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Abstract

Tobias Kaupp Doctor of Philosophy
The University of Sydney March 2008

Probabilistic Human-Robot
Information Fusion

This thesis is concerned with combining the perceptual abilities of mobile robots and human
operators to execute tasks cooperatively. It is generally agreed that a synergy of human and
robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems,
while also increasing their robustness and reliability. Systems which incorporate both human
and robotic information sources have the potential to build complex world models, essential
for both automated and human decision making.

In this work, humans and robots are regarded as equal team members who interact and
communicate on a peer-to-peer basis. Human-robot communication is addressed using
probabilistic representations common in robotics. While communication can in general be
bidirectional, this work focuses primarily on human-to-robot information flow. More specif-
ically, the approach advocated in this thesis is to let robots fuse their sensor observations
with observations obtained from human operators. While robotic perception is well-suited
for lower level world descriptions such as geometric properties, humans are able to con-
tribute perceptual information on higher abstraction levels. Human input is translated into
the machine representation via Human Sensor Models. A common mathematical framework
for humans and robots reinforces the notion of true peer-to-peer interaction.

Human-robot information fusion is demonstrated in two application domains: (1) scalable
information gathering, and (2) cooperative decision making. Scalable information gathering
is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned
air vehicle, and two human operators in a natural environment. Information from humans
and robots was fused in a fully decentralised manner to build a shared environment repre-
sentation on multiple abstraction levels. Results are presented in the form of information
exchange patterns, qualitatively demonstrating the benefits of human-robot information
fusion.

The second application domain adds decision making to the human-robot task. Rational
decisions are made based on the robots’ current beliefs which are generated by fusing human
and robotic observations. Since humans are considered a valuable resource in this context,
operators are only queried for input when the expected benefit of an observation exceeds the
cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based
on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the
adjustable autonomy system experimentally. Results from two experiments are reported: a
quantitative evaluation of human-robot team effectiveness, and a user study to compare the
system to classical teleoperation. Results show the superiority of the system with respect
to performance, operator workload, and usability.
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Chapter 1

Introduction

1.1 Problem Description and Motivation

This thesis is concerned with combining the perceptual abilities of mobile robots and human
operators to execute tasks cooperatively. It is generally agreed that a synergy of human and
robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems,
while also increasing their robustness and reliability [23][52][155]. Despite the fact that
perception of the environment is a critical element in performing any task, cooperative
human-robot perception has not been studied extensively. Systems which incorporate both
human and robotic information sources have the potential to build complex world models,

essential for both automated and human decision making.

Although robotic systems are often perceived as a replacement for human labour, there
are in fact many opportunities for human-robot cooperation. Mobile robots rarely operate
in isolation from humans for several reasons: technical, ethical, and by design. Technical
reasons refer to the fact that full robot autonomy is rarely achievable. Today’s mobile
robots typically operate autonomously for limited periods of time in relatively structured
and known environments. The situation is unlikely to change in the near future. In fact, full
autonomy may be considered a misnomer because at the very least, operators are required to
provide high-level, abstract goals [56]. Ethical reasons for human involvement may arise in
situations requiring decisions which only humans are qualified to make. Example application
areas include military, search-and-rescue, and health. Finally, people are often an integral

part of the system by design: physical interactions between humans and robots occur in
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assistive robotics and edutainment for example. In addition to the human involvement in
robotic systems as described above, an opportunity arises to make use of human resources

to improve system performance.

Human-robot cooperation is likely to fulfil this objective because humans and robots cover
a wide range of skills in perception, cognition, and manipulation. This thesis focusses ex-
clusively on the perceptual abilities of humans and robots. Human and robotic perception is
often complementary in terms of modality, uncertainty, and types of failures. Humans have
rich perceptual abilities, especially at higher abstraction levels, e.g. human innate pattern
recognition skills [59]. Yet, people’s performance is known to suffer from great variability
between individuals and over time. On the other hand, robotic perception is highly con-
sistent and accurate in measuring lower level descriptions such as geometric properties. At
the same time, robotic perception has limited ability to generalise from preprogrammed

concepts, e.g. in visual object recognition.

Human-robot cooperation typically involves communication. Important research questions

for human-robot communication are:

—_

. What type of information should be communicated?
2. When should communication occur?
3. Who should communicate with whom?

4. What medium should be used for communication?

The space of options available in answering these questions is large and depends on a
number of factors. Six factors are identified here: proximity, authority relationship, number
of humans and robots, human factors, communication bandwidth, and task priority. The

influence of each factor on answering the questions above are discussed next.

Proximity Interactions between humans and robots can either be remote or proximate [68].
If humans and robots are collocated as they are in a service robot application, the communi-
cation requirements differ greatly from a remote teleoperation scenario. Likewise, the choice
of the communication medium depends on proximity, i.e. for close interactions, speech, ges-
tures, haptic interfaces, or social cues may be appropriate while a graphical or textual user

interface may be better suited for remote interactions.



1.1 Problem Description and Motivation 3

Authority Relationship If humans act on a higher level of authority than robots, op-
erators initiate communication and send instructions and commands to robots. If the
relationship is more peer-like, communication could involve dialog which either side may
initiate [53]. Information exchange related to dialog includes questions, answers, queries,

and clarifications.

Number of Humans and Robots If many humans and robots are involved, the question
of who communicates with whom becomes important. The objective is to find suitable
communication topologies capable of maintaining the scalability of the system [171]. In
that context, it is also important to communicate efficiently, i.e. only communicate when

necessary and maximise the information content per message.

Human Factors The form of communication is greatly influenced by human factors such
as expertise [53]. On one end of the spectrum is the robot designer who communicates with
robots using a programming language. Ordinary users, on the other hand, may prefer the
use of natural language and gestures. Other human factors such as operator workload,

stress, and fatigue influence how frequently information should be exchanged.

Communication Bandwidth Limited bandwidth can cause communication problems
such as message delays and frequent drop-outs. If bandwidth is a bottleneck, information
exchange needs to be efficient as mentioned above. Limited bandwidth may also impose con-
straints on the possible network topologies [115]. Likewise for the communication medium:

broadcasting a video stream to an operator may not be feasible.

Task Priority The form of communication also depends on the nature of the task. If
safety is a priority, frequent communication and detailed messages can be justified. On the
other hand, if timeliness is more important, information exchange should be limited to the

most important messages [95].

All six factors are taken into consideration when designing communication patterns for
human-robot cooperation. In this thesis, the focus is on questions (1)—(3) in order to fulfil

the objective of combining the perceptual strengths of humans and robots. Question (4)



1.2 Approach 4

falls outside the scope of this work. Graphical User Interfaces (GUIs) were used throughout

the experiments presented in this thesis.

1.2 Approach

This work adopts a peer-to-peer interaction style to facilitate bidirectional communication
between humans and robots. The Human-Robot Interaction (HRI) community generally
agrees that humans and robots need to interact as peers to leverage each other’s strengths
effectively [52][117][23][77][31][18]. In systems where robots act as peers, they are treated
as partners rather than tools. In supervisory control, in contrast, operators act on a higher
level of authority compared to robots and may override their decisions [159]. Furthermore,
timely responses from operators are expected in supervisory control. When treating robots
as peers, humans contribute to the task without becoming a bottleneck, i.e. operators are

not required to remain in the loop.

The approach presented in this thesis is to make use of probabilistic robotics representa-
tions for bidirectional human-robot communication. Thrun concluded in 2000 that “we see
a tremendous opportunity to apply probabilistic algorithms to a range of important robotic
problems, including [...] human-robot interaction” [173]. To the best of the author’s knowl-
edge, this thesis provides the first attempt to systematically investigate human-robot in-
teractions from a probabilistic point of view. This approach is classified as robot-centred
because it takes existing probabilistic robotics algorithms as a basis for communication.
Figure 1.1 shows where the focus of this thesis is placed within the multidisciplinary field
of HRI.

The information stored in a probabilistic robotics representation can be used for bidirec-
tional human-robot communication. The majority of work to date has focussed on robot-to-
human information flow whereby the information collected by robots is conveyed to human
operators, e.g. to enhance Situation Awareness (SA) [156][153][195][43]. On the contrary,
the focus of this thesis is on human-to-robot information flow, addressing the problem of
how human operators can effectively contribute to a task performed by a human-robot

system.

In this thesis, methods are presented which are able to probabilistically fuse information

collected by human operators and robotic sensors. In robotics, integrating the strength of
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Robotics

Figure 1.1: HRI is a multidisciplinary field with contributions from robotics, Human-
Computer Interaction (HCI), social sciences (psychology, cognitive science, anthropology,
human factors), natural language understanding, and Artificial Intelligence (AI). This thesis
takes the viewpoint of robotics to facilitate human-robot interactions as indicated by the
darker area in the figure.

different sensing modalities has traditionally been approached by performing information
fusion. This thesis applies information fusion techniques to HRI by treating human oper-
ators as information sources. A common mathematical framework for humans and robots

reinforces the notion of true peer-to-peer interaction.

1.3 Relationship Taxonomies

This section introduces relationship taxonomies applicable to human-robot interactions.
The taxonomies are used throughout this document to set the contributions into the context

of current HRI research.

The relationship between humans and robots can be classified from different points of view.

First, an overview of the human-robot “system” is given. Second, novel taxonomies based
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Figure 1.2: Human-robot system: multiple humans and robots interact with each other and
the environment. The information exchange between humans and robots is the focus of this
thesis.

on human-robot communication are proposed. Finally, taxonomies from the literature are

reviewed.

1.3.1 The Human-Robot System

Humans and robots interact with each other and the environment in which they operate.
Figure 1.2 visualises the system from a global point of view. The environment is observed
by both humans and robots. Robots are able to alter the state of the environment through
their actions using their actuators. It is assumed that humans are not able to change the
environment directly through their actions. The focus of this work is on the information

exchange between humans and robots as indicated by the bidirectional arrow.

Figure 1.3 visualises the internal structure of humans, robots and the environment. All
parts concerned with perception are colour-coded blue, all parts concerned with decision

making are colour-coded orange.
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Figure 1.3: Internal structure of the environment, human and robots (compare to Fig-
ure 1.2). Clouds represent mental models whereas rounded rectangles represent compu-
tational models. Parts concerned with perception are blue, parts concerned with decision
making are orange.

Environment The environment contains complex phenomena which can be observed at
different abstraction levels. Here, a terminology common in the information fusion commu-
nity is adopted [111]. For example, the environment can contain a number of mobile objects

which interact to create a situation of certain impact to an interested party.

Humans Humans internally maintain mental models resulting from observations of the
environment and the robotic platforms. Cognitive scientists define mental models as an
internal scale-model representation of an external reality [60]. Mental models play an im-
portant role in improving the usability of computers [130], and to establish a common
ground between humans and robots [97]. Mental models (visualised as clouds in the figure)

are not discussed any further in this thesis.
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Communication taxonomy Possible values

Direction human — robot, robot — human
Initiation human, robot

Data type perception, decision

Data origin environment, platform

Table 1.1: Four human-robot communication taxonomies derived from Figure 1.3.

Robots Robots maintain two types of computational models! visualised as rounded rect-
angles: a perception model and a decision model. A distinction is made between environ-
ment and platform models: the former is concerned with representing the physical world,

the latter with representing the robotic platforms within the world, e.g. their poses.

The perception model has two incoming data streams: information from physical sensors and
human operators. Both streams are transformed using sensor and user models to be suitable
for internal fusion. The perception model also has an outgoing stream to communicate

perception information to the human operator.

The decision model uses the information stored in the perception model to make decisions.
An actuation model represents the effects of the decisions on the environment and the
platform itself. Humans can also interact with the decision model: either by observing the
decisions that are made (outgoing stream), or by actively participating in decision making
(incoming stream). As for the perception model, user input can be transformed by a user

model.

1.3.2 Communication Taxonomies

This section proposes relationship taxonomies based on human-robot communication. Four
communication taxonomies are identified, each derived from the internal structure of hu-
mans and robots as shown in Figure 1.3: direction of data flow, initiation of data flow, data

type, and data origin. Table 1.1 summarises the four taxonomies which are explained next.

Direction specifies the main data flow and can either be human-to-robot or robot-to-human.
Communication is either initiated by a human or a robot. Data types are related to either

the perception or the decision model. Data origin refers to either environment or platform.

!Philosophical definitions of the term computational model include “a mathematical modelling and ideal-
isation of some hypothetical physical device, from a specific point of view of the world” [16] and “an imple-
mented computer program used to generate data that will be compared to some real-world behaviour” [166].
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Initiation

Direction
human robot

human-push robot-pull
human-pull  robot-push

human — robot
robot — human

Table 1.2: Human-robot communication patterns defined by the direction and initiation of
information flow.

Environment data describes properties of the environment such as object locations, object
types, situations, and temperature. Platform data is concerned with the physical plat-
forms. Examples are location in the world, drive commands, hardware states, and software

component health status.

It is convenient to arrange the one-dimensional measures of direction and initiation into a
two-dimensional matrix as shown in Table 1.2. Data flow direction and initiation together
define one of four communication patterns: human-push, robot-pull, human-pull, and robot-
push. The same principle is applied to data type and data origin as shown in Table 1.3. Four
messages are assumed for communication: environment-perception, environment-decision,
platform-perception, and platform-decision. All communication taxonomies and definitions

are summarised in Figure 1.4.

Data origin Data type

perception decision
environment | environment-perception environment-decision
platform platform-perception platform-decision

Table 1.3: Human-robot communication messages defined by the data type and data origin.

1.3.3 Other Taxonomies

The previous section presented four communication taxonomies to describe the relationship
between humans and robots. Other relationship taxonomies commonly used in HRI include

numeric, spatial, and authority [26][152]. Table 1.4 summarises the numeric relationships.

Table 1.5 shows the possible spatial relationships between humans and robots. Operators
can work remotely in which case they might have a god’s eye view of the robots’ workspace
(e.g. a map showing the environment and the robot) or look through the robot’s eyes (e.g.
camera image or laser scan). Operators can also work side-by-side to robots in which case

they have access to the environment directly through their own senses.
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Human-Robot
Communication

Communication Message
Pattern

VAR 7N

Inititation Direction Data Type Data Origin

Figure 1.4: Aspects involved in human-robot communication shown as a UML class diagram.
Diamonds indicate a “consists-of” relationship. A communication pattern consists of the
initiation and the direction of information flow. A message consists of a data type and a
data origin. The bottom row shows the four communication taxonomies proposed as part
of this work.

