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Abstract
Tobias Kaupp Doctor of Philosophy
The University of Sydney March 2008

Probabilistic Human-Robot
Information Fusion

This thesis is concerned with combining the perceptual abilities of mobile robots and human
operators to execute tasks cooperatively. It is generally agreed that a synergy of human and
robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems,
while also increasing their robustness and reliability. Systems which incorporate both human
and robotic information sources have the potential to build complex world models, essential
for both automated and human decision making.

In this work, humans and robots are regarded as equal team members who interact and
communicate on a peer-to-peer basis. Human-robot communication is addressed using
probabilistic representations common in robotics. While communication can in general be
bidirectional, this work focuses primarily on human-to-robot information flow. More specif-
ically, the approach advocated in this thesis is to let robots fuse their sensor observations
with observations obtained from human operators. While robotic perception is well-suited
for lower level world descriptions such as geometric properties, humans are able to con-
tribute perceptual information on higher abstraction levels. Human input is translated into
the machine representation via Human Sensor Models. A common mathematical framework
for humans and robots reinforces the notion of true peer-to-peer interaction.

Human-robot information fusion is demonstrated in two application domains: (1) scalable
information gathering, and (2) cooperative decision making. Scalable information gathering
is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned
air vehicle, and two human operators in a natural environment. Information from humans
and robots was fused in a fully decentralised manner to build a shared environment repre-
sentation on multiple abstraction levels. Results are presented in the form of information
exchange patterns, qualitatively demonstrating the benefits of human-robot information
fusion.

The second application domain adds decision making to the human-robot task. Rational
decisions are made based on the robots’ current beliefs which are generated by fusing human
and robotic observations. Since humans are considered a valuable resource in this context,
operators are only queried for input when the expected benefit of an observation exceeds the
cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based
on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the
adjustable autonomy system experimentally. Results from two experiments are reported: a
quantitative evaluation of human-robot team effectiveness, and a user study to compare the
system to classical teleoperation. Results show the superiority of the system with respect
to performance, operator workload, and usability.
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Chapter 1

Introduction

1.1 Problem Description and Motivation

This thesis is concerned with combining the perceptual abilities of mobile robots and human

operators to execute tasks cooperatively. It is generally agreed that a synergy of human and

robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems,

while also increasing their robustness and reliability [23][52][155]. Despite the fact that

perception of the environment is a critical element in performing any task, cooperative

human-robot perception has not been studied extensively. Systems which incorporate both

human and robotic information sources have the potential to build complex world models,

essential for both automated and human decision making.

Although robotic systems are often perceived as a replacement for human labour, there

are in fact many opportunities for human-robot cooperation. Mobile robots rarely operate

in isolation from humans for several reasons: technical, ethical, and by design. Technical

reasons refer to the fact that full robot autonomy is rarely achievable. Today’s mobile

robots typically operate autonomously for limited periods of time in relatively structured

and known environments. The situation is unlikely to change in the near future. In fact, full

autonomy may be considered a misnomer because at the very least, operators are required to

provide high-level, abstract goals [56]. Ethical reasons for human involvement may arise in

situations requiring decisions which only humans are qualified to make. Example application

areas include military, search-and-rescue, and health. Finally, people are often an integral

part of the system by design: physical interactions between humans and robots occur in
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assistive robotics and edutainment for example. In addition to the human involvement in

robotic systems as described above, an opportunity arises to make use of human resources

to improve system performance.

Human-robot cooperation is likely to fulfil this objective because humans and robots cover

a wide range of skills in perception, cognition, and manipulation. This thesis focusses ex-

clusively on the perceptual abilities of humans and robots. Human and robotic perception is

often complementary in terms of modality, uncertainty, and types of failures. Humans have

rich perceptual abilities, especially at higher abstraction levels, e.g. human innate pattern

recognition skills [59]. Yet, people’s performance is known to suffer from great variability

between individuals and over time. On the other hand, robotic perception is highly con-

sistent and accurate in measuring lower level descriptions such as geometric properties. At

the same time, robotic perception has limited ability to generalise from preprogrammed

concepts, e.g. in visual object recognition.

Human-robot cooperation typically involves communication. Important research questions

for human-robot communication are:

1. What type of information should be communicated?

2. When should communication occur?

3. Who should communicate with whom?

4. What medium should be used for communication?

The space of options available in answering these questions is large and depends on a

number of factors. Six factors are identified here: proximity, authority relationship, number

of humans and robots, human factors, communication bandwidth, and task priority. The

influence of each factor on answering the questions above are discussed next.

Proximity Interactions between humans and robots can either be remote or proximate [68].

If humans and robots are collocated as they are in a service robot application, the communi-

cation requirements differ greatly from a remote teleoperation scenario. Likewise, the choice

of the communication medium depends on proximity, i.e. for close interactions, speech, ges-

tures, haptic interfaces, or social cues may be appropriate while a graphical or textual user

interface may be better suited for remote interactions.
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Authority Relationship If humans act on a higher level of authority than robots, op-

erators initiate communication and send instructions and commands to robots. If the

relationship is more peer-like, communication could involve dialog which either side may

initiate [53]. Information exchange related to dialog includes questions, answers, queries,

and clarifications.

Number of Humans and Robots If many humans and robots are involved, the question

of who communicates with whom becomes important. The objective is to find suitable

communication topologies capable of maintaining the scalability of the system [171]. In

that context, it is also important to communicate efficiently, i.e. only communicate when

necessary and maximise the information content per message.

Human Factors The form of communication is greatly influenced by human factors such

as expertise [53]. On one end of the spectrum is the robot designer who communicates with

robots using a programming language. Ordinary users, on the other hand, may prefer the

use of natural language and gestures. Other human factors such as operator workload,

stress, and fatigue influence how frequently information should be exchanged.

Communication Bandwidth Limited bandwidth can cause communication problems

such as message delays and frequent drop-outs. If bandwidth is a bottleneck, information

exchange needs to be efficient as mentioned above. Limited bandwidth may also impose con-

straints on the possible network topologies [115]. Likewise for the communication medium:

broadcasting a video stream to an operator may not be feasible.

Task Priority The form of communication also depends on the nature of the task. If

safety is a priority, frequent communication and detailed messages can be justified. On the

other hand, if timeliness is more important, information exchange should be limited to the

most important messages [95].

All six factors are taken into consideration when designing communication patterns for

human-robot cooperation. In this thesis, the focus is on questions (1)–(3) in order to fulfil

the objective of combining the perceptual strengths of humans and robots. Question (4)
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falls outside the scope of this work. Graphical User Interfaces (GUIs) were used throughout

the experiments presented in this thesis.

1.2 Approach

This work adopts a peer-to-peer interaction style to facilitate bidirectional communication

between humans and robots. The Human-Robot Interaction (HRI) community generally

agrees that humans and robots need to interact as peers to leverage each other’s strengths

effectively [52][117][23][77][31][18]. In systems where robots act as peers, they are treated

as partners rather than tools. In supervisory control, in contrast, operators act on a higher

level of authority compared to robots and may override their decisions [159]. Furthermore,

timely responses from operators are expected in supervisory control. When treating robots

as peers, humans contribute to the task without becoming a bottleneck, i.e. operators are

not required to remain in the loop.

The approach presented in this thesis is to make use of probabilistic robotics representa-

tions for bidirectional human-robot communication. Thrun concluded in 2000 that “we see

a tremendous opportunity to apply probabilistic algorithms to a range of important robotic

problems, including [...] human-robot interaction” [173]. To the best of the author’s knowl-

edge, this thesis provides the first attempt to systematically investigate human-robot in-

teractions from a probabilistic point of view. This approach is classified as robot-centred

because it takes existing probabilistic robotics algorithms as a basis for communication.

Figure 1.1 shows where the focus of this thesis is placed within the multidisciplinary field

of HRI.

The information stored in a probabilistic robotics representation can be used for bidirec-

tional human-robot communication. The majority of work to date has focussed on robot-to-

human information flow whereby the information collected by robots is conveyed to human

operators, e.g. to enhance Situation Awareness (SA) [156][153][195][43]. On the contrary,

the focus of this thesis is on human-to-robot information flow, addressing the problem of

how human operators can effectively contribute to a task performed by a human-robot

system.

In this thesis, methods are presented which are able to probabilistically fuse information

collected by human operators and robotic sensors. In robotics, integrating the strength of
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Figure 1.1: HRI is a multidisciplinary field with contributions from robotics, Human-
Computer Interaction (HCI), social sciences (psychology, cognitive science, anthropology,
human factors), natural language understanding, and Artificial Intelligence (AI). This thesis
takes the viewpoint of robotics to facilitate human-robot interactions as indicated by the
darker area in the figure.

different sensing modalities has traditionally been approached by performing information

fusion. This thesis applies information fusion techniques to HRI by treating human oper-

ators as information sources. A common mathematical framework for humans and robots

reinforces the notion of true peer-to-peer interaction.

1.3 Relationship Taxonomies

This section introduces relationship taxonomies applicable to human-robot interactions.

The taxonomies are used throughout this document to set the contributions into the context

of current HRI research.

The relationship between humans and robots can be classified from different points of view.

First, an overview of the human-robot “system” is given. Second, novel taxonomies based
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Figure 1.2: Human-robot system: multiple humans and robots interact with each other and
the environment. The information exchange between humans and robots is the focus of this
thesis.

on human-robot communication are proposed. Finally, taxonomies from the literature are

reviewed.

1.3.1 The Human-Robot System

Humans and robots interact with each other and the environment in which they operate.

Figure 1.2 visualises the system from a global point of view. The environment is observed

by both humans and robots. Robots are able to alter the state of the environment through

their actions using their actuators. It is assumed that humans are not able to change the

environment directly through their actions. The focus of this work is on the information

exchange between humans and robots as indicated by the bidirectional arrow.

Figure 1.3 visualises the internal structure of humans, robots and the environment. All

parts concerned with perception are colour-coded blue, all parts concerned with decision

making are colour-coded orange.
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Figure 1.3: Internal structure of the environment, human and robots (compare to Fig-
ure 1.2). Clouds represent mental models whereas rounded rectangles represent compu-
tational models. Parts concerned with perception are blue, parts concerned with decision
making are orange.

Environment The environment contains complex phenomena which can be observed at

different abstraction levels. Here, a terminology common in the information fusion commu-

nity is adopted [111]. For example, the environment can contain a number of mobile objects

which interact to create a situation of certain impact to an interested party.

Humans Humans internally maintain mental models resulting from observations of the

environment and the robotic platforms. Cognitive scientists define mental models as an

internal scale-model representation of an external reality [60]. Mental models play an im-

portant role in improving the usability of computers [130], and to establish a common

ground between humans and robots [97]. Mental models (visualised as clouds in the figure)

are not discussed any further in this thesis.
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Communication taxonomy Possible values

Direction human → robot, robot → human
Initiation human, robot
Data type perception, decision
Data origin environment, platform

Table 1.1: Four human-robot communication taxonomies derived from Figure 1.3.

Robots Robots maintain two types of computational models1 visualised as rounded rect-

angles: a perception model and a decision model. A distinction is made between environ-

ment and platform models: the former is concerned with representing the physical world,

the latter with representing the robotic platforms within the world, e.g. their poses.

The perception model has two incoming data streams: information from physical sensors and

human operators. Both streams are transformed using sensor and user models to be suitable

for internal fusion. The perception model also has an outgoing stream to communicate

perception information to the human operator.

The decision model uses the information stored in the perception model to make decisions.

An actuation model represents the effects of the decisions on the environment and the

platform itself. Humans can also interact with the decision model: either by observing the

decisions that are made (outgoing stream), or by actively participating in decision making

(incoming stream). As for the perception model, user input can be transformed by a user

model.

1.3.2 Communication Taxonomies

This section proposes relationship taxonomies based on human-robot communication. Four

communication taxonomies are identified, each derived from the internal structure of hu-

mans and robots as shown in Figure 1.3: direction of data flow, initiation of data flow, data

type, and data origin. Table 1.1 summarises the four taxonomies which are explained next.

Direction specifies the main data flow and can either be human-to-robot or robot-to-human.

Communication is either initiated by a human or a robot. Data types are related to either

the perception or the decision model. Data origin refers to either environment or platform.

1Philosophical definitions of the term computational model include “a mathematical modelling and ideal-

isation of some hypothetical physical device, from a specific point of view of the world” [16] and “an imple-

mented computer program used to generate data that will be compared to some real-world behaviour” [166].
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Direction Initiation
human robot

human → robot human-push robot-pull
robot → human human-pull robot-push

Table 1.2: Human-robot communication patterns defined by the direction and initiation of
information flow.

Environment data describes properties of the environment such as object locations, object

types, situations, and temperature. Platform data is concerned with the physical plat-

forms. Examples are location in the world, drive commands, hardware states, and software

component health status.

It is convenient to arrange the one-dimensional measures of direction and initiation into a

two-dimensional matrix as shown in Table 1.2. Data flow direction and initiation together

define one of four communication patterns: human-push, robot-pull, human-pull, and robot-

push. The same principle is applied to data type and data origin as shown in Table 1.3. Four

messages are assumed for communication: environment-perception, environment-decision,

platform-perception, and platform-decision. All communication taxonomies and definitions

are summarised in Figure 1.4.

Data origin Data type
perception decision

environment environment-perception environment-decision
platform platform-perception platform-decision

Table 1.3: Human-robot communication messages defined by the data type and data origin.

1.3.3 Other Taxonomies

The previous section presented four communication taxonomies to describe the relationship

between humans and robots. Other relationship taxonomies commonly used in HRI include

numeric, spatial, and authority [26][152]. Table 1.4 summarises the numeric relationships.

Table 1.5 shows the possible spatial relationships between humans and robots. Operators

can work remotely in which case they might have a god’s eye view of the robots’ workspace

(e.g. a map showing the environment and the robot) or look through the robot’s eyes (e.g.

camera image or laser scan). Operators can also work side-by-side to robots in which case

they have access to the environment directly through their own senses.



1.3 Relationship Taxonomies 10

Human-Robot

Communication

Communication

Pattern

Message

Inititation Direction Data Type Data Origin

Figure 1.4: Aspects involved in human-robot communication shown as a UML class diagram.
Diamonds indicate a “consists-of” relationship. A communication pattern consists of the
initiation and the direction of information flow. A message consists of a data type and a
data origin. The bottom row shows the four communication taxonomies proposed as part
of this work.

Humans Robots

One One
One Many
Many One
Many Many

Table 1.4: Numeric relationships of humans and robots.

Table 1.6 defines relationships in terms of the authority level: human roles include super-

visor, teleoperator, and peer. The supervisor role can be characterised as monitoring and

control of the overall situation. A supervisor commands what to do by specifying high-level

mission goals or by switching operating modes and thus requires high-level perception of

the situation.

A teleoperator interacts with the robot on a lower level by directly telling it how to achieve

a task by classical teleoperation. In this role, the operator needs to access low-level infor-

mation such as distance to obstacles.

Spatial relationship Human’s point of view

Remote God’s eye, sensor view
Beside Bystander

Table 1.5: Spatial relationships of humans and robots.
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Authority relationship Operator tasks Required context

Supervisor Commands “what” High-level perception
Teleoperator Commands “how” Low-level perception
Peer Provides/requests assistance High-level perception

Table 1.6: Authority relationships of humans and robots.

In the peer-to-peer interaction scheme, operators and robots act on the same level of au-

thority. As for the supervisory mode, humans provide input on a higher level and thus

require a higher level understanding of the situation. The difference is that robots are not

“overridden” in this relationship but act as equal partners forming a team with human

peers. Each team member contributes what it can do best and operators can also request

assistance from robots.

1.4 Related Work

This section gives an overview of seven systems in which mobile robots and human operators

communicate with each other. Only task-oriented human-robot systems are chosen, i.e.

human-robot communication for social interactions are not considered. Work related to the

communication medium, i.e. human-robot interfaces, is not reviewed either.

The relationship taxonomies presented in Section 1.3 are used to classify these systems as

shown in Table 1.7. The table is to be read as follows: a filled circle indicates an important

human-robot relationship for the contribution of that work. An open circle indicates that

the relationship is mentioned or implemented but it is minor and does not contribute to the

key arguments. A missing circle means the relationship is not covered in that work.

Fong’s Collaborative Control is a form of teleoperation where humans are treated as a

resource to robots [53][54]. Bidirectional communication in the form of human-robot dialog

is used to exchange information of different types such as commands, queries and responses.

Recently, this work has been extended to human-robot cooperation for space exploration

missions [52][51]. As shown in Table 1.7, the focus of that work is on peer-to-peer interaction

(“robot as a partner”). Robot-pull is the predominant communication pattern employed.

A system performing Collaborative Teleoperation is proposed by Goldberg et al. [64][65][163].

In this work, the term collaboration refers to multiple operators coming to a consensus over a
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shared resource which can be a remotely located robot [64], sensor [163], or tele-actor [65].

Consensus is achieved by combining input from multiple operators into a single output

stream using vector averaging [64], dynamic voting [65], or task-specific approximation

algorithms [163].

As a substitute for non-existing multi-robot systems, Jones et al. performed an ethnographic

study of interactions between members of a SWAT (Police Special Weapons and Tactics)

team [87]. The SWAT commander corresponds to the robot operator whereas the SWAT

team corresponds to a multi-robot system. The findings were incorporated into their human-

robot dialog system [88]. Only the operator can start off a dialog to which all robots in

the system reply with their available information. Robots execute actions upon the user’s

selection of a particular robot and its task. As shown in Table 1.7, the focus of this work

is on one-to-many interactions. Human-pull is the predominant communication pattern

employed.

Bruemmer’s work has focussed on building a collaborative workspace for humans and robots,

i.e. a shared understanding of each others’ tasks and the environment [25][23]. Different

discrete autonomy levels have been developed which the operator can adjust online. The

human role and authority varies with the autonomy level. The system has successfully been

applied to a number of applications: map building using a team of air/ground vehicles and

human operators [25], indoor search and exploration [23], and countermine operations [24].

As shown in Table 1.7, the focus of this work is on remote operations with the goal of

creating a common representation for humans and robots acting as peers.

Another body of work which lets operators choose between a set of discrete autonomy levels

is presented in [67]. Each autonomy mode has a certain Neglect Tolerance, i.e. a particular

robot can be neglected for a certain time period without becoming less effective. These

ideas were quantitatively evaluated by user studies [31]. As shown in Table 1.7, the focus

of this work is on achieving many-to-many interactions. Human-push is the communication

pattern employed for entering waypoints and high-level behaviours.

Sellner et al. designed a human-robot system for large-scale assembly of structures in

space [155][154]. Robots with complementary perception and manipulation capabilities

cooperate with a human operator who is able to take over control. As shown in Table 1.7,

the focus of this work is on incorporating multiple robots into the system. As a consequence,



1.5 Contributions 13

the robot-pull communication pattern is considered adequate to reduce operator workload

for one-to-many interactions.

Human interaction in the context of reactive multiagent control is addressed by Ali et

al. [3][2]. Human operators can change the multi-robot system’s global behaviour by either

adding their own behaviours or change the behavioural parameters. The focus of this work

is on supervisory control of multiple robots using a human-push communication pattern as

shown in Table 1.7.

The seven systems presented above address one or more of the challenges of human-robot

communication as identified by Sheridan ten years ago [160]. However, none of them takes

the principled approach which is advocated in this thesis: use the mathematical framework

of existing probabilistic robotics representations to generate human-robot communication

schemes. A further difference to this work is that none of the systems directly exploits

human perceptual abilities.

1.5 Contributions

The most general contribution of this thesis is a framework for human-robot communication

based on probabilistic methods. More specifically, the contributions of this thesis include:

• The introduction of communication taxonomies to classify the relationship between

humans and robots with respect to information exchange.

• The derivation of human-robot communication schemes based on probabilistic robotics

representations, in particular for human-robot information fusion.

• The presentation and experimental validation of methods for probabilistically mod-

elling humans as information sources.

• The integration of multiple human operators into a fully decentralised multi-robot

system without jeopardising the scalability of the system.

• The formulation of a shared environment representation on multiple abstraction levels

suitable for scalable human-robot information gathering.
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Collab. Collab. SWAT Collab. Neglect Assembly Behav. Ch. 3 Ch. 4 Ch. 5
Control Teleop. Worksp. Tolerance Control
[53][54] [64][65] [88][87] [25][23] [67][31] [155][154] [3][2]
[52][51] [163] [24]

Communication
message env.-perc. ◦ ◦ ◦ ◦ ◦ ◦ • • •

env.-dec. ◦ • ◦
plat.-perc. ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •
plat.-dec. • ◦ • • • ◦ • ◦ ◦ •

comms. pattern human-push ◦ ◦ • ◦ ◦ ◦ • ◦
human-pull ◦ • ◦
robot-push ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
robot-pull • ◦ ◦ • ◦ •

Other
numeric one-one ◦ ◦ ◦ ◦ ◦
(human-robot) one-many ◦ • ◦ • •

many-one • ◦
many-many • ◦ • ◦

spatial remote ◦ • ◦ • ◦ ◦ ◦ ◦ ◦
beside ◦ ◦

authority supervisor ◦ ◦ ◦ •
teleoperator • ◦ ◦ ◦ ◦ ◦ ◦
peer • • ◦ • • ◦

Table 1.7: Human-robot relationships in related work (centre column) and covered in this thesis (right column): filled circle means
“important”, open circle means “minor”, no circle means “not applicable”. Abbreviations are: env. = environment, plat. =
platform, perc. = perception, dec. = decision.
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• The experimental demonstration of fully decentralised human-robot information fu-

sion in an outdoor environment.

