
Planning Algorithms for
Multi-Robot Active Perception

Graeme Best

A thesis submitted in fulfillment
of the requirements of the degree of

Doctor of Philosophy

Australian Centre for Field Robotics
School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

Submitted May 2018; revised January 2019

Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of the University or other institute of higher
learning, except where due acknowledgement has been made in the text.

Graeme Best

January 2019

Abstract
Graeme Best Doctor of Philosophy
The University of Sydney May 2018

Planning Algorithms for
Multi-Robot Active Perception

A fundamental task of robotic systems is to use on-board sensors and perception
algorithms to understand high-level semantic properties of an environment. These
semantic properties may include a map of the environment, the presence, pose and
class of objects, the behaviour of other agents, or the parameters of a dynamic field.
Observations are highly viewpoint dependent and, thus, the performance of perception
algorithms can be greatly improved by planning the motion of the robots to obtain
high-value observations. This motivates the problem of active perception, where the
goal is to plan the observation viewpoints for a team of robots while considering both
the motion constraints and the perception objectives of the task at hand. This fun-
damental problem is central to many robotics applications, including environmental
monitoring, search and rescue, planetary exploration, and precision agriculture.

The core contribution of this thesis is a suite of planning algorithms for multi-robot
active perception. These planning algorithms are designed to improve the system-
level performance of multi-robot systems on many fronts. We aim to address various
challenges of multi-robot active perception that have not been adequately addressed
in existing work: online and anytime planning, optimising over a long time hori-
zon, decentralised coordination, being robust to unreliable communication, predicting
plans of other agents, and exploiting characteristics of specific perception models.

We first propose the decentralised Monte Carlo tree search (Dec-MCTS) algorithm
as a generally-applicable, decentralised algorithm for multi-robot active perception.
Dec-MCTS is a novel, decentralised variant of the widely-used Monte Carlo tree search
algorithm, and also leverages ideas from variational methods to plan over probability
distributions of action sequences. Dec-MCTS is anytime, is robust to communication
loss, balances the exploration-exploitation trade-off when expanding the decision tree,
and converges towards a plan that minimises KL-divergence to the optimal joint plan.

Abstract iii

The usefulness of the algorithm is demonstrated through experiments for a general
active perception formulation and a coordinated active object recognition task.

We then formulate and solve a more specific active perception problem where the
objective is for the robots to maximally observe a discrete set of points of inter-
est. These points of interest are observed by visiting continuous viewpoint regions.
We propose an efficient solution algorithm for this formulation that exploits geo-
metric properties using a special type of neural network called a self-organising map
(SOM). The SOM algorithm is centralised, efficiently plans over continuous space,
and has guaranteed polynomial runtime. As an example, a 3D point-cloud processing
method is presented for generating problem instances. Experimental results show the
problem-specific SOM algorithm is more efficient than Dec-MCTS for this formula-
tion. The behaviour and performance of the algorithm is demonstrated with a range
of simulated experiments in a variety of offline and online scenarios.

Finally, we consider the problem of mission monitoring, where a team of agents ob-
serve and monitor the progress of a robotic mission. This problem arises in marine
robotics scenarios where underwater robots are monitored by a team of surface ves-
sels, as well as a variety of other applications. In current practice, the motion of
the monitoring agents is typically ignored or planned naively, leading to unsuccessful
or ineffective monitoring. We instead consider the motion of the monitoring agents
by formulating mission monitoring as an active perception problem. First, an op-
timal, polynomial-time algorithm is proposed for single-tracker mission monitoring.
This algorithm, spatiotemporal optimal stopping, constructs a directed acyclic graph
then finds the path that maximises expected monitoring time. The generated path
is optimal with respect to probabilistic models for trajectory prediction and commu-
nication. Then, we propose an extended, decentralised algorithm for multi-tracker
mission monitoring that is inspired by the general approach and analytical results
of Dec-MCTS. Simulated experiments are performed with realistic prediction and
communication models for marine robotics and pedestrian monitoring scenarios.

The proposed suite of planning algorithms is a significant contribution towards en-
abling multi-robot teams to perform coordinated perception tasks in a principled and
effective manner. Our analytical and experimental results demonstrate theoretically-
interesting and practically-relevant properties that support the use of the proposed
approaches in practice. Our hope is that, by presenting a suite of algorithms de-
signed for a variety of generic and task-specific formulations, we gain and share a
fundamental understanding of both the core multi-robot active perception problem
and its application to important tasks in robotics.

Acknowledgements

This thesis on non-myopic multi-agent coordination was made possible by the forward
thinking and combined efforts of multiple collaborating agents. First and foremost,
thanks to my supervisor A/Prof. Robert Fitch for providing guidance, encouragement,
leadership, amazing ideas, freedom to pursue my own ideas, and your incredible
ability to make dry theory sound exciting. Also thanks to Prof. Stefan Williams for
your support and encouragement. Thanks to my prior research supervisors—Peyman
Moghadam (CSIRO), Navinda Kottege (CSIRO), Lindsay Kleeman (Monash), and
Stuart Anstee (DSTG)—who introduced me to the world of robotics research and
strongly encouraged me to pursue a PhD.

A big thank you to my paper co-authors—Jan Faigl (Czech Tech.), Oliver Cliff,
Timothy Patten, Wolfram Martens, Ramgopal Mettu (Tulane), Michael Forrai,
Robert Pěnička (Czech Tech.), Shoudong Huang (UTS), and of course Robert Fitch—
for the great ideas, constructive arguments, long phone calls, annotated PDFs, late
nights, slow weekends, and tolerating my incoherent whiteboard scribbles—this
thesis has certainly benefited from your efforts. Thanks also to the thesis examiners
and the numerous anonymous paper reviewers for your efforts.

Thanks to everyone at the Australian Centre for Field Robotics, especially Oliver,
Tim, Wolfram, Akash, Will, Jack, Phil, Giovanni, Chanyeol, Brian, and many others,
for helping me maintain my questionable sanity with procrastination walks to the
coffee machine. Special thanks to all members of our “collaborative decision-making
reading group” for the invaluable discussions, and the dedication you put in to the
presentations. Thanks to my teaching supervisor Jason Chan for your profession-
alism, showing me how to do things the right way, and for affording me a massive
handicap in our games of chess. Also many thanks to the countless people around the
world I’ve met and had discussions with at conferences and seminars. And to anyone
else I may have missed . . .

Thanks to my Mum, Dad, sister Fiona, Gran, Grandpa, Nan, Grandad, Aunties,
Uncles, cousins, and friends from Melbourne, for your support over my lifetime of
being a student. It has been a challenge living far away from home, but I guess we’ll
have to get used to this!

Grandad, I know you would have loved to read this thesis—your enthusiasm for
turning ideas into words, and words into ideas, inspired this thesis.

The whole is greater than the sum of its parts

only if the whole is carefully planned.

Contents

Declaration i

Abstract ii

Acknowledgements iv

Contents vi

List of Figures xiii

List of Tables xv

List of Algorithms xvi

List of Theorems xvii

Nomenclature xviii

1 Introduction 1
1.1 Multi-robot active perception . 4

1.1.1 Active perception in the natural world 4
1.1.2 Robotic active perception . 4
1.1.3 Active perception as a system 5
1.1.4 Multi-robot systems . 6

1.2 Applications of active perception . 7
1.2.1 Information gathering as an objective 8
1.2.2 Information gathering as a sub-task 9
1.2.3 Relevance of this thesis . 9

1.3 Thesis Scope . 10
1.3.1 Active perception planning module 10

Contents vii

1.3.2 General problem statement 10
1.3.3 Problem settings . 12

1.4 Principal contributions . 17
1.5 Thesis structure . 19

2 Related work 20
2.1 Prediction models and objective functions 21

2.1.1 Discrete sets of properties . 21
2.1.2 Moving targets . 24
2.1.3 Continuous fields . 27

2.2 Informative path planning . 28
2.2.1 Simplified problem formulations 29
2.2.2 Single-robot planning . 32
2.2.3 Centralised multi-robot planning 37
2.2.4 Decentralised multi-robot planning 38

2.3 Planning algorithms . 42
2.3.1 Generic sequential decision problems 43
2.3.2 Optimal stopping . 45
2.3.3 Branch and bound tree search 47
2.3.4 Monte Carlo tree search . 49
2.3.5 Self-organising maps . 51
2.3.6 Planning as inference . 54

2.4 Summary and limitations . 56

3 Decentralised Monte Carlo tree search 58
3.1 Overview . 58

3.1.1 Chapter outline . 60
3.2 Problem statement . 61
3.3 Dec-MCTS . 62

3.3.1 Algorithm overview . 62
3.3.2 Local utility function . 65
3.3.3 Monte Carlo tree search with discounted-UCB 65
3.3.4 Decentralised product distribution optimisation 70
3.3.5 Communication . 74
3.3.6 Online replanning . 74

Contents viii

3.3.7 Probabilistic objective functions 75
3.4 Analysis . 75

3.4.1 D-UCB applied to trees . 76
3.4.2 Variational methods by importance sampling 77
3.4.3 Analysis of Dec-MCTS . 78

3.5 Experiments: Generalised team orienteering 79
3.5.1 Problem statement . 79
3.5.2 Calculating expectations . 80
3.5.3 Experiment setup . 81
3.5.4 Results . 81

3.6 Experiments: Active object recognition 83
3.6.1 Problem statement . 84
3.6.2 Experiment setup . 85
3.6.3 Results . 85

3.7 Extension: Communication scheduling 87
3.7.1 Summary of approach . 88
3.7.2 Experiments . 89

3.8 Summary . 91

4 Self-organising maps for generalised orienteering 93
4.1 Overview . 93

4.1.1 Chapter outline . 97
4.2 Problem formulation . 97

4.2.1 Multi-robot team . 98
4.2.2 Viewpoint regions and rewards 98
4.2.3 Problem statement . 99
4.2.4 NP-hardness . 99

4.3 Self-organising map algorithm . 100
4.3.1 Algorithm overview . 100
4.3.2 Graph topology . 101
4.3.3 Viewpoint rewards . 102
4.3.4 Learning epochs . 103

4.4 Analysis . 107
4.4.1 Theoretical analysis . 107
4.4.2 Empirical analysis . 111

Contents ix

4.5 Active perception of 3D point-cloud objects 115
4.5.1 Observation model for 3D point-cloud objects 116
4.5.2 Results . 120
4.5.3 Comparison to Dec-MCTS (Chapter 3) 122

4.6 Online exploration and active perception 124
4.6.1 Online planning scenario . 124
4.6.2 Results . 126

4.7 Summary . 131

5 Spatiotemporal optimal stopping for mission monitoring 132
5.1 Overview . 132

5.1.1 Mission monitoring variants 136
5.1.2 Chapter outline . 136

5.2 Problem formulation . 137
5.2.1 Target trajectory (independent variable) 137
5.2.2 Tracker trajectory (dependent variable) 137
5.2.3 Monitoring effectiveness (objective function) 139
5.2.4 Deterministic problem instances 140
5.2.5 Problem statement . 140

5.3 Algorithm overview . 141
5.4 Spatiotemporal search graph . 142

5.4.1 Vertices . 142
5.4.2 Edges . 148
5.4.3 Start and end conditions . 151

5.5 Sweep-plane algorithm . 153
5.5.1 Forward pass . 153
5.5.2 Backtracking . 154

5.6 Analysis . 155
5.6.1 Optimality . 155
5.6.2 Time complexity . 156
5.6.3 Practical considerations . 156
5.6.4 Stopping frequency . 157

5.7 Experiments . 157
5.7.1 Missions and parameters . 157
5.7.2 Deterministic target trajectory 158

Contents x

5.7.3 Planning with uncertainty . 159
5.7.4 Probabilistic trajectory with temporal uncertainty 160

5.8 Application case studies . 162
5.8.1 AUV mission monitoring . 162
5.8.2 Pedestrian monitoring in cluttered environments 169

5.9 Summary . 174

6 Decentralised mission monitoring 175
6.1 Overview . 175

6.1.1 Chapter outline . 177
6.2 Relationship to previous chapters . 177

6.2.1 Single-agent mission monitoring (Chapter 5) 177
6.2.2 Dec-MCTS (Chapter 3) . 177

6.3 Problem formulation . 178
6.3.1 Target . 178
6.3.2 Tracker team . 178
6.3.3 Monitoring effectiveness . 180
6.3.4 Problem statement . 181

6.4 Decentralised planning algorithm . 182
6.4.1 Probability distributions over trajectories 183
6.4.2 Spatiotemporal optimal stopping 183
6.4.3 Decentralised coordination . 186
6.4.4 Communication . 188

6.5 Analysis . 188
6.5.1 Runtime . 188
6.5.2 Optimality and convergence 189

6.6 Experiments: AUV mission monitoring 190
6.6.1 Scenario . 190
6.6.2 Results . 192

6.7 Summary . 194

7 Conclusions and future work 196
7.1 Thesis summary . 197

7.1.1 Dec-MCTS (Chapter 3) . 197
7.1.2 SOM (Chapter 4) . 198

Contents xi

7.1.3 Spatiotemporal optimal stopping (Chapter 5) 198
7.1.4 Decentralised mission monitoring (Chapter 6) 199

7.2 Summary of contributions . 200
7.2.1 Multi-robot active perception problem formulations 200
7.2.2 Dec-MCTS algorithm . 201
7.2.3 SOM algorithm . 202
7.2.4 Spatiotemporal optimal stopping algorithm 202
7.2.5 Decentralised mission monitoring algorithm 202
7.2.6 Analytical results . 203
7.2.7 Empirical results . 204

7.3 Future work . 205
7.3.1 Improving performance . 205
7.3.2 Problem variants and applications 208
7.3.3 Hardware experiments . 213

7.4 Outlook . 214

List of References 215

A Intention inference model for trajectory prediction 240
A.1 Introduction . 240
A.2 Problem formulation . 242

A.2.1 Intention of the agent . 243
A.2.2 Probabilistic dynamics model 243

A.3 Bayesian trajectory prediction . 245
A.3.1 Joint distribution . 245
A.3.2 Intention inference . 245
A.3.3 Trajectory prediction . 246

A.4 Sampling-based algorithm . 246
A.4.1 Precomputation . 247
A.4.2 Intention estimates (lines 10–12) 248
A.4.3 Monte Carlo trajectory prediction (lines 14–25) 249
A.4.4 Analysis . 250

A.5 Experiments . 251
A.5.1 Simulated environment . 251
A.5.2 Real-world pedestrian dataset 253

Contents xii

A.6 Conclusions . 255

List of Figures

1.1 Real-world information gathering systems 2
1.2 Example active perception system . 6
1.3 Multi-robot information gathering on a farm 7
1.4 Illustration of the motivating active perception problem 15
1.5 The multi-tracker mission monitoring problem 16

2.1 Illustration of branch and bound tree search 48
2.2 Exploration versus exploitation in MCTS 50
2.3 Self-organising map examples . 53

3.1 Overview of decentralised Monte Carlo tree search (Dec-MCTS) . . . 63
3.2 Overview of standard MCTS . 66
3.3 The generalised team orienteering problem 79
3.4 Experimental results of Dec-MCTS for the generalised team orienteer-

ing problem . 82
3.5 Experiment setup for the point cloud dataset 83
3.6 Experimental results for Dec-MCTS in the active object recognition

scenario . 86
3.7 Demonstration that communication is required for successful coordi-

nation . 91

4.1 Illustration of the motivating active perception problem from above . 94
4.2 Overview of the proposed self-organising map algorithm 101
4.3 Random problem instance . 111
4.4 Simulation results for random environments under various scenarios

and comparison methods . 113
4.5 Convergence of self-organising map (SOM) algorithm 114
4.6 Picture of the mobile robot with Velodyne laser scanner 116
4.7 Illustration of the example sensor model 117

List of Figures xiv

4.8 Validation of example sensor model 119
4.9 Four example scenarios and solution paths 121
4.10 Comparison between the SOM algorithm and Dec-MCTS 124
4.11 Example adaptive plan for the online experiments 127
4.12 Comparison of SOM planners with different planning horizons 127
4.13 Example paths for different online scenarios 128
4.14 Comparison of planning performance for different densities of explo-

ration rewards . 129
4.15 Comparison of efficient replanning . 130

5.1 Geometric interpretation of spatiotemporal optimal stopping 135
5.2 Graph generation: stopping locations 143
5.3 Graph generation: temporal dimension 147
5.4 Illustration of the edge categories . 149
5.5 Illustration of the sweep-plane algorithm 153
5.6 Deterministic AUV mission plan from a sea trial 158
5.7 Deterministic vs. probabilistic planning 160
5.8 Monte Carlo simulation results . 161
5.9 Example predicted AUV trajectory 163
5.10 Underwater acoustic communication 163
5.11 The simulated office environment . 170

6.1 Comparing planning with and without communication 191
6.2 Comparison of convergence with different distribution sizes 193
6.3 Comparison to Dec-MCTS . 194

A.1 Illustrated example of the trajectory prediction model 241
A.2 Graphical model of the agent’s trajectory 243
A.3 Illustration of the probabilistic dynamics model 244
A.4 Illustrated example of an agent moving through the environment . . . 251
A.5 Illustrated example of the predicted future position 252
A.6 The pedestrian dataset . 254
A.7 With and without the intention estimate posterior 254

List of Tables

3.1 Comparison of different communication scenarios 92

5.1 Simulation results for deterministic target trajectories 159
5.2 Simulation results for AUV monitoring case study 168
5.3 Simulation results for pedestrian monitoring case study 173

List of Algorithms

3.1 Overview of Dec-MCTS . 64
3.2 Grow the search tree using Monte Carlo tree search 66
3.3 Probability distribution optimisation 73

4.1 Self-organising map algorithm . 102
4.2 Adaptation step of the SOM algorithm 104

5.1 Overview of the trajectory planner for the tracker 141
5.2 Generate a spatiotemporal search graph 142
5.3 Edge weight and time calculations . 149
5.4 Vertex set adjustments for the start condition 152
5.5 Sweep-plane graph search: forward pass 154
5.6 Backtracking . 154

6.1 Decentralised planning algorithm . 182

A.1 Trajectory prediction algorithm . 247

List of Theorems

1.1 Problem (General multi-robot active perception planning problem) . 11

3.1 Problem (Decentralised planning problem) 61
3.1 Theorem (Convergence rate of D-UCT) 76
3.1 Remark (Convergence in practice) . 77
3.1 Proposition (Convergence of PC) . 77

4.1 Problem (Generalised orienteering problem) 99
4.1 Lemma (Runtime per epoch) . 108
4.2 Lemma (Convergence guarantee) . 108
4.1 Theorem (Runtime of SOM) . 109
4.1 Remark (Runtime dependence on R) 109
4.2 Remark (Early convergence) . 110

5.1 Problem (Mission monitoring) . 140
5.1 Condition (Triangle inequality) . 144
5.2 Condition (Convex hull is feasible) 144
5.3 Condition (Monotonically decreasing observation value) 144
5.4 Condition (Monotonically increasing travel time) 144
5.1 Remark (Unbounded distributions) 144
5.1 Lemma (Stopping in effective monitoring region) 144
5.2 Lemma (Stopping in convex hull) . 145
5.2 Remark (Underestimates due to pass-through vertices) 149
5.3 Lemma (Optimal arrival time for deterministic cases) 150
5.4 Lemma (Optimality of graph search algorithm) 155
5.1 Theorem (Optimality of spatiotemporal optimal stopping) 155
5.2 Theorem (Polynomial runtime complexity) 156

6.1 Problem (Decentralised mission monitoring) 181

Nomenclature

Acronyms

ACFR Australian Centre for Field Robotics
AUV autonomous underwater vehicle
BnB branch and bound
CAMP communication-aware motion planning
Dec-MCTS decentralised Monte Carlo tree search
Dec-POMDP decentralised partially observable Markov decision process
D-UCB discounted-UCB
D-UCT discounted-UCT
GP Gaussian process
GPIS Gaussian process implicit surface
GTSP generalised travelling salesman problem
MAB multi-armed bandit
MCTS Monte Carlo tree search
MDP Markov decision process
OP orienteering problem
OPN orienteering problem with neighbourhoods
PC probability collectives
POMDP partially observable Markov decision process
PRM probabilistic roadmap
ROS robot operating system
RRT rapidly-exploring random tree
SLAM simultaneous localisation and mapping
SOM self-organising map
TSP travelling salesman problem
UCB upper confidence bound
UCT UCB applied to trees

Chapter 1

Introduction

Information gathering is an important family of problems in robotics that plays a
primary role in a wide variety of tasks. During these tasks, mobile robots use their
sensors and perception algorithms to understand their surrounding environment. The
properties of the environment being estimated can vary greatly from application to
application. Consider the three example real-world robotic systems illustrated in
Figure 1.1. On the left, a robot drives through an orchard to measure properties
of fruit such as their quantity and ripeness (Hung et al., 2015). In the middle, an
autonomous underwater vehicle (AUV) is deployed in the ocean to create a map of the
health of a coral reef (Steinberg et al., 2011). On the right, an unmanned aerial vehicle
senses electromagnetic pulses to track the movements of radio-tagged wildlife (Cliff
et al., 2018). These estimated properties represent information of immediate practical
interest to the end users for timely decision making: farmers can coordinate harvesting
schedules, environmentalists can target restoration efforts, and ecologists can respond
to threats to endangered species. Beyond these applications, robotic information
gathering systems have the potential to improve operations in a diverse range of fields
including defence, security, emergency response, mining, infrastructure maintenance,
transport, health care, domestic automation, and planetary exploration.

The motion of the robots plays a key role in information gathering as observations
taken at different viewpoints or times offer complementary information. However, the
importance of motion is often overlooked, as most robots are tasked to follow naive,
preplanned or teleoperated paths that do not directly take into account the mission

Introduction 2

Robots moving through and sensing an environment

Information gathered about each environment

Figure 1.1 – Example real-world information gathering robotic systems. (left) Mod-
elling fruit trees (Hung et al., 2015). (middle) Mapping the health of a coral
reef (Steinberg et al., 2011). (right) Tracking the movements of wildlife (Cliff et al.,
2018). Figures courtesy of ACFR.

objectives. This approach can result in inefficient motion and a failure to collect the
desired information. Instead, the concept of active perception jointly considers motion
and perception as a unified task. The idea is to plan the motion of the robots in an
online manner with the aim of collecting better data and, ultimately, improving the
system performance at the perception task.

While this concept of active perception has been studied for over three decades (Ba-
jcsy, 1988; Bajcsy et al., 2018), there are many unsolved challenges that have so far
prevented the wide-spread use of this methodology in practice. Many of these chal-
lenges are algorithmic—we are yet to determine the best way to design computer
programs for processing sensor data and planning intelligent decisions. On the other
hand, challenges relating to the physical hardware of robotic systems have held back
our ability to deploy these ideas in the real world. Part of the challenge is also
societal, though many industries are now beginning to recognise and invite the im-
portant role robotics can play in improving their operations. With the ever-increasing
access to faster onboard computation, cheaper sensors and reliable robotics hardware,

Introduction 3

we feel the timing is now right to develop and refine sophisticated active perception
algorithms designed for deployment on robotic information gathering systems.

One way to improve the capabilities of robotic systems is through the use of
multi-robot systems. The deployment of thousands of robots in Amazon ware-
houses (D’Andrea, 2012) is an excellent realisation of the potential of multi-robot
systems. In the context of active perception, teams of robots can efficiently achieve an
improved set of viewpoints over a single robot, where concurrency allows for scaling
up the number of observations in time and space. Using teams of robots also improves
the robustness and reliability of the system. However, scaling up to multiple robots
also introduces additional challenges, particular the need to coordinate the motions
of the robots. While the Amazon warehouse example is an incredibly successful
demonstration of multi-robot coordination, their highly-controlled environment does
not exhibit many of the difficulties experienced in other contexts, such as planning
with an unknown environment, uncertain objectives, unpredictable locomotion, noisy
localisation, energy constraints, and unreliable communication.

The objective of this thesis is to develop principled and practical planning algorithms
that are designed to improve our understanding of and address challenges of multi-
robot active perception systems. The algorithms we propose have several desirable
properties: online and anytime planning, efficiently search over a long time-horizon,
perform multi-robot coordination, are robust to unreliable communication, predict
and respond to plans of other agents, and are generally applicable while also allow
exploiting characteristics of specific perception tasks. Our analytical and experimen-
tal results present compelling evidence that our proposed algorithms are a viable
solution for multi-robot active perception.

This chapter motivates and introduces the concepts presented in the remainder of this
thesis. First we provide a broad definition of multi-robot active perception and high-
light the key components. Then we highlight real-world systems where this method-
ology is applicable. Then we define the main planning problem and subproblems
addressed by this thesis. Finally, we provide an overview of the main algorithms
proposed as the contributions of this thesis.

1.1 Multi-robot active perception 4

1.1 Multi-robot active perception

1.1.1 Active perception in the natural world

Animals, including humans, learn essential information about the world around us.
We do this not by simply processing input stimuli in a passive manner, but by actively
selecting what, when and how to perceive (Gibson, 1966). This is achieved through
actions, such as looking, touching and listening, in order to find the information
we are seeking. For example, seals track fish by moving along hydrodynamic trails
sensed by their whiskers (Dehnhardt et al., 2001). Birds control their body posture
to adjust their visual attention when simultaneously foraging for food and scanning
for predators (Fernández-Juricic et al., 2004). Bats and dolphins control transmitted
sound pulses and reshape their ears to perform echolocation (Thomas et al., 2004).

Many species perform this information gathering in teams, which allows them to
achieve outcomes well beyond what individual animals could do alone. For example,
ants forage for food cooperatively by spreading their search over different areas of
the environment (Traniello, 1989). Communication is essential to the success of this
coordination as it is used to exchange information about food location and recruit
additional foragers to promising areas.

While in this thesis we do not attempt to directly replicate animal cognitive processes,
these examples found in the natural world serve as motivation for applying this general
methodology to robotics.

1.1.2 Robotic active perception

Robots are agents that are embodied in the physical world, and are typically required
to learn information about their environment, either as a sub-task for other problems
or as an objective in its own right. Robotic active perception is the task of controlling
actuators in order to improve the performance at these information gathering tasks,
while making efficient use of available resources.

The type of actions being executed varies depending on the type of actuators available;
for example, robots that have locomotion capabilities can move to new viewpoints,

1.1 Multi-robot active perception 5

robots that have arms can physically manipulate the scene, and robots that have
adjustable cameras can perceive different parts of the scene by changing the focus of
the lens. In this thesis we primarily consider the first type of actions, but the methods
we present could be adapted for other types of actions.

Similarly, the type of information gathering task varies depending on the application.
Typically, a task is described as a variant of a standard problem, such as coverage,
exploration, mapping, search, tracking, or classification. Specific definitions of these
problems vary, but they each define a type of information measure for the value of
actions that describes the objectives of the perception task at hand.

The actions must be selected while also considering the costs of actions that represent
usage of a resource. The resource may be energy, which is likely to impose a hard
constraint on the sum of action costs. The resource may also be time, which may
be a hard or soft constraint. Ultimately, there exists a trade-off between the use
of resources and the value of information collected, which must be addressed when
selecting actions.

1.1.3 Active perception as a system

No matter what type of robot actions or task is being considered, the active perception
methodology should be thought of as a system of several essential components that
must work together. A standard single-robot system developed by Patten et al. (2016)
is illustrated in Figure 1.2, which contains the following components: a planning
module uses the current belief of the world to select the next observation locations; a
navigation module is responsible for driving the robot to the next chosen locations;
and observation, processing and update modules process sensor data to update the
belief of the world. This new belief then feeds back in to the planning module to
replan the observation locations, and this process continues in a cycle. The training
data and initial belief represent some form of prior information about the world that
is used to inform the planning and observation processing.

The planning module is a vital component of these systems and this module is the
primary focus of this thesis. However, we stress that we do not consider planning in
isolation; the proposed planners are specifically designed to optimise with respect to

1.1 Multi-robot active perception 6

Figure 1.2 – An example active perception system. In this thesis we focus on the
planning module while considering the overall system performance. Diagram cour-
tesy of Patten et al. (2016).

predictions of the perception value of actions. There are several desirable properties a
planner should exhibit. A planner should consider the problem as a sequential decision
process and efficiently search over a long time horizon; conversely, greedy decision-
making can significantly compromise the ability to make informative observations
later. A planner should be suitable for real-time applications, meaning that it should
be online, anytime, and there should exist a trade-off between computation time
and performance. In this thesis we propose several planning algorithms with these
desirable properties.

1.1.4 Multi-robot systems

Scaling the system up for multi-robot systems presents additional opportunities and
challenges. Having more robots provides an opportunity to make complementary
observations from more viewpoints and with a wider spatial distribution. This enables
collecting more information in a shorter time frame. Having more robots also improves
the robustness of the system as the system should still perform reasonably well if some
of the robots fail.

One of the main difficulties, though, is that the perception objective function is defined
for the entire team, and therefore the actions for each robot need to be selected while
considered the actions of the entire team. Single-robot planning algorithms cannot be
directly applied, and so specialised multi-robot algorithms must be used instead. The

1.2 Applications of active perception 7

Figure 1.3 – A heterogeneous multi-robot team gathering information on a farm.
Image courtesy of ACFR.

main challenge is to develop multi-robot algorithms that perform efficiently as more
robots are added to the team since the size of the search space scales exponentially
in the number of robots.

Depending on the application, the multi-robot algorithms may be centralised or de-
centralised, and we propose examples of both of these in this thesis. Decentralised
planners in particular should use communication to improve coordination by exchang-
ing information such as plans between robots, but should also be robust to unpre-
dictable communication limits and failures.

1.2 Applications of active perception

We envision teams of robots, such as that in Figure 1.3, being deployed to adaptively
use available resources (e.g., energy, time, communication, and prior knowledge) to
successfully collect information for fulfilling the requirements of applications. This
objective of gathering information may be the end goal for the robotic system, or
it may be a necessary subtask of a broader problem. In this section we highlight
a large variety of example applications for these tasks, in addition to the examples
in Figure 1.1.

1.2 Applications of active perception 8

1.2.1 Information gathering as an objective

In many contexts, human decision-makers require timely information about their
environment of interest. Historically, this information has usually been collected
manually by humans, which in many cases can be labour intensive and require spe-
cialised knowledge. The first steps of automating this process involved static sensor
networks (Akyildiz et al., 2002). Sensor networks provide a persistent stream of data
about fixed locations in an environment, but typically require very large networks to
achieve the desired spatial coverage. Robots can overcome this issue as small teams
of mobile robots with embedded sensors can achieve the same spatial coverage.

We are beginning to see scientists perform environmental monitoring tasks with robots
in the natural world (Dunbabin and Marques, 2012) such as for monitoring algae
blooms (Das et al., 2015; Hitz et al., 2017), carp (Tokekar et al., 2010), clouds (Rey-
mann et al., 2018), caves (Tabib et al., 2016), river geometry (Nuske et al., 2015),
invasive weeds (Clements et al., 2014), and fires (Merino et al., 2012). In many cases,
robots provide information to scientists in contexts that are not otherwise possible,
e.g., on Mars (Bajracharya et al., 2008), in volcanoes (Astuti et al., 2008), and at the
bottom of our oceans (Whitcomb et al., 2010). This information improves scientists’
knowledge of the world and their influence on decision making (Harding, 1998).

Information is also key in many industrial contexts. In agriculture, information al-
lows farmers to make predictions and plan when to harvest, apply fertiliser, con-
trol greenhouses, schedule refinery usage, and plant crops in future years (Wang
et al., 2006). Robots have been used for the inspection/monitoring of nuclear power
plants (Nagatani et al., 2013), ship hulls (Hollinger et al., 2013), work-sites such
as farms (Maturana et al., 2017), heat conduction of energy sources (Cunningham-
Nelson et al., 2015), sensor networks (Lambrou and Panayiotou, 2013), and audio
condition-monitoring of machinery (Even et al., 2017). In defence scenarios, robots
are used to gather information about unexploded ordnances (Acar et al., 2003) and
potential threats (Robin and Lacroix, 2015) to ensure safety of military personnel
and assets.

1.2 Applications of active perception 9

1.2.2 Information gathering as a sub-task

In many applications, the gathered information is not only of interest to humans, but
is also essential for the robot to complete other tasks. For navigation, information
gathered is used for collision avoidance (Bonin-Font et al., 2008; Nuske et al., 2015;
MacDonald and Smith, 2018), safe manoeuvring (Peynot et al., 2014), and landing
unmanned aerial vehicles (Scherer et al., 2012). Efficient gliding requires simulta-
neously learning the wind field (Lawrance and Sukkarieh, 2011). Learning models
of objects in the world is important for grasping and manipulation tasks (Schwarz
et al., 2018; Kahn et al., 2015). Robots are used in coral reefs to identify and track
invasive starfish, then respond by injecting biological agents (Dayoub et al., 2015).
In search and rescue scenarios, once a target is found a robot can then deploy res-
cue equipment (Roberts et al., 2016). In asset guarding missions, potential threats
are identified and tracked ready for possible intervention (Wolf et al., 2017). For
agriculture, information about crops is used for spot-spraying of fertiliser and pesti-
cides (Slaughter et al., 2008). Learnt maps of infrastructure are used by maintenance
robots, such as for bridge maintenance (Paul et al., 2011).

Robots will soon be prevalent in human-centric environments, where accurate in-
formation is crucial to both task completion and for safe interaction with humans.
Robotic vacuum cleaners are being used to clean our houses; early generations of these
robots executed naive paths, while the latest models learn maps of the environment
to improve cleaning efficiency (Moloney and Suarez, 2015). Robots could be used for
providing physical and healthcare assistance to the elderly (Robinson et al., 2014).
Robots will also need to navigate through human crowds, such as for surveillance,
crowd control and transport (Trautman et al., 2015). Information gathering is also a
necessary component of surgical robotics (Guru et al., 2015).

1.2.3 Relevance of this thesis

This thesis does not target any specific one of these applications; instead, we are inter-
ested in studying, understanding, and offering solutions to the fundamental planning
task that underpins all of these applications. We stress that most of the applications

1.3 Thesis Scope 10

listed above have so far only demonstrated success in academic settings; practition-
ers are mostly still using passive perception methods, significant human input, or no
robotics at all. We hope that the research contributions presented in this thesis are
a step towards realising these applications in the wider community.

1.3 Thesis Scope

1.3.1 Active perception planning module

We are interested in improving the performance of an entire active perception system,
such as the system illustrated in Figure 1.2. While all modules contribute to system
performance, in this thesis we particularly focus on achieving this performance im-
provement by developing new planning modules. We emphasise that these planning
modules are designed while considering all modules of the system. Specifically, the
planners must consider the actions available to be chosen by the robots, the naviga-
tion travel-distance budget, the current belief of the world, predicted observations,
and how these observations coincide with the perception objectives of the mission.

1.3.2 General problem statement

We propose several algorithms that are suitable for the planning module under dif-
ferent assumptions about the problem formulation. These algorithms also provide
different algorithmic properties and output characteristics that are suitable for dif-
ferent applications. However, broadly, the algorithms are developed to solve similar
active perception problems. We state a general problem formulation that encompasses
the main problems and general assumptions considered in this thesis as follows.

We consider a team of R robots {1, 2, . . . , R}, where each robot r performs a sequence
of actions xr = (xr1, xr2, . . .). Each action xrj has an associated cost crj and each robot
has a cost budget Br such that the sum of the costs must be less than the budget,
i.e., ∑xrj∈xr c

r
j ≤ Br. This cost budget may be an energy or time constraint defined

by the application, or it may be used to enforce a planning horizon. The feasible set
of actions and associated costs at each step j are a function of the previous actions

1.3 Thesis Scope 11

(xr1, xr2, . . . , xrj−1). Thus, there is a predefined set of feasible action sequences for
each robot X r. Further, we denote x as the set of action sequences for all robots
x := {x1,x2, . . . ,xR} and x(r) as the set of action sequences for all robots except
robot r, i.e., x(r) := x \ xr.

The action sequences, while stated broadly, typically represent the robots moving
around the workspace. As an example, we often define each action xrj as the traversal
of an edge in a probabilistic roadmap (PRM) (Kavraki et al., 1996) representation
of the environment, and an action sequence xr is a feasible path through the PRM.
Alternatively, the formulation in Chapter 4 does not require an underlying discrete
action set, but instead the approach searches for sequences of discrete observation
locations over a continuous space.

There also exists a global objective function g(x) that encodes the objectives of the
perception task at hand. The function g is a function of all of the robots’ actions
x, and may be a probabilistic or deterministic function. We broadly assume that all
robots know and agree on this function, which would typically require some form of
decentralised data fusion.

Given this formulation for the robot actions and perception objective, the general
problem solved in this thesis is stated as follows.

Problem 1.1 (General multi-robot active perception planning problem). Plan the
action sequences x for the team of robots such that the cost-budget constraints are
satisfied and the global objective function g(x) is maximised.

This problem formulates a trade-off between the resource usage of actions ∑ crj and
the perception objective g. There are several possible ways of formulating this multi-
objective optimisation trade-off; we believe the most natural and useful way is to
formulate the resource usage as hard constraints and the perception objective as the
optimisation objective to be maximised, as presented in Problem 1.1.

Here, g is stated as a general function of the robot actions, which can broadly define
any coordination problem. In active perception problems, g encodes some form of
information gain relevant to the perception task at hand. This encoding can be formu-
lated in many different ways depending on the perception task and what assumptions

1.3 Thesis Scope 12

are willing to be made. Throughout this thesis, each considered sub-problem makes
different assumptions about g(x), which is exploited by their respective algorithms.
The problem considered in Chapter 3 makes no further assumptions about g and
solves this problem in the general case for an online, decentralised setting. Chap-
ters 4, 5 and 6 consider more specific problem formulations, which are outlined below
in Section 1.3.3, and propose efficient problem-specific solutions. We also discuss
several typical formulations for g found in the literature in Section 2.1.

1.3.3 Problem settings

In this section we introduce and motivate the sub-problems of Problem 1.1 considered
in this thesis and key characteristics of the problem settings.

Online planning and adaptivity

Online algorithms produce sequences of decisions based on historical data while
also considering the impact of these decision on the final quality of overall perfor-
mance (Karp, 1992; Borodin and El-Yaniv, 1998). This type of decision making is
relevant to settings where there is uncertainty as to what will happen in the future,
such as in memory caching and network routing. Robotics generally, including the
problems considered in this thesis, also falls into this category as planning decisions
need to be made with respect to uncertain estimates of the environment, observations,
team behaviour, etc.

One way to address online problem settings is to develop adaptive algorithms, such
that each planned action is a function of the most recent observation (Hollinger
et al., 2013). Solutions of this form are represented as a policy tree that branches
on observations. This formulation is a general representation of sequential decision
processes and, if solved optimally, guarantees the best possible performance. However,
these benefits come with the cost of requiring significant computational resources,
which may not be available onboard robots. Additionally it requires specifying the
set of all possible observations in advance, which is often unknown or prohibitively
large. Dec-POMDP solutions typically take this approach (Oliehoek and Amato,
2016).

1.3 Thesis Scope 13

In contrast, non-adaptive algorithms plan a fixed sequence of actions that are in-
tended to be executed no matter which observations are received. This simplified
solution typically enables using more efficient solution algorithms. It is common to
then replan online whenever new observations are received that result in changes to
the belief of the world (i.e., g changes). The performance gap between an optimal
adaptive algorithm and an optimal non-adaptive algorithm is referred to as the adap-
tivity gap; in certain classes of information gathering problems, this adaptivity gap
is bounded (Hollinger et al., 2013).

In this thesis we propose non-adaptive algorithms with replanning when new obser-
vations are received. We feel this is the most suitable approach for these problem
settings since our intention is for the algorithms to be computed onboard the robots;
however, we acknowledge this debate of adaptive versus non-adaptive algorithms is a
contentious issue in the planning community.

Decentralised and centralised coordination

In Chapters 3 and 6, we address formulations of Problem 1.1 in decentralised settings.
We broadly define these decentralised settings as follows. We assume each robot r
knows the global objective function g(x), but does not know the actions x(r) selected
by the other robots. We assume that robots can communicate during planning-time
to improve coordination. The communication channel may be unpredictable and
intermittent, and all communication is asynchronous. Therefore, each robot will plan
based on the information it has available locally. Bandwidth may be constrained and
therefore message sizes should remain small, even as the plans grow. Although we do
not consider explicitly planning to maintain communication connectivity, this may be
encoded in the objective function g(x) if a reliable communication model is available.

In Chapter 4, we address a formulation of Problem 1.1 in a centralised setting. This
setting assumes there is a single server that plans on behalf of all robots, which is a
reasonable assumption in some contexts. The server has the advantage of having full
control over what plan xr all robots will execute, meaning it can plan over the space
of joint action sequences x without requiring communication.

In Chapter 5, we address a two-robot problem where one of the robots (the tracker)

1.3 Thesis Scope 14

plans with respect to the other robot (the target). We assume that the target has
already created its plan, and then present a single-robot algorithm for the tracker that
considers probabilistic predictions of how the target may execute its plan. This type of
planning is referred to as decoupled planning, and is often useful in applications where
there is a hierarchy of importance for individual tasks of the robots, as in Chapter 5.
In Chapter 6, this particular problem is generalised to a multi-tracker setting and
solved in a decentralised manner.

Informative viewpoint regions

The problem we formulate and address in Chapter 4 aims to capture the viewpoint-
dependency of observation rewards in an efficient manner. Most approaches for active
perception, including one of the examples provided in Chapter 3, typically estimate
the value of visiting candidate viewpoints by simulating predicted observations (van
Hoof et al., 2014; Wu et al., 2015; Patten et al., 2016). For complex sensor models,
these predictions can be computationally expensive, which therefore restricts the
capabilities of planning algorithms.

Instead, in Chapter 4 we formulate perception tasks by extracting informative fea-
tures of the scene to be observed. This is defined using an inverse sensor model that
generates a discrete set of overlapping continuous viewpoint regions, with associated
rewards, where each feature can be observed. This problem can be thought of as
a new generalisation of the orienteering problem (Vansteenwegen et al., 2011; Gu-
nawan et al., 2016). Figure 1.4 illustrates an example outdoor scene that has been
decomposed into a problem of this form. One advantage of this formulation is that it
allows us to develop efficient non-myopic planners that exploit characteristics of this
formulation to efficiently plan over continuous space.

Mission monitoring

In Chapters 5 and 6 we define and address the mission monitoring problem. Mission
monitoring is a supervisory problem where one or more robots or manually driven ve-
hicles track the progress of an autonomous mobile robot or other agent in performing
a pre-planned task. There are many examples of such tasks that require monitoring,

1.3 Thesis Scope 15

Figure 1.4 – Chapter 4 active perception problem formulation. Illustration
of the motivating active perception problem. Each object segment (point clouds) is
observed by visiting the viewpoint regions (circle segments). Grey cylinders represent
positions of two robots. The currently visited viewpoint regions are drawn in bold.
Black lines represent the path plans. The aim is to collectively maximise the weighted
sum of viewpoint regions visited by the robots.

including undersea surveys, environmental monitoring, autonomous farming and plan-
etary exploration. Monitoring allows for rapid response to failures and to important
information that the robot may discover during the progress of its mission (German
et al., 2012; Hagen et al., 2008; Yilmaz et al., 2008; Khatib et al., 2016). Additionally,
the monitoring vehicle may augment mission capabilities by providing observations
from external viewpoints, such as for accurate localisation and navigation (Fallon
et al., 2010; Heppner et al., 2013; Klodt et al., 2015; Saska et al., 2014; Kottege and
Zimmer, 2011) or online sensor calibration (Bongiorno et al., 2013). The motion of
the robot is typically represented by a mission plan, which may be defined proba-
bilistically to take into account uncertain vehicle dynamics, environment models and
mission objectives (Karydis et al., 2015; Chiang et al., 2014; Aoude et al., 2013).

We consider the case where the monitor vehicles must remain stationary in order to
observe or communicate with the robot, which is motivated by marine robotics prac-
tices where communication equipment is most efficient while stationary. This problem
is important because it is an essential part of employing outdoor robots for certain
real-world tasks, such as various underwater missions (German et al., 2012), that

1.3 Thesis Scope 16

Figure 1.5 – The multi-tracker mission monitoring problem (Chapter 6). A
probabilistic prediction model for a robot trajectory (30min AUV mission) is shown
as blue sample trajectories moving upwards through time. A plan for a tracker team
(3 surface vessels) is shown in black. Cylinders represent probabilistic monitoring
regions at stopping locations. The objective can be interpreted geometrically as
maximising the expected overlap between the cylinders and the prediction model.

depend on timely transmission of sensor observations or system faults. It is also in-
teresting in broader contexts because it applies to systems that must stop periodically
to conserve energy (Brockers et al., 2011), to provide imagery taken from stationary
viewpoints (Naseer et al., 2013), and for acoustically covert surveillance (Dunbabin
and Tews, 2012).

A geometric interpretation of mission monitoring for the case where there is multiple
monitoring vehicles problem is shown in Figure 1.5. The optimisation problem is for
the monitor vehicles to decide where to stop (centre of cylinders), and when to move
to the next observation location (height of cylinders), in order to best observe the
probabilistic prediction model (blue lines). In Chapter 5 we formulate and address
the case where there is one monitoring vehicle, and in Chapter 6 we generalise this
problem for cases where there are multiple monitoring vehicles that coordinate. We
propose algorithms that exploit geometric characteristics of these problems.

1.4 Principal contributions 17

1.4 Principal contributions

The main contribution of this thesis is a suite of planning algorithms suitable for
multi-robot active perception. Each of the proposed algorithms solves a particular
active perception formulation: (Chapter 3) a generic decentralised planning problem,
(Chapter 4) a generalisation of the orienteering problem, (Chapter 5) single-tracker
mission monitoring, and (Chapter 6) multi-tracker mission monitoring. We enumerate
specific contributions as follows:

1. Several new problem formulations for the planning component of multi-robot
active perception systems. These include both generic and problem-specific
formulations, which are designed to both reflect the real world and be in a
suitable form for our proposed solutions.

2. A novel generic planning algorithm, decentralised Monte Carlo tree search
(Dec-MCTS), for decentralised multi-robot planning. This algorithm is a
powerful new method of decentralised coordination for any objective function
defined over the robot action sequences. The algorithm has several useful prop-
erties, such as being anytime, online, non-myopic, balances exploration and
exploitation of the search space, robust to unreliable communication, and al-
lows incorporating prior knowledge. This is the first decentralised variant of
Monte Carlo tree search.

3. A self-organising map (SOM) algorithm designed for an active perception
problem formulated as a generalisation of the orienteering problem. This is
a centralised algorithm that exploits geometric properties of the environment
using a special type of neural network. It is a heuristic algorithm that efficiently
searches over continuous space and a long time-horizon, and has guaranteed
polynomial runtime.

4. The spatiotemporal optimal stopping algorithm for single-tracker mission
monitoring. This algorithm features a novel spatiotemporal graph construc-
tion and a longest-path graph search. The algorithm plans with respect to
probabilistic motion prediction and communication models. It has guaranteed
optimality and polynomial runtime. This algorithm significantly outperforms

1.4 Principal contributions 18

the only other known solution for this problem, and provides new theoretical
guarantees.

5. A decentralised algorithm for multi-tracker mission monitoring. This algo-
rithm combines and extends elements of Dec-MCTS and spatiotemporal optimal
stopping to form a novel decentralised planner. It inherits most of the useful
properties of Dec-MCTS with stronger convergence properties. This is the first
solution to the multi-tracker mission monitoring problem.

6. Analytical results are presented for all proposed algorithms. For Dec-MCTS,
we summarise our previous results from Best et al. (2018a) that show conver-
gence properties for the key algorithmic components, and discuss the implica-
tions of these results. For SOM, we show the algorithm has polynomial runtime
and converges. For single-tracker mission monitoring, we show the algorithm
has polynomial runtime and is optimal. For multi-tracker mission monitoring,
we discuss runtime and convergence properties by extending the results from
Dec-MCTS and spatiotemporal optimal stopping. These results collectively
describe a new understanding of active perception and associated algorithms.

7. Empirical results for simulated experiments with all proposed algorithms.
These results validate the theoretical claims, and evaluate the behaviour of
the algorithms under various scenarios, such as object classification and marine
robotics operations. The experiments reflect the real world by using several
real-world outdoor datasets. Several perception and prediction models are for-
mulated and/or implemented for these experiments.

The work presented in this thesis has partially appeared in our previous publica-
tions. More specifically, most of Chapter 3 is based on Best et al. (2018a) (which
extends Best et al. (2016a)) and Section 3.7 is based on Best et al. (2018c); Chapter 4
is based on Best et al. (2018b) (which extends Best et al. (2016b), with related formu-
lations in Best and Fitch (2016); Faigl et al. (2016)); Chapter 5 is based on Best et al.
(2017) (preliminary results in Best et al. (2015); Best and Anstee (2014)) with experi-
ments that use a model proposed in Best and Fitch (2015) (provided in Appendix A);
and Chapter 6 is based on Best et al. (2018d). Graeme Best is the primary contribut-

1.5 Thesis structure 19

ing author in all of these publications (except Faigl et al. (2016)). All references
mentioned here have been published.

1.5 Thesis structure

The remainder of this thesis is organised as follows.

Chapter 2 surveys related work in the fields of active perception, planning algorithms
and multi-robot coordination.

Chapter 3 presents decentralised Monte Carlo tree search (Dec-MCTS) as a solution
algorithm for solving Problem 1.1 in a principled, decentralised and online manner.

Chapter 4 presents a new active perception formulation as a generalisation of the
orienteering problem, and a self-organising map (SOM) solution algorithm as an effi-
cient, centralised heuristic for this formulation.

Chapter 5 presents an active perception formulation of the mission monitoring prob-
lem and proposes the spatiotemporal optimal stopping algorithm that provides strong
performance guarantees.

Chapter 6 generalises the mission monitoring problem for larger teams of robots
and proposes a decentralised solution algorithm motivated by spatiotemporal optimal
stopping and Dec-MCTS.

Chapter 7 concludes the thesis and discusses important avenues for future work.

Appendix A presents a new intention inference model for trajectory prediction that
is used within the experiments of Chapter 5.

Chapter 2

Related work

The general methodology of active perception has been studied since the 1980s, be-
ginning with the seminal work of Bajcsy (1988). The research field has continued to
grow due to increasing interest from industry, and development in complementary re-
search fields such as computer vision and hardware design. Several important survey
papers have been presented over the years that highlight the growing interest in this
field (Bajcsy, 1988; Chen et al., 2011; Bajcsy et al., 2018).

As argued in Section 1.1, active perception is best thought of as a system of several
interconnected components. However, most attention in the field has focussed solely
on the modules relating to sensing and perception, with only relatively simple planners
being used. Similarly, in the robot planning community, most attention has focussed
on lower-level tasks, such as navigating to a goal (LaValle and Kuffner, 2001), with
less attention given to developing planners that require complex interaction with rich
perception models. This trend is even more apparent in the multi-robot planning
community. Outside of the robotics community, new algorithms are being developed
for planning in many other contexts, especially in game theory, where there is broad
interest in decision making for complex tasks.

This thesis borrows and extends ideas from these fields—active perception, path plan-
ning, and general planning algorithms—to develop new algorithms for the planning
module of multi-robot active perception systems. This chapter reviews related litera-
ture in these three broad fields and draws relationships between them in order to set

2.1 Prediction models and objective functions 21

the context for our new contributions. In Section 2.1, we begin by reviewing common
perception prediction models and objective functions in the context of active percep-
tion; these models represent many of the applications surveyed earlier in Section 1.2.
In Section 2.2, we review algorithms for informative path planning in both single- and
multi-robot settings. In Section 2.3, we review generic planning algorithms that are
particularly relevant to the ideas presented in this thesis. Finally, in Section 2.4 we
summarise the chapter and emphasise the contributions of this thesis in the context
of the literature.

2.1 Prediction models and objective functions

Passive perception methods address the problem of processing input sensor data to
estimate properties of the world; many textbooks have been written about this broad
field, e.g., Szeliski (2010). The perception modules of active perception methods
borrow many of the same ideas, but also require the ability to predict and evaluate
expected observations; this section reviews these concepts. We categorise methods
for these concepts as either continuous models (such as Gaussian processes (GPs)),
discrete models (such as semantic maps), or trajectories (such as moving targets).

The planning module critically relies on these perception predictions since optimi-
sation is performed with respect to these models. The algorithms presented in this
thesis could potentially be used to optimise paths with respect to any of the objec-
tive functions discussed here; we formalise and demonstrate several examples in our
experimental sections.

2.1.1 Discrete sets of properties

In many applications, it is appropriate to represent the world as a discrete set of
properties. This is common in scenarios where it is desired to estimate properties of
a set of objects, a map, or targets. In most cases, this involves maintaining a joint
probability distribution over a set of random variables; each random variable may
be represented by different types of distributions and may or may not be correlated.
Viewpoint evaluation is typically performed by predicting observations and evaluating

2.1 Prediction models and objective functions 22

the effect this observation has on the belief of the world using an information-theoretic
measure. We describe several examples as follows, separating them into different
problem scenarios.

Exploration

Exploration problems involve observing all areas of an unknown environment as fast
as possible. One way to formulate this problem is to describe the world as a grid of
cells, and label each cell as open, unknown or occupied (Elfes, 1989; Yamauchi, 1998;
Zlot et al., 2002; Vincent et al., 2008; Nieto-Granda et al., 2014); these labels may be
deterministic or probabilistic. Observations from a viewpoint can be predicted using
ray-tracing and evaluated by counting the decrease in unknown cells. A typical ap-
proach is to guide the robot towards “frontiers” of unknown cells (Kahn et al., 2015).
It is also possible to incorporate knowledge about the type of maps that the environ-
ment may consists of, which enables more-accurate online predictions and therefore
improved planning performance (Choudhury et al., 2017; Smith and Hollinger, 2018;
Caley et al., 2016).

Active SLAM

Simultaneous localisation and mapping (SLAM) (Durrant-Whyte and Bailey, 2006)
is the problem of jointly constructing a map of the environment and estimating the
robot’s location within it. While there is a plethora of work in developing estimation
techniques for SLAM, there has been undeservedly less attention devoted to the prob-
lem of path planning to improve estimation accuracy, i.e., active SLAM. The problem
of active SLAM is similar to exploration problems in that the aim is to discover a map
of an environment; however, the key difference is that active SLAM explicitly aims to
reduce uncertainty in the map and the robot localisation. Observations can be pre-
dicted in a similar way as for exploration problems, but the key difficulty is to design
objective functions that consider these sources of uncertainty, while also encouraging
exploration. For landmark-based SLAM approaches that use Kalman filter estima-
tion techniques, objective functions can be formulated using information-theoretic
measures, such as Fisher information (Feder et al., 1999), Shannon entropy (Bour-

2.1 Prediction models and objective functions 23

gault et al., 2002), the trace of the error covariance matrix (Huang et al., 2005) and
differential entropy (Atanasov et al., 2015). Similar objective functions have been
formulated for particle filter estimation techniques, such as Kullback-Leibler diver-
gence (Carlone et al., 2010). Heuristics can be employed in the objective function
to explicitly reward loop-closures (Kim and Eustice, 2015). A brief survey of active
SLAM approaches is presented in Cadena et al. (2016).

Active object classification

Another common active perception problem is object classification. This problem is
also about learning a map of the environment, but in this case the map also encodes
higher-level semantic information. Objects in the scene are simultaneously detected,
localised, and classified as an instance of a predefined class. For example, Huber
et al. (2012); Atanasov et al. (2014); Wu et al. (2015); Patten et al. (2016); Becerra
et al. (2016) classify indoor objects such as food and tools, Patten et al. (2018)
classify objects found in a farm yard such as cars and bins, Ramon Soria et al. (2018)
classify apples and leaves in a tree, Arora et al. (2017) classify rocks based on their
geological properties, and Hollinger et al. (2011a); Köhntopp et al. (2015) classify
objects on the seabed. Most formulations represent the world probabilistically in some
form of joint distribution over all objects classes and poses, such as using Bayesian
networks (Arora et al., 2017), particle filters (Patten et al., 2018), and Gaussian
processes (Ramon Soria et al., 2018).

Predicting and evaluating observations is particularly difficult in this context due to
the complex perception models and large state spaces. A typical approach is to predict
point cloud observations using ray tracing of the environment from candidate view-
points (Patten et al., 2018; Wu et al., 2015). These predictions may also hallucinate
predicted objects based on their object class and a library of object models (Kriegel
et al., 2013; Patten et al., 2016). Some formulations also jointly reason over the seg-
mentation of objects (Huber et al., 2012; Pajarinen and Kyrki, 2015; Ramon Soria
et al., 2018). Most approaches use information-theoretic objective functions defined
for this joint probability distribution, such as mutual information (Hollinger et al.,
2011a; Huber et al., 2012; Atanasov et al., 2014; van Hoof et al., 2014; Patten et al.,
2016, 2018; Arora et al., 2017), typically computed using some form of approximation.

2.1 Prediction models and objective functions 24

Our experiments in Section 3.6 are for a scenario that uses an object classification
model based on these ideas.

Most of the above approaches assume that the locations of objects are already known
or the objects are discovered opportunistically (Atanasov et al., 2014; Hollinger et al.,
2011a; Wu et al., 2015; Patten et al., 2015, 2016). However, in larger environments, it
is often necessary to explicitly encourage exploration of the environment to discover
new objects. The objective function should balance the trade-off between exploration
objectives and the primary perception task objectives, which may by achieved using
a weighted sum of the objectives (Bourgault et al., 2002; Kriegel et al., 2013; Patten
et al., 2018) or multi-criteria decision making (Quattrini Li et al., 2016). In Chapter 4
we present a new way of balancing this trade-off by defining new reward polygons in
unseen areas.

2.1.2 Moving targets

Many active perception problems involve perceiving moving targets, such as in track-
ing, search, and pursuit-evasion (Chung et al., 2011; Robin and Lacroix, 2015), as
well as the mission monitoring problem introduced in Chapter 5. The targets may
be, e.g., robots, humans, or animals. Observation prediction models in this context
require predicting the dynamic states of the targets, or trajectory prediction. In this
subsection, we review trajectory prediction models, and then later in Section 5.8 and
Appendix A we propose new example models used as prediction models for evaluating
our planning algorithms.

Prediction models

Approaches to the trajectory prediction problem largely depend on the underlying
assumptions about the motion of the agent or object of interest. The simplest as-
sumption is that the agent is stationary, which may be appropriate for some appli-
cations (Xu et al., 2013; Hönig and Ayanian, 2016), but would require constantly
replanning as the scene changes.

Another simple assumption is that the agent will continue moving with constant or
near-constant velocity or acceleration (Chiang et al., 2014; Reece and Roberts, 2010).

2.1 Prediction models and objective functions 25

These assumptions allow for efficient computation and may be a sufficient prediction
model to improve performance in tracking applications. However these simple models
are often insufficient for dynamic collision avoidance applications where performance
is highly dependent on the accuracy of the predictions rather than the accuracy of
the current position estimate, particularly when extrapolating relatively far into the
future.

Similar models can be extended to model multi-agent collision avoidance in crowds,
which is a highly-active area of research (Lerner et al., 2007; Pellegrini et al., 2009;
Yamaguchi et al., 2011; Trautman et al., 2013; Kim et al., 2015). Due to the com-
pounded uncertainty of crowds these predictions are usually only reliable in the very
near future.