Humans Robots

One One
One Many
Many One
Many Many

Table 1.4: Numeric relationships of humans and robots.

Table 1.6 defines relationships in terms of the authority level: human roles include super-
visor, teleoperator, and peer. The supervisor role can be characterised as monitoring and
control of the overall situation. A supervisor commands what to do by specifying high-level
mission goals or by switching operating modes and thus requires high-level perception of

the situation.

A teleoperator interacts with the robot on a lower level by directly telling it how to achieve
a task by classical teleoperation. In this role, the operator needs to access low-level infor-

mation such as distance to obstacles.

Spatial relationship Human’s point of view
Remote God’s eye, sensor view
Beside Bystander

Table 1.5: Spatial relationships of humans and robots.
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Authority relationship Operator tasks Required context

Supervisor Commands “what” High-level perception
Teleoperator Commands “how” Low-level perception
Peer Provides/requests assistance High-level perception

Table 1.6: Authority relationships of humans and robots.

In the peer-to-peer interaction scheme, operators and robots act on the same level of au-
thority. As for the supervisory mode, humans provide input on a higher level and thus
require a higher level understanding of the situation. The difference is that robots are not
“overridden” in this relationship but act as equal partners forming a team with human
peers. Each team member contributes what it can do best and operators can also request

assistance from robots.

1.4 Related Work

This section gives an overview of seven systems in which mobile robots and human operators
communicate with each other. Only task-oriented human-robot systems are chosen, i.e.
human-robot communication for social interactions are not considered. Work related to the

communication medium, i.e. human-robot interfaces, is not reviewed either.

The relationship taxonomies presented in Section 1.3 are used to classify these systems as
shown in Table 1.7. The table is to be read as follows: a filled circle indicates an important
human-robot relationship for the contribution of that work. An open circle indicates that
the relationship is mentioned or implemented but it is minor and does not contribute to the

key arguments. A missing circle means the relationship is not covered in that work.

Fong’s Collaborative Control is a form of teleoperation where humans are treated as a
resource to robots [53][54]. Bidirectional communication in the form of human-robot dialog
is used to exchange information of different types such as commands, queries and responses.
Recently, this work has been extended to human-robot cooperation for space exploration
missions [52][51]. As shown in Table 1.7, the focus of that work is on peer-to-peer interaction

(“robot as a partner”). Robot-pull is the predominant communication pattern employed.

A system performing Collaborative Teleoperation is proposed by Goldberg et al. [64][65][163].

In this work, the term collaboration refers to multiple operators coming to a consensus over a
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shared resource which can be a remotely located robot [64], sensor [163], or tele-actor [65].
Consensus is achieved by combining input from multiple operators into a single output
stream using vector averaging [64], dynamic voting [65], or task-specific approximation

algorithms [163].

As a substitute for non-existing multi-robot systems, Jones et al. performed an ethnographic
study of interactions between members of a SWAT (Police Special Weapons and Tactics)
team [87]. The SWAT commander corresponds to the robot operator whereas the SWAT
team corresponds to a multi-robot system. The findings were incorporated into their human-
robot dialog system [88]. Only the operator can start off a dialog to which all robots in
the system reply with their available information. Robots execute actions upon the user’s
selection of a particular robot and its task. As shown in Table 1.7, the focus of this work
is on one-to-many interactions. Human-pull is the predominant communication pattern

employed.

Bruemmer’s work has focussed on building a collaborative workspace for humans and robots,
i.e. a shared understanding of each others’ tasks and the environment [25][23]. Different
discrete autonomy levels have been developed which the operator can adjust online. The
human role and authority varies with the autonomy level. The system has successfully been
applied to a number of applications: map building using a team of air/ground vehicles and
human operators [25], indoor search and exploration [23], and countermine operations [24].
As shown in Table 1.7, the focus of this work is on remote operations with the goal of

creating a common representation for humans and robots acting as peers.

Another body of work which lets operators choose between a set of discrete autonomy levels
is presented in [67]. Each autonomy mode has a certain Neglect Tolerance, i.e. a particular
robot can be neglected for a certain time period without becoming less effective. These
ideas were quantitatively evaluated by user studies [31]. As shown in Table 1.7, the focus
of this work is on achieving many-to-many interactions. Human-push is the communication

pattern employed for entering waypoints and high-level behaviours.

Sellner et al. designed a human-robot system for large-scale assembly of structures in
space [155][154]. Robots with complementary perception and manipulation capabilities
cooperate with a human operator who is able to take over control. As shown in Table 1.7,

the focus of this work is on incorporating multiple robots into the system. As a consequence,
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the robot-pull communication pattern is considered adequate to reduce operator workload

for one-to-many interactions.

Human interaction in the context of reactive multiagent control is addressed by Ali et
al. [3][2]. Human operators can change the multi-robot system’s global behaviour by either
adding their own behaviours or change the behavioural parameters. The focus of this work
is on supervisory control of multiple robots using a human-push communication pattern as

shown in Table 1.7.

The seven systems presented above address one or more of the challenges of human-robot
communication as identified by Sheridan ten years ago [160]. However, none of them takes
the principled approach which is advocated in this thesis: use the mathematical framework
of existing probabilistic robotics representations to generate human-robot communication
schemes. A further difference to this work is that none of the systems directly exploits

human perceptual abilities.

1.5 Contributions

The most general contribution of this thesis is a framework for human-robot communication

based on probabilistic methods. More specifically, the contributions of this thesis include:

e The introduction of communication taxonomies to classify the relationship between

humans and robots with respect to information exchange.

e The derivation of human-robot communication schemes based on probabilistic robotics

representations, in particular for human-robot information fusion.

e The presentation and experimental validation of methods for probabilistically mod-

elling humans as information sources.

e The integration of multiple human operators into a fully decentralised multi-robot

system without jeopardising the scalability of the system.

e The formulation of a shared environment representation on multiple abstraction levels

suitable for scalable human-robot information gathering.
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Table 1.7: Human-robot relationships in related work (centre column) and covered in this thesis (right column): filled circle means
“important”, open circle means “minor”, no circle means “not applicable”. Abbreviations are: env. = environment, plat. =
platform, perc. = perception, dec. = decision.
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e The experimental demonstration of fully decentralised human-robot information fu-

sion in an outdoor environment.

e The formulation of a decision-theoretic framework for cooperative human-robot deci-

sion making with humans acting as a resource to robots.

e The presentation of an adjustable autonomy system for which adjustments are trig-

gered based on the uncertainty in the robot’s belief.

e The proposal of a methodology for measuring the effectiveness of a human-robot team.
This measure can be used to find an appropriate autonomy level for an adjustable

autonomy system.

e The implementation of cooperative human-robot decision making using a mobile robot

navigation task.

e The experimental evaluation of cooperative human-robot navigation in simulation and

by conducting an extensive user study.

1.6 Thesis Structure and Publications

This section provides an overview of the thesis. Chapter 2 presents background whereas
Chapters 3-5 are novel contributions. Each of the contribution chapters are organised
identically: theory, experiments, related work. As a consequence, there is no need for
chapters dedicated to related work and experimental results. Figure 1.5 uses the system
view from Figure 1.3 to clarify the structure of the thesis. Each subfigure is repeated at the
beginning of each chapter to remind the reader of how the chapter’s content fits into the

overall context. The figure is utilised to describe each chapter individually as follows.

Chapter 2 presents the background on probabilistic representations applied to the robotics
problems of perception, decision making, and planning (Figure 1.5(a)). The focus is on the
types of representations which can be used for human-robot communication and information

fusion.

Chapter 3 serves as a foundation for subsequent chapters. It first discusses how probabilistic

data types can be utilised for bidirectional human-robot communication. Subsequently, the
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Figure 1.5: Graphical thesis overview: each chapter focusses on the highlighted parts of
the overall system’s picture (see Figure 1.3). Chapter 2 presents technical background
on probabilistic representations for perception, decision making, and planning. Chapter 3
introduces humans as information sources. Chapter 4 presents scalable interactions as part
of a human-robot information gathering mission. Chapter 5 discusses cooperative human-
robot decision making.

focus is on human-to-robot information flow which leads to the notion of regarding human
operators as information sources. This is visualised by the blue arrow in Figure 1.5(b).
Differences between human and robotic sensors are listed and the need for modelling human
operators is discussed. Human Sensor Models (HSMs) are introduced as a user modelling
technique for this work. The potential limitations of the overall approach are also discussed.

Simulation results show how human and robotic information can be fused using multi-level
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representations. An experimentally acquired HSM is also presented. Publications relevant

to this chapter include

e T. Kaupp, A. Makarenko, F. Ramos, and H. Durrant-Whyte, “Human sensor model
for range observations,” in IJCAI Workshop Reasoning with Uncertainty in Robotics

(RUR’05), Edinburgh, Scotland, 2005.

e T. Kaupp, A. Makarenko, F. Ramos, B. Upcroft, S. Williams, and H. Durrant-Whyte,
“Adaptive human sensor model in sensor networks,” in 8th International Conference

on Information Fusion (Fusion’05), vol. 1, Philadelphia, USA, 2005.

e T. Kaupp, A. Makarenko, S. Kumar, B. Upcroft, and S. Williams, “Operators as
information sources in sensor networks,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’05), Edmonton, Canada, 2005, pp. 936-941.

Chapter 4 presents results from an information gathering mission conducted by a human-
robot team. The team consists of multiple humans and robots as visualised in Figure 1.5(c).
The system uses fully decentralised fusion algorithms and is constrained by the requirement
to maintain scalability. This requirement restricts the available options for human-robot
communication and the roles human operators can play. A multi-level shared environment
representation is used to fuse information from humans and robots using the human-push
communication pattern. Experimental results obtained by deploying a human-robot team
in an outdoor environment demonstrate the benefits of human-robot information fusion

qualitatively. Publications relevant to this chapter include

e T. Kaupp, B. Douillard, B. Upcroft, and A. Makarenko, “Hierarchical environment
model for fusing information from human operators and robots,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS’06), Beijing, China,
2006, pp. 5837-5842.

e T. Kaupp, A. Brooks, B. Upcroft, and A. Makarenko, “Building a software archi-
tecture for a human-robot team using the Orca framework,” in IEEE International
Conference on Robotics and Automation (ICRA’07), Rome, Italy, 2007, pp. 3736—
3741.
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e T. Kaupp, B. Douillard, F. Ramos, A. Makarenko, and B. Upcroft, “Shared environ-
ment representation for a human-robot team performing information fusion,” Journal

of Field Robotics: Special Issue on Teamwork, vol. 24, no. 11-12, pp. 911-942, 2007.

Chapter 5 extends information gathering by adding decision making to the task. Only plat-
form decisions are considered as visualised in Figure 1.5(d) which excludes manipulation
tasks. Robots make platform decisions based on information collected by their sensors and
from human operators. This mechanism is referred to as cooperative human-robot decision
making. Operators are regarded as a sparse resource in this context which motivates the
use of the robot-pull communication pattern. Robots query operators only if the expected
benefit from their information exceeds the cost of obtaining it which is computed using
value-of-information theory. This mechanism can be interpreted as adjusting the robot’s
autonomy based on the uncertainty of its beliefs. A navigation task is used to demonstrate
an implementation of the adjustable autonomy system. Experiments with the navigation
system include a quantitative evaluation of human-robot team effectiveness, and an exten-

sive user study. Publications relevant to this chapter include

e T. Kaupp and A. Makarenko, “Decision-theoretic human-robot communication,” in
3rd ACM/IEEE Conference on Human-Robot Interaction (HRI’08), Amsterdam, The
Netherlands, 2008, pp. 89-96.

e T. Kaupp and A. Makarenko, “Measuring human-robot team effectiveness to deter-
mine an appropriate autonomy level,” in IEEFE International Conference on Robotics

and Automation (ICRA’08), Pasadena, CA, USA, 2008, pp. 2146-2151.

Chapter 6 summarises the content of the thesis and presents opportunities for ongoing
research based on this work. Furthermore, it is discussed how this work can be utilised for

a number of real-world robotics applications.

A thesis overview complementary to Figure 1.5 is presented in Table 1.7.



Chapter 2

Probabilistic Representations

This work uses probabilistic robotics representations as a foundation to design human-
robot communication schemes as visualised in Figure 2.1. This chapter motivates that
approach by first discussing probabilistic algorithms which have significantly advanced the
field of mobile robotics. Second, the technical background on probabilistic representations
is presented. The main purpose of this chapter is the introduction of notation and terms

which are required for the understanding of subsequently presented material.

The chapter is organised as follows: Section 2.1 briefly discusses probabilistic robotics.
Section 2.2 introduces a class of graphical model representations called Bayesian Networks
(BNs). Their extension to the time domain is called Dynamic Bayesian Networks (DBNs)
which are presented in Section 2.3. Section 2.4 discusses Influence Diagrams (IDs) before

Section 2.5 summarises the content of this chapter.

2.1 Probabilistic Robotics

In mobile robotics, probabilistic representations have gained wide acceptance due to their
suitability to address the main research problems of perception, decision making, and plan-
ning [176]. Probability theory allows to explicitly accommodate the uncertainties of the
real world. Uncertainties stem from both noisy measurements and inaccurate world models.
Probability theory provides a unifying mathematical framework for reasoning and decision
making under uncertainty. Probabilistic algorithms for perception, control, and planning

problems are briefly discussed below.
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Figure 2.1: This chapter provides technical background: probabilistic robotics representa-
tions for perception, decision making, and planning. Human-robot communication schemes
are derived from these representations.

2.1.1 Perception, Control and Planning

An important class of robotic perception algorithms is mapping [175]. The main reason for
map building is to assist the task of localisation: the estimation of the robot’s pose in the
world. Localisation and mapping are coupled problems and can be solved simultaneously
using SLAM algorithms [47][7]. The objective of mapping can also be the generation of maps
for human consumption, e.g. in information gathering missions [113]. Platform control is
also part of information gathering where the maximisation of information determines the

action selection [71].