• The formulation of a decision-theoretic framework for cooperative human-robot deci-

sion making with humans acting as a resource to robots.

• The presentation of an adjustable autonomy system for which adjustments are trig-

gered based on the uncertainty in the robot’s belief.

• The proposal of a methodology for measuring the effectiveness of a human-robot team.

This measure can be used to find an appropriate autonomy level for an adjustable

autonomy system.

• The implementation of cooperative human-robot decision making using a mobile robot

navigation task.

• The experimental evaluation of cooperative human-robot navigation in simulation and

by conducting an extensive user study.

1.6 Thesis Structure and Publications

This section provides an overview of the thesis. Chapter 2 presents background whereas

Chapters 3–5 are novel contributions. Each of the contribution chapters are organised

identically: theory, experiments, related work. As a consequence, there is no need for

chapters dedicated to related work and experimental results. Figure 1.5 uses the system

view from Figure 1.3 to clarify the structure of the thesis. Each subfigure is repeated at the

beginning of each chapter to remind the reader of how the chapter’s content fits into the

overall context. The figure is utilised to describe each chapter individually as follows.

Chapter 2 presents the background on probabilistic representations applied to the robotics

problems of perception, decision making, and planning (Figure 1.5(a)). The focus is on the

types of representations which can be used for human-robot communication and information

fusion.

Chapter 3 serves as a foundation for subsequent chapters. It first discusses how probabilistic

data types can be utilised for bidirectional human-robot communication. Subsequently, the
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(c) Chapter 4: Scalable Human-Robot
Information Gathering

(d) Chapter 5: Cooperative Human-
Robot Decision Making

Figure 1.5: Graphical thesis overview: each chapter focusses on the highlighted parts of
the overall system’s picture (see Figure 1.3). Chapter 2 presents technical background
on probabilistic representations for perception, decision making, and planning. Chapter 3
introduces humans as information sources. Chapter 4 presents scalable interactions as part
of a human-robot information gathering mission. Chapter 5 discusses cooperative human-
robot decision making.

focus is on human-to-robot information flow which leads to the notion of regarding human

operators as information sources. This is visualised by the blue arrow in Figure 1.5(b).

Differences between human and robotic sensors are listed and the need for modelling human

operators is discussed. Human Sensor Models (HSMs) are introduced as a user modelling

technique for this work. The potential limitations of the overall approach are also discussed.

Simulation results show how human and robotic information can be fused using multi-level
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representations. An experimentally acquired HSM is also presented. Publications relevant

to this chapter include

• T. Kaupp, A. Makarenko, F. Ramos, and H. Durrant-Whyte, “Human sensor model

for range observations,” in IJCAI Workshop Reasoning with Uncertainty in Robotics

(RUR’05), Edinburgh, Scotland, 2005.

• T. Kaupp, A. Makarenko, F. Ramos, B. Upcroft, S. Williams, and H. Durrant-Whyte,

“Adaptive human sensor model in sensor networks,” in 8th International Conference

on Information Fusion (Fusion’05), vol. 1, Philadelphia, USA, 2005.

• T. Kaupp, A. Makarenko, S. Kumar, B. Upcroft, and S. Williams, “Operators as

information sources in sensor networks,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’05), Edmonton, Canada, 2005, pp. 936–941.

Chapter 4 presents results from an information gathering mission conducted by a human-

robot team. The team consists of multiple humans and robots as visualised in Figure 1.5(c).

The system uses fully decentralised fusion algorithms and is constrained by the requirement

to maintain scalability. This requirement restricts the available options for human-robot

communication and the roles human operators can play. A multi-level shared environment

representation is used to fuse information from humans and robots using the human-push

communication pattern. Experimental results obtained by deploying a human-robot team

in an outdoor environment demonstrate the benefits of human-robot information fusion

qualitatively. Publications relevant to this chapter include

• T. Kaupp, B. Douillard, B. Upcroft, and A. Makarenko, “Hierarchical environment

model for fusing information from human operators and robots,” in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS’06), Beijing, China,

2006, pp. 5837–5842.

• T. Kaupp, A. Brooks, B. Upcroft, and A. Makarenko, “Building a software archi-

tecture for a human-robot team using the Orca framework,” in IEEE International

Conference on Robotics and Automation (ICRA’07), Rome, Italy, 2007, pp. 3736–

3741.
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• T. Kaupp, B. Douillard, F. Ramos, A. Makarenko, and B. Upcroft, “Shared environ-

ment representation for a human-robot team performing information fusion,” Journal

of Field Robotics: Special Issue on Teamwork, vol. 24, no. 11–12, pp. 911–942, 2007.

Chapter 5 extends information gathering by adding decision making to the task. Only plat-

form decisions are considered as visualised in Figure 1.5(d) which excludes manipulation

tasks. Robots make platform decisions based on information collected by their sensors and

from human operators. This mechanism is referred to as cooperative human-robot decision

making. Operators are regarded as a sparse resource in this context which motivates the

use of the robot-pull communication pattern. Robots query operators only if the expected

benefit from their information exceeds the cost of obtaining it which is computed using

value-of-information theory. This mechanism can be interpreted as adjusting the robot’s

autonomy based on the uncertainty of its beliefs. A navigation task is used to demonstrate

an implementation of the adjustable autonomy system. Experiments with the navigation

system include a quantitative evaluation of human-robot team effectiveness, and an exten-

sive user study. Publications relevant to this chapter include

• T. Kaupp and A. Makarenko, “Decision-theoretic human-robot communication,” in

3rd ACM/IEEE Conference on Human-Robot Interaction (HRI’08), Amsterdam, The

Netherlands, 2008, pp. 89–96.

• T. Kaupp and A. Makarenko, “Measuring human-robot team effectiveness to deter-

mine an appropriate autonomy level,” in IEEE International Conference on Robotics

and Automation (ICRA’08), Pasadena, CA, USA, 2008, pp. 2146–2151.

Chapter 6 summarises the content of the thesis and presents opportunities for ongoing

research based on this work. Furthermore, it is discussed how this work can be utilised for

a number of real-world robotics applications.

A thesis overview complementary to Figure 1.5 is presented in Table 1.7.



Chapter 2

Probabilistic Representations

This work uses probabilistic robotics representations as a foundation to design human-

robot communication schemes as visualised in Figure 2.1. This chapter motivates that

approach by first discussing probabilistic algorithms which have significantly advanced the

field of mobile robotics. Second, the technical background on probabilistic representations

is presented. The main purpose of this chapter is the introduction of notation and terms

which are required for the understanding of subsequently presented material.

The chapter is organised as follows: Section 2.1 briefly discusses probabilistic robotics.

Section 2.2 introduces a class of graphical model representations called Bayesian Networks

(BNs). Their extension to the time domain is called Dynamic Bayesian Networks (DBNs)

which are presented in Section 2.3. Section 2.4 discusses Influence Diagrams (IDs) before

Section 2.5 summarises the content of this chapter.

2.1 Probabilistic Robotics

In mobile robotics, probabilistic representations have gained wide acceptance due to their

suitability to address the main research problems of perception, decision making, and plan-

ning [176]. Probability theory allows to explicitly accommodate the uncertainties of the

real world. Uncertainties stem from both noisy measurements and inaccurate world models.

Probability theory provides a unifying mathematical framework for reasoning and decision

making under uncertainty. Probabilistic algorithms for perception, control, and planning

problems are briefly discussed below.
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Figure 2.1: This chapter provides technical background: probabilistic robotics representa-
tions for perception, decision making, and planning. Human-robot communication schemes
are derived from these representations.

2.1.1 Perception, Control and Planning

An important class of robotic perception algorithms is mapping [175]. The main reason for

map building is to assist the task of localisation: the estimation of the robot’s pose in the

world. Localisation and mapping are coupled problems and can be solved simultaneously

using SLAM algorithms [47][7]. The objective of mapping can also be the generation of maps

for human consumption, e.g. in information gathering missions [113]. Platform control is

also part of information gathering where the maximisation of information determines the

action selection [71].

Robotic control architectures typically consist of several layers and can also be implemented

using probabilistic representations [107][40][174][58][38]. Two alternatives exist to make

decisions when using a probabilistic model: (1) use perception states only and choose actions

by either threshholding or sampling from beliefs [107][40], or (2) explicitly represent the

decision maker’s choices and preferences [174][58][38]. Preferences are encoded as utility

functions which also allows for planning. The planning problem can be described by a
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Partially Observable Markov Decision Process (POMDP) which is an active research area

in robotics [20].

2.1.2 Bayesian Networks and Extensions

All of the perception and decision-making problems mentioned above can be represented

by (Dynamic) Bayesian Networks, or if decisions and utilities are represented explicitly, In-

fluence Diagrams. These representations have properties which are exploited in subsequent

chapters for human-robot communication. In a single representation, they are capable of

representing

• variables related to perception and decision making

• both correlations and the lack of correlations between random variables

• observed and unobserved random variables

• discrete and continuous random variables

• static and dynamic processes

• multiple abstraction levels

• different time scales

Besides this flexibility for modelling purposes, there are many prominent algorithms for

efficient inference and learning for these representations. The properties and usage of BNs,

DBNs, and IDs are presented next.

2.2 Bayesian Networks

A probabilistic representation should encode the relationships between random variables

qualitatively (model structure) and quantitatively (model parameters), and allow efficient

inference and learning. A class of graphical models fulfilling these requirements are Bayesian

Networks (BNs) [148]. Like other graphical model representations, BNs encode a joint prob-

ability distribution of a set of random variables in a compact form by exploiting conditional

independence assumptions.

Each random variable is called a chance node and denoted by a capital letter, e.g. X. The

realisation of a random variable is denoted by small letters, e.g. x. If the random variable
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is a vector as opposed to a scalar, it is printed in bold, e.g. x. Chance nodes can be either

discrete or continuous. All equations in this section assume discrete nodes which can be

rewritten for continuous nodes by replacing sums with integrals.

2.2.1 Representation

A BN is a directed acyclic graph (DAG) consisting of chance nodes and edges which connect

the nodes1. If there is an edge from node X1 to X2, X1 is called a parent of X2 and X2

is called a child of X1. Each node Xi has a conditional probability distribution (CPD)

p(xi|parents(xi)) encoding the effect of the parents on that node. An edge from parent to

child can be interpreted as a cause-effect relationship [140].

The set of nodes and edges form the topology of the BN which specifies the conditional

independence assumptions. Two equivalent statements can be used to define conditional

independence in BNs: (1) a node is conditionally independent of its non-descendants2 given

its parents, or (2) a node is conditionally independent of all other nodes in the network given

its parents, children, and children’s parents (the so-called Markov blanket). To determine

the global independence relationships of three sets of nodes (is X1 conditionally independent

of X2 given X3?) the d-separation criterion can be used [140] which is beyond the scope of

this short introduction.

The full joint distribution of a set of random variables X0, ...,Xn as part of a BN can be

written as

p(x0, ...,xn) =
n
∏

i=1

p(xi|parents(xi)) (2.1)

An example of a BN is shown in Figure 2.2. According to Equation 2.1, the joint distribution

for this example can be written as

p(x0,x1,x2,x3) = p(x0)p(x1)p(x2|x0,x1)p(x3|x2) (2.2)

1Nodes are numbered with superscripts here; subscripts are reserved for time steps (see Section 2.3).
2Descendants of a node are all its children, its children’s children etc.
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Figure 2.2: Example of a BN with four random variables (chance nodes).

2.2.2 Inference

Since BNs encode the full joint probability distribution of a domain, any query can be

answered. A typical query asks for a probability distribution of a set of query nodes X given

some evidence nodes Z which is referred to as probabilistic inference [148]. In mathematical

terms, a query is written as p(x|z) where z emphasises the instantiation of Z with a value.

Nodes in the BN which are neither query nor evidence nodes are denoted by Y . The answer

to a query can be computed by using the joint distribution:

p(x|z) =
p(x, z)

p(z)
=

∑

y p(x,y, z)
∑

x p(x, z)
(2.3)

Expressions
∑

y p(x,y, z) and
∑

x p(x, z) are called marginalisations of Y and X, respec-

tively.

A special case of the general problem is the BN shown in Fig. 2.3 which is used to introduce a

number of important terms. The BN contains two sets of nodes X and Z. Initial knowledge

about x is represented as a prior probability distribution p(x). The evidence entered on Z

is called observation z. For this particular problem, Bayes’ theorem can be applied:

p(x|z) =
p(z|x)p(x)

p(z)
(2.4)

The answer to the query p(x|z) is called the posterior encoding the belief of x after incor-

poration of observation z. Observation z = z is substituted into the CPD p(z|x) to yield a
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X
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Figure 2.3: A simple BN to demonstrate Bayes’ theorem and define important terms. The
shaded node is observed.

likelihood function p(z|x). The function represents a distribution over the values of the true

state x and can be understood as a slice through the x − z space. A likelihood function is

simply referred to as a likelihood throughout the remainder of the thesis. Finally, p(z) acts

as a normalisation constant.

For more complex BNs with many nodes, the conditional independence assumptions encoded

in the graph topology can be exploited to design efficient inference algorithms. The simplest

inference algorithm is variable enumeration which is demonstrated here using the BN shown

in Fig. 2.2. The example query we want to compute is p(x0|x2). Applying Equation 2.3 to

the joint of Equation 2.2 yields

p(x0|x2) = α
∑

x1

∑

x3

p(x0)p(x1)p(x2|x0,x1)p(x3|x2) (2.5)

with α being a normalisation constant. One simplification is to “push sums in” as far as

possible which yields

p(x0|x2) = αp(x0)
∑

x1

p(x1)p(x2|x0,x1)
∑

x3

p(x3|x2) (2.6)

In this case (but not in general), the last term sums up to 1. Variable enumeration has

the problem that some computations are unnecessarily repeated. The variable elimination

algorithm addresses this problem [148]. It implicitly creates a junction tree which is a data

structure useful for efficient message passing [126].

All the algorithms mentioned so far are exact methods which are tractable for polytrees

where there is at most one undirected path between any two nodes in the network. For
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Figure 2.4: Parameters are added to the BN representation shown in Fig. 2.2. Dashed edges
are used to distinguish between parameters and state variables.

larger, multiply connected networks, approximate inference methods are sometimes required.

Among them are Loopy Belief Propagation (LBP), variational methods, and sampling tech-

niques [126]. The discussion of these is beyond the scope of this chapter.

2.2.3 Learning and Expert Elicitation

Both the structure and the parameters of a BN can be learned from data. The problem can

be approached by using Bayesian learning techniques and approximations of them. Here,

parameter learning is briefly discussed.

Parameter learning can be formulated as inference on the parameters by adding them to

the representation as shown in Figure 2.4. This is referred to a full Bayesian learning and

yields a distribution over parameters.

Full Bayesian learning is often intractable. If data from all variables in the domain is

available (full observability), Maximum Likelihood (ML) or Maximum A Posteriori (MAP)

methods can be used as an approximation to full Bayesian learning. If some variables are

unobserved during learning (partial observability), Expectation Maximisation (EM) can be

applied. All three methods yield a point estimate rather than a distribution over parameters.

Besides learning from data, another possibility exists to find the structure and parameters

of a BN model: elicitation from domain experts and the literature [45]. BNs are considered

suitable for this method for two reasons: (1) it is natural for people to think in cause-effect
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relationships (structure), and (2) only local CPDs need to be specified (parameters). The

number of CPDs which have to be specified is small if a causal model is strictly applied [148].

After a model has been fully specified, it is important to verify its validity, especially if the

expert elicitation method is applied. Two prominent methods are sensitivity analysis [148]

and conflict analysis [86]. Conflict analysis is briefly discussed next.

2.2.4 Data Conflict Analysis

According to Jensen, “conflict analysis is the activity of detecting, tracing, and explaining

possible conflicts among observations of variable values” [86]. Jensen’s conflict measure is

adopted here: given a set of evidence nodes Z = {Z0, ..., Zn}, the conflict measure is defined

as3

conf(z) = log

∏n
i=0 p(zi)

p(z)
(2.7)

A potential conflict exists if the measure is positive which means that z0, ..., zn are negatively

correlated. A negative correlation between two variables za and zb means that p(za, zb) <

p(za)p(zb) or p(za|zb) < p(za) and vice versa. In other words, observing zb makes it less

likely to also observe za which should not occur if the evidence supported each other.

2.3 Dynamic Bayesian Networks

BNs can be extended to Dynamic Bayesian Networks (DBNs) to model dynamic processes.

DBNs are relevant to the robotics field because both the states of the environment and the

platforms change over time. Murphy [126] showed how many common temporal estimation

algorithms can be represented as DBNs, among them Hidden Markov Models (HMMs),

Kalman filters, and their numerous extensions.

2.3.1 Representation

DBNs represent random variables evolving over time with each time slice containing a

snapshot of the current state. DBNs make two assumptions: (1) the state changes according

3Logarithms to the base e are used here.
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Figure 2.5: DBN example: first-order Markov model representing an HMM or KF dependent
on whether X is discrete or continuous. p(xk+1|xk) and p(zk|xk) are transition and sensor
model, respectively.

to a stationary process, and (2) the current state only depends on a finite history (Markov

assumption).

The first assumption means that parameters of random variables do not change over time

which avoids having to specify an unbounded number of CPDs. This is also referred to as

parameter tying [126]. The second assumption limits the number of parents variables can

have. The most commonly used Markov process is first-order : the future is independent of

the past given the present.

A first-order Markov models is shown in Figure 2.5. As a result of parameter tying and the

Markov assumption, only 2 time slices need to be shown to represent all CPDs in the model.

States of two consecutive time slices are denoted by subscripts k and k + 1, respectively.

The evolving state is modelled using the transition model p(xk+1|xk). The other CPD in

Figure 2.5 is p(zk|xk)=p(zk+1|xk+1) and is known as the observation model or sensor model.

Two important classes of DBNs use the same conditional independence assumptions encoded

in Figure 2.5: Hidden Markov Models (HMMs) and Kalman Filters (KFs). The difference

is that X is discrete in HMMs while it is continuous Gaussian for KFs.

2.3.2 Inference and Learning

There are several kinds of inference which are of interest in DBNs. The major ones include

filtering, prediction, and smoothing [126]. All of them can be expressed by the posterior

p(xk+1|z0:κ): for filtering κ = k + 1, for prediction κ < k + 1, and for smoothing κ > k + 1.
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Filtering is used to estimate the current belief state based on all observations to date.

Prediction is the task of computing the posterior distribution over future states given all

observations to date. Smoothing is the task of computing a posterior distribution over a

past state given all observations to date. It is used for parameter learning as described

below.

All the algorithms above can be formulated in terms of forwards and backwards opera-

tors [126]. Different implementation of these operators exist which trade off accuracy with

speed. In robotics, the most common inference problem is filtering which is presented next.

Recursive Filtering Filtering can be formulated recursively using Bayes’ theorem (com-

pare to Equation 2.4). The Bayesian filtering operation consists of two steps: a one-step

prediction (κ = k + 1) using the transition model followed by an update using the sensor

model.

The update yields the posterior and is computed as follows:

p(xk+1|z0:k+1) =
p(zk+1|xk+1)p(xk+1|z0:k)

p(zk+1|z0:k)
(2.8)

where zk+1 is an observation of state x at time step k + 1, p(xk+1|z0:k) is the prediction of

the state from the previous time step (the prior), and z0:k+1 summarises all observations

up to time step k+1. p(zk+1|xk+1) is a likelihood computed by substituting an observation

zk+1 into the sensor model p(z|x).

The prediction step is given by the Chapman-Kolmogorov equation:

p(xk+1|z0:k) =
∑

xk

p(xk+1|xk)p(xk|z0:k,x0) (2.9)

where p(xk|z0:k,x0) is the estimate from the previous time step.

Learning Techniques for learning the parameters of a DBN are straight-forward exten-

sions to the techniques presented in Section 2.2.3. For offline learning, smoothing algo-

rithms are used which take all observations into account (“learning with hindsight”), i.e.

p(xk|z1:K ,Θ) is computed for all k with K being the length of the entire time sequence.
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For online learning, the parameters can be added to the representation and the filtering

algorithm estimates both the states and the parameters, i.e. p(xk,Θ|z1:k) is computed.

2.4 Influence Diagrams

BNs can be extended to Influence Diagrams (IDs) to model decision making under uncer-

tainty [81]. IDs are generally able to represent information about the current state, possible

actions, the state resulting from the action, and the utility of that state [148]. IDs require

the decision and chance nodes to be discrete [85].

