵𝐿
as parameters and outputs a vector of resource weights
for atomic task types.

𝑖𝑛𝑑𝑒𝑥 (𝑝𝑔, 𝑎𝑝, 𝑟𝑝) Parent-task type index mapping, utility function to map
a specific parent agent and atomic task type to an index
in a child agent’s parent agent weights matrix.

E Eligibility trace matrix, a matrix of values to be used to
map absolute task values to multiple past actions.

𝑢𝑝𝑑𝑎𝑡𝑒𝑡𝑟𝑎𝑐𝑒 (E, 𝑝𝑔, 𝑎𝑝, 𝑟𝑝,𝛾 ′) The eligibility trace update algorithm used to update the
eligibility trace matrix.

Table A.15: Summary of resource allocation equations.

A.5 Hierarchical allocation notation

Symbol Description

𝑠𝑖𝑛𝑘 (𝑎𝑡) A sink of a task 𝑎𝑡 from a set of agents 𝐺 is an agent that
receives composite tasks from outside the system.

𝑟𝑒𝑙𝑎𝑦𝑠 (𝑎𝑡) A group of relays of a task 𝑎𝑡 from a set of agents 𝐺 is the
sequence of agents that are allocated the atomic task, but do
not complete it, instead re-allocating it to other agents.

𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 (𝑎𝑡) An executor of a task 𝑎𝑡 from a set of agents 𝐺 is the unique
agent that executes a given atomic task.

𝑝𝑎𝑡ℎ(𝑎𝑡) A task-path is a mapping of an atomic task 𝑎𝑡 to the ordered
sequence of agents from a set 𝐺 that work together to com-
plete that task.

𝑝𝑎𝑡ℎ𝑐𝑜𝑠𝑡 (𝑎𝑡,𝐺, 𝑟𝑝) task path cost is the resources that must be used by agents to
participate in a task path.

Table A.16: Summary of hierarchical allocation equations.
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A.6 WSN notation

Symbol Description

𝑑𝑒𝑝𝑙𝑜𝑦 (𝑔) An agent’s deployment is its mapping to a specific (𝑥,𝑦)
location in a coordinate system.

𝑑𝑒𝑚𝑎𝑛𝑑 (𝑎𝑡) An atomic tasks’ demand point is the specific location
targeted by the task, i.e. a location to take a sensor mea-
surement.

𝑟𝑎𝑛𝑔𝑒 (𝑎𝑡, 𝑔) The distance between an agent 𝑔’s deployment location,
and the demand point of an atomic task 𝑎𝑡 .

𝑟𝑒𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐺, 𝑟𝑝, 𝑅𝐴𝑉 ) The average resource availability of a resource type 𝑟𝑝
across a set of agents𝐺 , given resource availability 𝑅𝐴𝑉 .

𝑟𝑒𝑠𝑑𝑖𝑠𝑡 (𝐺, 𝑟𝑝, 𝑅𝐴𝑉 ) The resource distribution is the inverse variance of the
availability of a resource type 𝑟𝑝 across a group of agents
𝐺 , given resource availability 𝑅𝐴𝑉 .

Table A.17: Summary of WSN system equations.

Symbol Description

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑐𝑡, 𝑎𝑡) The atomic task success of an atomic task 𝑎𝑡 to a com-
posite task 𝑐𝑡 is a function that maps to 0 if the atomic
tasks’ result is not considered of high enough quality to
be useful to the composite task, 1 otherwise.

𝑠𝑦𝑠𝑐𝑜𝑣 (𝐶𝑇 ) The system coverage is the fraction of those atomic tasks
composing the composite tasks which were successful.

𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 (𝐶𝑇,𝐺 ′ ,𝐺) A systems’ task resiliencemeasures the change in system
coverage as the number of agents in the system change.

Table A.18: Summary of WSN metrics equations.
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Appendix B
Extended system concepts

B.1 State-action space size
Calculating the
size of states

The actions possible for an agent 𝑔 to take in a state are defined by;

1. the set of types of the atomic tasks it still has to allocate, 𝐴𝑃 ;

2. the agent’s current neighbourhood 𝑁 , which dictates the number of 𝐴𝐿𝐿𝑂𝐶
and 𝐼𝑁 𝐹𝑂 actions an agent can take;

3. agent’s current knowledge 𝐾 , which gives the number of 𝐿𝐼𝑁𝐾 actions.