Robotic control architectures typically consist of several layers and can also be implemented
using probabilistic representations [107][40][174][58][38]. Two alternatives exist to make
decisions when using a probabilistic model: (1) use perception states only and choose actions
by either threshholding or sampling from beliefs [107][40], or (2) explicitly represent the
decision maker’s choices and preferences [174][58][38]. Preferences are encoded as utility

functions which also allows for planning. The planning problem can be described by a
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Partially Observable Markov Decision Process (POMDP) which is an active research area

in robotics [20].

2.1.2 Bayesian Networks and Extensions

All of the perception and decision-making problems mentioned above can be represented
by (Dynamic) Bayesian Networks, or if decisions and utilities are represented explicitly, In-
fluence Diagrams. These representations have properties which are exploited in subsequent
chapters for human-robot communication. In a single representation, they are capable of

representing

e variables related to perception and decision making

e both correlations and the lack of correlations between random variables
e observed and unobserved random variables

e discrete and continuous random variables

e static and dynamic processes

e multiple abstraction levels

o different time scales

Besides this flexibility for modelling purposes, there are many prominent algorithms for
efficient inference and learning for these representations. The properties and usage of BNs,

DBNs, and IDs are presented next.

2.2 Bayesian Networks

A probabilistic representation should encode the relationships between random variables
qualitatively (model structure) and quantitatively (model parameters), and allow efficient
inference and learning. A class of graphical models fulfilling these requirements are Bayesian
Networks (BNs) [148]. Like other graphical model representations, BNs encode a joint prob-
ability distribution of a set of random variables in a compact form by exploiting conditional

independence assumptions.

Each random variable is called a chance node and denoted by a capital letter, e.g. X. The

realisation of a random variable is denoted by small letters, e.g. x. If the random variable
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is a vector as opposed to a scalar, it is printed in bold, e.g. x. Chance nodes can be either
discrete or continuous. All equations in this section assume discrete nodes which can be

rewritten for continuous nodes by replacing sums with integrals.

2.2.1 Representation

A BN is a directed acyclic graph (DAG) consisting of chance nodes and edges which connect
the nodes!. If there is an edge from node X! to X2, X! is called a parent of X2 and X?
is called a child of X!. Each node X’ has a conditional probability distribution (CPD)
p(xt|parents(x?)) encoding the effect of the parents on that node. An edge from parent to

child can be interpreted as a cause-effect relationship [140].

The set of nodes and edges form the topology of the BN which specifies the conditional
independence assumptions. Two equivalent statements can be used to define conditional
independence in BNs: (1) a node is conditionally independent of its non-descendants? given
its parents, or (2) a node is conditionally independent of all other nodes in the network given
its parents, children, and children’s parents (the so-called Markov blanket). To determine
the global independence relationships of three sets of nodes (is X! conditionally independent
of X? given X3?) the d-separation criterion can be used [140] which is beyond the scope of

this short introduction.

The full joint distribution of a set of random variables X©, ..., X™ as part of a BN can be

written as
n

p(x0, ..., x") = Hp(xi|parent5(xi)) (2.1)
i=1

An example of a BN is shown in Figure 2.2. According to Equation 2.1, the joint distribution

for this example can be written as

p(xo,xl,XQ,x?’) = p(xo)p(xl)p(XZIXO,Xl)p(x?’]xZ) (2.2)

'Nodes are numbered with superscripts here; subscripts are reserved for time steps (see Section 2.3).
2Descendants of a node are all its children, its children’s children etc.
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Figure 2.2: Example of a BN with four random variables (chance nodes).

2.2.2 Inference

Since BNs encode the full joint probability distribution of a domain, any query can be
answered. A typical query asks for a probability distribution of a set of query nodes X given
some evidence nodes Z which is referred to as probabilistic inference [148]. In mathematical
terms, a query is written as p(x|z) where Z emphasises the instantiation of Z with a value.
Nodes in the BN which are neither query nor evidence nodes are denoted by Y. The answer

to a query can be computed by using the joint distribution:

<|7) — p(X,Z) - Zyp(X,y,Z)
PXE) =) T S px)

(2.3)

Expressions >/ p(x,y,2) and }_, p(x,Z) are called marginalisations of Y and X, respec-

tively.

A special case of the general problem is the BN shown in Fig. 2.3 which is used to introduce a
number of important terms. The BN contains two sets of nodes X and Z. Initial knowledge
about x is represented as a prior probability distribution p(x). The evidence entered on Z

is called observation z. For this particular problem, Bayes’ theorem can be applied:

p(Ex)p(x) o)

i) = 27

The answer to the query p(x|z) is called the posterior encoding the belief of x after incor-

poration of observation z. Observation z = z is substituted into the CPD p(z|x) to yield a
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Figure 2.3: A simple BN to demonstrate Bayes’ theorem and define important terms. The
shaded node is observed.

likelihood function p(z|x). The function represents a distribution over the values of the true
state x and can be understood as a slice through the x — z space. A likelihood function is
simply referred to as a likelihood throughout the remainder of the thesis. Finally, p(z) acts

as a normalisation constant.

For more complex BNs with many nodes, the conditional independence assumptions encoded
in the graph topology can be exploited to design efficient inference algorithms. The simplest
inference algorithm is variable enumeration which is demonstrated here using the BN shown
in Fig. 2.2. The example query we want to compute is p(x°|X?). Applying Equation 2.3 to
the joint of Equation 2.2 yields

p(°[%%) =y > p(x")p(x")p(F X%, x")p(x*[%?) (2.5)
Xl X3
with a being a normalisation constant. One simplification is to “push sums in” as far as

possible which yields

p(x"[%%) = ap(x®) > p(x")pF*|x%,x") > p(x*[%?) (2.6)

In this case (but not in general), the last term sums up to 1. Variable enumeration has
the problem that some computations are unnecessarily repeated. The variable elimination
algorithm addresses this problem [148]. It implicitly creates a junction tree which is a data

structure useful for efficient message passing [126].

All the algorithms mentioned so far are exact methods which are tractable for polytrees

where there is at most one undirected path between any two nodes in the network. For
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Figure 2.4: Parameters are added to the BN representation shown in Fig. 2.2. Dashed edges
are used to distinguish between parameters and state variables.

larger, multiply connected networks, approximate inference methods are sometimes required.
Among them are Loopy Belief Propagation (LBP), variational methods, and sampling tech-
niques [126]. The discussion of these is beyond the scope of this chapter.

2.2.3 Learning and Expert Elicitation

Both the structure and the parameters of a BN can be learned from data. The problem can
be approached by using Bayesian learning techniques and approximations of them. Here,

parameter learning is briefly discussed.

Parameter learning can be formulated as inference on the parameters by adding them to
the representation as shown in Figure 2.4. This is referred to a full Bayesian learning and

yields a distribution over parameters.

Full Bayesian learning is often intractable. If data from all variables in the domain is
available (full observability), Mazimum Likelihood (ML) or Maximum A Posteriori (MAP)
methods can be used as an approximation to full Bayesian learning. If some variables are
unobserved during learning (partial observability), Ezpectation Mazimisation (EM) can be

applied. All three methods yield a point estimate rather than a distribution over parameters.

Besides learning from data, another possibility exists to find the structure and parameters
of a BN model: elicitation from domain experts and the literature [45]. BNs are considered

suitable for this method for two reasons: (1) it is natural for people to think in cause-effect
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relationships (structure), and (2) only local CPDs need to be specified (parameters). The
number of CPDs which have to be specified is small if a causal model is strictly applied [148].

After a model has been fully specified, it is important to verify its validity, especially if the
expert elicitation method is applied. Two prominent methods are sensitivity analysis [148]

and conflict analysis [86]. Conflict analysis is briefly discussed next.

2.2.4 Data Conflict Analysis

According to Jensen, “conflict analysis is the activity of detecting, tracing, and explaining
possible conflicts among observations of variable values” [86]. Jensen’s conflict measure is
adopted here: given a set of evidence nodes Z = {Z°, ..., Z"}, the conflict measure is defined

as3

[T f(ii) (2.7)

conf(z) =log (@)

A potential conflict exists if the measure is positive which means that z°, ..., 2" are negatively
correlated. A negative correlation between two variables Z® and z° means that p(z%,2z°) <
p(Z)p(z°) or p(z%|z°) < p(z*) and vice versa. In other words, observing z’ makes it less

likely to also observe z* which should not occur if the evidence supported each other.

2.3 Dynamic Bayesian Networks

BNs can be extended to Dynamic Bayesian Networks (DBNs) to model dynamic processes.
DBNs are relevant to the robotics field because both the states of the environment and the
platforms change over time. Murphy [126] showed how many common temporal estimation
algorithms can be represented as DBNs, among them Hidden Markov Models (HMMs),

Kalman filters, and their numerous extensions.

2.3.1 Representation

DBNs represent random variables evolving over time with each time slice containing a

snapshot of the current state. DBNs make two assumptions: (1) the state changes according

3Logarithms to the base e are used here.
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()

Figure 2.5: DBN example: first-order Markov model representing an HMM or KF dependent
on whether X is discrete or continuous. p(Xp41|xi) and p(z|x)) are transition and sensor
model, respectively.

to a stationary process, and (2) the current state only depends on a finite history (Markov

assumption).

The first assumption means that parameters of random variables do not change over time
which avoids having to specify an unbounded number of CPDs. This is also referred to as
parameter tying [126]. The second assumption limits the number of parents variables can
have. The most commonly used Markov process is first-order: the future is independent of

the past given the present.

A first-order Markov models is shown in Figure 2.5. As a result of parameter tying and the
Markov assumption, only 2 time slices need to be shown to represent all CPDs in the model.
States of two consecutive time slices are denoted by subscripts k and k + 1, respectively.
The evolving state is modelled using the transition model p(xj+1|xr). The other CPD in

Figure 2.5 is p(zk |xx)=p(2k+1|Xk+1) and is known as the observation model or sensor model.

Two important classes of DBNs use the same conditional independence assumptions encoded
in Figure 2.5: Hidden Markov Models (HMMs) and Kalman Filters (KFs). The difference

is that X is discrete in HMMSs while it is continuous Gaussian for KFs.

2.3.2 Inference and Learning

There are several kinds of inference which are of interest in DBNs. The major ones include
filtering, prediction, and smoothing [126]. All of them can be expressed by the posterior
P(Xk+1|Z0:): for filtering k = k + 1, for prediction k < k + 1, and for smoothing k > k + 1.
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Filtering is used to estimate the current belief state based on all observations to date.
Prediction is the task of computing the posterior distribution over future states given all
observations to date. Smoothing is the task of computing a posterior distribution over a
past state given all observations to date. It is used for parameter learning as described

below.

All the algorithms above can be formulated in terms of forwards and backwards opera-
tors [126]. Different implementation of these operators exist which trade off accuracy with

speed. In robotics, the most common inference problem is filtering which is presented next.

Recursive Filtering Filtering can be formulated recursively using Bayes’ theorem (com-
pare to Equation 2.4). The Bayesian filtering operation consists of two steps: a one-step
prediction (k = k + 1) using the transition model followed by an update using the sensor

model.

The update yields the posterior and is computed as follows:

P(Zk41|Xk11)P(Xk4-1|Z0:k
P(Xk+1|Zok+1) = (@it _+) (k1 [Z0:0) (2.8)
P(Zk+1|20:1)

where Zj 1 is an observation of state x at time step k + 1, p(xx41|2o.x) is the prediction of
the state from the previous time step (the prior), and zg.;11 summarises all observations
up to time step k+ 1. p(Zgy1|Xgr1) is a likelihood computed by substituting an observation

Zj+1 into the sensor model p(z|x).

The prediction step is given by the Chapman-Kolmogorov equation:

p(1|z04) = D P(xkr1[xk)P(Xk|Z0:1, %0) (2.9)

Xk

where p(xk|zo.k, Xo) is the estimate from the previous time step.

Learning Techniques for learning the parameters of a DBN are straight-forward exten-
sions to the techniques presented in Section 2.2.3. For offline learning, smoothing algo-
rithms are used which take all observations into account (“learning with hindsight”), i.e.

p(xk|2z1.5,©) is computed for all k& with K being the length of the entire time sequence.
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For online learning, the parameters can be added to the representation and the filtering

algorithm estimates both the states and the parameters, i.e. p(xy, ©|z1.x) is computed.

2.4 Influence Diagrams

BNs can be extended to Influence Diagrams (IDs) to model decision making under uncer-
tainty [81]. IDs are generally able to represent information about the current state, possible
actions, the state resulting from the action, and the utility of that state [148]. IDs require

the decision and chance nodes to be discrete [85].

2.4.1 Representation

IDs extend BNs by adding decision and wtility nodes. Decision nodes represent choices
available to the decision-maker — a set of possible actions. Utility nodes encode a utility

function: the usefulness of the consequences of decisions using a scalar called utility?.

In addition to the DAG property inherited from BNs, two more structural properties are
part of an ID: (1) there is a directed path comprising all decision nodes, and (2) utility
nodes do not have children. The directed path property is required to ensure a temporal
sequence of decisions. This property applies even if the decisions are independent which is

hard to determine [85].

For visualisation, standard conventions are adopted here: chance nodes are drawn as circles,
decision nodes as squares, and utility nodes as diamonds. An example of an ID is shown
in Figure 2.6. X and Y = {Y? ..., Y"} denote world states and Z = {Z°,..., Z™} denotes
observations. The ID contains a single decision node D with no chance nodes as children
implying that the decision has no effect on the world states. In this case, the decision is also
referred to as a non-intervening decision. The utility node U depends on its parents, decision
node D and chance node X. The network topology within the “supernode” containing Y

and Z nodes is arbitrary.

*How to construct utility functions is not covered here, see e.g. [194][14].
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D

Figure 2.6: Influence diagram with a single non-intervening decision node D and single
utility node U. The world is represented by X and Y = {Y?, ..., Y™} while observations are
represented by Z = {Z9, ..., Z™}. Z nodes are shown shaded. A “supernode” contains all
Y and Z nodes with an arbitrary network topology.