2.4.1 Representation

IDs extend BNs by adding decision and utility nodes. Decision nodes represent choices

available to the decision-maker – a set of possible actions. Utility nodes encode a utility

function: the usefulness of the consequences of decisions using a scalar called utility4.

In addition to the DAG property inherited from BNs, two more structural properties are

part of an ID: (1) there is a directed path comprising all decision nodes, and (2) utility

nodes do not have children. The directed path property is required to ensure a temporal

sequence of decisions. This property applies even if the decisions are independent which is

hard to determine [85].

For visualisation, standard conventions are adopted here: chance nodes are drawn as circles,

decision nodes as squares, and utility nodes as diamonds. An example of an ID is shown

in Figure 2.6. X and Y = {Y 0, ..., Y n} denote world states and Z = {Z0, ..., Zm} denotes

observations. The ID contains a single decision node D with no chance nodes as children

implying that the decision has no effect on the world states. In this case, the decision is also

referred to as a non-intervening decision. The utility node U depends on its parents, decision

node D and chance node X. The network topology within the “supernode” containing Y

and Z nodes is arbitrary.

4How to construct utility functions is not covered here, see e.g. [194][14].
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Figure 2.6: Influence diagram with a single non-intervening decision node D and single
utility node U . The world is represented by X and Y = {Y 0, ..., Y n} while observations are
represented by Z = {Z0, ..., Zm}. Z nodes are shown shaded. A “supernode” contains all
Y and Z nodes with an arbitrary network topology.

2.4.2 Making Decisions

For the case shown in Figure 2.6, the best action can be found as follows. First, compute

the expected utility (EU) of action vector d given observations z:

EU(d|z) = Ep(x|z){U(x,d)} =
∑

x

U(x,d)p(x|z) (2.10)

where the computation of p(x|z) marginalises out Y . Second, choose the action d∗ which

maximises the EU:

d∗ = argmax
d

EU(d|z) (2.11)

The EU for a single decision node can also be computed without making the assumptions

of a non-intervening decision and a single utility node. For i utility nodes each having a

parent Xi, the EU is

EU(d|z) =
∑

i

∑

xi

U i(xi)p(xi|d, z) (2.12)
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where p(xi|d, z) now also depends on the decision and thus describes its effects on the state

xi.

The general decision problem with multiple decision nodes is to find the best sequence of

decisions. The solution to the problem is a sequence that maximises the expected utility.

One possibility is to convert the ID to a decision-tree [81]. In general, however, the tree is

of exponential size.

Shachter developed an alternative algorithm which transforms the ID by a series of node-

removal and arc-reversal operations [157]. Refinements of that algorithm increased its com-

putational efficiency [158]. Jensen describes an efficient method for solving IDs using strong

junction trees [85]. It represents an extension to the junction trees used in pure Bayesian

decision analysis. Work by Lauritzen & Nilsson links algorithms for IDs to developments

in clustering algorithms for Bayesian networks [105].

2.4.3 Value of Information

Rather than taking the action d∗ in Equation 2.11, a decision-maker might have the choice

of consulting one of its information sources {I0, ..., Ip} in order to generate a more informed

decision. Consulting an information source Ii is equivalent to obtaining the state of that

chance node. For this thesis, it is assumed that only a single information source can be

consulted at any given time which is referred to as myopic information gathering [148].

It is possible to calculate what we can expect to gain from consulting the information source

before observing that node by using its belief given all current evidence p(ii|z) [42]. The

expected utility of the optimal action (EUO) after having observed Ii is

EUO(ii,d|z) =
∑

ii

p(ii|z)max
d

EU(d|z, ii) (2.13)

The value of observing Ii is called the Value Of Information (VOI). It is calculated as the

difference between the expected utility after having observed Ii and the currently available

maximum expected utility:

V OI(ii,d|z) = EUO(ii,d|z) − max
d

EU(d|z) (2.14)
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Figure 2.7: Extension of Figure 2.6 by a set of information sources I = {I1, ..., Ip} shown
in light grey.

Equation 2.14 is valid for all network topologies. If there are several decision nodes, the

directed path property determines the temporal order as mentioned above. Before each

decision is made, Equation 2.14 can be used to decide whether to obtain more information

first.

Figure 2.7 shows an extended version of Figure 2.6 with potential information sources added

to the representation. For this case, Equation 2.14 can be computed as:

V OI(ii,d|z) =
∑

ii

p(ii|z)max
d

(

∑

x

p(x|ii, z)U(d,x)

)

−max
d

(

∑

x

p(x|z)U(d,x)

)

(2.15)

Computing the VOI is relevant for intelligent information gathering systems where the goal

is to maximise the amount of information collected [196]. Consulting an information source

comes at a cost, so a sensible strategy is to consult that source only if the expected benefit

is higher than the cost C(ii):

V OI(ii,d|z) − C(ii) > 0 (2.16)

A central aspect of this thesis is to regard human operators as information sources for

human-robot information fusion as presented in the next chapter. In this context, Equa-
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tion 2.16 can be interpreted as follows: if the cost for obtaining information from a human

operator is smaller than the value this information is expected to add, then ask the operator

for information. This mechanism will be experimentally demonstrated in Chapter 5.

2.5 Summary

This chapter presented the background on probabilistic methods for representing the per-

ception and decision making of mobile robots. The focus was on representations considered

useful for human-robot information exchange, namely Bayesian Networks (BNs), Dynamic

Bayesian Networks (DBNs), and Influence Diagrams (IDs). The literature for these rep-

resentations is vast and only aspects which are required to understand subsequent experi-

mental chapters were presented.

In the context of BNs and IDs, probabilistic data types which are important throughout

the rest of the thesis were introduced: they include observation, prior, likelihood, posterior,

parameter, action, and utility function.

Figure 2.8 shows how the internals of the perception and decision models (previously shown

in Figure 2.1) can be realised using an ID. Both the environment and the platform is

represented by two abstraction levels (four white chance nodes of the perception model).

The sensor and user models for perceiving environment and platform states are represented

by the CPDs attached to the grey evidence nodes. Decisions are made based on the beliefs

of the chance nodes, and the corresponding utility functions. The actuation model encodes

the effects of a platform decision in the example (bottom right). Operators can directly

enter actions as indicated by the decision node in the user model box (top right). The next

chapter will show how to utilise such a representation for human-robot information fusion.
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Figure 2.8: Influence diagram representation for robotic perception and decision making
(compare to Figure 2.1): environment and platform are represented by two nodes each
(white circles) which are observed by robotic sensors and human operators (grey circles).
Decisions (squares) are made according to the beliefs of the chance nodes, and the utility
functions (diamonds).



Chapter 3

Humans as Information Sources

As discussed in the previous chapter, many aspects of critical algorithms in today’s robotic

systems are probabilistic. This chapter starts by exploring the suitability of probabilistic

data types for bidirectional human-robot communication. Subsequently, the communication

direction is restricted to a human-to-robot flow which introduces the concept of treating

humans as information sources (see Figure 3.1). Information is defined as one of two

probabilistic data types: observations and likelihoods. The purpose of letting operators

submit information is to enable the probabilistic fusion with information acquired by robotic

sensors. Human-robot information fusion is used to fulfil the objective of combining the

strengths of the two complementary information sources.

Arguments are presented as to why information is considered an adequate data type for

human data entry. It is shown that for a large class of semi-autonomous systems, this type

of human-robot communication is sufficient. Two questions arise: (1) what representations

are suitable to incorporate information from human operators, and (2) how to treat human

input. The first question is addressed by discussing the suitability of multi-level probabilistic

representations. The second question is addressed by showing how probabilistic user models

can be incorporated into a multi-level representation.

The concept of treating humans as information sources as part of probabilistic reasoning

and decision making is a novel contribution to the field of HRI. The potential benefit of this

concept has recently gained attention in the context of crisis management [139][122] where

people in the field may be able to contribute valuable information after natural or man-made

disasters have occurred. Another application area where operators may add information to
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Figure 3.1: This chapter introduces the concept of regarding humans as information sources.
Human operators submit perceptual information which is transformed by a user model and
subsequently fused with robotic sensor information.

a semi-automated reasoning system is command-and-control [146][15]. In all of this work,

the integration of operators is often discussed conceptually only, and results from fusing

human and sensor information are limited to date. The second contribution of this chapter

is the presentation of methods for probabilistic modelling of humans as sensors. Some of the

work mentioned above recognises the need for modelling the reliability of human input [122]

but no results have been reported. The third contribution is the utilisation of probabilistic

multi-level representations for human-robot information fusion. In the literature, multi-level

models are prominent for many application areas, but typically, input at higher abstraction

levels is not considered [109]. A detailed literature review is presented at the end of the

chapter.

The remainder of the chapter is organised as follows. Section 3.1 presents use cases of

probabilistic data types for typical robotics applications. Human entry of information is

contrasted with human entry of actions. Section 3.2 discusses the implications of regarding

human operators as sensors. The differences between robotic and human sensors are listed

and probabilistic representations are proposed to incorporate the differences. The Human
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Sensor Model (HSM) is introduced as a probabilistic method to model user uncertainties.

Section 3.3 discusses the limitations of regarding human operators as information sources.

Section 3.4 presents simulated results from a set of example models demonstrating both

the advantages and limitations of the approach. Section 3.5 presents results from a calibra-

tion experiment which employed human subjects to build a HSM for range observations.

Section 3.6 presents related work before Section 3.7 summarises.

3.1 Probabilistic Human-Robot Interactions

The approach advocated in this thesis is to make use of established probabilistic represen-

tations for bidirectional human-robot communication. This can be seen as a robot-centred

approach: given current robotics representations, methods to incorporate human operators

are investigated. As Fong pointed out in [57], robot-centred does not mean that the robot

is “in charge”: the human is rather seen as a resource or collaborator to the robot. Fur-

thermore, robot-centred does not contradict the goal of human-centred robotics which takes

“a philosophical stance on building technology that serves human needs” [26]. More specif-

ically, a robot-centred approach to human-robot communication is defined here as taking

established probabilistic representations as a starting point for developing communication

schemes.

3.1.1 Probabilistic Data Types

The type of data to be communicated between humans and robots is well-defined using our

robot-centred approach: all relevant information is encoded in the probabilistic represen-

tation. As presented in Chapter 2, Bayesian inference includes the following data types:

prior belief, observation, likelihood, posterior belief, and parameter (which include sensor

and transition model). If decisions need to be made, additional data types are action and

utility function. Figure 3.2 summarises the available data types and emphasises what is

referred to as information in this chapter.

Given a probabilistic representation of the state of the environment and the robotic plat-

forms, all communication patterns mentioned in Section 1.3.2 can be realised. Table 3.1

lists examples of robotics applications with corresponding communication patterns and

messages. The examples are briefly described next.
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Figure 3.2: Probabilistic data types as a UML class diagram. Arrows indicate a “is-a”
relationship. The “root” node also appears in Figure 1.4. The highlighted data types are
submitted by human operators when acting as information sources.

Teleoperation resembles a simple human-push pattern with human operators constantly

sending actions to the robot. Similarly, in a manipulation task, a robot may be used

to change the environment by submitting low-level or high-level actions (e.g. “move that

chair”). In many Adjustable Autonomy (AA) systems, human operators may specify actions

at different abstraction levels when taking over control. Examples include safe-guarded

teleoperation and the specification of high-level task goals [23]. Section 5.4.3 discusses

related work in AA in more detail.

The human role of monitoring the robots’ task and health can be implemented using robot-

push or human-pull. Robot-push is more commonly applied, e.g. frequent updates of a

feature map on a GUI display during a map building scenario. Relaying current beliefs

including uncertainty to operators can contribute significantly to improve their Situation

Awareness (SA) [49]. In the map building example mentioned above, the (Gaussian) un-
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Application Comms. patt. Message Prob. data type
Teleoperation human-push plat.-dec. action
Manipulation human-push env.-dec. action
Adjustable autonomy human-push, plat.-dec. action

robot-pull
Task monitoring robot-push, env.-perc. belief,

human-pull parameter
Health monitoring robot-push, plat.-perc. belief, action,

human-pull parameter
Human-robot fusion human-push, env.-perc., observation,

robot-pull plat.-perc. likelihood

Table 3.1: Examples for human-robot communication using probabilistic data types. The
focus of this thesis is emphasised. Abbreviations are: env. = environment, plat. = platform,
perc. = perception, dec. = decision.

certainty of point features are often displayed using ellipses. For monitoring purposes,

operators may also be interested in the robots’ current actions, e.g. their speeds and turn-

rates. If online learning is part of the system, operators may also want to receive updated

parameter values.

This thesis focuses on the application highlighted in Table 3.1: human-robot fusion. Obser-

vations and likelihoods are identified as appropriate data types for this application. Human-

robot information fusion can be implemented by either human-push (Chapter 4) or robot-

pull (Chapter 5). In the following, it is argued that submitting information can be superior

to submitting actions for robot control.

3.1.2 Information Vs. Action

The benefits of submitting information rather than actions for robot control are related

to modularity, scalability, reuse, and peer-to-peer interaction. Each one is discussed below

while limitations of this approach are presented in Section 3.3.

Modularity Submitting actions is equivalent to making decisions. For operators to make

“good” decisions, complete SA may be required. In contrast, observations can be made on

smaller parts of the represented, potentially complex, scenario.

Graphical models are well-suited to represent complex scenarios. According to Jordan [89],

a fundamental concept of graphical models is the notion of modularity: a complex system

is built by combining simpler parts. In this work, BNs are used to minimise complexity by
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assuming conditional independence between variables. Modularity of a representation can

be beneficial for human information submission: operators are only required to understand

a subproblem, not the entire model.

As a consequence, by using the approach advocated in this work, non-experts can add

information about simple, intuitive subproblems which do not require the understanding

of an entire situation. The information entered in this way propagates throughout the

representation using inference mechanisms as described in Section 2.2.2, and ultimately

leads to well-informed decisions.

Reuse If more than one decision needs to be made, information supplied to the system

may influence all of the decisions depending on the representation’s structure. Thus, a

single piece of information is “reused” to make several decisions simultaneously which is

not achievable if operators were to specify actions directly.

Information can also be reused in a temporal sense. If the representation keeps a history,

which is typically done for evolving phenomena, fused information remains in the system and

influences actions at all future time steps. Filtering using a DBN as discussed in Section 2.3

is an example of how to maintain a history. In contrast, actions cannot be reused in the

future.

Scalability In robotic systems, actions are typically related to a specific robotic platform.

This includes higher-level actions such as path planning decisions. Specifying actions for

individual platforms does not scale to multi-robot systems, and actions cannot be “shared”

among platforms.

In contrast, beliefs related to the environment can be shared among all platforms, and thus

do scale well [115]. To share beliefs, state estimation needs to be decentralised which is

presented in Chapter 4. Based on the beliefs of the shared environment states, actions can

be triggered for all platforms in the system [71].

Robot as a Partner Letting operators submit information rather than actions reinforces

the notion of acting on the same level of authority: humans and robots collect information

cooperatively and the model produces the decision. This approach is different from many
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AA systems where operators take over control (see Section 5.4.3). Taking over control can

be seen as overriding the robot’s decisions whereas our approach resembles true peer-to-peer

interaction. Viewing the robot as a partner rather than a tool is considered a prerequisite

for truly intelligent human-robot systems by many HRI researchers [52][117].

3.2 Human as a Sensor

This section analyses the implications of regarding human operators as sensors. First, the

applications of human-robot fusion presented in this thesis are outlined. Then, the differ-

ences between robotic and human sensors are presented which impose certain challenges

on the representation employed for human-robot information fusion. Multi-level Bayesian

Networks (BNs) are able to address these challenges and are capable of incorporating user

models. User models are named Human Sensor Models (HSMs) and are introduced after-

wards.

3.2.1 Applications

Two robotics problems are considered in this thesis: (1) cooperative information gathering,

and (2) cooperative decision making.

The objective for information gathering is to build a representation of a spatially distributed

phenomenon. Information gathering can be conducted by a single robot, a team of net-

worked robots, or a sensor network [113]. Independent of the system type, information

from multiple sources is usually combined into a single representation. Typically, human

operators either engage in a monitoring activity as part of these systems [100], or make

decisions based on the collected information [34][15]. The novel approach presented here is

to let operators contribute to the information gathering task by submitting information in

a similar way to robotic sensors. Thus, humans become an integral part of the information

gathering system. Chapter 4 presents results from an experiment using a heterogeneous

human-robot team deployed to gather information in an outdoor environment.

The second problem is cooperative decision making: robots have a task to fulfil and there-

fore need to make certain decisions. In this scenario, there are more options for human
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involvement compared to the task of “pure” information gathering. The most straight-

forward interaction is teleoperation as described in Section 3.1.1. Operators can also make

higher-level decisions and enter them into the representation as commonly done in systems

employing supervisory control [159]. The approach presented here is different: as for in-

formation gathering, operators submit information and let the robot decide what to do

based on the additional information. Chapter 5 presents results from robotic navigation

experiments employing this mechanism.

3.2.2 Robotic Vs. Human Sensor

The qualities of human sensors differ vastly from those of robotic sensors. This section

discusses the differences and shows how a probabilistic representation can address them.

Differences are identified in the following categories: abstraction, resolution, time scale,

uncertainty, and reliability.

Abstraction Robotic sensors perform well in low-level descriptions such as geometric

properties. Measuring the range and bearing to a point feature using a laser scanner is an

example. In contrast, human operators are valuable in contributing more abstract proper-

ties. An example is object recognition which is trivial to humans but as a general problem,

remains unsolved using vision algorithms [37].

Accuracy Robotic sensors are typically very accurate in the property they measure

whereas humans function on a more qualitative level. A laser range scanner, for example,

can measure the distance to an object with an accuracy in the order of centimetres. For

humans, it is more natural to categorise coarsely. Examples of human distance observations

are “between 1 and 2 meters” or “close”.

Time scale Robotic sensors can make periodic observations at high frequency. For hu-

mans, it is more natural to asynchronously submit observations whenever there is spare

capacity to do so1.

1For control tasks, human capacity is limited to a bandwidth below 1Hz [160].
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Uncertainty Both robotic sensors and human operators are uncertain in their measure-

ments. The peculiarity of humans is their individual difference: while robotic sensors per-

form similarly across a product range, individual humans differ greatly in their perception.

Variability Related to the previous point is the variability of observations. Variability

is not only caused by differences between individuals but can also stem from the same

individual. Many external factors make an individual perform differently under different

circumstances. This is less of a problem for robotic sensors which may show variability on

a smaller scale due to temperature changes for instance.

The differences listed above illustrate that robots and humans have complementary per-

ceptual abilities. Combining these abilities offers an opportunity for effective information

fusion. The approach presented in this work is to use a BN representation for human-robot

information fusion which is discussed next.

3.2.3 Suitability of BNs

BNs are capable of incorporating the differences between human and robotic sensors. Mul-

tiple abstraction levels are naturally encoded by the cause-effect structure of BNs. Hier-

archical Hidden Markov Models (HHMM) are an example of a model addressing processes

with a hierarchical multi-level structure [126].

An important advantage of a hierarchical BN is the information flow between levels in

the hierarchy: lower level observations propagate to higher levels via inference, and thus

change the beliefs of higher level states. This information can be communicated to human

operators for monitoring purposes (human as information sink). Information flow also

works in reverse: high-level human information entry changes lower-level beliefs (human as

information source).

Different accuracy levels can be represented by continuous and discrete random variables,

respectively. These networks are often referred to as Hybrid BNs [148]. Multiple time scales

can be modelled using Dynamic BNs such as a variable-duration semi-Markov HMMs [126].

Uncertainty and variability of the human sensor can be addressed by user modelling tech-

niques as described next.
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3.2.4 Human Sensor Model

Two probabilistic data types are considered suitable for human-robot information fusion as

shown in Table 3.1: likelihoods and observations. The human entry modes using likelihoods

and observations are subsequently called likelihood mode and raw observation mode. The

former is model-free while the latter requires a user model to transform between raw obser-

vations and the probabilistic representation. The probabilistic user model is called Human

Sensor Model (HSM) in this work. Both of the modes mentioned above were applied in the

experiments presented in Chapters 4 & 5 and are described next.

Likelihood mode In the likelihood mode, human information is entered as likelihood

functions which include uncertainty. Humans can be seen as operating in state space using

this mode. If a Gaussian representation is used for example, a likelihood function would

consist of a mean and a standard deviation. For a binary representation, a ratio would be

specified, e.g. 5 : 1.

In this mode, operators are explicitly allowed to add uncertainty to their observations.

Operators apply their mental models of the environment and platforms (see Figure 1.3)

to estimate the uncertainty of their observations. The problem with this approach is that

these estimates may be erroneous. Furthermore, as discussed above, individual users may

have very different mental models which depend on many parameters that are time-variant

and situation-dependent. Therefore, it is desirable to let the system decide how much

uncertainty is associated to a raw human observation. This motivates the idea of modelling

human operators as sensors which is discussed next.