Another common assumption is that the agent will reliably follow one of possibly
many predefined paths, which may come from training data based on previous agent
trajectories (Bruce and Gordon, 2004; Aoude et al., 2013) or known mission plans
(Section 5.8.1). For the case where there are multiple possible predefined paths,
the predictions are characterised by a multi-modal distribution. Furthermore, the
predictions can be improved by estimating which single paths out of all possible paths
is the agent more likely to be following (Bruce and Gordon, 2004; Aoude et al., 2013;
Ahmad et al., 2016). The benefit of this approach is that any underlying assumptions
about the agent’s motion, such as probabilistic dynamics and velocity constraints, can
be modelled implicitly within the predefined paths. However, most realistic scenarios
are less predictable and therefore it is impractical to find a small discrete set of paths
that accurately model the possible paths of the agent.

In the trajectory prediction model we propose in Appendix A, we reason over a po-
tentially infinite number of paths that the agent could possibly take. However we
group together all paths that have a common end position and then predictions are
performed by first updating a belief for the end position of the agent’s path. If the end
position is known then this information can be used to improve the predictions (Pelle-
grini et al., 2009). However, in most cases the end position is not known and therefore
it is advantageous to instead maintain a belief over all possible end positions based
on observations or training data.

2.1 Prediction models and objective functions 26

Intention inference

An agent is often guided by an underlying intention to move to another specific region
of the environment. In this sense, each movement taken by the agent can be thought
of as an action leading towards achieving the underlying intention to move to a goal
region of the environment. This falls into the scope of plan recognition (Charniak
and Goldman, 1993; Goldman et al., 1999). General approaches to plan recognition
are formulated around the idea that every observed action gives information about
higher-level objectives, while reasoning over the higher-level objectives in turn gives
information to predict future actions. Example applications of plan recognition in
robotics includes robot table tennis, interactive humanoid robots (Wang et al., 2013)
and inferring the plan of wheelchair operators (Huntemann et al., 2013).

The plan recognition concept has been used to formulate solutions to trajectory pre-
diction problems. Some interesting proposed methods use a general definition of the
agent’s intention and therefore allow the use of more general frameworks such as
POMDPs (Bandyopadhyay et al., 2012). It can also be beneficial, and computation-
ally efficient, to consider a more narrow definition of intention. Kim et al. (2015)
define the agent’s intention to maintain a velocity close to an unknown preferred
velocity which may change slowly over time as the agent moves through a crowd,
using Kalman filters and a maximum-likelihood estimate of the model parameters.
Schreier et al. (2014) define intentions as typical manoeuvres while driving on struc-
tured roads (e.g., changing lanes), where inference is aided by observed properties of
the road (e.g., the existence of lanes). An alternative interpretation of these concepts
with a fundamentally similar formulation is presented by Nishimura and Schwager
(2018), where one agent aims to convey one of several possible messages to another
agent through its motion. Similar concepts have also been proposed in multi-player
games, known as stochastic Bayesian games, where the inferred behaviours of other
agents are described as one of several possible “types” (Albrecht et al., 2016; Barrett
et al., 2011).

2.1 Prediction models and objective functions 27

Objectives

Formulating a perception objective function suitable for planning requires these mod-
els to be reliable over a reasonably long time period. Ideally, the model should be
probabilistic so planning can be performed with respect to all possible outcomes.
The objective function can vary greatly from task to task, such as minimising the
uncertainty of the tracking estimation (Xu et al., 2013), uncertainty of the intention
inference (Nishimura and Schwager, 2018), or the distance to the agent (Švec et al.,
2014). In Chapter 5 we formulate expected observation time as an objective, and
we propose planners that optimise with respect to long-term probabilistic trajectory
predictions.

2.1.3 Continuous fields

In many applications, particularly environmental monitoring, the properties of the
environment being estimated constitute some form of continuous process that has
spatial and temporal correlations. Observations of this continuous process involve
taking in-situ point measurements. There are many examples of phenomena that
can be represented in this way, such as temperature (Garg and Ayanian, 2014), bioa-
coustic activity (McCammon and Hollinger, 2018), algae blooms (Das et al., 2015),
precipitation (Garg and Ayanian, 2014), clouds (Reymann et al., 2018), and commu-
nication bandwidth (Penumarthi et al., 2017). GPs have also been used for modelling
and learning the preferences of human operators during information gathering mis-
sions (Somers and Hollinger, 2016).

GPs (Rasmussen and Williams, 2006) are the most common representation of these
phenomena for the context of active perception. A GP defines a multivariate normal
distribution where the variables are an infinite collection of random variables defined
over a continuous domain. A covariance function describes the relationship between
the variables. One of the most used covariance functions is the squared exponential,
which is a decreasing function of distance between two points in the domain. Machine
learning algorithms are used to fit the parameters of the covariance function.

What is particularly useful about GPs is the ability to make predictions about the
value of the phenomena for parts of the domain that have not yet been directly

2.2 Informative path planning 28

measured. The value at a test point is predicted by considering the correlation
of this point to all measured datapoints. These predictions come in the form of
a normal distribution, i.e., expectation and variance. For active perception, these
predictions are useful because they can be used to estimate the value of visiting a
viewpoint. Common measures of information gain are mutual information (Hollinger
et al., 2013; Patten et al., 2013; Garg and Ayanian, 2014; Hitz et al., 2017), variance
reduction (Binney and Sukhatme, 2012; Hollinger et al., 2013) or an upper confidence
bound (UCB) (Marchant et al., 2014; Das et al., 2015).

GPs provide the advantages of being widely applicable and relatively efficient to com-
pute. GPs also have associated objective functions that are monotone submodular
(described later in Section 2.2.2), which allows deriving performance guarantees for
myopic planners. However, they are only applicable to tasks where the observations
are point measurements, the uncertainty is Gaussian noise, and the correlations be-
tween observations can be described by a suitable kernel function (Rasmussen and
Williams, 2006); GPs would not be suitable for most of the perception models de-
scribed in the previous subsection.

Continuous fields can also be used to model surfaces of objects. For example, the
Gaussian process implicit surface (GPIS) is an extension to GPs that can be used
in a similar way to a standard GP to provide measures of uncertainty of object
shapes (Martens et al., 2017; Ramon Soria et al., 2018; Hollinger et al., 2013). Hilbert
maps (Ramos and Ott, 2016) is a related concept with similar properties.

2.2 Informative path planning

In this section we review algorithms for informative path planning and related prob-
lems. The planning module for active perception systems can be considered to be
solving a type of informative path planning problem; though “active perception”
typically implies the planner is interacting with a more complex perception model
than what is usually considered in informative path planning (Patten, 2017). We be-
gin this section by considering planners for simplified formulations, particularly the
travelling salesman problem (TSP). Then we discuss single-robot planners for active

2.2 Informative path planning 29

perception problems. Finally we consider multi-robot planners, both centralised and
decentralised.

2.2.1 Simplified problem formulations

The TSP is a canonical path planning problem, which is often used to describe infor-
mative path planning formulations. This subsection introduces the TSP and variants
relevant to active perception. These variants are relevant to several formulations
considered in this thesis, particularly Section 4.2 and Section 3.5.

Travelling salesman problem

The TSP is the problem of finding the shortest path that visits all given cities and
returns to the origin. More specifically, a TSP instance can be described as a graph
with vertices corresponding to cities and edges corresponding to travel distances be-
tween pairs of cities. The goal is to find a Hamiltonian cycle, i.e. a closed path that
visits each vertex exactly once, that has minimum weight.

The TSP is studied in a wide range of fields, particularly operations research (Toth
and Vigo, 2001). It is an NP-hard problem and significant attention has been devoted
to finding efficient heuristic algorithms for the problem.

In its purest form, the TSP can be used to describe simple robotic coverage prob-
lems (Galceran and Carreras, 2013). However, there are several variants and gener-
alisations of the TSP that more closely relate to complex robotics tasks; we describe
several of these below. In some cases, the TSP is used to help setup and motivate a
robotics problem before developing a custom solution algorithm, while in other cases
TSP solution algorithms are used to solve sub-problems of a more general robotics
problem.

m-TSP

The m-TSP generalises the TSP to multiple agents, which requires assigning nodes
to agents and finding a path for each agent. There are several variations of the m-
TSP with different objective functions such as minimising the maximum-cost path,

2.2 Informative path planning 30

or minimising the sum of path costs (Bektas, 2006; Lagoudakis et al., 2005). Many
different approach have been proposed, such as exact algorithms, heuristics based on
the standard TSP, neural networks and genetic algorithms. The focus in the literature
is solely on centralised and offline algorithms.

Generalised TSP

In robotic coverage problems it is often desired to observe a set of points using range
sensors. This does not require the robot to visit the points, but rather just requires
the robot to be within observation range of the points. This problem naturally maps
to the generalised travelling salesman problem (GTSP) (Noon and Bean, 1989) and
related variants, where it is required to visit one city from every set of cities, for a
collection of city sets.

The GTSP is the case where these city sets are discrete and finite. A well known
solution to the GTSP transforms the problem into a standard TSP and then any
TSP solver can be applied (Noon and Bean, 1989). Recently, specialised solvers
have been proposed that are typically more efficient (Smith and Imeson, 2017). The
GTSP can be thought of as a generalisation of the set cover problem (Vazirani,
2001; Hochbaum, 1997) where path constraints are imposed on the set-selection costs;
however, counterexamples show that GTSP is fundamentally harder than set cover
and greedy solutions can perform arbitrarily poorly (Best and Fitch, 2016).

Several variants describe the city-sets as continuous spatial regions. In some ways this
problem is harder than the discrete-set case due to having to deal with the infinite
search space; however, efficient approximation algorithms have been developed that
exploit the spatial-structure of the problem. This problem is often referred to as the
TSP with neighbourhoods for the case of circular regions (Dumitrescu and Mitchell,
2003), and has occasionally been extended for the case with polygonal regions (Faigl
et al., 2013), which is closely related to the watchman route problem (Faigl, 2010).

The GTSP has been formulated for robotics applications. For example, Mathew
et al. (2013) formulate a mobile refuelling problem as a GTSP where the sets describe
possible refuel points in time and space. In Chapter 4 we consider an active perception

2.2 Informative path planning 31

formulation with continuous regions, but additionally has budget constraints, which
more closely maps to the OP, described below.

Orienteering problem

The standard TSP requires finding a path that visits all vertices in shortest time. In
many applications, particularly in informative path planning, a full coverage is not
desirable, or even possible. Instead, the problem is to visit the maximum number of
vertices in a given time. This time or distance constraint represents some form of
budget that cannot exceeded, such as due to fuel constraints, or specifications given
by an operator. In contrast to the TSP, these problems not only require determining
the order to visit vertices, but also the selection of which vertices to visit. Also,
typically some vertices may be more important than others and therefore a common
objective is to maximise a weighted sum of the visited vertices.

The prize-collecting TSP (Balas, 1989) requires finding a selection of vertices to visit,
where rewards are gained by visiting vertices and deducted for omitting vertices. This
presents a trade-off between the reward-value of selecting a vertex versus the travel
cost required to visit the vertex. This formulation is useful in some scenarios, however
it does not enforce budget constraints, and it may be difficult to define the rewards
correctly to reflect a desired trade-off (Faigl and Hollinger, 2018).

The orienteering problem (OP) (sometimes known as the selective TSP) is a distance-
constrained variant of the TSP that appears in a wide range of contexts (Laporte and
Martello, 1990; Vansteenwegen et al., 2011; Gunawan et al., 2016). This problem
is also known to be NP-hard as there exists a transformation from the Hamiltonian
circuit problem (Laporte and Martello, 1990). Similar to the standard TSP, there
are many relevant variants to the OP; the most relevant variants to informative path
planning and this thesis include the team-OP that extends the problem for multi-
agent systems, generalised-OP (Geem et al., 2005) that defines the objectives as a
function of discrete sets, and the orienteering problem with neighbourhoods (OPN)
where rewards are collected by visiting continuous regions.

Chapter 4 considers a new OP variant that includes continuous polygonal goal regions
(similar to the GTSP variants), and multiple agents (similar to the team-OP). While

2.2 Informative path planning 32

there are existing techniques for the team-OP (Dang et al., 2013a; Archetti et al.,
2007; Dang et al., 2013b), none of these address continuous polygonal goal regions.
Also, while OP formulations have been applied to many problems (Gunawan et al.,
2016; Vansteenwegen et al., 2011), the focus has mostly been on offline planning rather
than online settings where goals are discovered over time, which is more applicable
to robotics.

2.2.2 Single-robot planning

In this section we review methods for single-robot informative path planning. We
begin by highlighting the importance of viewpoint dependencies, and how the above
TSP formulations do not adequately consider this. We then discuss myopic methods
and the concept of submodularity, followed by non-myopic methods.

Dependencies between viewpoints

The standard TSP fails to capture one of the most important aspects of informative
path planning reward functions: dependencies between viewpoints. More specifically,
in the TSP, the reward for visiting a vertex is considered to be independent of whether
or not other vertices have been visited. In information gathering, this is typically
not the case; the value of making an observation usually depends on what other
observations have been made since observations may provide overlapping information.

The GTSP, as described above, can model some types of observation dependencies;
the value of a vertex is reduced to zero if the vertex is the element of a set that has
already been visited. This can provide a useful approximation to more general defi-
nitions of dependencies while enabling relatively computationally efficient solutions.
Permitting the vertex sets to be non-mutually exclusive allows richer descriptions
of dependencies since vertex rewards after an observation can be reduced but still
greater than zero. Adding more and more overlapping sets could potentially describe
any types of dependencies, however the effectiveness of associated solution algorithms
would likely diminish. Our self-organising map algorithm in Chapter 4 aims to solve
this general class of problems for the case where the sets are continuous polygonal

2.2 Informative path planning 33

regions; the algorithm exploits the geometry of the problem to efficiently find solu-
tions. However, there are limitations to this definition of dependencies, and thus a
more principled approach is often more appropriate.

An important implication of the above discussion is that informative path planning
is a generalisation of the TSP, and thus is NP-hard. More importantly, TSP formu-
lations and associated algorithms are typically not sufficient for solving informative
path planning problems. We review existing methods for informative path planning
in the following subsections, and propose new approaches in this thesis.

Exploiting submodularity with greedy approaches

Submodularity is a property of set functions that describes “diminishing returns”;
i.e., if a set function is submodular then adding an element earlier is worth more than
adding the same element later. More formally, a set function f defined over the power
set of a finite set Ω is such that ∀X, Y : X ⊆ Y ⊆ Ω and ∀x ∈ Ω \ Y the inequality

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y) (2.1)

holds (Nemhauser et al., 1978). A set function is monotone submodular if it addi-
tionally has the monotone property:

f(X) ≤ f(Y), ∀X, Y : X ⊆ Y ⊆ Ω, (2.2)

i.e., f(X) does not decrease if more elements are added to the set X.

The significance of having an NP-hard optimisation problem with a monotone sub-
modular objective function is that it often enables the use of efficient greedy algo-
rithms with performance guarantees. In the simplest case, these are problems where
the aim is to find a set X∗, defined as

X∗ = arg max
X⊆Ω,|X|≤k

[f(X)] , (2.3)

where k is a cardinality constraint on the size of the set. The greedy policy is simply
to add elements xi ∈ Ω to the solution set Xgreedy until the cardinality constraint is

2.2 Informative path planning 34

met, where
xi = arg max

x
[f(Xgreedy ∪ {x})] . (2.4)

This greedy selection policy clearly has polynomial runtime and, more importantly,
guarantees a constant-factor approximation (Nemhauser et al., 1978), such that

f(Xgreedy) ≥
(

1− 1
e

)
f(X∗) ≈ 0.63f(X∗), (2.5)

and typically achieves much better than these bounds in practice. Common extensions
that provide similar guarantees include adding non-uniform element costs (Krause and
Guestrin, 2011), and problems with adaptive policies (Golovin and Krause, 2011).

There are many examples of real-world optimisation problems with monotone sub-
modular objective functions, such as sensor placement, activity recognition and data
mining (Krause and Guestrin, 2011). Many robotic active perception problems are
often formulated with monotone submodular objective functions, particularly the
information-theoretic measures that appear in many of the examples discussed in Sec-
tion 2.1, such as mutual information. In these cases, the set Ω represents candidate
viewpoints for making observations and f is the objective function that describes
the perception task. Many robotics approaches directly apply the greedy algorithm
described by (2.4), such as touch-based localisation (Javdani et al., 2013), object
recognition (Wu et al., 2015; Patten et al., 2016), target tracking (Dames et al.,
2017), and thermal mapping (Cunningham-Nelson et al., 2015).

Non-myopic approaches

Despite the wide-spread use of greedy algorithms for informative path planning, there
are several limitations with these methods. Most significantly, incorporating path
costs and path constraints into problem (2.3) breaks the assumptions, resulting in
arbitrarily poor performance (Singh et al., 2009a; Best and Fitch, 2016). Also, even
in cases where the guarantees in (2.5) hold, this analysis describes the worst-case
performance; more sophisticated algorithms are likely to achieve better actual perfor-
mance for many problem instances. Finally, many important problems do not have
the monotone submodularity property, such as when optimising for decisions that
depend on the gathered information (Chen et al., 2017). Non-myopic approaches

2.2 Informative path planning 35

attempt to overcome these issues; we describe several approaches for single-robot
information gathering as follows.

Several approaches for problems with submodular objective functions extend the basic
greedy approach to non-myopic algorithms. Commonly, these approaches plan over a
discretised topological representation (i.e., graph or “roadmap” (Kavraki et al., 1996))
representation of the workspace. The recursive greedy algorithm (Chekuri and Pal,
2005) recursively divides the problem into sub-problems to give a quasi-polynomial
runtime with performance guarantees. Closely related approaches offer efficiency
improvements by exploiting assumed spatial correlations (Singh et al., 2007, 2009b).
Hollinger et al. (2013) employ the submodular greedy algorithm to select informative
sensing locations then plan a TSP tour through these points. Approaches have also
been proposed that plan directly over a continuous workspace by extending RRT
approaches (LaValle and Kuffner, 2001) to information gathering problems; these
include RIG (Hollinger and Sukhatme, 2014) which adaptively prunes less-informative
paths from the search tree, IRRT (Levine et al., 2010) is based on similar ideas but
is specifically for target tracking problems, and RRC (Lan and Schwager, 2016) finds
persistent monitoring cycles. ReASC (Hollinger, 2015) extends RIG for adaptive
problems by making “optimistic” approximations of expected rewards. Hitz et al.
(2017) plan over a continuous workspace using an evolutionary algorithm to optimise
parameters of splines that represent trajectories.

There has also been several approaches that do not explicitly require submodularity.
Binney and Sukhatme (2012) propose the use of branch and bound tree search tech-
niques (discussed further in Section 2.3.3) to efficiently and exhaustively explore the
search space. Monte Carlo tree search (discussed further in Section 2.3.4) has recently
become popular for its ability to heuristically expand a search tree with convergence-
rate guarantees (Marchant et al., 2014; Nguyen et al., 2015; Hefferan et al., 2016;
Patten et al., 2018; Arora et al., 2017). The RAId algorithm (Lim et al., 2016) solves
the group Steiner problem as a sub-problem to find solutions in polynomial-time and
with optimality guarantees. McCammon and Hollinger (2018) propose a hierarchical
planner that first extracts the most informative regions of an information field then
plan weighted coverage paths over these regions. In exploration scenarios, imitation
learning can be used for planning by learning from non-myopic example plans that

2.2 Informative path planning 36

have assumed full knowledge of the world (Choudhury et al., 2017).

Persistent monitoring is an important class of information gathering problems that
typically require non-myopic planning. This class of problems generally requires find-
ing cyclic paths that repeatedly observe parts of the environment over an infinite time
horizon. This long-term periodic constraint, similar to TSP constraints, mean that
myopic solvers are inadequate. Several non-myopic algorithms have been proposed,
including rapidly exploring random cycles (Lan and Schwager, 2016), MCTS variants
for surveillance and patrolling (Kartal et al., 2015; Hefferan et al., 2016), mixed inte-
ger programming (Yu et al., 2016), and bounded approximation algorithms for finding
min–max latency paths (Alamdari et al., 2014). Although we do not explicitly con-
sider the infinite horizon persistent monitoring problems in this thesis, our proposed
self-organising algorithm can easily be setup to provide similar cyclic solution paths.

In the majority of the work referenced above, the objective function that the ap-
proaches have been tested on are relatively easy to compute. However, when consid-
ering more complex perception models (such as those described in Section 2.1), this is
not the case, which severely limits how far the non-myopic planners can look ahead.
Work that successfully apply non-myopic planners for these problems (e.g., Atanasov
et al. (2014); Becerra et al. (2016); Patten et al. (2018)) usually involve careful con-
sideration of this issue when developing perception models, such as making maximum
likelihood approximations or using fast, specialised data structures.

The ideas in this thesis are particularly motivated by the non-myopic planners dis-
cussed above. Our main contribution relative to the above work is the generalisation
of these formulations to multi-robot scenarios. Although this is not our focus, our
proposed methods could also be applied to single-robot problems. The generic algo-
rithm proposed in Chapter 3 does not require submodularity, but it can exploit this
property when appropriate by incorporating greedy heuristics. Most of the proposed
methods plan over a topological representation of the workspace, while the algorithm
proposed in Chapter 4 directly plans over continuous space. Several of the example
objective functions we use throughout to test our methods are richer perception tasks,
such as object classification, while others are formulated as efficient approximations
of more complex tasks to allow expanding deeper into the search space.

2.2 Informative path planning 37

2.2.3 Centralised multi-robot planning

Generalising informative path planning for multi-robot systems is inherently a more
difficult problem. Most of the considerations described above for single-robot plan-
ning, such as viewpoint dependencies, submodularity, and benefits of non-myopic
reasoning, are also relevant to multi-robot planning. Approaches are characterised
as being either centralised, i.e., one computer decides the actions of all robots, or
decentralised, i.e., each robot decides its own actions while considering the team’s
objectives. In this section we discuss centralised planning methods for informative
path planning, and defer the discussion of decentralised planning to Section 2.2.4.
We propose both centralised and decentralised planners in this thesis.

Centralised multi-robot planning shares many similarities to single-robot planning
as the aim in both cases is for a single computing node to find a set of viewpoints.
Therefore, many of the algorithms discussed above (Section 2.2.2) for the single-robot
case have been adapted for the centralised multi-robot case. The main difference is
that the search space generally scales exponentially in the number of robots. Thus,
the focus when developing centralised algorithms is to improve the runtime scalabil-
ity in the number of robots. For example, the recursive greedy algorithm has been
generalised for the multi-robot case with a straight-forward extension to the original
algorithm followed by heuristics and a branch and bound algorithm to improve run-
time (Singh et al., 2007). Lan and Schwager (2016) propose an RRT-like algorithm
for persistent monitoring then extend the algorithm by planning in the joint space of
the robots. Coverage-type problems (Cao et al., 1988), which are a relatively simple
case of informative path planning, have often been addressed with centralised plan-
ners: Hassan and Liu (2017) employ Voronoi partitioning of 3D structures followed by
single-robot coverage algorithms, Dornhege et al. (2016) sample and rank candidate
sensing locations then solve a multi-agent TSP, Hönig and Ayanian (2016) perform
dynamic coverage by sampling from visibility polygons then assigning locations to
robots.

Dec-POMDP formulations (Oliehoek and Amato, 2016) are typically solved using
centralised planning to compute policies that are executed in a decentralised man-
ner. While informative path planning is typically not explicitly formulated as a
Dec-POMDP, it can be thought of as a special case. We discuss the Dec-POMDP in

2.2 Informative path planning 38

more detail in Section 2.3.1.

Centralised planning is more common in robotic planning problems other than infor-
mation gathering, particularly for application where it is common to have permanent
infrastructure to support centralised systems, such as warehouses. The classical path
planning problem, where the aim is to find collision free trajectories to goal locations,
has received a lot of attention (Schwartz and Sharir, 1983; Solovey et al., 2016; Yu and
LaValle, 2016); however the objectives here are fundamentally different to informative
path planning.

2.2.4 Decentralised multi-robot planning

Decentralised planning offers many advantages over centralised planning approaches,
particularly in outdoor environments where there is less permanent and reliable in-
frastructure. Most importantly, decentralised planning avoids having a single point of
failure, and the robots should continue to behave reasonably even if communication
is temporarily interrupted. Also, distributing the computing efforts over multiple
nodes can increase the computational resources available to the team. Often, faster
decisions can be made since the relevant computing is performed primarily onboard
the robot that executes each decision.

However, there are many challenges to performing decentralised planning. The al-
gorithms are inherently parallel algorithms, typically without time synchronisation,
which can make the behaviour unpredictable. Each processing node (robot) has less
information about the world compared to centralised systems; this includes knowledge
about the state of the environment, the state of the other robots, and the intentions
of the other robots. Ideally, the robots should still make reasonable decisions even if
communication is disrupted. We review existing approaches to addressing these chal-
lenges as follows, beginning with relatively simple planning problems, then leading to
active perception problems.

Swarm robotics

The swarm robotics literature (Brambilla et al., 2013) considers systems of very large
teams of robots where each robot has extremely limited knowledge of the world, such

2.2 Informative path planning 39

as only knowing the proximity to neighbouring robots. Additionally, communica-
tion is typically very limited, such as no explicit communication at all, or only being
able to send small packets between local neighbours. Due to this limited informa-
tion, the decision making performed by each robot is relatively simple. The focus
is therefore on designing simple local decisions that result in emergent collective be-
haviours. This allows the team to complete tasks such as controlling local densities of
robots (Demir et al., 2015), perimeter following (Caccavale and Schwager, 2017) and
manipulation (Culbertson and Schwager, 2018). Unfortunately, this simple decision
making and limited sensing is not enough to solve richer perception tasks. We believe
it is much more appropriate to solve most active perception problems with smaller
teams of robots that have increased onboard sensing, computation and communica-
tion capabilities.

Distributed task assignment

Task assignment problems (Munkres, 1957) involve assigning a set of tasks to a set
of agents, such that each task is assigned to one agent, and each agent is assigned
one task. Each task-agent pair has an associated assignment cost, and the aim is
to minimise the sum of these costs. More formally, this problem involves finding
a minimum-weight matching in a bipartite graph. The Hungarian algorithm solves
this problem in a centralised manner in polynomial time (Munkres, 1957). Several
decentralised algorithms have been proposed such as the distributed Hungarian al-
gorithm (Chopra et al., 2017) and local task swaps (Liu et al., 2015). Auction-based
methods consider generalisations where each agent can be assigned more than one
task, or each task can be assigned to more than one agent (Dias et al., 2006).

The main benefit of this formulation and approaches is that they are relatively easy
to compute. However, this formulation is typically not expressive enough for active
perception tasks since rewards and/or costs are not additive. Also these approaches,
particularly in the one-to-one case, are myopic planning. However, they have been
used as a sub-routine of more sophisticated methods, e.g., for target tracking prob-
lems (Xu et al., 2013).

2.2 Informative path planning 40

Non-myopic planning

Decentralised myopic methods with performance guarantees have been proposed for
monotone submodular problems (Hollinger et al., 2009; Patten et al., 2013; Garg and
Ayanian, 2014; Kemna et al., 2017). However, the benefits of myopic planning are
equally applicable to the multi-robot case, as they are to the single-robot case (dis-
cussed in Section 2.2.2). Existing decentralised planning algorithms for multi-robot
informative path planning typically involve exploiting problem-specific characteris-
tics. The auction-based methods mention above (Dias et al., 2006) involve each
robot negotiating over which tasks it will perform, and are more appropriate for cov-
erage and exploration problems (Zlot et al., 2002). Stranders et al. (2009) combine
max-sum message passing (discussed further in Section 2.3.6) with branch and bound
pruning (discussed further in Section 2.3.3) to find sequences of viewpoints that min-
imise the entropy of a Gaussian process. Hollinger et al. (2009) propose solving a
finite-horizon POMDP (discussed in Section 2.3.1) for target search problems. Corah
and Michael (2017) propose a distributed sequential greedy assignment algorithm for
multi-robot exploration, and provide performance guarantees by exploiting a submod-
ularity assumption. Gan et al. (2014) solve search problems with inter-agent collision
avoidance by solving a constraint optimisation problem and refining trajectories to
avoid collisions. Atanasov et al. (2015) propose a decentralised algorithm for tracking
targets that have linear Gaussian dynamics, such as for active SLAM (discussed in
Section 2.1.1).

Our proposed algorithm in Chapter 3 is applicable to a general class of problems,
which includes all problems mentioned above, since it does not rely on specific assump-
tions about the problem; however, our approach can readily incorporate problem-
specific approximate solutions, such as those above, as heuristics to guide the search.
The algorithm proposed in Chapter 6 is also a decentralised, non-myopic planning
algorithm; however, in this case we make several assumptions about the problem in
order to formulate an efficient solution for this specific case.

2.2 Informative path planning 41

Communication considerations

The majority of decentralised coordination algorithms involve communicating each
robot’s plan to other robots. This communicated information is used to ensure the
team’s objectives are being met. One advantage of decentralised planning is that
reasonable behaviour should still be exhibited if the communication breaks down.
The role of communication has been considered in various ways, which we discuss as
follows.

Several planners have been demonstrated to have a graceful degradation of perfor-
mance as communication becomes less reliable. The max-sum algorithm (discussed
further in Section 2.3.6) demonstrates this property, which is explained as being due
to message redundancy (Farinelli et al., 2008). Otte and Correll (2013) demonstrate
this property for a distributed RRT algorithm that solves coordinated path planning
with collision avoidance. Otte et al. (2017) compare the performance of distributed
auction algorithms for task allocation in harsh communication environments. The
Dec-MCTS algorithm we propose in Chapter 3 is also demonstrated to have this
useful property.

It is also possible to take an active approach to exploit this communication redun-
dancy by explicitly selecting which messages to transmit. In most cases, “commu-
nication planning” has been performed where the messages are observations. The
value of these messages can be measured by considering their effect on data fusion
accuracy (Williamson et al., 2008; Kassir et al., 2015). Planning to communicate
plans, rather than observations, is less common; Unhelkar and Shah (2016) address
this problem for Dec-POMDP formulations by defining communication value as the
reduction in reward caused by not communicating. We recently proposed a new ap-
proach to this problem that maintains a probabilistic belief over the future plans, and
then measures the information value as uncertainty of the reward distributions; we
summarise our approach in the context of Dec-MCTS in Section 3.7.

An alternative, and complementary, approach to improve communication is to actively
position the robots in order to improve the communication channel. This problem
is known as communication-aware motion planning (CAMP), where communication
objectives, such as maximising network throughput, is formulated as secondary objec-

2.3 Planning algorithms 42

tives when planning the motion of the robots. It is not surprising that robot motion
can be exploited to improve communication since communication quality is spatially
varying, due to, e.g., the well studied effects of path attenuation, or the more com-
plex issue of multi-path fading (Lindhé, 2012). Examples of CAMP problems include
selecting robot paths to perform connectivity maintenance (Sabattini et al., 2013),
periodic connectivity (Hollinger and Singh, 2012), or communicate with a fixed base
station (Ghaffarkhah and Mostofi, 2011; Lindhé and Johansson, 2013). In Chapter 5
and Chapter 6 we consider a new problem of this type where robots choose to stop
and communicate at times and locations that have a high prediction probability of
communication success.

A difficulty in applying CAMP approaches in practice is that they assume a known
model that maps pairs of spatial locations to communication quality. In general,
learning this model with sufficient accuracy is an unsolvable challenge. For specific
tasks, sufficient models may be learnt in indoor environments (Banfi et al., 2017), or
by using local measurements of multi-path fading in complex environments (Lindhé
and Johansson, 2013). We propose new models suitable for mission monitoring in
Chapter 5, which combines communication models with probabilistic trajectory pre-
diction models (introduced in Section 2.1.2).

2.3 Planning algorithms

In this section we introduce several planning algorithms relevant to this thesis that
have been developed primarily outside of robotics. We begin by broadly discussing
sequential decision problems, then looking more closely at optimal stopping, branch
and bound tree search, Monte Carlo tree search, self-organising maps, and inference-
inspired decentralised algorithms. These algorithms are mostly presented in the con-
text of the contributions of this thesis.

2.3 Planning algorithms 43

2.3.1 Generic sequential decision problems

MDPs

Sequential decision problems are problems in which an agent’s utility depends on a
sequence of decisions. One of the most basic forms is the Markov decision process
(MDP) (Bellman, 1954). An MDP consists of a set of states s (including an initial
state s0), a set A(s) of actions a in each state (which is an empty set if s is a terminal
state), a transition model P (s′|s, a) which defines the probability of moving from state
s to state s′ when action a is executed, and a reward function R(s). The optimisation
problem is to find a policy π that defines an action π(s) to take when in a state s.
An optimal policy is π∗ is the policy that yields the highest expected utility, defined
as the sum of rewards R(s) for a sequence of visited states. Techniques such as value
iteration and policy iteration are optimal algorithms commonly used for solving this
formulation of sequential decision problems (Russell and Norvig, 2010, Chapter 17).

If A(s) is a finite set ∀s, the search space can be represented as a tree of states, where
every path through the tree from the root node to a leaf node represents a valid
sequence of state transitions with an associated utility. The action a = π(s) and the
probabilistic transition model P (s′|s, a) defines which branches of the tree are taken
when the agent executes the policy π. In this way, the problem of optimising π can be
thought of as a tree search; we discuss related tree-search algorithms in the following
subsections.

POMDPs

A common extension of MDPs is the partially observable Markov decision process
(POMDP), which extends the formulation for settings where the agent has a proba-
bilistic belief b(s) of the current state s. Policies need to be represented by a function
of the belief, i.e., π(b), rather than a function of the state. In principle this is similar
to an MDP but the key difficulty is that the space of all b is a continuous set. In the
worst case, finding optimal policies for POMDPs is PSPACE-hard (Papadimitriou
and Tsitsiklis, 1987).

2.3 Planning algorithms 44

Dec-POMDPs

Centralised multi-agent problems can be formulated as an MDP/POMDP where s
represents a joint state of the agents and a represents a joint action of the agents;
similar algorithms can be applied to these problems. A more interesting case is where
these agents’ act in a decentralised manner. In these problems, each agent may have a
different belief b of the state s and yet still needs to select actions that coordinate with
other agent’s actions. This problem is known as a decentralised partially observable
Markov decision process (Dec-POMDP) (Oliehoek and Amato, 2016). In the general
case, Dec-POMDPs are formally harder to solve optimally than POMDPs, as it is
NEXP-hard (Bernstein et al., 2002).

Approaches

Most solutions to problems formulated as any of the above formulations are offline
algorithms, i.e., prior to executing a task, a policy π is optimised for all possible
states/beliefs. In contrast, online planners compute the relevant parts of π as re-
quired while executing the task. The online setting simplifies the search procedure
since it can focus on optimising the next action π(s0) from the current state s0.
However, online settings typically have much tighter time constraints that dictate
the need to make fast decisions rather than optimal decisions. POMCP (Silver and
Veness, 2010) and DESPOT (Somani et al., 2013) are common online algorithms
for POMDPs. The time constraints of online settings also often necessitate using
non-adaptive algorithms (Hollinger et al., 2013), as discussed earlier in Section 1.3.3.

The vast majority of Dec-POMDP solutions typically involve centralised, offline policy
optimisation, followed by decentralised execution (Oliehoek and Amato, 2016; Amato,
2015; Kumar et al., 2015; Omidshafiei et al., 2017). The approach of Spaan et al.
(2006) is a notable exception that performs planning and execution in an online,
decentralised manner; our proposed algorithms in Chapter 3 and Chapter 6 also take
this general approach.

2.3 Planning algorithms 45

Sequential decision formulations in this thesis

We do not explicitly formulate the sequential decision problems in this thesis as
Dec-POMDPs or related formulations. The problems presented could be considered
as specific instances of these formulations. However, we feel the problems presented
and associated algorithms are better described using problem-specific formulations
and notation.

2.3.2 Optimal stopping

One of the simplest forms of sequential decision problems are optimal stopping prob-
lems (Chow et al., 1971). These problems involve a binary choice at each time instant;
at each time instant, the decision at hand is simply whether to stop or continue.

Secretary problem

The secretary problem (Ferguson, 1989) is one of the most extensively studied optimal
stopping problems. The problem is often presented as a scenario where an admin-
istrator wants to hire the best secretary out of n applicants for the position. Each
applicant is interviewed one-by-one by the administrator. After each interview the
administrator must immediately hire the applicant and perform no more interviews,
or reject the applicant and continue interviewing the next applicants. An applicant
cannot be recalled after being rejected. The administrator can rank the current appli-
cant against all previous applicants, but is now aware of how they compare to future
applicants. If the first n− 1 applicants are rejected, then the nth applicant must be
hired.

An elegant solution to the secretary problem is the following strategy: reject the first
n/e applicants (where e ≈ 2.72 is Euler’s number), then hire the first applicant who is
better than every applicant interviewed so far. The first phase is essentially learning
about the distribution of quality of the applicants, and the second phase is acting
on this information. This strategy has a 1/e ≈ 37% probability of hiring the best
applicant (Bruss, 2000).

2.3 Planning algorithms 46

Several variants have been considered, such as if n is unknown (Presman and Sonin,
1972), or k > 1 secretaries are to be hired (Girdhar and Dudek, 2009). Similarly
elegant solutions have been proposed for these variants.

Repeated binary decisions

If the binary choice at each timestep can be repeated, the problem can be considered
to be one-dimensional in the sense that it involves a choice of nonoverlapping intervals
along a single dimension representing time. There are several examples of this type
of problem in robotics, which we discuss as follows.

Lindhé and Johansson (2013) studied an optimal stopping problem for a robot that
communicates with a base station while traversing a predefined path. The robot
must choose stopping points that maximise communication quality while also making
progress along its path.

Das et al. (2015) applied optimal stopping theory to the problem of selecting sampling
locations for persistent collection of water samples by an AUV. Similar to Lindhé and
Johansson (2013), the stopping locations are restricted to points along a predefined
path. Sampling is instantaneous, rather than pausing motion for a planned time
interval such as in Lindhé and Johansson (2013).

The beachcombers’ problem (Czyzowicz et al., 2015a,b) is a related theoretical problem
where a team of robots perform coverage of a one-dimensional interval. Each robot
can switch between two behaviours: searching slowly while observing, or walking
quickly but blindly. The decision of switching between the two behaviours is similar
to optimal stopping.

Extending to multiple dimensions

The spatiotemporal optimal stopping problem formulated in Chapter 5 extends the
optimal stopping robotics formulations discussed above in several ways. Most impor-
tantly, the decisions are no longer binary, but instead stopping intervals are described
by both temporal and spatial components. Additionally we formulate motion and
observation models suitable for the mission monitoring application. Our solution

2.3 Planning algorithms 47

algorithm in Chapter 5 has similarities to solutions to the above problems, in that
the algorithm is a type of dynamic programming (Cormen et al., 2001).

However, instead, we describe our algorithm as a type of sweep-plane algorithm.
Sweep-plane algorithms are often used for computational geometry problems such
as Voronoi decomposition, intersections between line segments and unions of rect-
angles (Preparata and Shamos, 1985; De Berg et al., 2000). An Rn−1 hyperplane is
swept monotonically through an Rn space, and calculations are performed at event
points. Classical robot motion planning problems can often be formulated geomet-
rically and solved with sweep-plane solutions (Latombe, 1991; LaValle, 2006). Our
approach features a sweep-plane moving through time, where the event calculations
represent optimal sub-problems and lead to an optimal global solution.

Each sweep-plane event can be thought of as a vertex in a spatiotemporal search graph
with edges linking back to previous events. This construction forms a directed acyclic
graph and therefore a longest path can be computed in polynomial time (Lawler,
1976; Cormen et al., 2001). Bopardikar et al. (2014) employ this approach for dy-
namic vehicle routing, where an agent maximises the number of space-time demands
visited. Our problem again is similar, however our agent seeks to occupy a region
defined probabilistically over time. The novelty of our approach in comparison lies
in our proposed graph construction algorithm to maintain optimality for a complex
constraint space and objective function.

2.3.3 Branch and bound tree search

Branch and bound (BnB) is a popular class of algorithms for combinatorial optimi-
sation problems that can be described as an optimal tree search (Clausen, 1999). As
the search tree is expanded, subtrees that are guaranteed to not contain an optimal
solution are successively pruned from the search space. This pruning enables an ef-
ficient exhaustive search to be performed since pruned subtrees do not need to be
enumerated. The pruning crucially relies on being able to efficiently compute tight
bounds for each subtree; loose bounds results in less pruning, while slow-to-compute
bounds increases the iteration runtime.

An example expanded BnB search tree is illustrated in Figure 2.1, which shows how a

2.3 Planning algorithms 48

(a) Naive left-to-right expansion (b) Maximum upper-bound expansion

Figure 2.1 – Illustration of branch and bound tree search with two different expansion
policies. Gold path is best solution found so far; green is current search tree; purple
is pruned search space; grey has not yet been explored or pruned. Figure from Best
and Fitch (2016).

search tree is expanded while pruning away suboptimal subtrees (purple). In (a), the
tree is expanded using a naive depth-first policy and has pruned 42% of the search
space after only visiting 25% of the nodes. In (b), the tree is expanded by visiting
the subtrees that have the highest upper bounds (for a maximisation problem), which
prunes 64% of the search space. In each case, the search returns the best solution
found so far, along with computed bounds on the utility of the optimal solution.

There are several examples of BnB being applied to robotic path planning. Singh
et al. (2009a) apply BnB to general environmental monitoring problems that use GPs
and a mutual information objective. Binney and Sukhatme (2012) apply BnB to a
similar scenario for marine robotics and use a variance reduction objective. In (Best
and Fitch, 2016), we apply BnB to a type of informative path planning problem that
generalises the set cover problem (Vazirani, 2001). D’Urso et al. (2018) apply BnB
to a refilling problem in agricultural robotics.

While we do not propose BnB algorithms in this thesis, they serve as a useful in-
troduction for the MCTS algorithms described in the following subsection. BnB and
MCTS are similar except BnB requires problem-specific bounds with hard guarantees,
whereas standard MCTS (UCT) relies on generally-applicable probabilistic-bounds
derived from the Chernoff-Hoeffding inequality. Subtrees that are estimated to be
suboptimal by MCTS are implicitly pruned since they are not visited again, however
there always remains a possibility of eventually revisiting this subtree as the esti-
mates change. Additionally, MCTS offers principled policies for the order in which
the tree should be expanded, whereas for BnB effective expansion policies are harder

2.3 Planning algorithms 49

to find (Clausen, 1999; Mehlhorn and Sanders, 2008; Best and Fitch, 2016).

2.3.4 Monte Carlo tree search

Monte Carlo tree search (MCTS) (Browne et al., 2012) is a biased random sampling
approach to tree search problems. Although it is a relatively new technique, with the
main seminal work published in 2006 (Kocsis and Szepesvári, 2006), it has quickly
found success in a diverse range of fields. Its most notable success to date was in the
game of Go where a variant of MCTS beat the human world champion (Silver et al.,
2016, 2017). It has recently gained popularity in robotics for online planning as a
general approach for efficiently searching over a long planning horizon, and forms the
basis of our Dec-MCTS algorithm proposed in Chapter 3.

Upper-confidence bounds for trees (UCT)

MCTS has been proposed in many different forms (Browne et al., 2012) but by far
the most commonly used is the UCB applied to trees (UCT) algorithm (Kocsis and
Szepesvári, 2006; Kocsis et al., 2006). The UCT algorithm performs an asymmetric
expansion of a search tree using a best-first policy that generalises the UCB1 policy
for multi-armed bandit (MAB) problems (Auer et al., 2002). We provide a detailed
description of UCT later in Section 3.3.3 in the context of Dec-MCTS.

The UCT expansion policy provides theoretical guarantees for a polynomial bound on
regret, and therefore is said to balance between exploration (search unvisited subtrees)
and exploitation (revisit promising subtrees). Figure 2.2 is an illustrative example of
the behaviour of UCT with a varying balance between exploration and exploitation.
On the left, the expansion policy selects exploration only, which essentially results
in breadth first search. On the right, the expansion policy selects exploitation only,
which results in the search focussing on one suboptimal path. The theoretically-sound
choice of parameter results in the tree in the middle, which successfully balances
between focussing on promising paths while not leaving any subtrees too far behind
in the expansion.

2.3 Planning algorithms 50

Figure 2.2 – A comparison between exploration and exploitation in Monte Carlo tree
search with an example objective function. Green branches have higher empirical
average rewards, whereas black have lower. The optimal first two actions are the
middle subtree followed by the left subsubtree. Results shown after 800 expansions.
Search space contains 177,147 possible paths.

UCT variants

Several other MCTS variants have been proposed, such as for exploiting smooth-
ness of the reward function (Coquelin and Munos, 2007), for problems with partial-
observability (Silver and Veness, 2010; Somani et al., 2013), and when using an alter-
native definition of regret (Feldman and Domshlak, 2014). A key component of our
proposed Dec-MCTS algorithm is a novel UCT variant, D-UCT, that is suitable for
decentralised planning. D-UCT accounts for a changing reward distribution (e.g., due
to other robots changing their plans) by using a new expansion policy that generalises
the D-UCB policy for switching bandit problems (Garivier and Moulines, 2011).

Parallelisation

MCTS is parallelisable (Chaslot et al., 2008), and various techniques have been pro-
posed that split the search tree across multiple processors and combine their results.
In the multi-robot case, the joint search tree interleaves actions of individual robots
and it remains a challenge to effectively partition this tree. Auger (2011) addresses
the related case of multi-player games, where a separate tree is maintained for each
player; however, a single simulation traverses all of the trees and therefore this ap-

2.3 Planning algorithms 51

proach would be difficult to decentralise. Dec-MCTS is a similar approach to Auger
(2011), except that each robot performs independent simulations. Each simulation
is performed by sampling a locally stored probability distribution that represents the
plans of other robots.

MCTS in robotics

MCTS has been recently been applied to a wide variety of single-robot tasks, in-
cluding: active object recognition (Patten et al., 2018; Lauri et al., 2015), patrolling
environments with adversarial agents (Hefferan et al., 2016; Kartal et al., 2015), infor-
mation gathering by a glider in thermal wind-fields (Nguyen et al., 2015), environment
exploration (Lauri and Ritala, 2016; Corah and Michael, 2017), autonomous science
by planetary rovers (Arora et al., 2017), active parameter estimation for manipu-
lation (Slade et al., 2017), and monitoring of a spatiotemporal process (Marchant
et al., 2014). In most of these studies, the standard UCT algorithm is applied with
problem-specific heuristics.

Our proposed decentralised MCTS algorithm is suitable for multi-robot generalisa-
tions of all of the above problems. So far, MCTS has been less studied in multi-robot
scenarios, though promising ideas have been presented by Kartal et al. (2015) for
centralised planning of a team of patrolling robots, and by Corah and Michael (2017)
as a single-robot planner within a distributed multi-robot assignment algorithm for
the context of exploration and mapping.

2.3.5 Self-organising maps

A self-organising map (SOM) (Kohonen, 1998, 1982) is a type of neural network
that is trained to give a lower-dimensional representation of an input space, while
preserving a given topological graph-based structure of the representation. SOMs
have been used for a large range of modelling and inference applications, such as
meteorology (Liu and Weisberg, 2011), water resources (Kalteh et al., 2008), and
computer vision for surveillance (Maddalena and Petrosino, 2008). Most importantly
for this thesis, SOMs have also been applied to vehicle routing problems, which we
discuss further below.

2.3 Planning algorithms 52

Learning algorithm

While SOM networks have similarities to other neural networks, the main difference
is the associated unsupervised learning algorithm designed for these networks. The
main idea of the learning algorithm is to present example datapoints of the input
space one at a time. For each presented datapoint, an output neuron (vertex of a
network) that best matches the datapoint is selected as the “winner”. The winner
neuron, along with neighbouring neurons, is adapted towards the datapoint by some
fraction that is a decreasing function of the topological distance from the winner.
These adaptations have the effect of reshaping the network while maintaining the
topology. Eventually the network converges to a shape that best fits the presented
data of the input space.

Figure 2.3 illustrates several example learnt networks using a simple implementation
of the SOM unsupervised learning algorithm. The examples illustrate the result of
using different given network topologies. In all cases, the behaviour of the algorithm
naturally selects locations of the vertices that approximately matches the density
of the sampled datapoints, while also keeping each vertex close to its topological
neighbours.

SOM for path planning

SOM algorithms have also been adapted for the TSP and its variants (see Section 2.2.1
for a discussion of the TSP). The main insight is to let the input space be the
specified locations that need to be visited, and the network represent the solution
to the problem. For the standard TSP, the solution is a closed path, which can be
represented by the cycle topology in Figure 2.3b, or as a longer cycle in Figure 2.3c.
If there are multiple vehicles, as in the m-TSP, then the solution can be represented
by a set of cycles, as in Figure 2.3d. If an open path is required, i.e., does not need
to return to the start location, then the line topology can be used, as in Figure 2.3a.

The learning algorithm requires several modifications to be suitable for TSP problems.
For example, it is necessary to visit all specified locations. Additionally the paths
need to visit the exact locations rather than just getting close. For multi-vehicle
cases, care needs to be taken to share the workload evenly between the vehicles. For

2.3 Planning algorithms 53

(a) Line (b) Cycle

(c) Long cycle (d) Five cycles

(e) Star (f) Grid

Figure 2.3 – Examples of self-organising maps with different network topologies. Cyan
dots represent 50,000 samples of an input space. The learnt network (red vertices
and black edges) is reshaped to best fit the input space. Each network took less than
1 s to compute.

orienteering problems, the travel budgets need to be enforced, and it is unknown in
advance how many locations should be visited. In some cases, fixed start and/or
end locations are required. Algorithms have been proposed for solving these various
issues since the 1980s (Angéniol et al., 1988; Somhom et al., 1997); however, none of
the proposed SOM algorithms compete with the best known combinatorial heuristics
for the conventional TSP. The advantage of SOM algorithms can be seen in TSP
variants where it is required to select observation locations. This is important in
problems such as the prize-collecting TSP with neighbourhoods (Faigl and Hollinger,
2014) and orienteering problems (Faigl et al., 2016), where the algorithm implicitly
selects sensing locations within continuous regions.

In Chapter 4 we present a new self-organising map algorithm for an active perception

2.3 Planning algorithms 54

formulation that is a generalisation of the orienteering problem. We borrow techniques
from related solutions, but provide new modifications for the issues raised above,
such as dealing with budget constraints and sharing the workload between robots.
Additionally, in our experiments we provide the first demonstration of how this class
of algorithms can be used for robotics tasks with complex perception models.

2.3.6 Planning as inference

Inference and planning are both optimisation problems, and several planning algo-
rithms have been inspired by related techniques for inference. The SOM algorithms
described above in Section 2.3.5 are an example of this. In this section we highlight
two examples of decentralised planning algorithms inspired by inference techniques,
particularly the probability collectives algorithm as it is directly relevant to Chapter 3
and Chapter 6.

Belief propagation

A common way to perform inference for graphical models is to use belief propagation
techniques (Koller and Friedman, 2009). These methods aim to efficiently learn the
value of unobserved variables in the model by passing “messages” between variables
that could directly influence one another (i.e., neighbours in a graphical model).
These methods achieve exact inference on simple model topologies, such as trees; for
general graphs the methods are not exact, but are very commonly used as an efficient
heuristic.

There is a body of work on adapting the max-sum belief propagation variant for
decentralised planning, where the value of a node in the graph represents the deci-
sion of an individual agent and edges represent pairs of agents with communication
links (Stranders et al., 2009; Farinelli et al., 2014). Messages are communicated be-
tween agents that indicate the likely decisions of individual agents after taking into
account messages received from neighbouring agents. These communication messages
have the same format as those used by belief propagation inference methods. These
techniques have been applied to multi-robot task allocation problems, such as aerial
imagery collection (Delle Fave et al., 2012).

2.3 Planning algorithms 55

Variational methods

Variational methods are another common class of methods for performing approxi-
mate inference of graphical models (Jordan et al., 1999). Variational methods seek to
approximate the underlying global likelihood with a collection of structurally simpler
distributions that can be evaluated efficiently and independently. These methods of-
ten characterise convergence based on the choice of product distribution, and work
best when it is possible to strike a balance between the convergence properties of the
product distribution and the KL divergence between the product and joint distribu-
tions.

As discussed in the body of work on probability collectives (PC) (Wolpert and Bieni-
awski, 2004; Wolpert et al., 2006, 2013), such variational methods can also be viewed
under a game theoretic interpretation. These methods approximate the joint multi-
agent action space as the product of independent individual robot action spaces. This
approximation is made to facilitate efficient and decentralised planning. Optimisa-
tion is performed by defining and updating a probability distribution over the product
distribution space. Guarantees are provided that state the resulting product distribu-
tion best approximates the optimal joint distribution. At every iteration, each agent
communicates a probability distribution that describes its own action. The entropy
of the distribution is decreased slowly to avoid becoming trapped in local optima.

PC has been applied to robotics problems, but so far has been limited to selecting
a single action from a small action space (Waldock and Nicholson, 2007). However,
in robotics we are typically interested in planning sequences of actions, which expo-
nentially increases the size of the search space. A multi-action extension of PC is
proposed by Kulkarni and Tai (2010), who combine PC with TSP heuristics to solve
the multiple-TSP in a decentralised manner. In Chapter 3, we propose a similar ap-
proach to Kulkarni and Tai (2010), but instead we leverage the long-horizon planning
of MCTS to dynamically select an effective and compact sample space of action se-
quences. We provide a full description of our adapted PC algorithm in Section 3.3.4
as a component of our Dec-MCTS algorithm.

2.4 Summary and limitations 56

2.4 Summary and limitations

This chapter surveyed the literature related to multi-robot active perception and
generic planning algorithms for sequential decision making. We began by discussing
perception models and objective functions for typical active perception problems.
We then discussed methods for informative path planning in single- and multi-robot
scenarios. Finally, we introduced several generic planning algorithms to provide back-
ground for the algorithms presented in this thesis.

This thesis presents planning algorithms that optimise paths with respect to percep-
tion objectives. The literature reviewed in Section 2.1 demonstrates there is a variety
of existing perception models suitable as objective functions. In our experimental
sections we use several standard perception models to demonstrate the performance
of our algorithms. The mission monitoring scenario is a new problem and thus we
develop new prediction models and objective functions for this case.

Section 2.2 reviewed existing approaches to informative path planning. The TSP is
insufficient at modelling active perception problems, but several variants of the TSP,
particularly the GTSP and the OP formulations, can be useful approximations of
more complex perception models that admit efficient planning algorithms; we propose
a new algorithm for this class of problems in Chapter 4.

While submodularity guarantees can lead to efficient greedy solutions, there is still
significant benefits in performing long horizon planning, particularly when path costs
are considered. There has been work in developing non-myopic solutions, although few
have been demonstrated to work well with rich perception models, and even fewer are
applicable to the decentralised multi-robot planning setting. In decentralised settings
in particular, it is important to consider the role of communication, either in the
objective function or within the actual planning algorithm. Chapter 3 proposes a
new generic decentralised planning algorithm with analytical convergence guarantees
and addresses these various communication considerations. Chapter 5 and Chapter 6
formulate new communication-aware motion planning problems that are motivated by
the important role of communication in monitoring AUV missions. The decentralised
planning literature has focussed on developing efficient problem-specific solutions;
similarly, our algorithms in Chapter 5 and Chapter 6 are designed to exploit geometric

2.4 Summary and limitations 57

properties of the mission monitoring problem to efficiently find good solutions.

The new algorithms we propose for robotics problems are strongly motivated by
algorithms found in the wider artificial intelligence community for general sequential
decision problems; we introduced and reviewed relevant algorithms in Section 2.3. Our
algorithm in Chapter 3 particularly builds on MCTS and PC. MCTS has recently
become popular in robotics, but we present here the first decentralised generalisation
of MCTS. PC has been used for decentralised decision making but has so far been
limited to myopic planning. Our algorithm in Chapter 4 is a new variant of SOM
that is generalised for centralised multi-robot planning. The SOM literature shows
that these algorithms do not perform well at the standard TSP, but are particularly
advantageous when it is required to plan directly over continuous space. Our extensive
simulated experiments show the applicability of a generalised OP formulation and a
new SOM solution algorithm for robotics scenarios. Our algorithm in Chapter 5
solves a new active perception formulation that is a generalisation of the optimal
stopping problem to multiple dimensions. Our solution algorithm and associated
analysis borrows ideas from computational geometry to efficiently prune and search
over the space of trajectories. Finally, Chapter 6 combines ideas from Chapter 5 and
Chapter 3 to efficiently solve a new decentralised active perception problem.

Overall, this chapter has introduced relevant background material and identified gaps
in the literature in order to set the context of the new multi-robot active perception
planning algorithms proposed in this thesis.

Chapter 3

Decentralised Monte Carlo tree
search

In this chapter we propose the decentralised Monte Carlo tree search (Dec-MCTS)
algorithm as a general decentralised coordination algorithm suitable for any objective
function defined over the action sequences of the robots. This chapter addresses a de-
centralised formulation of the general multi-robot active perception planning problem
stated in Problem 1.1, proposes a solution algorithm with strong analytical proper-
ties, presents empirical results for several example active perception formulations,
and presents an extended algorithm that also considers communication limitations.

3.1 Overview

Dec-MCTS is essentially a novel decentralised variant of Monte Carlo tree search
(MCTS). At a high level, the Dec-MCTS algorithm alternates between exploring
each robot’s individual action space and optimising a probability distribution over
the joint-action space. In any particular iteration of the algorithm, we first use a new
variant of MCTS to find locally favourable sequences of actions for each robot. These
favourable actions sequences are selected with respect to probabilistic estimates of
other robots’ actions that evolve during planning-time. The main novelty is our new
tree expansion policy, motivated by discounted-UCB (Garivier and Moulines, 2011),
that accounts in general for changing reward distributions.

3.1 Overview 59

Next, during each planning iteration, the robots periodically attempt to asyn-
chronously communicate a highly compressed version of their local search trees
which, together, correspond to a product distribution approximation of the joint
plan. These communicated distributions are used to estimate the underlying joint
distribution for the teams’ plan. The estimates are probabilistic, unlike the deter-
ministic representation of joint actions typically used in multi-robot coordination
algorithms. Optimising a product distribution is similar in spirit to the mean-field
approximation from variational inference, and also has a natural game-theoretic
interpretation (Rezek et al., 2008; Wolpert and Bieniawski, 2004).

Dec-MCTS is a powerful new method of decentralised coordination for any objec-
tive function defined over the robot action sequences. Notably, this implies that
Dec-MCTS is suitable for complex perception tasks that are highly viewpoint-
dependent, which are the motivation for this thesis. Further, communication is
assumed to be intermittent, and the amount of data sent over the network is small
in comparison to the raw data generated by typical range sensors and cameras. Our
method also inherits important properties from MCTS, such as the ability to com-
pute anytime solutions and to incorporate prior knowledge about the environment.
Moreover, our method is suitable for online replanning to adapt to changes in the
objective function or team behaviour.

We provide an extensive theoretical analysis of the algorithm that leverages results
from probability theory and game theory. Our main analytical result is to show
convergence rates for the expected payoff at the root of the search tree towards the
optimal payoff sequence. Thus, the proposed MCTS tree expansion policy balances
exploration and exploitation while the reward distributions are changing. We prove
this result in Best et al. (2018a) by extending the MCTS analysis of Kocsis et al.
(2006) for the context of switching bandit problems (Garivier and Moulines, 2011).
Our second result leverages Wolpert et al. (2006) to show that the product distri-
bution optimisation phase locally minimises the KL divergence to the optimal joint
probability distribution. While, given the difficulty of the problem, these results do
not directly yield guarantees for global optimality, the analysis provides strong moti-
vation for the use of these components in our algorithm for decentralised, long-horizon
planning with general objective function definitions.