4. the number of actions types in 𝐴𝑃 it has in its capabilities 𝑐 (𝑔), giving 𝐸𝑋𝐸𝐶
actions.

Therefore the state size for an agent 𝑔 can be given by a function 𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑧𝑒 : G×2AP ×
2G × 2G → R>0:

𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑧𝑒 (𝑔,𝐴𝑃, 𝑁, 𝐾) = Number of
EXEC actions +

Number of
ALLOC actions +

Number of
INFO actions +

Number of
LINK actions

= |𝑐 (𝑔) ∩𝐴𝑃 | + |𝑁 | |𝐴𝑃 | + |𝑁 | + |𝐾 |
= |𝑐 (𝑔) ∩𝐴𝑃 | + |𝑁 | ( |𝐴𝑃 | + 1) + |𝐾 |

(B.1)

Given an agent 𝑔 has responsibilities 𝑟 (𝑔), permutations of a set of unique atomic task
types 𝐴𝑃 , then the maximum state-space size possible is,𝑚𝑎𝑥𝑠𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒 : G × 2AP ×
2G × 2G → R>0, where:

𝑚𝑎𝑥𝑠𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒 (𝑔,𝐴𝑃, 𝑁, 𝐾) =
∑︁

∀𝐴𝑃 ′⊆𝐴𝑃

𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑧𝑒 (𝑔,𝐴𝑃 ′, 𝑁 , 𝐾) (B.2)

Size of Q-tablesAs neighbourhoods and knowledge are dynamic, and agents retain the Q-values of
past states, then, without pruning, the possible Q-table size of an agent with full sys-
tem knowledge would be 𝑠𝑝𝑎𝑐𝑒𝑠𝑖𝑧𝑒 (𝑔,𝐴𝑃,𝐺,𝐺). However, we use pruning strategies
such as SAS-KR to maintain a reduced Q-table by removing Q-values that correspond
to states and actions involving agents no longer in an agent’s knowledge when they
judged to be less useful to improving performance through SAS-KR (See Chapter 9,
Sections 9.4.2). We illustrate this through Figure B.1, which shows the size of agents’

209



10 20 30 40 50 60 70 80 90 100
episode

0

25

50

75

100

Q-
ta

bl
e 

siz
e

no-pruning
saskr-low
saskr-medium
saskr-high

Figure B.1: The average Q-table sizes. Average Q-table sizes of agents for the ATA-
RIA algorithm in the stable system of Chapter 9, Section 9.6. Where SAS-KR is config-
ured using no-pruning, low, medium, and high 𝜇min values.

Q-tables over the course of 100 episodes, with no-pruning, and low, medium, and
high values for 𝜇min for the SAS-KR algorithm, run in the stable system in Chapter
9, Section 9.6. Data and p-values are shown in Table B.1 for completeness.

Algorithm 𝜇min Q-table size p-value

(max) (100 episodes)

no-pruning n/a 91.6 91.6 0.98

saskr-low 0.01 65.0 65.0 0.62

saskr-medium 0.05 50.3 46.3 0.99

saskr-high 0.10 39.2 32.1 0.99

Table B.1: Q-table sizes for the stable system in Chapter 9, Section 9.6 . The
table shows the maximum and final (100 episodes) average Q-table sizes of agents for the
ATA-RIA algorithm in the stable system of Chapter 9, Section 9.6. Where SAS-KR is
configured using no-pruning, low, medium, and high 𝜇min values. P-values are T-tests for
the null hypothesis that the utilities in the final episode are equal to the population mean
with significance level 𝛼 = 0.05.
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B.2 The likelihood of selecting action types
For each state 𝑠 , the proportion of task allocation, neighbourhood changing, and
knowledge changing actions is given by:(

Number of
EXEC actions ×

Number of
ALLOC actions

)
: Number of
LINK actions : Number of

INFO actions

=
(
|𝑐 (𝑔) ∩𝐴𝑃 | + |𝑁 | |𝐴𝑃 |

)
: |𝐾 | : |𝑁 |

(B.3)