2.4.2 Making Decisions

For the case shown in Figure 2.6, the best action can be found as follows. First, compute

the expected utility (EU) of action vector d given observations z:

EU(d[z) = EPY{U(x,d)} = ) U(x,d)p(x|z) (2.10)

where the computation of p(x|z) marginalises out Y. Second, choose the action d* which

maximises the EU:

d* = argmax FU (d|z) (2.11)
d

The EU for a single decision node can also be computed without making the assumptions
of a non-intervening decision and a single utility node. For i utility nodes each having a

parent X°, the EU is

EU(d|Z) = Z Z Ul (x))p(x'|d, Z) (2.12)
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where p(x‘|d,Z) now also depends on the decision and thus describes its effects on the state

xt.

The general decision problem with multiple decision nodes is to find the best sequence of
decisions. The solution to the problem is a sequence that maximises the expected utility.
One possibility is to convert the ID to a decision-tree [81]. In general, however, the tree is

of exponential size.

Shachter developed an alternative algorithm which transforms the ID by a series of node-
removal and arc-reversal operations [157]. Refinements of that algorithm increased its com-
putational efficiency [158]. Jensen describes an efficient method for solving IDs using strong
junction trees [85]. It represents an extension to the junction trees used in pure Bayesian
decision analysis. Work by Lauritzen & Nilsson links algorithms for IDs to developments

in clustering algorithms for Bayesian networks [105].

2.4.3 Value of Information

Rather than taking the action d* in Equation 2.11, a decision-maker might have the choice
of consulting one of its information sources {I°, ..., I’} in order to generate a more informed
decision. Consulting an information source I’ is equivalent to obtaining the state of that
chance node. For this thesis, it is assumed that only a single information source can be

consulted at any given time which is referred to as myopic information gathering [148].

It is possible to calculate what we can expect to gain from consulting the information source
before observing that node by using its belief given all current evidence p(i’|z) [42]. The
expected utility of the optimal action (EUO) after having observed I° is

EUO(i',d|z) = Zp maxEU(d|z i) (2.13)

The value of observing I' is called the Value Of Information (VOI). It is calculated as the
difference between the expected utility after having observed I’ and the currently available

maximum expected utility:

VOI(i',d|z) = EUO(i*,d|z) — max EU(d[z) (2.14)
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Figure 2.7: Extension of Figure 2.6 by a set of information sources I = {I',..., I} shown
in light grey.

Equation 2.14 is valid for all network topologies. If there are several decision nodes, the
directed path property determines the temporal order as mentioned above. Before each
decision is made, Equation 2.14 can be used to decide whether to obtain more information

first.

Figure 2.7 shows an extended version of Figure 2.6 with potential information sources added

to the representation. For this case, Equation 2.14 can be computed as:

VoI(i',djz) = Zp(iiyz) max (Zp(x\ii,z)U(d,x)>

— max <Z p(x|Z)U(d, x)) (2.15)

Computing the VOI is relevant for intelligent information gathering systems where the goal
is to maximise the amount of information collected [196]. Consulting an information source
comes at a cost, so a sensible strategy is to consult that source only if the expected benefit

is higher than the cost C(i’):

VOI(it,d|z) — C(i') > 0 (2.16)

A central aspect of this thesis is to regard human operators as information sources for

human-robot information fusion as presented in the next chapter. In this context, Equa-



2.5 Summary 33

tion 2.16 can be interpreted as follows: if the cost for obtaining information from a human
operator is smaller than the value this information is expected to add, then ask the operator

for information. This mechanism will be experimentally demonstrated in Chapter 5.

2.5 Summary

This chapter presented the background on probabilistic methods for representing the per-
ception and decision making of mobile robots. The focus was on representations considered
useful for human-robot information exchange, namely Bayesian Networks (BNs), Dynamic
Bayesian Networks (DBNs), and Influence Diagrams (IDs). The literature for these rep-
resentations is vast and only aspects which are required to understand subsequent experi-

mental chapters were presented.

In the context of BNs and IDs, probabilistic data types which are important throughout
the rest of the thesis were introduced: they include observation, prior, likelihood, posterior,

parameter, action, and utility function.

Figure 2.8 shows how the internals of the perception and decision models (previously shown
in Figure 2.1) can be realised using an ID. Both the environment and the platform is
represented by two abstraction levels (four white chance nodes of the perception model).
The sensor and user models for perceiving environment and platform states are represented
by the CPDs attached to the grey evidence nodes. Decisions are made based on the beliefs
of the chance nodes, and the corresponding utility functions. The actuation model encodes
the effects of a platform decision in the example (bottom right). Operators can directly
enter actions as indicated by the decision node in the user model box (top right). The next

chapter will show how to utilise such a representation for human-robot information fusion.
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Figure 2.8: Influence diagram representation for robotic perception and decision making
(compare to Figure 2.1): environment and platform are represented by two nodes each
(white circles) which are observed by robotic sensors and human operators (grey circles).
Decisions (squares) are made according to the beliefs of the chance nodes, and the utility

functions (diamonds).



Chapter 3

Humans as Information Sources

As discussed in the previous chapter, many aspects of critical algorithms in today’s robotic
systems are probabilistic. This chapter starts by exploring the suitability of probabilistic
data types for bidirectional human-robot communication. Subsequently, the communication
direction is restricted to a human-to-robot flow which introduces the concept of treating
humans as information sources (see Figure 3.1). Information is defined as one of two
probabilistic data types: observations and likelihoods. The purpose of letting operators
submit information is to enable the probabilistic fusion with information acquired by robotic
sensors. Human-robot information fusion is used to fulfil the objective of combining the

strengths of the two complementary information sources.

Arguments are presented as to why information is considered an adequate data type for
human data entry. It is shown that for a large class of semi-autonomous systems, this type
of human-robot communication is sufficient. Two questions arise: (1) what representations
are suitable to incorporate information from human operators, and (2) how to treat human
input. The first question is addressed by discussing the suitability of multi-level probabilistic
representations. The second question is addressed by showing how probabilistic user models

can be incorporated into a multi-level representation.

The concept of treating humans as information sources as part of probabilistic reasoning
and decision making is a novel contribution to the field of HRI. The potential benefit of this
concept has recently gained attention in the context of crisis management [139][122] where
people in the field may be able to contribute valuable information after natural or man-made

disasters have occurred. Another application area where operators may add information to
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Figure 3.1: This chapter introduces the concept of regarding humans as information sources.
Human operators submit perceptual information which is transformed by a user model and
subsequently fused with robotic sensor information.

a semi-automated reasoning system is command-and-control [146][15]. In all of this work,
the integration of operators is often discussed conceptually only, and results from fusing
human and sensor information are limited to date. The second contribution of this chapter
is the presentation of methods for probabilistic modelling of humans as sensors. Some of the
work mentioned above recognises the need for modelling the reliability of human input [122]
but no results have been reported. The third contribution is the utilisation of probabilistic
multi-level representations for human-robot information fusion. In the literature, multi-level
models are prominent for many application areas, but typically, input at higher abstraction
levels is not considered [109]. A detailed literature review is presented at the end of the

chapter.

The remainder of the chapter is organised as follows. Section 3.1 presents use cases of
probabilistic data types for typical robotics applications. Human entry of information is
contrasted with human entry of actions. Section 3.2 discusses the implications of regarding
human operators as sensors. The differences between robotic and human sensors are listed

and probabilistic representations are proposed to incorporate the differences. The Human



3.1 Probabilistic Human-Robot Interactions 37

Sensor Model (HSM) is introduced as a probabilistic method to model user uncertainties.
Section 3.3 discusses the limitations of regarding human operators as information sources.
Section 3.4 presents simulated results from a set of example models demonstrating both
the advantages and limitations of the approach. Section 3.5 presents results from a calibra-
tion experiment which employed human subjects to build a HSM for range observations.

Section 3.6 presents related work before Section 3.7 summarises.

3.1 Probabilistic Human-Robot Interactions

The approach advocated in this thesis is to make use of established probabilistic represen-
tations for bidirectional human-robot communication. This can be seen as a robot-centred
approach: given current robotics representations, methods to incorporate human operators
are investigated. As Fong pointed out in [57], robot-centred does not mean that the robot
is “in charge”: the human is rather seen as a resource or collaborator to the robot. Fur-
thermore, robot-centred does not contradict the goal of human-centred robotics which takes
“a philosophical stance on building technology that serves human needs” [26]. More specif-
ically, a robot-centred approach to human-robot communication is defined here as taking
established probabilistic representations as a starting point for developing communication

schemes.

3.1.1 Probabilistic Data Types

The type of data to be communicated between humans and robots is well-defined using our
robot-centred approach: all relevant information is encoded in the probabilistic represen-
tation. As presented in Chapter 2, Bayesian inference includes the following data types:
prior belief, observation, likelihood, posterior belief, and parameter (which include sensor
and transition model). If decisions need to be made, additional data types are action and
utility function. Figure 3.2 summarises the available data types and emphasises what is

referred to as information in this chapter.

Given a probabilistic representation of the state of the environment and the robotic plat-
forms, all communication patterns mentioned in Section 1.3.2 can be realised. Table 3.1
lists examples of robotics applications with corresponding communication patterns and

messages. The examples are briefly described next.
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Figure 3.2: Probabilistic data types as a UML class diagram. Arrows indicate a “is-a”
relationship. The “root” node also appears in Figure 1.4. The highlighted data types are
submitted by human operators when acting as information sources.

Teleoperation resembles a simple human-push pattern with human operators constantly
sending actions to the robot. Similarly, in a manipulation task, a robot may be used
to change the environment by submitting low-level or high-level actions (e.g. “move that
chair”). In many Adjustable Autonomy (AA) systems, human operators may specify actions
at different abstraction levels when taking over control. Examples include safe-guarded
teleoperation and the specification of high-level task goals [23]. Section 5.4.3 discusses

related work in AA in more detail.

The human role of monitoring the robots’ task and health can be implemented using robot-
push or human-pull. Robot-push is more commonly applied, e.g. frequent updates of a
feature map on a GUI display during a map building scenario. Relaying current beliefs
including uncertainty to operators can contribute significantly to improve their Situation

Awareness (SA) [49]. In the map building example mentioned above, the (Gaussian) un-
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Application Comms. patt. Message Prob. data type
Teleoperation human-push plat.-dec. action
Manipulation human-push env.-dec. action
Adjustable autonomy human-push, plat.-dec. action
robot-pull
Task monitoring robot-push, env.-perc. belief,
human-pull parameter
Health monitoring robot-push, plat.-perc. belief, action,
human-pull parameter
Human-robot fusion human-push, env.-perc., observation,
robot-pull plat.-perc. likelihood

Table 3.1: Examples for human-robot communication using probabilistic data types. The
focus of this thesis is emphasised. Abbreviations are: env. = environment, plat. = platform,
perc. = perception, dec. = decision.

certainty of point features are often displayed using ellipses. For monitoring purposes,
operators may also be interested in the robots’ current actions, e.g. their speeds and turn-
rates. If online learning is part of the system, operators may also want to receive updated

parameter values.

This thesis focuses on the application highlighted in Table 3.1: human-robot fusion. Obser-
vations and likelihoods are identified as appropriate data types for this application. Human-
robot information fusion can be implemented by either human-push (Chapter 4) or robot-
pull (Chapter 5). In the following, it is argued that submitting information can be superior

to submitting actions for robot control.

3.1.2 Information Vs. Action

The benefits of submitting information rather than actions for robot control are related
to modularity, scalability, reuse, and peer-to-peer interaction. Each one is discussed below

while limitations of this approach are presented in Section 3.3.

Modularity Submitting actions is equivalent to making decisions. For operators to make
“good” decisions, complete SA may be required. In contrast, observations can be made on

smaller parts of the represented, potentially complex, scenario.

Graphical models are well-suited to represent complex scenarios. According to Jordan [89],
a fundamental concept of graphical models is the notion of modularity: a complex system

is built by combining simpler parts. In this work, BNs are used to minimise complexity by
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assuming conditional independence between variables. Modularity of a representation can
be beneficial for human information submission: operators are only required to understand

a subproblem, not the entire model.

As a consequence, by using the approach advocated in this work, non-experts can add
information about simple, intuitive subproblems which do not require the understanding
of an entire situation. The information entered in this way propagates throughout the
representation using inference mechanisms as described in Section 2.2.2, and ultimately

leads to well-informed decisions.

Reuse If more than one decision needs to be made, information supplied to the system
may influence all of the decisions depending on the representation’s structure. Thus, a
single piece of information is “reused” to make several decisions simultaneously which is

not achievable if operators were to specify actions directly.

Information can also be reused in a temporal sense. If the representation keeps a history,
which is typically done for evolving phenomena, fused information remains in the system and
influences actions at all future time steps. Filtering using a DBN as discussed in Section 2.3
is an example of how to maintain a history. In contrast, actions cannot be reused in the

future.

Scalability In robotic systems, actions are typically related to a specific robotic platform.
This includes higher-level actions such as path planning decisions. Specifying actions for
individual platforms does not scale to multi-robot systems, and actions cannot be “shared”

among platforms.

In contrast, beliefs related to the environment can be shared among all platforms, and thus
do scale well [115]. To share beliefs, state estimation needs to be decentralised which is
presented in Chapter 4. Based on the beliefs of the shared environment states, actions can

be triggered for all platforms in the system [71].

Robot as a Partner Letting operators submit information rather than actions reinforces
the notion of acting on the same level of authority: humans and robots collect information

cooperatively and the model produces the decision. This approach is different from many
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AA systems where operators take over control (see Section 5.4.3). Taking over control can
be seen as overriding the robot’s decisions whereas our approach resembles true peer-to-peer
interaction. Viewing the robot as a partner rather than a tool is considered a prerequisite

for truly intelligent human-robot systems by many HRI researchers [52][117].

3.2 Human as a Sensor

This section analyses the implications of regarding human operators as sensors. First, the
applications of human-robot fusion presented in this thesis are outlined. Then, the differ-
ences between robotic and human sensors are presented which impose certain challenges
on the representation employed for human-robot information fusion. Multi-level Bayesian
Networks (BNs) are able to address these challenges and are capable of incorporating user
models. User models are named Human Sensor Models (HSMs) and are introduced after-

wards.

3.2.1 Applications

Two robotics problems are considered in this thesis: (1) cooperative information gathering,

and (2) cooperative decision making.