3.1 Overview 60

We empirically evaluate our algorithm in two scenarios: generalised team orienteering
and online active object recognition. These experiments are run in simulation, where
the robots traverse a PRM (Kavraki et al., 1996) with a Dubins motion model (Du-
bins, 1957), and the second scenario uses range sensor data collected a priori by
real robots. We show that our decentralised approach performs as well as or better
than centralised MCTS even with a significant rate of communication message loss.
We also show the benefits of our algorithm in performing long-horizon and online
planning.

Further empirical analyses for Dec-MCTS are also presented in later chapters: the
results in Chapter 4 compare Dec-MCTS to our proposed SOM algorithm, and the
results in Chapter 6 compare Dec-MCTS to the proposed decentralised mission mon-
itoring algorithm that is motivated by Dec-MCTS.

Communication is fundamental to the coordinated behaviour that emerges from
Dec-MCTS and other similar decentralised planning algorithms (Farinelli et al., 2008),
as robots need to develop decision strategies that take into account the actions of
other robots. However, communication is typically considered to be an infinite re-
source, but in practice communication is often limited, unreliable, or susceptible to
interference (Hollinger et al., 2011b; Williamson et al., 2008; Fitch et al., 2017). In
the experiments of Section 3.5 we show that Dec-MCTS is robust to communication
loss such that reasonable task performance is achieved even if communication packets
are lost. In Section 3.7, we take this one step further by explicitly planning how
to effectively use communication resources. We present a communication scheduling
algorithm as an extension of Dec-MCTS that aims to mitigate these various commu-
nication issues, while also maintaining task performance.

3.1.1 Chapter outline

The remainder of this chapter is organised as follows. Section 3.2 formally defines
the decentralised planning problem considered in this chapter. Section 3.3 presents
our proposed Dec-MCTS algorithm. Section 3.4 provides a theoretical analysis of
Dec-MCTS, based on our extended results and proofs presented in Best et al. (2018a).
Sections 3.5 and 3.6 present an empirical analysis of our algorithm for two example

3.2 Problem statement 61

active perception problems. Section 3.7 presents an algorithm for scheduling com-
munication that can be used within Dec-MCTS for scenarios where communication
bandwidth is severely limited. Finally, Section 3.8 summarises the chapter.

3.2 Problem statement

We consider a team of R robots {1, 2, . . . , R}, where each robot r plans its own
sequence of future actions xr = (xr1, xr2, . . .). Each action xrj has an associated cost
crj and each robot has a cost budget Br such that the sum of the costs must be
less than the budget, i.e., ∑xrj∈xr c

r
j ≤ Br. This cost budget may be an energy or

time constraint defined by the application, or it may be used to enforce a planning
horizon. The feasible set of actions and associated costs at each step j are a function
of the previous actions (xr1, xr2, . . . , xrj−1). Thus, there is a predefined set X r of feasible
action sequences xr for each robot r. We denote x as the set of action sequences for
all robots x := {x1,x2, . . . ,xR} and x(r) as the set of action sequences for all robots
except robot r, i.e., x(r) := x \ xr. We denote X as the set of all feasible x and X (r)

as the set of all feasible x(r).

The aim is to maximise a global objective function g(x) that is a function of the
set of action sequences x for the robots. This function g encodes the objectives
of the perception task at hand; we later provide example definitions for generalised
coverage tasks (Section 3.5) and active object recognition (Section 3.6). The problem
of planning the action sequences of all robots must be solved in a decentralised setting.
We assume each robot r knows the global objective function g, but does not know
the action sequences x(r) selected by the other robots.

Thus, the problem to be solved by each robot r is stated as follows.

Problem 3.1 (Decentralised planning problem). Plan the action sequence xr such
that a global objective function g(xr ∪ x(r)) is maximised. This problem should be
solved while considering the unknown action sequences x(r) of the other robots.

This problem is a decentralised formulation of the general active perception planning
problem stated earlier in Problem 1.1.

3.3 Dec-MCTS 62

We assume that robots can asynchronously communicate during planning-time to
improve coordination. In particular, communication may be used to learn the action
sequences x(r) planned by other robots. However, the communication channel may
be unpredictable and intermittent, and therefore should not be relied upon. Thus,
each robot will plan based on the information it has available locally. Bandwidth
may be limited and therefore message sizes should remain small, even as the plans
grow. We address communication limitations further in Section 3.7. Although we do
not consider explicitly planning to maintain communication connectivity, this may be
encoded in the objective function g(x) if a reliable communication model is available.

When presenting our proposed approach, we assume g is deterministic given a known
set of action sequences x; in Section 3.3.7 we discuss potential extensions for proba-
bilistic objective functions.

3.3 Dec-MCTS

In this section, we present our Dec-MCTS algorithm as a decentralised solution to the
general multi-robot planning problem. We first provide an overview of the algorithm
and relevant notation, followed by a detailed explanation of all components.

3.3.1 Algorithm overview

Planning cycle

Dec-MCTS runs simultaneously and asynchronously on all robots; we present the
algorithm from the perspective of robot r. The algorithm cycles between the three
phases illustrated in Figure 3.1: (1) incrementally grow a search tree using MCTS
while taking into account information about the other robots’ plans, (2) update the
probability distribution over possible action sequences, and (3) communicate proba-
bility distributions with the other robots. These three phases continue regardless of
whether or not the communication was successful, until a computation budget is met.

3.3 Dec-MCTS 63

1) Grow search tree
over the space X r

of robot r’s actions

2) Optimise action
seqn. probabilities

qr n
(x

r
)

xr ∈ X̂ r
n

3) Communicate
plans

robot
r

X̂ r
n , q

r
n

X̂ r′
n , qr

′
n

robot
r′

X̂ r
n

qrn X̂ (r)
n , q

(r)
n

Figure 3.1 – Overview of the algorithm running on-board robot r. 1) The search
tree is expanded by adding new actions (green). Periodically, the set of best nodes
(orange) is selected as the domain X̂ rn . 2) The probability distribution qrn is optimised
(from dotted red to solid blue). 3) If possible, the domains and distributions are
communicated between robots.

Probabilistic plan representation

A key idea of Dec-MCTS is to represent and reason over plans in a probabilistic man-
ner. In particular, robot r’s current plan is represented by a probability distribution
over action sequences. We define a probability mass function qrn, such that qrn(xr)
defines the probability that robot r will select the action sequence xr. In general, the
domain of the distribution qrn is the set of all possible action sequences X r. However,
to enable tractable computation and realistic communication, we restrict the domain
of qrn to a dynamically selected subset X̂ r

n ⊂ X r, i.e., qrn(xr) = 0,∀xr /∈ X̂ r
n . As the

Dec-MCTS algorithm progresses, both the domain X̂ r
n and the probability distribu-

tion qrn are optimised. Note the subscript n for qrn and X̂ r
n is used to denote the nth

iteration of the main loop of our algorithm.

Key components

An illustration of the main loop is shown in Figure 3.1 and pseudocode for the al-
gorithm is provided in Algorithm 3.1. During the MCTS phase, a search tree T r is
grown over the space X r of robot r’s action sequences using a new variant of the UCT
algorithm. This tree growth is performed while considering the probability distribu-
tions over the other robots plans, denoted X̂ (r)

n , q(r)
n . Periodically, the domain X̂ r

n for
robot r’s distribution is updated by selecting the most promising action sequences

3.3 Dec-MCTS 64

Algorithm 3.1 Overview of Dec-MCTS for robot r.
input: global objective function g, budget Br, feasible action sequences and costs
output: sequence of actions xr for robot r

1: T r ← initialise MCTS tree
2: while computation budget not met, at iteration n do
3: X̂ rn ← SelectSetOfSequences(T r) . See Section 3.3.4
4: for τn iterations do
5: T r ← GrowTree(T r, X̂ (r)

n , q
(r)
n , Br) . See Algorithm 3.2 and Section 3.3.3

6: qrn ← UpdateDistribution(X̂ rn , qrn, X̂
(r)
n , q

(r)
n , β) . See Section 3.3.4

7: CommunicationTransmit(X̂ rn , qrn) . See Section 3.3.5
8: (X̂ (r)

n , q
(r)
n)← CommunicationReceive . See Section 3.3.5

9: β ← cool(β) . See Section 3.3.4
10: return xr ← arg maxxr∈X̂ rn

[qrn(xr)]

identified by the tree search.

In the probability distribution optimisation phase, the probabilities assigned to action
sequences qrn(xr) are optimised using a decentralised gradient descent algorithm while
considering the distributions of the other robots. In the communication phase, robot
r communicates its domain X̂ r

n and probability distribution qrn to the other robots.
If robot r receives a new distribution from any of the other robots, then in the next
iteration X̂ r

n and qrn are optimised while considering this new information. During
this optimisation process, it is possible that q(r)

n will change such that a previously
optimal leaf of the tree T r becomes suboptimal; we refer to the times at which this
happens as breakpoints.

Termination

When the computation budget is met, the algorithm returns the action sequence xr

that has the highest probability qrn(xr). In online settings, the robot would then typ-
ically execute the first action xr1 in the action sequence, and then perform replanning
to take into account new information received by observations. If the changes to the
objective function are minor, then replanning may be performed more efficiently by
adapting the previous search tree.

3.3 Dec-MCTS 65

3.3.2 Local utility function

The global objective function g is optimised by each robot r using a local utility
function f r. We define f r as the difference in global utility between robot r performing
action sequence xr and a default “no reward” sequence xr

∅, assuming fixed action
sequences x(r) for the other robots, i.e.,

f r(x) := g(xr ∪ x(r))− g(xr
∅ ∪ x(r)). (3.1)

The default sequence xr
∅ is chosen to be suitable for the application and would typi-

cally be an empty action sequence. In practice, optimising with respect to f r rather
than g improves the performance since f r is more sensitive to robot r’s plan and the
variance of f r is less affected by the uncertainty of the other robots’ plans (Wolpert
et al., 2013).

We chose this local utility function since it is generally applicable, although further
performance improvements could be achieved with problem-specific heuristics (Rah-
mattalabi et al., 2016). We also note that this formulation assumes that all robots
know the global utility function g. However, if instead each robot only has access to
a local estimate of g then our proposed algorithm will optimise the action sequences
with respect to this inconsistent information.

3.3.3 Monte Carlo tree search with discounted-UCB

The first phase of the algorithm incrementally grows a search tree using a new variant
of MCTS, as outlined in Algorithm 3.2. A single search tree T r is maintained by robot
r which only contains the actions of robot r. The tree T r is defined such that each
edge in the tree represents an action by robot r, and a path from the root node
i0 to another node id at depth d represents a valid sequence of actions by robot
r. The MCTS algorithm incrementally grows T r from the root node using a best-
first expansion policy (Section 2.3.4 presents an illustrated discussion of this best-first
expansion). During the MCTS phase, coordination with other robots occurs implicitly
by considering the plans of the other robots when performing the rollout policy and
evaluation of the global objective function. This information about the other robots’

3.3 Dec-MCTS 66

Algorithm 3.2 Grow the search tree for robot r using Monte Carlo tree search. The four
phases are illustrated in Figure 3.2 and described in the Section 3.3.3.

1: function GrowTree(T r, X̂ (r)
n , q

(r)
n , Br)

input: partial tree T r, distributions for other robots (X̂ (r)
n , q

(r)
n), budget Br

output: updated partial tree T r
2: for fixed number of samples do

3: . Select node to expand using D-UCT policy (Section 3.3.3)
4: id−1 ← NodeSelectionD-UCT(T r)

5: . Add new child to node id−1
6: id ← ExpandTree(id−1)

7: . Evaluate node
8: x(r) ← Sample(X̂ (r)

n , q
(r)
n) . Sample action sequences of other robots

9: xr ← PerformRolloutPolicy(id,x(r), Br) . Default policy
10: Ft ← f r(xr ∪ x(r)) . Local utility function (Section 3.3.2)

11: . Update statistics in tree
12: T r ← Backpropagation(T r, id, Ft)
13: return T r

Select Expand Simulate

Ft

Backup

Figure 3.2 – Overview of the four phases of standard MCTS. Our new MCTS variant
follows this same general procedure. Diagram adapted from Hefferan et al. (2016)
and Patten et al. (2018).

plans comes from the second phase of the algorithm, detailed later in Section 3.3.4.
In this subsection, we detail our proposed MCTS algorithm which features a novel
bandit-based node selection policy designed for our planning scenario.

3.3 Dec-MCTS 67

Standard MCTS incrementally grows a tree by iterating through four phases, as
depicted in Figure 3.2: selection, expansion, simulation and backprogation (Browne
et al., 2012). During each iteration t, a new leaf node is added, where each node
represents a sequence of actions and contains statistics about the expected reward of
all action sequences that begin with this sequence.

The selection phase (Algorithm 3.2, line 4) selects an expandable node in the tree,
where an expandable node is defined as a node that has at least one child that has
not yet been visited during the search. In order to find an expandable node, the
algorithm begins at the root node i0 of the tree and recursively selects child nodes
until an expandable node id−1 is reached. For selecting the next child at each level of
the tree, we propose an extension of the UCT policy (Kocsis and Szepesvári, 2006),
detailed later in Section 3.3.3, to balance exploration and exploitation of the search
space in this modified problem setting. In the expansion phase (Algorithm 3.2, line 6),
a new child node id is added to the selected expandable node id−1, which extends the
parent’s action sequence with an additional action.

In the simulation phase (Algorithm 3.2, lines 8–10), the expected utility E[g] of the
expanded node id is estimated by performing and evaluating a rollout policy that
extends the action sequence represented by the node until a terminal state is reached.
This rollout policy could be a random policy or a heuristic for the problem (James
et al., 2017). The objective is evaluated for this sequence of actions and this result is
saved.

For our problem, the objective is a function of the action sequence xr as well as
the unknown plans of the other robots x(r), and thus we require an extension of the
standard simulation procedure. To compute the rollout score, we first sample x(r)

from a probability distribution q(r)
n over the plans of the other robots (as defined in

Section 3.3.1). A heuristic rollout policy extended from id defines xr, which should
be a function of x(r) to simulate coordination between the robots. Additionally, we
optimise xr using the local utility f r (as defined in (3.1)) rather than g. The rollout
score is computed as the utility of this joint sample f r(xr∪x(r)), which is an estimate
for Eqn [f r | xr]. We denote Ft as the rollout evaluation at sample round t.

In the backpropagation phase (Algorithm 3.2, line 12), the rollout evaluation is added
to the statistics of all nodes along the path from the expanded node back to the root of

3.3 Dec-MCTS 68

the tree. Typically, these statistics are unbiased estimators of the rollout evaluations;
however, as we discuss in the following section, it is more suitable to use a weighted
average in the context of Algorithm 3.1.

D-UCB node selection policy

The main difference between our MCTS variant and the well-known UCT (Kocsis
and Szepesvári, 2006) algorithm is that our tree search allows for changing reward
distributions, which makes it suitable for our decentralised problem setting. This is
achieved using a novel node selection policy described as follows. We recover similar
analytical results to the UCT algorithm for this generalised case, which we detail
later in Section 3.4.

The node selection policy is used in Algorithm 3.2, line 4, and dictates the order in
which the tree T r is expanded. Consider an arbitrary node id at depth d in the tree
which has an associated set of child nodes C(id). For every sample round t where node
id is visited, the problem is to select a child Iid,t ∈ C(id) that balances both visiting
promising subtrees and exploring uncertain ones.

An established approach for node selection is based on maintaining an upper confi-
dence bound (UCB) on the value of each node. Under this paradigm, at each sample
round t, a UCB Uj,tid ,tj is computed for all children j ∈ C(id) of the parent node id.
Here, tid is the number of times the parent node id has been visited and tj is the
number of times child node j has been visited. The algorithm then selects the node
that maximises this quantity, i.e.,

Iid,t = arg max
j∈C(id)

Uj,tid ,tj . (3.2)

This continues recursively until an expandable node is reached.

The de facto UCB Uj,tid ,tj is a combination of the empirical mean of rewards received
at node j and a confidence interval derived from the Chernoff-Hoeffding inequal-
ity (Browne et al., 2012). This bound was originally used in the context of the MAB
problem and called UCB1 (Auer et al., 2002); when used for tree search, it is la-
belled UCT (Kocsis and Szepesvári, 2006). UCT was shown to yield polynomial

3.3 Dec-MCTS 69

regret when the reward distributions at the leaf nodes are stationary (Kocsis and
Szepesvári, 2006). However, Algorithm 3.1 alternates between growing the tree for
a number of rollouts τn and updating the probability distributions for other robots.
As mentioned in Section 3.3.1, this introduces breakpoints as instants where the re-
ward distribution and optimal action can change abruptly. We denote the number of
breakpoints up until time t as Υt. Due to these breakpoints, the most recent rollouts
are more relevant since they are obtained by sampling the most recent distributions.
It was shown by Garivier and Moulines (2011) that UCB1 is inefficient in the bandit
setting when breakpoints are expected. In this scenario a discounted variant, termed
D-UCB, yields tighter bounds on regret. Due to the expected breakpoints caused by
updating the distributions, we extend the approach of Garivier and Moulines (2011)
for tree search, and propose a discounted variant of UCT for node selection, which
we term D-UCT, described as follows.

Given some discount factor γ ∈ (1/2, 1) and exploration constant Cp > 1/
√

8, the
D-UCT bound is defined as:

Uj,tid ,tj(γ) := F̄j,tj(γ) + ctid ,tj(γ), (3.3)

where tj is the number of times node j has been visited, F̄j,tj(γ) is the discounted
empirical reward, and ctid ,tj(γ) is a discounted exploration bonus. A lower discount
factor γ enforces only the most recent rollouts to contribute towards the UCB, whereas
at the upper limit γ → 1 D-UCT becomes equivalent to UCT. These quantities are
computed as follows. First, recall that the indicator function 1{Iid,t=j} returns 1 if
node j was selected at round t, and 0 otherwise. Then, denote the discounted number
of times the child node j has been visited as:

tj(γ) :=
t∑

u=1
γt−u1{Iid,u=j}, (3.4)

and the discounted number of times the parent node has been visited as:

tid(γ) :=
∑

j∈C(id)
tj(γ). (3.5)

Recall that Ft is the rollout score received at sample t. Then, the discounted empirical

3.3 Dec-MCTS 70

average is given by:

F̄j,tj(γ) := 1
tj(γ)

t∑
u=1

γt−uFu1{Iid,u=j}, (3.6)

and the discounted exploration bonus is defined as:

ctid ,tj(γ) := 2Cp

√√√√ log tid(γ)
tj(γ) . (3.7)

In Remark 2 of Best et al. (2018a) we offer an example definition of γ as a func-
tion of the expected number of breakpoints, which results in interesting analytical
convergence properties. However, having γ change dynamically makes it difficult to
efficiently recompute F̄j,tj and ctid ,tj as t grows large, since the sums cannot be com-
puted incrementally. Therefore, a more practical definition for γ is to set it as a fixed
constant; this is unlikely to detrimentally affect performance in practice.

3.3.4 Decentralised product distribution optimisation

The second phase of Dec-MCTS updates a probability distribution qrn over the set of
possible action sequences for robot r. The distribution qrn serves as a way of predicting
the likelihood of an action sequence being selected as the search tree continues to grow.
These distributions are communicated between robots and used when performing
rollouts during future iterations of MCTS.

To define and optimise these distributions in a decentralised manner for improving
global utility, we adapt a type of variational method originally proposed by Wolpert
and Bieniawski (2004). This formulation can be viewed as a game between inde-
pendent robots, where each robot selects its action sequence by sampling from a
distribution. The approach to solving this formulation is essentially a decentralised
gradient descent method over the space of product distributions. We describe the
approach in detail as follows.

3.3 Dec-MCTS 71

Sample space selection

One challenge is that the set of possible action sequences X r typically has a cardi-
nality that is exponential in the time horizon. We obtain a sparse representation by
periodically selecting the sample space X̂ r

n ⊂ X r as the most promising action se-
quences {xr

1,x
r
2, . . .} found by MCTS so far (Algorithm 3.1, line 3). We select a fixed

number of nodes in the search tree T r that currently have the highest discounted
empirical average F̄ . The set X̂ r

n is chosen as the action sequences used during the
initial rollouts when the selected nodes were first expanded.

We chose this method for selecting X r since it provides a reasonable way predicting
what the best path may be at future iterations of the planning algorithm. This allows
future iterations of MCTS to plan with respect to more relevant information about
the robots. Predicting future best paths accurately is as difficult as the entire plan-
ning problem, and thus we argue this sample space selection method is a reasonable
approximation. Other possible methods could also be appropriate; for example, in
Chapter 6 we present a different but closely related decentralised algorithm, where
instead we use a sliding history of best paths for the purpose of sample space selection
in a different context (see Section 6.4.3).

As mentioned in Section 3.3.1, when the sample spaces X̂ (r)
n are updated, this can

introduce breakpoints in the reward distribution of robot r. Thus, we expect the
maximum number of breakpoints E[Υt] to be given by the number of changes to
the sample spaces. To ensure convergence of the utility, each period τn should be
governed by a function of t such that {E[Υt]}t is bounded from above (Best et al.,
2018a, Remark 2).

Probability collectives

The set X̂ r
n has an associated probability distribution qrn such that qrn(xr) defines the

probability that robot r will select xr ∈ X̂ r
n . The distributions for different robots

are independent and therefore they collectively define a product distribution qn, such
that the probability pn of a joint action sequence selection x is

pn(x) = qn(x) :=
∏

r∈{1,...,R}
qrn(xr). (3.8)

3.3 Dec-MCTS 72

The advantage of defining pn as a product distribution is so that each robot selects
its action sequence independently, and therefore allows decentralised execution.

Consider the general class of joint probability distributions pn that are not restricted
to product distributions. Define the expected global objective function for a joint
distribution pn as Epn [g], and let Γ be a desired value for Epn [g]. According to the
maximum entropy principle from information theory, the most likely pn that satisfies
E[g] = Γ is the pn that maximises entropy. The most likely pn can be found by
minimising the maxent Lagrangian, defined as

L(pn) := λ (Γ− Epn [g])− H(pn), (3.9)

where
H(pn) := −

∑
x∈X

pn(x) ln (pn(x)) (3.10)

is the Shannon entropy and λ is a Lagrange multiplier. The intuition is to iteratively
increase Γ and optimise pn. A descent scheme for pn can be formulated with Newton’s
method.

For decentralised planning and execution, we are interested in optimising the product
distribution qn rather than a more general joint distribution pn. We can approximate
qn by finding the qn with the minimum pq KL divergence, where the pq KL divergence
is defined as

DKL(pn ‖ qn) :=
∑
x∈X

pn(x) ln
(
pn(x)
qn(x)

)
. (3.11)

By making a second-order approximation, a descent scheme can be formu-
lated (Wolpert and Bieniawski, 2004) with the update policy for qrn shown in
Algorithm 3.3, line 9. Here we use f r (as defined in (3.1)) rather than g, and the
expectations Eqn are defined with respect to the product distribution qn. Intuitively,
this update rule increases the probability that robot r selects xr if this results in an
improved local utility, while also ensuring the entropy of qrn does not decrease too
rapidly. The former behaviour is controlled by the (Eqn [f r]− Eqn [f r | xr]) /β term
in the update rule, while the latter behaviour is controlled by H(qrn) + ln (qrn(xr)).
Parameter β specifies the balance between these two behaviours.

3.3 Dec-MCTS 73

Algorithm 3.3 Probability distribution optimisation for robot r.

1: function UpdateDistribution(X̂ rn , qrn, X̂
(r)
n , q

(r)
n , β)

input: action sequence set for each robot X̂n := {X̂ 1
n , X̂ 2

n , . . . , X̂Rn }
with associated probability distributions {q1

n, q
2
n, . . . , q

R
n },

update parameter β
output: updated probability distribution qrn for robot r

2: . Consider each action sequence xr that robot r may select
3: for each xr ∈ X̂ rn do

4: . Compute expected global utility
5: Eqn [f r]←

∑
x∈X̂n

[
f r(x)

∏
r′∈{1,...,R} q

r′
n (xr′)

]
6: . Compute expected global utility given robot r selects xr

7: Eqn [f r | xr]←
∑

x(r)∈X̂ (r)
n

[
f r(xr ∪ x(r))

∏
r′∈{1,...,R}\r q

r′
n (xr′)

]
8: . Update the probability of selecting xr

9: qrn(xr)← qrn(xr)− αqrn(xr)
[Eqn [f r]− Eqn [f r | xr]

β
+ H(qrn) + ln (qrn(xr))

]
10: . Re-normalise the probability distribution
11: qrn ← Normalise(qrn)
12: return qrn

Implementation issues

Pseudocode for this approach is in Algorithm 3.3. Each iteration of the loop beginning
at line 3 updates the probability qrn(xr) of performing an action sequence xr. We
require computing two expectations (lines 5 and 7) to evaluate the update equation
(line 9). In general, to compute these expectations exactly it is necessary to sum
over the enumeration of all x ∈ X̂n. It is infeasible to perform this enumeration
at every iteration, and therefore these expectations should instead be approximated
using random sampling of X̂n. For certain problem definitions, it may be possible
to efficiently compute these expectations exactly by exploiting the structure of the
problem, such as in our Section 3.5 experiments.

As the Dec-MCTS algorithm progresses, the parameter β should slowly decrease in
order to slowly decrease the entropy of the probability distributions. The cooling
schedule for β could be a fixed rate of descent or a more elaborate schedule (Wolpert
et al., 2006). The parameter α is a fixed step-size. When the sample space X̂ r

n changes
(Algorithm 3.1, line 3), theoretically it is possible to keep and update the previous

3.3 Dec-MCTS 74

distribution, i.e., qrn = qrn−1, by maintaining qrn over the entire space X r. However,
in practice, this is likely to become inefficient as the number of action sequences
that have ever appeared in a sample space grows, particularly when calculating the
expectations and normalising, as well as when communicating these distributions.
Instead, we suggest resetting qrn to a uniform distribution and β to its initial value
whenever X̂ r

n changes.

3.3.5 Communication

At each iteration of the inner-loop of Algorithm 3.1, robot r communicates its current
probability distribution (X̂ r

n , q
r
n) to the other robots. If robot r receives an updated

distribution (X̂ r′
n , q

r′
n) from another robot r′, then (X̂ r′

n , q
r′
n) replaces the locally stored

distribution for r′. The updated distribution is used during the next iteration, such
that both the tree T r and probability distribution (X̂ r

n , q
r
n) are updated based on the

new (X̂ (r)
n , q(r)

n). If no new messages are received from a robot, then robot r continues
to plan based on the most recent distribution. If robot r is yet to receive any messages
then it may assume a default policy.

Communicating plans between robots at every iteration will usually be feasible since
message sizes are much smaller than other data typically communicated around
robotic networks, such as high-bandwidth sensor data. Additionally, later in Sec-
tion 3.5 we show that the approach is robust to random packet loss. However, in
severely constrained communication scenarios it may be beneficial or necessary to
explicitly plan when to communicate, rather than broadcasting messages naively at
every iterations; we propose an extended algorithm for these scenarios later in Sec-
tion 3.7.

3.3.6 Online replanning

The best action is selected as the first action in the highest probability action sequence
in X̂ r

n (Algorithm 3.1, line 10). The search tree may then be pruned by removing all
children of the root except the selected action. Planning may then continue while
using the sub-tree’s previous results. If the objective function changes, e.g., as a result

3.4 Analysis 75

of a new observation, then the tree should be restarted. In practice, if the change is
minor then it may be appropriate to continue planning with the current tree, and the
discounting in D-UCT will help to quickly correct the reward estimates.

3.3.7 Probabilistic objective functions

So far, we have assumed the objective function g is deterministic for a given set of
action sequences x. This is reasonable in many scenarios since, for example, it is usu-
ally sufficient to plan based on the expectation of the reward, which is a deterministic
quantity. However, sometimes it may be necessary to directly model other sources of
uncertainty, such as the state of the environment, in addition to the uncertain plans
of the robots. For these problems, we can define the objective function as g(x,Ψ),
where Ψ is a random variable representing other sources of uncertainty. Our algo-
rithm can readily be extended to this case by computing all expectations with respect
to both qn and Ψ. In some cases these expectations could be computed exactly (this
was feasible for our Section 3.6 experiments), but in general the expectations can be
efficiently approximated by sampling for Ψ, as in POMCP (Silver and Veness, 2010;
Patten et al., 2018). Our theoretical analysis (see Section 3.4) is valid for these cases
since the standard UCT algorithm assumes the rewards obtained at leaf nodes are
probabilistic (Kocsis and Szepesvári, 2006), and the standard probability collectives
algorithm is applicable if there is noise in the system (Wolpert et al., 2006).

3.4 Analysis

In this section, we provide a summary of our theoretical analysis of Dec-MCTS that
was presented in Best et al. (2018a). The algorithm is an anytime and decentralised
approach to multi-robot coordination with two key algorithmic components: (1) the
tree search (Section 3.3.3) is designed to perform long-horizon planning for single-
robot action sequences while considering the changing plans of the other robots, and
(2) the product distribution optimisation (Section 3.3.4) is designed to directly op-
timise the joint multi-robot plan while being restricted to a small subset of possible
action sequences. While it is difficult to make any strong claims of global optimality

3.4 Analysis 76

in the context of decentralised, long-horizon planning with general objective func-
tions, we focus our analysis on characterising the convergence properties of these two
algorithmic components, then discuss the implications of these results in the context
Dec-MCTS.

3.4.1 D-UCB applied to trees

Our main analytical result for Dec-MCTS is that the D-UCT algorithm (Algo-
rithm 3.2) maintains an exploration-exploitation trade-off for child selection while
the distributions qrn are changing and converging. The main insight of this result is
to relate D-UCT to D-UCB (Garivier and Moulines, 2011) in the context of a specific
type of non-stationary, switching bandit problem. We refer the interested reader
to Best et al. (2018a) for full details of this result.

The node selection problem at each node in the tree is equivalent to a bandit problem
with special assumptions on the payoff received. From the perspective of node id,
after selecting node Iid,t = j, the tree search further down the tree (e.g., Ij,t) and
subsequent MCTS rollout yield a stochastic payoff Fj,t = Ft ∈ [0, 1]. As nodes are
expanded in the tree search, the expected reward at any node higher up the tree slowly
drifts until all nodes are explored in the subtree (Best et al., 2018a, Assumption 3).

The sequence of payoffs received generates the stochastic process {Fj,t}t, ∀j ∈ C(id)
and t ≥ 1. We make the simplifying assumption of a constant branching factor K in
the search tree T r, i.e., C(id) = {1, . . . , K},∀id.

Recall that F̄id,tid is the empirical mean; it follows that F̄i0,ti0 is the mean at the root
node. Further, let µ∗i0 denote the optimal expected payoff at the root node and note
that ti0 = t.

Theorem 3.1 (Convergence rate of D-UCT). (Best et al., 2018a, Theorem 1) Con-
sider the D-UCT algorithm running on a tree T of depth D and branching factor
K. The payoff distributions of the leaf nodes are independently distributed and can
change at breakpoints. The sequence that gives the expected bound of breakpoints
{E[Υtj]} follows Assumption 2 of Best et al. (2018a) and γtj = 1 −

√
E[Υtj]/16tj

for all nodes j. Then, after some time T0, the bias of the payoff at the root node

3.4 Analysis 77

|F̄i0,ti0 − µ
∗
i0 | = O

(
KD log(t)

√
E[Υt]/t

)
. Further, the probability of selecting a sub-

optimal arm at the root node becomes zero as t grows large.

This result is proven in Best et al. (2018a) by relating the payoff sequences at the
root node to a bandit problem, and performing induction on D.

Remark 3.1 (Convergence in practice). The results of Theorem 3.1 are mainly
concerned with the convergence of the bias after some transitory period. For the
standard UCT case, Kocsis et al. (2006) assumed the number of iterations for the
transitory period was O(KD). However, it was recently shown that this transi-
tory period using the UCT algorithm on a binary tree (K = 2) of depth D can be
Ω(exp(exp(. . . exp(1) . . .))) (D− 1 nested exponentials) in a worst-case instance (Co-
quelin and Munos, 2007). Gelly et al. (2012) suggest instead that the UCT (and
thus D-UCT) strategy will be most successful when the leaves of large subtrees share
similar rewards, i.e., a “smoothness” assumption on the reward distributions. Active
perception scenarios typically exhibit some degree of “smoothness”, such that similar
sequences of actions yield similar rewards and thus there is a correlation amongst
subtree leaves. 4

3.4.2 Variational methods by importance sampling

We now consider the effect of contracting the sample space X̂n ⊂ X on the convergence
of Algorithm 3.3. Recall that the pq KL divergence is the divergence from a product
distribution qn to the optimal joint distribution pn. We then have the following
proposition:

Proposition 3.1 (Convergence of PC). Algorithm 3.3 asymptotically converges to a
distribution that locally minimises the pq KL divergence, given an appropriate subset
X̂n ⊂ X .

We justify Proposition 3.1 as follows.

Consider an alternative algorithm where, at each iteration n, we randomly choose a
subset X̂ r

n ⊂ X r for each robot. This approach is equivalent to Monte Carlo sampling

3.4 Analysis 78

of the expected utility and thus the biased estimator is consistent (asymptotically
converges to E[f r]).

However, for tractable computation and faster convergence, in our algorithm we mod-
ify the random selection by choosing a sparse set of strategies X̂n with the highest
expected utility (Section 3.3.4). Although this does not ensure we sample the entire
domain X asymptotically, in practice qn(X̂n) is a reasonably accurate representation of
qn(X), and therefore this gives us an approximation to importance sampling (Wolpert
et al., 2006). Variants of Algorithm 3.3 have been shown to converge to a distribution
that locally minimises the pq KL divergence under reasonable assumptions, such as
an appropriate cooling schedule for β (Wolpert and Bieniawski, 2004).

3.4.3 Analysis of Dec-MCTS

Now we consider the implications of the above results in the context of the overall
Dec-MCTS algorithm (Algorithm 3.1). The analyses above show separately that the
tree search of Algorithm 3.2 balances exploration and exploitation and that, under
reasonable assumptions, Algorithm 3.3 converges to the product distribution that
best optimises the joint action sequence.

These results provide strong motivation for the use of these components in the al-
gorithm. However, they do not immediately yield a characterisation of optimality
for Algorithm 3.1. To prove convergence rates and global optimality, we would need
to characterise the co-dependence between the evolution of the reward distributions
Eqn [f r | xr] used when sampling the tree and the contraction of the sample space
X̂n used for optimising qn. This co-dependence is complex due to the cyclic nature
of the algorithm and communication of information between robots, and thus it is
unlikely that any strong claims for global optimality can be made. However, this is
generally not achievable in the context of decentralised, long-horizon planning with
general objective functions, as addressed in this chapter. Despite this, the following
experiments show that the Dec-MCTS algorithm converges rapidly to high-quality
solutions in multi-robot active perception scenarios.

3.5 Experiments: Generalised team orienteering 79

Figure 3.3 – The generalised team orienteering problem. The 8 robots (coloured paths)
aim to collectively visit a maximal number of goal regions (green circles, weighted by
importance). The robots follow Dubins paths, are constrained by distance budgets
and must avoid obstacles (black).

3.5 Experiments: Generalised team orienteering

In this section, we evaluate the performance of Dec-MCTS in an abstract multi-
robot information gathering problem. An illustration of the problem and an example
solution is shown in Figure 3.3. We empirically show convergence, robustness to
intermittent communication and a comparison to a centralised variant of MCTS.
Further experiments for a different information gathering problem is presented later
in Section 3.6.

3.5.1 Problem statement

The problem is motivated by tasks where a team of Dubins robots maximally ob-
serves a set of features of interest in an environment, given a travel budget. Each
feature can be viewed from multiple viewpoints and each viewpoint may be within
observation range of multiple features. This formulation generalises the orienteering
problem (Vansteenwegen et al., 2011; Gunawan et al., 2016) by combining the set
structure of the generalised travelling salesman problem (Noon and Bean, 1989) with
the budget constraints of the orienteering problem with neighbourhoods (Faigl et al.,

3.5 Experiments: Generalised team orienteering 80

2016) extended for multi-agent scenarios (Chapter 4). This problem is similar to that
addressed later in Chapter 4, and a detailed comparison of the two problems and
associated algorithms are presented in Section 4.5.3.

Robots navigate within a graph representation of an environment with vertices vi ∈ V ,
edges eij := 〈vi, vj〉 ∈ E and edge traversal costs cij. Each vertex vi represents a
location and orientation (x, y, θ) within a square workspace with randomly placed
obstacles. The action sequences of each robot are defined as paths of connected edges
through the graph beginning at a start vertex unique to each robot. The edge costs
are defined as the distance length of the minimum-distance Dubins path between
the pair of configurations. All edges that have cost less than a fixed distance are
connected and the larger edges are discarded. The connected edges represent feasible
actions the robots may select.

For the objective function, we have a collection of sets S = (S1, S2, . . .), where each
Sk ⊆ V . These sets may represent a set of features of interest, where a vertex is
an element of a set only if the associated feature can be observed from the vertex
location. We assume each set is a disc, however the formulation could extend to more
complex models (see Chapter 4). The vertices vj ∈ V are randomly placed (drawn
from a uniform distribution) within the sets. A set Sk is visited if ∃vj ∈ x, vj ∈ Sk
and each visited set yields an associated reward wk. There is no additional reward
for revisiting a set. The objective is defined as the sum of the rewards of all visited
sets.

3.5.2 Calculating expectations

Dec-MCTS requires computing several expectations that, in general, should be ap-
proximated using sampling. However, for this problem definition it is possible to
exploit the structure of the objective function to efficiently compute exact expecta-
tions. We compute expectations as:

Eqn [g] =
∑
Sk∈S

wk × Pqn(∃vj ∈ x, vj ∈ Sk) (3.12)

=
∑
Sk∈S

wk

1−
∏
vj∈Sk

∏
xr∈X̂n

(
1− qrn(xr)1{vj∈xr}

) (3.13)

3.5 Experiments: Generalised team orienteering 81

where Pqn(∃vj ∈ x, vj ∈ Sk) is the probability that at least one vj ∈ Sk is visited
by at least one robot. This can be computed much more efficiently than the general
equation (linear rather than exponential time in the number of robots) since it only
requires iterating over the possible paths for individual robots (xr ∈ X̂ r

n ,∀r) rather
than iterating over all joint action sequences (x ∈ X̂n).

3.5.3 Experiment setup

We compare our algorithm (Dec-MCTS) to a centralised MCTS (Cen-MCTS), which
consists of a single tree where robot r’s actions appear at tree depths (r, r + R, r +
2R, . . .). Intermittent communication is modelled by randomly dropping messages.
Messages are broadcast by each robot at 4Hz and a message has a probability of
being received by each individual robot.

Experiments were performed with 8 simulated robots running in separate robot op-
erating system (ROS) nodes on a 4-core computer with hyperthreading (8 virtual
cores). Each random problem instance (Figure 3.3) consisted of 200 discs with re-
wards between 1 and 10, 5 obstacles, 4000 graph vertices and random start vertices
for each robot. Each iteration of Algorithm 3.1 performs 10 MCTS rollouts and 1
communication broadcast. The set X̂ r

n consists of 10 paths that are resampled every
10 iterations. The MCTS rollout policy recursively selects the next edge that does
not exceed the travel budget and maximises the ratio of the increase of the weighted
set cover to the edge cost.

3.5.4 Results

Comparison to centralised MCTS

The first experiments (Figure 3.4a) show that Dec-MCTS achieved a median 7%
reward improvement over Cen-MCTS after 120 s, and a higher reward in 91% of the
environments. Dec-MCTS typically converged after ∼60 s. A paired single-tailed t-
test supports the hypothesis (p < 0.01) that Dec-MCTS achieves a higher reward
than Cen-MCTS for time > 7 s. Cen-MCTS performs well initially since it performs

3.5 Experiments: Generalised team orienteering 82

0 20 40 60 80 100 120

Computation time (sec)

-20

-10

0

10

20

%
 R

e
w

a
rd

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
c
e

n
tr

a
lis

e
d

 a
lg

o
ri
th

m

(a)

 0 0.5 0.75 0.88 0.94 0.97

Communication failure probability

-20

-10

0

10

20

%
 R

e
w

a
rd

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
c
e

n
tr

a
lis

e
d

 a
lg

o
ri
th

m

(b)

Figure 3.4 – (a) Comparison of Dec-MCTS with varying computation time to
Cen-MCTS (120 s). (b) Performance of Dec-MCTS with intermittent communica-
tion (60 s computation time). (a,b) Vertical axes show percentage additional reward
achieved by Dec-MCTS compared to Cen-MCTS. Error bars show 0, 25, 50, 75 and
100 percentiles (excluding outliers) of 100 random problem instances.

a centralised greedy rollout that finds reasonable solutions quickly. Dec-MCTS soon
reaches deeper levels of the search trees, though, which allows it to outperform Cen-
MCTS. Dec-MCTS uses a collection of search trees with smaller branching factors
than Cen-MCTS, but still successfully optimises over the joint-action space.

We note that in this implementation Dec-MCTS is performing parallel computation
while Cen-MCTS is mostly sequential. While it is difficult to measure the difference
in computation resources used (due to the use of virtual cores, less than 100% pro-
cessor utilisation, and overheads of using ROS message passing), the results indicate
that Dec-MCTS would outperform Cen-MCTS after adjusting for this difference in
computation resources.

Robustness to communication loss

The second experiments analysed the effect of communication degradation. When
the robots did not communicate, the algorithm achieved a median 31% worse than
Cen-MCTS, but with full communication achieves 7% better than centralised, which
shows the robots can successfully cooperate by using our proposed communication
algorithm. Figure 3.4b shows the results for partial communication degradation.
When half of the packets are lost, there is no significant degradation of performance.

3.6 Experiments: Active object recognition 83

(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 3.5 – Experiment setup for the point cloud dataset. (a) Environment with
labelled locations, (b) picnic table (PT), (c) barbecue (BQ), (d) wheelie bin (WB),
(e) motorbike (MB), (f) street light (ST), (g) tree (TR), (h) palm tree (PT).

When 97% of packets are lost the performance is degraded but the algorithm still
performs significantly better than with no communication.

These experiments demonstrate that Dec-MCTS achieves reasonable performance
even when the communication becomes less reliable. While these results show a
robustness to communication loss, they also indicate that some of the communication
messages are not entirely necessary. Later in Section 3.7 we exploit this property to
develop a communication-scheduling algorithm that selects when to communicate and
who to communicate during each iteration of Dec-MCTS. This extended formulation
is particularly useful in scenarios where communication resources are limited, and the
scheduling enables using this communication resource only when it is predicted to be
beneficial for the planning performance.

3.6 Experiments: Active object recognition

This section describes experiments for online active object recognition, using point
cloud data collected from an outdoor mobile robot in an urban scene, illustrated in
Figure 3.5. We first outline the problem and experiment setup, and then present
results that analyse the value of online replanning and compare Dec-MCTS to a
greedy planner.

3.6 Experiments: Active object recognition 84

3.6.1 Problem statement

A team of robots aim to determine the identity of a set of static objects in an unknown
environment. Each robot asynchronously executes the following cycle: (1) plan a path
that is expected to improve the perception quality, (2) execute the first planned ac-
tion, (3) make a point cloud observation using onboard sensors, and then (4) update
the belief of the object identities and their poses. Each robot asynchronously performs
this cycle until their travel budget is exhausted. The robots have the same motion
model as in Section 3.5. Each graph edge has an additional constant cost that rep-
resents the time required to process an observation and perform replanning. Thus,
each robot’s budget is a constraint on the sum of its travel distance and processing
time.

We use a perception model for object recognition similar to that proposed in Chap-
ter 7.2 of Patten (2017). The robots maintain a belief of the identity of each observed
object, represented as the probability that each object is an instance of a particular
class of objects. The set of object classes are defined in a given database. The aim
is to improve this belief, which is achieved by maximising the mutual information
objective proposed by Patten et al. (2015). The posterior probability distribution for
each object after a set of observations is computed recursively using Bayes’ rule. The
observation likelihood is calculated by measuring the similarity between the shape of
the point cloud with each model instance in the database. Similarity is computed by
first aligning the point clouds of a pair of objects using the Iterative Closest Point
(ICP) algorithm (Besl and McKay, 1992) and then calculating the symmetric residual
error (Douillard et al., 2012). Objects may merge or split after each observation if
the segmentation changes. Observations are fused using decentralised data fusion or
a central processor and shared between all robots, and thus all robots are assumed
to have the same belief of the environment. While planning, the value of future ob-
servations are estimated by simulating observations of objects in the database for all
possible object identities, weighted by the belief probabilities, and using maximum
likelihood estimates for poses.

3.6 Experiments: Active object recognition 85

3.6.2 Experiment setup

The experiments use a point cloud dataset (Patten et al., 2015) of Velodyne scans
of outdoor objects in a 30×30m2 park shown in Figure 3.5(a). The environment
consisted of 13 objects from 7 different model types as shown in Figures 3.5(b)–(h).
The dataset consists of single scans from 50 locations and each scan was split into
8 overlapping observations with different orientations. Each observation had a 180°
field of view and 8m range. These locations and orientations form the roadmap
vertices with associated observations. Each object was analysed from separate data
to generate the model database. The robots are given a long-range observation from
the start location to create an initial belief of most object locations. The team consists
of 3 robots, who share a fixed start location with different orientations.

The experiments simulate an online mission where each robot asynchronously alter-
nates between planning and perceiving. Three planners were trialled: our Dec-MCTS
algorithm with 120 s replanning after each action, Dec-MCTS without replanning, and
a decentralised greedy planner that selects the next action that maximises the mutual
information divided by the edge cost. The recognition score of an executed path was
calculated as the belief probability that each object matched the ground-truth object
type, averaged over all objects. The planners cannot directly optimise the paths with
respect to the recognition score since the ground-truth is not known in advance; how-
ever, planning with respect to the mutual information objective function is intended
to indirectly optimise the recognition score.

3.6.3 Results

Overall, the results validate the coordination performance of Dec-MCTS. Figure 3.6a
shows the recognition score (task performance) over the duration of the mission for
10 trials with 3 robots. The maximum possible recognition score subject to the per-
ception algorithm and dataset was 0.62, which was achieved by visiting every location
in the dataset. Dec-MCTS outperformed greedy halfway through the missions since
some early greedy decisions and poor coordination reduced the possibility of mak-
ing subsequent valuable observations. By the end of the missions some greedy plans

3.6 Experiments: Active object recognition 86

0 10 20 30 40 50 60 70 80 90 100

% Budget used

0.3

0.35

0.4

0.45

0.5

0.55

0.6

R
e

c
o

g
n

it
io

n
 s

c
o

re

Dec-MCTS

Dec-MCTS no replan

Greedy

(a)
0 100% Budget used

0.3

0.5
S

c
o

re

(b)

Figure 3.6 – (a) Task performance over mission duration for 10 trials (maximum
possible score is 0.62). (b) Overlay of 2 example missions with 3 robots. Blue
paths denote online Dec-MCTS (score 0.53). Orange paths denote greedy policy
(score 0.42). Objects are green point clouds where shading indicates height. Robots
observe at black dots in direction of travel. Start location top right.

successfully made valuable observations, but less often than Dec-MCTS. The no-
replanning scenario achieved a similar score as the online planner in the first half,
showing that the initial plans are robust to changes in the belief. For the second half,
replanning improved the recognition score since the belief had changed considerably
since the start. This shows that while the generated plans are reasonable for many
steps into the future, there is also value in replanning as new information becomes
available.

Figure 3.6b shows two example missions using online Dec-MCTS (blue) and greedy
(orange) planners, and their score over the mission duration. Greedy stayed closer
to the start location to improve the recognition of nearby objects, and consequently
observed objects on the left less often; reaching this part of the environment would re-
quire making high cost/low immediate value actions. On the other hand, Dec-MCTS
achieved a higher score since the longer planning horizon enabled finding the high
value observations on the left, and was better able to coordinate to jointly observe
most of the environment.

3.7 Extension: Communication scheduling 87

3.7 Extension: Communication scheduling

The Dec-MCTS algorithm presented so far naively communicates at every iteration.
However, in practice this may not be possible, for example due to exceeding bandwidth
limits. In this section, we propose a communication scheduling algorithm that can be
used to select which communication messages should be sent by reasoning over the
information value of the messages.

More specifically, in this section we are interested in addressing the problem of decid-
ing when to communicate, and to whom, while the robots are performing decentralised
planning. We aim to find a balance between minimising the use of limited commu-
nication resources, and satisfying the planning algorithm objectives. This problem is
challenging because it is difficult to efficiently predict how communicating the current
plan will impact the coordination performance in the long term (Becker et al., 2009).

We propose a novel planning algorithm that reasons over the value of communication
messages to decide when and to whom each robot should communicate. We present
this algorithm for the context of Dec-MCTS, although the methods presented here
could be adapted for other online coordination algorithms. The aim is to minimise
communication while maintaining bounds on the uncertainty of the reward distribu-
tion. Our approach predicts the value of future communication messages, then uses
these predictions to plan a sequence of communication requests. The predictions are
performed using a particle filter, and the optimal communication schedule is found
using dynamic programming. Notably, the approach collapses the decision-tree into
a directed acyclic graph, enabling polynomial runtime.

Overall, the approach trades drastically reduced communication for a modest over-
head in computation time. We have evaluated our approach in a multi-robot informa-
tion gathering scenario similar to that in the experiments of Section 3.5. Our results
show large reductions in channel utilisation with little impact on task performance.
This demonstrates our approach is suitable for communication planning in real-world
multi-robot scenarios.

Our approach here is analogous to the belief-space planner of Ondruska et al. (2015),
which was developed for scheduling localisation hardware usage to conserve energy

3.7 Extension: Communication scheduling 88

during path-following scenarios. The general approach also has similarities to the
dynamic programming algorithm proposed later in Chapter 5.

3.7.1 Summary of approach

We present a brief summary of our communication scheduling formulation and algo-
rithm as follows. Full details may be found in Best et al. (2018c).

Formulation and algorithm

We propose a decentralised algorithm for deciding when to communicate, and to
whom, while the robots are performing Dec-MCTS. During each iteration n, robot i
updates its plan, schedules sequences of communication requests, then performs the
selected requests. This continues until the robots execute their plans.

In the decentralised planning phase, robot i updates its plan using Dec-MCTS while
considering the most recently communicated plans of the other robots. As described
in the preceding sections, this update involves selecting a subset of possible action
sequences X̂ i

n ⊂ X i using Monte Carlo tree search, and then optimising a probability
distribution qnt over the selected subset X̂ i

n.

Then, robot i decides whether or not to request communication from each robot j
by considering how much its own plan qin depends on the plan of robot j. This
dependency is measured as the uncertainty σjn of the expected local utility f i for
robot i that is caused by not knowing the plan qjn of robot j. This uncertainty is
described as

σjn = stdevBjn(qjn)

(
E
qjn∪q

(j)
n

[
f i
(
xj ∪ x(j)

)])
, (3.14)

where this standard deviation is measured with respect to the uncertain belief Bjn of
the distribution qjn(xj) of robot j. The decision is made by first evolving the belief
Bjn over a finite time-horizon, then finding the optimal communication schedule using
dynamic programming, summarised as follows.

The belief evolution is implemented using a particle filter that predicts the distribution
qjn at future timesteps. If robot i chooses to request communication at a future

3.7 Extension: Communication scheduling 89

timestep, then the set of particles at that timestep has uncertainty σjn = 0. Typically,
σjn then increases at each iteration until the next communication request. When σjt
increases beyond a threshold θ the robots must communicate. This belief evolution
manifests as a prediction graph that describes valid request sequences.

Dynamic programming is then used to find the optimal sequence of communication
decisions for T future iterations. This sequence minimises the number of requests
while satisfying the uncertainty σjn ≤ θ constraints.

At the end of each iteration, robot i requests the plans X̂ j
n , q

j
n of selected robots ac-

cording to the first decision in the communication schedule. The received information
is used to improve coordination in future planning iterations.

Analysis

The schedule is optimal with respect to the belief and is guaranteed to satisfy the
constraints. The algorithm has polynomial runtime, with complexity O(BT 2RE),
where B is the number of particles at each decision node, T is the number of steps
in the planning horizon, R is the number of robots, and E is time taken to compute
expected utility. We note that due to our construction, the total number of particles
generated during each round of communication scheduling is O(BT 2R), which is
polynomial in the time horizon (rather then exponential, as would occur in a typical
decision tree). Typically, we expect that E is large for non-trivial problems; therefore,
B or T should be selected to strike a balance between runtime and desired accuracy
of the predictions.

3.7.2 Experiments

We analyse the performance and behaviour of our proposed communication schedul-
ing algorithm in the context of Dec-MCTS and the information gathering scenario
from Section 3.5. Overall, the results show that the performance of Dec-MCTS can
be maintained, even with significantly reduced communication rates, by judiciously
selecting which communication messages to transmit.

3.7 Extension: Communication scheduling 90

Although it is difficult to identify alternative algorithms that can be directly compared
to ours, we do provide comparisons to a suite of communication reduction approaches.
One of these is full (effectively all-to-all) communication. This scheme is not feasible
in practice for our systems of interest, which are field robots with significant channel
contention that arises from sources such as RTK GPS corrections, e-stop heartbeat
messages, and telemetry. However, the full communication case provides a quality
benchmark that allows us to measure relative coordination (task) performance.

Comparison scenarios

In the following experimental results we compare 5 different scenarios. The All-to-all
scenario makes the unrealistic assumption of perfect communication and the robots
communicate their intentions at every iteration. Random represents a scenario where
only 20% of the packets are successfully received due to uniform-random message loss
(e.g., to model excessive contention on the communication channel). We compare two
version of our approach: Horizon 4 plans with a planning horizon of T = 4, while
Greedy only looks one time-step ahead. In the Horizon 4 and Greedy scenarios, θ
is selected such that they have a 20% average communication rate. As a baseline
comparison, the None scenario assumes all communication fails and no messages are
successfully received.

Results

For a baseline comparison we observe that communication is important for coordi-
nation. In Figure 3.7a, the robots take advantage of the perfect setting of having
full communication (All-to-all) to coordinate their plans effectively. In Figure 3.7b,
there is no communication (None) and therefore there is no coordination, resulting in
multiple visits to the same regions. Table 3.1 compares the planning performance for
different communication scenarios. All-to-all naturally resulted in the highest reward,
but the partial communication scenarios performed well despite having 80% less com-
munication. As expected, None resulted in the poorest performance. Planning with
a horizon of T = 4 achieved higher rewards than Greedy, showing the advantage of

3.8 Summary 91

(a) Communication (All-to-all) re-
sults in successful coordination.

(b) No communication (None) re-
sults in poor coordination.

Figure 3.7 – Information gathering problem instance for the communication experi-
ments, with example solution paths (coloured lines). Arrows show start location and
orientation for 8 robots. Green disks are reward regions (weighted by reward).

planning over a time horizon. Both of these scenarios outperformed Random, which
highlights the practical benefit of performing informative communication planning.

The planned communication scenarios achieved better results than Random since the
proposed approach chose to communicate more frequently for pairs of robots that have
a larger coupling between their local utilities. For the T = 4 scenarios, the highest
communication rate (62%) is between the blue and pink robots in the bottom left of
Figure 3.7a. We expect this pair to communicate more since their reachable regions
significantly overlap. The yellow robot in the bottom right received the least requests
(11%) since it is relatively isolated. The algorithm also selects when to communicate,
which tended to be more during earlier iterations when successful coordination is most
important.

3.8 Summary

We have presented a new algorithm for decentralised coordination that is suitable for a
general class of problems. Our results demonstrate that the performance (i.e., solution
quality) of our approach is as good as or better than its centralised counterpart in

3.8 Summary 92

Table 3.1 – Reward collected (as a percentage) in the information gathering problem
with the different communication scenarios. Iterations are the sum of planning itera-
tions performed by the 8 robots. Rewards averaged over 50 trials in the environment
illustrated in Figure 3.7. Average standard deviation of reward is 7%.

Planned schedules

Iterations All-to-all Random Horizon 4 Greedy None

50 23.2 17.4 23.5 23.1 15.9
100 65.0 54.0 62.3 60.4 32.6
150 71.2 64.5 66.3 67.3 32.6
200 76.1 68.7 69.5 69.6 33.9
250 74.1 66.8 71.3 69.9 31.8
300 73.5 66.3 71.6 69.6 32.8
350 74.5 65.5 73.4 71.7 35.1
400 76.7 68.9 76.3 74.5 33.0

real-world applications, and that it effectively optimises over sequences in the joint-
action space even with intermittent communication. A key conceptual feature of
our approach is its generality in representing joint action sequences probabilistically
rather than deterministically. Dec-MCTS has the ability to efficiently plan over long
planning horizons, computes anytime solutions, allows incorporating prior knowledge,
and provides convergence rate guarantees.

Chapter 4

Self-organising maps for
generalised orienteering

In this chapter we propose a new self-organising map (SOM) planning algorithm
suitable for active perception formulations. We formulate a new generalisation of the
well-known orienteering problem that has polygonal goal regions and multiple robots.
We demonstrate how this formulation is useful as an active perception formulation
by exploiting an inverse sensor model. We propose an efficient solution algorithm for
this problem based on the SOM adaptive learning procedure.

4.1 Overview

The performance of an active perception mission, such as a classification, exploration,
coverage, or persistent monitoring task, is largely dependent on an appropriate choice
of viewpoints. Current approaches for active perception typically estimate the value
of visiting candidate viewpoints by simulating predicted observations (van Hoof et al.,
2014; Wu et al., 2015; Patten et al., 2016). For complex sensor models, these predic-
tions can be computationally expensive, which therefore restricts the capabilities of
planning algorithms.

Instead, in this chapter, we focus on planning paths for perception tasks where in-
formative parts of the objects in the environment have been extracted. Therefore,

4.1 Overview 94

Figure 4.1 – An example environment, set of object parts, viewpoint regions and
solution paths for two robots (same as Figure 1.4). The 3D point cloud was generated
by a real robot moving around an environment consisting of trees, tables, chairs,
bins and a motorbike. The underlying grid has 5m spacing. Almost all object parts
are observed along the planned paths, with some skipped due to the travel budget
constraints. In this scenario, all objects are known to the offline planner. In online
scenarios, additional goals are placed in unexplored regions, and the goals and plans
adapt as observations are made.

we use an inverse sensor model to define a discrete set of overlapping continuous
viewpoint regions, with associated rewards, where each part can be observed. Cor-
relations between viewpoints can be naturally modelled in our formulation as the
overlap between viewpoint regions. Figures 1.4 (earlier) and 4.1 illustrate an example
outdoor environment with a collection of objects observed by a 3D laser scanner. The
path planning problem is to optimise the rewards gained by visiting these desirable
viewpoint regions. This new formulation for active perception enables the planner to
consider a continuous space of candidate viewpoints, long-horizon planning, multi-
robot scenarios and efficient online replanning.