Raw observation mode In the raw observation mode, operators make observations

which the system converts into likelihoods by applying a HSM. If an n-dimensional Gaussian

representation is used, a raw observation consists of a point in n-dimensional space which

is converted into an (unnormalised) n-dimensional Gaussian using the HSM. Section 3.5

presents an example of how to build a Gaussian HSM using a calibration experiment. For a

binary representation, one of the two binary states is specified. The HSM adds uncertainty

to the observation which yields a binary likelihood, e.g. 3 : 1.



3.3 Limitations 45

3.3 Limitations

Human-robot information fusion as advocated in this work requires an a priori and fixed

probabilistic representation. In this section, some of the limitations with this approach are

identified. Suggestions are made of how to overcome the limitations in the future.

3.3.1 Model Complexity and Accuracy

Fusing human and robotic information relies heavily on the quality of the probabilistic

fusion model. This section discusses the impact of model complexity and accuracy on the

expected fusion results.

Complexity According to Occam’s razor, the simplest model is the most preferable

one [193]. The method advocated here may require complex models since higher-level states

are needed to enter human observations. For some problems, there may not be a need to

model these states for several reasons: (1) there is no interest in them, (2) no decisions

depend on them, (3) the states are hard to model. The last point is a difficult problem,

especially if little training data is available. An overly complex model may produce worse

fusion results due to overfitting [46].

Accuracy It is widely acknowledged that probabilistic models do not have to be overly

accurate in terms of the parameter values. In fact, “probability provides a way of sum-

marising the uncertainty that comes from our laziness and ignorance” [148]. Despite this

favourable property, human input cannot improve the accuracy of the fusion results if the

model’s parameters or structure are inappropriate. In fact, it may be feasible to refine the

model’s parameters and structure online using human input. This is a research area subject

to future work as discussed in Section 6.2.1.

3.3.2 Conflicting Evidence

User modelling is a hard problem, mostly due to the individuality of humans and their

variation in performance. There are ways of mitigating the problem of individuality, e.g. by
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using stereotypical profiles as presented in Chapter 5 or adapting models online as presented

in [96].

Even if an appropriate user model exists, the danger remains that information entered by

humans is inconsistent with each other or with information collected by robotic sensors. The

problem is especially severe in a system where multiple operators and sensors are involved. A

way to identify conflicting evidence in discrete BNs was presented in Section 2.2.4. Conflict

resolution is often done manually by an analyst [86]. To automate the process is an avenue

of future research: one possibility is to “gate” suspicious observations which is a common

method in classical data association applications [11].

3.3.3 Human Factors

Section 3.1.2 argued that letting operators enter perceptual information rather than actions

is a more peer-like interaction mode. Information propagates throughout the BN and deci-

sions are made based on the inferred beliefs. As a consequence, the behaviour of the robot is

not predictable to an operator who does not have a valid mental model of the system [130].

A feeling of “not being in control” may irritate users and may lead to less trust towards

the automated system. This is an interesting hypothesis which could be validated in a

user study. Future work as presented in Section 6.2.2 will investigate how to generate good

mental models based on explaining internal reasoning and decision making to operators.

For some applications, a supervisory interaction scheme may be more appropriate [68]. A

trade-off between simplicity of interaction (achieved e.g. by specifying actions) and building

more intelligent human-robot systems is acknowledged here [117]. In practice, a combination

of supervisory and peer-to-peer interaction modes is expected to be most effective for many

application domains, given the state-of-the-art in robotics [68].

Other benefits of exploiting human decision-making skills (as opposed to perceptual skills)

are presented in Section 6.2.1.

3.4 Example Models

This section presents simulation results from three simple human-robot fusion models. The

simulations are conducted to demonstrate both the benefits and limitations of the approach.
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Figure 3.3: Static example model for human-robot information fusion. Position is con-
tinuous and observed by the robot (PositionObs in dark grey) while Area is discrete and
human-observable (AreaObs in light grey).

3.4.1 Static Model

Figure 3.3 shows a two-level, static, hybrid BN for human-robot information fusion. The

low-level Position variable represents the continuous one-dimensional position of a robot.

An absolute position sensor (e.g. GPS) is used to observe Position. The sensor is erroneous

and modelled as shown in Figure 3.4(a). The high-level Area variable represents two areas

a and b the robot can be located in. Roughly, Area a reaches from 0 to 5 while Area b

reaches from 5 to 10 which is modelled using two conditional Gaussian distributions. Their

means are located in the middle of each area as shown in Figure 3.4(b). The Area variable

is observed by a human using both the raw observation and likelihood modes as discussed in

Section 3.2.4. The HSM required for the raw observation mode is encoded as a Conditional

Probability Table (CPT) as shown in Figure 3.4(c).

The first property of human-robot information fusion demonstrated here is the information

flow between abstraction levels. Figure 3.5 visualises results for different sets of observations

entered into the static model shown in Figure 3.3: no observations, human-only observation,

robot-only observation, and human-robot observations. Figure 3.5(a) shows the result of

inference for Area and Position when no observations have been entered: areas a and b are

equally likely and the Gaussian distribution is flat across all positions. The two distributions

represent a non-informative prior. All following figures are to be compared to this situation.

Figure 3.5(b) shows the result when the human operator makes the observation areaObs =

a: the probability for a increases to 0.8 (using the HSM) while the information also flows to



3.4 Example Models 48

pos−4 pos pos+4
0

0.05

0.1

0.15

0.2

0.25

PositionObs

P
ro

ba
bi

lit
y

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Position

P
ro

ba
bi

lit
y

 

 

p(position|area=a)
p(position|area=b)

(a) Robotic SM: N (position, σ = 2) (b) p(position|area)

 

 

0

0.2

0.4

0.6

0.8

1

(c) HSM: p(areaObs|area)

Figure 3.4: Parameters of the static example model: (a) the robotic sensor model repre-
sented as a conditional Gaussian distribution; (b) the conditional probability distribution
p(position|area); (c) the HSM represented as a 2x2 CPT. Rows are probability distributions
and add up to 1.0 while columns represent likelihood functions p(areaObs|area).

the Position node which makes the Gaussian become more compact. Figure 3.5(c) shows

the result from using the other human input mode: the operator specifies a likelihood ratio2

of a : b = 9 : 1 which increases the probability for a to 0.9. As before, information also flows

to the Position node. The reverse information flow is shown in Figure 3.5(d): the robotic

sensor makes an observation positionObs = 2.0 which changes both the Position and the

Area distributions.

So far, the resulting distributions for robot-only and human-only information entry have

been presented. The second property of human-robot information fusion demonstrated

here is the improvement of the fusion results. Figure 3.5(e) shows the result of combining

human and robotic observations (scenarios (b) & (d)): the distributions are more certain3.

2This is also referred to as entering soft or virtual evidence on the Area node [140].
3Scenarios (c) & (d) could be combined accordingly which is omitted for brevity.
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Figure 3.5: Simulation results from the static example model. (a) No evidence is entered into
the network, beliefs are “uniform”. (b) Human operator enters a raw observation indicated
by red marker. Information also flows to the Position variable. (c) Human operator enters
likelihood ratio 9 : 1. Information also flows to the Position variable. (d) Robot makes an
observation indicated by the red marker. Information also flows to the Area variable. (e)
Human-robot fusion indicated by two red markers gives the most compact distributions.
(f) The total entropy for the scenarios (a)–(e).



3.4 Example Models 50

A quantitative measure of how much information is contained in a distribution is the Entropy

or Shannon information [135]. The more compact a distribution, the more information it

contains. For a discrete distribution, entropy is defined as4

Hp(x) = −
∑

x

p(x) log p(x) (3.1)

For a continuous distribution, entropy is defined as

Hp(x) = −

∫

p(x) log p(x)dx (3.2)

which resolves to the following expression if the distribution is a n-dimensional Gaussian

with a covariance matrix P :

Hp(x) =
1

2
log[(2πe)n|P |] (3.3)

The sum of the Area and Position entropies are computed for the five scenarios shown in

Figure 3.5(a)–(e). The result is shown in Figure 3.5(f): most information is contained in

the distribution resulting from human-robot information fusion.

3.4.2 Dynamic Model

The model presented above is static, i.e. it does not take any history into account. For

many robotic processes, dynamic models are more appropriate as discussed in Section 2.3.

Figure 3.6 shows the extension of the static BN from Figure 3.3 to a DBN.

Figure 3.7 shows results of the filtering algorithm when the robot drives from Position 1.0

to 10.0 for three different scenarios: human-only observations, robot-only observations, and

human-robot fusion. The figure shows the beliefs and their uncertainties evolving over time.

The leftmost plot shows the discrete Area distributions with the shading level of the marker

proportional to the probability mass. The centre plot shows a ROC curve using the beliefs

of the Area node. It is shown here to indicate the accuracy of the area classification – the

4Logarithms to the base e are used here.
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Figure 3.6: Extension of the model shown in Figure 3.3 to a dynamic model.

more area under the ROC curve, the more accurate. The rightmost plot shows the robot’s

Position error including the estimated one-σ standard deviation.

The figure shows how the perceptual strengths of humans and robots are combined. In

human-only mode, in which the operator only makes discrete AreaObs observations, the

classification results are excellent. However, the Position state can not be estimated well

and the uncertainty in the estimate grows over time as shown by the increasing standard

deviation. In contrast, the robot by itself tracks the Position state well but the estimates

of the Area state are not as accurate. As for the static model, the best results are achieved

when humans and robots fuse their observations.

The dynamic example model uses two assumptions related to the time scale: (1) Area and

Position states change at the same rate, and (2) humans and robots add observations at

each time step. These assumptions can be avoided:

1. States changing at different rates can be modelled using a semi-Markov model [126]

as shown in Figure 3.8. The Counter variable represents the duration of the Area

state: whenever it expires, the Switch variable is turned on which lets the Area node

change states using its transition model. The Counter variable then resets according

to its model distribution (e.g. geometric or encoded as a table).

2. Humans are unlikely to submit observations at the same rate as robots. While robotic

observations arrive at each time step, human observations are only added occasionally.

It is straight-forward to leave out or add observations in a recursive Bayesian filtering

algorithm.
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(a) Human-only observations
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(b) Robot-only observations
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(c) Human-robot fusion

Figure 3.7: Simulation results from the dynamic example model. There are three plots per
scenario: the plot on the left shows the belief in which Area the robot is currently located.
The probability mass is proportional to the shading level of the marker and the truth is
drawn as a red line. The plot in the centre shows a ROC curve as an indicator of how well
the Area classification works. The plot on the right shows the Position error of the robot
including the estimated one-σ standard deviation.

3.4.3 Decision-Making Model

So far, no decision making has been considered. Figure 3.9 shows an Influence Diagram (ID)

encoding a simple decision model for an intelligent vehicle. The decision under consideration

is whether to drive fast or slow. In this simple model, it is assumed that the decision only
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Figure 3.8: Semi-Markov example model for human-robot information fusion.

depends on the StreetType (highway/urban) which the robot observes with some uncertainty.

A higher abstraction level is the CollisionDanger encoding the current danger of a collision5.

This node can be observed by human operators, either an expert or a novice which are

represented by a HSM each as shown in Figure 3.10.

The example is aimed at contrasting the approach presented here to systems where human

operators take over control as mentioned in Section 3.1.2. Rather than having to “intervene”

and directly make the decision which speed to go, human operators make a higher-level

observation of a collision danger. The information propagates to the lower level where it is

fused with the robot’s sensor observation before a decision is made.

It can be argued that observing the collision danger is more suitable to the perceptual

capabilities of humans and does not require any technical knowledge. Furthermore, the

model may become more complex by adding other variables which influence the speed

decision. Observing a subproblem like the collision danger may be more accessible to

5Note that the direction of the edge is from StreetType to CollisionDanger which better reflects the
cause-effect relationship between the two variables. In terms of abstraction, however, CollisionDanger is
higher.
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Figure 3.9: Example decision model for human-robot information fusion. The decision is
what speed to move which depends on the StreetType observed by the robot. In terms of
abstraction, a higher-level node is CollisionDanger which can be observed by two different
types of human operators: novices and experts.
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Figure 3.10: Two discrete HSMs represented as 2x2 CPTs. The rows are prob-
ability distributions and add up to 1.0 while columns represent likelihood functions
p(collisionNovice|collisionDanger) and p(collisionExpert|collisionDanger).

humans than taking all possible variables into account to make a global decision. However,

as mentioned in Section 3.3, the approach requires a good model.

Another purpose of the example is to demonstrate the situation of conflicting evidence as

mentioned in Section 3.3. Table 3.2 and Figure 3.11 show potential conflicts generated by

the three available information sources: expert/novice human operators, and the robot.

The conflict of evidence is computed using Equation 2.7.

As can be seen from the table and the figure, the lowest conflicts occur when both operators

and the sensor “agree” as in the first and last case. The highest conflict occurs when the

expert “disagrees” with the novice and the sensor.
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Index Collision- Collision- StreetType- Conflict
Expert Novice Obs

1 low low highway −0.87
2 high low highway 0.33
3 low high highway −0.11
4 high high highway 0.23
5 low low urban 0.10
6 high low urban 0.09
7 low high urban 0.50
8 high high urban −0.21

Table 3.2: Results of the conflict of evidence analysis conducted on the decision model
shown in Figure 3.9. Each row represents 3 simultaneous observations by an expert, a
novice, and the robot. Positive conflict measures indicate potential conflicts.
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Figure 3.11: Conflict of evidence results from Table 3.2. Positive conflict measures indicate
potential conflicts.

3.5 Experiments

This section describes a calibration experiment with the purpose of developing a HSM for

range observations. While it was argued earlier that humans are better suited for identifying

higher-level properties of an object, operator observations of the object’s location are also

required under some circumstances. This will be discussed in Section 4.2.1 where the HSM

for range is used as part of a larger experimental demonstration.

3.5.1 Procedure and Results

In the calibration experiment, eight poles (length 170cm) were placed in an open space with

known coordinates. Twenty-one participants were asked to estimate range and bearing to

each pole using direct line-of-sight vision. The experimental setup is shown in Figure 3.12(a).
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Figure 3.12(b) visualises the data obtained from the experiment: both single observations of

all participants and mean estimates are shown. The ellipses in the graph assume a Gaussian

distribution, a two-σ standard deviation is drawn.

The evaluation of the data focuses on the range estimates. Decoupling range and bearing

estimates implies the assumption that there is no correlation between them. The results,

both qualitatively and quantitatively, can be summarised as follows:

1. The standard deviations of the range estimates can be approximated as a linear func-

tion of the true range, i.e. uncertainty increases with range which is shown in Fig-

ure 3.12(c).

2. The mean range estimates can be approximated as a linear function of the true range.

On average, the range was underestimated for all the poles as shown in Figure 3.12(d).

The increasing standard deviation is also visualised via error bars.

3. Range estimates can be approximated by a Gaussian distribution which is verified

as follows. First, range observations for all poles are pooled into a single standard

score z. It is computed by z =
x−µp

σp
where x is the raw score to be standardised (a

range observation), and µp and σp are the range mean and standard deviation of the

corresponding pole. Second, a histogram and normal probability graph are plotted

as shown in Figures 3.12(e) & (f). Since the z-score follows the line of the normal

probability graph, the assumption of a Gaussian distribution is reasonable.

Researchers in the field of psychology have also investigated the topic of human distance

estimation with similar results to ours. Baird et al. demonstrated that the relationship of

perceived distance and actual distance, on average, can be described by a power function

with an exponent close to 1.0 [9]. Da Silva et al. found that it is slightly greater than 1.0

with indoor observations and generally slightly less than 1.0 with outdoor observations [36].

3.5.2 HSM for Range

Based on the experimental data, it is possible to build a probabilistic sensor model6. For a

HSM, the goal is to produce a likelihood function of x given a human observation z. In the

6Another method would be to use the results of the psychologists’ research directly.
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Figure 3.12: Results of the calibration experiment: (a) experimental setup; (b) all partic-
ipants’ range/bearing observations, Gaussian uncertainty ellipses around means, true pole
locations are repeated for reference; (c) range standard deviation increases linearly with
range; (d) mean range estimates are linear to true ranges, ranges are underestimated, er-
ror bars indicate increasing standard deviation; (e) histogram of z-score using 30 bins; (f)
normal probability graph verifying the Gaussian assumption for range.
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specific range model, both variables7 are in the form of ranges measured in metres. The

HSM can be represented as a simple Bayesian Network (BN) as shown in Figure 3.13.

Figure 3.13: A BN representation of the HSM for range explicitly showing the parameters
(nodes with outgoing dashed edges). Round/square nodes are continuous/discrete. X is
realised as a Gaussian, Z as a conditional Gaussian with parameters µ, ω and σ. The
discrete node L encodes the range-dependent uncertainties.

The BN consists of the following nodes: node X represents the true range to the target

and is encoded as a Gaussian. Node Z represents the human range observation and is

encoded as a conditional Gaussian. Nodes µ, σ and ω are the parameters of the conditional

Gaussian sensor model. Node L stands for Location and is required to encode the range-

dependent uncertainties of the range observations. It is a continuous variable discretised

into several bins for implementation purposes. This one-dimensional sensor model can also

be formulated as:

z = ωx + µ + N (0, σ(L)) (3.4)

where z is the human range observation, x is the true range, ω and µ are regression coefficient

and mean, and σ is the standard deviation of the observation noise which is normally

distributed with zero mean. The standard deviation is range-dependent which is expressed

by the dependency on the L node.

The model can now be used for inference of range x at run-time as will be shown in

Section 4.3.3. The parameters based on the results of the calibration experiment are: µ̂ = 0,

σ̂ = {1; 2; 3; 4; 5; 6} (dependent on value of L node), and ω̂ = 0.9.

7Note that x and z should not be confused with their earlier use for raw and the standard scores.
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3.5.3 Discussion

The HSM developed above represents an average human operator’s ability to estimate the

range to an object in an open space. Given the modularity property of BNs, the simple BN

shown in 3.12(d) can be integrated into a larger representation as will be demonstrated in

Section 4.2.1.

Another advantage of the BN representation is the extensibility to more complex models.

In the present form, the model does not address the individuality of human operators as

discussed in Section 3.2.2. More variables can be added to the user model, e.g. time of the

day, current workload etc.

A second possibility to address the individuality is to adapt the HSM to individual operators

at run-time. This requires the truth of the range being available online. We reported

preliminary results of an experiment where such an oracle was available [96].

3.6 Related Work

Related work for this chapter comprises three main topics: humans as information sources,

multi-level representations, and probabilistic user modelling. Each one is discussed below.

3.6.1 Humans as Information Sources

Different system functions can be automated when humans interact with automation. Para-

suraman et al. propose four function classes [136]: (1) information acquisition, (2) infor-

mation analysis, (3) decision and action selection, and (4) action implementation. Letting

human operators contribute perceptual information can be seen as choosing a low automa-

tion level for class (1) while classes (2)–(4) are fully automated.

Regarding human operators as information sources is a novel idea and thus, the literature

on this topic is limited, especially in the robotics field. Three application areas which may

benefit from human perceptual input are crisis management, command-and-control, and

cooperative mapping which are reviewed next.
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Crisis Management The advantages of fusing information from humans and sensors

have recently been recognised in the context of crisis management [139][118][122][110].

Pavlin et al. work on integrating human information originating from databases, web-

pages, mobile phones or interactive querying into their Distributed Perception Network

(DPN) [139]. DPNs use a distributed Bayesian network and a representation which can be

exploited to generate useful queries addressed at humans in the field. The example pro-

vided is a gas detection system where humans contribute information by reporting smell

and health symptoms information queried via SMS or the web. The problem of modelling

human operators has also been highlighted but no results are reported.

Project Rescue is another crisis management project explicitly acknowledging human op-

erators as sensors [122][6]. First responders’ observations and eyewitness accounts may be

leveraged to gain a better assessment of the situation using human cognitive abilities. They

emphasise the necessity of modelling the reliability of human reports with respect to percep-

tual and cognitive biases as well as to social background. Probabilistic modelling techniques

are proposed as a potential solution. Implementation of the the user modelling ideas to date

are limited. The focus is on mapping humans’ free text reports containing location infor-

mation to probability distributions over “domains” which are 2d spatial grids [92]. The

system does not perform fusion of human reports with sensor information.

Llinas’ crisis management paper is written as a research proposal [110]. It proposes the

investigation of fusion algorithms to support decision makers dealing with natural and man-

made disasters. Potential information sources include aerial imagery equipment, ground

sensors, and humans in the field. Human operators can be either civilians, specifically

deployed data collection teams, or rescue staff. This work seems not to have gone beyond

this initial proposal.

Command-and-Control In most command-and-control applications, humans remain

the final decision maker. Automated systems are typically used to provide aid to deci-

sion makers (see e.g. [34]).

An exception is work from Ross et al. who mention operators as potential information

sources in a military global awareness mission [146]. The world is represented as a hier-

archical Bayesian Network. Observations can come from image intelligence reports, radar
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reports, terrain databases or human intelligence reports. They do not address learning the

model parameters and entry of human observations is not demonstrated experimentally.

The data fusion community has worked on making human operators an explicit part of the

popular JDL data fusion model [15][120]. Blasch presents a simple experiment where users

help the fusion system with data association and localisation as part of a group-tracking

scenario [15]. Both papers discuss integrating operators on a conceptual level only and do

not address the problem of how to represent and fuse information from human operators.