The objective for information gathering is to build a representation of a spatially distributed
phenomenon. Information gathering can be conducted by a single robot, a team of net-
worked robots, or a sensor network [113]. Independent of the system type, information
from multiple sources is usually combined into a single representation. Typically, human
operators either engage in a monitoring activity as part of these systems [100], or make
decisions based on the collected information [34][15]. The novel approach presented here is
to let operators contribute to the information gathering task by submitting information in
a similar way to robotic sensors. Thus, humans become an integral part of the information
gathering system. Chapter 4 presents results from an experiment using a heterogeneous

human-robot team deployed to gather information in an outdoor environment.

The second problem is cooperative decision making: robots have a task to fulfil and there-

fore need to make certain decisions. In this scenario, there are more options for human
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involvement compared to the task of “pure” information gathering. The most straight-
forward interaction is teleoperation as described in Section 3.1.1. Operators can also make
higher-level decisions and enter them into the representation as commonly done in systems
employing supervisory control [159]. The approach presented here is different: as for in-
formation gathering, operators submit information and let the robot decide what to do
based on the additional information. Chapter 5 presents results from robotic navigation

experiments employing this mechanism.

3.2.2 Robotic Vs. Human Sensor

The qualities of human sensors differ vastly from those of robotic sensors. This section
discusses the differences and shows how a probabilistic representation can address them.
Differences are identified in the following categories: abstraction, resolution, time scale,

uncertainty, and reliability.

Abstraction Robotic sensors perform well in low-level descriptions such as geometric
properties. Measuring the range and bearing to a point feature using a laser scanner is an
example. In contrast, human operators are valuable in contributing more abstract proper-
ties. An example is object recognition which is trivial to humans but as a general problem,

remains unsolved using vision algorithms [37].

Accuracy Robotic sensors are typically very accurate in the property they measure
whereas humans function on a more qualitative level. A laser range scanner, for example,
can measure the distance to an object with an accuracy in the order of centimetres. For
humans, it is more natural to categorise coarsely. Examples of human distance observations

are “between 1 and 2 meters” or “close”.

Time scale Robotic sensors can make periodic observations at high frequency. For hu-
mans, it is more natural to asynchronously submit observations whenever there is spare

capacity to do sol.

'For control tasks, human capacity is limited to a bandwidth below 1Hz [160].
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Uncertainty Both robotic sensors and human operators are uncertain in their measure-
ments. The peculiarity of humans is their individual difference: while robotic sensors per-

form similarly across a product range, individual humans differ greatly in their perception.

Variability Related to the previous point is the variability of observations. Variability
is not only caused by differences between individuals but can also stem from the same
individual. Many external factors make an individual perform differently under different
circumstances. This is less of a problem for robotic sensors which may show variability on

a smaller scale due to temperature changes for instance.

The differences listed above illustrate that robots and humans have complementary per-
ceptual abilities. Combining these abilities offers an opportunity for effective information
fusion. The approach presented in this work is to use a BN representation for human-robot

information fusion which is discussed next.

3.2.3 Suitability of BNs

BNs are capable of incorporating the differences between human and robotic sensors. Mul-
tiple abstraction levels are naturally encoded by the cause-effect structure of BNs. Hier-
archical Hidden Markov Models (HHMM) are an example of a model addressing processes

with a hierarchical multi-level structure [126].

An important advantage of a hierarchical BN is the information flow between levels in
the hierarchy: lower level observations propagate to higher levels via inference, and thus
change the beliefs of higher level states. This information can be communicated to human
operators for monitoring purposes (human as information sink). Information flow also
works in reverse: high-level human information entry changes lower-level beliefs (human as

information source).

Different accuracy levels can be represented by continuous and discrete random variables,
respectively. These networks are often referred to as Hybrid BNs [148]. Multiple time scales
can be modelled using Dynamic BNs such as a variable-duration semi-Markov HMMs [126].
Uncertainty and variability of the human sensor can be addressed by user modelling tech-

niques as described next.
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3.2.4 Human Sensor Model

Two probabilistic data types are considered suitable for human-robot information fusion as
shown in Table 3.1: likelihoods and observations. The human entry modes using likelihoods
and observations are subsequently called likelihood mode and raw observation mode. The
former is model-free while the latter requires a user model to transform between raw obser-
vations and the probabilistic representation. The probabilistic user model is called Human
Sensor Model (HSM) in this work. Both of the modes mentioned above were applied in the

experiments presented in Chapters 4 & 5 and are described next.

Likelihood mode In the likelihood mode, human information is entered as likelihood
functions which include uncertainty. Humans can be seen as operating in state space using
this mode. If a Gaussian representation is used for example, a likelihood function would
consist of a mean and a standard deviation. For a binary representation, a ratio would be

specified, e.g. 5: 1.

In this mode, operators are explicitly allowed to add uncertainty to their observations.
Operators apply their mental models of the environment and platforms (see Figure 1.3)
to estimate the uncertainty of their observations. The problem with this approach is that
these estimates may be erroneous. Furthermore, as discussed above, individual users may
have very different mental models which depend on many parameters that are time-variant
and situation-dependent. Therefore, it is desirable to let the system decide how much
uncertainty is associated to a raw human observation. This motivates the idea of modelling

human operators as sensors which is discussed next.

Raw observation mode In the raw observation mode, operators make observations
which the system converts into likelihoods by applying a HSM. If an n-dimensional Gaussian
representation is used, a raw observation consists of a point in n-dimensional space which
is converted into an (unnormalised) n-dimensional Gaussian using the HSM. Section 3.5
presents an example of how to build a Gaussian HSM using a calibration experiment. For a
binary representation, one of the two binary states is specified. The HSM adds uncertainty

to the observation which yields a binary likelihood, e.g. 3 : 1.
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3.3 Limitations

Human-robot information fusion as advocated in this work requires an a priori and fixed
probabilistic representation. In this section, some of the limitations with this approach are

identified. Suggestions are made of how to overcome the limitations in the future.

3.3.1 Model Complexity and Accuracy

Fusing human and robotic information relies heavily on the quality of the probabilistic
fusion model. This section discusses the impact of model complexity and accuracy on the

expected fusion results.

Complexity According to Occam’s razor, the simplest model is the most preferable
one [193]. The method advocated here may require complex models since higher-level states
are needed to enter human observations. For some problems, there may not be a need to
model these states for several reasons: (1) there is no interest in them, (2) no decisions
depend on them, (3) the states are hard to model. The last point is a difficult problem,
especially if little training data is available. An overly complex model may produce worse

fusion results due to overfitting [46].

Accuracy It is widely acknowledged that probabilistic models do not have to be overly
accurate in terms of the parameter values. In fact, “probability provides a way of sum-
marising the uncertainty that comes from our laziness and ignorance” [148]. Despite this
favourable property, human input cannot improve the accuracy of the fusion results if the
model’s parameters or structure are inappropriate. In fact, it may be feasible to refine the
model’s parameters and structure online using human input. This is a research area subject

to future work as discussed in Section 6.2.1.

3.3.2 Conflicting Evidence

User modelling is a hard problem, mostly due to the individuality of humans and their

variation in performance. There are ways of mitigating the problem of individuality, e.g. by
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using stereotypical profiles as presented in Chapter 5 or adapting models online as presented

in [96].

Even if an appropriate user model exists, the danger remains that information entered by
humans is inconsistent with each other or with information collected by robotic sensors. The
problem is especially severe in a system where multiple operators and sensors are involved. A
way to identify conflicting evidence in discrete BNs was presented in Section 2.2.4. Conflict
resolution is often done manually by an analyst [86]. To automate the process is an avenue
of future research: one possibility is to “gate” suspicious observations which is a common

method in classical data association applications [11].

3.3.3 Human Factors

Section 3.1.2 argued that letting operators enter perceptual information rather than actions
is a more peer-like interaction mode. Information propagates throughout the BN and deci-
sions are made based on the inferred beliefs. As a consequence, the behaviour of the robot is
not predictable to an operator who does not have a valid mental model of the system [130].
A feeling of “not being in control” may irritate users and may lead to less trust towards
the automated system. This is an interesting hypothesis which could be validated in a
user study. Future work as presented in Section 6.2.2 will investigate how to generate good

mental models based on explaining internal reasoning and decision making to operators.

For some applications, a supervisory interaction scheme may be more appropriate [68]. A
trade-off between simplicity of interaction (achieved e.g. by specifying actions) and building
more intelligent human-robot systems is acknowledged here [117]. In practice, a combination
of supervisory and peer-to-peer interaction modes is expected to be most effective for many

application domains, given the state-of-the-art in robotics [68].

Other benefits of exploiting human decision-making skills (as opposed to perceptual skills)

are presented in Section 6.2.1.

3.4 Example Models

This section presents simulation results from three simple human-robot fusion models. The

simulations are conducted to demonstrate both the benefits and limitations of the approach.
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Figure 3.3: Static example model for human-robot information fusion. Position is con-
tinuous and observed by the robot (PositionObs in dark grey) while Area is discrete and
human-observable (AreaObs in light grey).

3.4.1 Static Model

Figure 3.3 shows a two-level, static, hybrid BN for human-robot information fusion. The
low-level Position variable represents the continuous one-dimensional position of a robot.
An absolute position sensor (e.g. GPS) is used to observe Position. The sensor is erroneous
and modelled as shown in Figure 3.4(a). The high-level Area variable represents two areas
a and b the robot can be located in. Roughly, Area a reaches from 0 to 5 while Area b
reaches from 5 to 10 which is modelled using two conditional Gaussian distributions. Their
means are located in the middle of each area as shown in Figure 3.4(b). The Area variable
is observed by a human using both the raw observation and likelihood modes as discussed in
Section 3.2.4. The HSM required for the raw observation mode is encoded as a Conditional

Probability Table (CPT) as shown in Figure 3.4(c).

The first property of human-robot information fusion demonstrated here is the information
flow between abstraction levels. Figure 3.5 visualises results for different sets of observations
entered into the static model shown in Figure 3.3: no observations, human-only observation,
robot-only observation, and human-robot observations. Figure 3.5(a) shows the result of
inference for Area and Position when no observations have been entered: areas a and b are
equally likely and the Gaussian distribution is flat across all positions. The two distributions

represent a non-informative prior. All following figures are to be compared to this situation.

Figure 3.5(b) shows the result when the human operator makes the observation areaObs =

a: the probability for a increases to 0.8 (using the HSM) while the information also flows to
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Figure 3.4: Parameters of the static example model: (a) the robotic sensor model repre-
sented as a conditional Gaussian distribution; (b) the conditional probability distribution
p(position|area); (c) the HSM represented as a 222 CPT. Rows are probability distributions
and add up to 1.0 while columns represent likelihood functions p(areaObs|area).

the Position node which makes the Gaussian become more compact. Figure 3.5(c) shows
the result from using the other human input mode: the operator specifies a likelihood ratio?
of a:b=9:1 which increases the probability for a to 0.9. As before, information also flows
to the Position node. The reverse information flow is shown in Figure 3.5(d): the robotic
sensor makes an observation positionObs = 2.0 which changes both the Position and the

Area distributions.

So far, the resulting distributions for robot-only and human-only information entry have
been presented. The second property of human-robot information fusion demonstrated
here is the improvement of the fusion results. Figure 3.5(e) shows the result of combining

human and robotic observations (scenarios (b) & (d)): the distributions are more certain?.

2This is also referred to as entering soft or virtual evidence on the Area node [140].
3Scenarios (c) & (d) could be combined accordingly which is omitted for brevity.
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Figure 3.5: Simulation results from the static example model. (a) No evidence is entered into
the network, beliefs are “uniform”. (b) Human operator enters a raw observation indicated
by red marker. Information also flows to the Position variable. (¢) Human operator enters
likelihood ratio 9 : 1. Information also flows to the Position variable. (d) Robot makes an
observation indicated by the red marker. Information also flows to the Area variable. (e)
Human-robot fusion indicated by two red markers gives the most compact distributions.
(f) The total entropy for the scenarios (a)—(e).
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A quantitative measure of how much information is contained in a distribution is the Entropy
or Shannon information [135]. The more compact a distribution, the more information it

contains. For a discrete distribution, entropy is defined as*

Hy(x) = = p(x)log p(x) (3.1)

For a continuous distribution, entropy is defined as

H,(x) = — /p(x) log p(x)dx (3.2)

which resolves to the following expression if the distribution is a n-dimensional Gaussian

with a covariance matrix P:

Hy(x) = 5 log](2ne)"| P (3.3)

The sum of the Area and Position entropies are computed for the five scenarios shown in
Figure 3.5(a)—(e). The result is shown in Figure 3.5(f): most information is contained in

the distribution resulting from human-robot information fusion.

3.4.2 Dynamic Model

The model presented above is static, i.e. it does not take any history into account. For
many robotic processes, dynamic models are more appropriate as discussed in Section 2.3.

Figure 3.6 shows the extension of the static BN from Figure 3.3 to a DBN.

Figure 3.7 shows results of the filtering algorithm when the robot drives from Position 1.0
to 10.0 for three different scenarios: human-only observations, robot-only observations, and
human-robot fusion. The figure shows the beliefs and their uncertainties evolving over time.
The leftmost plot shows the discrete Area distributions with the shading level of the marker
proportional to the probability mass. The centre plot shows a ROC curve using the beliefs

of the Area node. It is shown here to indicate the accuracy of the area classification — the

4Logarithms to the base e are used here.
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Figure 3.6: Extension of the model shown in Figure 3.3 to a dynamic model.

more area under the ROC curve, the more accurate. The rightmost plot shows the robot’s

Position error including the estimated one-o standard deviation.

The figure shows how the perceptual strengths of humans and robots are combined. In
human-only mode, in which the operator only makes discrete AreaObs observations, the
classification results are excellent. However, the Position state can not be estimated well
and the uncertainty in the estimate grows over time as shown by the increasing standard
deviation. In contrast, the robot by itself tracks the Position state well but the estimates
of the Area state are not as accurate. As for the static model, the best results are achieved

when humans and robots fuse their observations.

The dynamic example model uses two assumptions related to the time scale: (1) Area and
Position states change at the same rate, and (2) humans and robots add observations at

each time step. These assumptions can be avoided:

1. States changing at different rates can be modelled using a semi-Markov model [126]
as shown in Figure 3.8. The Counter variable represents the duration of the Area
state: whenever it expires, the Switch variable is turned on which lets the Area node
change states using its transition model. The Counter variable then resets according

to its model distribution (e.g. geometric or encoded as a table).