This active perception formulation describes a multi-goal path planning problem with
similarities to the orienteering problem (OP) (Gunawan et al., 2016; Vansteenwegen
et al., 2011) and the travelling salesman problem (TSP) (Toth and Vigo, 2001). The
prize-collecting TSP with neighbourhoods (PC-TSPN) is a closely related TSP vari-
ant that has recently been solved and applied to data collection in sensor network
applications (Faigl and Hollinger, 2014). In the PC-TSPN, the objective is to plan
the path of a robot that maximally selects and visits a set of disks, where the ob-

4.1 Overview 95

jective function is defined as the sum of the path length and the rewards for visiting
each disk. This objective function has convenient algorithmic properties; however,
it is unclear how to balance the trade-off between path lengths and rewards when
applied to real problems. Instead, we develop a new formulation that generalises the
OP; we directly optimise the observation rewards while the path length is limited
by a maximum travel budget. These budget constraints can be selected to meet the
requirements of the application, such as fuel, time and other resource constraints, or
a planning horizon.

The considered problem is NP-hard, which can be shown by a reduction from the
orienteering problem, and therefore we turn to heuristic solutions. In particular, we
consider an extension of the self-organising map (SOM) approaches for the TSP. SOM
is a two-layered neural network accompanied by an unsupervised learning procedure
that preserves topological properties of an input space. SOM has been applied to the
traditional TSP by several authors, e.g., Angéniol et al. (1988); Somhom et al. (1997).
Although SOM for the TSP does not compete with the best known combinatorial
heuristics for the conventional TSP (Helsgaun, 2000), it provides a significant ad-
vantage in problems that require selecting observation locations. This is particularly
important in the TSPN (Faigl and Hollinger, 2014) and the OP with neighbourhoods
(Faigl et al., 2016) where the algorithm implicitly selects sensing locations within
continuous neighbourhoods.

Jointly optimising the selection and sequence of nodes to observe, along with finding
favourable viewpoints within sensing regions, can greatly reduce the path distance
by avoiding unnecessary travel. Therefore, we consider the original idea of the SOM-
based data collection planning introduced in Faigl and Hollinger (2014) for our con-
strained problem with limited travel budgets. Our new approach ensures these hard
budget constraints are satisfied by the planning algorithm.

Moreover, we also generalise the approach in Faigl and Hollinger (2014) to planning
for multi-robot teams. This requires addressing additional challenges, including co-
ordinating the robots to select mutually beneficial observation locations, effectively
using the available resources of each robot, and overcoming the compounded com-
putational complexity to quickly find good solutions. Our algorithm jointly plans
for multiple robots simultaneously by optimising the allocation of nodes to robots.

4.1 Overview 96

Therefore, our approach does not require predefined or explicit partitioning of the en-
vironment. The algorithm has polynomial bounds on runtime complexity, and scales
well as the number of robots increases.

A primary contribution of this chapter is to demonstrate that the algorithmic ap-
proach is suitable for online scenarios. In particular, we show that the formulation
can naturally incorporate exploration objectives to discover new information, and the
planner efficiently performs replanning as new information becomes available. Explo-
ration objectives can naturally be encoded as viewpoint regions, so that the planner
balances between making high-quality observations of known objects and visiting un-
explored space to discover new objects. This formulation is motivated by scenarios
where there are two complementary sensing modalities. For example, a long-range
laser sensor (Bargoti et al., 2015) detects the presence and locations of trees on a farm,
while a close-range high-resolution RGB-D sensor (Martens et al., 2017; Peng et al.,
2016) performs the primary task of characterising the fruit in the trees. The planner
needs to balance the use of these two modalities in order for the robots to discover as
many objects as possible while also making sufficient close-range observations. The
proposed SOM algorithm enables efficient online replanning as new information be-
comes available since it is able to effectively reuse and adapt previous solutions. This
is a vitally important requirement for real robots performing onboard computations
while executing a mission (Likhachev et al., 2005).

In addition to theoretical analysis, we also perform simulations of several random en-
vironments and active perception tasks using a 3D point cloud dataset (Patten et al.,
2015) and a realistic observation model using ensemble of shape functions descrip-
tors (Wohlkinger and Vincze, 2011). The results highlight advantages of the algorithm
in an offline setting for addressing the multi-robot, non-uniform reward, constrained
budget and polygonal region characteristics of the problem. We also show the ad-
vantages of planning over continuous rather than discrete space by showing our ap-
proach outperforms the Dec-MCTS algorithm presented in Chapter 3. Additionally
we empirically evaluate the performance of the planner when incorporating explo-
ration objectives and adapting to new information when replanning. We highlight
the advantages of long-horizon planning over greedy approaches, even when limited
information is available. The active perception experiments show the feasibility in

4.2 Problem formulation 97

practice of online long-horizon planning for multi-robot active perception tasks.

4.1.1 Chapter outline

The remainder of this chapter is organised as follows. Section 4.2 introduces the
active perception problem formulation considered in this chapter. In Section 4.3, we
propose a self-organising map solution algorithm for this problem. The algorithm is
analysed theoretically and empirically in Section 4.4. Sections 4.5 and 4.6 describe
how this formulation can be applied to object recognition type problems in offline and
online scenarios, and show results for simulated experiments with a 3D point-cloud
dataset, including a comparison to Dec-MCTS. Finally, Section 4.7 concludes the
chapter.

4.2 Problem formulation

This section formally defines the active perception formulation considered in this
chapter, as a subproblem of Problem 1.1. The objective is to plan the paths for a
team of robots such that they maximally observe a set of nodes in the environment
with varying rewards. Each robot has an associated travel speed and maximum
travel budget. Each node may be observed by visiting any point in its associated
viewpoint region, represented as a polygon. These nodes, viewpoint regions and
rewards may be defined to meet the objectives of the application; in Sections 4.5
and 4.6 we formulate example problem instances for perceiving 3D point-cloud objects
and incorporating exploration objectives. In this section we define the problem by
considering the objectives that are currently known at a given time instance. Though
we are interested in solving this problem in an online setting such that the plans adapt
as new information is discovered, and a formulation for these scenarios is developed
further in Section 4.6.

4.2 Problem formulation 98

4.2.1 Multi-robot team

A team of R robots is denoted R = {r1, r2, ..., rR}. The trajectory of each robot ri

is defined as a sequence of waypoints X i = (xi1, xi2, xi3, ...), where each waypoint is
a position within a free space environment xij ∈ R2. Each robot ri moves along a
straight line between waypoints at a constant speed si, which may be different for
each robot. The cost of each robot’s path ci ≥ 0 is the time taken to travel through
the sequence of waypoints X i. Each robot has a cost budget bi > 0, and a set of
robot paths {X i} is deemed to be feasible if every robot meets its budget constraint,
i.e., ci ≤ bi,∀ri ∈ R. We address several possible conditions for the start and end
positions of the robots: (1) the start and end positions are unconstrained and free to
be selected by the planner, (2) the start positions are unconstrained but the robots
must end at their start position, and (3) the start and/or end position is fixed.

4.2.2 Viewpoint regions and rewards

The robots aim to observe a set of N nodes N = {n1, n2, ..., nN} at different locations
within the environment. Every node has a weight wk > 0 that defines the reward for
observing the node. Each node nk has a continuous set of viewpoints Zk defined as all
points on and within a simple polygon. The robot observes a node if any waypoint of
the robot’s path is within the viewpoint region, i.e., ∃xij ∈ X i : xij ∈ Zk. The binary
indicator variable ok ∈ {0, 1} for each node nk is 1 if the node is observed by one or
more robots and 0 otherwise. All robots sense continuously along their paths, which
can be taken into account in the above definition by adding additional waypoints
along a path at no extra cost. Although we assume the regions are the same for each
robot, the algorithm can easily be extended to robot-dependent observations.

The presented solution is applicable for any set of viewpoint regions and rewards. In
active perception formulations, these viewpoint regions can be used to represent loca-
tions where key points of interest may be observed. The associated reward may encode
the importance of observing the point of interest. Later in Section 4.5.1 we present
an example definition motivated by object recognition scenarios, but we emphasise
that the presented solution algorithm is not specific to this example definition.

4.2 Problem formulation 99

We are also particularly interested in formulations for online tasks, where the robots
should aim to observe known objectives as well as discover currently unknown objec-
tives. This balance can be achieved using our formulation by introducing new nodes
to the set N that represent regions where the robots may be expected to discover
new objectives. We formulate this concept further in Section 4.6.

4.2.3 Problem statement

The optimisation problem is to plan the locations of waypoints for each robot and
the sequence the waypoints are visited X i, such that all budget constraints are met
and the sum of the observation rewards for the nodes is maximised. More formally,
we state the problem addressed in this chapter as follows.

Problem 4.1 (Generalised orienteering problem). Find the set of paths {X i} that
maximises ∑

nk∈N
okwk and satisfies the constraints ci ≤ bi,∀ri ∈ R.

We are interested in solving Problem 4.1 by replanning in an online setting. The
robots initially plan based on the information available offline. After each action
is executed, an observation may result in a change of the nodes, viewpoint regions
or rewards. We assume these changes are small and therefore the planner should
efficiently adapt its previous solution to address the new objectives.

4.2.4 NP-hardness

The problem is NP-hard and a reduction from the orienteering problem (Vansteenwe-
gen et al., 2011) with Euclidean costs can readily be shown by setting the number of
robots R to 1 and the viewpoint sets {Zk} as singleton. This result motivates the de-
velopment of a heuristic algorithm to approximately solve the problem in polynomial
time.

4.3 Self-organising map algorithm 100

4.3 Self-organising map algorithm

Self-organising map algorithms aim to give a lower-dimensional representation of an
input space, while preserving a given topological graph-based structure of the repre-
sentation. A detailed description of SOMs is provided earlier in Section 2.3.5, with
illustrated examples in Figure 2.3.

For our problem the input space is the set of viewpoint regions in the environment,
and the algorithm aims to find a set of sequences of waypoints (representing robot
paths) that best fits this input space. The learning procedure is competitive in that
each viewpoint region is presented one at a time, and each waypoint competes to
be the winner for representing that region. A winner waypoint moves towards that
region, and neighbours of the winner in the graph topology will also move towards
the region by a decreasing distance. This process is repeated for a fixed number of
learning epochs, when convergence of the paths to a stable state is guaranteed.

This section details the proposed SOM learning procedure for our problem formula-
tion, which includes addressing non-uniform observation rewards, node selection satis-
fying budget constraints, multi-robot task allocation to nodes and can efficiently per-
form online replanning by adapting previous solutions. We first provide an overview
of the algorithm followed by a detailed explanation of all components.

4.3.1 Algorithm overview

An overview of the proposed self-organising map algorithm is presented in Figure 4.2
and Algorithm 4.1. The algorithm consists of two nested loops and in each iteration,
the solution paths for the team of robots is adapted towards the final solution.

During each iteration of the outer loop (Algorithm 4.1 line 5), called an epoch, all
viewpoint regions are addressed one at a time (line 7) by adapting the path of one of
the robots towards the considered viewpoint region (line 12). The path adaptations
are performed using an extension of the standard self-organising map adaptation
process for TSP problems, in combination with a greedy robot-node allocation policy
(line 11). This allocation policy divides the workload between robots while satisfying
budget constraints. Regions with low reward are considered once per epoch while

4.3 Self-organising map algorithm 101

current

solution

adaptation

towards goal

robot-node

allocation

travel

budget

used

for each goal region in a random order (duplicated by reward weights)

repeat until convergence (fixed number of iterations)

for each

robot
9.5 / 10

11 / 10

9.8 / 10

path

regeneration

Figure 4.2 – Overview of the proposed self-organising map algorithm with an example
problem instance for three robots.

high-reward regions are considered multiple times. At the end of each epoch, the paths
are regenerated to remove non-informative waypoints (line 13), and an adaptation
parameter is cooled (line 16).

The algorithm continues for a fixed number of epochs until convergence is guaran-
teed. During early epochs the paths typically make large sporadic jumps around the
environment, while small local refinements are made in later epochs. In our analysis
(later in Section 4.4) we show that the runtime complexity of the algorithm is O(N ′2),
where N ′ is the number of viewpoint regions after duplication to take into account
the rewards {wk}. In the remainder of this section, we provide a detailed explanation
of all components of the algorithm.

4.3.2 Graph topology

The graph topology for the SOM is a set of R sequences of waypoints that directly
represent the robot paths. Each of these paths will transform over time according
to the following learning procedure. For problems where each robot must return to
its start position, the topology of each path is a closed loop. If this is not required,

4.3 Self-organising map algorithm 102

Algorithm 4.1 Self-organising map algorithm.
Input: robot speeds {si} and budgets {bi},

a set of nodes {nk} with associated
viewpoint regions {Zk} and rewards {wk},
adaptation parameters σ0 and δ

Output: planned path for each robot {Xi}∗
1: Xi ← circle around arbitrary node ni, ∀ri ∈ R
2: N ′ ← duplicate nk ∈ N by factor wk/gcd({wk})
3: N ′ ← N ′ ∪ {virtual node for each fixed waypoint}
4: σ ← σ0; i← 1 . Adaptation parameter
5: while not converged do
6: perm← random permutation of {nk}
7: for each nk ∈ N ′, in order perm do
8: for each ri ∈ R do
9: Xi′ ← adaptation(Xi,Zk, σ) . See Algorithm 4.2
10: ci′ ← travel time of path Xi′ at speed si

11: ri ← argmin
ri∈R,ci′≤bi

(
ci′

bi

)
. Robot selection

12: Xi ← Xi′ . Update selected robot
13: {Xi} ← regeneration of {Xi}
14: F ←

∑
nk∈N

okwk . Evaluate objective

15: if F > F ∗ then {Xi}∗ ← {Xi} . Save best plan
16: σ ← (1− iδ)σ; i← i+ 1

then the topology is a set of open paths. When performing online replanning, the
paths may be initialised as the previously computed solution. If no previous solution is
available, then we initialise each path as a small circle (consisting of bN/Rc waypoints)
around the centre of a unique arbitrary node (Algorithm 4.1 line 1). This initialisation
is reasonable since the paths will quickly spread over the input space and adjust their
number of nodes during the first learning epochs.

4.3.3 Viewpoint rewards

Each node has an associated reward for being visited. To ensure that the learning
procedure favours visiting the higher reward viewpoint regions, each node is dupli-
cated according to its reward. The node nk is duplicated by a factor of wk divided by
the greatest common divisor of the set of rewards gcd({wk}). This is performed in
Algorithm 4.1 line 2. The computation time complexity is dependent on the number

4.3 Self-organising map algorithm 103

of duplications. Therefore it may be beneficial to reduce the number of duplications
by rounding the rewards to the nearest multiple of a number greater than gcd({wk}).

The motivation for this approach is that high-reward regions will be trialled more
often in each learning epoch. This increases the likelihood of a robot path trans-
forming towards the higher weighted nodes, decreases the likelihood of the node not
being selected due to budget constraints, and decreases the likelihood of waypoints
in high-reward regions being removed during the regeneration step.

4.3.4 Learning epochs

In each learning epoch (iteration of Algorithm 4.1 line 5 loop), each node is considered
one at a time, and one robot is selected to transform its path towards each viewpoint
region, if it meets its budget constraint. At the end of each learning epoch, any
unnecessary waypoints are removed before starting the next learning epoch. We
describe these steps in more detail as follows.

Permute the nodes

At the start of each epoch, the nodes are permuted in a random order which will
determine the order that they are considered (Algorithm 4.1 lines 6–7). This ensures
the algorithm is less sensitive to the ordering and the initial conditions, and more
likely to escape from local optima.

Winner selection and adaptation

The key steps in the SOM algorithm are the winner waypoint selection and the
adaptation of the position sequences, as detailed in Algorithm 4.2. For every node,
this is performed for each robot, but then in the following step a robot allocation
policy ensures only one of the robots gets updated for each node. The winner waypoint
selection is performed by considering all waypoints and edges in the current robot path
X i. The existing waypoint or a point along one of the existing edges that is closest to
any point within the viewpoint region Zk is considered as the winner (Algorithm 4.2

4.3 Self-organising map algorithm 104

Algorithm 4.2 Adaptation step of the SOM algorithm.
1: function adaptation

Input: path Xi of robot ri,
viewpoint region Zk of node nk,
adaptation parameter σ

Output: an adapted path Xi′ for robot ri
2: xw ← closest waypoint in Xi to Zk
3: zw ← closest point in Zk to xw
4: dw ← ‖zw − xw‖
5: xe ← closest point on edges of Xi to Zk
6: ze ← closest point in Zk to xe
7: de ← ‖ze − xe‖

8: . Winner selection
9: if xw ∈ Zk ∨ dw ≤ de then

10: . Select waypoint as winner
11: if xw is fixed then
12: xw ← copy of xw
13: Xi ← insert xw into Xi next to fixed copy
14: x? ← xw; z? ← zw
15: else

16: . Select edge as winner
17: Xi ← insert xe into Xi along edge
18: x? ← xe; z? ← ze

19: for each xij ∈ Xi do
20: if xij is not fixed then

21: . Adapt waypoints in neighbourhood of x?
22: l← cardinal distance from x? to xij
23: xij ← move xij towards z? by factor f(σ, l) in Eqn. (4.1)

line 11 or 14). If the winner is a point along an edge, then a new waypoint is inserted
into the path at this point (line 13).

The winner waypoint x? is then moved to the closest point z? in Zk. If z? is on the
edge of the polygon it is moved slightly towards the centre to avoid numerical issues
and to reduce the chances of the waypoint being immediately removed in the next
path regeneration phase. The cardinal distance (number of hops) in the path/loop
from x? to every other existing waypoint is denoted l. Each waypoint in X i is moved
some fraction towards z? (line 19), such that waypoints with low cardinal distance to
x? will move further towards z? than other waypoints. This fraction is determined by

4.3 Self-organising map algorithm 105

the neighbourhood function

f(σ, l) =
 µe−

l2
σ2 for i < 1/δ

0 otherwise
, (4.1)

where i is the current learning epoch and the gain decreasing rate δ is a small constant
parameter, e.g., δ = 0.002. The value of σ is decreased at the end of each learning
epoch as σ ← (1− iδ)σ (Algorithm 4.1 line 16), which causes the neighbours to adapt
less as the algorithm progresses. We define the learning rate as a constant µ = 1;
alternatively, a cooling schedule could be defined for µ (Zhang et al., 2006).

Forcing f(σ, l) to 0 after i = 1/δ is a natural restriction of the neighbourhood function
since σ = 0 when i ≥ 1/δ, which would cause an undesirable division by zero.
According to definition (4.1), there is a maximum number of epochs imax = 1/δ before
the adaptations stop and therefore the network converges. For example, δ = 0.002
provides imax = 500. We discuss the convergence properties further in Section 4.4.1.

Robot-node allocation

After adapting each path towards the viewpoint region Zk, the algorithm then only
allocates one (or none) of the robots to the node and only this robot keeps their
adapted path. The selection is performed by greedily selecting the robot that has used
the least fraction of its budget after performing the adaptation (Algorithm 4.1 line 11).
If no robot meets their travel budget then no paths are adapted. It is important to
note that this allocation of robots to nodes is greedy just for the currently presented
node and the particular learning epoch; these allocations are often modified in later
learning epochs if a better allocation is found, and thus the overall SOM algorithm
is not a greedy algorithm.

This allocation approach is motivated by the observation that in most cases an optimal
solution should have each robot using approximately all of its travel budget. This is
similar to what is typically seen in minimax problems. We wish to divide the work
evenly between the robots as the learning progresses towards the final solution, such
that a natural partitioning is found between the robots. Conversely, unbalanced path
growth is likely to result in poor partitioning, such as when planning for the robots

4.3 Self-organising map algorithm 106

sequentially (as seen in the experiments in Section 4.4.2).

Other possible allocation policies could also be appropriate here, such as the Hungar-
ian algorithm. However, we believe it is better to have a fast and simple allocation
policy, such as the greedy policy. This is because the actual reward or cost of each
allocation is difficult to measure due to the flow-on effect of optimising sequences of
viewpoints. Heuristic approaches are therefore appropriate, and suboptimal alloca-
tions can be quickly modified again in later epochs.

Path regeneration

At the end of each epoch (Algorithm 4.1 line 13), waypoints that are no longer useful
are removed. A waypoint is useful if it is within at least one of the viewpoint regions. If
multiple waypoints are within a viewpoint region then only one waypoint is randomly
selected to remain, since there is no additional reward for multiple observations of
a node. This also ensures the cardinal length of the paths do not grow beyond N

and therefore the computation time complexity at each iteration is bounded (see
Section 4.4).

If all waypoints for a robot are removed, then the robot’s path is reinitialised following
the procedure described in Section 4.3.2 with a new unique arbitrary node. This will
not occur regularly in non-trivial problems since the robot will typically be allocated
at least to its arbitrary starting node.

Start and end conditions

If the problem formulation specifies fixed start and/or end positions for the robots,
then fixed waypoints are added to each path at these positions. If any of the fixed
waypoints are selected as a winner, then the waypoint is duplicated (Algorithm 4.2
lines 9–10) and the new waypoint is adapted instead of the fixed waypoint (line 11).
Fixed waypoints are not moved during the neighbourhood adaptations (line 19). Ad-
ditionally, during each epoch, an adaptation is performed towards each fixed node—
equivalent to if there was a singleton viewpoint region at each fixed waypoint (Algo-
rithm 4.1 line 3). This ensures the waypoints with low cardinal distance to the fixed
nodes maintain a minimal Euclidean distance to neighbouring fixed nodes.

4.4 Analysis 107

Adaptation parameter

The attraction between neighbouring waypoints during each adaptation is dependent
on the σ parameter of the neighbourhood function (Algorithm 4.2 line 19). When
σ is large then several waypoints will typically move a large distance during each
adaptation and therefore large global adjustments are made to the solution paths.
Conversely, when σ is small then only waypoints within a small neighbourhood of
the winner will move and therefore only small local refinements are made to the
solution paths. Convergence of the algorithm is controlled by initialising σ to an
input parameter σ0 and then cooling σ after each epoch at a rate determined by an
input parameter δ (Algorithm 4.1 line 16). Therefore, the number of epochs before
the solutions reach a steady state are determined by σ0 and δ.

In online scenarios, new observations will typically cause minor adjustments to the
objective function and therefore only minor local refinements to the previous solution
are required. Online replanning can therefore be performed more efficiently by using
the previous solution paths as the initial paths and initialising σ to a lower σ0 value.
We demonstrate suitability for online replanning in the Section 4.6 experiments.

4.4 Analysis

This section provides a theoretical analysis of the algorithm’s runtime complexity and
convergence, and then empirical analysis of the behaviour of the algorithm for various
random environments. Further experiments are shown later in Sections 4.5 and 4.6
that focus on active perception of 3D point clouds in offline and online scenarios.

4.4.1 Theoretical analysis

Runtime complexity

The runtime complexity of the algorithm is polynomial in the number of nodes to
be observed and the magnitude of the relative weighting of rewards. We formally
state and prove this result as follows. Lemma 4.1 states the runtime complexity for

4.4 Analysis 108

each epoch. Lemma 4.2 states the maximum number of epochs is constant, assuming
a given cooling schedule. These results are combined in Theorem 4.1 to state the
runtime complexity of the algorithm. We then remark on implications of this result.

Lemma 4.1 (Runtime per epoch). The runtime complexity for each epoch is upper
bounded by

O
((

R∑
i=1
|X i|

)
N ′
)
≤ O

(
N ′

2) = O
N2

(
max({wk})
gcd({wk})

)2
 ,

where |X i| is the number of waypoints in the path for robot i, N is the number of
viewpoint regions and N ′ is the number of viewpoint regions after duplication to take
into account the rewards {wk}.

Proof. The adaptation function (Algorithm 4.2) has runtime O(|X i|), where |X i|
is the number of waypoints in the current path for robot i. In the inner-loop of
Algorithm 4.1 (lines 8–10), adaptation is called once per robot, and thus the runtime
for lines 8–10 is O(∑R

i=1|X i|). Since only one waypoint is allocated to a node during
each epoch, and the regeneration step removes all waypoints not allocated to a node
at the end of each epoch (Algorithm 4.1 line 13), it holds that ∑R

i=1|X i| ≤ N at
the end of each epoch. At most N ′ new waypoints are added during each epoch (if
all winners are edges), and thus ∑R

i=1|X i| is upper bounded by N + N ′. Thus, the
runtime for the line 8 loop is bounded by O(N +N ′) = O(N ′).

In each epoch, this is repeated for each duplicated node (N ′) and any fixed start or
end nodes (up to 2R, if applicable). Thus, the runtime for each epoch is bounded
by O((∑R

i=1|X i|)(N ′ + R)) ≤ O(N ′(N ′ + R)). The R term only exists for problem
instances that specify fixed waypoints for start and end conditions. Furthermore,
R� N ≤ N ′ for non-trivial problems; therefore, the R term is negligible. Thus, the
runtime for each epoch is bounded by O(N ′2).

Each viewpoint region is duplicated up to max({wk})
gcd({wk}) times and thus N ′ ≤ N max({wk})

gcd({wk}) .
Therefore, O(N ′2) = O(N2(max({wk})

gcd({wk}))2). �

Lemma 4.2 (Convergence guarantee). The algorithm is guaranteed to converge
within imax = 1/δ epochs, where the gain decreasing rate δ is a fixed parameter
of the algorithm.

4.4 Analysis 109

Proof. The neighbourhood function f(σ, l), as defined in (4.1), will become 0 for all l
when the number of learning epochs i ≥ 1/δ. When this occurs, all of the waypoints
will remain at their current positions and therefore the network will not evolve any
further. �

Theorem 4.1 (Runtime of SOM). The runtime complexity of Algorithm 4.1 is upper
bounded by

O
((

R∑
i=1
|X i|

)
N ′
)
≤ O

(
N ′

2) = O
N2

(
max({wk})
gcd({wk})

)2
 ,

where |X i| is the number of waypoints in the path for robot i, N is the number of
viewpoint regions and N ′ is the number of viewpoint regions after duplication to take
into account the rewards {wk}.

Proof. Lemma 4.2 states the maximum number of epochs is constant, and thus the
runtime complexity is a constant multiple of the epoch runtime given in Lemma 4.1.

�

Remark 4.1 (Runtime dependence on R). Interestingly, the derived upper bound on
runtime O(N ′2) does not directly depend on the number of robots R, and is instead
dominated by properties of the environment. The key to the derivation of this bound
is that each viewpoint region is allocated to a maximum of one robot during each
epoch, and therefore the maximum total number of waypoints is independent of R.
This results in the line 8 loop having a runtime bounded by O(N ′), as described in
the proof of Lemma 4.1, which does not directly depend on R. If, in an alternative
algorithm, more than one robot could be allocated to a node, the line 8 loop runtime
bound would increase to O(RN ′), which is instead linear in R.

However, it is important to note that the tighter bound O((∑R
i=1|X i|)N ′) is linear

in ∑R
i=1|X i|. Thus, if the team plans to observe a larger number of nodes, then the

runtime will increase. There are several contributing factors that affect the number of
observed nodes, including the number of robots R, the travel budgets, the fixed start
and end positions, and the distribution of nodes and rewards in the environment.
Importantly, the number of observed nodes, and therefore the runtime, will typically
be sublinear in R, which we confirm empirically in Section 4.4.2. 4

4.4 Analysis 110

Remark 4.2 (Early convergence). Lemma 4.2 defines an upper bound on the number
of epochs; though, in practice, convergence will typically occur much sooner than imax
epochs. Early convergence occurs for a number of reasons, which we summarise here,
and elaborate on further in the Appendix of Best et al. (2018b). Empirical evidence of
convergence is provided in Section 4.4.2. Related discussions of convergence may be
found in Cochrane and Beasley (2003); Faigl and Hollinger (2018); Tucci and Raugi
(2010).

Most importantly, for the neighbours of the winner (i.e., l > 0), the neighbourhood
function f(σ, l) pragmatically becomes zero much sooner than epoch imax. For ex-
ample, when using IEEE 754 arithmetic, with σ0 = 4 and δ = 0.002 (therefore
imax = 500), the neighbourhood function becomes zero for l > 0 at epoch i = 68.
When this point is reached, the winners x? are adapted with f(σ, 0) = 1, but the
neighbours are never adapted. It is possible for the winners x? to continue adapting
until epoch imax, however this is unlikely to occur due to the travel budgets being
exhausted.

Furthermore, our SOM algorithm maintains the best solution {X i}∗ at the end of
each epoch (Algorithm 4.1 line 15), which is likely to converge before the network
{X i} converges. This is because the network may oscillate between different nodes
due to the random permutation of nk (Algorithm 4.1 line 6), while the best found
solution remains constant. 4

Optimality

Self-organising map algorithms, including ours, are stochastic learning procedures
that can guarantee convergence in polynomial time, but unfortunately cannot guar-
antee optimality in finite time. These algorithms therefore are heuristic algorithms
for giving approximate solutions to NP-hard problems in polynomial time. The algo-
rithm does however have the advantage of being anytime, i.e., the algorithm can be
halted early, since all intermediate solutions are feasible solutions. The parameters
σ0 and δ can also be tuned to strike a balance between optimality and computation
time, and we exploit this property in the Section 4.6 formulation for online scenarios.
The computation time can also be reduced, potentially at the cost of solution quality,

4.4 Analysis 111

Figure 4.3 – Example path plans for three robots (blue) through a set of random
viewpoint regions weighted from 1 (black) to 4 (orange). The robots visit a weighted
sum of 155 viewpoint regions out of a maximum 170. Each robot has a budget of
1000 and speed 1.

by reducing max({wk})
gcd({wk}) by rounding the rewards to multiples of a divisor greater than

gcd({wk}).

4.4.2 Empirical analysis

Simulated experiments were performed to analyse the behaviour of the algorithm
under various conditions. Since the problem is new, we do not have algorithms for
direct comparison. Therefore, we compare to restricted versions of our algorithm
with some components removed to analyse how the various algorithmic components
contribute to generating high-quality solutions. We compare (1) planning using the
joint multi-robot optimisation compared to sequential optimisation, (2) planning with
and without the viewpoint rewards, and (3) planning with the viewpoint polygons
compared to singular points. We also demonstrate the convergence and anytime
properties. The algorithm plans paths through 100 random environments consisting
of random sets of polygons. An example environment is illustrated in Figure 4.3.

The parameters are as follows, except where varied for specific experiments. The

4.4 Analysis 112

environments are a continuous 1000×1000 space. There are 80 polygons with random
centre points and from 3 to 6 vertices spaced at equal angles around the centre. The
distance from the centre to each vertex is random between 40 and 120. Rewards are
exponentially distributed between 1 and 4 and rounded to the nearest integer, such
that few regions have high rewards. There are 3 robots with budgets 800, speeds 1
and a closed-loop path topology with free start locations. In all cases, convergence
was reached in 70 epochs. The same sample environments are used for each pair of
methods and a single-tailed paired t-test was performed for each comparison. For
these experiments we use σ0 = 1 and δ = 0.001.

Multiple robots

Figure 4.4a shows the rewards collected by planning using the proposed method, which
jointly optimises multiple robots, compared to planning for the robots sequentially.
The sequential method performs the SOM algorithm for a single robot at a time, with
each robot ignoring the nodes selected by previous robots. The two methods were
compared for 2 to 6 robots, where the budgets were uniform and summed to 2400. The
simulations show the proposed approach has the best performance in all cases, and
these results were statistically significant (p < 0.01) in all cases except R = 4. The
largest improvements were for planning for smaller teams, because in these cases the
performance is greatly influenced by effective partitioning of the workspace between
the robots, which can be more effectively optimised when planning for all robots
jointly.

Observation rewards

Figure 4.4b shows the simulation results for planning using the proposed duplication
approach compared to assuming uniform rewards. The rewards are exponentially
distributed between 1 and w̄ with lower rewards more likely, and w̄ varied from
2 to 32. For this comparison method, the non-uniform rewards are not known to
the planner, but the resulting solution paths are evaluated with respect to the non-
uniform reward model. These experiments were performed with a budget of 600 and
an average polygon size of 40. In all cases, planning with the proposed approach

4.4 Analysis 113

2 3 4 5 6
0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
to

ta
l

re
w

ar
d

s
co

ll
ec

te
d

Number of robots

Jointly

Sequentially

(a) Jointly planning for all robots following
the proposed method compared to sequentially
planning each robot.

2 4 8 16 32

0.4

0.6

0.8

1

F
ra

c
ti

o
n

 o
f

to
ta

l

re
w

a
rd

s
 c

o
ll

e
c
te

d

Maximum rewards

Actual rewards

Uniform rewards

(b) Planning while considering the actual obser-
vation rewards compared to planning assuming
uniform rewards. The shown rewards were eval-
uated for the actual observation rewards.

10 20 40 80 160

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
to

ta
l

re
w

ar
d

s
co

ll
ec

te
d

Number of nodes

Polygons

Points

(c) Planning while considering the viewpoint re-
gions compared to planning while considering
only the centroid of the polygons. The shown
rewards were evaluated for the full polygons.

10 20 40 80 160

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
to

ta
l

re
w

ar
d

s
co

ll
ec

te
d

Average polygon size

Polygons

Points

(d) Planning while considering the viewpoint
regions compared to planning while considering
only the centroid of the polygons. The shown
rewards were evaluated for the full polygons.

Figure 4.4 – Simulation results for random environments under various scenarios and
comparison methods. Vertical axes shows performance as the ratio of the achieved
weighted sum of nodes visited to the weighted sum of all nodes in the environment.
Box plots show lower bound, lower quartile, median, upper quartile, and upper
bound for 100 sample environments.

improved the performance, and these results were statistically significant (p < 0.01).
Greater improvements were achieved when the maximum reward was large since the
proposed approach is more likely to select nodes with large rewards.

Viewpoint regions

We analyse the value of the proposed planning with continuous polygonal viewpoint
regions compared to planning with single points at the region centres. Figure 4.4c
compares these two methods with a varying number of nodes and Figure 4.4d has a
varying average polygon size. The proposed planner outperformed the single point
planner for all number of nodes and when the polygon size ≥ 20, and these results

4.4 Analysis 114

10 20 30 40 50 60

Epochs

0.4

0.5

0.6

0.7

F
ra

ct
io

n
 o

f
to

ta
l

re
w

ar
d
s

co
ll

ec
te

d

Figure 4.5 – Convergence of the best solution found by the algorithm for 10 trials of
a single random problem instance.

were statistically significant (p < 0.01). When the polygon size was very small (10) it
was sufficient to plan by approximating the polygons as single points. The proposed
approach achieved greater improvements when the number of nodes and the size of the
polygons were large. In these cases, the algorithm can more effectively take advantage
of being able to optimise the waypoint locations.

Convergence

In Figure 4.5 we illustrate the convergence of the algorithm for repeated trials of a
single random problem instance. In all trials, the intermediate solutions made incre-
mental improvements and converged towards the final solution, which was reached
before 45 epochs. This convergence demonstrates that the algorithm is anytime since
each intermediate solution is a feasible solution. This is an important property in
practical applications where the computation budget is not known in advance, and
therefore the algorithm may need to be halted early and return the best solution
found so far. If the computation budget is known in advance, then the parameters
may be tuned to meet this requirement; we discuss this idea further in Section 4.6.2.

Computation time

The SOM algorithm was implemented in MATLAB and the simulations were per-
formed on a standard desktop computer with an Intel i7 processor on a single core.
The runtime varied from 0.5 s to 30 s depending on the scenario. The trends agreed

4.5 Active perception of 3D point-cloud objects 115

with the theoretical analysis such that runtime increased with the number of nodes
and maximum weight. Runtime increased with the number of robots, however this
increase was sublinear. As discussed in Remark 4.1, this small runtime dependence
on the number of robots is likely due to the multi-robot planning achieving greater
performance and therefore a larger number of nodes are visited. Runtime was domi-
nated (≈ 70%) by the winner selection and the waypoint usefulness evaluation, since
these geometric computations are relatively expensive. Our implementation has not
been thoroughly optimised since our primary focus was on validating the feasibility
of the approach. Therefore, the runtime can be significantly improved by the im-
plementation, as well as by using approximations, such as decreasing the number of
polygon vertices or approximating polygons as discs.

4.5 Active perception of 3D point-cloud objects

Our primary motivation for the proposed problem formulation and SOM algorithm is
active perception tasks that aim to observe a set of object parts in a large environment.
These problems rely on prior observations or a predefined belief of the environment,
which may have come from a coarse scan with noisy sensors. The aim is now to
perform a more informative or complete scan of the environment, and this process
may be repeated. In this section, we demonstrate how the algorithm can be applied to
this class of active perception tasks. For these experiments we assume the observation
regions and rewards are known in advance by an offline planner, while in Section 4.6 we
extend the formulation for closed-loop scenarios where this information is discovered
online.

We consider example scenarios using three variations of an outdoor scene from a real
3D point-cloud dataset first presented in Patten et al. (2015), which was also used
earlier in Section 3.6. The data was recorded with a Velodyne laser scanner mounted
on a robot pictured in Figure 4.6. Observations were made from several locations
and fused together. The three scenes consist of 12, 15 and 18 objects spread around
a 40m×40m environment, including trees, tables, chairs, bins and a motorbike. The
dataset has been used previously for testing object classification algorithms (Patten
et al., 2015).

4.5 Active perception of 3D point-cloud objects 116

Figure 4.6 – The robot moving through the environment and using its onboard Velo-
dyne laser scanner to collect the 3D point-cloud dataset (Patten et al., 2015).

The environment is represented by a set of parts in a 3D point cloud with associated
viewpoints and rewards. Examples of the segmentation and viewpoint regions are
shown earlier in Figures 1.4 and 4.1. The point cloud processing method is detailed
below in Section 4.5.1 and summarised here as follows: (1) oversegment the environ-
ment into parts, (2) estimate self-occlusion free viewpoint regions for each part, and
(3) define the rewards as the discriminability between parts.

Our general objective function formulation provides a convenient way of expressing
the viewpoint sensitivity of perception algorithms. The perception model defined here
is an example instantiation of the viewpoint regions and rewards, and is intended to
be generic for the purpose of evaluating the performance of our proposed planning
algorithm. We emphasise that the proposed SOM algorithm is not limited to this
perception model, but rather the model can be adapted to suit the requirements of a
perception task.

4.5.1 Observation model for 3D point-cloud objects

The point cloud of the environment is segmented into parts by removing the ground
plane and then segmenting into objects using region growing. Each object is overseg-
mented into 5 parts using k-means clustering on the set of 3D points associated with
the object.

4.5 Active perception of 3D point-cloud objects 117

Figure 4.7 – Illustration of a viewpoint region (purple shape) for an associated object
part (purple point-cloud), defined using the example sensor model. The point cloud
represents observations of a table object, depicted from above. An object part is
highlighted as a purple point cloud. The black lines are a subset of the vectors rep-
resenting self-occlusions between the purple part and the rest of the object. Dashed
red lines define the viewing angle.

A viewpoint region is defined for each part by considering the sensing range, as well
as occlusions caused by other parts of the object. These viewpoint regions could
be computed in many different ways, but we describe our implementation for these
experiments as follows. An illustration is provided in Figure 4.7 for computing the
viewpoint region (purple shape on right) associated with an object part (purple point
cloud on left). First, we compute the set of vectors (black lines), which represent
occlusions. These vectors are from all points within the object part to all points in
other parts of the same object (grey point cloud). Any of these vectors that have a
vertical angle outside the range of −π/8 to π/8 are removed since they are unlikely
to represent an occlusion. Next, the horizontal angles of all the remaining vectors are
considered to represent occluded angles. Then, we find the largest window of angles
that contains less than 10% of the occluded angles. The viewing angle range (between
dashed red lines) is defined as the middle third of this window. The useful sensing
range is defined as 1 to 4m. The viewpoint region (purple shape) is defined as the
intersection of the horizontal viewing angle range and the sensing range, measured
relative to the part’s centroid. For efficiency, this region is approximated by a polygon
with 6 to 8 vertices.

We define the rewards as the discriminability of each part in a feature space. Parts
with a higher discriminability contain more unique features and therefore are more

4.5 Active perception of 3D point-cloud objects 118

likely to provide useful information to an object classifier. To measure discriminabil-
ity, we perform feature extraction for each part, calculate the distance to all other
parts in feature space, and normalise for each object. We compare each part to all
other parts in the environment; alternatively each part could be compared to an ob-
ject library. For the feature extraction, we use the ensemble of shape functions (ESF)
global feature descriptor (Wohlkinger and Vincze, 2011), which is commonly used
for object classification tasks (Patten et al., 2016; Wohlkinger et al., 2012). Discrim-
inability is measured as the exponential of the sum of Mahalanobis distances in the
feature space between each part and every other part. Each object is considered to
be equally important, and therefore the sum of rewards for each object is normalised
to 10. Each reward is rounded to the nearest integer. The rewards for the datasets
ranged from 1 to 10 with 1 or 2 more likely.

Model validation

Here, we provide a short validation of this example model instantiation by illustrating
how it maps to an existing perception technique. In particular, we show how it maps
to an existing object recognition perception model (Patten et al., 2016), which is an
instance of the general framework in Wohlkinger et al. (2012).

We implement a simplified version of the model by Patten et al. (2016) as follows.
First, we build an offline database of object models, and then an observed object is
probabilistically classified as an instance of an object in the database. The database is
built by making several point cloud observations of each object from different angles.
For each observation, the ESF global feature descriptor is stored. To classify an
observed object, the ESF descriptor of the observed point cloud is computed and the
Mahalanobis distance is measured to each database object and viewpoint. For each
database object, the distance to the viewpoint with the closest distance is stored. A
probability distribution is defined over the set of objects by computing a negative
exponential of the closest distances and normalising. Multiple observations of the
same object from different viewpoints are fused using Bayes’ rule. The objective
function is the total entropy, defined as the object classification entropy summed over
all objects.

4.5 Active perception of 3D point-cloud objects 119

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Reward using proposed objective

8

10

12

14

16

18

20

22

24

E
n
tr

o
p
y
 u

si
n
g
 c

o
m

p
ar

is
o
n
 m

o
d
el

Figure 4.8 – Comparison of path utility between the example perception model defined
in Section 4.5.1 suitable for the SOM formulation (horizontal axis) and the total
entropy when using an existing object recognition model described in Section 4.5.1
(vertical axis). Evaluated for 100 random paths generated with SOM algorithm.
Linear trendline shown in red.

For this comparison we use the high-clutter dataset and generate a set of 100 single-
robot paths with varying reward. The random paths were generated by running the
SOM algorithm with randomly varying parameters. The utility of each path was
evaluated using the example objective function in Section 4.5.1. For the comparison,
the recognition performance is estimated using the point cloud observations in the
dataset at viewpoints that are closest to each path.

The results are shown in Figure 4.8. There is a clear correlation between the rewards
computed using the proposed formulation and the comparison model (linear trendline
has r2 = 0.67). The correlation is strong enough to indicate there is a reasonable
mapping between the two models, and that the viewpoint region definition is a suitable
model for evaluating the performance of our planning algorithm.

We note that predictions of the total entropy cannot be directly applied as an objective
function for the SOM algorithm. This is due to the requirement of the SOM to have
the reward function encoded via a set of viewpoint region weights. This formulation
represents dependencies between viewpoints in a more restricted manner that does
not directly allow representing the dependencies that the total entropy allows in
general. The advantage, though, is that the viewpoint region rewards are a reasonable
surrogate for the total entropy that is faster to compute and is in a form suitable for

4.5 Active perception of 3D point-cloud objects 120

specialised algorithms such as SOMs.

4.5.2 Results

We analyse four example scenarios illustrated in Figure 4.9, for three environments
with varying clutter. In the scenarios, we plan for: (1) a single robot in the low
clutter environment, (2) two robots in medium clutter, where one robot has double
the budget, (3) three robots in high clutter, where the robots have speeds 2, 1.5
and 1, and (4) five robots in high clutter, where the robots have equal speeds and
budgets. In these scenarios, the start positions of the robots are unconstrained but
the robots must end at their start position; scenarios with fixed start positions are
trialled later in Section 4.6. Planning was repeated 100 times each to measure the
planning consistency.

Scenario 1: Low clutter, single robot

In the first scenario, the robot observed a weighted sum of 132 nodes, averaged over
100 trials, out of the maximum possible 151 nodes. The performance was consistent
over the 100 trials, with a standard deviation of 2.13 weighted nodes. The worst plan
had 124 and the best had 135. The average runtime was 6 s with standard deviation
0.1 s. An example solution is shown in Figure 4.9a. Each object has at least one of
its parts observed. The parts not selected were in the bottom left and top left, which
is expected since the time to travel to these regions is relatively high. The waypoints
within the selected regions naturally found locations near the edges of the regions
and closer to the other regions, which implicitly minimises the travel time. All of
the parts in the top right were selected, even though they are further from the other
objects, since there is a significant reward to be gained by visiting two objects in close
proximity.

Scenario 2: Medium clutter, two robots

The second scenario was planned for two robots with different budgets. Figure 4.9b
shows that the algorithm finds a natural partitioning between the robots in the same

4.5 Active perception of 3D point-cloud objects 121

(a) Low clutter (12 object) environment
with 1 robot.

(b) Medium clutter (15 object) environment
with 2 robots. Right robot has 2× budget.

(c) High clutter (18 object) environment
with 3 robots. Left robot has 2× speed; bot-
tom right has 1.5× speed.

(d) High clutter (18 object) environment
with 5 robots. Robots have equal budget
and speed.

Figure 4.9 – Example scenarios and solution paths (blue) for teams of robots. Object
parts are shown in the coloured point clouds. Viewpoint regions are coloured black
(low reward), orange (medium) and yellow (high).

ratio of the travel budgets. The implicit partitioning naturally shared some of the
objects between the two robots where the object parts were closer to a different robot.
The planner typically avoided the object in the bottom left since there is a significant
travel cost to reach those regions. The 100 trials had a weighted sum of 174 nodes
on average, with a standard deviation of 3.4, out of the maximum 189. The worst
plan had 156 while the best had 177, showing the distribution of plans was skewed

4.5 Active perception of 3D point-cloud objects 122

towards the best performing plans. The average runtime was 11.7 s with the standard
deviation 0.2 s.

Scenario 3: High clutter, three robots

A similar partitioning was achieved in the third scenario, shown in Figure 4.9c, for
three robots with varying speeds in the most cluttered environment. The size of the
implicit partitions are proportional to the speeds of the robots. The centre was well
covered since several parts are observed at once from these locations and therefore
have high reward. The average sum of weighted nodes was 199.2 out of the maximum
221, with standard deviation 9.1, worst case 175 and best case 211. The average
runtime was 17.6 s with a standard deviation of 0.6 s. The performance was almost
as consistent in this more complex scenario, and the solution paths have credible
partitioning between multiple robots, selected lower cost locations within regions and
favoured high-reward locations with overlapping viewpoint regions.

Scenario 4: High clutter, five robots

The fourth scenario trialled five robots in the high clutter environment, shown in
Figure 4.9d. The robots were given equal budgets such that it was just enough to
be possible to collect 100% of the rewards. In the Figure 4.9d example trial, the
robots have successfully shared the workload to find 5 approximately equal length
paths that collectively visit all of the goal regions. Over the 100 trials, the average
sum of weighted nodes was 218.8 out of the maximum 221, with standard deviation
3.6, worst case 206 and best case 221. Full coverage was achieved by 70 of the trials.
For the trials that achieved suboptimal results, the viewpoint regions in the bottom
left of the environment were more often missed since there is less incentive to visit
that area. The average runtime was 22.1 s with a standard deviation of 0.6 s.

4.5.3 Comparison to Dec-MCTS (Chapter 3)

In these experiments, we investigate the benefits of planning over continuous space
by comparing the proposed SOM planner to the Dec-MCTS algorithm of Chapter 3.

4.5 Active perception of 3D point-cloud objects 123

There are several important differences between Dec-MCTS and our SOM approach.
In particular, Dec-MCTS is decentralised, applicable to general objective functions
and motion models, provides theoretical guarantees, and requires discretising the
action space. While the SOM approach is centralised, is an efficient solution for a
particular problem formulation, and effectively plans over continuous space. While
these differences make it difficult to demonstrate a fair performance comparison,
we show experiments here that highlight the benefit of planning over continuous
space for our problem formulation (as in the SOM algorithm) rather than requiring
a discretisation of the environment (as in Dec-MCTS).

These experiment were performed with 3 robots using the high-clutter dataset shown
previously in Figure 4.9(c,d). In these experiments, the problem is discretised for
Dec-MCTS using a probabilistic roadmap (PRM) with vertices V randomly placed in
the viewpoint regions. Also, since Dec-MCTS requires a fixed start location, these ex-
periments were performed using fixed start positions spread out near the centre of the
environment, and the end positions are variables to be optimised by the planner. The
experiments were performed with varying number of PRM vertices V for Dec-MCTS.
Each scenario was repeated for 100 trials with this single problem instance. For each
trial, a new set of PRM vertices V was randomly generated. Dec-MCTS was run un-
til convergence was observed, which was between several seconds and several minutes
depending on the size of V . The SOM trials took 15 s each.

The results are shown in Figure 4.10. The rewards collected by Dec-MCTS clearly
improves when using a finer discretisation. This is because having more roadmap
vertices V increases the probability of vertices being placed at valuable positions, e.g.,
positions that intersect multiple viewpoint regions and have relatively low travel-cost
to other valuable vertices. On the other hand, the proposed SOM approach searches
over the continuous space to adaptively find valuable positions for the path waypoints.
This allowed the SOM approach to significantly outperform Dec-MCTS in all cases.
Theoretically, Dec-MCTS would achieve the performance of SOM given a sufficient
discretisation, but the computation and memory requirements would be intractable.

4.6 Online exploration and active perception 124

100 200 400 800 1600 3200 n/a

Number of graph vertices for Dec-MCTS

0.55

0.6

0.65

0.7

0.75

0.8

F
ra

ct
io

n
 o

f
to

ta
l

re
w

ar
d
s

co
ll

ec
te

d

SOM

Dec-MCTS

Figure 4.10 – Comparison between the proposed SOM approach and
Dec-MCTS (Chapter 3) with varying discretisation. For 3 robots in the high-clutter
environment.

4.6 Online exploration and active perception

In this section, we generalise the active perception scenario in the previous section
to online scenarios for a team of robots. The robots make long-range 3D point-
cloud observations to learn viewpoint regions and move to selected viewpoint regions
to collect these rewards by observing the object parts at close range. The robots
must plan to balance their workload between visiting the currently known viewpoint
regions and making observations to discover viewpoint goal regions. This is achieved
by introducing exploration rewards as new viewpoint regions in unexplored areas of
the environment. First, we formalise this observation model and planning scenario,
then present results that illustrate the behaviour of the algorithm in online settings
and highlight advantages of this formulation in comparison to short-horizon planning.

4.6.1 Online planning scenario

For these experiments, each robot has two 3D point-cloud sensing modalities such
that high-quality observations are made at close range and coarse observations are
made at long range. The close-range sensor is used to fulfil the primary perception
task and has the same observation model as in Section 4.5.1. The long-range sensor

4.6 Online exploration and active perception 125

is used to discover new objects and associated viewpoint regions and rewards. These
two modalities could be provided by two separate sensors or by a single sensor where
a close range is required to achieve a desired resolution. The viewpoint regions for the
primary perception task are generated as described in Section 4.5.1 based on the point
clouds that have been observed by the long-range sensor. Exploration is encouraged
by introducing new viewpoint regions and rewards. This is achieved by placing a
uniform grid of goals in the unexplored areas. The density of goals and their rewards
can be selected to achieve a desired balance between exploration and exploitation.
Each exploration goal has an associated circular viewpoint region with radius equal
to the close sensing range and the rewards are uniformly set to 1. We use the close
range rather than the long range for the exploration nodes since this results in a more
accurate prediction of the travel distance required to observe discovered objects at
close range. In these experiments, we use the above definition for exploration goals
since it avoids making strong assumptions about the environment. However, if more
prior knowledge were available, such as a belief of non-uniform density of objects,
then more elaborate formulations could be used instead.

The simulations cycle between four phases: (1) compute the viewpoint regions for
both the primary perception task and exploration, (2) plan the paths for the team
of robots with the SOM algorithm, (3) drive the robots a fixed distance along the
planned paths, and (4) make new point-cloud observations with the long-range and
short-range modalities. A team of five robots move through the 140×50m environ-
ment shown in Figure 4.11, which consists of the medium-, low- and high-clutter 3D
point-cloud datasets (from Section 4.5) placed side-by-side from left to right in an
enlarged environment. The long-range sensing range is 15m and the close range is
4m. These observations are simulated using the dataset by truncating the Velodyne
measurements. All robots have an initial travel budget of 100m travel distance, make
observations at 1m intervals along the path and replan after every 15m. After each
replanning phase, the remaining travel budget is reduced by 15m. Each robot has a
fixed start position and known current position for each replanning phase.

The planner uses an open-path graph topology with fixed start positions (as defined
in Section 4.3.2). For the first planning round we set σ0 = 4 and use arbitrary initial
plans around the start positions. Online replanning is performed more effectively by

4.6 Online exploration and active perception 126

adapting the previously planned paths and using σ0 = 2. We use δ = 0.002 for most
experiments, and analyse the effect of these parameters in Section 4.6.2.

4.6.2 Results

The following results demonstrate: (1) the algorithm achieves better performance
when using a long planning horizon compared to a short horizon, (2) the effect of
exploration reward density on performance, (3) the algorithm achieves comparable
performance when planning online with partial information to when planning offline
with full information, and (4) the algorithm efficiently adapts previous solutions when
replanning.

Figure 4.11 illustrates an example of the behaviour of the algorithm when replanning.
(a) Initially, only a single object has been observed from the start positions. Robots 1
and 2 cooperate by planning to observe both sides of this object at close range before
proceeding to explore the top left of the environment. Robots 3, 4 and 5 evenly spread
out to explore the right side of the environment. (b) After 15m has been travelled
by each robot, more objects are discovered by the long range sensor. Robots 1, 2
and 3 make minor refinements to their plans to make close-range observations of the
new objects. (c) After 45m, robot 3 discovers several more objects in the middle.
Rather than robot 3 visiting these discovered goals itself, it instead decides to continue
exploring to the right since robot 2 plans to visit these goals later. (d) A large number
of objects are discovered on the right and robots 3, 4 and 5 cooperate to share these
goals. (e) Once the budgets are exhausted, the robots have explored nearly all of the
environment while also visiting 344 out of 420 close-range weighted goals. The robots
successfully cooperated by rarely crossing paths or making duplicated observations.

Planning horizon

Figure 4.12 compares online planning with the entire mission (100m) as the planning
horizon to when planning with shorter horizons. The longer planning horizons result
in a significantly improved performance over the shorter horizons. The reason for this
is illustrated in Figure 4.13. For the shortest horizon (a), the objects on the left are

4.6 Online exploration and active perception 127

(a) Initial plans. Plan observes 254/330
weighted nodes.

(b) 15m travelled. Plan observes 274/362
weighted nodes.

(c) 45m travelled. Plan observes 202/294
weighted nodes.

(d) 75m travelled. Plan observes 183/262
weighted nodes.

(e) Final executed paths (100m). The
robots observed 309/330 exploration goals and
344/420 primary nodes.

Figure 4.11 – Example adaptive plan for the online experiments. Dotted lines are
executed paths and solid lines are planned paths. Yellow regions have been explored.
Point-clouds are observed at close-range (brown) and long-range (pink).

15m 30m 45m Budget

Planning horizon

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f
p
ri

m
ar

y

re
w

ar
d
s

co
ll

ec
te

d

Figure 4.12 – Comparison of planners with different planning horizons. The ‘budget’
horizon optimises the entire remaining budget of each robot. Each scenario was
performed 10 times.

4.6 Online exploration and active perception 128

(a) 15m planning horizon. Medium explo-
ration density. The robots observed 267/420
primary nodes.

(b) 45m planning horizon. Medium explo-
ration density. The robots observed 303/420
primary nodes.

(c) Full planning horizon. Medium exploration
density. The robots observed 332/420 primary
nodes.

(d) Full planning horizon. Low exploration
density. The robots observed 255/420 primary
nodes.

(e) Full point-cloud is available offline. Full
planning horizon. The robots observed 376/420
primary nodes.

Figure 4.13 – Example paths executed for (a-c) different planning horizons, (c-d)
exploration reward densities and (e) offline full-observability.

discovered first and since these discovered goals cannot be satisfied by a single robot
with a 15m budget, the other robots also decided to visit these objects. As a result,
the right side of the environment is never explored. As the mission progressed, the
robots were left with no goals reachable within their budgets since they were already
visited by other robots. Conversely, the longer planning horizons (b,c) enabled the
robots to cooperate to explore the rest of the environment and visit the discovered
objects. The longest planning horizon (c) achieved the best results since two robots
managed to reach the dense group of objects on the right.

4.6 Online exploration and active perception 129

Low Medium High Offline

Exploration reward density

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f
p
ri

m
ar

y

re
w

ar
d
s

co
ll

ec
te

d

Figure 4.14 – Comparison of planning performance for different densities of exploration
rewards. The full information scenario shows the performance of an offline planner
with all primary viewpoint regions and rewards known in advance. Each scenario
was performed 10 times.

Exploration reward density

The algorithm generates paths that naturally balance between exploring the envi-
ronment to discover new objects and visiting the objects at close-range to make
high-quality observations. This balance can be influenced by selecting the density
of exploration goals. If the density is low, as in Figure 4.13d, then the robots have
little incentive to visit unexplored regions and will instead focus on observing discov-
ered objects. The robots in (d) did not perform well since they only just reached the
objects on the right. However, if there were no objects in the right of the environment,
then (d) would have outperformed the higher-density planners since it achieved better
coverage of the discovered objects. This trend is also illustrated in Figure 4.14: the
higher exploration density scenarios outperformed the lower density scenarios in most
trials for this environment. We note that a similar behaviour of balancing between
exploring and exploiting occurs if the exploration goal rewards are varied rather than
the density.

Partial information

For the scenario in Figure 4.11e and the yellow column of Figure 4.14, the planner
had full knowledge of all of the goals offline and the algorithm is able to exploit this
information to outperform the other scenarios. In Figure 4.11e we see the robots
do not need to spend their budget exploring empty space and instead take the most

4.6 Online exploration and active perception 130

(1, 0.002) (2, 0.002) (1, 0.004) (2, 0.004)
0.5

0.6

0.7

0.8

0.9

F
ra

ct
io

n
 o

f
p
ri

m
ar

y

re
w

ar
d
s

co
ll

ec
te

d

(σ0, δ) when replanning

reuse X

restart X

Figure 4.15 – Comparison between adapting the previous solution when replanning
to clearing the path and starting again. Larger σ0 parameter values result in more
proportion of time is spent making global adaptations. Larger δ parameter values
result in fewer epochs and faster planning time. Each scenario was performed 10
times.

direct routes to their selected viewpoint regions. However, the partial-information
scenarios still achieved reasonable results, despite not having access to this valuable
information upfront. The high exploration density scenario collected on average 95%
of the reward collected by the full-information scenario.

Adaptive replanning

We now analyse the benefits of adapting the previous solution when replanning com-
pared to restarting the algorithm from the beginning. The results are shown in
Figure 4.15 for various combinations of parameter values. The parameter δ has the
largest effect on computation time since this parameter directly influences the num-
ber of iterations before σ reaches the termination threshold; the δ = 0.002 scenarios
had an average runtime of 12 s during each replanning step and the δ = 0.004 sce-
narios performed replanning more efficiently with a runtime of 3 s. The σ0 parameter
directly affects the ratio of the time spent making large global changes (when σ is
large) to the time spent making smaller local refinements (when σ is small).