Example B.2.1 (Example of probabilities of action selection). A system with
|𝑐𝑝 | = 10, |𝑁 | = 10, |𝐾 | = 20, with random distribution action selection, the
ratio of action selections will be 100 : 20 : 10 (for an agent with no EXEC ac-
tions, i.e. where 𝑐 (𝑔) = ∅). The probabilities of taking these action types will
therefore be:

𝑃 (𝐸𝑋𝐸𝐶 +𝐴𝐿𝐿𝑂𝐶) = 0.77
𝑃 (𝐿𝐼𝑁𝐾) = 0.15
𝑃 (𝐼𝑁 𝐹𝑂) = 0.08

(B.4)

In other words, there is approximately a 25% chance an agent will select an
action that will change its neighbourhood or knowledge, and may lose learned
Q-values as a result of the action.

Impact of action
sampling

With no differentiation between action types, algorithms will sample the neighbour-
hood and knowledge-changing actions equally with task allocation actions. Not only
does this mean that an agent will take longer to learn allocations for the atomic tasks
they have, but also, with each neighbourhood changing action they sample, they
change the states that are accessible to them, and need to learn over new actions. Ad-
ditionally, with each sampling of a knowledge changing action, they may lose learned
information on the actions related to that knowledge that would lead to better task
allocation choices due to constraints on memory.

This is one reason why algorithms that do not distinguish between action types in
sampling see increased times to complete each episode compared to our algorithms.
In smaller systems there is a reasonable likelihood that the agent may have already
learned some information about the states introduced by the neighbourhood agent
or knowledge agent introduced. As the size of the system increases, and |𝐾 | ≪ |𝐺 |,
each agent learned about is likely to be new to the agent’s knowledge, meaning that
value of its action choices must be learned from scratch.

The combination of 2 factors affects the ability of some algorithms to function well
in our simulation systems; not distinguishing between action-types, leading to neigh-
bourhood and knowledge changes, and subsequently the loss of learned Q-values;
and that our systems had background perturbations, i.e. the temporary loss of avail-
ability of agents, exacerbating the problems of learning action-selections. These fac-
tors greatly increase the likelihood of choosing actions that do not move the agent’s
task closer to completion when using the <qlboltz> and <qlreset> comparison al-
gorithms in the simulations in Chapter 9, Section 9.6.
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Appendix C
Task allocation

C.1 Parameters for system simulations and algorithms

Vari-
able

Summary Value

|𝐴𝑃 | Number of atomic task types 20

|𝐶𝑃 | Number of composite task types 10

|𝐾 (𝑔) | Size of an agent’s knowledge 7

|𝑁 (𝑔) | Size of an agent’s neighbourhoods 5

|𝑎𝑝 ∈ 𝑐𝑝 | Number of atomic tasks composing a composite task
type

5

n/a Frequency distribution of composite tasks’ arrival in the
system

One 𝑐𝑝 per parent
agent per episode

𝜔𝑔 The atomic task quality produced by a child agent for a
task.

(0, 1]

Table C.1: General parameter values.

Variable Summary Optimal Exploration Volatile Large

|𝑃𝐺 | Number of parent
agents in the system

3 3 3 10

|𝐶𝐺 | Number of child agent
in the system

10 10 10 {10, 50, 100}

𝑊 The approximate
action-impact values

{ (LINK, 0.10),
(INFO, 0.20) }

{ (LINK, 0.10),
(INFO, 0.20) }

{ (LINK, 0.10),
(INFO, 0.20) }

{ (LINK, 0.10),
(INFO, 0.20) }
{ (LINK, 0.10),
(INFO, 0.55) }
{ (LINK, 0.10),
(INFO, 0.60) }

continues on the next page...
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...continued from previous page

𝑃 (𝑙𝑒𝑎𝑣𝑒/ 𝑗𝑜𝑖𝑛 |𝑝𝑔) Probability of agent
leaving or re-joining
the system each
episode

0 0 0.01 0

Table C.2: Simulation parameter values.

C.2 Summary of results

Algorithm % performance decrease from <optimal> (best)

<ataria> 6.7%

<qlreset> 181.0%

<qlboltz> 306.6%(235.0%)

Table C.3: Experimental results for the stable system after 100 episodes.

Algorithm % performance increase over <rtrap0>

<rtrap-> 44.3%

<rtrap+> 67.0%

Table C.4: Experimental results for the exploration system after 100 episodes.