2. Humans are unlikely to submit observations at the same rate as robots. While robotic
observations arrive at each time step, human observations are only added occasionally.
It is straight-forward to leave out or add observations in a recursive Bayesian filtering

algorithm.
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Figure 3.7: Simulation results from the dynamic example model. There are three plots per
scenario: the plot on the left shows the belief in which Area the robot is currently located.
The probability mass is proportional to the shading level of the marker and the truth is
drawn as a red line. The plot in the centre shows a ROC curve as an indicator of how well
the Area classification works. The plot on the right shows the Position error of the robot
including the estimated one-o standard deviation.

3.4.3 Decision-Making Model

So far, no decision making has been considered. Figure 3.9 shows an Influence Diagram (ID)

encoding a simple decision model for an intelligent vehicle. The decision under consideration

is whether to drive fast or slow. In this simple model, it is assumed that the decision only
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Figure 3.8: Semi-Markov example model for human-robot information fusion.

depends on the Street Type (highway/urban) which the robot observes with some uncertainty.
A higher abstraction level is the CollisionDanger encoding the current danger of a collision®.
This node can be observed by human operators, either an expert or a novice which are

represented by a HSM each as shown in Figure 3.10.

The example is aimed at contrasting the approach presented here to systems where human
operators take over control as mentioned in Section 3.1.2. Rather than having to “intervene”
and directly make the decision which speed to go, human operators make a higher-level
observation of a collision danger. The information propagates to the lower level where it is

fused with the robot’s sensor observation before a decision is made.

It can be argued that observing the collision danger is more suitable to the perceptual
capabilities of humans and does not require any technical knowledge. Furthermore, the
model may become more complex by adding other variables which influence the speed

decision. Observing a subproblem like the collision danger may be more accessible to

®Note that the direction of the edge is from StreetType to CollisionDanger which better reflects the
cause-effect relationship between the two variables. In terms of abstraction, however, CollisionDanger is
higher.
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Figure 3.9: Example decision model for human-robot information fusion. The decision is
what speed to move which depends on the StreetType observed by the robot. In terms of
abstraction, a higher-level node is CollisionDanger which can be observed by two different
types of human operators: novices and experts.

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0

) Novice b) Expert

Figure 3.10: Two discrete HSMs represented as 222 CPTs. The rows are prob-
ability distributions and add up to 1.0 while columns represent likelihood functions
p(collision N ovice|collision Danger) and p(collision Expert|collision Danger).

humans than taking all possible variables into account to make a global decision. However,

as mentioned in Section 3.3, the approach requires a good model.

Another purpose of the example is to demonstrate the situation of conflicting evidence as
mentioned in Section 3.3. Table 3.2 and Figure 3.11 show potential conflicts generated by
the three available information sources: expert/novice human operators, and the robot.

The conflict of evidence is computed using Equation 2.7.

As can be seen from the table and the figure, the lowest conflicts occur when both operators
and the sensor “agree” as in the first and last case. The highest conflict occurs when the

expert “disagrees” with the novice and the sensor.
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Index | Collision- Collision- StreetType- | Conflict
Expert Novice Obs
1| low low highway —0.87
2 | high low highway 0.33
3| low high highway —-0.11
4 | high high highway 0.23
5| low low urban 0.10
6 | high low urban 0.09
7| low high urban 0.50
8 | high high urban —0.21

Table 3.2: Results of the conflict of evidence analysis conducted on the decision model
shown in Figure 3.9. Each row represents 3 simultaneous observations by an expert, a
novice, and the robot. Positive conflict measures indicate potential conflicts.

0.51

o

Conflict measure

1 2 3 4 5 6 7 8
Table index

Figure 3.11: Conflict of evidence results from Table 3.2. Positive conflict measures indicate
potential conflicts.

3.5 Experiments

This section describes a calibration experiment with the purpose of developing a HSM for
range observations. While it was argued earlier that humans are better suited for identifying
higher-level properties of an object, operator observations of the object’s location are also
required under some circumstances. This will be discussed in Section 4.2.1 where the HSM

for range is used as part of a larger experimental demonstration.

3.5.1 Procedure and Results

In the calibration experiment, eight poles (length 170cm) were placed in an open space with
known coordinates. Twenty-one participants were asked to estimate range and bearing to

each pole using direct line-of-sight vision. The experimental setup is shown in Figure 3.12(a).
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Figure 3.12(b) visualises the data obtained from the experiment: both single observations of
all participants and mean estimates are shown. The ellipses in the graph assume a Gaussian

distribution, a two-o standard deviation is drawn.

The evaluation of the data focuses on the range estimates. Decoupling range and bearing
estimates implies the assumption that there is no correlation between them. The results,

both qualitatively and quantitatively, can be summarised as follows:

1. The standard deviations of the range estimates can be approximated as a linear func-
tion of the true range, i.e. uncertainty increases with range which is shown in Fig-

ure 3.12(c).

2. The mean range estimates can be approximated as a linear function of the true range.
On average, the range was underestimated for all the poles as shown in Figure 3.12(d).

The increasing standard deviation is also visualised via error bars.

3. Range estimates can be approximated by a Gaussian distribution which is verified
as follows. First, range observations for all poles are pooled into a single standard
score z. It is computed by z = % where x is the raw score to be standardised (a
range observation), and p, and o, are the range mean and standard deviation of the
corresponding pole. Second, a histogram and normal probability graph are plotted
as shown in Figures 3.12(e) & (f). Since the z-score follows the line of the normal

probability graph, the assumption of a Gaussian distribution is reasonable.

Researchers in the field of psychology have also investigated the topic of human distance
estimation with similar results to ours. Baird et al. demonstrated that the relationship of
perceived distance and actual distance, on average, can be described by a power function
with an exponent close to 1.0 [9]. Da Silva et al. found that it is slightly greater than 1.0

with indoor observations and generally slightly less than 1.0 with outdoor observations [36].

3.5.2 HSM for Range

Based on the experimental data, it is possible to build a probabilistic sensor model®. For a

HSM, the goal is to produce a likelihood function of x given a human observation z. In the

5 Another method would be to use the results of the psychologists’ research directly.
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Figure 3.12: Results of the calibration experiment: (a) experimental setup; (b) all partic-
ipants’ range/bearing observations, Gaussian uncertainty ellipses around means, true pole
locations are repeated for reference; (c) range standard deviation increases linearly with
range; (d) mean range estimates are linear to true ranges, ranges are underestimated, er-
ror bars indicate increasing standard deviation; (e) histogram of z-score using 30 bins; (f)
normal probability graph verifying the Gaussian assumption for range.
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specific range model, both variables” are in the form of ranges measured in metres. The

HSM can be represented as a simple Bayesian Network (BN) as shown in Figure 3.13.

L
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Figure 3.13: A BN representation of the HSM for range explicitly showing the parameters
(nodes with outgoing dashed edges). Round/square nodes are continuous/discrete. X is
realised as a Gaussian, Z as a conditional Gaussian with parameters p, w and o. The
discrete node L encodes the range-dependent uncertainties.

The BN consists of the following nodes: node X represents the true range to the target
and is encoded as a Gaussian. Node Z represents the human range observation and is
encoded as a conditional Gaussian. Nodes pu, 0 and w are the parameters of the conditional
Gaussian sensor model. Node L stands for Location and is required to encode the range-
dependent uncertainties of the range observations. It is a continuous variable discretised
into several bins for implementation purposes. This one-dimensional sensor model can also
be formulated as:

z=wz+p+N(0,0(L)) (3.4)

where z is the human range observation, x is the true range, w and p are regression coefficient
and mean, and o is the standard deviation of the observation noise which is normally
distributed with zero mean. The standard deviation is range-dependent which is expressed

by the dependency on the L node.

The model can now be used for inference of range x at run-time as will be shown in
Section 4.3.3. The parameters based on the results of the calibration experiment are: i = 0,

0 =1{1;2;3;4;5;6} (dependent on value of L node), and & = 0.9.

"Note that 2 and z should not be confused with their earlier use for raw and the standard scores.
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3.5.3 Discussion

The HSM developed above represents an average human operator’s ability to estimate the
range to an object in an open space. Given the modularity property of BNs, the simple BN
shown in 3.12(d) can be integrated into a larger representation as will be demonstrated in

Section 4.2.1.

Another advantage of the BN representation is the extensibility to more complex models.
In the present form, the model does not address the individuality of human operators as
discussed in Section 3.2.2. More variables can be added to the user model, e.g. time of the

day, current workload etc.

A second possibility to address the individuality is to adapt the HSM to individual operators
at run-time. This requires the truth of the range being available online. We reported

preliminary results of an experiment where such an oracle was available [96].

3.6 Related Work

Related work for this chapter comprises three main topics: humans as information sources,

multi-level representations, and probabilistic user modelling. Each one is discussed below.

3.6.1 Humans as Information Sources

Different system functions can be automated when humans interact with automation. Para-
suraman et al. propose four function classes [136]: (1) information acquisition, (2) infor-
mation analysis, (3) decision and action selection, and (4) action implementation. Letting
human operators contribute perceptual information can be seen as choosing a low automa-

tion level for class (1) while classes (2)—(4) are fully automated.

Regarding human operators as information sources is a novel idea and thus, the literature
on this topic is limited, especially in the robotics field. Three application areas which may
benefit from human perceptual input are crisis management, command-and-control, and

cooperative mapping which are reviewed next.
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Crisis Management The advantages of fusing information from humans and sensors
have recently been recognised in the context of crisis management [139][118][122][110].
Pavlin et al. work on integrating human information originating from databases, web-
pages, mobile phones or interactive querying into their Distributed Perception Network
(DPN) [139]. DPNs use a distributed Bayesian network and a representation which can be
exploited to generate useful queries addressed at humans in the field. The example pro-
vided is a gas detection system where humans contribute information by reporting smell
and health symptoms information queried via SMS or the web. The problem of modelling

human operators has also been highlighted but no results are reported.

Project Rescue is another crisis management project explicitly acknowledging human op-
erators as sensors [122][6]. First responders’ observations and eyewitness accounts may be
leveraged to gain a better assessment of the situation using human cognitive abilities. They
emphasise the necessity of modelling the reliability of human reports with respect to percep-
tual and cognitive biases as well as to social background. Probabilistic modelling techniques
are proposed as a potential solution. Implementation of the the user modelling ideas to date
are limited. The focus is on mapping humans’ free text reports containing location infor-
mation to probability distributions over “domains” which are 2d spatial grids [92]. The

system does not perform fusion of human reports with sensor information.

Llinas’ crisis management paper is written as a research proposal [110]. It proposes the
investigation of fusion algorithms to support decision makers dealing with natural and man-
made disasters. Potential information sources include aerial imagery equipment, ground
sensors, and humans in the field. Human operators can be either civilians, specifically
deployed data collection teams, or rescue staff. This work seems not to have gone beyond

this initial proposal.

Command-and-Control In most command-and-control applications, humans remain
the final decision maker. Automated systems are typically used to provide aid to deci-

sion makers (see e.g. [34]).

An exception is work from Ross et al. who mention operators as potential information
sources in a military global awareness mission [146]. The world is represented as a hier-

archical Bayesian Network. Observations can come from image intelligence reports, radar
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reports, terrain databases or human intelligence reports. They do not address learning the

model parameters and entry of human observations is not demonstrated experimentally.

The data fusion community has worked on making human operators an explicit part of the
popular JDL data fusion model [15][120]. Blasch presents a simple experiment where users
help the fusion system with data association and localisation as part of a group-tracking
scenario [15]. Both papers discuss integrating operators on a conceptual level only and do

not address the problem of how to represent and fuse information from human operators.

Mapping A human operator and several robots cooperatively build a map of the envi-
ronment in [25]. It is argued that a common meaningful representation is required for a
human-robot team to achieve a common goal. The map contains both lower-level terrain
information as well as semantic abstractions provided by a user. A point-and-click mech-
anism allows the operator to add objects such as victims in a search-and-rescue scenario.
The higher-level representation, however, is non-probabilistic and has no relationship to

lower-level states.

Another cooperative map building system is presented in [177]. A human operator is ex-
plicitly acknowledged for Human Augmented Mapping. Operator input is used to make
the map human-understandable and to clarify ambiguities using dialogs [103]. A related
dialog-based approach is presented in [161] where operators label objects which the robot
has segmented previously. Both of these approaches do not fuse information, i.e. robotic

and human map states are not correlated.

3.6.2 Multi-Level Representations

Figure 1.3 showed the environment as consisting of several levels of abstraction including
features, objects, tracks, situation and impact. These terms have been adopted from the
standard multi-level process model used in the information fusion community, the JDL Data
Fusion Model [187]. It is a functional model motivated by the lack of a common terminology

when discussing different elements of information fusion processes.

The JDL model consists of multiple levels but does not prescribe any fixed architecture
or choice of representation. In principle, all levels of the JDL model can be represented

using a probabilistic framework. BNs are considered suitable because they keep track of
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inter-level correlations which enables inter-level information flow. A BN implementation of
JDL level 2 for a battlefield application is presented in [66]. The objectives are similar to
ours: both higher-level nodes such as enemy intent and lower-level nodes such as enemy
tracks are represented together. The potential of human input from friendly units is also

mentioned but no quantitative results are presented.

Multi-level probabilistic models have successfully been applied to a vast number of appli-
cations in need of representing information on multiple levels of abstractions. Domains
include computer vision [168][127][178][184], speech and text modelling [128][41][144], and
activity recognition [109][138][132][180][62]. Multi-level probabilistic models are also useful
if decisions need to be made. Examples include intelligent light control [186], and robot

localisation [172].

None of these models consider input of evidence on a higher level. Typically, a single
low-level sensor stream is used to infer higher-level states. Sensors include laser [172],
GPS [109][138], camera [168][127][178][184], microphone [128], and photosensor [186]. Al-
ternatively, multiple low-level sensor streams are fused, again to infer higher-level states.
Examples are video and audio [128][41] and audio/video/computer activity [132]. In con-
trast, this work lets human operators add information on higher-level states which propa-

gates throughout all other levels depending on the correlations encoded in the model.