In all of the scenarios, reusing the previous solutions helped the algorithm perform
replanning and made a statistically significant improvement to the collected rewards
(t-test p < 0.001). There was no significant difference between the rewards collected
for the different combinations of parameters when adapting the previous solution,

4.7 Summary 131

even for cases with much fewer epochs (δ = 0.004). When restarting the solution, the
performance was poorer when the number of epochs was reduced, since it requires
many iterations to adapt from the initial solution to a reasonable solution. There
was a significant improvement (p < 0.001) for the (σ0 = 2, δ = 0.004) case over the
(σ0 = 1, δ = 0.004) case when restarting the solution since the larger σ values result
in more global adaptations for reaching an initial reasonable solution. Overall, these
results highlight that the algorithm can effectively adapt previous solutions so that
replanning can be performed more efficiently. This is particularly advantageous in
online scenarios where the plans need to adapt to small changes in the objectives as
the robots make observations.

4.7 Summary

We have proposed a new formulation and approach for multi-robot active perception
problems. The objectives are defined as a set of continuous viewpoint regions, and
the robots coordinate to maximise coverage of these regions. Self-organising maps is
a fitting choice for developing solution algorithms; they can select favourable obser-
vation locations within continuous regions, while simultaneously optimising the full
paths of the robots. Optimising the full paths, i.e., planning over a long time horizon,
results in significant performance improvements over greedy and short-horizon plan-
ning. Our new SOM formulation addresses scenarios with non-uniform observation
rewards, budget constraints, polygonal observation regions and multiple robots. The
algorithm has polynomial time-complexity, converges towards a final solution, and is
anytime. Additionally, we demonstrated that the formulation is suitable for online
scenarios where the objectives change over time and the planner needs to efficiently
adapt the plans to meet the new requirements. We also showed how the planner can
be used to balance between exploring the environment to obtain new information
and making high-quality observations of known objects. Our implementation was
unoptimised but still achieved reasonable clock time performance of milliseconds to
seconds. Overall, our experimental results show that the proposed method enables
multi-robot planning for budgeted active perception tasks with continuous sets of
candidate viewpoints and multi-step planning horizons.

Chapter 5

Spatiotemporal optimal stopping
for mission monitoring

In this chapter we formulate and solve the mission monitoring problem. In this
problem, a monitor vehicle must remain in close proximity to an autonomous robot
that stochastically follows a predicted trajectory. This problem arises in a diverse
range of scenarios, such as autonomous underwater vehicles supervised by surface
vessels, pedestrians monitored by aerial vehicles, and animals monitored by agricul-
tural robots. The key problem characteristics we consider are that the monitor must
remain stationary while observing the robot, robot motion is modelled in general as
a stochastic process, and observations are modelled as a spatial probability distribu-
tion. We formulate this problem as a spatiotemporal generalisation of the well-known
optimal stopping problems. We propose an optimal algorithm for this problem that
has polynomial runtime.

5.1 Overview

Mission monitoring is a supervisory problem where a robot or a manually driven ve-
hicle tracks the progress of an autonomous mobile robot or other agent in performing
a pre-planned task. There are many examples of such tasks, including undersea sur-
veys (Williams et al., 2012, 2015), environmental monitoring (Dunbabin and Marques,

5.1 Overview 133

2012), autonomous farming (Oksanen and Visala, 2009; Ball et al., 2013) and plane-
tary exploration (Peynot et al., 2014). Monitoring allows for rapid response to failures
and to important information that the robot may discover during the progress of its
mission (German et al., 2012; Hagen et al., 2008; Yilmaz et al., 2008; Khatib et al.,
2016; Best and Moghadam, 2014). Additionally, the monitoring vehicle may augment
mission capabilities by providing observations from external viewpoints, such as for
accurate localisation and navigation (Fallon et al., 2010; Heppner et al., 2013; Klodt
et al., 2015; Saska et al., 2014; Kottege and Zimmer, 2011) or online sensor calibra-
tion (Bongiorno et al., 2013). The motion of the robot is typically represented by a
mission plan, which may be defined probabilistically to take into account uncertain
vehicle dynamics, environment models and mission objectives (Karydis et al., 2015;
Chiang et al., 2014; Aoude et al., 2013). In some cases, the monitor vehicle must
remain stationary in order to observe or communicate with the robot. The monitor
vehicle must decide where to stop, and when to move to the next observation location.

Classical optimal stopping problems (Chow et al., 1971), such as the well-known sec-
retary problem, involve a binary choice; at each time point, the decision at hand is
simply whether to stop or continue. If this choice can be repeated, the problem can be
considered to be one-dimensional in the sense that it involves a choice of nonoverlap-
ping intervals along a single dimension representing time. However, mission monitor-
ing also involves spatial dimensions. We refer to this case as spatiotemporal optimal
stopping. The goal of the work in this chapter is to develop complete algorithms for a
spatiotemporal optimal stopping problem where the motion of the target robot and
the observations in general are stochastic.

Our formulation is motivated by a variety of real-world scenarios, as discussed earlier
in Section 1.3.3. Of particular interest is autonomous underwater vehicle (AUV) op-
erations. Most AUVs in practice are supervised by powered surface vessels. The AUV
navigates autonomously, often following a pre-planned trajectory with reasonable ac-
curacy, but failures can occur that require human intervention. The AUV may also
discover information of immediate value. Therefore, effective monitoring is relevant
even if the robot is autonomous; monitoring allows operators to respond to failures
and relevant information quickly.

Acoustic systems used for communication with the AUV have limited range and are

5.1 Overview 134

unreliable, and some operators must stop and deploy this communication equipment,
with engines powered down, for maximum efficiency (Best and Anstee, 2014). In
the simplest case, communication may be modelled deterministically with a fixed-
range. However, this simple approach does not consider unpredictable hardware and
environments; in practice, probabilistic models are typically required to account for
physically realistic conditions (Hollinger et al., 2011b). An optimal stopping solution
maximises the time spent communicating or observing effectively; this is achieved by
choosing valuable observation locations and times, and reducing time spent unneces-
sarily travelling and stopping and starting the surface vessel.

A key focus of this chapter is the case where a mission is defined probabilistically. A
probabilistic mission definition can take into account uncertainties such as unknown
mission objectives, stochastic vehicle dynamics and imprecise environment models.
Deterministic missions can often be generated directly from human-defined or auto-
mated plans, such as for AUV missions (Witt and Dunbabin, 2008; Rao and Williams,
2009; Das et al., 2010; Fang and Anstee, 2010; Faigl and Hollinger, 2014; Jones and
Hollinger, 2017) or autonomous farming (Oksanen and Visala, 2009; Ball et al., 2013).
In some applications, stochastic models of vehicle motion may be formulated as direct
extensions of deterministic models, such as by adding model- or data-driven uncer-
tainty to the trajectory (Karydis et al., 2015; Chiang et al., 2014; Peynot et al., 2014).
In other cases, particular parameters of a mission are unknown, such as mission ob-
jectives or reactions to unforeseen events, leading to multi-modal predictions that are
not direct extensions of a deterministic model (Aoude et al., 2013).

We propose a polynomial-time resolution-complete algorithm (complete with respect
to the discretisation resolution) for the stochastic mission monitoring problem. Our
algorithm generates an optimal nonoverlapping set of observation “cylinders” (in the
simplest deterministic case) in the 3D configuration space consisting of two spatial
dimensions and one time dimension, as illustrated in Figure 5.1. These cylinders rep-
resent a stationary observation range and time, and are linked by a path that respects
motion constraints of the monitor platform. The objective is effective monitoring, de-
fined as maximising the expected overlap time between the probabilistic observation
regions and the stochastic mission trajectory. Hardware-setup time penalties are
naturally modelled geometrically by modifying the cylinder heights when evaluating

5.1 Overview 135

Figure 5.1 – Geometric interpretation of the spatiotemporal optimal stopping problem.
A sample robot trajectory (an AUV mission) is shown in blue and also projected
onto a plane in the two spatial dimensions. An example monitor trajectory solution
is overlaid. Cylinders represent effective monitoring range (in this case a fixed-range
communication model) at stopping locations. Green stars represent parts of the
mission that are not monitored.

trajectory overlap. Time and space are discretised, but fine resolution is feasible in
practice. The algorithm first reduces the problem to a longest-path graph search,
then passes a sweep-plane through the temporal dimension to compute a resolution-
complete solution in polynomial time. We present an algorithm for the general prob-
abilistic case as well as an elegant variant tuned for the deterministic case that runs
more efficiently in practice.

In addition to analytical evaluation, we provide extensive simulation results for several
example scenarios and realistic applications to demonstrate the relevance and appli-
cability to real-world scenarios. In particular, we give implementation details and em-
pirical analysis for applying the mission monitoring algorithm to two application case
studies: (1) an AUV monitoring application using a probabilistic trajectory model
with stochastic kinematics, localisation uncertainty, a closed-loop controller (de Wit
et al., 2012) and a realistic underwater communication model (Hollinger et al., 2011b);
and (2) a pedestrian monitoring application using a realistic trajectory prediction
model (Appendix A) and observations with occlusions in a cluttered environment. We
present results with data drawn from actual AUV missions (Best and Anstee, 2014),

5.1 Overview 136

a real pedestrian trajectory dataset (Lerner et al., 2007) and Monte Carlo simulations
of example trajectory models. The simulations illustrate the behaviour and perfor-
mance of the algorithm when planning with various modelling assumptions. Overall,
the experiments highlight advantages of the probabilistic formulation, demonstrate
that the algorithm admits a broad range of probabilistic trajectory prediction and
probabilistic observation models for practical scenarios, as well as clock-time perfor-
mance that shows the solution is viable for practical use in mission monitoring.

5.1.1 Mission monitoring variants

The mission monitoring problem was first posed in Best and Anstee (2014) along
with preliminary algorithms and field trials that demonstrate its practical value in
the case of AUV missions. Here, we present a spatiotemporal optimal stopping formu-
lation of the mission monitoring problem that generalises the formulation in Best and
Anstee (2014) to admit stochastic prediction models for the target and probabilistic
communication models. The solution we present here has guaranteed optimality and
polynomial runtime. Later in Chapter 6, we generalise the problem formulation for a
team of trackers, and we leverage and extend the core mission monitoring algorithm
presented in this chapter for decentralised multi-tracker planning.

5.1.2 Chapter outline

The remainder of this chapter is organised as follows. Section 5.2 formally defines
the spatiotemporal optimal stopping formulation and mission monitoring objective as
an active perception problem. Section 5.3 gives an overview of the algorithm, which
is divided into two phases: Section 5.4 details the spatiotemporal graph generation
phase, while Section 5.5 details the sweep-plane algorithm and analysis. Section 5.7
presents simulated experiments for analysing the behaviour of the algorithm and the
probabilistic formulation. Section 5.8 presents two application case studies, with
implementation details, extensive simulation results and empirical analysis. Finally,
Section 5.9 summarises the chapter.

5.2 Problem formulation 137

5.2 Problem formulation

In this section we formulate the mission monitoring problem. The problem involves
two mobile agents: (1) a target agent which follows a probabilistic trajectory defined
by a mission plan, and (2) a tracker agent that seeks to effectively monitor the target
throughout the mission. To monitor effectively, the tracker must be within observa-
tion/communication range of the target and must be stationary. The trajectory of
the tracker can therefore be characterised as a sequence of stopping waypoints in time
and space. This scenario presents an optimisation problem with the target’s trajec-
tory as the independent variable, while the tracker’s trajectory is optimised. In this
section, we formally define the characteristics of the target and tracker trajectories,
the general definition for probabilistic observation models, and the idea of effective
monitoring as an optimisation objective.

5.2.1 Target trajectory (independent variable)

The trajectory of the target is described as its position as a function of time x(t) :
[0, T] → X , where X is the space of all possible target locations. Time T is a
planning horizon (in our experiments, we set T to the full duration of the mission).
The mission is discretised into N time steps ti := (i − 1)∆t ∈ T , with t1 = 0
and tN = T . The trajectory is not known precisely ahead of time, and therefore
the predicted position of the target at time ti is represented as a random variable
Xi with a known distribution Xi ∼ Di and associated probability density function
ρi(x). Therefore, the predicted trajectory of the target is described as the sequence
of random variables X := (X1, X2, ..., XN).

5.2.2 Tracker trajectory (dependent variable)

The trajectory of the tracker is described as its position as a function of time
y(t) : [0, T] → Y , where Y is the space of all feasible positions of the tracker.
The trajectory of the tracker is characterised as alternating between two states
{stopped,moving} := S, which is described by a function of time s(t) : [0, T]→ S.

5.2 Problem formulation 138

The functions y(t) and s(t) are sampled at time steps ti ∈ T , resulting in the
sequences of positions Y = (y1, y2, ..., yN) and states S = (s1, s2, ..., sN).

Stationary waypoints

The trajectory of the tracker is also described by the tuple U = [Ŷ , T a, T d], where
Ŷ := (ŷ1, ŷ2, ..., ŷM) is a sequence of waypoint positions with sequences of associated
arrival times T a := (ta1, ta2, ..., taM) and departure times T d := (td1, td2, ..., tdM).

During the time interval [tai , tdi), the tracker is in the stopped state and is stationary
at the waypoint position ŷi ∈ Ŷ ⊆ Y , where Ŷ is the set of positions where the tracker
may stop. During the time interval [tdi , tai+1), the tracker is in the moving state and
is travelling between consecutive waypoints ŷi, ŷi+1. The sequences of arrival and
departure times satisfy the constraints: td1 ≥ 0, taM ≤ T, and tai < tdi < tai+1,∀i.

The required travel time δ(ŷi, ŷj) := taj − tdi between two waypoints is defined by a
function δ(ŷi, ŷj) : Ŷ × Ŷ → R≥0. The proposed algorithm does not depend on the
exact trajectory taken to achieve this travel time. We require δ(ŷi, ŷj) = 0 iff ŷi = ŷj.

By this definition, the position as a function of time has

y(t) = ŷi, ∀t ∈ [tai , tdi), ∀i ∈ {1, 2, ...,M}, (5.1)

and the state as a function of time is

s(t) =

stopped if t ∈ ⋃Mi=1[tai , tdi)

moving otherwise.
(5.2)

Start and end conditions

The start position ŷ1 and end position ŷM of the tracker are assumed to be elements
of given sets Ŷstart and Ŷend, respectively. These positions may be fixed, for exam-
ple when the tracking vehicle is used for deploying/retrieving the target vehicle at
fixed locations. Alternatively, if the sets are non-singleton then ŷ1 and ŷM are to be
optimised by the proposed planner.

5.2 Problem formulation 139

5.2.3 Monitoring effectiveness (objective function)

The goal of the tracker is to effectively monitor the target. At time ti, the monitoring
effectiveness is described by a function f(Xi, yi, si) : X ×Y ×S → [0, 1], with output
ranging from 0 (not monitoring) to 1 (effectively monitoring). This function is defined
as

f(Xi, yi, si) :=

f̃(‖Xi − yi‖) if si = stopped

0 if si = moving,
(5.3)

where f̃(ri) : R≥0 → [0, 1] is the observation model (interchangeable with commu-
nication model) and describes the observation value of monitoring the target from
a distance of ri. Without loss of generality, the observation value is assumed to be
scaled between 0 and 1. For example, f̃(ri) may describe the probability of the tracker
successfully communicating with or detecting the target, or the expected communi-
cation bandwidth. This function may be a simple binary r-disk model (Section 5.2.4)
or a more realistic observation model (Section 5.8). For clarity, we define the obser-
vation model as translation-, orientation- and time-invariant, however the algorithm
can readily be extended for more general models. (Section 5.8.2 demonstrates a
translation-dependent model.)

The monitoring effectiveness objective function F (X, Y, S) is defined as the expected
monitoring effectiveness over the duration of the mission:

F (X, Y, S) := E
[
∆t

N∑
i=1

f (Xi, yi, si)
]

(5.4)

= ∆t

N∑
i=1

E [f (Xi, yi, si)] , (5.5)

which can be interpreted as the expected weighted sum of time that the tracker is
stopped, weighted by the observation values. F (X, Y, S) can be evaluated using the
expected values

E [f (Xi, yi, stopped)] = E
[
f̃(‖Xi − yi‖)

]
=
∫
X
ρi(x)f̃(‖x− yi‖)dx,

E [f (Xi, yi,moving)] = 0.

(5.6)

5.2 Problem formulation 140

For convenience, we also introduce notation for the monitoring effectiveness evaluated
at the set of discrete timesteps ⊆ T that fall within a (continuous) time period of
interest T:

FT := ∆t
∑
η∈N

E [f (Xη, yη, sη)] , N = {η : tη ∈ T ∩ T }. (5.7)

5.2.4 Deterministic problem instances

As a special case, we address deterministic scenarios where both: (1) the target’s
trajectory X is deterministic (i.e., each ρi(x) is defined as a Dirac delta function),
and (2) the monitoring effectiveness function f̃(ri) is defined as the binary r-disk
model with monitoring range r, i.e.,

f̃(ri) :=

1 if ri ≤ r

0 otherwise.
(5.8)

In these deterministic problem instances, the expected value

E [f (Xi, yi, si)] = f(Xi, yi, si) (5.9)

and evaluates to 0 or 1 only.

For this special case, we also assume that the average speed of the tracker between
waypoints is not less than the maximum instantaneous speed of the target ‖ẋ‖max,
i.e.,

‖ŷj − ŷi‖
δ(ŷi, ŷj)

≥ ‖ẋ‖max, ∀ŷi, ŷj. (5.10)

5.2.5 Problem statement

The optimisation problem to be solved is stated as follows.

Problem 5.1 (Mission monitoring). For a given probabilistic model of the predicted
target trajectory X, a set of possible waypoint locations Ŷ , and the start and/or
end locations sets Ŷstart, Ŷend, find the set of stopping waypoints U with positions
Ŷ , arrival times T a and departure times T d, such that the travel time constraints

5.3 Algorithm overview 141

Algorithm 5.1 Overview of the trajectory planner for the tracker.
1: function Main(X)
2: [V, E , {tdi }, {taj}, {ω}] ← GenerateGraph(X)
3: [V, E ,Vstart,Vend] ← StartEndCond’s(V, E , X)
4: [{Ω}, {ψ}] ← SweepPlane(V, E , {ω}, {tai })
5: [U,F] ← BackTrack({Ω}, {ψ},V, E ,Vstart,Vend)
6: return [U = [Ŷ , T a, T d], F]

tai+1 − tdi = δ(ŷi, ŷi+1),∀r ∈ {1, ..., R} are satisfied, and the expected monitoring
effectiveness F (X, Y, S), as defined in (5.2.3), is maximised over the mission duration.

We address Problem 5.1 for the general case, as well as for the special deterministic
case defined in Section 5.2.4. The proposed algorithm has improved efficiency if
certain reasonable assumptions hold, which are defined later in Section 5.4.1.

5.3 Algorithm overview

The proposed algorithm is divided into a graph generation phase and then a longest-
path graph search using a sweep-plane. Pseudocode is listed in Algorithm 5.1.

The first phase generates a search graph such that paths through this graph describe
feasible solution trajectories for the tracker. The generated graph is directed acyclic,
which enables the optimal solution to be found efficiently. The graph generation
exploits geometric properties of the problem so that, under certain conditions, the
efficiency of the algorithm is improved and optimality is maintained. This graph
generation procedure is presented in Section 5.4.

In the second phase, the optimal solution is found by performing a longest-path search
through the spatiotemporal graph. We describe this algorithm geometrically as a
sweep-plane moving through time. For general graphs, a longest-path search is NP-
hard. However, since the generated graph is directed acyclic, the optimal trajectory
is found in polynomial time. This sweep-plane algorithm is presented in Section 5.5.

5.4 Spatiotemporal search graph 142

Algorithm 5.2 Generate a spatiotemporal search graph of potential waypoint positions
and times.
1: function GenerateGraph(X)
2: Select potential stopping locations pi ∈ P
3: Generate vertices vη = [pη, τa

η , τ
d
η] ∈ V

4: Find feasible edges ek = 〈vi, vj〉 ∈ E
5: Calculate edge times tdi , taj for each edge ek
6: Calculate edge weight ωi,j for each edge ek
7: return [V, E , {tdi }, {taj}, {ωi,j}]

5.4 Spatiotemporal search graph

This section describes the process of generating the spatiotemporal search graph, as
summarised in Algorithm 5.2. Section 5.4.1 describes how to generate the graph
vertices, where each vertex represents a time interval at a position. Section 5.4.2
describes how to generate edges, such that each edge represents the travel time and
monitoring effectiveness for travelling between a pair of vertices. Finally, Section 5.4.3
discusses further adjustments to the graph so that the start and end conditions are
met.

5.4.1 Vertices

A set of graph vertices is generated, with each vertex vi ∈ V representing a potential
stopping location in time and space. This is achieved by selecting a discrete set of
positions in space in the neighbourhood of the target’s path. Time is incorporated
for each position by considering all times that the tracker is expected to be effectively
monitoring the target. We first introduce the spatial dimensions in Section 5.4.1,
followed by the temporal dimensions in Section 5.4.1.

Spatial dimensions

The set of positions P ⊆ Ŷ is generated by first discretising the space, such that
P = Ŷ ∩ P1, where P1 is a discrete set of positions. The algorithm is optimal with
respect to the discretisation used for P1. The best choice for discretisation is problem
specific; a uniform grid is used in all figures and most of the experiments, while

5.4 Spatiotemporal search graph 143

Target trajectory

Stopping locations

Figure 5.2 – Example showing possible stopping locations around a deterministic tar-
get trajectory moving through 2 spatial dimensions. Also shown are the boundaries
of the P2 monitoring region (pink) and P3 convex hull (orange) described in Sec-
tion 5.4.1.

Section 5.8.1 uses an adaptive-resolution grid and Section 5.8.2 uses a probabilistic
roadmap (PRM).

The search space can be further reduced by taking the intersection with two additional
sets, such that P = Ŷ∩P1∩P2∩P3. The set P2 describes the monitoring region and P3

describes the convex hull of the mission. These sets are formally defined below and an
example of these sets is illustrated in Figure 5.2. Under reasonable conditions (defined
below), optimality is still guaranteed after performing this culling. If a particular
condition does not hold for a specific problem instance, then the associated set may
be omitted to guarantee optimality. This additional culling of the search domain is not
essential; the algorithm has the same runtime complexity, but the culling will improve
the efficiency of the algorithm in practice. In our several experiment formulations,
discussed later in this chapter, we present several realistic models that satisfy these
conditions.

The set P2 is the set of all points pi that have a non-zero monitoring effectiveness
(i.e., are within monitoring range) for part of the target’s trajectory, i.e.,

∃Xη ∈ X : E
[
f̃(‖Xη − pi‖)

]
> 0. (5.11)

Lemma 5.1 shows optimality is maintained if the P2 culling is used, assuming Con-
dition 5.1 holds. For P3, first define CH as the convex hull of the set of all possible
locations visited by the target and the tracker start and end sets; i.e., the convex hull
of the set

{x : ∃i, ρi(x) > 0} ∪ Ŷstart ∪ Ŷend. (5.12)

5.4 Spatiotemporal search graph 144

The set P3 is all points that are in CH or are a distance less than the P1 discretisation
spacing away from the boundary of CH. Lemma 5.2 shows optimality is maintained
if the P3 culling is used, assuming Conditions 5.2, 5.3 and 5.4 hold.

Condition 5.1 (Triangle inequality). The travel times satisfy the triangle inequality,
i.e., δ(ŷa, ŷb) ≤ δ(ŷa, ŷi) + δ(ŷi, ŷb).

Condition 5.2 (Convex hull is feasible). All positions in CH are feasible stopping
locations, i.e., CH ⊆ Ŷ .

Condition 5.3 (Monotonically decreasing observation value). The observation model
f̃(ri) is a monotonically decreasing function of distance.

Condition 5.4 (Monotonically increasing travel time). The travel time monotoni-
cally increases with distance, for a fixed start or end position; i.e., if ‖ŷi − ŷa‖ ≥
‖ŷi − ŷb‖ then δ(ŷi, ŷa) ≥ δ(ŷi, ŷb) and δ(ŷa, ŷi) ≥ δ(ŷb, ŷi).

Remark 5.1 (Unbounded distributions). If the distributions ρi(x) or the observation
function f̃(ri) have an unbounded support, then P is potentially an infinite set.
However, this is not an issue since the reachability pruning (later in Section 5.4.3)
ensures the search space is finite. For computational reasons, to further reduce the
size of the graph it may be appropriate to approximate P2 and P3 using non-zero
lower bounds, i.e., E

[
f̃(‖Xη − pi‖)

]
> LB1 for P2 and ρi(x) > LB2 for P3. 4

Lemma 5.1 (Stopping in effective monitoring region). If the travel times satisfy
the triangle inequality (Condition 5.1), then an optimal solution trajectory U only
contains waypoints at locations ŷi ∈ Ŷ which satisfy ∃Xη ∈ X : E

[
f̃(‖Xη − ŷi‖)

]
> 0.

Proof. Define two partial solution trajectories over the time interval [tai , tdk): (1) Ŷ =
(ŷi, ŷj, ŷk) and (2) Ŷ ∗ = (ŷi, ŷk); with ŷj satisfying @Xη ∈ X : E

[
f̃(‖Xη − ŷj‖)

]
> 0.

It follows from this definition of ŷj that the monitoring effectiveness F while stopped
at ŷj is F[taj ,t

d
j) = 0. Combined with the moving time intervals, F[tdi ,t

a
k
) = 0, with inter-

val length L = tak − tdi . Therefore F (Ŷ) = F[tai ,t
d
i)∪[ta

k
,td
k
). For Ŷ ∗, the monitoring effec-

tiveness while moving is F[td*
i ,ta*

k
) = 0, with interval length L∗ = ta*

k − td*
i . Therefore

F (Ŷ ∗) = F[tai ,t
d*
i)∪[ta*

k
,td
k
). Since the triangle inequality holds (Condition 5.1), it follows

that L ≥ L∗. Therefore ∃{td′i , ta′k } : (td′i ≥ tdi)∧(ta′k ≤ tak), where {td*
i , t

a*
k } = {td′i , ta′k } is

5.4 Spatiotemporal search graph 145

a feasible choice for departure and arrival times. The optimal choice for {td*
i , t

a*
k } will

always result in a greater or equal monitoring effectiveness than if {td*
i , t

a*
k } = {td′i , ta′k }

were chosen, therefore:

F (Ŷ ∗) ≥ F[tai ,t
d′
i)∪[ta′

k
,td
k
)

= F[tai ,t
d
i)∪[tdi ,t

d′
i)∪[ta′

k
,ta
k
)∪[ta

k
,td
k
)

= F (Ŷ) + F[tdi ,t
d′
i)∪[ta′

k
,ta
k
)

≥ F (Ŷ).

It follows that F (Ŷ) will never decrease if ŷj was removed from the sequence. This
generalises to longer sequences since F is additive over partial sequences; therefore
an optimal sequence exists with all ŷi in range of an Xη. �

Lemma 5.2 (Stopping in convex hull). If CH ⊆ Ŷ (Condition 5.2), f̃ is monoton-
ically decreasing (Condition 5.3), and the travel time monotonically increases with
distance (Condition 5.4), then an optimal solution trajectory U only contains way-
points at locations ŷi ∈ Ŷ which are in CH.

Proof. Define a stopping position ŷa 6∈ CH. By definition, there exists a half-plane H
such that CH ⊂ H, ŷa 6∈ H, and ŷ∗a lies on the boundary of H where ŷ∗a is the closest
point to ŷa in CH. The line segment ŷa to ŷ∗a is perpendicular to the boundary of H;
therefore ŷ∗a is closer than ŷa to any point in H, i.e.,

‖ŷ∗a − h‖ < ‖ŷa − h‖,∀h ∈ H. (5.13)

Therefore, since X ⊂ H and f̃ is monotonically decreasing (Condition 5.3):

f̃(‖Xi − ŷ∗a‖) ≥ f̃(‖Xi − ŷa‖), ∀Xi ∈ X. (5.14)

It follows that the monitoring effectiveness of a solution that contains a waypoint at
ŷ∗a will never decrease if this waypoint were moved to ŷa instead. It is assumed that
ŷ∗a ∈ Ŷ , which will hold if Condition 5.2 holds.

To be optimal, selecting ŷ∗a instead of ŷa must also not result in a lower monitoring
effectiveness at the previous and next waypoints in the sequence. Define the partial

5.4 Spatiotemporal search graph 146

solutions Ŷ = (ŷi, ŷa, ŷj) and Ŷ ∗ = (ŷi, ŷ∗a, ŷj), where ŷi, ŷj ∈ CH ⊂ H. It follows
from (5.13) and Condition 5.4 that the travel times will not increase by selecting ŷ∗a
instead of ŷa, i.e.,

δ(ŷi, ŷ∗a) ≤ δ(ŷi, ŷa) and δ(ŷ∗a, ŷj) ≤ δ(ŷa, ŷj). (5.15)

Therefore the departure from ŷi need not be earlier and the arrival to ŷj need not be
later if ŷ∗a is chosen instead of ŷa; hence the monitoring effectiveness at ŷi and ŷj will
not decrease if ŷ∗a is chosen instead of ŷa.

It follows that F (Ŷ ∗) ≥ F (Ŷ). Given that ŷ1, ŷM ∈ CH, this generalises to longer
sequences. Therefore an optimal solution trajectory has all ŷi ∈ CH. �

Temporal dimensions

Each vertex vη ∈ V represents a position pη ∈ P and a time interval [τ a
η , τ

d
η] ⊆

T , denoted by the tuple vη := [pη, τ a
η , τ

d
η]. We first describe how to select τ a

η , τ
d
η

for the general problem, then describe a procedure that improves the efficiency for
deterministic cases. Figure 5.3 shows an example set of generated vertices for (a)
probabilistic and (b) deterministic problems.

For probabilistic problem instances, each vertex has a time interval length equal to
the time discretisation, i.e., τd

η − τ a
η = ∆t. For each position pη ∈ P , a vertex is

created for each time step τ a
η ∈ T where the target has a non-zero probability of

being in range of the tracker, i.e.,

vη = [pη, τ a
η , τ

d
η = τ a

η + ∆t] ∈ V iff E
[
f̃(‖X(τ a

η)− pη‖)
]
> 0. (5.16)

This definition is referred to as the probabilistic algorithm. An example of this vertex
generation is illustrated in Figure 5.3a overlaying a probabilistic target trajectory
represented by a set of sample trajectories. Each vertical blue line segment is a vertex
with the bottom at time τ a

η and the top at τd
η . In this example, the extreme samples

are used to approximate the boundaries of the non-zero regions of the distribution.

For deterministic problem instances (defined in Section 5.2.4), only a single vertex
needs to be created for each contiguous subsequence of times where the target is in

5.4 Spatiotemporal search graph 147

T
im

e

Space

Sample target trajectories

Effective monitoring range

Graph vertices

(a) Probabilistic target trajectory (represented
by a set of sample paths) and probabilistic algo-
rithm vertices.

T
im

e

Space

Deterministic target trajectory

Effective monitoring range

Graph vertices

(b) Deterministic target trajectory and deter-
ministic algorithm vertices.

Figure 5.3 – Examples showing graph vertices overlaying a target trajectory moving
through a single spatial dimension, for the (a) probabilistic and (b) deterministic
algorithms. Each vertical blue line segment represents a vertex in the search graph.
Each vertex maps to a potential stopped position for the tracker, with arrival and
departure times determined by the edges (Figure 5.4).

range of the tracker. More formally, Ti ⊆ T denotes the set of all times where the
target would be effectively monitored if the tracker were stopped at pi at time tl,
i.e.,

Ti := {tl ∈ T : f̃(‖Xl − pi‖) = 1}. (5.17)

Each Ti is then divided into non-overlapping subsequences, with each subsequence be-
ing a maximal run of consecutive timesteps (tj, tj+1, ..., tj+k) ⊆ Ti. Each subsequence
forms a new vertex vη in the search graph with τ a

η and τd
η chosen as the subsequence

start and end times, i.e.,

[pη, τ a
η , τ

d
η] = [pi, tj, tj+k + ∆t]. (5.18)

This definition is referred to as the deterministic algorithm. Figure 5.3b illustrates
that, in contrast to the probabilistic algorithm, each vertex can span multiple
timesteps.

The deterministic algorithm is typically more efficient since fewer vertices are gener-
ated. This adjustment maintains optimality since, for the deterministic case, if an

5.4 Spatiotemporal search graph 148

optimal solution path contains the position pi at time ti then it is optimal to stay at
position pi for all timesteps consecutive to ti when the target is still in range. A proof
of this guarantee is provided later in Lemma 5.3 after the edges have been introduced.

5.4.2 Edges

A solution trajectory is represented by a path through the graph with consecutive
vertices connected by directed edges eη ∈ E . An edge is denoted eη = 〈vi, vj〉 and
describes travelling from vertex vi at position pi to vertex vj at position pj at some
time in the solution trajectory.

Each edge has an associated departure time tdeη := tdi and arrival time taeη := taj which
describes the exact time the tracker moves from pi to pj. We require taη, tdη satisfy

taη = τ a
η < tdη. (5.19)

The key advantage of having a fixed arrival time taη (5.19) for a vertex is that the
calculations for an edge eη = 〈vi, vj〉 do not depend on the choice of arrival time
for a previous edge em = 〈vh, vi〉 or the path taken to or from an edge; therefore
optimal sub-paths are additive and generally lead to globally optimal solutions. For
the probabilistic algorithm, selecting taη = τ a

η is optimal relative to the temporal
resolution since each vertex represents only stopping for a single time step at pη. For
the deterministic case, where a vertex represents a contiguous subsequence of in-range
timesteps, this choice is still optimal (shown later in Lemma 5.3).

Each edge also has an associated weight ωi,j which is defined as the monitoring effec-
tiveness over the time interval [τ a

i , τ
a
j) if that edge were chosen, i.e.,

ωi,j := F[τa
i ,τ

a
j). (5.20)

Each edge is in one of four categories, which determines the edge weight and moving
times. The conditions are derived directly from the geometric properties illustrated
in Figure 5.4. The calculations are listed in Algorithm 5.3 and described as follows.

1. Infeasible – An edge is included if and only if the vertex vj is reachable from

5.4 Spatiotemporal search graph 149

T
im

e

1
2 3 4

Vertex j

Vertex i

Edge i,j

Figure 5.4 – Illustration of the edge categories described in Algorithm 5.3 and Sec-
tion 5.4.2. From left to right: infeasible, same position, smaller gap and larger gap.

Algorithm 5.3 Edge weight and time calculations for the four categories illustrated in
Figure 5.4 and described in Section 5.4.2.
1: function EdgeCalculation(eη = 〈vi, vj〉)
2: ρ← E

[
f̃(‖Xη − pi‖)

]
: tη = τa

i

3: taj ← τa
j

4: if δ(pi, pj) ≥ τa
j − τa

i then . infeasible
5: Do not include eη in E
6: else if pi = pj then . same position
7: tdi ← τa

j

8: ωi,j ← ρ×
(
τd
i − τa

i

)
9: else if δ(pi, pj) ≥ τa

j − τd
i then . smaller gap

10: tdi ← τa
j − δ(pi, pj)

11: ωi,j ← ρ×
(
τa
j − τa

i − δ(pi, pj)
)

12: else . larger gap
13: tdi ← τa

j − δ(pi, pj)
14: ωi,j ← ρ×

(
τd
i − τa

i

)
15: return [tdi , taj , ωi,j] . depart, arrive, weight

vi, i.e., δ(pi, pj) ≤ τ a
j − τ a

i .

2. Same Position – The two vertices are at the same position and therefore
merged into a single waypoint.

3. Smaller Gap – The gap between the vertices is smaller than δ(pi, pj); there-
fore there will be no time spent in the stopped state while not effectively
monitoring.

4. Larger Gap – The gap is larger than δ(pi, pj); therefore there must be some
time spent in the stopped state while not effectively monitoring.

5.4 Spatiotemporal search graph 150

Remark 5.2 (Underestimates due to pass-through vertices). The trajectory rep-
resented by an edge 〈vi, vj〉 may implicitly pass through another vertex vη where
vη = [pη, τ a

η , τ
d
η]. This occurs in two scenarios: (1) when there exists a vη where

pη = pi and the time interval [τ a
η , τ

d
η] overlaps with [tai , tdi], or (2) when there exists a

vη where pη = pj and the time interval [τ a
η , τ

d
η] overlaps with [taj , tdj]. For efficient com-

putation, and without loss of optimality, the computations in Algorithm 5.3 ignore
the value of the pass-through vertex vη, if one exists. Therefore, ωi,j may under-
estimate F[τa

i ,τ
a
j). However, this case will also be realised by an alternate path that

visits the pass-through vertex vη. This alternate path, (〈vi, vη〉, 〈vη, vj〉) will have a
value estimate consisting of ωi,η and ωη,j, and therefore will provide a correct esti-
mate of (5.20). The underestimate of ωi,j in the pass-through case does not result
in suboptimal solutions since a maximum-weight search algorithm will always choose
the alternate path (〈vi, vη〉, 〈vη, vj〉) instead. 4

Lemma 5.3 (Optimal arrival time for deterministic cases). For deterministic problem
instances (defined in Section 5.2.4), if a path passes through vη, then it is optimal for
the solution trajectory to arrive at pη with taη chosen as τ a

η (using the definitions for
taη and τ a

η from Sections 5.4.1 and 5.4.2).

Proof. Consider the path consisting of a feasible edge 〈vi, vj〉, where pi 6= pj, for three
cases: A - choose taj = tajA where τ a

j < tajA ≤ τd
j ; B - choose taj = tajB where tajB = τ a

j ;
and C - choose taj = tajC where tajC < τ a

j . By this definition,

tajA > tajB = τ a
j > tajC . (5.21)

The following proof shows that B has a monitoring effectiveness greater than or equal
to A and C.

Firstly, we show that B is a feasible choice; i.e., it does not require departing pi before
the start time τ a

i . Consider the pair of start times (τ a
i , τ

a
j). When the target moves in

a straight line at maximum speed ‖ẋ‖max (i.e., gradient in Figure 5.3b), the vertices
will have start times with this same gradient between pairs, i.e.,

|τ a
j − τ a

i | =
‖pj − pi‖
‖ẋ‖max

. (5.22)

5.4 Spatiotemporal search graph 151

If the target turns (e.g. upper half of Figure 5.3b), or moves slower, this time difference
must be larger; therefore generally

|τ a
j − τ a

i | ≥
‖pj − pi‖
‖ẋ‖max

. (5.23)

Applying the speed assumption yields

|τ a
j − τ a

i | ≥ |taj − tdi | = δ(pi, pj). (5.24)

An exception could occur at the beginning of the mission (since |τ a
j − τ a

i | = 0 if
τ a
j = τ a

i = 0); however the vertex adjustments described later in Section 5.4.3 ensure
this will not prevent an optimal path from being chosen. From (5.24), it follows that
if taj = tajB then tdi ≥ τ a

i , and therefore B is a feasible choice.

For A, the tracker departs pi at a time ∂ := tajA − tajB later than for B. Therefore
B will spend ∂ less time at pi and ∂ more time at pj than A. In B, the extra time
spent at pj is the interval [tajB , t

a
jA

). By definition of a vertex for the deterministic case
(Section 5.2.4), F[tajB ,t

a
jA

) = ∂, which is maximal. A can not improve on this during
the extra time at pi, and therefore B has a greater or equal monitoring effectiveness
than A. Note this assumes τ a

i < τ a
j ; however, it follows from (5.24) and the triangle

inequality assumption from Lemma 5.1 that an optimal path will not contain 〈vi, vj〉
if τ a

i ≥ τ a
j , since vj would also be reachable from the vertex preceding vi.

To achieve C, the tracker will spend more time at pj than for B. This extra time
is before τ a

j , and therefore by definition of a vertex, F[tajC ,τ
a
j) = 0, which is minimal;

hence B has a greater or equal monitoring effectiveness than C. This shows that
taj = τ a

j is optimal. Note that this assumes that there is no vertex vk where pk = pj

and τ a
k < τ a

j ; however, if a vk exists then the planner has the option to choose the
subsequence (vi, vk, vj) if this is feasible. For (vi, vk, vj), this proof also shows that
tak = τ a

k is the optimal arrival time for vk, and taj is irrelevant since pj = pk. �

5.4.3 Start and end conditions

The graph needs to be adjusted to ensure that the solution path satisfies the start
and end constraints. This includes trimming or removing some of the edges, as well

5.4 Spatiotemporal search graph 152

Algorithm 5.4 Vertex set adjustments for the start condition.
1: for each vi ∈ V \ Vstart do
2: if ∃pstart ∈ Pstart : τa

i ≥ δ(pstart, pi) then
3: continue . keep vi
4: else if ∀pstart ∈ Pstart : τd

i ≤ δ(pstart, pi) then
5: V ← V \ vi . remove vi
6: else
7: τa

i ← min
pstart∈Pstart

δ(pstart, pi) + t1 . trim vi

as defining the sets of start vstart ∈ Vstart and end vend ∈ Vend vertices.

The set of allowable start positions is calculated as Pstart = Ŷstart ∩ P . If a problem
instance requires start positions that are not already in P , then these positions should
be added to P and corresponding vertices and edges added to the graph. For each
pstart ∈ Pstart, if it is not in-range at time t1 (i.e. E

[
f̃(‖X(t1)− pstart‖)

]
= 0), then

additional vertices are generated between time t1 and the first timestep where pstart

is in-range. For each pstart ∈ Pstart, the vertex with τ a
i = t1 is included in the set of

possible start vertices vstart ∈ Vstart.

To ensure the search always selects a path that begins at vstart ∈ Vstart, all other
vertices vi are adjusted using the rules described in Algorithm 5.4. In the first case,
vi is reachable from at least one pstart ∈ Pstart and therefore no adjustment is made.
The second case removes unreachable vertices. The third case trims all vi that are
reachable only at some time after τ a

i . The third case is necessary for the deterministic
algorithm where each vertex may span multiple timesteps, in order to ensure the
Lemma 5.3 result holds. For simplicity, the reachability calculations assume the
triangle inequality holds for travel times (Condition 5.1), although the algorithm
could readily be adapted for other cases.

Similarly, the set of allowable end positions is calculated as Pend = Ŷend ∩ P . For
each position pend ∈ Pend, the vertex with the latest departure time τd

i is added to
the set of possible end vertices vend ∈ Vend. The optimal start and end positions (for
non-singleton Pstart or Pend) are found by the algorithm in the following section.

5.5 Sweep-plane algorithm 153

T
im

e

Space

Vertices

Sweep plane

Arrival at current vertex

Edges connecting to current vertex

Start

Figure 5.5 – Sweep-plane at a particular time instant showing all feasible edges into the
current vertex, analogous to Figure 5.3b but including the start condition adjustment
(for a singleton Vstart). This example assumes constant-speed travel times.

5.5 Sweep-plane algorithm

The optimal tracker trajectory is found by searching for the longest-path through
the spatiotemporal graph. For general graphs, a longest-path search is NP-hard.
However, optimal polynomial-time algorithms exist if the graph is a directed acyclic
graph (DAG), since a topological ordering1 of V exists. The spatiotemporal graph
generation defined in Section 5.4 reduces the problem to a longest-path search through
a DAG, and therefore, the solution can be found in O(|V| + |E|) time. This section
describes a longest-path search, which can be visualised as a sweep-plane moving
through time. The algorithm includes finding the optimal vstart ∈ Vstart and vend ∈
Vend.

5.5.1 Forward pass

The longest-path search begins with a forward pass through the graph that visits the
nodes in topological order. A topological ordering of the vertices can be found by
visiting vi in order of ascending time t = τ a

i . This can be thought of as a sweeping
plane as illustrated in Figure 5.5 and described in Algorithm 5.5. The sweep-plane

1If there exists a path from vertex vi to vj , then vi precedes vj in a topological sort.

5.5 Sweep-plane algorithm 154

Algorithm 5.5 Sweep-plane graph search: forward pass.
1: function SweepPlane(V, E , {ω}, {tai })
2: Ωstart ← 0, ∀vstart ∈ Vstart
3: for t = t1, t2, ..., tN do
4: for each vi ∈ V \ Vstart where tai = t do
5: Ei ← {ε : 〈vε, vi〉 ∈ E} . edges into vi
6: ψi ← argmaxε∈Ei [Ωε + ωε,i] . optimal edge
7: Ωi ← Ωψi + ωψi,i . path weight
8: return [{Ω}, {ψ}] . path weights, back-pointers

Algorithm 5.6 Backtracking to find the optimal trajectory.
1: function BackTrack({Ω}, {ψ},V, E ,Vstart,Vend)
2: ρi ← E

[
f̃(‖Xη − pi‖)

]
: tη = τa

end, ∀vi ∈ Vend

3: vη ← argmax
vi∈Vend

[
Ωi + ρi ×

(
τd
i − τa

i

)]
. end vertex

4: F ← Ωη + ρη ×
(
τd
η − τa

η

)
. monitoring effectiveness

5: repeat
6: vprev ← ψη . previous vertex along trajectory
7: e← 〈vprev, vη〉 . find edge into vη
8: ŷi ← pη . waypoint position
9: tai ← tae . waypoint arrive
10: tdi−1 ← tde . previous waypoint depart
11: vη ← vprev, i← i− 1 . move to previous vertex
12: until vη ∈ Vstart
13: ŷi ← pη, t

a
i ← t1

14: return [[{ŷ}, {ta}, {td}], F] . trajectory, path weight

represents a plane covering P at a particular time t, and moves linearly through
increasing time T (line 3). A vertex vi is explored once the sweep-plane reaches
t = τ a

i (line 4). For efficient evaluation of the vertex set in line 4, V should be pre-
sorted by ascending τ a

i . When vi is explored (line 5), all edges eε leading in to vi
are compared (line 6) and the optimal previous vertex with an edge into each vi is
denoted ψi. The sum of weights along the optimal path leading to vertex vi through
edge eψi is calculated recursively and denoted Ωi (line 7).

5.5.2 Backtracking

Lastly, the optimal solution path is found by backtracking from a vend ∈ Vend to
a vstart ∈ Vstart, as described in Algorithm 5.6. The end vertex is chosen as the

5.6 Analysis 155

vertex in Vend with the highest path weight (line 3). The algorithm proceeds by
recursively following the back-pointers ψ until a vstart ∈ Vstart is reached (lines 5-
12). Backtracking will always lead to a vstart ∈ Vstart due to the adjustments in
Section 5.4.3. The expected monitoring effectiveness is F = Ωend + ρ×

(
τd

end − τ a
end

)
,

since the weight of the end vertex is not accounted for by the edge weights.

5.6 Analysis

In this section, we analyse the optimality and time complexity of the proposed algo-
rithm, and remark on practical considerations.

5.6.1 Optimality

The proposed algorithm is optimal with respect to the discretisation. We formally
analyse the optimality as follows.

Lemma 5.4 (Optimality of graph search algorithm). The graph search algorithm
described by the sweep-plane forward pass in Algorithm 5.5 and backward pass in
Algorithm 5.6 finds the optimal solution through a spatiotemporal graph (V , E).

Proof. For each vi, the forward pass calculates the preceding vertex ψi and the sum
of edge weights Ωi for the optimal path from any vstart ∈ Vstart to vi, if the mission
were to end at time τ a

i . The algorithm recursively solves optimal sub-problems by
iterating through vi ∈ V in a topological order. The sub-problems are optimal since
the objective function F is additive. The backtracking phase selects the optimal
vend ∈ Vend and the backpointers ψi directly map to the optimal path from vstart to
vend. �

The main optimality result follows directly from Lemma 5.4 and the lemmas regarding
the graph generation in Section 5.4.

Theorem 5.1 (Optimality of spatiotemporal optimal stopping). Algorithm 5.1 finds
the optimal tracker trajectory (as defined in Problem 5.1) with respect to the temporal
(T) and spatial (P1) discretisation.

5.6 Analysis 156

Proof. The space of all possible tracker trajectories is first discretised over time and
space. Lemma 5.1 and Lemma 5.2 (and Lemma 5.3 for the deterministic case) col-
lectively state that the subsequent pruning phases of the graph generation algorithm
(Algorithm 5.2) do not prune the optimal solution trajectory from the search graph
(V , E).

Lemma 5.4 states that the graph search algorithm finds the optimal solution for a
given graph (V , E) and thus Algorithm 5.1 finds the optimal solution to Problem 5.1.

�

5.6.2 Time complexity

The algorithm runs in polynomial time, which is analysed formally as follows.

Theorem 5.2 (Polynomial runtime complexity). The runtime of Algorithm 5.1 is
O(|P|2 · |T |2), where |P| is the spatial resolution and |T | is the temporal resolution
of the problem.

The claim in Theorem 5.2 is justified as follows. Let the number of vertices be |V|
and the number of edges be |E|. The complexity for generating the set of vertices is
O(|V|) = O(|P| · |T |) and for the edges is O(|E|) = O(|V|2). Therefore the computa-
tion time for generating the graph is O(|V|2) = O(|P|2 ·|T |2). The topological sort has
complexity O(|V| log |V|), the graph search forward pass has complexity O(|V|+ |E|),
and the backtracking has complexity O(|T |). Therefore the computation time of the
sweep-plane algorithm overall is O(|E|) = O(|P|2 · |T |2).

5.6.3 Practical considerations

In practice there is a trade-off between solution quality and runtime of the algorithm.
Firstly, the algorithm requires finite spatial and temporal resolutions, since the com-
putation requires a finite set of vertices. This is not limiting since, in practice, there
is little benefit in having a resolution higher than the positioning accuracy of the
tracker vehicle. Secondly, for some prediction models it may be impractical to solve
the observation value integral (5.6) exactly. In our implementation for the following

5.7 Experiments 157

experiments we solve (5.6) using Monte Carlo integration, such that the belief of the
target’s trajectory is approximated by a set of particles.

5.6.4 Stopping frequency

The algorithm automatically selects how many times the monitoring vehicle will stop
by controlling the length of the stopping intervals. In most practical scenarios, it
would typically be desirable to make few long stops rather than many short stops.
Favouring few long stops over many short stops can be achieved by defining the travel
time function δ in an appropriate manner. Constant time penalties can be introduced,
which indirectly results in favouring longer stops. We provide an appropriate example
definition of δ in Section 5.7.1.

5.7 Experiments

This section describes simulation experiments that illustrate the behaviour of the algo-
rithm and advantages of the probabilistic formulation. First, we compare the current
planning algorithm to previous algorithms for deterministic AUV missions (Best and
Anstee, 2014). Second, we give an illustrative example that demonstrates the ad-
vantage of the probabilistic formulation of the problem. Third, we evaluate planning
with probabilistic predictions that model temporal uncertainty. Later in Section 5.8,
we demonstrate planning with two realistic trajectory and observation model imple-
mentations for application case studies.

5.7.1 Missions and parameters

The following simulations were performed using the same target trajectories and
parameter values as the real AUV missions described in Best and Anstee (2014).
Two hour-long AUV missions are considered as target trajectories, named Middle
Harbour (depicted in Figure 5.6) and Jervis Bay. In Best and Anstee (2014), these
missions were executed by a REMUS 100 AUV. Both missions alternate between
densely scanning local regions of interest and moving in straight lines between these

5.7 Experiments 158

Figure 5.6 – Deterministic AUV mission plan from Best and Anstee (2014) used in
the simulations. It is a 1 hour mission for a REMUS 100 AUV in Middle Harbour,
Sydney. Starts at orange dot (near middle) and ends at blue dot (bottom right).

regions. Two extreme cases for the trajectory are also considered: circular is a circular
path with radius slightly less than the monitoring range, and linear is a straight path.

Parameter values are as follows: r = 200m monitoring range for an r-disk com-
munication model (defined in Section 5.2.4), 2m/s constant target speed, 25m grid
spacing, ∆t = 10 s time steps, travel time between tracker waypoints

δ(ŷi, ŷj) = ‖ŷj − ŷi‖
‖ẏ‖

+ Tpen, (5.25)

with ‖ẏ‖ = 5m/s tracker speed and Tpen = 30 s constant penalty for deploying
and retrieving the monitoring hardware, and fixed start and end conditions, ŷ1 =
E[X1] and ŷM = E[XN] respectively, so that the tracker is in an appropriate position
to deploy and recover the target vehicle. It is important to note that the travel
time definition in (5.25) satisfies the triangle-inequality condition (Condition 5.1).
Computation times are shown for an unoptimised MATLAB implementation, running
on a single core of an Intel i7 processor.

5.7.2 Deterministic target trajectory

Table 5.1 shows simulation results for four deterministic target trajectories. The
deterministic and the probabilistic algorithms output the same solution trajectories,

5.7 Experiments 159

Table 5.1 – Simulation results for deterministic target trajectories. The two planners
output identical solution trajectories.

Deterministic Probabilistic

Mission F/T M |V| time (s) |V| time (s)

Middle Harbour 79.5 8 2860 0.5 49483 101
Jervis Bay 79.2 7 3121 0.6 59146 144
circular 95.8 3 1203 0.3 27338 32
linear 52.2 6 430 0.2 8062 3.7

Columns: Monitoring effectiveness as a percentage of mission duration; Number of stopping
locations M ; Number of vertices |V|; Computation time (s).

however the deterministic algorithm had a lower computation time due to the reduced
number of vertices. The linear trajectory resulted in the lowest monitoring effective-
ness since a straight-line target trajectory means the tracker cannot cut corners to
reduce travel time. The linear trajectory required the fewest number of vertices since
the convex hull of a straight line has the smallest area. The computation time is
approximately quadratic in |V| (regression fit with R2 > 0.99), which agrees with
the theoretical analysis. The algorithm shows a small improvement in the monitor-
ing effectiveness over the greedy algorithm and genetic algorithm results reported in
Best and Anstee (2014). The key advantage of the proposed sweep-plane algorithm is
guaranteed and faster runtime (the deterministic algorithm is approximately 50 times
faster than the genetic algorithm), and provably optimal solutions, as well as the ap-
plicability to probabilistic scenarios as demonstrated in the following experiments.

5.7.3 Planning with uncertainty

We demonstrate how planning while taking into account an accurate model for the
uncertainty of the target trajectory improves the monitoring effectiveness. Figure 5.7
presents a target mission that alternates between sections with high spatial uncer-
tainty and low spatial uncertainty.

Figure 5.7a shows the optimal stopping locations for the tracker if there were no un-
certainty in the target trajectory. Figure 5.7b shows the solution when planning with
a probability distribution Di that accurately models the uncertainty. The advantage

5.7 Experiments 160

T
im

e

(a) Deterministic planner (b) Probabilistic planner

Figure 5.7 – Comparing planning with a deterministic model to planning with a proba-
bilistic model. Green lines are sample target trajectories drawn from the probabilistic
model. Red regions represent the monitoring range around the chosen stopping loca-
tions. Probabilistic planner achieves higher monitoring effectiveness since it selects
regions with low spatial uncertainty.

of the probabilistic planning is that it chooses to stop at and stay longer in the re-
gions with lower spatial uncertainty. For a Monte Carlo simulation drawing 10000
sample target trajectories, the deterministic planner has a mean monitoring effec-
tiveness (as a percentage of mission duration) F/T = 47.5 %, while the probabilistic
planner improves on this with F/T = 54.1 %. The solution path length given by the
deterministic planner overestimates the expected monitoring effectiveness; conversely,
the probabilistic planning accurately predicts the expected monitoring effectiveness.

5.7.4 Probabilistic trajectory with temporal uncertainty

Now we consider an example probabilistic target trajectory for an agent with uncer-
tain speed. For a target with accurate localisation, uncertainty in position is usually
due to variance in speed, rather than deviation from the path. To describe this, at
time ti the target is a distance di along the path from the start. We define di by the
recursive equation

di+1 = di + ∆tḋi, (5.26)

5.7 Experiments 161

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Uncertainty

M
o
n
it
o
ri
n
g
 E

ff
e
c
ti
v
e
n
e
s
s

Middle Harbour mission

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Uncertainty

M
o
n
it
o
ri
n
g
 E

ff
e
c
ti
v
e
n
e
s
s

Jervis Bay mission

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Uncertainty

M
o
n
it
o
ri
n
g
 E

ff
e
c
ti
v
e
n
e
s
s

Circular

Deterministic

Probabilistic

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Uncertainty

M
o
n
it
o
ri
n
g
 E

ff
e
c
ti
v
e
n
e
s
s

Linear

Figure 5.8 – Monte Carlo simulation results for a probabilistic target with uncertain
speed (10000 samples); planning with (right bars) and without (left bars) taking
into account the uncertainty model (5.28). F/T on vertical axes; σrate (uncertainty
growth rate) on horizontal axes. Error bars show the sample minima, quartiles and
maxima.

where the speed ḋi along the path at any time instance is assumed to be drawn from
a Gaussian distribution that is independent of other time instances:

ḋi ∼ N
(
‖ẋ‖ave, σ

2/∆t
)
. (5.27)

The general solution to (5.26) (distance travelled along the path), for d1 = 0 with
zero uncertainty, is also Gaussian, with mean and variance increasing linearly over
time:

µi = ‖ẋ‖aveti and Σi = σ2ti. (5.28)

Figure 5.8 shows the results of Monte Carlo simulations performed by drawing 10000
sample target trajectories directly from (5.26), with the objective function evaluated
for the planned tracker trajectory. Planning was performed using the mean only with
no uncertainty (left bars) or using the uncertainty model (5.28) (right bars). The

5.8 Application case studies 162

horizontal axes shows varying speed uncertainty σ ∝ σrate, where σrate is the standard
deviation of completion time in minutes for a 1 hour mission.

The monitoring effectiveness is significantly higher when planning using the uncer-
tainty model, since the planner can choose to stop longer in regions with low spa-
tial uncertainty. A single-tailed paired t-test confirms this performance improvement
(p < 0.001) for all 20 missions except linear with σrate ≥ 4. The probabilistic planning
did not achieve significant improvements for the linear missions since there are no mis-
sion portions with relatively low spatial uncertainty (e.g., where the path folds back
on itself). The monitoring effectiveness for all scenarios decreased as the uncertainty
increased, since the probability of the target being within the 200m communication
radius at any position decreases. The monitoring effectiveness for the circular mission
is less affected by increasing uncertainty since all possible positions for the target are
within 200m of a stopping location in the centre of the circle. The circular mission
does not quite reach 100% monitoring effectiveness since the tracker is required to
travel from the start location and to the end location.

5.8 Application case studies

In this section we present application case studies in autonomous underwater vehi-
cle (AUV) and pedestrian monitoring to demonstrate the relevance and applicability
of the problem formulation and algorithm to real-world scenarios. The purpose of the
case studies is to: (1) demonstrate feasibility of the problem formulation and algo-
rithm for realistic scenarios; (2) formulate implementations of realistic probabilistic
prediction and observation models; (3) detail choices made while implementing our
planner; (4) present extensive simulated experiments under various modelling as-
sumptions; and (5) evaluate and discuss the simulation results with real data and
Monte Carlo simulations.

5.8.1 AUV mission monitoring

Our first case study is for a mission monitoring scenario where an AUV is monitored
by a surface vessel. We first formulate a realistic probabilistic model of the scenario,

5.8 Application case studies 163

−400 −300 −200 −100 0

−300

−200

−100

0

100

West (m)

S
o

u
th

 (
m

)

(a) Eight sample paths from middle right (or-
ange star) to bottom right. Magnified inset (right)
illustrates the path uncertainty (not considering
temporal uncertainty) in the middle region of the
mission.