Mapping A human operator and several robots cooperatively build a map of the envi-

ronment in [25]. It is argued that a common meaningful representation is required for a

human-robot team to achieve a common goal. The map contains both lower-level terrain

information as well as semantic abstractions provided by a user. A point-and-click mech-

anism allows the operator to add objects such as victims in a search-and-rescue scenario.

The higher-level representation, however, is non-probabilistic and has no relationship to

lower-level states.

Another cooperative map building system is presented in [177]. A human operator is ex-

plicitly acknowledged for Human Augmented Mapping. Operator input is used to make

the map human-understandable and to clarify ambiguities using dialogs [103]. A related

dialog-based approach is presented in [161] where operators label objects which the robot

has segmented previously. Both of these approaches do not fuse information, i.e. robotic

and human map states are not correlated.

3.6.2 Multi-Level Representations

Figure 1.3 showed the environment as consisting of several levels of abstraction including

features, objects, tracks, situation and impact. These terms have been adopted from the

standard multi-level process model used in the information fusion community, the JDL Data

Fusion Model [187]. It is a functional model motivated by the lack of a common terminology

when discussing different elements of information fusion processes.

The JDL model consists of multiple levels but does not prescribe any fixed architecture

or choice of representation. In principle, all levels of the JDL model can be represented

using a probabilistic framework. BNs are considered suitable because they keep track of



3.6 Related Work 62

inter-level correlations which enables inter-level information flow. A BN implementation of

JDL level 2 for a battlefield application is presented in [66]. The objectives are similar to

ours: both higher-level nodes such as enemy intent and lower-level nodes such as enemy

tracks are represented together. The potential of human input from friendly units is also

mentioned but no quantitative results are presented.

Multi-level probabilistic models have successfully been applied to a vast number of appli-

cations in need of representing information on multiple levels of abstractions. Domains

include computer vision [168][127][178][184], speech and text modelling [128][41][144], and

activity recognition [109][138][132][180][62]. Multi-level probabilistic models are also useful

if decisions need to be made. Examples include intelligent light control [186], and robot

localisation [172].

None of these models consider input of evidence on a higher level. Typically, a single

low-level sensor stream is used to infer higher-level states. Sensors include laser [172],

GPS [109][138], camera [168][127][178][184], microphone [128], and photosensor [186]. Al-

ternatively, multiple low-level sensor streams are fused, again to infer higher-level states.

Examples are video and audio [128][41] and audio/video/computer activity [132]. In con-

trast, this work lets human operators add information on higher-level states which propa-

gates throughout all other levels depending on the correlations encoded in the model.

Since the propagation of information to lower levels is not anticipated in the models cited

above, one approach is to isolate levels from each other. The advantage is the decomposition

of the modelling problem which simplifies learning and inference for submodels. Oliver et al.

use this layered approach to recognise activities in an office environment [132]. Each layer

is represented as a set of independent HMMs which propagate their results to higher levels.

A similar approach is used for recognising potential terrorist attacks [180]. The output of

lower-level HMMs provides evidence for a high-level BN which integrates all information

into a global belief. In contrast to these approaches, this work requires to maintain the

correlations between levels to enable inter-level information flow.
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3.6.3 Probabilistic User Modelling

User modelling is an important topic in Human-Computer Interaction (HCI), Artificial

Intelligence (AI), and more recently, in Human-Robot Interaction (HRI). Work in these

fields, which makes use of probabilistic methods, is briefly reviewed next.

When people interact with computers, the objective is often to infer the user’s goals or

intentions [79]. The purpose is to provide assistance to users who try to solve a task, or

adapt user interfaces to the context [84]. Adaptive user interfaces are also used in HRI,

e.g. to control a robot using voice [121]. Another application area where users’ mental

states are inferred is Intelligent Tutoring Systems (ITS). These systems typically reason

about the student’s comprehension of certain concepts the ITS intends to teach [123][28].

In contrast to these applications, the systems presented in this thesis do not necessarily

require a complex model of the users’ mental states. Operators make simple observations

in our systems and the user model’s purpose is to add uncertainty to it. In plain terms, the

user model encodes how much a human observation can be “trusted”.

The major challenge in user modelling is how to address the individuality of humans, i.e.

how to learn something about the individual [84]. This requires a significant amount of data

from individual users which can easily be collected for HCI applications. In the robotics

domain, it is harder to obtain sufficient data, and our solution so far has been to use

stereotypical user profiles (novice/expert). Another option is to use life-long or incremental

learning techniques [78] which will be investigated in the future.

Besides the variation between users, the individual’s performance is also variable and de-

pends on factors such as time of the day, workload, and attention. All these states can

be incorporated into a HSM but require some type of sensing of the operator, either ac-

tively [167], or passively [73].

3.7 Summary

This chapter introduced the concept of treating human operators as information sources.

First, examples were given of how different probabilistic data types can be used for bidi-

rectional human-robot communication. Then, the information flow direction was restricted

to human-to-robot suggesting the exploitation of humans’ perceptual capabilities. It was
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proposed to let humans submit information which was defined as part of Bayesian inference

to be either likelihoods or observations. It was shown how treating humans as information

sources can be applied to both information gathering and decision making. For the latter

case, the advantages of using information over actions for robot control were also discussed.

It was argued that humans and robots are inherently different in their perceptual capa-

bilities. This lead to certain challenges for the probabilistic representation employed for

human-robot information fusion. The conclusion was that BNs are suitable to address the

identified challenges. BNs are also able to incorporate a probabilistic model of the opera-

tors’ perception which is called Human Sensor Model (HSM) in this work. Then, limitations

of the approach were identified. A set of simulations were used to verify the arguments for

human-robot information fusion, and to demonstrate some of the limitations. Finally, an

experiment with human participants was presented which yielded a HSM for range obser-

vations.

This chapter provides an important foundation for the two following experimental chap-

ters. Chapter 4 will present experimental results from an information gathering task with

human operators submitting environment information (human-push). The HSM for range

presented in Section 3.5 will be used in that experiment. Chapter 5 will apply human-

robot information fusion to robotic decision making with operators being queried for their

perceptual input (robot-pull).



Chapter 4

Scalable Human-Robot

Information Gathering

This chapter uses the framework of probabilistic human-robot communication established in

the previous chapter to analyse a particular class of applications. The focus of this chapter

is on issues arising in systems consisting of multiple humans and multiple robots. Humans

and robots are organised into a team tasked with information gathering. The objective

is to fuse observations from robotic platforms and human operators into a representation

common to all members of the team. A desired property for human-robot teams is the

extensibility to an arbitrary number of team members without creating a computational

or communication bottleneck. This property is referred to as scalability which cannot be

jeopardised in any way, e.g. by the type of information exchanged between humans and

robots. It is argued that only environment information is a suitable data type for scalable

human-robot communication. Figure 4.1 illustrates the scope of this chapter.

Two main contributions are made in this chapter: (1) demonstration of scalable human-

robot communication, and (2) presentation of a shared environment representation for

human-robot information fusion. To date, limited work has been done on systematically

investigating the scalability of human-robot interactions [171]. Often, the focus is on a

single operator actively controlling a small number of robots [32]. In contrast, the approach

presented in this chapter assumes fully autonomous control of robotic platforms based on

the shared environment representation built up with human cooperation. In related work

dealing with shared human-robot representations, the operator does not contribute any
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Figure 4.1: This chapter presents human-robot information gathering which is constrained
by the requirement of scalability (many-to-many interactions). Only environment informa-
tion is fused and no decisions are made.

information to the task online [183], or human input is decoupled from robotic informa-

tion [25], i.e. no information fusion occurs. A detailed literature review is presented at the

end of the chapter.

The remainder of the chapter is organised as follows. Section 4.1 presents the algorithms

used to maintain scalability by decentralising environment state estimation. It also discusses

the role of human operators as part of a decentralised system. Section 4.2 presents the

shared environment representation and demonstrates the integration of human operators

as information sources. In this chapter, the human-push pattern is employed for human

information contribution. Section 4.3 presents experimental results obtained by deploying

a human-robot team in a natural outdoor environment. The team consists of an unmanned

aerial vehicle (UAV), a ground vehicle, and two human operators as shown in Figure 4.2.

Fusion results are presented as a cooperatively acquired multi-attribute map, and a set

of human-robot information exchange patterns. Related work is presented in Section 4.4

before Section 4.5 summarises the content of this chapter.
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Figure 4.2: Human-robot team deployed for information gathering: the Brumby UAV, a
ground vehicle, and two human operators.

4.1 Scalable Information Fusion

This section starts by introducing our decentralised approach to information fusion. Sys-

tem properties relevant for the integration of human operators are described here. Second,

reasons are provided for regarding human operators as an integral part of decentralised

information fusion. Then, the roles operators can play in a system constrained by decen-

tralisation are described.

4.1.1 Decentralised Data Fusion (DDF)

We consider applications where the objective of the human-robot team is to build a common

environment representation. The team is broken up into components including embodied

components (humans and robots) as well as software components. Components can be or-

ganised using different network topologies, e.g. hierarchical or centrally distributed [76][129].

The usage of a decentralised architecture has several advantages over other solutions [116]:

• Scalability : the network can grow to an arbitrary number of components (humans,

robots, software components).

• Survivability : no component of the system is mission-critical, so the system is surviv-

able in the event of run-time loss of components.

• Modularity : all components can be implemented and deployed independently.

These advantages require that (1) no central services, facilities or components exist, and (2)

no global knowledge of the network topology is needed. We use the family of Decentralised
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Figure 4.3: A decentralised data fusion system: sensors and user interfaces submit like-
lihoods to nodes which form a DDF network (highlighted). Arrows indicate the direction
of data flow.

Data Fusion (DDF) algorithms which fulfil these requirements [69]. Scalability of the DDF

algorithms has been demonstrated before [69][115] and is not the focus of this work.

An example of a decentralised system represented as a UML component diagram is shown

in Figure 4.3. Each software component (capitalised throughout the rest of the chapter) has

a set of provided and/or required interfaces visualised as filled circles and open semicircles

respectively. Interfaces are used to communicate data between components.

The example shows a DDF network consisting of four nodes. Each node runs the DDF

algorithm whose task is to maintain a consistent probabilistic estimate of the environment

state using a Bayesian filter as introduced in Section 2.3.2.

In a DDF system, likelihoods are produced by sensors and user interfaces respectively,

and communicated to nodes via the Fusing interface as shown in Figure 4.3. To ensure

that the estimate is common to all nodes they have to communicate with each other via the

Linkable interface. This involves keeping track of previously communicated information to

avoid rumour propagation [10]. Based on the locality principle which guarantees scalability,

every node only exchanges information with its immediate neighbours. After communi-

cation, all new information propagates throughout the entire DDF network resulting in a

common belief of the environment.
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Objective Interface Comms. patt. Message Prob. data type

Human-robot fusion Fusing human-push env.-perc. likelihood

Task monitoring Informed robot-push env.-perc. belief
Platform control Controllable human-push plat.-dec. action, utility fct., policy
Status monitoring Detailed robot-push plat.-perc. belief

Table 4.1: Overview of objectives of human interactions with a DDF network and their
realisations as interfaces (compare to Table 3.1). The focus of this work is emphasised.

4.1.2 Roles of Operators in DDF

In a decentralised system, the numeric relationship of humans and robots is potentially

many-to-many (see Section 1.3.3). Together with the other requirements of decentralisa-

tion, this imposes constraints on the interaction of human operators with the other team

members. In general, there are two types of information which can be queried or submitted

by operators: information related to the environment and information related to the plat-

forms as described in Section 1.3.2. An example of environment information is the location

of a feature. An example of platform information is the health status of a robot.

Only environment information is scalable with respect to the size of the network, i.e. query-

ing or submitting environment information is independent of how many platforms are de-

ployed. In DDF, only environment information is fused and shared among the platforms.

To ensure scalability, the main objectives of human-robot interaction have to be related

to environment information, namely: (1) to present the user with the global world state

(task monitoring); and (2) to allow human operators to contribute environment information

to the DDF network (human-robot fusion). Human-robot fusion can be realised by two

communication patterns as described in Section 1.3.2: robot-pull and human-push. For the

experiments in this chapter, human-push was used exclusively.

Other human-robot interactions which refer to platform information are non-scalable but

can be useful in a practical system. A summary of all objectives is given in Table 4.1 and

their realisation as a user interface is shown in Figure 4.4. Each objective is discussed

in more detail below.

Human-Robot Fusion The objective of letting operators contribute information can

be achieved by using peer-to-peer interaction (see Section 1.3.3). Using the human-push

communication pattern, the network is at no time aware of where the information comes
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Figure 4.4: A user interface with four interfaces and corresponding data types is used
to fulfil the requirements of human-robot interaction as part of a DDF system.

from, a physical sensor, or the human operator. This is reflected in Figure 4.3 where both

the user interface and the sensor use the same Fusing interface. Operators can either

submit raw observations which get translated into a likelihood by a human sensor model,

or specify likelihoods directly as discussed in Chapter 3.

Task Monitoring The objective of task monitoring is realised by presenting the world

state to the user which is achieved by connecting to the Informed interface. In this case,

the operator represents an information consumer and simply needs to connect to the most

easily accessible node. Apart from an information propagation delay, any node in the

DDF network provides all environment information as a probabilistic belief as described in

Section 4.1.1. The type of display can be graphical, textual, or another modality appropriate

for the type of information gathered.

Platform Control In a practical system, it is often convenient to have direct control of

the active platforms using teleoperation. Another option is to let operators send utility

functions or policies which is a supervisory interaction mode [115]. Information related

to platform control are submitted through the Controllable interface. This component-

centric control scheme does not scale well with the number of components and thus, if

incorporated in a DDF network, the number of platforms controlled at any one time must

be limited [115].

Status Monitoring The human-robot team represents a distributed system which has a

high degree of inherent complexity. It is therefore useful to directly monitor the status of
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the robots at run-time. This includes the robots’ positions in the world, health status, and

the state of individual software components at runtime. Status information is aggregated

through the Detailed interface which is realised by every software component. If collected

centrally, the individual components’ status information can be compiled to display the

global DDF network topology which is useful for debugging purposes. The display of status

information can be switched off to avoid a communication or computational bottleneck.

4.1.3 Avoiding Human Rumour Propagation

The previous section argued that there is no restriction on the number of operators si-

multaneously connected to the DDF network as long as operators deal with environment

information only (scalability). This section discusses the issue of preserving a second impor-

tant property of DDF – the correctness of the global estimate enforced by avoiding rumour

propagation as mentioned in Section 4.1.1.

Rumour propagation between nodes can be avoided by either adhering to a tree network

topology or by fusing conservatively1 [114]. These mechanisms are sufficient as long as infor-

mation flow from sensors and user interfaces is one-directional as shown in Figure 4.3.

However, when human operators are involved, the following information loops may emerge:

1. Human operators may act as environment information sinks for task monitoring pur-

poses as discussed in Section 4.1.2. Receiving beliefs from the DDF network most

likely influences the observations operators make. As a consequence, operators should

only be allowed to exclusively act as an environment information source or sink.

2. Human operators may form information loops with each other when working in close

proximity. Examples include direct conversations between teammates and the obser-

vation of each others’ actions.

3. Human operators most definitely form a temporal information loop with themselves,

i.e. they remember their past observations. This loop can be avoided by prohibiting

the reobservation of the same feature.

The three possible information loops need to be ruled out to maintain a correct probabilistic

belief of the environment state. However, these rules may prove hard to implement and

1In this work, a tree network is used.
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enforce in practice. One option is to employ dedicated human nodes which fuse their infor-

mation conservatively with the rest of the DDF network, e.g. by using covariance intersect

methods [90]. A second option is ask human operators to only submit new information.

Although people appear to be capable of performing this type of operation [140], it would

most likely be unreliable and increase the operators’ workload significantly.

For the experiments reported in Section 4.3, none of the three rules were explicitly en-

forced, no dedicated human nodes were used, and operators were not asked to submit new

information only. These measures were not necessary because results from human-robot

information exchange were analysed qualitatively only.

4.2 A Shared Environment Representation

This section presents the probabilistic representation of the environment used to perform

information fusion. Two independent models are used to describe features in a natural out-

door environment: geometric and visual. The visual model is separated into an appearance

and identity level which are statistically correlated. The geometric and visual models are

combined to achieve robust data association.

In short, environmental features are represented on three abstraction levels: geometric, ap-

pearance and identity. The representation is shared between all platforms which is required

by the DDF algorithms. The shared representation allows information contribution from

both robotic sensors and human operators.

4.2.1 Geometric Feature Representation

The most common low-level representation of a point feature is its position in a global coor-

dinate system. Each node maintains the geometric state of all features using a probabilistic

filter.

Robotic Observation Model for Position In our implementation, robotic platforms

observe the bearing to extracted features using cameras. Gaussian Mixture Models (GMMs)

are adopted as a representation for the geometric state because they provide a basis for ana-

lytical solutions to the general Bayesian filtering problem [164]. Furthermore, this represen-
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tation can also be used for spatially extended features even though this work only considers

point features. A single Gaussian would be sufficient to represent these, however, a GMM

or an approximation of it is still required for undelayed point feature initialisation [162]. To

guarantee the applicability of the derived DDF algorithms for other applications, the entire

GMM representation is maintained for all time steps.

A GMM is defined for a random variable X as

p(x) =

N
∑

i=1

πiN (x|µi,Σi) (4.1)

where πi are weights with the property
∑N

i=1 πi = 1, N (x|µi,Σi) is a Gaussian probability

density (also known as a Gaussian mixture component) with mean µi and (full) covariance

Σi, and N is the number of mixture components.

Substitution of GMMs into Bayes Theorem (Equation 2.8) gives

p(xk+1|z0:k+1) = α
M
∑

i=1

πziNzi

N
∑

j=1

πxjNxj (4.2)

where α = 1/p(zk+1|z0:k) is a normalising constant, the Nz’s represent the likelihood

p(zk+1|xk+1) (M mixture components), and the Nx’s represent the prediction p(xk+1|z0:k).

Expanding Equation 4.2 results in M × N terms, each involving a multiplication of two

weighted Gaussians. Thus, the posterior distribution is represented by M × N weighted

Gaussians. GMMs also allow an analytical solution to the Chapman-Kolmogorov equation

(Equation 2.9). The multiplicative expansion in parameters requires a component merging

technique. Details of the technique and inter-node fusion issues are described in [181].

A 2d example of a robotic observation translated into a GMM likelihood is shown in Fig-

ure 4.5. A bearing-only observation from position [0, 0] with bearing 0◦ is translated into

a GMM with 20 Gaussian components [8]. In our experiments presented in Section 4.3,

position is represented by 3-dimensional GMMs (easting, northing, altitude).

Human Observation Model for Position Human operators also observe the position

of features even though observation accuracy is lower than that of robotic sensors as shown

in Section 3.5. Typically, human operators are considered more valuable in entering higher-
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Figure 4.5: A 20-component GMM likelihood generated via a bearing-only observation of
0◦ from position [0, 0]. Individual Gaussian components are shown in (a), along with an
equi-likelihood contour encompassing 95% of the probability mass shown in (b).

level information such as the features’ class. As a prerequisite, operators also have to enter

approximate feature locations to (1) instantiate new features, and (2) distinguish features

which are already in the world model (data association).

To enable the integration of human position entry into the filtering scheme presented above,

human observations have to yield likelihoods in a GMM-compatible form as formulated in

Equation 4.2.

Two input modes for human entry of information were developed as presented in Sec-

tion 3.2.4. Both were implemented to output single-Gaussian likelihoods and were used

simultaneously in our experiments presented in Section 4.3. Their implementation for the

deployed human-robot team is described next.

In the likelihood mode, humans operate directly in state space. This is implemented by

drawing circles on the screen of a GUI which are mapped to a Gaussian likelihood with a

3σ uncertainty in three spatial dimensions (the mean for the elevation is looked up from a

digital elevation map).

In raw observation mode, humans operate in observation space by specifying a range esti-

mate to a feature relative to their position and an absolute bearing value that is read off a

compass. The operator’s position is acquired from a handheld GPS receiver. Uncertainty

values are added to GPS location according to the GPS’s current uncertainty estimate.

The bearing value uncertainty is fixed according to the specifications of the compass. The
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experimentally acquired Human Sensor Model (HSM) presented in Section 3.5 converts the

range estimates to a Gaussian likelihood.

4.2.2 Visual Feature Representation

The main objective of building a probabilistic visual feature representation is to improve

data association. The model should also allow the classification of features and have the ca-

pability of incorporating both robotic and human observations. Another model requirement

is the allowance for efficient communication and fusion within the DDF network.

The representation is formulated analytically as part of a Bayesian filtering framework. A

filtering approach estimates visual states by keeping a history (see Section 2.3.2) which is

likely to improve data association and classification compared to a memoryless method. An

analytical derivation of a visual likelihood function avoids online data compression which

can be computationally expensive. The likelihood maps a high-dimensional observation into

a compressed functional description. As a consequence, computations can be conducted in

real-time. A compact representation is also required for communication in a DDF system

as bandwidth is often limited, especially when using a broadcast medium [134].