Since the propagation of information to lower levels is not anticipated in the models cited
above, one approach is to isolate levels from each other. The advantage is the decomposition
of the modelling problem which simplifies learning and inference for submodels. Oliver et al.
use this layered approach to recognise activities in an office environment [132]. Each layer
is represented as a set of independent HMMs which propagate their results to higher levels.
A similar approach is used for recognising potential terrorist attacks [180]. The output of
lower-level HMMs provides evidence for a high-level BN which integrates all information
into a global belief. In contrast to these approaches, this work requires to maintain the

correlations between levels to enable inter-level information flow.
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3.6.3 Probabilistic User Modelling

User modelling is an important topic in Human-Computer Interaction (HCI), Artificial
Intelligence (AI), and more recently, in Human-Robot Interaction (HRI). Work in these

fields, which makes use of probabilistic methods, is briefly reviewed next.

When people interact with computers, the objective is often to infer the user’s goals or
intentions [79]. The purpose is to provide assistance to users who try to solve a task, or
adapt user interfaces to the context [84]. Adaptive user interfaces are also used in HRI,
e.g. to control a robot using voice [121]. Another application area where users’ mental
states are inferred is Intelligent Tutoring Systems (ITS). These systems typically reason
about the student’s comprehension of certain concepts the ITS intends to teach [123][28].
In contrast to these applications, the systems presented in this thesis do not necessarily
require a complex model of the users’ mental states. Operators make simple observations
in our systems and the user model’s purpose is to add uncertainty to it. In plain terms, the

user model encodes how much a human observation can be “trusted”.

The major challenge in user modelling is how to address the individuality of humans, i.e.
how to learn something about the individual [84]. This requires a significant amount of data
from individual users which can easily be collected for HCI applications. In the robotics
domain, it is harder to obtain sufficient data, and our solution so far has been to use
stereotypical user profiles (novice/expert). Another option is to use life-long or incremental

learning techniques [78] which will be investigated in the future.

Besides the variation between users, the individual’s performance is also variable and de-
pends on factors such as time of the day, workload, and attention. All these states can
be incorporated into a HSM but require some type of sensing of the operator, either ac-

tively [167], or passively [73].

3.7 Summary

This chapter introduced the concept of treating human operators as information sources.
First, examples were given of how different probabilistic data types can be used for bidi-
rectional human-robot communication. Then, the information flow direction was restricted

to human-to-robot suggesting the exploitation of humans’ perceptual capabilities. It was
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proposed to let humans submit information which was defined as part of Bayesian inference
to be either likelihoods or observations. It was shown how treating humans as information
sources can be applied to both information gathering and decision making. For the latter

case, the advantages of using information over actions for robot control were also discussed.

It was argued that humans and robots are inherently different in their perceptual capa-
bilities. This lead to certain challenges for the probabilistic representation employed for
human-robot information fusion. The conclusion was that BNs are suitable to address the
identified challenges. BNs are also able to incorporate a probabilistic model of the opera-
tors’ perception which is called Human Sensor Model (HSM) in this work. Then, limitations
of the approach were identified. A set of simulations were used to verify the arguments for
human-robot information fusion, and to demonstrate some of the limitations. Finally, an
experiment with human participants was presented which yielded a HSM for range obser-

vations.

This chapter provides an important foundation for the two following experimental chap-
ters. Chapter 4 will present experimental results from an information gathering task with
human operators submitting environment information (human-push). The HSM for range
presented in Section 3.5 will be used in that experiment. Chapter 5 will apply human-
robot information fusion to robotic decision making with operators being queried for their

perceptual input (robot-pull).



Chapter 4

Scalable Human-Robot

Information Gathering

This chapter uses the framework of probabilistic human-robot communication established in
the previous chapter to analyse a particular class of applications. The focus of this chapter
is on issues arising in systems consisting of multiple humans and multiple robots. Humans
and robots are organised into a team tasked with information gathering. The objective
is to fuse observations from robotic platforms and human operators into a representation
common to all members of the team. A desired property for human-robot teams is the
extensibility to an arbitrary number of team members without creating a computational
or communication bottleneck. This property is referred to as scalability which cannot be
jeopardised in any way, e.g. by the type of information exchanged between humans and
robots. It is argued that only environment information is a suitable data type for scalable

human-robot communication. Figure 4.1 illustrates the scope of this chapter.

Two main contributions are made in this chapter: (1) demonstration of scalable human-
robot communication, and (2) presentation of a shared environment representation for
human-robot information fusion. To date, limited work has been done on systematically
investigating the scalability of human-robot interactions [171]. Often, the focus is on a
single operator actively controlling a small number of robots [32]. In contrast, the approach
presented in this chapter assumes fully autonomous control of robotic platforms based on
the shared environment representation built up with human cooperation. In related work

dealing with shared human-robot representations, the operator does not contribute any
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Figure 4.1: This chapter presents human-robot information gathering which is constrained
by the requirement of scalability (many-to-many interactions). Only environment informa-
tion is fused and no decisions are made.

information to the task online [183], or human input is decoupled from robotic informa-
tion [25], i.e. no information fusion occurs. A detailed literature review is presented at the

end of the chapter.

The remainder of the chapter is organised as follows. Section 4.1 presents the algorithms
used to maintain scalability by decentralising environment state estimation. It also discusses
the role of human operators as part of a decentralised system. Section 4.2 presents the
shared environment representation and demonstrates the integration of human operators
as information sources. In this chapter, the human-push pattern is employed for human
information contribution. Section 4.3 presents experimental results obtained by deploying
a human-robot team in a natural outdoor environment. The team consists of an unmanned
aerial vehicle (UAV), a ground vehicle, and two human operators as shown in Figure 4.2.
Fusion results are presented as a cooperatively acquired multi-attribute map, and a set
of human-robot information exchange patterns. Related work is presented in Section 4.4

before Section 4.5 summarises the content of this chapter.
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Figure 4.2: Human-robot team deployed for information gathering: the Brumby UAV, a
ground vehicle, and two human operators.

4.1 Scalable Information Fusion

This section starts by introducing our decentralised approach to information fusion. Sys-
tem properties relevant for the integration of human operators are described here. Second,
reasons are provided for regarding human operators as an integral part of decentralised
information fusion. Then, the roles operators can play in a system constrained by decen-

tralisation are described.

4.1.1 Decentralised Data Fusion (DDF)

We consider applications where the objective of the human-robot team is to build a common
environment representation. The team is broken up into components including embodied
components (humans and robots) as well as software components. Components can be or-
ganised using different network topologies, e.g. hierarchical or centrally distributed [76][129].

The usage of a decentralised architecture has several advantages over other solutions [116]:

e Scalability: the network can grow to an arbitrary number of components (humans,

robots, software components).

o Survivability: no component of the system is mission-critical, so the system is surviv-

able in the event of run-time loss of components.

o Modularity: all components can be implemented and deployed independently.

These advantages require that (1) no central services, facilities or components exist, and (2)

no global knowledge of the network topology is needed. We use the family of Decentralised
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Figure 4.3: A decentralised data fusion system: SENSORs and USER INTERFACES submit like-
lihoods to NODEs which form a DDF network (highlighted). Arrows indicate the direction
of data flow.

Data Fusion (DDF) algorithms which fulfil these requirements [69]. Scalability of the DDF

algorithms has been demonstrated before [69][115] and is not the focus of this work.

An example of a decentralised system represented as a UML component diagram is shown
in Figure 4.3. Each software component (capitalised throughout the rest of the chapter) has
a set of provided and/or required interfaces visualised as filled circles and open semicircles

respectively. Interfaces are used to communicate data between components.

The example shows a DDF network consisting of four NODEs. Each NODE runs the DDF
algorithm whose task is to maintain a consistent probabilistic estimate of the environment

state using a Bayesian filter as introduced in Section 2.3.2.

In a DDF system, likelihoods are produced by SENSORs and USER INTERFACEs respectively,
and communicated to NODEs via the Fusing interface as shown in Figure 4.3. To ensure
that the estimate is common to all NODEs they have to communicate with each other via the
Linkable interface. This involves keeping track of previously communicated information to
avoid rumour propagation [10]. Based on the locality principle which guarantees scalability,
every NODE only exchanges information with its immediate neighbours. After communi-
cation, all new information propagates throughout the entire DDF network resulting in a

common belief of the environment.
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Objective Interface Comms. patt. Message Prob. data type
Human-robot fusion Fusing human-push env.-perc. likelihood

Task monitoring Informed robot-push env.-perc. belief

Platform control Controllable  human-push plat.-dec. action, utility fct., policy
Status monitoring Detailed robot-push plat.-perc.  belief

Table 4.1: Overview of objectives of human interactions with a DDF network and their
realisations as interfaces (compare to Table 3.1). The focus of this work is emphasised.

4.1.2 Roles of Operators in DDF

In a decentralised system, the numeric relationship of humans and robots is potentially
many-to-many (see Section 1.3.3). Together with the other requirements of decentralisa-
tion, this imposes constraints on the interaction of human operators with the other team
members. In general, there are two types of information which can be queried or submitted
by operators: information related to the environment and information related to the plat-
forms as described in Section 1.3.2. An example of environment information is the location

of a feature. An example of platform information is the health status of a robot.

Only environment information is scalable with respect to the size of the network, i.e. query-
ing or submitting environment information is independent of how many platforms are de-

ployed. In DDF, only environment information is fused and shared among the platforms.

To ensure scalability, the main objectives of human-robot interaction have to be related
to environment information, namely: (1) to present the user with the global world state
(task monitoring); and (2) to allow human operators to contribute environment information
to the DDF network (human-robot fusion). Human-robot fusion can be realised by two
communication patterns as described in Section 1.3.2: robot-pull and human-push. For the

experiments in this chapter, human-push was used exclusively.

Other human-robot interactions which refer to platform information are non-scalable but
can be useful in a practical system. A summary of all objectives is given in Table 4.1 and
their realisation as a USER INTERFACE is shown in Figure 4.4. Each objective is discussed

in more detail below.

Human-Robot Fusion The objective of letting operators contribute information can
be achieved by using peer-to-peer interaction (see Section 1.3.3). Using the human-push

communication pattern, the network is at no time aware of where the information comes
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Figure 4.4: A USER INTERFACE with four interfaces and corresponding data types is used
to fulfil the requirements of human-robot interaction as part of a DDF system.

from, a physical sensor, or the human operator. This is reflected in Figure 4.3 where both
the USER INTERFACE and the SENSOR use the same Fusing interface. Operators can either
submit raw observations which get translated into a likelihood by a human sensor model,

or specify likelihoods directly as discussed in Chapter 3.

Task Monitoring The objective of task monitoring is realised by presenting the world
state to the user which is achieved by connecting to the Informed interface. In this case,
the operator represents an information consumer and simply needs to connect to the most
easily accessible NODE. Apart from an information propagation delay, any NODE in the
DDF network provides all environment information as a probabilistic belief as described in
Section 4.1.1. The type of display can be graphical, textual, or another modality appropriate
for the type of information gathered.

Platform Control In a practical system, it is often convenient to have direct control of
the active platforms using teleoperation. Another option is to let operators send utility
functions or policies which is a supervisory interaction mode [115]. Information related
to platform control are submitted through the Controllable interface. This component-
centric control scheme does not scale well with the number of components and thus, if
incorporated in a DDF network, the number of platforms controlled at any one time must

be limited [115].

Status Monitoring The human-robot team represents a distributed system which has a

high degree of inherent complexity. It is therefore useful to directly monitor the status of
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the robots at run-time. This includes the robots’ positions in the world, health status, and
the state of individual software components at runtime. Status information is aggregated
through the Detailed interface which is realised by every software component. If collected
centrally, the individual components’ status information can be compiled to display the
global DDF network topology which is useful for debugging purposes. The display of status

information can be switched off to avoid a communication or computational bottleneck.

4.1.3 Avoiding Human Rumour Propagation

The previous section argued that there is no restriction on the number of operators si-
multaneously connected to the DDF network as long as operators deal with environment
information only (scalability). This section discusses the issue of preserving a second impor-
tant property of DDF — the correctness of the global estimate enforced by avoiding rumour

propagation as mentioned in Section 4.1.1.

Rumour propagation between NODEs can be avoided by either adhering to a tree network
topology or by fusing conservatively! [114]. These mechanisms are sufficient as long as infor-
mation flow from SENSORs and USER INTERFACESs is one-directional as shown in Figure 4.3.

However, when human operators are involved, the following information loops may emerge:

1. Human operators may act as environment information sinks for task monitoring pur-
poses as discussed in Section 4.1.2. Receiving beliefs from the DDF network most
likely influences the observations operators make. As a consequence, operators should

only be allowed to exclusively act as an environment information source or sink.

2. Human operators may form information loops with each other when working in close
proximity. Examples include direct conversations between teammates and the obser-

vation of each others’ actions.

3. Human operators most definitely form a temporal information loop with themselves,
i.e. they remember their past observations. This loop can be avoided by prohibiting

the reobservation of the same feature.

The three possible information loops need to be ruled out to maintain a correct probabilistic

belief of the environment state. However, these rules may prove hard to implement and

In this work, a tree network is used.
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enforce in practice. One option is to employ dedicated human NODEs which fuse their infor-
mation conservatively with the rest of the DDF network, e.g. by using covariance intersect
methods [90]. A second option is ask human operators to only submit new information.
Although people appear to be capable of performing this type of operation [140], it would

most likely be unreliable and increase the operators’ workload significantly.

For the experiments reported in Section 4.3, none of the three rules were explicitly en-
forced, no dedicated human NODEs were used, and operators were not asked to submit new
information only. These measures were not necessary because results from human-robot

information exchange were analysed qualitatively only.

4.2 A Shared Environment Representation

This section presents the probabilistic representation of the environment used to perform
information fusion. Two independent models are used to describe features in a natural out-
door environment: geometric and visual. The visual model is separated into an appearance
and identity level which are statistically correlated. The geometric and visual models are

combined to achieve robust data association.

In short, environmental features are represented on three abstraction levels: geometric, ap-
pearance and identity. The representation is shared between all platforms which is required
by the DDF algorithms. The shared representation allows information contribution from

both robotic sensors and human operators.

4.2.1 Geometric Feature Representation

The most common low-level representation of a point feature is its position in a global coor-
dinate system. Each NODE maintains the geometric state of all features using a probabilistic

filter.