Algorithm % performance decrease from <nodrop>

<drop> 9.7%

<nosaskr> 54.6%

Table C.5: Experimental results for volatile system after 100 episodes.
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Algorithm % performance decrease from <large-optimal>

<large-25> 3.6%

<large-50> 7.2%

<large-100> 8.6%

Table C.6: Experimental results for large system after 100 episodes.

Statistic <optimal> <rtrap0> <nodrop> <large-optimal>

mean 53.75 75.91 108.46 28.36

std 0.54 8.98 22.85 6.55

min 52.55 67.75 70.30 24.93

25% 53.38 70.31 89.47 25.63

50% 53.80 72.12 111.61 25.98

75% 54.12 77.76 124.32 27.72

max 55.01 113.94 214.75 72.81

Table C.7: Statistics of baseline algorithms results.

Label p-value
<optimal> 0.54
<ataria> 0.87
<rtrap0> 0.33
<rtrap-> 0.29
<rtrap+> 0.50

Label p-value
<nodrop> 0.86
<drop> 0.87
<nosaskr> 0.47

Label p-value
<large-optimal> 0.76
<large-25> 0.67
<large-50> 0.87
<large-100> 0.91

Table C.8: Final episode p-values of algorithm results. T-test for the null hypothe-
sis that the utilities in the final episode are equal to the population mean with significance
level 𝛼 = 0.05.
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C.3 Calculating approximate action-impact values
We ignore actions apart from 𝐼𝑁 𝐹𝑂 and 𝐿𝐼𝑁𝐾 as these are the only ones that alter the
neighbourhood, 𝑁 , or knowledge, 𝐾 , of an agent. To make our first approximations
we assume that the selection of actions of these two types is distributed uniformly.
Given this, the probabilities of changing the neighbourhood or knowledge for these
action types is:

LINK: 𝑃 (𝑁 ′, 𝑁 ′′) = 1
2
× |𝑁 ||𝐾 | , and 𝑃 (𝐾

′
, 𝐾
′′) = 0 (C.1)

INFO: 𝑃 (𝑁 ′, 𝑁 ′′) = 0 and 𝑃 (𝐾 ′, 𝐾 ′′) = 1 − 𝑃 (𝑁 ′, 𝑁 ′′) (C.2)

For 𝐿𝐼𝑁𝐾 actions, an agent will be replaced in 𝑁 with one of the agents in 𝐾 . We
make the simplification that the neighbourhood impact of the actions will be 1 if
we add an agent that can complete a task type better than an existing agent in the
neighbourhood, and 0 otherwise. Assuming agents are distributed randomly across
𝑁 ∪ 𝐾 , on average a 𝐿𝐼𝑁𝐾 action will produce a neighbourhood impact of 1 − 𝑁

𝐾
.

Therefore, we get an approximation of action impact of:(
1
2
|𝑁 |
|𝐾 |

) (
1 − |𝑁 ||𝐾 |

)
(C.3)

For 𝐼𝑁 𝐹𝑂 actions an agent in 𝐾 will be replaced by one in𝐺 . Again, assuming agents
are distributed randomly across 𝐾 ∪ 𝐺 , on average an 𝐼𝑁 𝐹𝑂 action will produce a
knowledge impact of 1 − |𝐾 ||𝐺 | . Therefore:(

1 − 1
2
|𝑁 |
|𝐾 |

) (
1 − |𝐾 ||𝐺 |

)
(C.4)

So that:

𝑊 =

{(
LINK,

[
1
2
|𝑁 |
|𝐾 |

] [
1 − |𝑁 ||𝐾 |

] )
,

(
INFO,

[
1 − 1

2
|𝑁 |
|𝐾 |

] [
1 − |𝐾 ||𝐺 |

] )}
(C.5)

Example C.3.1 (Optimal allocations in multi-agent systems). A system contains 100
agents, with each agent’s neighbourhood size being 10, and its knowledge 20. Using
the above approximation we get action-impact values:

𝑊 =

{(
LINK,

1
8

)
,

(
INFO,

3
5

)}
(C.6)
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Appendix D
Resource allocation

D.1 Parameters for system simulations and algorithms

Vari-
able

Summary Value

|𝐴𝑃 | Number of atomic task types 20

|𝐶𝑃 | Number of composite task types 10

|𝑎𝑝 ∈ 𝑐𝑝 | Number of atomic tasks composing a composite task
type

5

𝑡 𝑓 Frequency distribution of composite tasks’ arrival in the
system

One 𝑐𝑝 per 𝑝𝑔 per episode

|𝑅𝑃 | Number of resource types needed to perform tasks 1

𝑞𝑐𝑔 The atomic task quality produced by a child agent for a
task.