The visual model proposed here is learnt offline from training image patches. Four steps

are involved which are described in detail below:

1. Deterministic nonlinear dimensionality reduction of image patches and partial la-

belling of the patches.

2. Learning a static probabilistic model over the original high-dimensional and resultant

low-dimensional spaces.

3. Adding a human visual sensor model.

4. Extension to a dynamic model suitable for filtering.

Nonlinear Dimensionality Reduction Most raw visual features exist in a very high-

dimensional space that are not readily amenable to simple interpretation and reasoning tasks

and therefore require some type of dimensionality reduction. These methods compress the

information while keeping most of its content. Note that the objective is different from
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classification which focuses on discrimination or class separability. To obtain an accurate

representation, greatest emphasis is usually placed on features with greatest variability

which are not necessarily well separated [46].

The following visual model is independent of any specific feature extraction algorithm.

In our experiments the features used were 11 × 11 patches from colour images. Each of

these image patches was represented by a 3D RGB histogram with 93 bins resulting in a

dimensionality of 729.

Dimensionality reduction of features such as the aforementioned image patches is tradi-

tionally performed using methods such as Principal Component Analysis (PCA) or its

numerous variants [46]. Although they provide theoretically optimal representations from

a data-compression standpoint, they are unable to provide neighbourhood preserving rep-

resentations that are crucial to data association. This limitation has motivated the devel-

opment of various nonlinear embedding methodologies such as Kernel PCA [151], Isomap

[170], Laplacian Eigenmaps [13] and Locally Linear Embedding [147]. Most non-linear

dimensionality reduction techniques presume that the data lies on or in the vicinity of

a low-dimensional manifold and attempt to map the high-dimensional data into a single

low-dimensional, global coordinate system. The Isomap algorithm is adopted in this work

because it can estimate the manifold’s intrinsic dimensionality. A quantitative comparison

of Isomap to PCA is presented in Appendix A.

Figure 4.6(a) shows the low-dimensional data points generated by Isomap for a data set

collected outdoors by ground and air vehicles. Each data point shown in the figure was found

by mapping a 729-dimensional image patch to a 3-dimensional space. Using 3 dimensions

seems appropriate to represent the data as suggested by Isomap’s residual variance plot

shown in Figure A.1(a).

Static Probabilistic Model Integration into a Bayesian filtering framework requires

the definition of the observation model p(z|x), describing the measurement uncertainty of

a state x, given observations z. For the visual model, z represent visual observations in

the original high-dimensional space which measure abstract states x in low-dimensional

space computed by Isomap. However, the Isomap algorithm and indeed most nonlinear

dimensionality reduction algorithms are inherently deterministic algorithms.
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Figure 4.6: The low-dimensional visual state space as generated by Isomap: (a) each data
point is a deterministic mapping of a high-dimensional image patch into state space; (b) a
probabilistic model is learned. Ellipsoids are Gaussians representing clusters of data points
whose corresponding image patches have similar appearance with respect to colour. Each
ellipsoid corresponds to an identity state whereas a subset of all ellipsoids correspond to a
feature class such as “tree”. Black/grey ellipsoids represent labelled/unlabelled data points.

Uncertainty can be incorporated by learning a probabilistic model of the joint distribution

p(z,x), given sample sets 〈x, z〉, where x has been computed by Isomap. Learning a joint

probabilistic model over spaces with different dimensionality has previously been shown by

Ghahramani et al. [61]. The authors propose a model that probabilistically clusters data

in the high and low-dimensional spaces simultaneously. This model is known as a Mixture

of Factor Analysers (MFA) and provides the ability to perform dimensionality reduction

while also obtaining a measure of uncertainty in both spaces. The low-dimensional part of

this statistical representation conveniently represents highly nonlinear manifolds such as the

ones generated by Isomap through the capability to model the local covariance structure of

the data in different areas of the manifold.

In this work, a modification of the MFA model is used [141]. Its representation as a Bayesian

Network (BN) is displayed in Figure 4.7(a). Round nodes are continuous random variables,

square nodes are discrete, and shaded nodes are observed (at run-time). The BN encodes

the following joint probability distribution:

p(z,x, s) = p(z|x, s)p(x|s)p(s) (4.3)
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The conditional probability distributions are given by:

p(z|x, s) =
1

(2π)
D
2 |Ψs|

1

2

exp {−
1

2
[z − Λsx− µs]

T Ψ−1
s [z − Λsx− µs]} (4.4)

p(x|s) =
1

(2π)
d
2 |Σs|

1

2

exp{−
1

2
[x − νs]

T Σ−1
s [x− νs]} (4.5)

where the terms Ψs, µs,Λs,Σs, νs, p(s) are the parameters to be learnt, Λsνs + µs and

Ψs + ΛsΣ
T
s ΛT

s are the means and covariances respectively of the mixture describing the

high-dimensional space, νs and Σs are their counterparts in the low-dimensional space, and

Λs are known as the regression matrices and model the transformation between the two

spaces.

The mixture simultaneously models the data in high and low-dimensional space. The S

node is multinomial and determines the number and the weight of the components which

are of Gaussian form.

The purpose of dimensionality reduction was to generate a fully supervised data set 〈x, z〉.

The data set is extended by manually labelling a subset of the image patches which makes

the S node partially observed during the learning phase. Labelling by a human is required to

build a human visual sensor model as described in the next section. The S node’s dimension

Ns is allowed to be larger than the number of specified labels because more clusters may

exist in the data than labels are given. The S node is a categorical variable and can be

thought of as describing the feature class.

Clusters of unlabelled data points are captured automatically by applying an Expectation

Maximisation (EM) learning scheme [141]. If no label for s exists, the standard 2-stage EM

algorithm is applied. If a label is available for s, the Expectation step is omitted and only

the Maximisation step is executed.

Figure 4.6(b) shows the learned model which was used for the experimental demonstration.

Each 729-dimensional image patch in z space is reduced to a 3-dimensional representation

in x space as shown in Figure 4.6(a). The probabilistic model is visualised as ellipsoids rep-

resenting the mixture’s components with associated weights contained in s. Each Gaussian

component represents a cluster containing data points whose corresponding image patches

have similar appearance with respect to colour. Different lighting conditions and camera
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Figure 4.7: The visual model as described in the text represented as a BN: (a) the static
model: X and Z are realised as low and high-dimensional Gaussians whereas S is realised as
a multinomial representing the weights of the Gaussians. (b) Node O is added representing
the (human) observation of the feature class. (c) The O node’s parameters (human visual
sensor model) encoded as a table. Brighter fields symbolise higher values with rows adding
up to 1.0. The 4 object names are “tree”, “shed”, “white object” and “red car”. The 27
identities correspond to the number of Gaussian components (ellipsoids) of Figure 4.6(b).
(d) The filtering process represented as a DBN. Nodes O and Z represent observations by
human operators and robotic cameras.
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hardware yield different clusters for the same feature class (e.g. 7 different clusters for the

tree class). It can be recognised that clusters from different classes are well separated.

The dimension of s is chosen to be 27, i.e. 27 components are allowed which avoids over-

fitting. Only 17 labels are manually assigned which results in 17 clusters represented by

black ellipsoids. The remaining unlabelled data points (all yellow) are represented by 10

grey ellipsoids. The number of samples used is 12388 (8428 labelled, 3960 unlabelled).

The learning algorithm was implemented in Matlab and typically took 2.5 hours on a 3.2

GHz Intel Xeon machine. EM learning was discontinued when the improvement in the

log-likelihood became less than 0.1 or after 10 iterations, whichever came first.

The advantages of this flexible learning scheme are two-fold: (1) it only requires partial

labelling, and (2) the number of components in the mixture is not limited to the number of

labels.

Human Visual Sensor Model To integrate visual observations from human operators

into the probabilistic framework, a human visual sensor model is required. Figure 4.7(b)

shows the previous BN extended by a node O representing the (human) observation of

the feature class. Its dimension No is chosen to be 4: “tree”, “shed”, “white object” and

“red car”. A human visual observation can represent a subset of all mixture components;

e.g. a “tree” observation is represented by 7 components (see the legend of Figure 4.6). In

loose terms, a human observation o specifies the volume of the state space which corresponds

to the feature class: a “tree” observations specifies the volume of the state space enclosed

by the 7 “tree” ellipsoids.

The O node’s parameter is the conditional probability distribution p(o|s) encoding the

human visual sensor model. It is represented by a table of size Ns×No (27×4) as visualised

in Figure 4.7(c). Brighter fields indicate higher values and the rows add up to 1.0. The

table entries are specified by hand. For each object name, the weights of its corresponding

components are distributed equally. The online computation of likelihoods is thus a simple

table lookup. The human visual sensor model implies that human operators almost perfectly

classify feature classes which is a reasonable assumption for this application. For more

complex classification tasks, experiments would be required to find a model. A similar

approach to the one described in Section 3.5 could be used.
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Dynamic model In order to perform Bayesian filtering, the visual model needs to be

extended to a dynamic representation. The BN is extended to a Dynamic BN (DBN) as

shown in Figure 4.7(d). Additional parameters are the transition models p(sk+1|sk) and

p(xk+1|xk, sk+1). They are not required to be learned since the visual state is assumed to

be quasi-static, i.e. its belief is carried across to the next time step without performing a

prediction step. Note that this method is different from a memoryless static model which

does not keep any history.

Model Interpretation The DBN shown in Figure 4.7(d) is hierarchical and can be

regarded as an environment representation with multiple abstraction levels. The abstract

appearance state x encodes visual properties of a feature in a continuous space. The addition

of a human-understandable identity state to the representation is useful for two reasons:

it (1) offers a higher abstraction level to support analysis and decision making, and (2)

permits the incorporation of human observations.

In a probabilistic representation the dependency between identity and appearance results

in a statistical correlation, i.e. the state beliefs influence each other. This correlation can be

used to build up rich complementary feature descriptions with observations originating from

robotic platforms and human operators. A robotic sensor observing the appearance of a

feature automatically changes the belief of its identity. On the other hand, human operators

observing the feature’s identity automatically influence the belief of the appearance. The

next section shows how the model is used to perform these operations at run-time.

Online Model Usage The software component diagram in Figure 4.8 shows how the

visual model is used at run-time. sensors extract features via templates or information-

theoretic concepts [104] resulting in high-dimensional observations zk. They are the input

for the appearance sensor model which outputs likelihoods p(zk|xk, sk). This concept de-

couples feature extraction from representation. The likelihood is a function of x and s and

can be formulated in closed form:

p(zk|xk, sk) = αs exp{−
1

2
[xk − ms]

T C−1
s [xk − ms]} (4.6)

Parameters Cs,ms and αs are calculated as follows:
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Figure 4.8: Software component diagram for a sensor, a user interface and a node

(appearance/identity states only): the sensor computes likelihood messages which are
communicated to a node which in turn computes a posterior belief using the full dynamic
model. All nodes connect into a DDF network.

Cs = (ΛT
s Ψ−1

s Λs)
−1 (4.7)

ms = CsΛ
T
s Ψ−1

s (zk − µs) (4.8)

αs =
1

(2π)D/2|Ψs|1/2
exp{−

1

2
[−mT

s C−1
s ms + (zk − µs)

T Ψ−1
s (zk − µs)]} (4.9)

The user interface, on the other hand, computes likelihoods p(ok|s) using the identity

sensor model. Operators specify an object name such as “tree” which is mapped into an

unnormalised multinomial distribution of mixture components by a table lookup. Each

likelihood is a message which is communicated to a node which performs inference on the

full dynamic model as previously shown in Figure 4.7(d).

The objective of the nodes is to maintain a belief of the identity and appearance state

given all observations, i.e. computing p(xk|z0:k, o0:k) and p(sk|z0:k, o0:k) where xk and sk

are appearance/identity state at time step k and z0:k, o0:k are all robotic and human visual

observations up to time step k. Identity state s is used to classify a feature by computing

the decision rule argmaxs p(sk|z0:k).
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With the previously mentioned assumption of a static visual environment the recursive

computation of the appearance state given all robotic visual observations z0:k is given by:

p(xk|z0:k) = α
∑

s

k
∏

i=0

p(zi|xi, si)p(xi|si)p(si) (4.10)

where α is a normalising constant and p(zk|xk, sk) represents the robotic visual likelihood

at time step i = k shown in Figure 4.8 and formulated in Equation 4.6. Expanding Equa-

tion 4.10 shows the parallel structure of the update:

p(xk|z0:k) = α[p(zk|xk, sk = 1) . . . p(x0|s0 = 1)p(s0 = 1) +

... (4.11)

p(zk|xk, sk = N) . . . p(x0|s0 = N)p(s0 = N)]

This parallel structure suggests that recursive estimation of the visual states can be imple-

mented as a sum of N filters (one line corresponds to one filter). Each filter is initialised

with the learnt prior p(x|s)p(s), which is of Gaussian form. When an observation zk is

made, the filter number n is multiplied by the likelihood p(zk|xk, sk = n) which is also of

Gaussian form (Equation 4.6). Thus, each filter in the sum only involves Gaussian terms

and as a result reduces to a linear Kalman filter.

The identity state represents the weight of each Gaussian in the sum. It is updated as

follows:

p(sk|z0:k) = αp(zk|sk)p(sk|z0:k−1) (4.12)

where p(zk|sk) can be obtained in two steps. First, the joint distribution p(z,x|s) is com-

puted by multiplying p(z|x, s) by p(x|s) (Equation 4.4-4.5):

p









z

x







 = N









µs + Λsνs

νs



 ,





Ψs + ΛsΣ
T
s ΛT

s ΛsΣs

ΣT
s ΛT

s Σs







 p(s). (4.13)
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Second, the joint p(z,x|s) is marginalized over x to obtain:

p(zk|sk) =
1

(2π)D/2|Ψs + ΛsΣT
s ΛT

s |
1/2

×

exp{−
1

2
(zk − µs − Λsνs)

T (Ψs + ΛsΣ
T
s ΛT

s )−1(zk − µs − Λsνs)} (4.14)

Under the same assumption of a static visual environment, the recursive computation of

the appearance state given all human visual observations o0:k is given by:

p(xk|o0:k) = α
∑

s

k
∏

i=0

p(oi|si)p(xi|si)p(si) (4.15)

with p(ok|sk) representing the human visual likelihood at time step k as shown in Figure 4.8.

Equation 4.15 follows the structure of Equation 4.11. Human visual likelihoods can be

integrated into the sum of N Kalman filters. For example, a human visual observation at

time step k can be fused as follows:

p(xk|ok, z0:k−1) = α[p(ok|sk = 1)p(zk−1|xk−1, sk = 1) . . . p(x0|s0 = 1)p(s0 = 1) +

... (4.16)

p(ok|sk = N)p(zk−1|xk−1, sk = N) . . . p(x0|s0 = N)p(s0 = N)]

The identity state for each of the N filters is updated as follows:

p(sk|o0:k, z0:k−1) = αp(ok|sk)p(sk|o0:k−1, z0:k−1) (4.17)

To summarise, the absence of explicit online data compression through the use of likelihoods,

and the update reducing to N Kalman filters, result in a computationally efficient filtering

scheme which can be adopted in real-time applications.

4.2.3 Combined Data Association

Data association refers to the problem of assigning observations to existing tracks in the

filter. To cull very unlikely observation-to-track associations, validation gating can be per-
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formed [11]. Formulating a gate that is computable in real-time is still an open problem for

non-Gaussian filters [8]. In this system, gating is performed by thresholding.

The visual state space can be used to improve data association which is otherwise based on

geometry only. A measure called evidence of observations with respect to existing tracks

is used to rank data association hypotheses. It is expressed as p(zp, zv|Hi) with zp and zv

being geometric and visual observations, respectively. Hi is the hypothesis “observations zp

and zv were generated by track i” [8]. Since geometric and visual state spaces are assumed

statistically independent (see introduction to Section 4.2), this expression becomes a product

of the position and visual evidence: p(zp|Hi)p(zv|Hi). Geometric evidence is obtained by

summing the weights of the unnormalised GMM resulting from the position update of track

i with observation zp as shown in [8].

Visual evidence at time step k is computed as follows:

p(zv,k|Hi) =
∑

s

p(zv,k|s,Hi)p(s|Hi) (4.18)

where p(s|Hi) is given by the weights of track i (Equation 4.12), and p(zv,k|s,Hi) =
∫

p(zv,k|xv,k, s,Hi)p(xv,k|s,Hi)dxv,k.

In [182], the probabilistic Bhattacharyya distance is used for data association. This distance

evaluates the similarity between an incoming likelihood and existing tracks. Its disadvantage

is that the distances scale differently in the position and visual space. As a result, distances

computed in the two spaces must be arbitrarily weighted so that they can be combined in a

decision rule for data association. The use of evidences does not lead to this problem. The

evidences p(zp|Hi) and p(zv|Hi) are conditional probabilities which naturally scale between

zero and one and can be readily compared without resorting to a pre-defined scaling.

Results from the combined data association scheme are presented in Figure 4.9. Fig-

ure 4.9(a) shows a raw image of two environment features physically close to each other, a

tree and a red car. Figure 4.9(b) visualises two successive bearing-only observations from

a ground vehicle resulting in two conically shaped Gaussian mixtures. Data association

solely based on position results fuses the two observations into a single track as shown in
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Tree and red car

(a) Two features (b) Two GMM observations

(c) Incorrect fusion (d) Discrimination

Figure 4.9: Improved data association using a scheme combining position and visual states:
(a) two environment features close to each other, a tree and a red car, (b) two successive
bearing-only observations from a ground vehicle, (c) incorrect fusion of observations into a
single track based on position only, and (d) the combined data association scheme ensures
discrimination between the two features.

Figure 4.9(c). Compare this to Figure 4.9(d) where two tracks with corresponding labels

are created using the combined data association scheme2.

4.2.4 Classification using Filtering

Besides improving data association, the visual model is also used for feature classification. It

is shown here that incorporation of past information through the filtering process ultimately

increases classification accuracy compared to a standard (static) approach which ignores

2Note that Figures 4.9(c) & (d) were generated using the same data set but show estimates at different
time steps for better visualisation.
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(a) Tree vs other classes (b) Red car vs other classes

Figure 4.10: Filtering improves classification results of static classifier, results are presented
as ROC curves: (a) result for “tree” versus all other classes, and (b) result for “red car”
versus all other classes. Information from several time steps is used for filtering.

past information. The effectiveness of filtering over visual states can be quantified by

considering classification accuracy over multiple time steps.

The decision rule for static classification is to compute argmaxs p(zk|s). Classification with

filtering is determined by argmaxs p(s|z0:k) incorporating all past observations (see Equa-

tion 4.12). Results are presented in the form of Receiver Operating Characteristic (ROC)

curves as shown in Figure 4.10. Two curves are drawn: static and filtering approach. The

object classes “tree” and “red car” were analysed with replayed data obtained from 13

individual runs of the ground vehicle representing 2.8 hours of logging. 350 tracks were

observed multiple times with an average of 6 updates.

A measure to evaluate multi-class classifiers is the sum of the areas under the ROC curve

(AUC) per class weighted by their prevalence in the data [50]. As shown in the figure, the

AUCs for filtering over visual states are higher than the AUCs for the static classifiers.

4.3 Experiments

This section presents experimental results from a deployed human-robot team using the

shared geometric and visual representation. First, the architecture of the system is ex-

plained. Second, an evaluation of the information fusion results for a single experimental

run is given.
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4.3.1 System Overview

The human-robot team deployed for the experiments consists of multiple platforms: a

ground vehicle, a UAV and two human operators as shown in Figure 4.2. Figure 4.11 shows

a georeferenced aerial image of the outdoor environment, the (desired) flight path of the

UAV, the area covered by the ground vehicle and the human operators (rectangle) and the

UAV platform.

Figure 4.12 shows the software architecture of the system as a UML deployment diagram.

All software components expose interfaces to inter-operate with other components. image-

servers and localisers connect to hardware shown as artifacts. Components are run on

seven host computers visualised by 3d-boxes. Hosts are part of a physical platform whose

boundaries are indicated with dashed lines. The backbone of the system, the DDF network,

is highlighted. For clarity, deployed components and interfaces related to monitoring and

logging are not shown. In total, up to 20 software components were running at any given

time.

The system works as follows: robotic platforms run a localiser which connects to GPS/INS

hardware and provides an estimated pose of the platform. The position estimate is sent to

the sensor which extracts features from captured images [104]. Together with the platform

pose information, it can compute a likelihood of the feature position in a global coordinate

system. The sensor also encodes the visual properties of the features which are related to

their class (e.g. “tree”). sensors communicate their likelihoods to nodes which fuse them

with prior beliefs. They communicate the resulting posterior to other nodes to maintain a

common belief.

Human operators are also part of the system and all roles mentioned in Section 4.1.2 were

implemented within the project. Figure 4.12 only shows the roles related to environment

information.