Robotic Observation Model for Position In our implementation, robotic platforms
observe the bearing to extracted features using cameras. Gaussian Mixture Models (GMMs)
are adopted as a representation for the geometric state because they provide a basis for ana-

lytical solutions to the general Bayesian filtering problem [164]. Furthermore, this represen-
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tation can also be used for spatially extended features even though this work only considers
point features. A single Gaussian would be sufficient to represent these, however, a GMM
or an approximation of it is still required for undelayed point feature initialisation [162]. To
guarantee the applicability of the derived DDF algorithms for other applications, the entire

GMM representation is maintained for all time steps.

A GMM is defined for a random variable X as

N

p(x) =Y miN (i, 34) (4.1)

i=1

where 7; are weights with the property Zfil m = 1, N(x|ui, 3;) is a Gaussian probability
density (also known as a Gaussian mixture component) with mean y; and (full) covariance

>, and N is the number of mixture components.

Substitution of GMMs into Bayes Theorem (Equation 2.8) gives

M N
P(Xpr1|Zokt1) = Z TN Z T2 jNzj (4.2)
i=1 j=1
where o« = 1/p(Zj11|Zo.x) is a normalising constant, the N.’s represent the likelihood

P(Zg11|Xkr1) (M mixture components), and the A,’s represent the prediction p(xgi1|Zo.x)-

Expanding Equation 4.2 results in M x N terms, each involving a multiplication of two
weighted Gaussians. Thus, the posterior distribution is represented by M x N weighted
Gaussians. GMMs also allow an analytical solution to the Chapman-Kolmogorov equation
(Equation 2.9). The multiplicative expansion in parameters requires a component merging

technique. Details of the technique and inter-NODE fusion issues are described in [181].

A 2d example of a robotic observation translated into a GMM likelihood is shown in Fig-
ure 4.5. A bearing-only observation from position [0, 0] with bearing 0° is translated into
a GMM with 20 Gaussian components [8]. In our experiments presented in Section 4.3,

position is represented by 3-dimensional GMMs (easting, northing, altitude).

Human Observation Model for Position Human operators also observe the position
of features even though observation accuracy is lower than that of robotic sensors as shown

in Section 3.5. Typically, human operators are considered more valuable in entering higher-
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Figure 4.5: A 20-component GMM likelihood generated via a bearing-only observation of
0° from position [0,0]. Individual Gaussian components are shown in (a), along with an
equi-likelihood contour encompassing 95% of the probability mass shown in (b).

level information such as the features’ class. As a prerequisite, operators also have to enter
approximate feature locations to (1) instantiate new features, and (2) distinguish features

which are already in the world model (data association).

To enable the integration of human position entry into the filtering scheme presented above,
human observations have to yield likelihoods in a GMM-compatible form as formulated in

Equation 4.2.

Two input modes for human entry of information were developed as presented in Sec-
tion 3.2.4. Both were implemented to output single-Gaussian likelihoods and were used
simultaneously in our experiments presented in Section 4.3. Their implementation for the

deployed human-robot team is described next.

In the likelihood mode, humans operate directly in state space. This is implemented by
drawing circles on the screen of a GUI which are mapped to a Gaussian likelihood with a
30 uncertainty in three spatial dimensions (the mean for the elevation is looked up from a

digital elevation map).

In raw observation mode, humans operate in observation space by specifying a range esti-
mate to a feature relative to their position and an absolute bearing value that is read off a
compass. The operator’s position is acquired from a handheld GPS receiver. Uncertainty
values are added to GPS location according to the GPS’s current uncertainty estimate.

The bearing value uncertainty is fixed according to the specifications of the compass. The
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experimentally acquired Human Sensor Model (HSM) presented in Section 3.5 converts the

range estimates to a Gaussian likelihood.

4.2.2 Visual Feature Representation

The main objective of building a probabilistic visual feature representation is to improve
data association. The model should also allow the classification of features and have the ca-
pability of incorporating both robotic and human observations. Another model requirement

is the allowance for efficient communication and fusion within the DDF network.

The representation is formulated analytically as part of a Bayesian filtering framework. A
filtering approach estimates visual states by keeping a history (see Section 2.3.2) which is
likely to improve data association and classification compared to a memoryless method. An
analytical derivation of a visual likelihood function avoids online data compression which
can be computationally expensive. The likelihood maps a high-dimensional observation into
a compressed functional description. As a consequence, computations can be conducted in
real-time. A compact representation is also required for communication in a DDF system

as bandwidth is often limited, especially when using a broadcast medium [134].
The visual model proposed here is learnt offline from training image patches. Four steps

are involved which are described in detail below:

1. Deterministic nonlinear dimensionality reduction of image patches and partial la-

belling of the patches.

2. Learning a static probabilistic model over the original high-dimensional and resultant

low-dimensional spaces.
3. Adding a human visual sensor model.

4. Extension to a dynamic model suitable for filtering.

Nonlinear Dimensionality Reduction Most raw visual features exist in a very high-
dimensional space that are not readily amenable to simple interpretation and reasoning tasks
and therefore require some type of dimensionality reduction. These methods compress the

information while keeping most of its content. Note that the objective is different from
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classification which focuses on discrimination or class separability. To obtain an accurate
representation, greatest emphasis is usually placed on features with greatest variability

which are not necessarily well separated [46].

The following visual model is independent of any specific feature extraction algorithm.
In our experiments the features used were 11 x 11 patches from colour images. Each of
these image patches was represented by a 3D RGB histogram with 9% bins resulting in a
dimensionality of 729.

Dimensionality reduction of features such as the aforementioned image patches is tradi-
tionally performed using methods such as Principal Component Analysis (PCA) or its
numerous variants [46]. Although they provide theoretically optimal representations from
a data-compression standpoint, they are unable to provide neighbourhood preserving rep-
resentations that are crucial to data association. This limitation has motivated the devel-
opment of various nonlinear embedding methodologies such as Kernel PCA [151], Isomap
[170], Laplacian Eigenmaps [13] and Locally Linear Embedding [147]. Most non-linear
dimensionality reduction techniques presume that the data lies on or in the vicinity of
a low-dimensional manifold and attempt to map the high-dimensional data into a single
low-dimensional, global coordinate system. The Isomap algorithm is adopted in this work
because it can estimate the manifold’s intrinsic dimensionality. A quantitative comparison

of Isomap to PCA is presented in Appendix A.

Figure 4.6(a) shows the low-dimensional data points generated by Isomap for a data set
collected outdoors by ground and air vehicles. Each data point shown in the figure was found
by mapping a 729-dimensional image patch to a 3-dimensional space. Using 3 dimensions
seems appropriate to represent the data as suggested by Isomap’s residual variance plot

shown in Figure A.1(a).

Static Probabilistic Model Integration into a Bayesian filtering framework requires
the definition of the observation model p(z|x), describing the measurement uncertainty of
a state x, given observations z. For the visual model, z represent visual observations in
the original high-dimensional space which measure abstract states x in low-dimensional
space computed by Isomap. However, the Isomap algorithm and indeed most nonlinear

dimensionality reduction algorithms are inherently deterministic algorithms.
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Figure 4.6: The low-dimensional visual state space as generated by Isomap: (a) each data
point is a deterministic mapping of a high-dimensional image patch into state space; (b) a
probabilistic model is learned. Ellipsoids are Gaussians representing clusters of data points
whose corresponding image patches have similar appearance with respect to colour. Each
ellipsoid corresponds to an identity state whereas a subset of all ellipsoids correspond to a
feature class such as “tree”. Black/grey ellipsoids represent labelled /unlabelled data points.

Uncertainty can be incorporated by learning a probabilistic model of the joint distribution
p(z, %), given sample sets (x,z), where x has been computed by Isomap. Learning a joint
probabilistic model over spaces with different dimensionality has previously been shown by
Ghahramani et al. [61]. The authors propose a model that probabilistically clusters data
in the high and low-dimensional spaces simultaneously. This model is known as a Mixture
of Factor Analysers (MFA) and provides the ability to perform dimensionality reduction
while also obtaining a measure of uncertainty in both spaces. The low-dimensional part of
this statistical representation conveniently represents highly nonlinear manifolds such as the
ones generated by Isomap through the capability to model the local covariance structure of

the data in different areas of the manifold.

In this work, a modification of the MFA model is used [141]. Its representation as a Bayesian
Network (BN) is displayed in Figure 4.7(a). Round nodes are continuous random variables,
square nodes are discrete, and shaded nodes are observed (at run-time). The BN encodes

the following joint probability distribution:

p(2z,%,5) = p(z|x, s)p(x|s)p(s) (4.3)
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The conditional probability distributions are given by:

plalxs) = exp (5l — Ao — 0 - A= i} (44)
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where the terms Wy, u,, Ag, X5, v, p(s) are the parameters to be learnt, Agvs + pg and
U, 4+ AXTAT are the means and covariances respectively of the mixture describing the
high-dimensional space, vs and X are their counterparts in the low-dimensional space, and
A are known as the regression matrices and model the transformation between the two

spaces.

The mixture simultaneously models the data in high and low-dimensional space. The S
node is multinomial and determines the number and the weight of the components which

are of Gaussian form.

The purpose of dimensionality reduction was to generate a fully supervised data set (x,z).
The data set is extended by manually labelling a subset of the image patches which makes
the S node partially observed during the learning phase. Labelling by a human is required to
build a human visual sensor model as described in the next section. The S node’s dimension
Ny is allowed to be larger than the number of specified labels because more clusters may
exist in the data than labels are given. The S node is a categorical variable and can be

thought of as describing the feature class.

Clusters of unlabelled data points are captured automatically by applying an Expectation
Maximisation (EM) learning scheme [141]. If no label for s exists, the standard 2-stage EM
algorithm is applied. If a label is available for s, the Expectation step is omitted and only

the Maximisation step is executed.

Figure 4.6(b) shows the learned model which was used for the experimental demonstration.
Fach 729-dimensional image patch in z space is reduced to a 3-dimensional representation
in x space as shown in Figure 4.6(a). The probabilistic model is visualised as ellipsoids rep-
resenting the mixture’s components with associated weights contained in s. Each Gaussian
component represents a cluster containing data points whose corresponding image patches

have similar appearance with respect to colour. Different lighting conditions and camera
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(d) Dynamic multi-level human-robot representation

Figure 4.7: The visual model as described in the text represented as a BN: (a) the static
model: X and Z are realised as low and high-dimensional Gaussians whereas S'is realised as
a multinomial representing the weights of the Gaussians. (b) Node O is added representing
the (human) observation of the feature class. (¢) The O node’s parameters (human visual
sensor model) encoded as a table. Brighter fields symbolise higher values with rows adding
up to 1.0. The 4 object names are “tree”, “shed”, “white_object” and “red_car”. The 27
identities correspond to the number of Gaussian components (ellipsoids) of Figure 4.6(b).
(d) The filtering process represented as a DBN. Nodes O and Z represent observations by
human operators and robotic cameras.
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hardware yield different clusters for the same feature class (e.g. 7 different clusters for the

tree class). It can be recognised that clusters from different classes are well separated.

The dimension of s is chosen to be 27, i.e. 27 components are allowed which avoids over-
fitting. Only 17 labels are manually assigned which results in 17 clusters represented by
black ellipsoids. The remaining unlabelled data points (all yellow) are represented by 10
grey ellipsoids. The number of samples used is 12388 (8428 labelled, 3960 unlabelled).
The learning algorithm was implemented in Matlab and typically took 2.5 hours on a 3.2
GHz Intel Xeon machine. EM learning was discontinued when the improvement in the

log-likelihood became less than 0.1 or after 10 iterations, whichever came first.

The advantages of this flexible learning scheme are two-fold: (1) it only requires partial
labelling, and (2) the number of components in the mixture is not limited to the number of

labels.

Human Visual Sensor Model To integrate visual observations from human operators
into the probabilistic framework, a human visual sensor model is required. Figure 4.7(b)
shows the previous BN extended by a node O representing the (human) observation of
the feature class. Its dimension N, is chosen to be 4: “tree”, “shed”, “white_object” and
“red_car”. A human visual observation can represent a subset of all mixture components;
e.g. a “tree” observation is represented by 7 components (see the legend of Figure 4.6). In
loose terms, a human observation o specifies the volume of the state space which corresponds
to the feature class: a “tree” observations specifies the volume of the state space enclosed

by the 7 “tree” ellipsoids.

The O node’s parameter is the conditional probability distribution p(ols) encoding the
human visual sensor model. It is represented by a table of size Ng x N, (27 x 4) as visualised
in Figure 4.7(c). Brighter fields indicate higher values and the rows add up to 1.0. The
table entries are specified by hand. For each object name, the weights of its corresponding
components are distributed equally. The online computation of likelihoods is thus a simple
table lookup. The human visual sensor model implies that human operators almost perfectly
classify feature classes which is a reasonable assumption for this application. For more
complex classification tasks, experiments would be required to find a model. A similar

approach to the one described in Section 3.5 could be used.
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Dynamic model In order to perform Bayesian filtering, the visual model needs to be
extended to a dynamic representation. The BN is extended to a Dynamic BN (DBN) as
shown in Figure 4.7(d). Additional parameters are the transition models p(ski1|sg) and
P(Xk+1|Xk, Sk+1)- They are not required to be learned since the visual state is assumed to
be quasi-static, i.e. its belief is carried across to the next time step without performing a
prediction step. Note that this method is different from a memoryless static model which

does not keep any history.

Model Interpretation The DBN shown in Figure 4.7(d) is hierarchical and can be
regarded as an environment representation with multiple abstraction levels. The abstract
appearance state x encodes visual properties of a feature in a continuous space. The addition
of a human-understandable identity state to the representation is useful for two reasons:
it (1) offers a higher abstraction level to support analysis and decision making, and (2)

permits the incorporation of human observations.

In a probabilistic representation the dependency between identity and appearance results
in a statistical correlation, i.e. the state beliefs influence each other. This correlation can be
used to build up rich complementary feature descriptions with observations originating from
robotic platforms and human operators. A robotic sensor observing the appearance of a
feature automatically changes the belief of its identity. On the other hand, human operators
observing the feature’s identity automatically influence the belief of the appearance. The

next section shows how the model is used to perform these operations at run-time.

Online Model Usage The software component diagram in Figure 4.8 shows how the
visual model is used at r