0 1000 2000 3000 4000 5000

Time (s)

0

100

200

300

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 (

m
)

(b) Spatial uncertainty over the mission dura-
tion. Measured as standard deviation of posi-
tion for 1000 sample trajectories.

Figure 5.9 – Example predicted AUV trajectory given by the prediction model de-
scribed in the case study, for the Middle Harbour mission (Figure 5.6).

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Distance (m)

C
o

m
m

u
n

ic
a

ti
o

n
 p

ro
b

a
b

ili
ty

Figure 5.10 – Underwater acoustic communication model used in the AUV mission
monitoring case study.

and then evaluate the performance of the algorithm under various modelling assump-
tions. The probabilistic formulation features a realistic probabilistic trajectory model
(illustrated in Figure 5.9) and an underwater acoustic communication model (Fig-
ure 5.10). The formulation takes into account various causes of uncertainty in typical
AUV missions in ocean environments, including localisation error, ocean currents,
unpredictable mission pauses and unreliable communication. The formulation is mo-
tivated by our experiences with a REMUS 100 AUV in ocean environments, although
is general enough to be adapted for other scenarios. The following simulation results
show the advantages of taking into account these uncertainties when planning the
trajectory of the monitoring surface vessel.

5.8 Application case studies 164

Simulation scenarios

We compare planning with and without a probabilistic AUV trajectory model, and
with and without an acoustic communication model. The probabilistic trajectory
model, detailed below, generates a set of 100 Monte Carlo sample paths to represent
the belief of the AUV’s trajectory. The deterministic trajectory model is generated
with a single simulation that assumes zero uncertainty. The acoustic communication
model, detailed below, describes the probability of successful communication for a
given distance between the AUV and the surface vehicle. The planning scenarios
without the communication model use an r-disk model with r = 264.2m, so that
the two models have equal centroids. The tracker parameters are the same as in
Figure 5.7.1, and planning is performed using the probabilistic algorithm in all cases.
The following subsections describe in detail our formulation for implementing realistic
prediction and communication models.

AUV prediction model implementation

The prediction model for the AUV’s motion is formulated probabilistically by adding
various random disturbances to the deterministic mission plans in Section 5.7. The
sequence of spatial probability distributions (D1, D2, ..., DN) of the AUV’s position is
represented as a set of Monte Carlo sample trajectories of the following model. Each
sample trajectory is calculated by iteratively: (1) updating the state by sampling a
stochastic kinematics model, (2) adding localisation noise, and then (3) updating the
controller using either a closed-loop control policy or executing a surfacing behaviour.
Figure 5.9a shows an example set of sample paths and Figure 5.9b shows the spatial
uncertainty (caused by path uncertainty and temporal uncertainty) over the duration
of the Middle Harbour mission.

The stochastic kinematics model for the AUV is described as follows. The AUV
moves through R2 with position coordinates (xx, xy) relative to a fixed earth frame
and heading θ. The standard unicycle robot kinematics model, with speed v and
angular velocity ω, is extended to include varying ocean currents (ċx, ċy), speed and
angular velocity control uncertainty (εv and εω respectively) and a maximum angular

5.8 Application case studies 165

velocity control ω̄, giving the first-order equations:

ẋx = (v + εv) cos θ + ċx

ẋy = (v + εv) sin θ + ċy

θ̇ = ω + εω, −ω̄ ≤ ω ≤ ω̄.

(5.29)

The exact position of the AUV is not known and therefore the following controller
is instead a function of the position estimate (x̃x, x̃y). The position estimate has
localisation error (εx, εy), such that (x̃x, x̃y) = (xx + εx, xy + εy).

We model the AUV’s controller using a non-linear feedback control policy (de Wit
et al., 2012, Chapter 9.3) that controls the angular velocity ω (which appears in
(5.29)). This policy has the goal of reducing the difference between the current
position/heading and the projection onto the desired path of the deterministic mission
plan. This policy is asymptotically stable for the standard unicycle model under
standard assumptions (de Wit et al., 2012), and simulations suggest it is also suitable
for our extended kinematics model. More specifically, this policy is defined as follows.
Define the point M as the orthogonal projection of (x̃x, x̃y) onto the mission path.
The position error l̃ is defined as the signed distance between (x̃x, x̃y) and M . At M ,
the path has heading θM , and θ̃ denotes the heading error θ̃ := θ−θM . The curvature
of the path at M is CM (we have CM = 0 for the straight line segments considered in
our example paths). The desired speed v is assumed to be constant and therefore the
angular velocity ω is the only control variable. Using these variables and parameters,
the feedback control policy is defined as

ω =

−k1l̃

sin θ̃
θ̃
− k2θ̃ + v cos θ̃ CM

1−CM l̃
, if θ̃ 6= 0

−k1l̃, if θ̃ = 0
(5.30)

where k1 and k2 are constants.

Some AUVs require pausing the mission and surfacing to, for example, receive a GPS
fix or transmit data. We model unpredictable surfacing events as a stationary Poisson
point process (Daley and Vere-Jones, 2003) with average rate λ. The length of time
that the AUV surfaces for each event is drawn from a known probability distribution.
The AUV is unpowered while surfacing and therefore drifts with the ocean currents,

5.8 Application case studies 166

i.e., ẋx = ċx, ẋy = ċy and θ̇ = 0. Additionally, we assume that the localisation
uncertainty is reset to zero while surfacing, i.e., εx = εy = 0.

The parameters of the model for our simulations are defined as follows. All prob-
ability distributions are Gaussian with mean µ and standard deviation σ, except
where stated. The ocean currents in each axis have µ = 0 m/s, σ = 1 m/s (al-
though environment-specific models could be used if available; e.g. Witt and Dun-
babin (2008)), speed has µ = 2 m/s, σ = 0.5 m/s, maximum angular velocity
ω̄ = π/32 rad/s, angular velocity error has µ = 0, σ = π/64 rad/s, localisation error
accumulates linearly over time (e.g. due to using dead-reckoning) according to

εt+1
x = εtx +N

(
0, ς2/∆t

)
(5.31)

εt+1
y = εty +N

(
0, ς2/∆t

)
, (5.32)

with ς = 0.3 m and εx = εy = 0 initial conditions, average surfacing rate λ = 1 /hour
and a surfacing period uniformly distributed between 0 and 5 min.

Acoustic communication model implementation

Acoustic communication in ocean environments between an AUV and a surface vessel
is highly unreliable. We simulate communication using a realistic underwater acoustic
communication model proposed by Hollinger et al. (2011b). This model defines the
probability Pc of successful communication of a packet of data as a function of distance
d between two locations as

Pc(d) =
(

1− A0d
ka(f0)dN(f0)B

4P

)N
. (5.33)

The model parameters that appear in (5.33) are functions of various characteristics
of the environment and the communication hardware, such as transmission power,
frequency, water depth, wind speed and shipping noise (Hollinger et al., 2011b). For
the following simulated experiments, we chose these parameters arbitrarily, which
results in the model shown earlier in Figure 5.10. This model has communication
success probabilities of Pc(100m) = 85%, Pc(200m) = 52% and Pc(400m) = 6%,
and has a centroid of 132.1m.

5.8 Application case studies 167

Planner implementation

The planner requires evaluating the expected monitoring effectiveness (5.6) for stop-
ping and monitoring at each candidate stopping location and time. For this case
study, we compute the integral (5.6) as the normalised sum of the communication
probabilities (given by the communication model) at the sampled AUV positions
(given by the AUV trajectory prediction samples).

The planner also requires a predefined set of candidate stopping locations, and the
algorithm is optimal with respect to this set. For this case study we employ an
adaptive grid spacing so that the planner focuses more attention on promising regions.
This is achieved by setting the grid spacing to 25m in regions and times where the
probability of successful communication E[f̃] is greater than 0.6, 50m for E[f̃] > 0.4,
100m for E[f̃] > 0.2, and ignoring regions where E[f̃] ≤ 0.2.

Results and discussion

Table 5.2 shows the simulation results for the four example missions and four planning
scenarios. For each planning scenario, the first results column shows the monitoring
effectiveness (as a percentage of mission duration) of the planned tracker trajectory
when simulating the full prediction and communication models. For all missions,
planning with the full prediction and communication models (1st row) achieves the
highest monitoring effectiveness, which highlights the advantage of the probabilistic
formulation.

Planning with deterministic predictions and the acoustic model (3rd row) achieves a
moderate improvement in monitoring effectiveness over planning with probabilistic
predictions and the r-disk model (2nd row). This suggests the communication model
is more valuable than the probabilistic predictions in this instance; however, using
both is the most valuable.

The objective function computed by the planner (2nd results column), which is mea-
sured relative to the current planning scenario rather than the full model, significantly
overestimates the monitoring effectiveness relative to the full probabilistic model (1st

column). This overestimate is worse in the 4th rows since the deterministic planning
scenario is most different to the full probabilistic model.

5.8 Application case studies 168

T
ab

le
5.

2
–
Si
m
ul
at
io
n
re
su
lts

w
ith

th
e
pr
ob

ab
ili
st
ic

A
U
V

pr
ed

ic
tio

n
m
od

el
an

d
un

de
rw

at
er

ac
ou

st
ic

co
m
m
un

ic
at
io
n
m
od

el
.

Pl
an

ni
ng

Sc
en

ar
io

R
es
ul
ts

C
om

pu
ta
tio

n

M
iss

io
n

Pr
ed

ic
tio

ns
C
om

m
un

ic
at
io
ns

F
/T

fu
ll
m
od

el
F
/T

pl
an

ne
r

M
|V
|

tim
e(

s)

M
id
dl
e
H
ar
bo

ur
Pr

ob
.

A
co
us
tic

s
68

.0
5

67
.9
0

7
61

,2
65

17
7

Pr
ob

.
r-
di
sk

64
.1
4

82
.0
6

6
10

5,
94

7
32

4
D
et
.

A
co
us
tic

s
65

.1
3

73
.6
4

7
61

,0
52

13
1

D
et
.

r-
di
sk

57
.7
8

87
.5
1

7
96

,3
50

26
7

Je
rv
is

B
ay

Pr
ob

.
A
co
us
tic

s
65

.8
3

65
.5
7

10
80

,4
01

30
9

Pr
ob

.
r-
di
sk

57
.1
9

81
.9
4

8
14

2,
69

2
60

3
D
et
.

A
co
us
tic

s
61

.1
8

74
.4
3

9
85

,1
37

24
5

D
et
.

r-
di
sk

53
.5
8

86
.1
9

7
13

3,
50

1
51

4

ci
rc
ul
ar

Pr
ob

.
A
co
us
tic

s
57

.6
8

57
.6
8

13
54

,2
94

12
7

Pr
ob

.
r-
di
sk

48
.2
3

90
.4
3

5
99

,5
69

28
0

D
et
.

A
co
us
tic

s
52

.3
7

67
.4
6

14
53

,7
78

10
5

D
et
.

r-
di
sk

50
.0
6

97
.2
9

3
86

,0
99

20
5

lin
ea
r

Pr
ob

.
A
co
us
tic

s
55

.3
5

54
.3
2

7
14

,2
33

54
Pr

ob
.

r-
di
sk

53
.2
0

60
.9
7

6
20

,0
61

40
D
et
.

A
co
us
tic

s
53

.5
3

60
.8
5

7
10

,2
20

26
D
et
.

r-
di
sk

50
.1
5

66
.9
4

5
13

,0
79

24

C
ol
um

ns
:
M
on

ito
rin

g
eff

ec
tiv

en
es
s
as

a
pe

rc
en
ta
ge

of
m
iss

io
n
du

ra
tio

n
fo
r
pr
ob

ab
ili
st
ic

sim
ul
at
or

an
d
co
m
m
un

ic
at
io
n
m
od

el
;O

bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(a
s
a
pe

rc
en
ta
ge

of
m
iss

io
n
du

ra
tio

n)
ou

tp
ut

by
pl
an

ne
r,
w
ith

re
sp
ec
t
to

th
e
pl
an

ni
ng

sc
en
ar
io

ra
th
er

th
an

th
e
fu
ll
m
od

el
;N

um
be

r
of

st
op

pi
ng

lo
ca
tio

ns
M

;
N
um

be
r
of

ve
rt
ic
es
|V
|;
C
om

pu
ta
tio

n
tim

e
(s
).

B
es
t
re
su
lts

w
ith

re
sp
ec
t
to

fu
ll
m
od

el
ar
e
in

bo
ld
.

5.8 Application case studies 169

The number of stopping locations M is similar for all planning scenarios for three of
the missions. However, for the circular mission, planning with the acoustics model
results in more than double the number of stops than the r-disk model. This is
because the acoustics model favours being close to the AUV and therefore the planner
chooses to make many short stops near the predicted AUV position. The r-disk model
treats all samples within the communication range as equally effective, and (for the
deterministic trajectory case) all samples are within communication range of a single
stopping location in the centre of the circle. Although the time spent deploying
and retrieving the monitoring hardware is longer for the acoustic model case, the
monitoring effectiveness is improved since the chosen stopping locations and times
have a higher probability of successful communication.

The computation time is approximately quadratic in the number of vertices in the
search graph |V| (quadratic regression has R2 = 0.97), which agrees with the time
complexity analysis. In most cases, using deterministic predictions is slightly faster
than probabilistic predictions, since it takes less time to generate the trajectory model
and evaluate the observation value (5.6). Note that due to the filtering for the adap-
tive grid-spacing, the acoustics model was significantly faster than the r-disk model.
The computation time for the fourth scenario could be reduced by using the deter-
ministic planner instead (tested in Section 5.7.2) without compromising performance.
In practical applications where computation time is more important than monitoring
effectiveness, this planning scenario may be more desirable.

5.8.2 Pedestrian monitoring in cluttered environments

Our second case study is for a mission monitoring scenario where an aerial or ground
vehicle monitors or aids a pedestrian or other similarly behaving agent. Similar to the
first case study, we first formulate a realistic probabilistic model of the scenario, and
then evaluate the performance of the algorithm under various modelling assumptions.
The probabilistic formulation features a multi-modal intention-inference trajectory
prediction model illustrated in Figure 5.11, and a visibility-based observation model
that takes into account occlusions in a cluttered environment. Motivating scenarios
include filming a sporting event with a mobile camera but stationary filming locations,

5.8 Application case studies 170

Figure 5.11 – The simulated office environment with an example observed trajectory
(solid-orange), current position (yellow circle), 15 goal regions (green rectangles, with
shade proportional to prediction probability), future trajectory prediction particles
(colour changes over time), and the ground-truth future trajectory (dashed orange).
Full details of this model are presented in Appendix A.

tracking an animal, monitoring boats in a cluttered harbour, aiding a disabled person,
or monitoring other robots moving around a warehouse.

Simulation scenarios

The simulation results compare planning with and without taking into account the
probabilistic prediction model, as well as with and without taking into account the
occlusions in the observation model. The probabilistic predictions, detailed below, are
represented by a set of 100 Monte Carlo sample paths, which are biased random walks
through a probabilistic roadmap (PRM). The deterministic prediction is defined as
the maximum likelihood estimate of the probabilistic model, which is the shortest
path to the most likely goal region. Predictions were performed after the target
moved through 5 edges of the PRM to improve the estimation precision. The tracker
moves on average 5 times faster than the target, and both agents avoid collisions with
static obstacles. The tracker starts at the same position as the target while the end
position is to be optimised by the planner.

We consider two environments and ground truth trajectories: a footpath environment
with a real pedestrian trajectory dataset with 442 trajectories (Lerner et al., 2007)
(illustrated later in Figure A.6), and a more cluttered office environment with 100

5.8 Application case studies 171

random trajectories drawn from the same dynamics model (Figure 5.11).

Trajectory prediction model implementation

The prediction model for the target uses an intention inference trajectory prediction
model. We provide a brief summary of this model here; full details are provided in
Appendix A.

Figure 5.11 shows an example environment, trajectory and prediction. In this model,
the target is assumed to be driven by the high-level intention to move to an unknown
goal region within a cluttered environment. Prediction is based on the observed
trajectory and a static environment map. The prediction algorithm first estimates
the intended goal region using a recursive Bayes’ approach, and then uses the resulting
probability distribution to perform Monte Carlo sampling of random walks through
a PRM. Each random walk biases towards shortest paths to the estimated goal
regions. The random walks are interpolated using a stochastic speed to give a set of
100 particles representing the predicted position of the target at every future timestep.

Observation model implementation

The tracker observes the target only when within an observation range (r-disk model)
and the line-of-sight is not occluded by the static obstacles in the environment. As
a comparison, we also consider an r-disk model that ignores occlusions. For the
simulations we let r be 20% of the width of each environment.

Planner implementation

For this case study, the tracker plans a path through a probabilistic roadmap that
respects static obstacles in the environment. To achieve this, the spatial discretisation
set P1 used during the vertex generation phase of the planner is defined as the same
vertices in the PRM used by the prediction algorithm. The travel time between
waypoints for the tracker is proportional to the shortest path through the euclidean-
distance PRM plus a constant.

5.8 Application case studies 172

Since the PRM respects static obstacles, there are regions of the environment where
the tracker cannot stop. This violates the condition CH ⊆ Ŷ (Condition 5.2) required
for Lemma 5.2 and therefore the convex hull culling P3 cannot be used. This may
increase runtime but does not affect optimality.

Results and discussion

The simulation results are shown in Table 5.3 averaged over the set of trajectories for
each environment. A single-tailed paired t-test supports the hypothesis that in both
environments, planning with the probabilistic model and the occlusions achieves a
significantly higher monitoring effectiveness than the other planning scenarios. The
hypothesis achieved statistical significance (p < 0.001 in all cases) when measured
assuming either the full probabilistic trajectory prediction (1st results column) or the
ground truth trajectories (2nd results column).

Planning while taking into account occlusions achieved a significant improvement
in monitoring effectiveness compared to planning while ignoring the occlusions, and
therefore shows the benefit of planning with a more accurate observation model.
These improvements were more significant in the office environment compared to the
footpath, since the office environment is more cluttered and therefore a larger portion
of the in-range region was occluded from most positions.

In the office environment, the ground truth trajectories were samples generated from
the probabilistic model, and therefore the monitoring effectiveness improvements be-
tween planning with the probabilistic to the deterministic model were similar when
measured relative to the full model or to the ground truth. In the footpath environ-
ment, the ground truth trajectories were taken from the real pedestrian dataset, and
the probabilistic planning still had a higher monitoring effectiveness than the deter-
ministic planning. This suggests the intention inference model was a better estimator
for the pedestrian trajectories than the shortest path model, and therefore improved
the planning performance. Note that the ground truth monitoring effectiveness was
much higher than the full model, since the former was measured up until the time
when the sample trajectory reached the goal region, while the latter was measured
until the longest sample reached its goal region.

5.8 Application case studies 173

T
ab

le
5.

3
–
Si
m
ul
at
io
n
re
su
lts

w
ith

th
e
pr
ob

ab
ili
st
ic
pe

de
st
ria

n
pr
ed

ic
tio

n
m
od

el
an

d
r-
di
sk

w
ith

oc
cl
us
io
ns

ob
se
rv
at
io
n
m
od

el
.

T
he

pe
de

st
ria

n
da

ta
se
t
ha

d
44

2
pe

de
st
ria

n
tr
aj
ec
to
rie

s,
an

d
th
e
offi

ce
en
vi
ro
nm

en
t
ha

d
10

0
ra
nd

om
tr
aj
ec
to
rie

s.

Pl
an

ni
ng

Sc
en

ar
io

R
es
ul
ts

C
om

pu
ta
tio

n

En
vi
ro
nm

en
t

Pr
ed

ic
tio

ns
O
cc
lu
sio

ns
F
/T

fu
ll
m
od

el
F
/T

gr
ou

nd
tr
ut
h

M
|V
|

tim
e(

s)

Pe
de

st
ria

n
da

ta
se
t

Pr
ob

.
Ye

s
56

.1
1
(6
.5
5)

66
.7

4
(1
2.
84

)
2.
54

(0
.5
6)

6,
02

6
(1
,1
83

)
3.
0
(0
.6
)

Pr
ob

.
N
o

55
.5
5
(7
.0
9)

65
.8
6
(1
3.
95

)
2.
50

(0
.5
5)

6,
15

5
(1
,1
97

)
1.
6
(0
.4
)

D
et
.

Ye
s

51
.1
4
(9
.0
7)

63
.0
3
(1
6.
22

)
2.
02

(0
.2
0)

1,
97

1
(4
97

)
0.
7
(0
.1
)

D
et
.

N
o

50
.1
4
(9
.5
1)

62
.3
6
(1
6.
76

)
1.
99

(0
.1
1)

1,
99

4
(4
72

)
0.
6
(0
.1
)

O
ffi
ce

en
vi
ro
nm

en
t

Pr
ob

.
Ye

s
35

.9
4
(9
.4
5)

64
.7

3
(2
3.
77

)
3.
52

(1
.0
0)

5,
55

4
(2
,8
47

)
3.
2
(1
.5
)

Pr
ob

.
N
o

30
.0
9
(9
.0
8)

56
.8
6
(2
3.
88

)
2.
98

(0
.8
7)

7,
23

3
(3
,5
04

)
2.
2
(1
.3
)

D
et
.

Ye
s

29
.5
4
(9
.0
6)

50
.4
7
(2
6.
17

)
2.
09

(0
.4
2)

83
4
(4
11

)
0.
5
(0
.1
)

D
et
.

N
o

25
.5
2
(8
.2
3)

45
.8
5
(2
3.
05

)
1.
80

(0
.4
3)

1,
24

0
(5
91

)
0.
5
(0
.1
)

C
ol
um

ns
:
M
ea
n
m
on

ito
rin

g
eff

ec
tiv

en
es
s
as

a
pe

rc
en
ta
ge

of
m
iss

io
n
du

ra
tio

n
fo
r
pr
ob

ab
ili
st
ic

pr
ed
ic
tio

ns
an

d
r-
di
sk

w
ith

oc
cl
us
io
ns

ob
se
rv
at
io
n
m
od

el
;M

ea
n
m
on

ito
rin

g
eff

ec
tiv

en
es
s
as

a
pe

rc
en
ta
ge

of
m
iss

io
n
du

ra
tio

n
fo
r
gr
ou

nd
tr
ut
h
tr
aj
ec
to
ry

an
d
r-
di
sk

w
ith

oc
cl
us
io
ns

ob
se
rv
at
io
n
m
od

el
;N

um
.
ve
rt
ic
es
|V
|;
C
om

pu
ta
tio

n
tim

e
(s
).

St
an

da
rd

de
vi
at
io
n
in

pa
re
nt
he
sis

.
B
es
t
re
su
lts

w
ith

re
sp
ec
t
to

fu
ll
m
od

el
an

d
gr
ou

nd
tr
ut
h
in

bo
ld
.

5.9 Summary 174

The computation times for these simulations were faster than the AUV mission mon-
itoring experiments due to the shorter planning horizon. Planning without occlusions
was faster than planning with occlusions since the line-of-sight collision checking was
time consuming. The deterministic planning was significantly faster than the proba-
bilistic planning due to requiring fewer vertices, and therefore may be more desirable
in practical situations where computation time is more important than monitoring
effectiveness.

5.9 Summary

We have proposed a spatiotemporal optimal stopping formulation and a polynomial-
time sweep-plane algorithm for the stochastic mission monitoring problem. The algo-
rithm solves the problem with a reduction to a longest-path search through a directed
acyclic graph. The graph construction phase further reduces the size of the search
space by exploiting geometric characteristics of the problem under reasonable assump-
tions. The simulation results validate the performance of our algorithm, show the
value of the probabilistic formulation and describe implementations of probabilistic
models for realistic applications. The algorithm admits a general class of probabilistic
trajectory prediction models and probabilistic observation models, and therefore is
applicable to a variety of real-world problems, such as the demonstrated AUV moni-
toring and pedestrian monitoring applications. Our implementation is unoptimised,
but still exhibits reasonable clock-time performance ranging from milliseconds to a
few minutes.

Chapter 6

Decentralised mission monitoring

In this chapter we consider a multi-tracker generalisation of the mission monitoring
problem introduced in Chapter 5. An illustration of this generalised problem was
presented earlier in Figure 1.5. The presented algorithm is a new decentralised plan-
ning algorithm that borrows and extends elements of Dec-MCTS (Chapter 3) and
spatiotemporal optimal stopping (Chapter 5).

6.1 Overview

We formulate and solve a variant of mission monitoring where multiple tracker robots
must monitor a single target robot. Various multi-robot problem settings are pos-
sible, but the case of multiple trackers observing a single target is of immediate
practical value. Optimal single-tracker algorithms guarantee the best solution given
a stochastic target trajectory, but do not necessarily guarantee any absolute level of
quality. The target trajectory or communication channel may be subject to severe
uncertainty that limits the probability of success of any single-tracker solution. Also,
the tracker may be relatively slow-moving and therefore not be able to achieve the
desired spatial coverage alone. Utilising multiple trackers provides a pathway for im-
provement by enabling the observation of multiple disparate possible target positions
simultaneously.

6.1 Overview 176

One challenge in considering the multi-tracker case is that the single-tracker algo-
rithm does not extend naturally. It is not useful for trackers to plan independently,
because it is likely that all trackers would choose to make the same, rather than com-
plementary, observations. Instead, each tracker must compute its actions jointly with
the actions of the others. Hence, it is necessary to solve the resulting coordination
problem. Ideally, this problem should be solved in a decentralised and asynchronous
manner to distribute the computational effort, to avoid having a single point of failure,
and to be robust to unreliable communication links.

In this chapter, we formulate the multi-tracker variant of mission monitoring as an
extension of the formulation in Chapter 5, and propose a decentralised solution algo-
rithm. The solution is motivated by the optimal single-robot planner in Chapter 5
with several modifications. For the multi-tracker scenario, the algorithm must be
extended to consider the trajectories of the other agents. However, this alone is
not enough to ensure successful coordination due to the cyclic dependencies between
agents. We overcome this challenge by defining plans as probability distributions
over trajectories that are optimised in a decentralised manner; this formulation re-
duces the likelihood of the algorithm getting stuck in a cycle of suboptimal solutions
and is motivated by the findings in Chapter 3. The proposed algorithm has simi-
lar analytical properties as Dec-MCTS (Section 3.4), but has stronger convergence
properties due to the use of the optimal single-agent planner. The algorithm also has
the useful properties of being any-time, polynomial runtime per iteration, and small
communication bandwidth usage.

We present simulated experimental results for a similar setting to the marine robotics
setting from Section 5.8.1. The results demonstrate that the trackers must coordinate
to adequately solve this problem rather than plan independently, there is significant
benefit of using a probabilistic rather than deterministic plan representation, and our
algorithm outperforms a generic decentralised planner. Overall, we show the approach
is viable for practical use in multi-tracker mission monitoring.

6.2 Relationship to previous chapters 177

6.1.1 Chapter outline

The remainder of this chapter is organised as follows. Section 6.2 discusses the con-
tributions of this chapter in the context of the previous chapters. Section 6.3 for-
mulates the multi-tracker mission monitoring problem. Section 6.4 presents a new
decentralised planning algorithm for this problem. Section 6.5 discusses analytical
properties of the algorithm. Section 6.6 presents new simulated experiments for a
AUV mission monitoring scenario. Finally, Section 6.7 summarises the chapter.

6.2 Relationship to previous chapters

This chapter presents the first formulation and solution for decentralised multi-tracker
mission monitoring. While this chapter builds upon the approaches and analyses
presented in presented in previous chapters, namely single-tracker mission monitoring
and Dec-MCTS, this chapter contributes more than simply a combination of these
two distinct ideas. We discuss the relationship between these ideas as follows.

6.2.1 Single-agent mission monitoring (Chapter 5)

Relative to the contributions of Chapter 5, this chapter contributes a multi-tracker
formulation of the mission monitoring problem, a modified single-tracker algorithm
designed for efficiently performing multiple queries, a non-trivial decentralised gener-
alisation of the single-tracker algorithm, and new analytical and empirical results.

6.2.2 Dec-MCTS (Chapter 3)

Relative to the contributions of Chapter 3, this chapter contributes a new decen-
tralised algorithm that is specifically designed for mission monitoring, has stronger
analytical properties due to the use of the optimal single-agent planner, and is em-
pirically demonstrated to significantly outperform Dec-MCTS at this problem.

6.3 Problem formulation 178

6.3 Problem formulation

In this section we formulate the multi-tracker mission monitoring problem as a gen-
eralisation of the single-tracker mission monitoring problem (see Problem 5.1). We
state the full problem here for completeness, with minor changes to the notation
appropriate for this generalised problem.

The problem involves a team of mobile agents: 1) a target agent which follows a
probabilistic trajectory defined by a mission plan, and 2) a team of tracker agents
that seek to effectively monitor the target throughout the mission. At each time
instant, to monitor effectively, at least one tracker must be stationary and within
observation/communication range of the target. The trajectory for each of the track-
ers can therefore be characterised as a sequence of stopping waypoints in time and
space. The optimisation problem is to find the trajectories for the team of trackers
that maximises the expected monitoring effectiveness. This problem is to be solved
in a decentralised manner. We formally define this problem as follows.

6.3.1 Target

The predicted future trajectory of the target is represented as a sequence of random
variables X := (X1, X2, ..., XN) with associated timesteps (t1, t2, ..., tN) = T . The
timesteps are evenly spaced at ∆t intervals, with t1 = 0, and tN = T is the mission
duration or a time horizon. Each Xi represents the predicted location of the target
at time ti and has a known probability density function ρi(Xi = x) over the domain
X .

6.3.2 Tracker team

The target is monitored by a team of R tracker agents {1, 2, ..., R} = R. The trajec-
tory of tracker r ∈ R is represented by a sequence of positions Y r = (yr1, yr2, ..., yrN)
and states Sr = (sr1, sr2, ..., srN), with associated timesteps T . The trajectory of the
tracker is characterised as alternating between two states {stopped,moving}. If
sri = stopped, then at time ti tracker r is stationary at position yri . Conversely, if
sri = moving, tracker r is moving between waypoints and therefore not monitoring.

6.3 Problem formulation 179

The trajectory of tracker r is equivalently represented by the tuple πr = [Ŷ r, T ar, T dr],
where Ŷ r := (ŷr1, ŷr2, ..., ŷrMr) is a sequence of waypoint positions with sequences
of associated arrival times T ar := (tar1 , tar2 , ..., tarMr) and departure times T dr :=
(tdr1 , t

dr
2 , ..., t

dr
Mr). We have ŷri ∈ Ŷ , where Ŷ is a discrete set of positions where the

trackers may stop.

During the time interval [tari , tdri), tracker r is in the stopped state and is stationary
at the waypoint position ŷri ∈ Ŷ . During the time interval [tdri , tari+1), tracker r is
in the moving state and is travelling between consecutive waypoints ŷri , ŷri+1. The
sequences of arrival and departure times satisfy the constraints: tdr1 ≥ 0, tarMr ≤ T,

and tari < tdri < tari+1,∀i.

The required travel time between two waypoints ŷra, ŷ
r
b is defined by a function

δ(ŷra, ŷrb) : Ŷ × Ŷ → R≥0. The proposed algorithm does not depend on the exact
trajectory taken to achieve this travel time, but is likely to involve travelling at
maximum speed to maximise the amount of time spent in the stopped state. We
require δ(ŷra, ŷrb) = 0 iff ŷra = ŷrb . For clarity, we assume δ is the same for all trackers,
although this could be easily generalised. We do not plan for collision avoidance
between trackers; however, this could typically be handled by a low-level controller
during execution with only slight changes to the travel times.

The start position ŷr1 for each tracker r is a known constant, while the end position
ŷrMr is to be selected by the planner from a set Ŷend ⊆ Ŷ . Alternative start/end
assumptions are formulated for the related problem in Section 5.2.2; in this chapter
we address this specific case, although the algorithm could be modified for other cases
in a similar way to the methods in Section 5.4.3.

The trajectories for the team of robots collectively is denoted: π = {π1, π2, ..., πR}.
The trajectory of all trackers except r is denoted π(r), i.e., π(r) := π \ πr. These
superscript conventions are also used for all tracker variables: si, S, yi, Y , ŷ, Ŷ , T a

and T d.

6.3 Problem formulation 180

6.3.3 Monitoring effectiveness

At time ti, the monitoring effectiveness for tracker r only is described by a function
f r. This function is defined as the probability of monitoring effectively:

f r(Xi, y
r
i , s

r
i) :=

f̃(‖Xi − yri ‖) if sri = stopped

0 if sri = moving
(6.1)

where f̃(d) : R≥0 → [0, 1] is the observation (or communication) model. This model
f̃ describes the probability of successfully observing the target from a distance of d,
although other interpretations of f̃ are possible (Section 5.2). This function may
be defined as a simple binary r-disk model or a more realistic observation model;
we presented example definitions earlier in Section 5.8. For clarity, we define the
observation model as tracker-, translation-, orientation- and time-invariant, however
the approach can readily be extended for more general models.

The goal of the team of trackers is to collectively monitor the target. At time ti,
the monitoring effectiveness for the team is described by a function f , defined as
follows. There is no additional reward for multiple trackers monitoring at the same
time. However, having multiple trackers stopped at the same time increases the
probability that at least one tracker is effectively monitoring. By assuming observa-
tion independence, and following a similar formulation to Sec. 3.3 of Best and Fitch
(2016), we define f as

f(Xi, yi, si) := 1−
∏
r∈R

[1− f r(Xi, y
r
i , s

r
i)] , (6.2)

which specifies the probability that at least one tracker is effectively monitoring at
time ti. The motivation for this formulation of f is that this model encourages the
different trackers to observe different parts of the prediction model distribution Xi;
if f was instead simply a sum of f r then all trackers would aim to observe the most
likely realisation of Xi only, which is likely to result in an undesirable behaviour of
the trackers.

The objective function F is defined as the expected monitoring effectiveness over the

6.3 Problem formulation 181

duration of the mission:

F (X, π) := EX
[
∆t

N∑
i=1

f (Xi, yi, si)
]

(6.3)

= ∆t

N∑
i=1

EXi [f (Xi, yi, si)] (6.4)

where {yi, si} are the trajectories derived from the plan π, and the expectation is
computed with respect to the probabilistic target trajectory X.

6.3.4 Problem statement

The optimisation problem to be solved is stated as follows.

Problem 6.1 (Decentralised mission monitoring). For a given probabilistic model of
the predicted target trajectory X, a set of possible waypoint locations Ŷ , the start
locations ŷr1 ∈ Ŷ , ∀r ∈ R, and the set of feasible end locations Ŷend ⊆ Ŷ , find for each
tracker r the set of stopping waypoints πr with positions ŷri ∈ Ŷ , ŷrMr ∈ Ŷend, arrival
times T ar and departure times T dr, such that the travel time constraints

tari+1 − tdri = δ(ŷri , ŷri+1),∀i ∈ {1, ...,M r − 1},∀r ∈ R (6.5)

are satisfied, and the expected monitoring effectiveness for the team F (X, π), as
defined in (6.4), is maximised over the mission duration.

Problem 6.1 is to be solved in a decentralised manner. Specifically, each tracker r
optimises its own trajectory πr based on only the information known to tracker r.
We assume tracker r knows the target prediction model X, but does not necessarily
know the trajectories π(r) selected by the other robots. The trackers can communicate
during planning-time to improve coordination, but this communication channel may
be unpredictable and intermittent.

6.4 Decentralised planning algorithm 182

Algorithm 6.1 Decentralised planning algorithm that optimises πr on-board tracker r.
1: G ← GenerateGraph(X)
2: Πr ← ∅ . Set of solutions
3: define qr as a probability distribution over Πr

4: β ← β0 . Temperature parameter
5: loop

6: . Phase 1: Spatiotemporal optimal stopping
7: πr∗ ← OptimalStopping(G,Π(r), q(r))

8: . Phase 2: Probability distribution optimisation
9: Πr.RemoveMin(qr) . Remove least likely πr
10: Πr.Add(πr∗)
11: for each πr ∈ Πr do
12: qr(πr)← Update(qr(πr), β) . Eqn. (6.8)
13: β ← Cool(β)

14: . Phase 3: Communication
15: CommunicateTransmit(Πr, qr)
16: Π(r), q(r) ← CommunicateReceive

return πr ← argmaxπr∈Πrq
r(πr)

6.4 Decentralised planning algorithm

In this section we present our decentralised planning algorithm as a solution to the
multi-tracker mission monitoring problem. The algorithm runs simultaneously and
asynchronously on all tracker robots; we present the algorithm from the perspective
of tracker r.

The algorithm cycles repeatedly between three phases: (1) find the optimal solution
πr∗ with respect to the currently known information about the other trackers’ plans, (2)
maintain a set Πr of possible solutions for πr and optimise a probability distribution qr

over the set Πr, and (3) communicate probability distributions with the other robots.
These three phases continue regardless of whether or not the communication was
successful, until a computation budget is met or the algorithm converges. Pseudocode
is provided in Algorithm 6.1.

6.4 Decentralised planning algorithm 183

6.4.1 Probability distributions over trajectories

The algorithm maintains a probability distribution for each tracker, which represents
the predicted plan of each tracker. Specifically, we define a probability mass function
qr, such that qr(πr) defines the probability that robot r will select the trajectory
πr. The domain of qr is restricted to a dynamically selected subset Πr of all possi-
ble solution trajectories. As the algorithm progresses, both the domain Πr and the
probability distribution qr are optimised. The product distribution of all trackers is
denoted (Π, q), and of all trackers except r is denoted (Π(r), q(r)).

6.4.2 Spatiotemporal optimal stopping

The first phase of the algorithm finds the solution πr∗ that is optimal with respect
to the current information (probability distributions) available to tracker r. This
solution gets incorporated into the set Πr, which defines the domain of the probability
distribution that is optimised later in phase 2.

We find πr∗ by extending the spatiotemporal optimal stopping algorithm for the single-
tracker problem presented in Chapter 5. The algorithm consists of generating a search
graph over time and space, followed by a longest-path search through the graph to
find the optimal trajectory for the tracker. We extend the single-tracker algorithm to
also consider the current plans for the other trackers when evaluating the new reward
function (6.2). We also modify the graph generation of Chapter 5 to enable more
efficient repeated queries, which is particularly useful in the context of Alg. 6.1. We
summarise the algorithm as follows and highlight the main differences to the related
algorithm of Chapter 5.

Graph generation

During a precomputation step (Algorithm 6.1 line 1), a graph G = (V , E) is generated
such that any path through this graph represents a trajectory πr for tracker r. Each
vertex vη ∈ V represents a potential stopping location in time and space. The set V
is generated by first considering the set of potential stopping locations Ŷ . This set
is then culled by only keeping positions that are within the observation range of any

6.4 Decentralised planning algorithm 184

part of the mission X, or within the convex hull of the mission X. An example of
these sets and the resulting stopping locations P is depicted earlier in Figure 5.2.

Each vertex vη ∈ V represents a position pη ∈ P and a time interval [τη, τη +∆t] ⊆ T ,
denoted by the tuple vη := [pη, τη]. For each position pη ∈ P , a vertex is created
for each time step τη ∈ T where the target has a non-zero probability of monitoring
the tracker. An example of this vertex generation is illustrated earlier in Figure 5.3
overlaying a probabilistic target trajectory represented by a set of sample trajectories.

A solution trajectory is represented by a path through the graph with consecutive
vertices connected by directed edges eη ∈ E . An edge eη = 〈vi, vj〉 describes travelling
from vertex vi at position pi to vertex vj at position pj at some time in the solution
trajectory. Edges are connected between each pair of vertices that have feasible travel
times, i.e., edge 〈vi, vj〉 ∈ E iff δ(pi, pj) ≤ τj − τi. The arrival time at pj is selected
as tarj = τj and the departure time from pi is tdri = τj − δ(pi, pj). Any vertex (and
associated edges) that has no feasible path back to the start vertex [ŷr1, 0] is excluded
from V .

Unlike in the approach presented in Chapter 5, to make repeated queries more ef-
ficient, we make a further adjustment to the set E . For a fixed vertex vj, if there
are multiple feasible edges 〈vi, vj〉 with different vi that all have the same location pi,
then only the edge with the latest τi is kept, while all others are excluded. Optimality
is maintained after this adjustment (corollary of Remark 5.2 from Chapter 5). As
discussed later in Section 6.5.1, this improvement yields a runtime complexity for
phase 1 that is linear in the resolution of the temporal discretisation (in contrast to
the quadratic runtime achieved in Chapter 5).

Graph edge weights

In the main loop of the algorithm (line 5), rewards are assigned to the graph edges
and then the optimal πr∗ is found. This is performed while considering the plans
(Π(r), q(r)) of the other trackers, which change each time a communication message is
received.

The reward ωη for edge eη = 〈vi, vj〉 represents the relative value of including edge
eη in the solution path πr∗. Specifically, we define ωη as the expected increase in

6.4 Decentralised planning algorithm 185

probability of effective monitoring if tracker r were to stop at location pi at time τi,
i.e.,

ωη := E
Xi,y

(r)
i ,s

(r)
i

[
f(Xi, yi, s

(r)
i ∪ sri = stopped) −f(Xi, yi, s

(r)
i ∪ sri = moving)

]
(6.6)

where yri = pi, and f is defined in (6.2). The purpose of computing the increase
in probability rather than absolute probability is to focus on the additional utility
contributed by tracker r only and be less affected by noise caused by uncertainty in
the other trackers’ plans. This expectation (6.6) evaluates to 0 during the timesteps
that tracker r is moving from pi to pj and thus these timesteps do not need to be
evaluated.

The expectation in (6.6) is computed with respect to several random variables. The
y

(r)
i , s

(r)
i variables represent the position and state of the other trackers, which can

be considered by summing over the discrete probability distribution (Π(r), q(r)), while
evaluating the positions p(r) of π(r) ∈ Π(r) at time τi. If the number of robots or
the cardinality of Π is large, then this summation becomes intractable, and therefore
should instead be approximated using sampling; typically, a small number of samples
would be adequate. The Xi variable is the location of the target, and this variable is
considered by integrating with respect to the PDF ρi. The best way to compute this
integral would depend on the representation used by the prediction model; we use a
sampled representation for X and evaluate using Monte Carlo integration.

We note that, unlike the definition of ωη in Chapter 5, in (6.6) we have ignored
the effect of having departure times tdri that fall between the discrete time indices.
This reduces the computation time since edges 〈vi, va〉 and 〈vi, vb〉 will have the same
weight ωη, and thus (6.6) only needs to be evaluated once for each vertex, rather than
for each edge.

Graph search

The optimal tracker trajectory πr∗ is found by searching for the longest-path through
the graph G. For general graphs, a longest-path search is NP-hard. However, G is a
directed acyclic graph, and thus we can find the optimal longest-path in polynomial
time. This search can be thought of a sweep-plane moving forwards through time.

6.4 Decentralised planning algorithm 186

As each vertex vj is visited, the optimal edge 〈vi, vj〉 is stored, which represents the
optimal path if the trajectory were to finish at vj. The vertex with location in Ŷend

that has the largest accumulated reward at time tN is selected as the end vertex.
Finally, the trajectory πr∗ is found by backtracking from the end vertex to the start
vertex.

6.4.3 Decentralised coordination

In phase 2, the trackers coordinate their plans by jointly optimising a probability
distribution over their trajectories in a decentralised manner. The domain of the
probability distribution Πr for tracker r is constructed using trajectories generated in
phase 1. The probability distribution qr optimised in phase 2 is communicated to the
other trackers during phase 3, then used by the other trackers when planning their
own trajectories.

Domain construction

The domain Πr is constructed by adding the trajectory πr∗ each time phase 1 is
run. The set Πr should be a small set to keep communication packets small and
computation efficient; thus, once a fixed size has been reached, a trajectory is also
removed each time one is added. The trajectory with the lowest probability qr(πr) is
selected to be removed. When a new trajectory πr∗ is added, it is assigned a probability

qr(πr∗) = maxπr∈Πrq
r(πr), (6.7)

and then qr is renormalised. This is performed in Algorithm 6.1 lines 9–10. This
construction of Πr is motivated by, but distinctly different to, Dec-MCTS since the
phase 1 of this algorithm generates a new, optimal solution at each iteration; in con-
trast, Dec-MCTS periodically resets Πr since the phase 1 equivalent for Dec-MCTS is
an incremental, converging planner.The benefits of defining Πr as a compact set with
cardinality greater than 1 is analysed in Section 6.5 and demonstrated empirically in
Section 6.6.

6.4 Decentralised planning algorithm 187

Distribution optimisation

The probability distribution qr is optimised using a decentralised gradient descent
scheme that is equivalent to the second phase of Dec-MCTS (Algorithm 3.3), which is
an adaptation of probability collectives (Wolpert and Bieniawski, 2004). We chose to
use this approach since it has interesting theoretical and practical properties, though
other similar optimisation processes for qr could also be considered here. This descent
scheme is formulated as finding the qr that has minimum KL-divergence to the op-
timal joint probability distribution. Thus, this formulation indirectly optimises the
joint plans of the team in a distributed manner. This is performed in Algorithm 6.1
lines 11–12. The formulation is equivalent to the descent scheme presented in Al-
gorithm 3.3; for completeness, we restate it as follows using the notation specific to
decentralised mission monitoring.

Specifically, this distribution optimisation is defined such that during each phase 2,
each component qr(πr) of qr is updated as

qr(πr)← qr(πr)− αqr(πr)

×
[
Eπ[F (X, π)]− Eπ(r) [F (X, π) | πr]

β
+ H(qr) + ln (qr(πr))

]
, (6.8)

where H is Shannon entropy, α is a small constant step size, and β is a temperature
parameter that is cooled to slowly decrease the entropy of the distribution. The intu-
ition behind this update step (6.8) is that the probability of selecting πr is increased
if selecting πr would result in a larger expected reward Eπ(r) [F (X, π) | πr] compared
to the expected reward Eπ[F (X, π)] if tracker r were to sample a trajectory from qr.
The last two terms in (6.8) control the entropy of the distribution, which is reduced
slowly to avoid making a decision too quickly and getting stuck in local optima. The
expectations in (6.8) are computed as

Eπ[F (X, π)] :=
∑
π∈Π

F (X, π)
∏
r′∈R

qr
′(πr′)

 (6.9)

6.5 Analysis 188

and similarly for Eπ(r) [F (X, π) | πr] except tracker r’s trajectory is fixed as πr, i.e.,

Eπ(r) [F (X, π) | πr] :=
∑

π(r)∈Π(r)

F (X, π)
∏

r′∈R\r
qr
′(πr′)

 . (6.10)

Typically, it is necessary and satisfactory to approximate these summations in (6.9)
and (6.10) by sampling from the joint distribution q. The distribution is renormalised
after each update.

6.4.4 Communication

In phase 3 (Algorithm 6.1 lines 15–16), tracker r communicates its current probability
distribution (Πr, qr) to the other trackers. If tracker r receives an updated distribution
(Πr′ , qr

′) from tracker r′, then this replaces the locally stored distribution for r′. The
updated distribution is used during phases 1 and 2 of the next iteration. If messages
are lost, e.g. due to an unreliable communication channel, then each tracker will
continue planning based on the most recently received distributions. In Section 3.7,
we presented an extension to this communication phase approach that incorporates
communication scheduling; this extended approach could also be directly applied to
the decentralised algorithm presented here.

6.5 Analysis

This section analyses the runtime and optimality properties of the proposed algorithm
by leveraging analytical results from the previous chapters.

6.5.1 Runtime

The proposed algorithm is an iterative algorithm and a feasible solution is computed
at each iteration, and thus is any-time. It is difficult to determine how many iterations
are required before the algorithm reaches a satisfactory solution (as discussed in
Section 6.5.2), however we can analyse the runtime per iteration as follows.

6.5 Analysis 189

As stated earlier in Theorem 5.2, the computation time for the single-tracker spa-
tiotemporal optimal stopping algorithm is O(|P|2|T |2) where |P| is the spatial res-
olution and |T | is the temporal resolution of the problem. For the multi-tracker
problem, we have split this algorithm into a precomputation step, which has runtime
O(|P|2|T |2), and phase 1, which has runtime

O(ψ|V|+ |E|) = O(ψ|P||T |+ |P|2|T |)

where |V| is the number of graph vertices, |E| is the number of edges and ψ is the
time taken to compute the expectation (6.6). We note that this runtime for phase 1 is
linear in |T |, rather than quadratic as seen in the proof of Theorem 5.2; this improved
runtime is due to the removal of unnecessary edges from E during the precomputation
step (see Sec. 6.4.2).

While these runtimes are polynomial, ψ is exponential in the number of robots if (6.6)
is computed exactly, but can be efficiently and adequately approximated using sam-
pling, as discussed in Section 6.4.2. The runtime of phase 2 is dominated by computing
the expectations (6.9), (6.10) and thus should also be approximated using sampling.

6.5.2 Optimality and convergence

Due to the inherent challenges of decentralised planning, it is difficult to provide any
guarantee of global optimality (as discussed in the related discussion in Section 3.4.3).
However, we can analyse algorithms to provide insight into their behaviour; in this
subsection we analyse the two main components of the algorithm and their interaction
to support the use of these components in our algorithm.

As stated earlier in Theorem 5.1, the single-agent spatiotemporal optimal stopping
algorithm is optimal, including when performing the vertex culling in the graph gener-
ation phase. This optimality result directly applies to the phase 1 of the decentralised
algorithm, where optimality is measured with respect to the current information (dis-
tributions Π(r), q(r)) available to tracker r.

However, we emphasise that this optimality result does not imply global optimality
for the joint plan of the team. In fact, if Π(r), q(r) changes then tracker r may change

6.6 Experiments: AUV mission monitoring 190

its decision and vise versa, and this may continue indefinitely. This observation
motivates the need for phase 2 of the algorithm, which maintains and optimises a
probability distribution over trajectories. This formulation ensures that each tracker
gradually settles upon a solution as the entropy is lowered over time, rather than
responding drastically to changes in Π(r), q(r), and thus will typically overcome the
cyclic dependency problem. Additionally, our phase 2 is closely related to phase 2
of Dec-MCTS, and thus the analysis of Proposition 3.1 holds here: the product
distribution q asymptotically converges to a distribution that locally minimises the
KL-divergence to the optimal joint distribution, assuming that the sets Πr,∀r ∈ R
are selected sufficiently. It is unclear what defines a sufficient selection of solutions
for Πr; however, we argue that our method in Sec. 6.4.3, which uses the candidate
solutions generated by phase 1, is an appropriate heuristic for this purpose. The
following experiments empirically support these claims.

6.6 Experiments: AUV mission monitoring

These experiments demonstrate the behaviour and performance of the planning algo-
rithm for AUV mission monitoring, and support our theoretical claims. We simulate
a scenario where an AUV is monitored by a team of surface vessels that communicate
with the AUV via acoustic communication. The AUV follows a mission plan, and
its motion is predicted using a probabilistic model with multiple sources of uncer-
tainty. The surface vessels coordinate their plans using the proposed approach. A
geometric representation of this scenario is illustrated in Figure 6.1. This scenario is a
multi-tracker generalisation of the AUV case study presented earlier in Section 5.8.1.

6.6.1 Scenario

The prediction model for the AUV probabilistically simulates the trajectory of a
path-following mission; we use the 7 km Middle Harbour mission introduced earlier
in Section 5.7.1 and Figure 5.6. The AUV is simulated to follow this mission with
various random disturbances, as described by the model in Section 5.8.1. We add
an adaptive behaviour to this model to create a multi-modal distribution and thus

6.6 Experiments: AUV mission monitoring 191

(a) With the proposed algorithm, trackers successfully co-
ordinate their actions to achieve a monitoring effectiveness of
60%.

(b) Without coordination, the trackers’ planned monitoring
regions significantly overlap, resulting in a lower monitoring
effectiveness of 37%.

Figure 6.1 – Comparing planning with and without communication by a team of 5
trackers. See Figure 1.5 caption for a description of this graphical representation.

requires using a team of trackers to monitor effectively; three decision points are added
to the mission where the AUV may deviate from the path to visit another fixed point
200m away. Observations are modelled as acoustic communication between the AUV
and the surface vessels using the model in Section 5.8.1 but with a shorter range to
further necessitate using multiple trackers.

Between 4 and 8 surface vessels coordinate in each scenario. Parameters are chosen

6.6 Experiments: AUV mission monitoring 192

such that the mission has 1 hour duration, the AUV moves at 2m/s, the trackers move
at 3m/s with a 60 s time penalty for each occasion the tracker stops, the trackers
start near the AUV positioned 50m apart, and the communication model parameters
are such that the probability of an observation is defined as a continuous function of
distance with 100% probability at 0m, 75% at 30m, 50% at 50m and 0% for ≥ 250m.
The AUV trajectory is represented as a set of 100 particles. The feasible stopping
locations Ŷ form a grid with 50m spacing, and time is discretised at 60 s intervals.
Communication between trackers is performed asynchronously and assumed to be
reliable.

6.6.2 Results

Benefits of coordination

First we demonstrate that the trackers must coordinate their actions in order to
achieve a reasonable monitoring effectiveness. Figure 6.1a shows an example solution
where the trackers successfully coordinate using the proposed algorithm to observe
most of the AUV trajectory prediction model samples. In contrast, in the scenario
shown in Figure 6.1b all trackers planned independently of other trackers, resulting
in most trackers choosing overlapping observations in time and space, and therefore
achieved poor monitoring effectiveness.

Probabilistic plans

The next results, shown in Figure 6.2, demonstrate the benefit of planning with a
probabilistic representation of the plan. These results empirically support the theo-
retical analysis in Section 6.5.2. When the set of trajectories Πr is restricted to only
keeping the current trajectory πr∗, the solution switches back and forth between mul-
tiple suboptimal solutions as each tracker immediately reacts to the other trackers
changing their plan. The trackers do not settle on a single solution as the algorithm
progresses, and the monitoring effectiveness remains relatively low. On the other
hand, planning with a probabilistic representation quickly converges to a stable so-
lution that clearly outperforms the deterministic case. Similar results are achieved

6.6 Experiments: AUV mission monitoring 193

Figure 6.2 – Convergence of the algorithm with different sizes of the trajectory set
Πr in the plan representation. Using 1 trajectory is a deterministic representation,
while 5 and ‘all’ are probabilistic. 8 robots were used in this scenario. Averages and
quartiles shown from 20 trials.

between planning with a distribution size limited to 5 or keeping all past trajecto-
ries, and thus it is recommended to use a small size since it takes less samples to
adequately estimate the expectations (6.9), (6.10).

Comparison to Dec-MCTS

Finally, we compare the proposed approach to Dec-MCTS (Chapter 3) as an example
generic decentralised planner. These two planners have a similar three-phase cycle
with similar phases 2 and 3. The key difference is that in phase 1 Dec-MCTS employs
a generally applicable, incremental planner, which is a novel variant of MCTS. For
our decentralised mission monitoring algorithm, our phase 1 is a problem-specific
solution that is optimal with respect to the current information available.

The results are shown in Figure 6.3. Our proposed approach achieves the fastest
convergence and the best overall performance. Dec-MCTS has interesting theoret-
ical convergence properties, but its practical performance is largely dependent on
the choice of rollout policy used for guiding the sampling of the search tree (James
et al., 2017). Dec-MCTS with a rollout policy equivalent to our phase 1 was slower
to converge but achieved similar results given sufficient iterations. Dec-MCTS with
a purely random rollout policy clearly achieved the worst results. Dec-MCTS with
a 50% mixture of the two rollout policies achieved results somewhere in the mid-

6.7 Summary 194

Figure 6.3 – Comparison between our proposed method and the generic Dec-MCTS
decentralised algorithm with three different rollout policies (in parenthesis). 4 robots
are simulated in a smaller problem instance than the Figure 6.2 scenario. Averages
and quartiles shown from 20 trials.

dle. These results show our approach outperforms a generic planner at multi-tracker
mission monitoring, and also show that our approach can be utilised as a guiding
heuristic to greatly improve the performance of a generic planner.

We note that since the problem is new, we do not have algorithms for direct com-
parison other than generic planners such as Dec-MCTS. It would be interesting to
compare to an optimal centralised algorithm though a key challenge that would need
to be overcome first is the intractability of searching over this joint solution space
that grows exponentially in the number of robots.

Computation time

The experiments were simulated in MATLAB on a standard desktop computer, and
the computation times were on the order of several seconds to minutes for all scenarios.
We note that, in practice, computation time can be tuned by varying the number of
iterations and the discretisation resolution to meet the requirements of an application.

6.7 Summary

We have formulated and solved the multi-tracker mission monitoring problem. The
problem is formulated as maximising expected observation time with respect to prob-

6.7 Summary 195

abilistic models of the target dynamics and communication. This has broad practical
applications, especially for performing real-world marine robotics missions. The so-
lution is a novel decentralised algorithm that inherits and extends several useful an-
alytical and practical properties from approaches for the single-tracker problem and
generic decentralised planning. In our experiments, the solutions are reached after
only a small number of communication messages are broadcast by each tracker.

Chapter 7

Conclusions and future work

The active perception methodology of utilising planned motion to better perceive the
environment has great potential to improve information gathering performance in a
wide range of scenarios. Scaling this methodology up for teams of robots enables
achieving an improved set of viewpoints in time and space; however, multi-robot sys-
tems introduce the additional challenge of interconnecting active-perception modules
that are distributed over multiple robots. In this thesis, we have particularly focused
on improving system-level performance by proposing new algorithms suitable for the
planning module of multi-robot active perception systems.

The contribution of this thesis is a suite of planning algorithms for multi-robot active
perception. The algorithms are designed for a variety of active perception formu-
lations with different perception objectives. We consider both centralised and de-
centralised coordination, and emphasise online computation and anytime solutions.
Several of the algorithms are also inherently relevant to single-robot active percep-
tion. A variety of analytical results describe useful properties of the behaviour of
the algorithms. Empirical results with realistic perception objectives provide strong
evidence that our proposed solutions are suitable for real-world applications.

In this concluding chapter, we provide a summary of this thesis in Section 7.1 and
a summary of the main contributions in Section 7.2. In Section 7.3 we discuss areas
for future work, and in Section 7.4 we end this thesis with an outlook to the future
of multi-robot active perception systems in real-world scenarios.

7.1 Thesis summary 197

7.1 Thesis summary

This thesis addressed the problem of selecting valuable sequences of viewpoints for
a team of information-gathering robots. We addressed this problem for a variety
of generic and task-specific perception objectives. We summarise the active percep-
tion formulation considered in each chapter of this thesis as follows, as well as the
associated proposed planning algorithms and results.

7.1.1 Dec-MCTS (Chapter 3)

We first considered a generic formulation where the rewards are defined by any arbi-
trary objective function over the action sequences of the robots. This formulation is
relevant to any active perception task, such as object classification and target search.

We solved this problem in a decentralised manner, such that each robot plans its
own sequence of actions, while using available communication resources to coordinate
their plans with other robots. We proposed Dec-MCTS as a powerful and generally-
applicable solution algorithm for this context. In Dec-MCTS, each robot expands a
search tree over possible action sequences using a novel variant of MCTS. This tree
is periodically compressed in the form of a probability distribution over plans and
shared with other robots. The tree expansions are performed while considered any
information provided by other robots.