4.3.2 Multi-Attribute Feature Map

Figure 4.13-4.18 show results from the final experimental demonstration as graphical user

interface screenshots. The user interface was used by operators to communicate with

the system and serves several purposes: it (1) displays the global world belief as a multi-

attribute feature map, (2) displays the platforms and their trajectories, and (3) enables the
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(a) Aerial image of test facility

(b) Brumby on runway (c) Brumby in air

Figure 4.11: (a) A georeferenced aerial image of the test facility showing the UAV’s (desired)
flight path and the area covered by the ground vehicle and human operators (rectangle).
(b) The brumby UAV on the runway and (c) in the air.
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Figure 4.12: The system’s architecture as a UML deployment diagram: components run on
hosts which are part of a physical platform (robot, human operator, or fixed station). Some
components are connected to pieces of hardware shown as artifacts. The DDF network is
highlighted.

operator to enter observations. For the latter task, geometric and identity sensor models

required to compute likelihoods appropriate for fusion are stored internally.

The user interface displays an overlaid aerial map of the environment and a regular

grid of cell size 50m × 50m. All Gaussians are drawn to scale with 3σ uncertainty ellipses.

The fill pattern of the GMM components correspond to their weight – the denser, the

more probability mass on the component. Identity states are also shown by summarising

the most probable components by a single name (“tree” instead of “tree1”) printed on

top of the ellipses. Platform representations are iconic, i.e. their size is fixed for all zoom

configurations.

Figure 4.13 shows the multi-attribute feature map built during the final demonstration of

the system. The left image is an aerial photograph of the area covered by the ground vehicle
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Figure 4.13: Right: A multi-attribute feature map as a result of the experiments. Features
are represented by position including uncertainty (coloured ellipses) and their labels (most
probable identity). Platforms are shown as icons; UAV = unmanned air vehicle, GV =
ground vehicle, HO = human operator. Left: rectangular section of Figure 4.11(a) used as
a ground truth reference with arrows indicating the correspondence of real features to the
probabilistic representation.

and human operators as previously shown in Fig 4.11(a). It is shown here as a ground truth

reference. The image on the right is a user interface screenshot visualising the proba-

bilistic feature representation. Note that the GMMs for a single feature mostly lie on top of

each other after having been observed several times from different angles. Correspondences

of real features in the environment with the feature representation is indicated by arrows

from the left to the right image.

4.3.3 Information Exchange Patterns

The integration of human operators into the data fusion system is now illustrated by present-

ing five information exchange patterns. The scenarios described here demonstrate human-

robot peer-to-peer interaction. Unlike in many automated systems where humans act on a

higher level of authority, the operator cannot override information acquired by the robots.
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(a) GUI (b) Observation (c) Fusion result

Figure 4.14: Demonstration of the raw observation method through operator-only fusion:
(a) a GUI for entering raw geometric observations and labels, (b) a “shed” feature result-
ing from a raw observation by the operator drawn as a blue stickman (including position
uncertainty), and (c) the more informative feature after multiple observations.

Instead, information from all team members complement each other. All exchange patterns

are generated by playing back data from the final experimental demonstration.

Operator-Only Fusion Figure 4.14 illustrates the raw observation method. The oper-

ator is displayed as a blue stickman including the person’s position uncertainty as a blue

ellipse. The operator inserts a raw range/bearing/elevation observation of a shed through

the GUI displayed in Figure 4.14(a). After reobserving the feature several times with re-

fined values the final Gaussian uncertainty has significantly decreased with the centre on

the true position of the shed (Figure 4.14(c)).

Refinement by Operator Figure 4.15 demonstrates a scenario where the original infor-

mation is supplied by the ground vehicle and is later refined by the operator. Two features

previously observed by the vehicle are shown in Figure 4.15(a) (the red line is the vehicle’s

trajectory). A human operator decides to refine the position of the tree on the right by

drawing an ellipse with smaller uncertainty on top of the GMM (Figure 4.15(b)). The result

is a more compact GMM as shown in Figure 4.15(c).
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(a) Two features (b) Location refinement

(c) Fusion result

Figure 4.15: Human operator refining a feature entered by a robot: (a) two GMM features
previously observed by a passing ground vehicle (trajectory in red), (b) operator refines
feature location through likelihood observation, and (c) the resulting fused feature with less
uncertainty.

Refinement by Robot This scenario reverses the refinement order of the previous pat-

tern. Figure 4.16 shows how an operator enters two features prior to the mission which are

subsequently observed by the ground vehicle. Figure 4.16(a) includes the moving vehicle

with its path, a stationary human operator at a control station, a few GMM features in

the top right corner and the two “tree” features represented by ellipses. Figure 4.16(b) and

(c) illustrate the refinement of the position estimate as the ground vehicle drives past: the

estimates are converted into GMM form with smaller uncertainty. The final feature repre-
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(a) Two human features (b) Observation feature 1

(c) Observation feature 2 (d) Fusion results

Figure 4.16: Robot refining features initialised by human operators: (a) two “tree” features
are initialised prior to the arriving ground vehicle, (b) first feature is shrunk to a GMM based
on a bearing-only observation, (c) second feature is shrunk, and (d) the final (compact)
feature representation in a zoomed-in view.

sentations have very low entropy and are almost confined to a single Gaussian as displayed

in the zoomed-in view of Figure 4.16(d).

Bias Correction by Operator Figure 4.17 shows a scenario where an operator “cor-

rects” a track which is geometrically biased. The green patch from the aerial map indicates

the true position of the tree. Due to inaccurate camera calibration, the ground vehicle

placed a “tree” track a few metres off the true position. After a human operator has en-
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(a) Two features (b) Operator observation

(c) Fusion result

Figure 4.17: Operator “correcting” a bias in position: (a) two features are observed by the
ground vehicle, the “tree” feature is off the true position (green patch), (b) operator enters
a “tree” observation around the true position, (c) after two observations the “tree” feature
is closer to the truth.

tered two “tree” observations closer to the truth (Figure 4.17(b)), the bias becomes smaller

as shown in Figure 4.17(c).

Label Correction by Operator In this scenario, an operator “corrects” a label which

was wrongly assigned by the ground vehicle (Figure 4.18(a)). The operator enters a “tree”

observation close to the “white object” track as shown in Figure 4.18(b). Note that it

depends on the tuning of data association parameters whether this observation is assigned
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(a) Single feature (b) Operator observation
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(c) Fusion result (d) Filter behaviour

Figure 4.18: Operator “correcting” the identity of a feature: (a) ground vehicle wrongly
assigns a “white object” label to a “tree” feature, (b) operator observes the same feature
as a tree (also correcting for position bias, see Figure 4.17), (c) the label becomes “tree”,
(d) the filtering of the identity state: three robotic and two human observations. Marker
size and colour are proportional to the probability mass. The red line indicates the truth.

to the track. In this scenario, it was assigned and fused as displayed in Figure 4.18(c).

Figure 4.18(d) shows how the probabilities of the identity state change over time (marker

colour and size are proportional to the probability mass). The first three observations

were performed by the ground vehicle. After the human observations, the probability mass

shifted towards the true identity state.
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4.4 Related Work

This section presents related research in scalable human-robot interactions and shared rep-

resentations for human-robot teams.

4.4.1 Scalable Interactions

The field of adjustable autonomy has recently started to address human interactions with

multi-robot systems [32][133]. This problem of interacting with several robots is especially

evident for UAV control where the ratio of operators to UAVs is typically higher than one

at present [44]. Most of these systems apply supervisory control schemes which are aimed

at controlling a small number of robots at the same time but may not scale up indefinitely.

In contrast, this work addresses the problem of scalability from the ground up by proposing

to let human operators contribute environment information which indirectly controls the

individual platforms [115].

Scalable human-robot interactions are explicitly addressed in Tews’ work [171]. Here, scal-

ability refers to the communication bandwidth between humans and robots which needs to

be kept low for larger numbers of entities in the system. It is proposed that the amount of

communication increases with decreasing robot autonomy, tighter human-robot coupling,

and the number of robots. The authors suggest that a large-scale interaction mechanism

must allow for many-to-many, one-to-many, and one-to-one interactions. Additionally, it

must allow heterogeneous robot teams and different levels of human-robot coupling. The

architecture is server-client based and therefore relies on a centralised server. Information

fusion is not addressed in this work.

Our previous work dealt with scalable interactions between humans and a sensor network

which laid the foundation of this chapter [94]. Three significant extensions have been pre-

sented here: (1) the utilisation of a multi-level representation, (2) the probabilistic modelling

of human input, and (3) an extensive experimental demonstration.

4.4.2 Shared Representation for Human-Robot Teams

Researchers in the field of human-robot interaction (HRI) have recently identified the prob-

lem of finding a shared representation between humans and robots for mapping. Relating
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geometric maps typically acquired by a robot to the topological view of the environment typ-

ically developed by humans [119] has become a popular research area [183][177][103][125][25].

Many of these approaches let the robot build a human-understandable representation but

operators are not able to contribute information online. An exception is the work of Topp et

al. which explicitly acknowledges a human in the loop in a Human Augmented Mapping ap-

proach [177]. Humans and robots cooperate interactively to build personalised maps which

are augmented using clarification dialogs [103]. Humans act as teachers while we regard

them as teammates providing uncertain information which can be modeled probabilistically.

A similar effort to build a common substrate or a collaborative workspace is presented in [25].

It is argued that a common meaningful representation is required for a human-robot team

to achieve a common goal. A mixed team of air/ground vehicles and human operators

similar in scope to our system cooperate in a map building mission. The map contains

both, lower-level terrain information as well as semantic abstractions provided by a user. A

point-and-click interface allows the operator to add objects such as victims in a search-and-

rescue scenario. Even though demonstrating a simple scenario of collaborative perception,

the focus of their framework is on control and adjustable autonomy [23].

A team of air and ground vehicles were deployed to build a common representation as part

of the DARPA MARS project [72][70]. Like in our work, DDF algorithms are used to detect

and localise targets in a scalable manner. The advantages of integrating complementary

capabilities of air and ground vehicles are emphasised and demonstrated experimentally:

while UAVs exhibit better area coverage, ground vehicles can localise features more accu-

rately. This aspect represents a parallel to our work while we add another complementary

information source: human perceptual capabilities are integrated synergistically with sen-

sor information from air and ground vehicles. In contrast, the human operators’ role in the

MARS project was limited to task monitoring and supervisory control of the UAVs.

An earlier work addressing the need for a vocabulary common to humans and robots is pre-

sented in [99][98]. The authors show how communication between humans and robots can

benefit from machine learning by building human-understandable symbols from a robot’s

perceptions and actions – its low-level internal representation. Human operators act as

teachers by providing examples of concepts to the robot which builds its own internal repre-

sentation. Concepts are organised hierarchically on five different abstraction levels [99]. The

overall goal is to learn a high-level description of actions, perceptions and the environment



4.5 Summary 99

from low-level sensing data. The multi-level representation is encoded using inductive Horn

logic and thus, is not able to incorporate uncertainties easily. Their results at the lower

levels show this weakness. However, concepts at a high-level encoded as Prolog clauses are

easy to understand for humans.

4.5 Summary

This chapter showed how a team of humans and robots can interact in a scalable way

while cooperating in an information gathering task. Scalability is a property of the DDF

algorithms which no member of the team can violate. If human operators mainly act as

environment information sources, scalability can be guaranteed. A shared environment rep-

resentation was presented which is built on multiple abstraction levels in order to represent

a complex environment, and to facilitate human information input.

Scalable human-robot information fusion was experimentally validated in an outdoor en-

vironment. Two human operators, one UAV and a ground vehicle cooperatively built a

multi-attribute map of the environment. Interesting information exchange patterns be-

tween operators and the DDF network emerged during the experiment.

This chapter focused on “pure” information fusion, i.e. robots did not use the fused in-

formation to make autonomous decisions. Also, to guarantee scalability, only environment

information was fused. In contrast, the next chapter will add decision-making capabilities

to the robots and the representation will contain a mix of environment and platform states.

The underlying mechanism of human-robot information fusion, however, will not change:

observations from humans and robots will be fused in a similar way but the resulting beliefs

will now be used by the robots to make decisions.



Chapter 5

Cooperative Human-Robot

Decision Making

While the previous chapter was exclusively concerned with perception, this chapter shows

how fused observations from humans and robots can be used to make decisions. A decision-

theoretic framework is utilised to make platform decisions which are executed by the robot’s

actuators as visualised in Figure 5.1. Since the action selection depends on observations

from both robotic sensors and human operators, this mechanism is referred to as cooperative

human-robot decision making.

In this chapter, human resources are treated as limited and thus expensive. It is also

assumed that robotic sensors can yield observations at a high rate and low cost1. For

this scenario, the robot-pull communication pattern as described in Section 1.3.2 is most

appropriate since the robot can decide when to make use of the human resource. Letting the

robot decide when to query operators can be seen as a mechanism for Adjustable Autonomy

(AA).

Work presented in this chapter is most closely related to Fong’s Collaborative Control which

also lets the robot pose questions to the operator [53]. Unlike Fong’s work which does

not specify a mathematical model, this chapter casts collaborative control in a decision-

theoretic formulation. The formulation has several advantages: (1) human and robotic

observations can be combined in a consistent manner, (2) decisions can be made while

1Note that this is only one of many scenarios. Remote planetary exploration is an example where human
resources may potentially be cheaper.
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Figure 5.1: This chapter shows how humans and robots can cooperate in making platform
decisions by fusing perceptual information. Decisions are executed by the robot using its
actuators.

taking the uncertainty of the environment, the platforms, sensors, and human operators

into account, and (3) the circumstances under which human operators should be queried

can be determined using Value-Of-Information (VOI) theory. Unlike in many classical AA

systems (see [24]), the robot’s autonomy is not switched by the operator in the system

presented here. Instead, queries are triggered automatically by the level of uncertainty in

the robot’s belief. Another novelty is that operators enter perceptual information rather

than decisions to control robots. A detailed literature review is presented at the end of the

chapter.

The remainder of the chapter is organised as follows. Section 5.1 shows how a decision-

theoretic framework can address the questions of what queries to pose and when to pose

them – the mechanism the robot uses to relinquish full autonomy. Next, a generic architec-

ture is presented capable of incorporating multiple robots and multiple human operators.

Section 5.2 presents an influence diagram representation for a navigation task and demon-

strates how the robot-pull communication pattern works for this task. An experimental
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evaluation of the system in simulation and an extensive user study are presented in Sec-

tion 5.3. Related work is presented in Section 5.4 before Section 5.5 summarises.

5.1 Robots Query Humans

This section gives reasons why the proposed decision-theoretic framework is suitable for

cooperative human-robot decision making with humans acting as a resource to robots.

5.1.1 Query Types and Triggers

The types of queries robots should pose are well defined if humans are regarded as infor-

mation sources for the probabilistic representation of the environment and the platforms:

human operators are queried for observations which are subsequently incorporated into the

representation as evidence. The question arises under what circumstances they should be

queried. VOI theory as presented in Section 2.4.3 is able to answer this question while

satisfying the following requirements: only query for relevant information, pose queries in

a reasonable order, and most importantly, take the cost of obtaining evidence into account.

Querying operators can be seen as a robot-initiated shift to lower autonomy at run-time.

Whether an autonomy shift is triggered depends on the robot’s current probabilistic beliefs

and the cost parameter of Equation 2.16. For this chapter, the cost of obtaining evidence

from human operators is fixed prior to a mission. If the cost parameter value is high, the

robot relies more on its own perceptual capabilities, asks fewer questions, and is more au-

tonomous by definition. Setting the cost parameter can thus be seen as fixing the level of

autonomy. We define autonomy level as a mission-specific design parameter which deter-

mines the degree of autonomy the robot has for a given mission scenario. The parameter

should be set according to the constraints of the particular mission. An example of a mis-

sion constraint is the communication bandwidth. Section 5.3.1 proposes a methodology

for determining the autonomy level systematically by taking mission constraints into ac-

count. The terms autonomy level and cost (of obtaining evidence) are used interchangeably

throughout the rest of the chapter.
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Figure 5.2: Generic architecture for the robot-pull pattern. Rectangles are components
with provided and required interfaces shown as circles and semi-circles, respectively. Arrows
indicate information flow. The Representation component represents the robots’ internal
perception and decision models as shown in Figure 5.1.

5.1.2 Robot-Pull Architecture

Figure 5.2 shows a generic2 human-robot architecture for the robot-pull pattern. The

Representation component generates requests based on Equation 2.16 which are sent to

the RequestService. The RequestService acts as a query arbiter by relaying requests

to suitable human operators who are represented by user interfaces. Operators would

have signed up previously by specifying the Quality of Service (QoS) they can provide

such as their expertise and the sensor information type they have access to (e.g. laser scan,

camera image). When operators receive requests, they can submit observations via the

Belief interface3.

The architecture is able to handle many-to-many interactions. Multiple user interfaces

can be serviced by the RequestService. While Representation is shown as a single

component, it can represent a multi-robot system as mentioned in the following section.

5.1.3 Difficulties with Robot-Pull

Special considerations arise when robots request information from human operators [53]:

1. What if operators are not available or do not answer queries?

2. How are individual differences amongst operators handled?

3. How suitable is robot-pull for many-to-many interactions?

2i.e. not tied to a particular application/representation
3An example of a similar system is the Amazon Mechanical Turk [188] – an online marketplace to

distribute tasks humans perform better than computers.
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The contribution provided here is to address these questions using a decision-theoretic

framework which can provide the following answers:

1. Autonomy : a decision-theoretic framework can yield a decision at any time, i.e. the

system is always capable of operating fully autonomously. Questions are only triggered

if it is worthwile obtaining additional observations due to high uncertainty about a

relevant internal state. If no answers are received, the system remains capable of

acting rationally by selecting the best decision using Equation 2.11.

2. Uncertainty about operators: varying levels of user expertise are taken into account

because the robot needs to handle answers from experts and novices differently [53].

The level of user expertise is encoded as a probabilistic HSM as presented in previous

chapters. Mathematically there is no difference between a robotic and a human sensor

model, reinforcing the notion of humans and robots acting as peers.

3. Scalability : one concern with using a robot-pull pattern is its perceived inability to

scale to multi-robot systems [115]. Chapter 4 argued that truly scalable systems can

only be achieved if the representation is concerned solely with the environment, not the

robotic platforms themselves. This is feasible by decentralising the inference applied

to an environment representation. Scalability of cooperative decision making is not

experimentally demonstrated in this chapter and left for future work as discussed in

Section 6.2.2.

5.2 Representation for Navigation

This section introduces the representation used in the experiments presented in Section 5.3.

Unlike the representation presented in Chapter 4 which was solely concerned with the per-

ception of the environment, the model presented here is used to perceive both environment

and platform states as well as to make platform decisions. More specifically, it encodes a

robot’s low-level decision model to choose from a discrete set of actuator commands for a

simple navigation application.

Figure 5.3 shows the decision model encoded as an ID. Many well-researched methods in

machine learning and knowledge engineering address the problem of how to construct such



5.2 Representation for Navigation 105

Commanded
Direction

DirectionTo
Obstacle

DistanceTo
Obstacle

Obstacle
Type

Safe
Direction

Safe
Speed

SafDir
Nov

SafDir
Exp

SafSpd
Nov

SafSpd
Exp

ObsTyp
Nov

ObsTyp
Exp

Direction Speed

Utility
Direction

Utility
Speed

Figure 5.3: Influence Diagram (ID) representation for a navigation task. Ovals are chance
nodes, squares are decision nodes, and diamonds are utility nodes. Grey nodes represent in-
formation sources: dark grey nodes are observed by the robot, light grey nodes are observed
by the human.

Name Type States Discretisation
CommandedDirection robot-obs. left, straight, right [−180,−10]; (−10, 10); [10, 180]deg
DirectionToObstacle robot-obs. left, straight, right [−60,−10]; (−10, 10); [10, 60]deg
DistanceToObstacle robot-obs. very close, close, far [0.0, 0.2]; (0.2, 1.5); [1.5,∞)m
ObstacleType latent non-trav., trav.
ObsTypNov human-obs. non-trav., trav.
ObsTypExp human-obs. non-trav., trav.
SafeDirection latent left, straight, right
SafDirNov human-obs. left, straight, right
SafDirExp human-obs. left, straight, right
SafeSpeed latent stop, slow, fast
SafSpdNov human-obs. stop, slow, fast
SafSpdExp human-obs. stop, slow, fast
Speed decision stop, slow, fast
Direction decision left, straight, right
UtilityDirection utility
UtilitySpeed utility

Table 5.1: Details of the ID representation shown in Figure 5.3: chance nodes are listed
first, followed by decision and utility nodes.

a representation as described in Chapter 2. It is not the focus of this work, and therefore

both the structure and the parameters are handcrafted here. All nodes are discrete as

summarised in Table 5.1 and therefore the probability distributions and utility functions

are represented as tables.
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At robot run-time, the model is instantiated at each time instance without taking priors into

account, i.e. no filtering is performed and inference is static. Two decisions need to be made

at each time instance in the following order4: in which direction to move (decision node

Direction), and with what speed (decision node Speed). The following section discusses how

these decisions are made.