(0, 1]

𝑐𝑡𝑣 The component tasks value produced by a parent agent
for atomic tasks that are part of its composite task.

(0, 1]

Table D.1: General parameter values.

Variable Summary Single Multi Volatile Large

|𝑃𝐺 | Number of parent agents in
the system

10 10 10 50

|𝐶𝐺 | Number of child agent in
the system

1 3 1 1

|𝑔𝑟𝑜𝑢𝑝 (𝑔,𝐺) | Parent agent group size 1 1 1 {1, 2, 5, 10, 25, 50}

continues on the next page...
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...continued from previous page

𝑃 (𝑙𝑒𝑎𝑣𝑒/ 𝑗𝑜𝑖𝑛 |𝑝𝑔) Probability of parent-agent
leaving or re-joining system
per-episode

0 0 0.25 0

Table D.2: Simulation parameter values.

D.2 Summary of results

Label p-value

<mgrao-max> 0.899

<mgrao-1:1> 0.993

<uniform> 0.977

Table D.3: Final episode p-values of algorithm results. T-test for the null hypothe-
sis that the utilities in the final episode are equal to the population mean with significance
level 𝛼 = 0.05.
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Appendix E
Case study

E.1 The multi-objective Q-routing algorithm
The variation of Q-routing we use for comparison utilises the same multi-objective
reward function as HTAO. It also assumes full knowledge and neighbourhood con-
taining all agents in the system. The algorithm uses the update function for actions
to Q-value mappings from the ATA-RIA algorithm. In comparison to the ATA-RIA al-
gorithm, it uses 𝜖-greedy selection for choosing actions instead of RT-ARP, and does
not attempt to learn actions relating to knowledge and neighbourhood as agents as-
sume full system information. This algorithm follows strategies developed from Q-
routing[345], but without low-level details on node communications and protocols.
This is comparable in particular to work that adds energy-awareness and adaptive
routing[354]–[356]. We also adapt the application of Q-learning to fit themulti-agent,
task-based framework.
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ALGORITHM 10: The multi-objective Q-routing algorithm
Input: 𝑔 , the agent allocated the composite task.
Input: 𝑐𝑡 , the composite task allocated to the agent.
Input: 𝑄 , the Q-table of agent 𝑔.
Output: 𝑄

′
, the updated Q-table of agent 𝑔.

1 for 𝑎𝑡 ∈ 𝑐𝑡 do
// Store current system state

2 𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑠

3 𝑎 ← 𝜖-greedy(𝑄 [𝑠, 𝐴])
4 if 𝑎 = 𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡) then
5 𝐸𝑋𝐸𝐶 (𝑔, 𝑎𝑡)
6 if 𝑎𝑡 is successfully completed then
7 𝑐𝑡 ← 𝑐𝑡 \ {𝑎𝑡}
8 end
9 else if 𝑎 = 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛) then
10 𝐴𝐿𝐿𝑂𝐶 (𝑔, 𝑎𝑡, 𝑛)
11 if 𝑎𝑡 is successfully completed then
12 𝑐𝑡 ← 𝑐𝑡 \ {𝑎𝑡}
13 end

// Store new system state
14 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒 ← 𝑠

// Update Q-value mappings using reward generated by action

15 𝑄
′ ← 𝑟𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒, 𝑎, 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑎), 𝑄)

16 end
17 return 𝑄

′

E.2 Summary of results

Label p-value

htao (stable) 0.517

q-routing (stable) 0.436

htao (energy) 0.869

htao (quality) 0.556

htao (distribution) 0.442

Table E.1: Final episode p-values of algorithm results. T-test for the null hypothe-
sis that the utilities in the final episode are equal to the population mean with significance
level 𝛼 = 0.05.
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