We then presented several analytical results for Dec-MCTS that supported the use
of the tree search and probability distribution optimisation components of the algo-
rithm. The tree search phase is shown to successfully trade off between exploration
and exploitation in this generalised scenario where the reward distributions change
dynamically. The probability distribution optimisation approximates an importance-
sampling variant of probability collectives, and therefore we have the proposition that
the product distributions converge towards the optimal joint distribution. These two
results do not yield any strong guarantees for global optimality, due to the complex
interaction between these components of the algorithm; however, this result motivates
the use of the two main algorithmic components of Dec-MCTS.

Empirical results were presented for two contexts: generalised team orienteering,

7.1 Thesis summary 198

and active object classification. The empirical results demonstrated a robustness to
communication loss, improved performance over a centralised MCTS, and the need to
perform non-myopic planning. We also presented an extended algorithm that trades
computation efficiency for more effective use of limited communication resources.

7.1.2 SOM (Chapter 4)

We then considered a more specific active perception formulation that can be thought
of as a generalisation of the team orienteering problem. The robots are tasked to ob-
serve a discrete set of features in the environment by visiting overlapping polygonal
regions of the environment. Correlations between viewpoints are modelled by the
overlaps between the regions and the property that a region can only have its associ-
ated reward collected once. We demonstrate that this formulation forms an efficient
representation of tasks such as coverage, scene reconstruction and object classification.

We addressed this problem in a centralised manner such that the plans for all robots
are jointly optimised by a centralised processing unit. We proposed a SOM algo-
rithm for this problem, which is a special type of neural network that exploits the
geometry of the problem. This algorithm efficiently searches over a continuous space
of candidate viewpoints to maximise the weighted sum of visited reward regions. It
is an efficient heuristic algorithm, and hence does not provide any strong optimality
guarantees, but we have proven the algorithm converges in polynomial time.

We provide empirical results for an extensive set of test cases and formulations,
where the main findings show the benefits of joint multi-robot planning, the ben-
efits of defining continuous regions, significant performance improvements over the
generic Dec-MCTS algorithm, and the ability to efficiently replan online as informa-
tion changes.

7.1.3 Spatiotemporal optimal stopping (Chapter 5)

The next active perception formulation we considered was the mission monitoring
problem. This problem involves a target robot that stochastically follows a mission
plan, and a tracker robot that aims to maximise expected observation time of the

7.1 Thesis summary 199

tracker. The key problem characteristic that we consider is that the tracker vehicle
must be stationary to observe the target, which is motivated by operational practices
in marine robotics. The problem is to plan the trajectory of the tracker, which is
defined as a sequence of stopping intervals and their associated locations. We refer
to this new problem as the spatiotemporal optimal stopping problem as a multi-
dimensional generalisation of the well-known optimal stopping problems.

Our solution algorithm exploits geometric properties of the formulation by sliding a
sweep-plane forwards through time, and connecting graph-edges that maximise the
expected overlap between the probabilistic target trajectory and the probabilistic ob-
servation model. This algorithm is a type of maximum-weight graph search, where
the key novelty is the construction of an efficient spatiotemporal graph that main-
tains solution optimality. The algorithm has polynomial runtime and is resolution
complete.

We provided a set of case studies for scenarios with different models for the target
trajectory and communication. The primary scenario is motivated by marine robotics,
where the target is an AUV and the tracker is a monitoring surface vessel. The
AUV’s predicted trajectory is modelled using Monte Carlo sampling that considers
uncertainty in the localisation, ocean currents, and the mission plan. The results
show the benefits of planning with respect to the probabilistic models, confirm the
runtime is polynomial, and demonstrate significant improvements over prior work.

7.1.4 Decentralised mission monitoring (Chapter 6)

The final active perception formulation considered was a multi-tracker extension of
the mission monitoring problem. For this scenario, we envision a team of surface
vessels tracking an AUV, where the use of multiple trackers allows improved spatial
and temporal coverage, particularly when there are large sources of uncertainty or
the trackers are slow.

We addressed this generalised problem in a decentralised manner, in a similar context
to Dec-MCTS. The proposed algorithm uses a similar three-phase cycle to Dec-MCTS
except where MCTS is replaced with the optimal single-tracker algorithm for mis-
sion monitoring. Several other modifications were made to both Dec-MCTS and

7.2 Summary of contributions 200

mission monitoring to form this new algorithm, such as a new subset construction
method relevant to this formulation. The algorithm has similar analytical properties
to Dec-MCTS, but we expect faster and stronger convergence due to the use of the
optimal single-tracker algorithm.

We demonstrated the behaviour of this algorithm for a multi-tracker AUV mission.
The results showed the benefits of using a distribution of possible solutions, the
algorithm significantly outperforms Dec-MCTS, and the algorithm can also be used
as a heuristic with Dec-MCTS for improving the tree expansion.

7.2 Summary of contributions

In this section, we elaborate on and reiterate the significance of the claimed contri-
butions of this thesis (enumerated earlier in Section 1.4).

7.2.1 Multi-robot active perception problem formulations

Throughout this thesis we have presented many new problem formulations for the
planning component of multi-robot active perception systems. These new formula-
tions reflect real-world tasks, while also being in a suitable form for designing and
presenting effective planning algorithms. The formulations of Problem 1.1 and Prob-
lem 3.1 are generic in that an objective function can be defined for these problems to
be suitable for any task. Most algorithms for multi-robot active perception planning
are solving an instance of these problems.

In Section 3.5 and Problem 4.1 we presented a new formulation that generalises the
orienteering problem. This formulation can efficiently encode viewpoint correlations
and thus can be used as a heuristic for tasks such as weighted coverage (see Sec-
tion 4.5), object recognition (see Section 4.5.1) and exploration (see Section 4.6).
This formulation also motivated efficient algorithms that plan paths over continu-
ous space. While we propose a solution algorithm for this problem, we also hope
that this formulation motivates further development of generalised problems and new
algorithms for these types of tasks.

7.2 Summary of contributions 201

In Section 5.2 and Section 6.3 we presented optimal stopping formulations of the
mission monitoring problem. The formulations are probabilistic such that they admit
probabilistic models for trajectory prediction and communication. This formulation
is suitable for a variety of real-world tasks, particularly marine robotics operations
(see Section 5.8.1) and pedestrian tracking (see Section 5.8.2). This formulation was
also designed to enable algorithms with interesting theoretical (particularly optimal-
ity) and practical properties, to provide further algorithmic insight into the problem
of mission monitoring. The example scenarios of Section 5.8 also featured several new
or adapted methods for modelling probabilistic trajectories, communications and ob-
servations; most notable is the AUV trajectory prediction model in Section 5.8.1.

We also adapted an existing model for active object recognition tasks. This adapted
formulation was presented in Section 3.6 as an example test case for Dec-MCTS. This
formulation is suitable for demonstrating the behaviour of our algorithm, while also
being representative of existing object recognition perception models and objectives.

7.2.2 Dec-MCTS algorithm

We proposed the Dec-MCTS algorithm as a new, generally-applicable algorithm for
decentralised multi-robot planning. This algorithm admits an objective function de-
fined over the action sequences of the robots, and thus is suitable for multi-robot
active perception. Our analysis has shown that Dec-MCTS has many practically-
useful properties, such as being anytime, online, non-myopic, balances exploration
and exploitation of the search space, robust to unreliable communication, and allows
incorporating prior knowledge. Dec-MCTS is the first decentralised variant of the
widely-used MCTS. Thus, Dec-MCTS can solve multi-robot generalisations of many
single-robot problems that have previously been solved by MCTS, such as object
recognition, patrolling and manipulation (see Section 2.3.4). An extended algorithm
is also presented that incorporates an additional phase for communication scheduling,
which is designed to more effectively use limited communication resources.

7.2 Summary of contributions 202

7.2.3 SOM algorithm

We presented a new SOM algorithm designed for centralised multi-robot active per-
ception. The algorithm is a new learning procedure for a special type of neural
network, and is designed to solve a new active perception formulation. It is a heuris-
tic algorithm that efficiently searches over continuous space and a long time-horizon,
and has guaranteed polynomial runtime before convergence. The algorithm has simi-
larities to related SOM algorithms, but offers new ways of meeting budget constraints,
dividing the workload between robots, addressing non-uniform observation rewards,
and performing online replanning.

7.2.4 Spatiotemporal optimal stopping algorithm

We proposed the spatiotemporal optimal stopping algorithm for single-tracker mis-
sion monitoring. The main novelty in the approach is a new spatiotemporal graph
construction method, with associated analytical results, that is then exploited by a
longest-path graph search. The algorithm plans with respect to probabilistic motion
prediction and communication models. It has guaranteed optimality over a long plan-
ning horizon, has polynomial runtime, and empirically and analytically outperforms
existing approaches. This is the first algorithm for solving a probabilistic formulation
of single-tracker mission monitoring.

7.2.5 Decentralised mission monitoring algorithm

We proposed a new decentralised algorithm multi-tracker mission monitoring. This
is the first solution algorithm for this problem. The algorithm combines and extends
elements of Dec-MCTS and spatiotemporal optimal stopping in a non-trivial manner.
The algorithm is decentralised, anytime, non-myopic, robust to unreliable communi-
cation, and plans under various sources of uncertainty. It has stronger convergence
properties and empirical performance than Dec-MCTS for this particular problem.
The similarities between this algorithm and Dec-MCTS further motivate the general
three-phase approach used in both algorithms.

7.2 Summary of contributions 203

7.2.6 Analytical results

Each of the algorithms in this thesis is presented alongside an associated set of ana-
lytical results. These results are intended to analyse the behaviour of the algorithm,
motivate and guide the use of the algorithms in practice, and provide insight into the
multi-robot active perception planning problems. We highlight the main analytical
results as follows, which are in addition to the general algorithmic properties (such
as non-myopic, anytime, and robust to communication loss) mentioned above.

Our analysis of Dec-MCTS focussed on describing the behaviour of the main algorith-
mic components. The tree search component balances between exploring unknown
regions of the search space and exploiting learnt information; a complete proof of
this result was omitted from this thesis, but was presented previously in Best et al.
(2018a). This result extends known results for standard MCTS for our generalised
scenario where the reward distributions are changing. For the probability distribution
optimisation component, we proposition that our approach to subspace selection ap-
proximates importance sampling. Thus, the algorithm has similar convergence prop-
erties to probability collectives, such that the product distribution converge towards
minimising the KL divergence to the optimal joint distribution. These results do not
yield global optimality guarantees, however they are relatively strong properties for
this context of this general and decentralised problem formulation.

Our main analytical result for our SOM algorithm showed the algorithm converges
in polynomial time. The proof of this result also provides insight into the runtime
dependence on the number of robots (Remark 4.1) and the possibility of early con-
vergence (Remark 4.2). This result supports the similar analysis of related SOM
algorithms.

Our main analytical result for our spatiotemporal optimal stopping algorithm is that it
finds the optimal solution trajectory in polynomial time. The proof of this result relies
on several intermediate results that show geometrically that the graph construction
phase maintains optimality. Interestingly, this result also shows that our optimal
graph search algorithm is performed in polynomial time; a longest-path graph search
is generally NP-hard, but can be performed in polynomial time in this context. The
existence of our polynomial-time algorithm also immediately implies that our mission

7.2 Summary of contributions 204

monitoring problem formulation is in the P complexity class.

Our analysis for our decentralised mission monitoring algorithm builds on these pre-
vious results. In particular, the optimality result for spatiotemporal optimal stopping
applies to each run of phase 1 of the algorithm. Phase 2 of the algorithm has similar
convergence properties to the probability collectives component of Dec-MCTS. Our
analysis also motivates the need for this phase of the algorithm, as it aims to avoid
getting stuck in cycles of local minima. These results are similar to, but stronger
than, the results of Dec-MCTS, due to the use of the optimal first phase that is
designed specifically for mission monitoring.

7.2.7 Empirical results

Each algorithm is also presented alongside various empirical results for different sce-
narios. These results are intended to empirically confirm the analytical claims, show
how the algorithms can be applied to various problems, and demonstrate the be-
haviour and performance of the algorithms. For all algorithms, the computation time
is shown to be relatively fast and can be tuned to meet the requirements of a par-
ticular application. These experiments were performed in simulation within ROS or
MATLAB, and use real-world datasets, perception models and objective functions.

For Dec-MCTS, we presented experiments for the context of generalised orienteering
and active object recognition. These results showed our algorithm outperforms a cen-
tralised algorithm, outperforms a greedy algorithm, is robust to communication loss,
and that it can be used for online replanning. Results are also shown for our extended
algorithm that incorporates communication scheduling, which demonstrate that co-
ordination performance can be maintained with significantly reduced communication
by judiciously selecting when to communicate.

For our SOM algorithm, we presented an extensive set of experiments in a variety of
problem instances. These results demonstrated the benefits of planning jointly as a
team, the benefits of planning with non-uniform rewards, the benefits of planning with
viewpoint regions, the convergence, several illustrative examples, improvements over
Dec-MCTS for this problem, the applicability of online replanning for exploration,
and the benefits of planning over a long time-horizon. These simulations used a

7.3 Future work 205

real 3D point cloud dataset of an outdoor scene, and example point-cloud processing
methods.

For single-tracker mission monitoring, we presented an extensive set of experiments
for simple scenarios, AUV monitoring scenarios, and pedestrian tracking scenarios.
Overall, these results demonstrated the benefits of planning while considering the
uncertainty, how to apply the algorithm with various prediction and communication
models, improvements over previously proposed algorithms, and polynomial runtime.
These experiments were based on real AUV missions, a real pedestrian trajectory
dataset, and several new or adapted prediction and communication models.

We empirically evaluated our decentralised mission monitoring algorithm in similar
AUV monitoring scenarios generalised for multiple trackers. These results demon-
strated the need to coordinate plans, the benefits of the probabilistic planning, conver-
gence of the algorithm, and that the algorithm significantly outperforms Dec-MCTS
for this task.

7.3 Future work

The contributions of this thesis motivate many avenues of future work. We separate
this section into (1) ideas for extending algorithms to potentially improve performance
at the considered problems, (2) ideas for new generalisations of the considered prob-
lems that may be more appropriate for some applications, and (3) future hardware
experiments.

7.3.1 Improving performance

We begin this section by discussing several ideas for potentially improving the per-
formance of each of the proposed algorithms for the perception tasks considered in
this thesis.

7.3 Future work 206

Dec-MCTS

The MCTS component of the proposed Dec-MCTS algorithm is a generalisation of
the commonly-used UCT algorithm (Kocsis and Szepesvári, 2006). UCT has been
widely used in the literature due to the associated analytical results, and also perhaps
due to the widely-publicised empirical success in other domains. There has been some
debate as to whether UCT really is the most suitable MCTS variant (Domshlak and
Feldman, 2013). It may be worth investigating other MCTS variants that could be
used within Dec-MCTS. For example, BRUE (Feldman and Domshlak, 2014) is an
MCTS variant formulated using a different definition of regret. A challenge would be
to generalise MCTS variants, similar to our D-UCT algorithm, for our domain that
has changing reward distributions. It would be interesting to see if similar analytical
results can be derived for these cases.

Another interesting line of inquiry is to incorporate coalition forming into Dec-MCTS.
This may allow robots that dependent more on each other to compute plans in a more
tightly-coupled manner, while devoting less attention to less-dependent robots. As
formulated, static coalitions of agents can be formed by generalising the product dis-
tributions in our framework to be partial joint distributions. The product distribution
described in Section 3.3.4 would be defined over groups of robots rather than individ-
uals. Each group acts jointly, with a single distribution modelling the joint actions of
its members, and coordination between groups is conducted as in our algorithm. Just
as our approach corresponds to mean-field methods, this approach maps nicely to
generalised mean field inference (Xing et al., 2004) or region-based variational meth-
ods (Yedidia et al., 2005), and guarantees from these approaches may be applicable.
It would also be interesting to study dynamic coalition forming, where the mapping
between agents and robots is allowed to change, and to develop convergence guar-
antees for this case. A key challenge would be to determine which robots’ plans are
more tightly coupled and therefore would benefit from planning within a coalition.
Our approach of deciding which robots should communicate (Section 3.7) could help
address this challenge.

In practice, the performance of MCTS is largely dependent on a suitable choice of
rollout policy (Browne et al., 2012; James et al., 2017). Rollout policies that compute
near-optimal paths would typically be too slow to compute, while purely random

7.3 Future work 207

policies typically result in requiring a large number of rollouts before convergence.
In Chapter 6 we showed how Dec-MCTS can incorporate spatiotemporal optimal
stopping as a rollout policy. It would also be interesting to consider if our SOM
algorithm would be a useful rollout policy in some scenarios.

It would also be interesting to consider alternatives to PC for performing the prob-
ability distribution optimisation step. PC has interesting theoretical properties, but
can be slow to compute due to the required sampling of expectations. Alternative
approaches could be developed that more efficiently find reasonable distributions. It
would also be interesting to reconsider how the subsets of candidate paths are selected,
such as using other selection measures, or dynamically resizing the set.

SOM

Our SOM algorithm is designed to be an efficient heuristic algorithm and thus the
focus is on having scalable runtime. Our algorithm scales well in terms of number
of robots and number of viewpoint regions. However, one potential limitation is the
runtime dependence on the relative reward weights; in instances where both very
small and very large weights exist, the algorithm will be relatively slow. It would be
interesting to develop alternative algorithms that overcome this potential issue. One
approach could be to avoid node duplication by proposing an alternative adaptation
function that is scaled by the weights. This approach is likely to be slower in many
cases since the adaptations are smaller, but is likely to be more efficient in cases where
there is a large variance in rewards.

As the SOM is a heuristic approach, it provides guarantees for runtime until conver-
gence, but unfortunately does not provide any optimality or convergence-rate guar-
antees. An interesting line of inquiry would be to develop SOM-like algorithms that
provide these guarantees, even potentially at the expense of practical performance
since it may provide insight as to how to improve SOM algorithms in general.

Mission monitoring

The spatiotemporal optimal stopping algorithm performs optimally with respect to
the model of the world, which may be probabilistic. If this model changes, then

7.3 Future work 208

replanning can be performed by repeating the algorithm when new information is
obtained. However, it would be interesting to extend the approach to allow replanning
for partially-known mission trajectories that are discovered over time. If the mission
discovery depends on the tracker observations, the planner may need to consider the
value of obtained information when planning sequences of stopping locations and
times. In this case, the problem is likely to be intractable, and therefore extensions
that give approximately optimal solutions should be developed, such as MCTS.

7.3.2 Problem variants and applications

Another promising line of future work is to consider new variants, generalisations and
applications of the formulations considered in this thesis.

Dec-MCTS

It would be interesting to apply Dec-MCTS to multi-agent scenarios where stan-
dard algorithms already exist for associated single-agent scenarios. Problem-specific
single-agent planning algorithms could replace the MCTS component of Dec-MCTS,
while still performing the distributed product distribution optimisation phase, in or-
der to provide stronger theoretical guarantees or algorithmic efficiency for special
cases. Scenarios where this could be applicable include multi-robot persistent mon-
itoring (Alamdari et al., 2014), cooperative wildlife localisation (Cliff et al., 2015),
collision avoidance (Otte and Correll, 2013), and dynamic coverage problems (Hönig
and Ayanian, 2016). We already demonstrated success at achieving this for decen-
tralised mission monitoring.

The problem formulation we consider for Dec-MCTS is general in that we are inter-
ested in planning sequences of actions to optimise a joint objective function, with-
out requiring assumptions such as submodularity. A straightforward extension to
our approach would be to adapt the algorithm to address the Dec-POMDP formu-
lation. This could be achieved by generalising the MCTS component of our algo-
rithm to POMCP (Silver and Veness, 2010) (an MCTS-based solution for single-agent
POMDPs) while still using our proposed D-UCT tree expansion policy. A difficulty

7.3 Future work 209

would be to efficiently find good-quality solutions while also considering probabilistic
transition models and having the search tree branch for both actions and observations.

Incorporating collision avoidance objectives would also be particularly interesting.
However, including this as a Dec-MCTS objective is likely to be particularly difficult
since this imposes hard inter-robot constraints that may be difficult to capture with
our probabilistic representation of paths. In practice, collision avoidance could be
handled by a lower-level planner, but it would be interesting to consider how to
include this directly within the higher-level planning algorithms.

Recently, we have seen an explosion of interest in applying deep learning methods
to robotics problems (Sünderhauf et al., 2018). So far this has mostly been for the
perception components of systems, but we expect to see this interest to increase for
planning components also. There are downsides of using deep learning methods, such
as requiring large amounts of training data, difficulties in guaranteeing robustness
and predictability, and the models are difficult for humans to interpret, understand
and learn from. We think that the deep learning planners that will achieve the most
success in robotics are those that are combined with more-classical algorithms. The
computer Go programs use a combination of MCTS and neural networks trained from
human games (Silver et al., 2016, 2017); Dec-MCTS could potentially be extended in
a similar way.

Our robotic systems for the foreseeable future will have some form of human-in-the-
loop. The humans may be assisting the robots complete tasks, or provide instructions
to robots. This human can be thought of as another agent in this decentralised system
of agents. Dec-MCTS could work where humans communicate information to and
from the robots in the same way that robots already communicate their intentions to
other robots. A key challenge here would be translating between human-interpretable
messages and the probability distributions of Dec-MCTS.

Communication scheduling

Our approach to communication scheduling during decentralised planning (Sec-
tion 3.7) could be extended in several ways. It would be interesting to consider
cases where we have models for predicting network integrity to more effectively

7.3 Future work 210

use available resources. Our current approach does not enforce hard constraints on
bandwidth, however our method of measuring information value solves a necessary
step towards enforcing bandwidth constraints while considering task performance.
Our approach could be extended to the constrained bandwidth case by swapping
the objectives and constraints; however, the interesting challenge here is to suitably
generalise the communication decision making step without incurring the substantial
time penalty of considering a full decision tree in this case.

It would also be interesting to consider alternative prediction models for predicting
the value of communication messages. For Dec-MCTS, it would be useful to be
able to efficiently predict the effect of the periodic domain changes. Our approach
could also be adapted to be suitable for other decentralised planning algorithms; the
key challenge here would be to develop suitable ways of efficiently performing the
communication prediction step.

SOM

Our SOM algorithm is designed particularly for environments with Euclidean-distance
costs. We are interested in extending the approach for scenarios with obstacles or
non-holonomic constraints. Several ideas have been proposed for extending SOM al-
gorithms for such scenarios, typically by combining an SOM approach with other plan-
ning algorithms, such as RRT (Faigl, 2016). In non-holonomic scenarios, it would be
an interesting challenge to incorporate orientation-dependent observations; a promis-
ing approach may be to approximate the problem in a high-dimensional Euclidean
space (Kulich et al., 2016). Inter-robot collision avoidance is likely to be challeng-
ing to incorporate into an SOM algorithm due to the temporal constraints, but a
decoupled approach could be an appropriate solution. However, we note that the
SOM approach tends to find solutions where the robots’ paths do not cross; therefore
additional collision avoidance planning may not be necessary.

Our formulation is motivated by the fact that the performance of perception al-
gorithms is sensitive to the choice of viewpoints. Viewpoint dependencies can be
conveniently expressed in our formulation such that all viewpoints within a region
are considered correlated, and partial correlation can be expressed with overlapping

7.3 Future work 211

regions. We discussed the relationship between viewpoint dependencies and TSP
formulations in Section 2.2.2. While this formulation is generally applicable, it may
also be convenient to express dependencies by varying the rewards for each poly-
gon, which may be addressed with a modification to the adaptation procedure (Faigl
and Váňa, 2016). Other modifications to the reward function formulation could in-
clude extensions for teams of robots with heterogeneous sensing, which could readily
be addressed by defining a different set of viewpoint regions and rewards for each
robot. Other interesting problem generalisations include time-varying objectives for
moving targets (Hönig and Ayanian, 2016), and perception models with probabilis-
tic viewpoint regions (like mission monitoring). Also, while our experiments used a
generic perception model to define the regions and rewards, this data processing can
be adapted for the perception task at hand, such as by using other formulations for
modelling 3D objects and predicting observations (Martens et al., 2017).

Another interesting research direction would be to extend the SOM algorithm for
infinite horizon persistent monitoring tasks. The SOM algorithm can already be
setup to produce cyclic solution paths, but it would be interesting to consider how to
incorporate additional challenges presented by particular persistent monitoring tasks.
These may include temporal constraints on the time between consecutive visits to a
regions (Alamdari et al., 2014). Additionally, considering other dependency models
found in some persistent monitoring formulations (Lan and Schwager, 2016; Yu et al.,
2016) would be an interesting challenge. SOMs would be particularly suitable for
efficiently adapting the path over multiple cycles as the information changes (Hefferan
et al., 2016). SOMs could potentially offer solutions to multi-robot generalisations of
single-robot persistent monitoring formulations.

In many practical scenarios, such as farms and warehouses with permanent infrastruc-
ture, multi-robot coordination can be performed by a centralised server. However, in
other scenarios it is necessary to decentralise the planning efforts and consider com-
munication constraints, which presents new algorithmic and practical challenges. A
decentralised version of our SOM algorithm may be formulated by combining decen-
tralised robot-node allocation with single-robot SOMs or small teams of multi-robot
SOMs. These two components could interact in a similar way to Dec-MCTS to opti-
mise the joint-action space.

7.3 Future work 212

Mission monitoring

Mission monitoring is primarily motivated by AUV operations, but several other real-
world scenarios also motivate this problem. These scenarios include: flying robots
that must land during observational periods to conserve energy (Brockers et al., 2011),
pedestrian tracking for hands-free filming and photography (Naseer et al., 2013; Hönig
and Ayanian, 2016), acoustically-covert surveillance for tracking animals (Dunbabin
and Tews, 2012), ground-based mobile recharge stations for aerial vehicles (Mathew
et al., 2013), aerial robots that must be stationary to achieve accurate measurements
of radio-tagged wildlife (Cliff et al., 2015), and underwater robots that need to stop
and surface to communicate or observe some phenomenon (D’Este et al., 2015). It
would be particularly interesting to apply our proposed algorithms to these other
scenarios.

Additionally, it would be interesting to further generalise the observation models.
An orientation-dependent observation model, such as a narrow field-of-view camera,
can be accommodated by adding a tracker-orientation dimension to the search space.
Time-varying observation models and dynamic communication rates (Kassir et al.,
2015) can readily be addressed by redefining the observation value as a function of
time. Also, other definitions for monitoring effectiveness could be considered, such as
worst-case as opposed to expected observation time.

Our mission monitoring formulation makes several assumptions about the problem.
Many of these assumptions are motivated by our experiences with real robots. How-
ever, our assumption of independent probability distributions for the target locations
at different timesteps was primarily introduced for algorithmic convenience. Introduc-
ing dependencies would probably not require changing the algorithm for the currently
considered objective function that sums expected values. If alternative objectives were
considered, such as for improving the worst-case performance, then these dependen-
cies would become important, and would also likely make the problem intractable.

Larger scale operations can feature multiple tracker and target agents, such as when
multiple AUVs survey an area while being supervised by multiple surface vessels.
We addressed the multi-tracker case in Chapter 6. For multi-target scenarios, a
naive formulation that sums all targets’ observation times is tractable, but likely to

7.3 Future work 213

give undesirable plans that only follow a single target. An objective function that
favours dividing the observation time between the targets, such as a minimax function,
would be more beneficial, but is likely to be intractable and approximations should
be considered.

Our current mission monitoring formulation considers decoupled planning where the
target trajectory is first optimised independently, then the tracker trajectories are
optimised with respect to the target. In many scenarios, this is reasonable, and it
reflects current AUV operations. However, it would also be interesting to consider
the case where both the target and tracker trajectories are optimised jointly. In
other words, the target trajectory would be designed to not only meet the mission
objectives, but also facilitate good monitoring performance. Our general framework
proposed in Chapter 6 could potentially be extended for this case.

7.3.3 Hardware experiments

The empirical results presented in this thesis were from a range of simulated experi-
ments. Simulated experiments provide the benefit of being able to isolate particular
components of a robotic system; this allows us to analyse the behaviour and perfor-
mance of the components that are particularly relevant to our contributions. However,
we acknowledge that simulated experiments do not fully capture all of the complex-
ities present in real robotic systems. These complexities may include dealing with
system failures, decentralised data fusion, localisation uncertainty, and unreliable
communication hardware.

As such, we would like to see our algorithms being demonstrated onboard real robot
systems. Scenarios we are currently working on hardware implementations for after
writing this thesis include: non-myopic task allocation with time-varying rewards by a
team of UAVs (Smith et al., 2018); detecting, segmenting and classifying fruit in trees
using RGB-D cameras mounted on robot arms (Sukkar et al., 2018) (generalisation
of the system by Ramon Soria et al. (2018)); surveillance and patrolling scenarios for
a team of ground vehicles; and mission monitoring trials for collaborating surface and
undersea robots (extensions of the seatrials by Best and Anstee (2014)). We would
like to see many more of the applications discussed earlier in Section 1.2 be performed

7.4 Outlook 214

with real robots; our hope is that the algorithms and analysis presented in this thesis
play a role in achieving this goal.

7.4 Outlook

We feel the timing is now right to be seeing much more widespread use of the active
perception methodology onboard robots in the real world. As argued in Chapter 1,
society is beginning to recognise and invite the important role robotics can play in a
wide range of industries. There has been tremendous recent advances in developing
robotic hardware systems that can reliably maneuver through, sense and perceive
many environments. These innovations have encouraged the development of new
algorithms, both for planning and perception, that can run onboard these robotic
systems. These new algorithms, in conjunction with modern communication hard-
ware, increased computing power, and reliable robotics hardware, are enabling us to
scale these ideas up for multi-robot systems. Use of the active perception methodol-
ogy will allow these robots to efficiently collect the perceptual data and information
necessary to complete important tasks.

We look forward to seeing autonomous and intelligent teams of robots playing an
increasingly important role in a wide range of scenarios, including: increasing the
output and efficiency of our farms; providing emergency response to natural and
humanitarian disasters; and advancing our scientific knowledge of the depths of our
oceans and the far reaches of our solar system.

List of References

Acar, E. U., Choset, H., Zhang, Y., and Schervish, M. (2003). Path planning for robotic
demining: Robust sensor-based coverage of unstructured environments and probabilistic
methods. The International Journal of Robotics Research, 22(7–8):441–466.

Ahmad, B. I., Murphy, J. K., Langdon, P. M., and Godsill, S. J. (2016). Bayesian intent
prediction in object tracking using bridging distributions. IEEE Transactions on
Cybernetics, 48(1):215–227.

Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114.

Alamdari, S., Fata, E., and Smith, S. L. (2014). Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between observations.
International Journal of Robotics Research, 33(1):138–154.

Albrecht, S. V., Crandall, J. W., and Ramamoorthy, S. (2016). Belief and truth in
hypothesised behaviours. Artificial Intelligence, 235:63–94.

Amato, C. (2015). Decision Making Under Uncertainty: Theory and Application, chapter
Cooperative Decision Making. MIT Press.

Angéniol, B., de la C. Vaubois, G., and Texier, J.-Y. L. (1988). Self-organizing feature
maps and the travelling salesman problem. Neural Networks, 1(4):289–293.

Aoude, G. S., Luders, B. D., Joseph, J. M., Roy, N., and How, J. P. (2013).
Probabilistically safe motion planning to avoid dynamic obstacles with uncertain
motion patterns. Autonomous Robots, 35(1):51–76.

Archetti, C., Hertz, A., and Speranza, M. G. (2007). Metaheuristics for the team
orienteering problem. Journal of Heuristics, 13(1):49–76.

Arora, A., Fitch, R., and Sukkarieh, S. (2017). An approach to autonomous science by
modeling geological knowledge in a Bayesian framework. In Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3803–3810.

Astuti, G., Giudice, G., Longo, D., Melita, C. D., Muscato, G., and Orlando, A. (2008).
Unmanned Aircraft Systems, chapter An Overview of the “Volcan Project”: An UAS for
Exploration of Volcanic Environments, pages 471–494. Springer.

List of References 216

Atanasov, N., Ny, J. L., Daniilidis, K., and Pappas, G. J. (2015). Decentralized active
information acquisition: Theory and application to multi-robot SLAM. In Proc. of
IEEE International Conference on Robotics and Automation (ICRA), pages 4775–4782.

Atanasov, N., Sankaran, B., Le Ny, J., Pappas, G., and Daniilidis, K. (2014). Nonmyopic
view planning for active object classification and pose estimation. IEEE Transactions
on Robotics, 30(5):1078–1090.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2):235–256.

Auger, D. (2011). Multiple tree for partially observable Monte-Carlo tree search. In Proc.
of European Conference on the Applications of Evolutionary Computation
(EvoApplications), pages 53–62.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8):966–1005.

Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2018). Revisiting active perception.
Autonomous Robots, 42(2):177–196.

Bajracharya, M., Bajracharya, M., Bajracharya, M., Bajracharya, M., Maimone, M. W.,
Maimone, M. W., Maimone, M. W., Maimone, M. W., Helmick, D., Helmick, D.,
Helmick, D., and Helmick, D. (2008). Autonomy for Mars rovers: Past, present, and
future. Computer, 41(12):44–50.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks,
19(6):621–636.

Ball, D., Ross, P., English, A., Patten, T., Upcroft, B., Fitch, R., Sukkarieh, S., Wyeth,
G., and Corke, P. (2013). Robotics for sustainable broad-acre agriculture. In Proc. of
Field and Service Robotics (FSR).

Bandyopadhyay, T., Won, K., Frazzoli, E., Hsu, D., Lee, W., and Rus, D. (2012).
Intention-aware motion planning. In Proc. of International Workshop on the
Algorithmic Foundations of Robotics (WAFR).

Banfi, J., Li, A. Q., Basilico, N., Rekleitis, I., and Amigoni, F. (2017). Multirobot online
construction of communication maps. In Proc. of IEEE International Conference on
Robotics and Automation (ICRA), pages 2577–2583.

Bargoti, S., Underwood, J. P., Nieto, J. I., and Sukkarieh, S. (2015). A pipeline for trunk
detection in trellis structured apple orchards. Journal of Field Robotics,
32(8):1075–1094.

Barrett, S., Stone, P., and Kraus, S. (2011). Empirical evaluation of ad hoc teamwork in
the pursuit domain. In Proc. of International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), AAMAS ’11, pages 567–574, Richland, SC.
International Foundation for Autonomous Agents and Multiagent Systems.

List of References 217

Becerra, I., Valentín-Coronado, L. M., Murrieta-Cid, R., and Latombe, J.-C. (2016).
Reliable confirmation of an object identity by a mobile robot: A mixed
appearance/localization-driven motion approach. International Journal of Robotics
Research, 35(10):1207–1233.

Becker, R., Carlin, A., Lesser, V., and Zilberstein, S. (2009). Analyzing myopic
approaches for multi-agent communication. Computational Intelligence, 25(1):31–50.

Bektas, T. (2006). The multiple traveling salesman problem: An overview of formulations
and solution procedures. Omega, 34(3):209–219.

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–515.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The complexity of
decentralized control of Markov decision processes. Mathematics of Operations
Research, 27(4):819–840.

Besl, P. J. and McKay, H. D. (1992). A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256.

Best, G. and Anstee, S. (2014). Motion planning for autonomous underwater vehicle
supervision. In Proc. of ARAA Australasian Conference on Robotics and Automation
(ACRA).

Best, G., Cliff, O., Patten, T., Mettu, R. R., and Fitch, R. (2018a). Dec-MCTS:
Decentralized planning for multi-robot active perception. International Journal of
Robotics Research. doi:10.1177/0278364918755924.

Best, G., Cliff, O. M., Patten, T., Mettu, R. R., and Fitch, R. (2016a). Decentralised
Monte Carlo tree search for active perception. In Proc. of International Workshop on
the Algorithmic Foundations of Robotics (WAFR).

Best, G., Faigl, J., and Fitch, R. (2016b). Multi-robot path planning for budgeted active
perception with self-organising maps. In Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3164–3171.

Best, G., Faigl, J., and Fitch, R. (2018b). Online planning for multi-robot active
perception with self-organising maps. Autonomous Robots, 42(4):715–738.

Best, G. and Fitch, R. (2015). Bayesian intention inference for trajectory prediction with
an unknown goal destination. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5817–5823.

Best, G. and Fitch, R. (2016). Probabilistic maximum set cover with path constraints for
informative path planning. In Proc. of ARAA Australasian Conference on Robotics and
Automation (ACRA).

List of References 218

Best, G., Forrai, M., Mettu, R. R., and Fitch, R. (2018c). Planning-aware communication
for decentralised multi-robot coordination. In Proc. of IEEE International Conference
on Robotics and Automation (ICRA), pages 1050–1057.

Best, G., Huang, S., and Fitch, R. (2018d). Decentralised mission monitoring with
spatiotemporal optimal stopping. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4810–4817.

Best, G., Martens, W., and Fitch, R. (2015). A spatiotemporal optimal stopping problem
for mission monitoring with stationary viewpoints. In Proc. of Robotics: Science and
Systems.

Best, G., Martens, W., and Fitch, R. (2017). Path planning with spatiotemporal optimal
stopping for stochastic mission monitoring. IEEE Transactions on Robotics,
33(3):629–646.

Best, G. and Moghadam, P. (2014). An evaluation of multi-modal user interface elements
for tablet-based robot teleoperation. In Proc. of ARAA Australasian Conference on
Robotics and Automation (ACRA).

Binney, J. and Sukhatme, G. (2012). Branch and bound for informative path planning. In
Proc. of IEEE International Conference on Robotics and Automation (ICRA), pages
2147–2154.

Bongiorno, D. L., Bryson, M., and Williams, S. B. (2013). Dynamic spectral-based
underwater colour correction. In Proc. of IEEE OCEANS.

Bonin-Font, F., Ortiz, A., and Oliver, G. (2008). Visual navigation for mobile robots: A
survey. Journal of Intelligent and Robotic Systems, 53(3):263–296.

Bopardikar, S. D., Smith, S. L., and Bullo, F. (2014). On dynamic vehicle routing with
time constraints. IEEE Transactions on Robotics, 30(6):1524–1532.

Borodin, A. and El-Yaniv, R. (1998). Online computation and competitive analysis,
volume 2. Cambridge University Press.

Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., and Durrant-Whyte, H.
(2002). Information based adaptive robotic exploration. In Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 540–545.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41.

Brockers, R., Bouffard, P., Ma, J., Matthies, L., and Tomlin, C. (2011). Autonomous
landing and ingress of micro-air-vehicles in urban environments based on monocular
vision. Proceedings of SPIE, 8031:803111 1–12.

List of References 219

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of Monte Carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in Games,
4(1):1–43.

Bruce, A. and Gordon, G. (2004). Better motion prediction for people-tracking. In Proc.
of IEEE International Conference on Robotics and Automation (ICRA).

Bruss, F. T. (2000). Sum the odds to one and stop. The Annals of Probability,
28(3):1384–1391.

Caccavale, A. and Schwager, M. (2017). A distributed algorithm for mapping the
graphical structure of complex environments with a swarm of robots. In Proc. of IEEE
International Conference on Robotics and Automation (ICRA), pages 1459–1466.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., and
Leonard, J. J. (2016). Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE Transactions on Robotics,
32(6):1309–1332.

Caley, J. A., Lawrance, N. R. J., and Hollinger, G. A. (2016). Deep learning of structured
environments for robot search. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3987–3992.

Cao, Z. L., Huang, Y., and Hall, E. L. (1988). Region filling operations with random
obstacle avoidance for mobile robots. Journal of Field Robotics, 5(2):87–102.

Carlone, L., Du, J., Ng, M. K., Bona, B., and Indri, M. (2010). An application of
Kullback-Leibler divergence to active SLAM and exploration with particle filters. In
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 287–293.

Charniak, E. and Goldman, R. P. (1993). A Bayesian model of plan recognition. Artificial
Intelligence, 64(1):53 – 79.

Chaslot, G. M. J. B., Winands, M. H. M., and van den Herik, H. J. (2008). Parallel
Monte-Carlo tree search. In Proc. of International Conference on Computers and
Games (CG), pages 60–71.

Chekuri, C. and Pal, M. (2005). A recursive greedy algorithm for walks in directed
graphs. In Proc. of IEEE Symposium on Foundations of Computer Science (FOCS),
pages 245–253.

Chen, S., Li, Y., and Kwok, N. M. (2011). Active vision in robotic systems: A survey of
recent developments. International Journal of Robotics Research, 30(11):1343–1377.

Chen, Y., Hassani, S. H., and Krause, A. (2017). Near-optimal bayesian active learning
with correlated and noisy tests. Electronic Journal of Statistics, 11(2):4969–5017.

List of References 220

Chiang, H.-T., Malone, N., Lesser, K., Oishi, M., and Tapia, L. (2014). Aggressive moving
obstacle avoidance using a stochastic reachable set based potential field. In Proc. of
International Workshop on the Algorithmic Foundations of Robotics (WAFR).

Chopra, S., Notarstefano, G., Rice, M., and Egerstedt, M. (2017). A distributed version of
the hungarian method for multirobot assignment. IEEE Transactions on Robotics,
33(4):932–947.

Choudhury, S., Kapoor, A., Ranade, G., Scherer, S., and Dey, D. (2017). Adaptive
information gathering via imitation learning. In Proc. of Robotics: Science and Systems
(RSS).

Chow, Y. S., Robbins, H., and Siegmund, D. (1971). Great expectations: The theory of
optimal stopping. Houghton Mifflin Boston.

Chung, T. H., Hollinger, G. A., and Isler, V. (2011). Search and pursuit-evasion in mobile
robotics. Autonomous Robots, 31(4):299–316.

Clausen, J. (1999). Branch and bound algorithms - principles and examples. Technical
report, Department of Computer Science, University of Copenhagen.

Clements, D., Dugdale, T., Hunt, T., Fitch, R., Hung, C., Sukkarieh, S., and Xu, Z.
(2014). Detection of alligator weed using an unmanned aerial vehicle. Plant Protection
Quarterly, 29(3):84–89.

Cliff, O. M., Fitch, R., Sukkarieh, S., Saunders, D. L., and Heinsohn, R. (2015). Online
localization of radio-tagged wildlife with an autonomous aerial robot system. In Proc.
of Robotics: Science and Systems (RSS).

Cliff, O. M., Saunders, D. L., and Fitch, R. (2018). Robotic ecology: Tracking small
dynamic animals with an autonomous aerial vehicle. Science Robotics, 3(23).

Cochrane, E. M. and Beasley, J. E. (2003). The co-adaptive neural network approach to
the Euclidean travelling salesman problem. Neural Networks, 16(10):1499–1525.

Coquelin, P. and Munos, R. (2007). Bandit algorithms for tree search. In Proc. of
Conference on Uncertainty in Artificial Intelligence (UAI), pages 67–74.

Corah, M. and Michael, N. (2017). Efficient online multi-robot exploration via distributed
sequential greedy assignment. In Proc. of Robotics: Science and Systems (RSS).

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. MIT press, 2 edition.

Culbertson, P. and Schwager, M. (2018). Decentralized adaptive control for collaborative
manipulation. In Proc. of International Conference on Robotics and Automation
(ICRA).

List of References 221

Cunningham-Nelson, S., Moghadam, P., Roberts, J., and Elfes, A. (2015). Coverage-based
next best view selection. In Proc. of ARAA Australasian Conference on Robotics and
Automation (ACRA).

Czyzowicz, J., Ga̧sieniec, L., Georgiou, K., Kranakis, E., and MacQuarrie, F. (2015a).
The beachcombers’ problem: Walking and searching with mobile robots. Theoretical
Computer Science, 608:201–218.

Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., and MacQuarrie, F. (2015b).
The multi-source beachcombers’ problem. In Gao, J., Efrat, A., Fekete, S. P., and
Zhang, Y., editors, Algorithms for Sensor Systems, volume 8847, pages 3–21. Springer.

Daley, D. J. and Vere-Jones, D. (2003). An introduction to the theory of point processes.
Springer, 2nd edition.

Dames, P., Tokekar, P., and Kumar, V. (2017). Detecting, localizing, and tracking an
unknown number of moving targets using a team of mobile robots. International
Journal of Robotics Research, 36(13–14):1540–1553.

D’Andrea, R. (2012). Guest editorial: A revolution in the warehouse: A retrospective on
kiva systems and the grand challenges ahead. IEEE Transactions on Automation
Science and Engineering, 9(4):638–639.

Dang, D.-C., El-Hajj, R., and Moukrim, A. (2013a). A branch-and-cut algorithm for
solving the team orienteering problem. In Proc. of International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR), pages 332–339. Springer.

Dang, D.-C., Guibadj, R. N., and Moukrim, A. (2013b). An effective PSO-inspired
algorithm for the team orienteering problem. European Journal of Operational
Research, 229(2):332–344.

Das, J., Py, F., Harvey, J. B. J., Ryan, J. P., Gellene, A., Graham, R., Caron, D. A.,
Rajan, K., and Sukhatme, G. S. (2015). Data-driven robotic sampling for marine
ecosystem monitoring. International Journal of Robotics Research, 34(12):1435–1452.

Das, J., Rajan, K., Frolov, S., Pyy, F., Ryany, J., Caron, D., and Sukhatme, G. (2010).
Towards marine bloom trajectory prediction for AUV mission planning. In Proc. of
IEEE International Conference on Robotics and Automation (ICRA), pages 4784–4790.

Dayoub, F., Dunbabin, M., and Corke, P. (2015). Robotic detection and tracking of
crown-of-thorns starfish. In Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1921–1928.

De Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O. C. (2000).
Computational geometry. Springer.

de Wit, C. C., Siciliano, B., and Bastin, G. (2012). Theory of robot control. Springer.

List of References 222

Dehnhardt, G., Mauck, B., Hanke, W., and Bleckmann, H. (2001). Hydrodynamic
trail-following in harbor seals (Phoca vitulina). Science, 293(5527):102–104.

Delle Fave, F., Rogers, A., Xu, Z., Sukkarieh, S., and Jennings, N. (2012). Deploying the
max-sum algorithm for decentralised coordination and task allocation of unmanned
aerial vehicles for live aerial imagery collection. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA), pages 469–476.

Demir, N., Eren, U., and Açıkmeşe, B. (2015). Decentralized probabilistic density control
of autonomous swarms with safety constraints. Autonomous Robots, 39(4):537–554.

D’Este, C., Seton, B., McCulloch, J., Smith, D., and Sharman, C. (2015). Avoiding
marine vehicles with passive acoustics. Journal of Field Robotics, 32(1):152–166.

Dias, M. B., Zlot, R., Kalra, N., and Stentz, A. (2006). Market-based multirobot
coordination: A survey and analysis. Proceedings of the IEEE, 94(7):1257–1270.

Domshlak, C. and Feldman, Z. (2013). To UCT, or not to UCT? (position paper). In
Proc. of Sixth Annual Symposium on Combinatorial Search.

Dornhege, C., Kleiner, A., Hertle, A., and Kolling, A. (2016). Multirobot coverage search
in three dimensions. Journal of Field Robotics, 33(4):537–558.

Douillard, B., Quadros, A., Morton, P., Underwood, J. P., and Deuge, M. D. (2012). A 3D
classifier trained without field samples. In Proc. of IEEE International Conference on
Control, Automation, Robotics and Vision (ICARCV), pages 805–810.

Dubins, L. E. (1957). On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
mathematics, 79(3):497–516.

Dumitrescu, A. and Mitchell, J. S. (2003). Approximation algorithms for TSP with
neighborhoods in the plane. Journal of Algorithms, 48(1):135–159.

Dunbabin, M. and Marques, L. (2012). Robots for environmental monitoring: Significant
advancements and applications. IEEE Robotics and Automation Magazine, 19(1):24–39.

Dunbabin, M. and Tews, A. (2012). Toward robotic visual and acoustic stealth for
outdoor dynamic target tracking. In Proc. of ARAA Australasian Conference on
Robotics and Automation (ACRA).

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: Part I.
IEEE Robotics Automation Magazine, 13(2):99–110.

D’Urso, G., Smith, S. L., Mettu, R., Oksanen, T., and Fitch, R. (2018). Multi-vehicle refill
scheduling with queueing. Computers and Electronics in Agriculture, 144:44–57.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57.

List of References 223

Even, J., Furrer, J., Morales, Y., Ishi, C. T., and Hagita, N. (2017). Probabilistic 3-D
mapping of sound-emitting structures based on acoustic ray casting. IEEE Transactions
on Robotics, 33(2):333–345.

Faigl, J. (2010). Approximate solution of the multiple watchman routes problem with
restricted visibility range. IEEE Transactions on Neural Networks, 21(10):1668–1679.

Faigl, J. (2016). On self-organizing map and rapidly-exploring random graph in multi-goal
planning. In Advances in Self-Organizing Maps and Learning Vector Quantization,
pages 143–153. Springer.

Faigl, J. and Hollinger, G. (2014). Unifying multi-goal path planning for autonomous data
collection. In Proc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2937–2942.

Faigl, J. and Hollinger, G. A. (2018). Autonomous data collection using a self-organizing
map. IEEE Transactions on Neural Networks and Learning Systems, 29(5):1703–1715.

Faigl, J., Pěnička, R., and Best, G. (2016). Self-organizing map-based solution for the
orienteering problem with neighborhoods. In Proc. of IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 1315–1321.

Faigl, J. and Váňa, P. (2016). Self-organizing map for data collection planning in
persistent monitoring with spatial correlations. In Proc. of IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 3264–3269.

Faigl, J., Vonásek, V., and Pr̆euc̆il, L. (2013). Visiting convex regions in a polygonal map.
Robotics and Autonomous Systems, 61(10):1070–1083.

Fallon, M. F., Papadopoulos, G., Leonard, J. J., and Patrikalakis, N. M. (2010).
Cooperative auv navigation using a single maneuvering surface craft. International
Journal of Robotics Research, 29(12):1461–1474.

Fang, C. and Anstee, S. (2010). Coverage path planning for harbour seabed surveys using
an autonomous underwater vehicle. In Proc. of IEEE OCEANS.

Farinelli, A., Rogers, A., and Jennings, N. R. (2014). Agent-based decentralised
coordination for sensor networks using the max-sum algorithm. Autonomous Agents
and Multi-Agent Systems, 28(3):337–380.

Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. R. (2008). Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In Proc. of
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Feder, H. J. S., Leonard, J. J., and Smith, C. M. (1999). Adaptive mobile robot
navigation and mapping. International Journal of Robotics Research, 18(7):650–668.

Feldman, Z. and Domshlak, C. (2014). Simple regret optimization in online planning for
Markov decision processes. Journal of Artificial Intelligence Research, 51:165–205.

List of References 224

Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science,
4(3):282–289.

Fernández-Juricic, E., Erichsen, J. T., and Kacelnik, A. (2004). Visual perception and
social foraging in birds. Trends in Ecology & Evolution, 19(1):25–31.

Fitch, R., Sofge, D., Hollinger, G., Dantu, K., Otte, M., and Omidshafiei, S. (2017).
Workshop on robot communication in the wild: Meeting the challenges of real-world
systems. In Robotics: Science and Systems (RSS).

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6):345.

Galceran, E. and Carreras, M. (2013). A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12):1258–1276.

Gan, S. K., Fitch, R., and Sukkarieh, S. (2014). Online decentralized information
gathering with spatial–temporal constraints. Autonomous Robots, 37(1):1–25.

Garg, S. and Ayanian, N. (2014). Persistent monitoring of stochastic spatio-temporal
phenomena with a small team of robots. In Proc. of Robotics: Science and Systems
(RSS).

Garivier, A. and Moulines, E. (2011). On upper-confidence bound policies for switching
bandit problems. In Proc. of International Conference on Algorithmic Learning Theory,
pages 174–188.

Geem, Z., Tseng, C.-L., and Park, Y. (2005). Harmony search for generalized orienteering
problem: Best touring in China. In Proc. of International Conference on Computing,
Networking and Communications (ICNC), pages 741–750.

Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., and Teytaud,
O. (2012). The grand challenge of computer Go: Monte Carlo tree search and
extensions. Communications of the ACM, 55(3):106–113.

German, C. R., Jakuba, M. V., Kinsey, J. C., Partan, J., Suman, S., Belani, A., and
Yoerger, D. R. (2012). A long term vision for long-range ship-free deep ocean
operations: Persistent presence through coordination of autonomous surface vehicles
and autonomous underwater vehicles. In Proc. of IEEE/OES Autonomous Underwater
Vehicles (AUV).

Ghaffarkhah, A. and Mostofi, Y. (2011). Communication-aware motion planning in mobile
networks. IEEE Transactions on Automatic Control, 56(10):2478–2485.

Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.

Girdhar, Y. and Dudek, G. (2009). Optimal online data sampling or how to hire the best
secretaries. In Proc. of Canadian Conference on Computer and Robot Vision (CRV),
pages 292–298.

List of References 225

Goldman, R. P., Geib, C. W., and Miller, C. A. (1999). A new model of plan recognition.
In Proc. of AUAI Conference on Uncertainty in Artificial Intelligence (UAI), pages
245–254.

Golovin, D. and Krause, A. (2011). Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence Research,
42.

Gunawan, A., Lau, H. C., and Vansteenwegen, P. (2016). Orienteering problem: A survey
of recent variants, solution approaches and applications. European Journal of
Operational Research, 255(2):315–332.

Guru, K. A., Esfahani, E. T., Raza, S. J., Bhat, R., Wang, K., Hammond, Y., Wilding,
G., Peabody, J. O., and Chowriappa, A. J. (2015). Cognitive skills assessment during
robot-assisted surgery: Separating the wheat from the chaff. BJU International,
115(1):166–174.

Hagen, P. E., Størkersen, N., Marthinsen, B.-E., Sten, G., and Vestgård, K. (2008). Rapid
environmental assessment with autonomous underwater vehicles – examples from
HUGIN operations. Journal of Marine Systems, 69(1-2):137–145.

Harding, R. (1998). Environmental decision-making: The roles of scientists, engineers,
and the public. Federation Press.

Hassan, M. and Liu, D. (2017). Simultaneous area partitioning and allocation for
complete coverage by multiple autonomous industrial robots. Autonomous Robots,
41(8):1609–1628.

Hefferan, B., Cliff, O. M., and Fitch, R. (2016). Adversarial patrolling with reactive point
processes. In Proc. of ARAA Australasian Conference on Robotics and Automation
(ACRA).

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1).

Heppner, G., Roennau, A., and Dillman, R. (2013). Enhancing sensor capabilities of
walking robots through cooperative exploration with aerial robots. Journal of
Automation, Mobile Robotics & Intelligent Systems, 7(2):5–11.

Hitz, G., Galceran, E., Garneau, M.-E., Pomerleau, F., and Siegwart, R. (2017). Adaptive
continuous-space informative path planning for online environmental monitoring.
Journal of Field Robotics, 34(8):1427–1449.

Hochbaum, D., editor (1997). Approximation Algorithms for NP-hard Problems. PWS
Publishing Co., Boston, MA, USA.

Hollinger, G. (2015). Long-horizon robotic search and classification using sampling-based
motion planning. In Proc. of Robotics: Science and Systems (RSS).

List of References 226

Hollinger, G., Singh, S., Djugash, J., and Kehagias, A. (2009). Efficient multi-robot search
for a moving target. International Journal of Robotics Research, 28(2):201–219.

Hollinger, G. A., Englot, B., Hover, F. S., Mitra, U., and Sukhatme, G. S. (2013). Active
planning for underwater inspection and the benefit of adaptivity. International Journal
of Robotics Research, 32(1):3–18.

Hollinger, G. A., Mitra, U., and Sukhatme, G. S. (2011a). Active classification: Theory
and application to underwater inspection. In Proc. of International Symposium of
Robotics Research (ISRR).

Hollinger, G. A. and Singh, S. (2012). Multirobot coordination with periodic connectivity:
Theory and experiments. IEEE Transactions on Robotics, 28(4):967–973.

Hollinger, G. A. and Sukhatme, G. S. (2014). Sampling-based robotic information
gathering algorithms. International Journal of Robotics Research, 33(9):1271–1287.

Hollinger, G. A., Yerramalli, S., Singh, S., Mitra, U., and Sukhatme, G. (2011b).
Distributed coordination and data fusion for underwater search. In Proc. of IEEE
International Conference on Robotics and Automation (ICRA), pages 349–355.

Hönig, W. and Ayanian, N. (2016). Dynamic multi-target coverage with robotic cameras.
In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1871–1878.

Huang, S., Kwok, N. M., Dissanayake, G., Ha, Q. P., and Fang, G. (2005). Multi-step
look-ahead trajectory planning in SLAM: Possibility and necessity. In Proc. of IEEE
International Conference on Robotics and Automation (ICRA), pages 1091–1096.

Huber, M. F., Dencker, T., Roschani, M., and Beyerer, J. (2012). Bayesian active object
recognition via Gaussian process regression. In Proc. of IEEE International Conference
on Information Fusion (FUSION), pages 1718–1725.

Hung, C., Underwood, J., Nieto, J., and Sukkarieh, S. (2015). A feature learning based
approach for automated fruit yield estimation. In Mejias, L., Corke, P., and Roberts, J.,
editors, Field and Service Robotics, volume 105, pages 485–498. Springer.

Huntemann, A., Demeester, E., Poorten, E., Van Brussel, H., and De Schutter, J. (2013).
Probabilistic approach to recognize local navigation plans by fusing past driving
information with a personalized user model. In Proc. of IEEE International Conference
on Robotics and Automation (ICRA), pages 4376–4383.

James, S., Konidaris, G., and Rosman, B. (2017). An analysis of Monte Carlo tree search.
In Proc. of AAAI Conference on Artificial Intelligence.

Javdani, S., Klingensmith, M., Bagnell, J. A., Pollard, N. S., and Srinivasa, S. S. (2013).
Efficient touch based localization through submodularity. In Proc. of IEEE
International Conference on Robotics and Automation (ICRA), pages 1828–1835.

List of References 227

Jones, D. and Hollinger, G. A. (2017). Planning energy-efficient trajectories in strong
disturbances. IEEE Robotics and Automation Letters, 2(4):2080–2087.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233.

Kahn, G., Sujan, P., Patil, S., Bopardikar, S., Ryde, J., Goldberg, K., and Abbeel, P.
(2015). Active exploration using trajectory optimization for robotic grasping in the
presence of occlusions. In Proc. of IEEE International Conference on Robotics and
Automation (ICRA), pages 4783–4790.

Kalteh, A., Hjorth, P., and Berndtsson, R. (2008). Review of the self-organizing map
(SOM) approach in water resources: Analysis, modelling and application.
Environmental Modelling & Software, 23(7):835–845.

Karp, R. M. (1992). On-line algorithms versus off-line algorithms: How much is it worth
to know the future? In Proc. of World Computer Congress.

Kartal, B., Godoy, J., Karamouzas, I., and Guy, S. J. (2015). Stochastic tree search with
useful cycles for patrolling problems. In Proc. of IEEE International Conference on
Robotics and Automation (ICRA), pages 1289–1294.

Karydis, K., Poulakakis, I., Sun, J., and Tanner, H. G. (2015). Probabilistically valid
stochastic extensions of deterministic models for systems with uncertainty.
International Journal of Robotics Research, 34(10):1278–1295.

Kassir, A., Fitch, R., and Sukkarieh, S. (2015). Communication-aware information
gathering with dynamic information flow. International Journal of Robotics Research,
34(2):173–200.

Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580.

Kemna, S., Rogers, J. G., Nieto-Granda, C., Young, S., and Sukhatme, G. S. (2017).
Multi-robot coordination through dynamic Voronoi partitioning for informative
adaptive sampling in communication-constrained environments. In Proc. of IEEE
International Conference on Robotics and Automation (ICRA), pages 2124–2130.

Khatib, O., Yeh, X., Brantner, G., Soe, B., Kim, B., Ganguly, S., Stuart, H., Wang, S.,
Cutkosky, M., Edsinger, A., Mullins, P., Barham, M., Voolstra, C. R., Salama, K. N.,
L’Hour, M., and Creuze, V. (2016). Ocean One: A robotic avatar for oceanic discovery.
IEEE Robotics and Automation Magazine, 23(4):20–29.

Kim, A. and Eustice, R. M. (2015). Active visual SLAM for robotic area coverage: Theory
and experiment. International Journal of Robotics Research, 34(4–5):457–475.

Kim, S., Guy, S. J., Liu, W., Wilkie, D., Lau, R. W., Lin, M. C., and Manocha, D. (2015).
BRVO: Predicting pedestrian trajectories using velocity-space reasoning. International
Journal of Robotics Research, 34(2):201–217.

List of References 228

Klodt, L., Khodaverdian, S., and Willert, V. (2015). Motion control for UAV-UGV
cooperation with visibility constraint. In Proc. of IEEE Conference on Control
Applications (CCA), pages 1379–1385.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proc. of
Eurpoean Conference on Machine Learning (ECML), pages 282–293.

Kocsis, L., Szepesvári, C., and Willemson, J. (2006). Improved Monte-Carlo search.
Technical report, University of Tartu.

Köhntopp, D., Lehmann, B., Kraus, D., and Birk, A. (2015). Segmentation and
classification using active contour based superellipse fitting on side scan sonar images
for marine demining. In Proc. of IEEE International Conference on Robotics and
Automation (ICRA), pages 3380–3387.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1):59–69.

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1):1–6.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: Principles and
techniques. MIT press.

Kottege, N. and Zimmer, U. R. (2011). Underwater acoustic localization for small
submersibles. Journal of Field Robotics, 28(1):40–69.

Krause, A. and Guestrin, C. (2011). Submodularity and its applications in optimized
information gathering. ACM Transactions on Intelligent Systems Technology,
2(4):32:1–32:20.

Kriegel, S., Brucker, M., Marton, Z.-C., Bodenmuller, T., and Suppa, M. (2013).
Combining object modeling and recognition for active scene exploration. In Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2384–2391.

Kulich, M., Sushkov, R., and Přeučil, L. (2016). Speed-up of self-organizing networks for
routing problems in a polygonal domain. In Proc. of IEEE/RSJ IROS 10th
International Workshop on Cognitive Robotics.

Kulkarni, A. J. and Tai, K. (2010). Probability collectives: A multi-agent approach for
solving combinatorial optimization problems. Applied Soft Computing, 10(3):759–771.

Kumar, A., Zilberstein, S., and Toussaint, M. (2015). Probabilistic inference techniques
for scalable multiagent decision making. Journal of Artificial Intelligence Research,
53:223–270.

Lagoudakis, M. G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A. J., Koenig, S.,
Tovey, C. A., Meyerson, A., and Jain, S. (2005). Auction-based multi-robot routing. In
Proc. of Robotics: Science and Systems (RSS).

List of References 229

Lambrou, T. P. and Panayiotou, C. G. (2013). Collaborative path planning for event
search and exploration in mixed sensor networks. International Journal of Robotics
Research, 32(12):1424–1437.

Lan, X. and Schwager, M. (2016). Rapidly exploring random cycles: Persistent estimation
of spatiotemporal fields with multiple sensing robots. IEEE Transactions on Robotics,
32(5):1230–1244.

Laporte, G. and Martello, S. (1990). The selective travelling salesman problem. Discrete
Applied Mathematics, 26(2):193–207.

Latombe, J.-C. (1991). Robot Motion Planning. Kluwer.

Lauri, M., Atanasov, N., Pappas, G., and Ritala, R. (2015). Active object recognition via
Monte Carlo tree search. In Proc. of IEEE ICRA Workshop on Beyond Geometric
Constraints.

Lauri, M. and Ritala, R. (2016). Planning for robotic exploration based on forward
simulation. Robotics and Autonomous Systems, 83:15–31.

LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

LaValle, S. M. and Kuffner, J. J. (2001). Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400.

Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. Courier Dover
Publications.

Lawrance, N. R. J. and Sukkarieh, S. (2011). Autonomous exploration of a wind field with
a gliding aircraft. Journal of Guidance, Control, and Dynamics, 34(3):719–733.

Lerner, A., Chrysanthou, Y., and Lischinski, D. (2007). Crowds by example. Computer
Graphics Forum, 26(3):655–664.

Levine, D., Luders, B., and How, J. (2010). Information-rich path planning with general
constraints using rapidly-exploring random trees. In AIAA Infotech@ Aerospace, page
3360.

Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., and Thrun, S. (2005). Anytime
dynamic A*: An anytime, replanning algorithm. In Proc. of International Conference
on Automated Planning and Scheduling (ICAPS), pages 262–271.

Lim, Z., Hsu, D., and Lee, W. (2016). Adaptive informative path planning in metric
spaces. International Journal of Robotics Research, 35(5):585–598.

Lindhé, M. and Johansson, K. H. (2013). Exploiting multipath fading with a mobile
robot. International Journal of Robotics Research, 32(12):1363–1380.

Lindhé, M. M. (2012). Communication-Aware Motion Planning for Mobile Robots. PhD
thesis, KTH Royal Institue of Technology, Sweden.

List of References 230

Liu, L., Michael, N., and Shell, D. A. (2015). Communication constrained task allocation
with optimized local task swaps. Autonomous Robots, 39(3):429–444.

Liu, Y. and Weisberg, R. H. (2011). A review of self-organizing map applications in
meteorology and oceanography. In Self Organizing Maps - Applications and Novel
Algorithm Design, chapter 14, pages 254–272. InTech.

MacDonald, R. A. and Smith, S. L. (2018). Active sensing for motion planning in
uncertain environments via mutual information policies. International Journal of
Robotics Research. doi:10.1177/0278364918772024.

Maddalena, L. and Petrosino, A. (2008). A self-organizing approach to background
subtraction for visual surveillance applications. IEEE Transactions on Image
Processing, 17(7):1168–1177.

Marchant, R., Ramos, F., and Sanner, S. (2014). Sequential Bayesian optimisation for
spatial-temporal monitoring. In Proc. of Conference on Uncertainty in Artificial
Intelligence (UAI).

Martens, W., Poffet, Y., Soria, P. R., Fitch, R., and Sukkarieh, S. (2017). Geometric
priors for Gaussian process implicit surfaces. IEEE Robotics and Automation Letters,
2(2):373–380.

Mathew, N., Smith, S. L., and Waslander, S. L. (2013). A graph-based approach to
multi-robot rendezvous for recharging in persistent tasks. In Proc. of IEEE
International Conference on Robotics and Automation (ICRA), pages 3497–3502.

Maturana, D., Arora, S., and Scherer, S. (2017). Looking forward: A semantic mapping
system for scouting with micro-aerial vehicles. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6691–6698.

McCammon, S. and Hollinger, G. A. (2018). Topological hotspot identification for
informative path planning with a marine robot. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA), pages 1–9.

Mehlhorn, K. and Sanders, P. (2008). Algorithms and Data Structures, chapter Generic
Approaches to Optimization, pages 233–262. Springer.

Merino, L., Caballero, F., Martínez-de Dios, J. R., Maza, I., and Ollero, A. (2012). An
unmanned aircraft system for automatic forest fire monitoring and measurement.
Journal of Intelligent & Robotic Systems, 65(1):533–548.

Moloney, D. and Suarez, O. D. (2015). A vision for the future [soapbox]. IEEE Consumer
Electronics Magazine, 4(2):40–45.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38.

List of References 231

Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S.,
Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M., and Kawatsuma, S. (2013).
Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power
plants using mobile rescue robots. Journal of Field Robotics, 30(1):44–63.

Naseer, T., Sturm, J., and Cremers, D. (2013). FollowMe: Person following and gesture
recognition with a quadrocopter. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 624–630.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations
for maximizing submodular set functions–I. Mathematical Programming, 14(1):265–294.

Nguyen, J., Lawrance, N., Fitch, R., and Sukkarieh, S. (2015). Real-time path planning
for long-term information gathering with an aerial glider. Autonomous Robots,
40(6):1017–1039.

Nieto-Granda, C., Rogers, J., and Christensen, H. (2014). Coordination strategies for
multi-robot exploration and mapping. International Journal of Robotics Research,
33(4):519–533.

Nishimura, H. and Schwager, M. (2018). Active motion-based communication for robots
with monocular vision. In Proc. of IEEE International Conference on Robotics and
Automation (ICRA), pages 2948–2955.

Noon, C. E. and Bean, J. C. (1989). An efficient transformation of the generalized
traveling salesman problem. Technical Report 89–36, Department of Industrial and
Operations Engineering, University of Michigan.

Nuske, S., Choudhury, S., Jain, S., Chambers, A., Yoder, L., Scherer, S., Chamberlain, L.,
Cover, H., and Singh, S. (2015). Autonomous exploration and motion planning for an
unmanned aerial vehicle navigating rivers. Journal of Field Robotics, 32(8):1141–1162.

Oksanen, T. and Visala, A. (2009). Coverage path planning algorithms for agricultural
field machines. Journal of Field Robotics, 26(8):651–668.

Oliehoek, F. A. and Amato, C. (2016). A Concise Introduction to Decentralized POMDPs.
Springer.

Omidshafiei, S., Agha-Mohammadi, A.-A., Amato, C., Liu, S.-Y., How, J. P., and Vian, J.
(2017). Decentralized control of multi-robot partially observable Markov decision
processes using belief space macro-actions. International Journal of Robotics Research,
36(2):231–258.

Ondruska, P., Gurau, C., Marchegiani, L., Tong, C. H., and Posner, I. (2015). Scheduled
perception for energy-efficient path following. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA), pages 4799–4806.

Otte, M. and Correll, N. (2013). Any-com multi-robot path-planning: Maximizing
collaboration for variable bandwidth. In Distributed Autonomous Robotic Systems: The
10th International Symposium, pages 161–173. Springer Berlin Heidelberg.

List of References 232

Otte, M., Kuhlman, M., and Sofge, D. (2017). Multi-robot task allocation with auctions
in harsh communication environments. In Proc. of International Symposium on
Multi-Robot and Multi-Agent Systems (MRS), pages 32–39.

Pajarinen, J. and Kyrki, V. (2015). Decision making under uncertain segmentations. In
Proc. of IEEE International Conference on Robotics and Automation (ICRA), pages
1303–1309.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of Markov decision
processes. Mathematics of operations research, 12(3):441–450.

Patten, T. (2017). Active Object Classification from 3D Range Data with Mobile Robots.
PhD thesis, The University of Sydney.

Patten, T., Fitch, R., and Sukkarieh, S. (2013). Large-scale near-optimal decentralised
information gathering with multiple mobile robots. In Proc. of ARAA Australasian
Conference on Robotics and Automation (ACRA).

Patten, T., Kassir, A., Martens, W., Douillard, B., Fitch, R., and Sukkarieh, S. (2015). A
Bayesian approach for time-constrained 3D outdoor object recognition. In Proc. of
ICRA 2015 Workshop on Scaling Up Active Perception.

Patten, T., Martens, W., and Fitch, R. (2018). Monte Carlo planning for active object
classification. Autonomous Robots, 42(2):391–421.

Patten, T., Zillich, M., Fitch, R., Vincze, M., and Sukkarieh, S. (2016). Viewpoint
evaluation for online 3-D active object classification. IEEE Robotics and Automation
Letters, 1(1):73–81.

Paul, G., Webb, S., Liu, D., and Dissanayake, G. (2011). Autonomous robot
manipulator-based exploration and mapping system for bridge maintenance. Robotics
and Autonomous Systems, 59(7):543–554.

Pellegrini, S., Ess, A., Schindler, K., and Van Gool, L. (2009). You’ll never walk alone:
Modeling social behavior for multi-target tracking. In Proc. of IEEE International
Conference on Computer Vision (ICCV), pages 261–268.

Peng, C., Roy, P., Luby, J., and Isler, V. (2016). Semantic mapping of orchards.
IFAC-PapersOnLine, 49(16):85–89.

Penumarthi, P. K., Li, A. Q., Banfi, J., Basilico, N., Amigoni, F., O’Kane, J., Rekleitis, I.,
and Nelakuditi, S. (2017). Multirobot exploration for building communication maps
with prior from communication models. In Proc. of International Symposium on
Multi-Robot and Multi-Agent Systems (MRS), pages 90–96.

Peynot, T., Lui, S.-T., McAllister, R., Fitch, R., and Sukkarieh, S. (2014). Learned
stochastic mobility prediction for planning with control uncertainty on unstructured
terrain. Journal of Field Robotics, 31(6):969–995.

List of References 233

Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry: An Introduction.
Springer.

Presman, E. L. and Sonin, I. M. (1972). The best choice problem for a random number of
objects. Theory of Probability and its Applications, 17:695–706.

Quattrini Li, A., Cipolleschi, R., Giusto, M., and Amigoni, F. (2016). A
semantically-informed multirobot system for exploration of relevant areas in search and
rescue settings. Autonomous Robots, 40(4):581–597.

Rahmattalabi, A., Chung, J. J., Colby, M., and Tumer, K. (2016). D++: Structural credit
assignment in tightly coupled multiagent domains. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4424–4429.

Ramon Soria, P., Sukkar, F., Martens, W., Arrue, B. C., and Fitch, R. (2018). Multi-view
probabilistic segmentation of pome fruit with a low-cost RGB-D camera. In Proc. of
Iberian Robotics Conference (ROBOT), pages 320–331.

Ramos, F. and Ott, L. (2016). Hilbert maps: Scalable continuous occupancy mapping
with stochastic gradient descent. International Journal of Robotics Research,
35(14):1717–1730.

Rao, D. and Williams, S. B. (2009). Large-scale path planning for underwater gliders in
ocean currents. In Proc. of ARAA Australasian Conference on Robotics and
Automation (ACRA).

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning.
MIT Press.

Reece, S. and Roberts, S. (2010). The near constant acceleration Gaussian process kernel
for tracking. IEEE Signal Processing Letters, 17(8):707–710.

Reymann, C., Renzaglia, A., Lamraoui, F., Bronz, M., and Lacroix, S. (2018). Adaptive
sampling of cumulus clouds with uavs. Autonomous Robots, 42(2):491–512.

Rezek, I., Leslie, D. S., Reece, S., Roberts, S. J., Rogers, A., Dash, R. K., and Jennings,
N. R. (2008). On similarities between inference in game theory and machine learning.
Journal of Artificial Intelligence Research, 33:259–283.

Roberts, J., Frousheger, D., Williams, B., Campbell, D., and Walker, R. (2016). How the
outback challenge was won: The motivation for the UAV challenge outback rescue, the
competition mission, and a summary of the six events. IEEE Robotics Automation
Magazine, 23(4):54–62.

Robin, C. and Lacroix, S. (2015). Multi-robot target detection and tracking: Taxonomy
and survey. Autonomous Robots, 40(4):729–760.

Robinson, H., MacDonald, B., and Broadbent, E. (2014). The role of healthcare robots for
older people at home: A review. International Journal of Social Robotics, 6(4):575–591.

List of References 234

Russell, S. J. and Norvig, P. (2010). Artificial intelligence: A modern approach, volume 3.
Pearson.

Sabattini, L., Chopra, N., and Secchi, C. (2013). Decentralized connectivity maintenance
for cooperative control of mobile robotic systems. International Journal of Robotics
Research, 32(12):1411–1423.

Saska, M., Vonásek, V., Krajnik, T., and Preucil, L. (2014). Coordination and navigation
of heterogeneous MAV-UGV formations localized by a ‘hawk-eye’-like approach under a
model predictive control scheme. International Journal of Robotics Research,
33(10):1393–1412.

Scherer, S., Chamberlain, L., and Singh, S. (2012). Autonomous landing at unprepared
sites by a full-scale helicopter. Robotics and Autonomous Systems, 60(12):1545–1562.

Schreier, M., Willert, V., and Adamy, J. (2014). Bayesian, maneuver-based, long-term
trajectory prediction and criticality assessment for driver assistance systems. In Proc. of
IEEE International Conference on Intelligent Transportation Systems (ITSC), pages
334–341.

Schwartz, J. T. and Sharir, M. (1983). On the piano movers’ problem: III. Coordinating
the motion of several independent bodies: The special case of circular bodies moving
amidst polygonal barriers. International Journal of Robotics Research, 2(3):46–75.

Schwarz, M., Milan, A., Periyasamy, A. S., and Behnke, S. (2018). RGB-D object
detection and semantic segmentation for autonomous manipulation in clutter.
International Journal of Robotics Research, 37(4-5):437–451.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den
Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of Go without
human knowledge. Nature, 550(7676):354–359.

Silver, D. and Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Lafferty,
J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors,
Advances in Neural Information Processing Systems 23, pages 2164–2172. Curran
Associates, Inc.

Singh, A., Krause, A., Guestrin, C., and Kaiser, W. J. (2009a). Efficient informative
sensing using multiple robots. Journal of Artificial Intelligence Research, 34(2):707.

Singh, A., Krause, A., Guestrin, C., Kaiser, W. J., and Batalin, M. A. (2007). Efficient
planning of informative paths for multiple robots. In Proc. of International Joint
Conference on Artificial Intelligence (IJCAI), volume 7, pages 2204–2211.

List of References 235

Singh, A., Krause, A., and Kaiser, W. J. (2009b). Nonmyopic adaptive informative path
planning for multiple robots. In Proc. of International Joint Conference on Artificial
Intelligence (IJCAI), pages 1043–1050.

Slade, P., Culbertson, P., Sunberg, Z., and Kochenderfer, M. J. (2017). Simultaneous
active parameter estimation and control using sampling-based Bayesian reinforcement
learning. In Proc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 804–810.

Slaughter, D., Giles, D., and Downey, D. (2008). Autonomous robotic weed control
systems: A review. Computers and Electronics in Agriculture, 61(1):63–78.

Smith, A. J., Best, G., Yu, J., and Hollinger, G. A. (2018). Real-time distributed
non-myopic task selection for heterogeneous robotic teams. Autonomous Robots.
doi:10.1007/s10514-018-9811-9.

Smith, A. J. and Hollinger, G. A. (2018). Distributed inference-based multi-robot
exploration. Autonomous Robots.

Smith, S. L. and Imeson, F. (2017). GLNS: An effective large neighborhood search
heuristic for the generalized traveling salesman problem. Computers & Operations
Research, 87:1–19.

Solovey, K., Salzman, O., and Halperin, D. (2016). Finding a needle in an exponential
haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion
planning. International Journal of Robotics Research, 35(5):501–513.

Somani, A., Ye, N., Hsu, D., and Lee, W. S. (2013). DESPOT: Online POMDP planning
with regularization. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 26,
pages 1772–1780. Curran Associates, Inc.

Somers, T. and Hollinger, G. A. (2016). Human–robot planning and learning for marine
data collection. Autonomous Robots, 40(7):1123–1137.

Somhom, S., Modares, A., and Enkawa, T. (1997). A self-organising model for the
travelling salesman problem. Journal of the Operational Research Society,
48(9):919–928.

Spaan, M. T. J., Gordon, G. J., and Vlassis, N. (2006). Decentralized planning under
uncertainty for teams of communicating agents. In Proc. of International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Steinberg, D., Friedman, A., Pizarro, O., and Williams, S. B. (2011). A bayesian
nonparametric approach to clustering data from underwater robotic surveys. In Proc. of
International Symposium on Robotics Research (ISRR), pages 1–16.

Stranders, R., Farinelli, A., Rogers, A., and Jennings, N. (2009). Decentralised
coordination of mobile sensors using the max-sum algorithm. In Proc. of International
Joint Conference on Artificial Intelligence (IJCAI), pages 299–304.

List of References 236

Sukkar, F., Best, G., and Fitch, R. (2018). Decentralised and nonmyopic next best view
planning for reconstructing sparse regions of interest. In Proc. of IROS 2018 Second
Workshop on Multi-robot Perception-Driven Control and Planning.

Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B.,
Abbeel, P., Burgard, W., Milford, M., and Corke, P. (2018). The limits and potentials of
deep learning for robotics. International Journal of Robotics Research, 37(4-5):405–420.

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer.

Tabib, W., Corah, M., Michael, N., and Whittaker, R. (2016). Computationally efficient
information-theoretic exploration of pits and caves. In Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3722–3727.

Thomas, J. A., Moss, C. F., and Vater, M. (2004). Echolocation in bats and dolphins.
University of Chicago Press.

Tokekar, P., Bhadauria, D., Studenski, A., and Isler, V. (2010). A robotic system for
monitoring carp in minnesota lakes. Journal of Field Robotics, 27(6):779–789.

Toth, P. and Vigo, D., editors (2001). The vehicle routing problem. Society for Industrial
and Applied Mathematics, Philadelphia.

Traniello, J. F. A. (1989). Foraging strategies of ants. Annual Review of Entomology,
34(1):191–210.

Trautman, P., Ma, J., Murray, R., and Krause, A. (2013). Robot navigation in dense
human crowds: The case for cooperation. In Proc. of IEEE International Conference on
Robotics and Automation (ICRA), pages 2153–2160.

Trautman, P., Ma, J., Murray, R. M., and Krause, A. (2015). Robot navigation in dense
human crowds: Statistical models and experimental studies of human-robot
cooperation. International Journal of Robotics Research, 34(3):335–356.

Tucci, M. and Raugi, M. (2010). Stability analysis of self-organizing maps and vector
quantization algorithms. In Proc. of International Joint Conference on Neural Networks
(IJCNN), pages 1–5.

Unhelkar, V. V. and Shah, J. A. (2016). ConTaCT: Deciding to communicate during
time-critical collaborative tasks in unknown, deterministic domains. In Proc. of AAAI
Conference on Artificial Intelligence.

van Hoof, H., Kroemer, O., and Peters, J. (2014). Probabilistic segmentation and targeted
exploration of objects in cluttered environments. IEEE Transactions on Robotics,
30(5):1198–1209.

Vansteenwegen, P., Souffriau, W., and Oudheusden, D. V. (2011). The orienteering
problem: A survey. European Journal of Operational Research, 209(1):1–10.

Vazirani, V. (2001). Approximation algorithms. Springer.

List of References 237

Vincent, R., Fox, D., Ko, J., Konolige, K., Limketkai, B., Morisset, B., Ortiz, C., Schulz,
D., and Stewart, B. (2008). Distributed multirobot exploration, mapping, and task
allocation. Annals of Mathematics and Artificial Intelligence, 52(2):229–255.

Švec, P., Thakur, A., Raboin, E., Shah, B. C., and Gupta, S. K. (2014). Target following
with motion prediction for unmanned surface vehicle operating in cluttered
environments. Autonomous Robots, 36(4):383–405.

Waldock, A. and Nicholson, D. (2007). Cooperative decentralised data fusion using
probability collectives. In Proc. of AAMAS Workshop on Agent Technology for Sensor
Networks.

Wang, N., Zhang, N., and Wang, M. (2006). Wireless sensors in agriculture and food
industry—recent development and future perspective. Computers and Electronics in
Agriculture, 50(1):1–14.

Wang, Z., Mülling, K., Deisenroth, M. P., Ben Amor, H., Vogt, D., Schölkopf, B., and
Peters, J. (2013). Probabilistic movement modeling for intention inference in
human-robot interaction. International Journal of Robotics Research, 32(7):841–858.

Whitcomb, L. L., Jakuba, M. V., Kinsey, J. C., Martin, S. C., Webster, S. E., Howland,
J. C., Taylor, C. L., Gomez-Ibanez, D., and Yoerger, D. R. (2010). Navigation and
control of the Nereus hybrid underwater vehicle for global ocean science to 10,903 m
depth: Preliminary results. In Proc. of IEEE International Conference on Robotics and
Automation (ICRA), pages 594–600.

Williams, S. B., Pizarro, O., and Foley, B. (2015). Return to Antikythera: Multi-session
SLAM based AUV mapping of a first century BC wreck site. In Proc. of Field and
Service Robotics (FSR).

Williams, S. B., Pizarro, O. R., Jakuba, M. V., Johnson, C. R., Barrett, N. S., Babcock,
R. C., Kendrick, G. A., Steinberg, P. D., Heyward, A. J., Doherty, P. J., Mahon, I.,
Johnson-Roberson, M., Steinberg, D., and Friedman, A. (2012). Monitoring of benthic
reference sites: Using an autonomous underwater vehicle. IEEE Robotics and
Automation Magazine, 19(1):73–84.

Williamson, S., Gerding, E., and Jennings, N. (2008). A principled information valuation
for communications during multi-agent coordination. In Proc. of AAMAS Workshop on
Multi-Agent Sequential Decision Making in Uncertain Domains, pages 137–151.

Witt, J. and Dunbabin, M. (2008). Go with the flow: Optimal AUV path planning in
coastal environments. In Proc. of ARAA Australasian Conference on Robotics and
Automation (ACRA).

Wohlkinger, W., Aldoma, A., Rusu, R. B., and Vincze, M. (2012). 3DNet: Large-scale
object class recognition from CAD models. In Proc. of IEEE International Conference
on Robotics and Automation (ICRA), pages 5384–5391.

List of References 238

Wohlkinger, W. and Vincze, M. (2011). Ensemble of shape functions for 3D object
classification. In Proc. of IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 2987–2992.

Wolf, M. T., Rahmani, A., de la Croix, J.-P., Woodward, G., Hook, J. V., Brown, D.,
Schaffer, S., Lim, C., Bailey, P., Tepsuporn, S., Pomerantz, M., Nguyen, V., Sorice, C.,
and Sandoval, M. (2017). CARACaS multi-agent maritime autonomy for unmanned
surface vehicles in the Swarm II harbor patrol demonstration. In Proc. of Unmanned
Systems Technology XIX, volume 10195, pages 10195 – 10195 – 11.

Wolpert, D. H. and Bieniawski, S. (2004). Distributed control by Lagrangian steepest
descent. In Proc. of IEEE Conference on Decision and Control (CDC), pages
1562–1567.

Wolpert, D. H., Bieniawski, S. R., and Rajnarayan, D. G. (2013). Handbook of Statistics
31: Machine Learning: Theory and Applications, chapter Probability collectives in
optimization, pages 61–99. Elsevier.

Wolpert, D. H., Strauss, C. E. M., and Rajnarayan, D. (2006). Advances in distributed
optimization using probability collectives. Advances in Complex Systems,
09(04):383–436.

Wu, K., Ranasigne, R., and Dissanayake, G. (2015). Active recognition and pose
estimation of household objects in clutter. In Proc. of IEEE International Conference
on Robotics and Automation (ICRA), pages 4230–4237.

Xing, E. P., Jordan, M. I., and Russell, S. (2004). Graph partition strategies for
generalized mean field inference. In Proc. of Conference on Uncertainty in Artificial
Intelligence (UAI), pages 602–610.

Xu, Z., Fitch, R., Underwood, J., and Sukkarieh, S. (2013). Decentralized coordinated
tracking with mixed discrete-continuous decisions. Journal of Field Robotics,
30(5):717–740.

Yamaguchi, K., Berg, A., Ortiz, L., and Berg, T. (2011). Who are you with and where are
you going? In Proc. of Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1345–1352.

Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proc. of
International Conference on Autonomous Agents (AGENTS), pages 47–53.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free-energy
approximations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282–2312.

Yilmaz, N. K., Evangelinos, C., Lermusiaux, P. F. J., and Patrikalakis, N. M. (2008).
Path planning of autonomous underwater vehicles for adaptive sampling using mixed
integer linear programming. IEEE Journal of Oceanic Engineering, 33(4):522–537.

List of References 239

Yu, J. and LaValle, S. M. (2016). Optimal multirobot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Transactions on Robotics, 32(5):1163–1177.

Yu, J., Schwager, M., and Rus, D. (2016). Correlated orienteering problem and its
application to persistent monitoring tasks. IEEE Transactions on Robotics,
32(5):1106–1118.

Zhang, W. D., Bai, Y. P., and Hu, H. P. (2006). The incorporation of an efficient
initialization method and parameter adaptation using self-organizing maps to solve the
TSP. Applied Mathematics and Computation, 172(1):603 – 623.

Zlot, R., Stentz, A., Dias, M., and Thayer, S. (2002). Multi-robot exploration controlled
by a market economy. In Proc. of IEEE International Conference on Robotics and
Automation (ICRA), pages 3016–3023.

Appendix A

Intention inference model for
trajectory prediction

In this appendix we present a trajectory prediction algorithm that makes predictions
by first inferring the plan of an agent. While this problem, as presented here, is not an
active perception problem, it may serve as a dynamics prediction model for problems
such as target tracking, or as an inference model for inferring the plans of other agents
in a multi-robot team. The model presented here was used as an example prediction
model in the mission monitoring experiments described in Section 5.8.2.

A.1 Introduction

A wide variety of application areas such as agriculture, defence and domestic service
involve robots that must operate alongside people, animals, human-driven vehicles
and other robots. One core capability of these robots is to be able to predict the
future trajectories of fellow moving agents (Bandyopadhyay et al., 2012; Aoude et al.,
2013; Chiang et al., 2014; Kim et al., 2015; Schreier et al., 2014), at a minimum
for implementing successful collision avoidance. Incorrect predictions can result in
collisions while imprecise predictions can impact the robot’s ability to satisfy its
primary objectives. We are interested in exploiting the context of the application, in
the form of the agent’s intent, to improve trajectory prediction.

A.1 Introduction 241

Figure A.1 – Example agent (orange) moving through an environment with static
obstacles (grey), from top left to the centre. The algorithm predicts it will next
move to the right or downwards with some probability (blue). The intended goal is
estimated to most likely be one of the darker green regions at the bottom right.

Models that predict the motion of dynamic agents critically rely on contextual as-
sumptions. Examples of common simple assumptions include near-constant velocity
or acceleration and predefined trajectories. However these simple assumptions can
lead to weak predictors in complex environments populated by many obstacles and
unknown factors that may influence the agent’s short-term behaviour. More complex
contextual assumptions, such as the agent’s intent, allow for reasoning about the in-
teraction between the agent and its environment over a long time period and thus
can lead to more robust predictors. We provide an extended discussion and review of
these assumptions in Section 2.1.2.

We consider the case where an agent is driven by the high-level intention to move to
some unknown goal region within a cluttered environment, and is rational in the sense
that it aims take a short path. This case occurs in many scenarios such as pedestrians
walking through a train station or robots delivering packages. The agent’s intention
is initially unknown, but can be estimated given previous observations of the agent’s
motion and a map of the environment. An example is shown in Figure A.1. The
challenge is how to develop a probabilistic formulation of this estimation problem
along with computationally efficient solutions.

We approach the trajectory prediction problem using a novel mathematical formula-
tion that first estimates the agent’s intention and then uses the resulting probability
distribution to predict the position of the agent in the future. Central to our for-

A.2 Problem formulation 242

mulation is a probabilistic dynamics model that is used to compute a probability
distribution representing the next position of the agent conditional on the current
position and intention. The intention inference phase employs a Bayesian estima-
tion framework that can be computed efficiently. The trajectory prediction phase
extrapolates the agent’s position recursively, but is difficult to solve analytically. We
therefore propose a probabilistic roadmap discretisation of the environment and a
Monte Carlo sampling technique that converges to the true predictive distribution
as more sample paths are drawn. We show empirically that the technique converges
with few samples and performs efficiently in practice.

We demonstrate the behaviour of our algorithms in the scenario of predicting paths of
pedestrians moving through a busy environment, using a real-world dataset with 442
pedestrian trajectories. Results show that our method results in high accuracy and
prediction certainty compared to a method that does not consider the intention of
the agent. Our results also demonstrate the feasibility of our method for integration
with collision avoidance and other types of planning algorithms.

A.2 Problem formulation

We address the problem of predicting the future trajectory of an intelligent agent. We
consider the case where the agent has a higher-level intention to move to a goal region
of the environment, which is only known to the agent itself. The agent is assumed to
take the shortest path to the goal region with some uncertainty while avoiding static
obstacles.

More formally, at time ti we seek to estimate the position X of the agent at time steps
ti+1, ti+2, ..., ti+k := ti+1:i+k. The position estimates are described by the probability
distributions Pr(Xi+1),Pr(Xi+2), ...,Pr(Xi+k). The estimates are calculated based on
the observed sequence of positions of the agent x1, x2, ..., xi, and therefore is described
by the conditional distribution Pr(Xi+j | X1:i = x1:i).

The agent moves through a bounded environment Ψ that contains known static ob-
stacles, (e.g., the grey obstacles in Figure A.1). The agent is assumed to navigate
around the static obstacles and the set of all feasible positions of the agent is denoted

A.2 Problem formulation 243

· · · Xi Xi+1 Xi+2 · · ·

θ

Figure A.2 – Graphical model of the agent’s trajectory. The previous and current posi-
tions (X1, X2, ..., Xi) are fully observable, while the future positions (Xi+1, Xi+2, ...)
are to be predicted. The trajectory is conditional on the intention of the agent which
is described by the latent variable θ.

xi ∈ X . For the sake of notation we assume the space X has been sufficiently dis-
cretised. The speed of the agent at time ti is assumed to be drawn from a normal
distribution with known parameters |Ẋi| ∼ N (µ, σ2). It is assumed that the agent is
holonomic, however the proposed approach can be generalised for motion models of
non-holonomic agents.

A.2.1 Intention of the agent

The agent’s trajectory is conditional on the intention of the agent which is only
known to the agent itself. We describe this intention by the latent variable θ, and the
trajectory of the agent is conditional on θ as depicted in Figure A.2. If θ is known
precisely then this information can be used to give a more accurate estimate of the
trajectory.

We assume that the agent’s intention is to move along a path to a particular region θ
within the environment. The goal region θ is one of finitely many predefined regions
θ1, θ2, ... ∈ Θ, such that each θη ⊂ X .

A.2.2 Probabilistic dynamics model

We assume that the agent will most likely take the shortest path to the goal region,
with some uncertainty as described by the following transition model. The shortest
path is calculated by taking into account the set of known static obstacles. We use
δ(a, b) to denote the distance of the shortest path from position a to position or region

A.2 Problem formulation 244

xi

Xi+1

θη

δ(xi, Xi+1)

δ(xi, θη)

δ(Xi+1, θη)

Figure A.3 – An illustration of the probabilistic dynamics model. The next posi-
tion Xi+1 along the trajectory relative to the shortest path (blue) from the current
position xi to a known goal region θη. The new path distance is δ(xi, Xi+1, θη) =
δ(xi, Xi+1) + δ(Xi+1, θη).

b. Similarly, δ(a, b, c) = δ(a, b)+ δ(b, c) denotes the distance of the shortest path from
a to c that passes through b.

We define the probability distribution for the position at the next timestep as being
exponential in the negative of the increase in the shortest path distance to a given
goal θη:

Pr(Xi+1 | Xi = xi, θ = θη) := K−1 exp
[
− α

(
δ (xi, Xi+1, θη) − δ (xi, θη)

)]
. (A.1)

The normalising constant K is defined as

K =
∑

xi+1∈χ+

Pr(Xi+1 = xi+1 | Xi = xi, θ = θη), (A.2)

where χ+ ⊂ X is the set of all xi+1 that can be reached from xi in one time step.

Figure A.3 illustrates the two path distances in (A.1).

This proposed model specifies that, for a given goal, movements that lead to shorter
paths are more likely, while movements that result in longer paths are less likely. We
wish to emphasise that this intuition is for a given goal and therefore it does not
follow that the agent’s intention is necessarily more likely to be a closer goal region
than a further region.

The parameter α describes how likely the agent is to take the shortest path to the goal
region. The value is constrained to α > 0. As α→∞, the agent will almost certainly
take the shortest possible path to the goal. Conversely, as α → 0, all possible paths
to the goal are equally likely. The most appropriate value of α may be selected based

A.3 Bayesian trajectory prediction 245

on training trajectories or vary according to other factors in the environment, such
as the presence of other agents. We assume α is known and fixed, but we leave this
open to future work.

A.3 Bayesian trajectory prediction

We formulate a Bayesian estimation framework based on the graphical model in
Figure A.2. At each timestep we first update an estimate of the intention θ and then
use this to update the predicted future trajectory of the agent.

A.3.1 Joint distribution

The probability distribution for the estimate of position Xi+1 at time ti is conditional
on the previously observed position Xi = xi and the intention θ of the agent. From
Figure A.2, the joint distribution of the probabilistic model is given as

Pr(X1:i, Xi+1:i+k, θ) = Pr(θ)
i+k−1∏
j=1

Pr(Xj+1 | Xj, θ). (A.3)

A.3.2 Intention inference

The probability distribution for the estimate of θ given the observed trajectory x1:i

up to time ti can be calculated using Bayes’ theorem and applying the Markov as-
sumption of the graphical model, such that the posterior is given by

Pr(θ | X1:i = x1:i) ∝ Pr(Xi = xi | Xi−1 = xi−1, θ) Pr(θ | X1:i−1 = x1:i−1), (A.4)

with a uniform initial distribution Pr(θ | X1 = x1). The first factor in the right
hand side of (A.4) is the likelihood of an observation and can be computed directly
from the transition model (A.1). The second factor is the prior which is recursively
updated as the previous posterior.

A.4 Sampling-based algorithm 246

A.3.3 Trajectory prediction

The future trajectory Xi+1:i+k of the agent is predicted based on the current estimate
for θ (A.4). This is achieved by marginalising the transition model (A.1) over θ, i.e.,
for 1 timestep into the future:

Pr(Xi+1 | X1:i = x1:i) =
∑
θη∈Θ

[
Pr(Xi+1 | Xi = xi, θ = θη) Pr(θ = θη | X1:i = x1:i)

]
.

(A.5)

The first factor in the right hand side can be computed directly from the transition
model (A.1) and the second factor is the estimate of the intention (A.4).

This model is recursively extrapolated j timesteps into the future by marginalising
over all possible unobserved trajectories at each timestep, yielding

Pr(Xi+j+1 | X1:i = x1:i) =∑
xi+j∈χ−

[
Pr(Xi+j+1 | Xi+j = xi+j) Pr(Xi+j = xi+j | X1:i = x1:i)

]
, (A.6)

where the sum argument xi+j ∈ χ− denotes the set of all positions such that Xi+j+1

is reachable from xi+j in one time step. An analytical evaluation of (A.6) is difficult
due to the exponential branching factor |χ| at each timestep. Therefore in the follow-
ing section we propose a sampling technique which iteratively converges to the true
distribution.

A.4 Sampling-based algorithm

In this section we propose an efficient algorithm that outputs probability distribu-
tions for the intention estimates and trajectory predictions based on the theoretical
solution developed in the previous section. The algorithm begin by discretising the
environment and the set of intentions using a graph representation. Prediction is
performed after each position observation Xi = xi in two phases: (1) update the
estimate of the intention Pr(θ | X1:i = x1:i), and (2) perform trajectory prediction

A.4 Sampling-based algorithm 247

Algorithm A.1 Trajectory prediction algorithm.

1: . Precomputation
2: [V, E]← Generate graph (Ψ)
3: θ′η ← {vi : vi ∈ (θη ∩ V)}, ∀θη ∈ Θ
4: {δ(vi, vj)} ← FloydWarshall(V, E)
5: δ(vi, θ′η)← ShortestDistance(vi, {δ(vi, vj)}, θ′η), ∀vi ∈ V, θ′η ∈ Θ′

6: . At each timestep
7: for each ti do
8: Observe Xi = vi

9: . Intention Inference
10: for each θη ∈ Θ do
11: Pr(Xi = vi | Xi−1 = vi−1, θ

′ = θ′η)← (A.1)
12: Pr(θ = θη | X1:i = v1:i)← (A.4)

13: . Trajectory Prediction
14: count(x̂, j)← 0, ∀x̂ ∈ X̂ , j ∈ {i+ 1, ...,maxT ime}
15: for each θη ∈ Θ do

16: . Draw N sample trajectories
17: Nη ← Pr(θ = θη | X1:i = v1:i)×N
18: for each n ∈ 1 : Nη do
19: vi:b ← DrawSamplePath(vi, θ′η)
20: xi+1:i+k ← Interpolate(vi:b)

21: . Bin the samples at each time step
22: for each j ∈ 1 : k do
23: x̂← Round(xi+j)
24: count(x̂, j)← count(x̂, j) + 1

25: Pr(Xj ∈ x̂ | X1:i = v1:i)←
count(x̂, j)

N
, ∀x̂ ∈ X̂ , j ∈ {i+ 1, ...,maxT ime}

by evaluating the distribution Pr(Xi+j+1 | X1:i = x1:i) using Monte Carlo sampling.
Pseudocode for the algorithm is shown in Algorithm A.1.

A.4.1 Precomputation

Discrete roadmap (line 2)

For non-trivial problems, the theoretical equations are computable only when time
is discretised and there exists a finite set of possible transitions at each timestep.
We therefore discretise the environment Ψ into a discrete set of feasible positions

A.4 Sampling-based algorithm 248

vi ∈ V ⊆ X of the agent. Additionally, there is a finite set of feasible transitions
eη = 〈vi, vj〉 ∈ E that describes moving from the position vi to the position vj in
one timestep. The sets (V , E) describe the vertices and edges of a graph that gives
a discrete roadmap representation of the environment. The graph should be formed
such that any path through the environment can be sufficiently approximated by a
path through the graph. For the examples used in Section A.5 we utilise a probabilistic
roadmap (PRM) formulation, however other roadmaps may also be considered.

Set of intentions (line 3)

The problem specification assumes there is a predefined finite set of possible goal
regions θη ∈ Θ. In the graph representation, each region is represented by a set of
vertices

θ′η := {vi : vi ∈ (θη ∩ V)}. (A.7)

A trajectory to a goal region θη is represented as a path through the graph (V , E)
that ends at any vi ∈ θ′η.

Shortest-path distances (lines 4–5)

The intention inference and the sampling both require repeatedly evaluating the short-
est path distances from various vertices to all goals. It is therefore worth precomputing
a database of shortest path distances from every vertex vi ∈ V to every goal θη ∈ Θ.
This can be achieved efficiently using the Floyd-Warshall algorithm (Floyd, 1962).
The distance δ(vi, θη) is evaluated as the distance to the closest vj ∈ θ′η (line 5).

A.4.2 Intention estimates (lines 10–12)

At every time step, the position of the agent is observedXi = xi and the current vertex
vi is chosen as the vi ∈ V which has the closest distance to xi (line 8). This observation
is used to update the intention estimate by directly evaluating and normalising (A.1)
and (A.4) for each θη ∈ Θ.

A.4 Sampling-based algorithm 249

A.4.3 Monte Carlo trajectory prediction (lines 14–25)

The general solution for the trajectory prediction (A.6) is difficult to evaluate due
to the branching factor |χ+| of possible transitions at every step into the future.
Therefore we propose a Monte Carlo sampling technique that converges to the true
distribution as more samples are drawn.

Cells (line 14)

Firstly, the space X is partitioned into small cells x̂ ∈ X̂ . The probability distribution
Pr(Xj | X1:i = x1:i) for a time tj in the future will be estimated over these cells
Pr(Xj ∈ x̂ | X1:i = v1:i), ∀x̂ ∈ X̂ . The partitioning structure and resolution may be
chosen appropriately based on the application. The examples use a uniformly-spaced
grid covering the environment.

Draw sample paths (lines 15–24)

The sampling proceeds by drawing N sample trajectories from vi to a goal θη. The
number of samples Nη allocated to each θη is proportional to the posterior probability
of θ = θη (line 17). Note that each sample may be computed in parallel.

A sample path from vi to θ′η is drawn by recursively following edges 〈vi, vj〉, where
each vj is drawn from the probabilistic transition model distribution (A.1), given a
fixed goal region θ′η (line 19). In other words, sample paths are random walks over
the graph that bias towards shorter paths to the goal region θ′η. Given that the
transition model specifies that shorter paths are more likely (for a given goal region),
the recursion should always quickly reach θ′η. However, an upper bound |vi:b| < U on
the number of iterations before halting a path may be required for some environments,
and is reasonable since most applications are only interested in predicting up to some
fixed time horizon.

Each sample path vi:b is mapped to a sample trajectory defined as a set of positions
xi+1:i+k at evenly spaced timesteps (line 20). This interpolation takes into account
the probabilistic speed model by drawing from the velocity distribution distribution

A.5 Experiments 250

|Ẋ| given in the problem specification. It is assumed that after the agent reaches θη
at time ti+k it is no longer relevant, for example because it then moves beyond the
boundary of the environment.

Trajectory prediction distributions (lines 22–25)

For every xj ∈ xi+1:i+k of a sample trajectory, the algorithm finds the cell x̂ where
xj ∈ x̂. A counter corresponding to the cell x̂ and time tj is incremented by 1 (line 24).
Each counter represents the number of times that cell x̂ is visited at time tj by the
N sample trajectories. The probability distribution at each time tj in the future is
therefore evaluated by dividing by the total number of samples (line 25).

A.4.4 Analysis

The estimated trajectory prediction distribution will converge towards the true dis-
tribution (A.6) as the number of vertices in the PRM increases and as the number
of sample paths drawn for the sampling method increases. We empirically show con-
vergence of the distribution as the number of samples increases in the experimental
section.

The worst-case time complexity for the offline precomputation is cubic in the number
of vertices of the PRM and the online trajectory prediction at each timestep is linear
in the number of samples. More formally, we denote B as the maximum number of
edges out of any vertex and R as the interpolation rate of the sample paths. The offline
precomputation phase is dominated by building the spanning trees from all vertices
which has complexity O(|V|3). Computation after each observation has complexity
for: updating the posterior of the intention inference O(B|Θ|), evaluating N sample
paths O(N(BU +RU)), evaluating the resulting prediction distributions O(|X̂ |) and
therefore a total complexity of O(B|Θ|+N(B U +RU) + |X̂ |), which in most cases
will be dominated by O(NB U) since |Θ| and |X̂ | are typically smaller than N .

A.5 Experiments 251

(a) Time 1 (b) Time 4 (c) Time 7 (d) Time 10

(e) Time 13 (f) Time 16 (g) Time 19 (h) Time 20

Figure A.4 – Agent (orange) moving through a simulated environment with static
obstacles (grey), from top left to middle right. There are 16 goal regions (green)
evenly spaced around the boundary; dark goals have a high posterior probability
while light goals have a low posterior probability. The path prediction is shown in
blue; the shade of blue is proportional to the probability that x̂ is visited by the
agent at any time in the future. Note that this figure accumulates over all future
time steps, while Figure A.5 depicts single timesteps in the future. The probabilities
between adjacent cells have been interpolated.

A.5 Experiments

In this section we present experimental results to give an intuitive understanding of
the algorithm, show its feasibility in practice for predicting human movements using
a real-world pedestrian dataset and highlight advantages of the proposed intention
inference concept over predictions that do not consider the agent’s intention.

A.5.1 Simulated environment

Figure A.4 shows a simulated agent moving from top left to middle right through
an environment with 16 goal regions around the boundary. Figure A.4 shows the
distribution of the trajectory prediction accumulated over all future timesteps, while
Figure A.5 demonstrates how the algorithm gives probability distributions for indi-
vidual timesteps in the future. The information shown in these figures can be used

A.5 Experiments 252

(a) Prediction for time 11 (b) Prediction for time 13

(c) Prediction for time 15 (d) Prediction for time 18

Figure A.5 – Same trajectory prediction as shown in Figure A.4d (time 10) but in
this case the predicted position is shown for single timesteps in the future.

by another agent to avoid collisions with the dynamic agent who’s trajectory is be-
ing predicted. The other agent should avoid the blue areas at particular times since
otherwise there is some probability that a collision would occur.

We analyse the behaviour of the algorithm in this example as follows. (a) At time 1,
the goal regions have a uniform prior and therefore the trajectory prediction almost
covers the entire environment. (b) By time 4, the agent has started moving towards
the right rather than downwards, and therefore the goal regions on the right side
of the map now have a larger posterior probability and the trajectory has a higher
density in this direction. (c) At time 7, the goal regions at the top and right of the
map have a similar posterior probability, but the following movement (d) suggests
that the top regions are unlikely. (e) The downward movement towards the centre
suggests the agent is moving towards the bottom right, however it is not yet clear
which direction it will move around the bottom right obstacle. (f)–(h) As the agent
moves closer to the actual goal region, the predicted trajectory converges towards the
actual trajectory. This increased certainty is due to the increasing posterior intention
probability for the actual goal region. (h) At the end of the actual path, there is still

A.5 Experiments 253

some probability that the agent will continue moving downwards to the bottom right
region.

Figure A.5 shows the predicted position distribution at individual timesteps in the
future from the same observed position as Figure A.4d. These figures show how the
uncertainty in position increases when extrapolating to timesteps further ahead in
the future. For the purpose of dynamic-obstacle collision avoidance, the predictions
presented in this form shows how the algorithm can be used to tell another agent the
probability of a collision at a particular time and position.

In this example the environment was represented using a 1,000 vertices PRM with
edges between all pairs of vertices that are straight line visible and have a distance
less than one-tenth the width of the environment. The trajectory prediction used X̂
chosen as a grid of 20×20 cells. Each prediction step used 1,000 sample paths, which
takes approximately 500ms. using un-optimised code and performed in parallel on a
standard 4-core desktop processor. The distribution converges as more samples are
taken, however with 1,000 samples the distribution has a mean squared error of 10−5

relative to a 100,000 sample distribution estimate for this example.

A.5.2 Real-world pedestrian dataset

We show the feasibility and advantages of the proposed trajectory prediction using
intention inference by performing simulated experiments with 442 pedestrian trajecto-
ries from a real-world dataset by Lerner et al. (2007)1. The pedestrians walk through
the environment shown in Figure A.6a and the ground-truth trajectories were hand-
labelled from a video. The simulated environment is shown in Figure A.6b with 50
example pedestrian trajectories and 12 selected goal regions around the boundary.
Each pedestrian either walked along the footpath through the middle, crossed the
road at the bottom boundary while avoiding the parked car, entered or exited the
shop doorway in the top left, or walked down the driveways in the top right.

The accuracy of trajectory predictions averaged over all pedestrians is shown in Fig-
ure A.7a. For timesteps near in the future, the algorithm most often gives a rela-
tively high probability to the cell of the ground-truth future position. The probability

1Dataset published at: graphics.cs.ucy.ac.cy/research/downloads/crowd-data

graphics.cs.ucy.ac.cy/research/downloads/crowd-data

A.5 Experiments 254

(a) Outdoor environment. (b) 50 example pedestrian trajectories and
12 goal regions around the boundary.

Figure A.6 – The dataset of pedestrian trajectories (Lerner et al., 2007).

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time steps in the future

F
ra

c
ti
o
n
 o

f
p
e
d
e
s
tr

ia
n
s
 w

h
e
re

 t
h
e
 a

c
tu

a
l
fu

tu
re

p
o
s
it
io

n
 h

a
s
 a

 h
ig

h
 p

re
d
ic

ti
o
n
 p

ro
b
a
b
ili

ty

posterior of intention estimate

uniform intention estimate

(a) Accuracy of the trajectory predictions. Ver-
tical axis is the fraction of pedestrians that have
a high correct-prediction probability.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

Time steps in the future

A
v
e
ra

g
e
 e

n
tr

o
p
y
 f
o
r

th
e
 p

re
d
ic

ti
o
n
 d

is
tr

ib
u
ti
o
n

posterior of intention estimate

uniform intention estimate

(b) Uncertainty of the trajectory predictions.
Vertical axis is the entropy of the prediction dis-
tributions.

Figure A.7 – Comparison of predicting with and without taking into account the
intention estimate posterior. Predictions made after 10 observed timesteps.

threshold is set to p(x̂∗) > 0.05, which may represent a safety threshold for a collision
avoidance planner. The accuracy drops when looking further in the future since the
uncertainty grows when extrapolating to future timesteps.

Figure A.7a also shows that trajectory prediction with the posterior intention esti-
mate outperforms predictions with a uniform intention estimate; a high accuracy is
maintained for many more timesteps into the future. Intuitively, this is because the
uniform case can only extrapolate outwards from the current position whereas the

A.6 Conclusions 255

intention inference case directs predictions towards the estimated goal regions.

Figure A.7b shows the uncertainty of the prediction distributions when using the
posterior intention estimate results in distributions with lower entropy than the uni-
form case. This is important when applied to dynamic obstacle collision avoidance
since a probabilistic planner has fewer cells that it must avoid and therefore has more
freedom to find improved collision-free paths that satisfy other objectives.

A.6 Conclusions

In this appendix we have proposed a Bayesian framework for predicting the future
trajectory of an agent by estimating its intention to move to a goal region in the
environment, and have presented a computationally efficient solution. Some ideas
for future work would be to explore other types of intentions and objective func-
tions, model interaction with other agents, and consider observation uncertainty. We
demonstrated the usefulness of this model for planning in the context of mission
monitoring in Section 5.8.

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Theorems
	Nomenclature
	1 Introduction
	1.1 Multi-robot active perception
	1.1.1 Active perception in the natural world
	1.1.2 Robotic active perception
	1.1.3 Active perception as a system
	1.1.4 Multi-robot systems

	1.2 Applications of active perception
	1.2.1 Information gathering as an objective
	1.2.2 Information gathering as a sub-task
	1.2.3 Relevance of this thesis

	1.3 Thesis Scope
	1.3.1 Active perception planning module
	1.3.2 General problem statement
	1.3.3 Problem settings

	1.4 Principal contributions
	1.5 Thesis structure

	2 Related work
	2.1 Prediction models and objective functions
	2.1.1 Discrete sets of properties
	2.1.2 Moving targets
	2.1.3 Continuous fields

	2.2 Informative path planning
	2.2.1 Simplified problem formulations
	2.2.2 Single-robot planning
	2.2.3 Centralised multi-robot planning
	2.2.4 Decentralised multi-robot planning

	2.3 Planning algorithms
	2.3.1 Generic sequential decision problems
	2.3.2 Optimal stopping
	2.3.3 Branch and bound tree search
	2.3.4 Monte Carlo tree search
	2.3.5 Self-organising maps
	2.3.6 Planning as inference

	2.4 Summary and limitations

	3 Decentralised Monte Carlo tree search
	3.1 Overview
	3.1.1 Chapter outline

	3.2 Problem statement
	3.3 Dec-MCTS
	3.3.1 Algorithm overview
	3.3.2 Local utility function
	3.3.3 Monte Carlo tree search with discounted-UCB
	3.3.4 Decentralised product distribution optimisation
	3.3.5 Communication
	3.3.6 Online replanning
	3.3.7 Probabilistic objective functions

	3.4 Analysis
	3.4.1 D-UCB applied to trees
	3.4.2 Variational methods by importance sampling
	3.4.3 Analysis of Dec-MCTS

	3.5 Experiments: Generalised team orienteering
	3.5.1 Problem statement
	3.5.2 Calculating expectations
	3.5.3 Experiment setup
	3.5.4 Results

	3.6 Experiments: Active object recognition
	3.6.1 Problem statement
	3.6.2 Experiment setup
	3.6.3 Results

	3.7 Extension: Communication scheduling
	3.7.1 Summary of approach
	3.7.2 Experiments

	3.8 Summary

	4 Self-organising maps for generalised orienteering
	4.1 Overview
	4.1.1 Chapter outline

	4.2 Problem formulation
	4.2.1 Multi-robot team
	4.2.2 Viewpoint regions and rewards
	4.2.3 Problem statement
	4.2.4 NP-hardness

	4.3 Self-organising map algorithm
	4.3.1 Algorithm overview
	4.3.2 Graph topology
	4.3.3 Viewpoint rewards
	4.3.4 Learning epochs

	4.4 Analysis
	4.4.1 Theoretical analysis
	4.4.2 Empirical analysis

	4.5 Active perception of 3D point-cloud objects
	4.5.1 Observation model for 3D point-cloud objects
	4.5.2 Results
	4.5.3 Comparison to Dec-MCTS (Chapter 3)

	4.6 Online exploration and active perception
	4.6.1 Online planning scenario
	4.6.2 Results

	4.7 Summary

	5 Spatiotemporal optimal stopping for mission monitoring
	5.1 Overview
	5.1.1 Mission monitoring variants
	5.1.2 Chapter outline

	5.2 Problem formulation
	5.2.1 Target trajectory (independent variable)
	5.2.2 Tracker trajectory (dependent variable)
	5.2.3 Monitoring effectiveness (objective function)
	5.2.4 Deterministic problem instances
	5.2.5 Problem statement

	5.3 Algorithm overview
	5.4 Spatiotemporal search graph
	5.4.1 Vertices
	5.4.2 Edges
	5.4.3 Start and end conditions

	5.5 Sweep-plane algorithm
	5.5.1 Forward pass
	5.5.2 Backtracking

	5.6 Analysis
	5.6.1 Optimality
	5.6.2 Time complexity
	5.6.3 Practical considerations
	5.6.4 Stopping frequency

	5.7 Experiments
	5.7.1 Missions and parameters
	5.7.2 Deterministic target trajectory
	5.7.3 Planning with uncertainty
	5.7.4 Probabilistic trajectory with temporal uncertainty

	5.8 Application case studies
	5.8.1 AUV mission monitoring
	5.8.2 Pedestrian monitoring in cluttered environments

	5.9 Summary

	6 Decentralised mission monitoring
	6.1 Overview
	6.1.1 Chapter outline

	6.2 Relationship to previous chapters
	6.2.1 Single-agent mission monitoring (Chapter 5)
	6.2.2 Dec-MCTS (Chapter 3)

	6.3 Problem formulation
	6.3.1 Target
	6.3.2 Tracker team
	6.3.3 Monitoring effectiveness
	6.3.4 Problem statement

	6.4 Decentralised planning algorithm
	6.4.1 Probability distributions over trajectories
	6.4.2 Spatiotemporal optimal stopping
	6.4.3 Decentralised coordination
	6.4.4 Communication

	6.5 Analysis
	6.5.1 Runtime
	6.5.2 Optimality and convergence

	6.6 Experiments: AUV mission monitoring
	6.6.1 Scenario
	6.6.2 Results

	6.7 Summary

	7 Conclusions and future work
	7.1 Thesis summary
	7.1.1 Dec-MCTS (Chapter 3)
	7.1.2 SOM (Chapter 4)
	7.1.3 Spatiotemporal optimal stopping (Chapter 5)
	7.1.4 Decentralised mission monitoring (Chapter 6)

	7.2 Summary of contributions
	7.2.1 Multi-robot active perception problem formulations
	7.2.2 Dec-MCTS algorithm
	7.2.3 SOM algorithm
	7.2.4 Spatiotemporal optimal stopping algorithm
	7.2.5 Decentralised mission monitoring algorithm
	7.2.6 Analytical results
	7.2.7 Empirical results

	7.3 Future work
	7.3.1 Improving performance
	7.3.2 Problem variants and applications
	7.3.3 Hardware experiments

	7.4 Outlook

	List of References
	A Intention inference model for trajectory prediction
	A.1 Introduction
	A.2 Problem formulation
	A.2.1 Intention of the agent
	A.2.2 Probabilistic dynamics model

	A.3 Bayesian trajectory prediction
	A.3.1 Joint distribution
	A.3.2 Intention inference
	A.3.3 Trajectory prediction

	A.4 Sampling-based algorithm
	A.4.1 Precomputation
	A.4.2 Intention estimates (lines 10–12)
	A.4.3 Monte Carlo trajectory prediction (lines 14–25)
	A.4.4 Analysis

	A.5 Experiments
	A.5.1 Simulated environment
	A.5.2 Real-world pedestrian dataset

	A.6 Conclusions