5.2.1 Making Decisions

Robot-observable nodes are shown in dark grey in Figure 5.3. The robot is assumed to have

two on-board sensors: a laser scanner and a camera. Information provided by the camera

is not processed: reliable interpretation of images remains a difficult research problem [37].

Instead, obstacle states are extracted from the current laser scan serving as evidence for

DirectionToObstacle and DistanceToObstacle representing the direction and distance to

the closest obstacle (if any). The robot also receives a desired direction (e.g. towards a

waypoint) which serves as evidence for the CommandedDirection node.

After having incorporated all evidence from robotic sensors, the first decision the robot has

to make is which direction to move. Alternatively, the robot can query a human operator

for more information first. Human-observable nodes are shown in light grey in Figure 5.3

and represent potential candidates for obtaining more information. The robot computes

the VOI for all human-observable nodes using Equation 2.15. When a human observation

is received, it is incorporated into the representation as additional evidence. Finally, a

direction is selected using Equation 2.11. The procedure is then repeated for the Speed

decision. Table 5.2 shows an example of how the two decisions can be mapped to actuator

commands for a differential drive robot.

5.2.2 Human Sensor Models

Human-observable nodes are children of the latent (unobserved) variables ObstacleType,

SafeDirection, and SafeSpeed. These nodes are considered higher-level in terms of abstrac-

tion and are easily understood by humans. ObstacleType encodes whether an obstacle is

4The order is set arbitrarily here and could be reversed. An ID requires a directed path between decision
nodes (see Section 2.4).
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Turnrate LateralVelocity
Speed Direction

left straight right

stop 0deg/s 0deg/s 0deg/s 0m/s
slow 10deg/s 0deg/s −10deg/s 0.4m/s
fast 20deg/s 0deg/s −20deg/s 0.8m/s

Table 5.2: Mapping from actions (Speed & Direction) to actuator commands (Turnrate &
LateralVelocity) for a differential drive robot. The listed values were used in the experiments
presented in Section 5.3.

pushable or not which is assumed to be a challenging task using robotic perception. SafeDi-

rection and SafeSpeed encode the direction and the speed which are currently safest.

Two types of human-observable nodes (novice/expert) are used to represent the different

levels of uncertainty in the operators’ answers: in plain terms, how much the answers can

be trusted. As in previous chapters, the CPDs of human-observable nodes are called HSMs.

HSMs are important for the VOI analysis: the more an answer can be trusted, the more

valuable it is.

An example is visualised in Figure 5.4: the robot is in a “critical” situation because there

is an obstacle close to its right which is also the direction it is commanded to move (Fig-

ure 5.4(a)). The VOI analysis for this situation is pictured in Figure 5.4(b) showing the

VOI for all six human-observable nodes. The figure shows that information from an ex-

pert is more valuable than from a novice. A more detailed VOI analysis is presented in

Appendix B.1.

The horizontal line in Figure 5.4(b) shows the (arbitrarily set) cost of obtaining information.

In this scenario, two bars exceed the cost: ObsTypExp and SafSpdExp, i.e. Equation 2.16 is

fulfilled for these two information sources. Thus, the robot would consult an expert about

the type of obstacle which is the most valuable observation it can possibly obtain for this

scenario. Section 5.3.1 will present an experimental methodology for finding an appropriate

cost parameter.

5.2.3 Sensor Information Type

The previous section discussed how the framework incorporates different levels of operator

expertise. Operators specify their expertise when signing up with the RequestService
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Figure 5.4: Robot in a “critical” situation: (a) it detected a close obstacle to its right which
is also the direction it is supposed to move (blue marker points towards next waypoint, red
arrows indicate current speed and turnrate); (b) VOI analysis for this situation showing
the VOI for all human-observable nodes. The horizontal line represents the (arbitrarily set)
cost of consulting a human operator.

as described previously in Section 5.1.2. The second QoS property specified at signup time

is the available sensor information type. In our experiments, humans may have access to

the laser scan and/or the camera image which are relayed to the operators using a high-

frequency robot-push pattern. If only a laser scan is available (e.g. due to bandwidth

constraints), the obstacle type (pushable or not) cannot be observed. For the scenario

visualised in Figure 5.4, a question about the safe speed (SafSpdExp – second highest bar)

would be relayed to the operator.
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5.3 Experiments

Two experiments are conducted to evaluate cooperative human-robot decision making. The

objectives of the first experiment are (a) to measure the overall effectiveness of the human-

robot team as a function of the autonomy level5, and (b) to find an appropriate autonomy

level for a mission with given constraints, e.g. available communication bandwidth.

The results of the first experiment are used as a guide to set the autonomy level for the

second experiment which is a user study. The user study has three objectives: (a) to

compare the proposed system to conventional teleoperation with respect to performance,

operator workload, usability, and users’ perception of the robot, (b) to investigate the influ-

ence of expertise and available sensor information on performance, and (c) to demonstrate

performance variability for teleoperation.

5.3.1 Measuring Team Effectiveness

This section presents a methodology to measure the effectiveness of a human-robot team as

a function of the autonomy level. The ultimate objective is to find an appropriate autonomy

level prior to the deployment of the team as part of a mission. The autonomy level acts

as a design parameter which determines under what circumstances the system adjusts its

autonomy online. The methodology is general and may be applicable to other human-robot

systems in which robot performance can be measured.

Two metrics are used to measure the effectiveness of the human-robot team as a function

of the autonomy level: the performance of the robot, and the number of operator queries

required to achieve that performance. It is assumed that robot performance increases with

more human input. In order to find an appropriate autonomy level, two competing goals

need to be traded off: maximising robot performance while minimising human input.

The relative importance of the two goals is dictated by the priorities and the constraints of

the mission. Examples for mission priorities are safety and efficiency, examples for mission

constraints are the number of humans and robots available and communication bandwidth.

To incorporate mission priorities and constraints, the two metrics mentioned above are

weighted accordingly and summed up into a single scalar. The scalar can be interpreted as

5The term autonomy level was defined in Section 5.1.1
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a mission-specific measure of human-robot team effectiveness. The measure can be used to

find the appropriate autonomy level for a given mission.

The methodology described above is split into 5 steps which are subsequently applied to

the navigation task presented in Section 5.2:

1. Identify robot performance metrics for a given task (here: navigation).

2. Experimentally obtain robot performance values and number of human-robot inter-

actions as a function of the autonomy level.

3. Identify the constraints of the mission such as available resources (e.g. number of

humans and robots, communication bandwidth), and mission priorities (e.g. safety,

efficiency).

4. Combine robot performance metrics and number of human-robot interactions into a

scalar called team effectiveness using a weighted sum. Weights are chosen based on

the constraints found in the previous step.

5. Select the autonomy level with the highest team effectiveness value for the mission.

Performance Metrics (Step 1) Two robot performance metrics are used here: the

number of successfully completed navigation tasks and the time to complete each (success-

ful) task. The two metrics are proposed in [165] to measure effectiveness and efficiency of

a navigation task.

Experiment (Step 2) To obtain a statistically relevant dataset, the following approach

is taken. Human answers are simulated by running a software component which generates

better informed observations than the robot is able to produce. This is achieved by restrict-

ing the robot’s laser scan to a field of view of only 40 ◦ but allowing the simulated human

access to a 120 ◦ scan.

We argue that this is a valid approach since humans can often extract more information from

the same sensor data than robots by applying their rich perceptual capabilities. Humans

can also apply background information not available to today’s robots. For the purpose of

this experiment, human and robot capabilities are artificially reduced.
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Figure 5.5: Software architecture of the simulated human experiment. Boxes are com-
ponents with provided (circles) and required (semi-circles) interfaces. LocalNav40 and
LocalNav120 are identical algorithmically: they both use the decision model shown in
Figure 5.3 but differ in the amount of sensor information used to compute their decisions.
The field of view of the laser scan is 40 and 120 degrees, respectively.

Figure 5.5 shows the software architecture used in this experiment. Aside from the differ-

ent fields of view of the laser, LocalNav120 and LocalNav40 are identical navigation

algorithms using the influence diagram representation as described in Section 5.2. Local-

Nav40 controls the robot based on a 40 ◦ laser scan plus the human observations entering

through the Belief interface.

The simulated human acts as an expert who, whenever requested, is able to produce SafDir-

Exp and SafSpdExp observations by using information from the LocalNav120 component.

These two variables correspond to the 5th and 6th bar in Figure 5.4(b).

The experiment is conducted using 10 environments of size 64m × 16m with randomly

generated fixed obstacles as shown in Figure 5.6. The robot is placed near the centre on the

far left of the world and a goal waypoint is generated near the centre on the far right (with

some randomness). An episode is declared successful if the robot manages to position itself

within 1m of the goal before a timeout of 120s occurs. Timeouts occur if the robot hits an

obstacle and as a result gets stuck.
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Figure 5.6: Ten environments of size 64m × 16m with randomly generated obstacles.

The evaluation uses 6 cost parameters which are uniformly distributed over the range of pos-

sible VOI values. Each of the 10 environments is traversed 5 times resulting in a dataset of

size 300. The experiment ran continuously for a total of 8.7 hours. The software components

shown in Figure 5.2 were implemented and deployed using the Orca software framework [21].

Results of the experiment are presented next. Figure 5.7 shows the success rate and the

completion time as a function of the cost parameter. The success rate drops off with

increasing autonomy (fewer queries). At cost 0, when the simulated human is queried

continuously, all 50 episodes are successful. At cost 50 the robot is autonomous at all times

(no queries) and completes the course successfully in only 18% of the cases, on average. To

summarise, the plot shows that robot performance increases if input from an expert can be

obtained.

The completion time is only measured for successful episodes, i.e. when the robot did not

hit an obstacle. Completion time is highest for cost 0 when the simulated human is queried

continuously. This is expected since the robot carefully avoids all obstacles. The high

variance at cost 0 is also expected since more time is needed to navigate in more difficult

environments.

At higher autonomy, the robot takes less time to reach its goal which seems surprising

at first. However, the number of successful episodes decreases as shown above, and only

environments with few obstacles along the centre are traversed successfully as shown in
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Figure 5.7: Team effectiveness metrics ((a),(b) robot performance; (c) number of interac-
tions) as functions of cost, obtained experimentally. Variance in results is due to the varying
difficulty levels of the environments. Error bars indicate one standard deviation.

Fig 5.8. The robot is faster if it does not hit an obstacle because it steers “blindly” towards

its goal without spending time to avoid obstacles.

Finally, Figure 5.7(c) shows the number of operator queries per second as a function of the

cost. The number of queries decreases gently first, then drops off steeply and finally goes

to 0 which represents fully autonomous operation. The steep drop-off can be explained by

the coarse representation used in this experiment: obstacles are either far, close, or very

close. Situations in which obstacles are far away are much more numerous than situations

in which they are close. At cost 30, the robot queries the human even in relatively safe

situations when obstacles are far resulting in many more queries than at cost 40.
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Figure 5.8: Success rates for the different environments. Environment 2 is particularly
easy to traverse because there are few obstacles along the centre (compare to Figure 5.6).
Variance in results is due to the varying cost parameter. Error bars indicate one standard
deviation.

Even at high costs, the number of queries is too high for a practical deployment with real

humans. Obstacle tracking and wall recognition algorithms can be used to avoid repeated

questions about the same obstacle (see Section 5.3.2). This functionality was turned off to

simplify the experiment without having an impact on the conclusions to be drawn. Using

obstacle tracking, the shape of the curves are expected to be similar while the number of

queries per second would be lower (i.e. only the scale of Figure 5.7(c) would change).

Identification of Constraints (Step 3) Three mission scenarios are presented as ex-

amples for step 3 of the proposed methodology:

1. Multiple operators, robot is expensive: this scenario reflects the remote operation

of an expensive robot, e.g. in a search and rescue mission. We assume the robot’s

environment is inaccessible to humans, so operators cannot physically intervene. It

is also assumed that many human operators can be contacted, experts as well as

non-experts, e.g. through a web application6.

2. Single operator, multiple robots: the second scenario assumes a single operator who

is in charge of multiple robots at the same time. It is assumed that the operator can

only attend to one robot at the time. The operator’s capacity is the limiting factor

here.
6Amazon’s Mechanical Turk [188], which is a similar system to the one presented here, was used in

September 2007 to search for a disappeared plane [189]. Within three days up to 50,000 people joined in
the effort (without success).
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3. Multiple operators, robot is expensive, limited communication bandwidth: this scenario

is similar to scenario 1 with the additional assumption of a limited communication

bandwidth. An example application is a remote planetary exploration mission.

Parameter Selection (Steps 4 & 5) Step 4 requires the combination of success rate,

completion time, and the number of queries into a single scalar which is called team effec-

tiveness. The combination is achieved by a weighted sum which is subsequently scaled to

a [0; 1] interval. The weights represent the relative importance of each variable and are set

according to the mission priorities and constraints identified in step 3.

For scenario 1, the completion time is of secondary importance but the robot could be

lost if it hits an obstacle. A weight ratio of 3 : 1 : 1 is manually chosen emphasising the

importance of success over completion time and number of queries. Figure 5.9(a) shows the

team effectiveness for all cost parameters. The highest team effectiveness is achieved by

setting the cost parameter to 0.

For scenario 2, the weight ratio is chosen to be 1 : 1 : 3, reflecting the importance of

minimising the number of queries and thus the operator workload. The cost parameter

with highest team effectiveness is 50 for this case as shown in Figure 5.9(b). Selecting this

parameter implies the acceptance of a performance loss.

For scenario 3, the weight ratio is 3 : 1 : 1.5 which is similar to scenario 1 but penalises

human queries more to avoid excessive communication. Figure 5.9(c) shows the result: the

highest team effectiveness is achieved when cost 40 is selected.

Conclusion The experiment demonstrates that robot performance increases with human

input, i.e. the less autonomy the better the performance. The autonomy level is a design

parameter which determines under what circumstances the robot adjusts its autonomy

online. In our system, the autonomy level is represented by the cost of obtaining information

from the human operator. A methodology has been followed to find an appropriate cost

parameter based on quantitative results for robot performance and the number of operator

queries.

The results from this experiment act as a guide to set the cost parameter for the user study

experiment which is presented next. The scenario for the user study is to let a single human
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(c) Weight ratio 3 : 1 : 1.5

Figure 5.9: Team effectiveness graphs generated by weighted sums of 3 variables (success
rate, completion time, number of queries). Team effectiveness values are scaled to [0; 1]. The
most appropriate autonomy level is found by selecting the cost where team effectiveness is 1
(indicated by the red markers). Three mission scenarios are shown: (a) multiple operators,
robot is expensive; (b) single operator, multiple robots; (c) similar to (a) but penalising
excessive communication.

interact with a single remote robot. However, the team effectiveness graphs presented above

cannot be applied directly because there are two differences in the experimental setup: (1)

the robot uses the full 120 ◦ scan in the user study, and (2) besides speed and direction,

humans are also queried to specify the obstacle type.

5.3.2 User Study

A user study was conducted to compare the robot-pull system to manual teleoperation (sim-

ple human-push). Teleoperation is a well-understood research area and especially useful in

unstructured environments, e.g. in search and rescue scenarios [91]. Well-known limitations
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of teleoperation are high operator workload and scalability [83]. Other problems of teleop-

eration are the dependence on the user’s skills and the sensor information available to the

user. Typically, users need to be trained experts to be capable of teleoperating a robot. In

contrast, the robot-pull system poses simple questions that can be answered using common

sense.

Based on this discussion, three objectives were identified for this user study: (a) to compare

the proposed system to conventional teleoperation with respect to performance, operator

workload, usability, and users’ perception of the robot, (b) to investigate the influence of

expertise and available sensor information on performance, and (c) to demonstrate perfor-

mance variability for teleoperation.

For the user study, the cost parameter was fixed a priori based on the results of Section 5.3.1.

Wall and obstacle tracking was turned on to avoid repeated queries related to the same

obstacle. To simplify technical terms for participants, the robot-pull system was referred

to as “dialog” here.

Experimental Design Two groups of participants, experts and novices, were employed

for the experiment: 22 participants (13 male, 9 female) with an average age of 30.7 (oldest

48, youngest 23) were recruited. The expert group consisted of 10 post-graduate or post-doc

researchers from our robotics lab. None of them was familiar with the dialog system or had

any prior information concerning the purpose of the study.

The novice group consisted of 12 participants who had no prior experience with mobile

robots. All but one of the participants in the novice group were holding a university degree

while none had an engineering background. Privacy was maintained by using anonymous

user names for each participant.

The task was to navigate a robot through the maze shown in Figure 5.10. Participants

received written instructions “to get the robot to its goal as quickly as possible while

making sure it is safe”. The full set of instructions can be found in Appendix B.3.

The experiment followed a within-subjects design: all participants operated the robot us-

ing four different modes which represent the experimental conditions. The modes were

generated by varying driving style and information type which are explained next.
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Figure 5.10: Left: global view of the maze in 3d including walls, columns, and spheres.
Robot is equipped with an onboard laser (scan is shown in blue) and a camera. Right:
robot’s camera image.

Available driving styles were teleoperation and dialog. In teleoperation, participants oper-

ated the robot manually using a joystick, while the robot acted semi-autonomously in the

dialog modes as described in Section 5.2. In the dialog modes, the interactions between

operator and robot were limited to an occasional query posed by the robot7. If no answer

had been received within 30 seconds, the robot made a decision without human input.

Information type relates to the sensor information relayed to the operator: either the laser

scan only, or the laser scan and a camera image (participants did not have access to the

global view).

The four modes are summarised in Table 5.3 with the corresponding user interfaces shown

in Figure 5.11. The red line is the robot’s noisy laser scan, the solid blue bar indicates the

direction to the next waypoint in the robot’s coordinate frame, and the red arrows give

feedback about the current speed and turnrate, respectively. In the dialog modes (second

column), the robot poses questions which show up as multiple-choice dialog boxes.

In order to measure workload, a secondary task was introduced which is common practice in

human-machine interaction studies [35][30]. Participants were asked to add 2-digit numbers

if and only if they had spare capacity to do so. A Graphical User Interface (GUI) was

7Appendix B.1 presents a VOI analysis for a typical robot path through the maze
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Information type Driving style
Teleoperation Dialog

Laser teleop/laser dialog/laser
Laser & camera teleop/camera dialog/camera

Table 5.3: The four experimental modes.

(a) Teleop/laser (b) Dialog/laser

(c) Teleop/camera (d) Dialog/camera

Figure 5.11: User interfaces for the four experimental modes.

designed displaying four multiple choice answers as shown in Figure 5.12. Answers could

be entered using the buttons on the joystick (teleoperation modes) or by using the mouse

(dialog modes).

The experiment was conducted as follows. First, participants completed a pre-experiment

questionnaire designed to gather demographic data and assess the participants’ driving

skills. After reading a set of instructions, teleoperation of the robot in the maze was

practised for about 1 minute. After that, the experiment started with one of the four

modes. To account for learning effects, the order of testing was counterbalanced.
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Figure 5.12: GUI to measure workload (secondary task).

Figure 5.13: Global view of the maze in 2d: occupancy grid map of the columns and walls,
robot with its laser scan, and waypoints (red circles).

The experimenter, who had access to the global view on a separate computer screen (Fig-

ure 5.13), monitored the progress of the experiment and noted the number of collisions.

Figure 5.14 shows the physical setup of the user study.

After each task was completed, participants were asked to fill in a post-task questionnaire

consisting of 7-point Likert scale test items (13 for teleoperation, 17 for dialog). After

all four tasks were completed, a post-experiment questionnaire was filled in, containing

six multiple choice questions and three free text sections. The overall procedure took the

average participant about 45 minutes.

All three questionnaires can be found in Appendix B.3.
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Figure 5.14: The physical setup of the user study: participants controlled the robot in
simulation using one of the interfaces shown in Figure 5.11, while the experimenter had
access to the global view shown in Figure 5.13.

Measures Measures used in this study were performance, workload, usability, and the

users’ perception of the robot. Measures of secondary importance were related to the dialog

modes only and are reported in Appendix B.2.

Performance was measured using two variables: number of collisions and time to complete

the task. For teleoperation, a collision was registered whenever the robot ran into an object

(in teleop/camera spheres did not count because they had been declared pushable). For

the dialog modes, collisions were situations in which the robot could not keep driving by

itself and needed to be freed by the experimenter. These situations occurred if partici-

pants answered inappropriately. In dialog/laser, collisions with spheres were also counted.

Completion time was the total time it took to reach the last waypoint.

Workload was measured by two means: (1) the number of maths problems correctly solved,

and (2) through introspection using the post-task questionnaire. Four statements were used

for the latter derived from the NASA Task Load IndeX (TLX) method [75]. Usability was

measured using five statements in the post-task questionnaire which were adapted to a

navigation task from [19].
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Remaining measures were related to the users’ perception of their relationship to the robot in

the different modes, namely safety, trust, intelligence, and partnership. They were assessed

using the questionnaires.

Hypotheses Based on the objectives listed in the introduction to Sec. 5.3.2, the following

experimental hypotheses were tested:

1. Performance-related hypotheses:

(a) Dialog modes will be superior to teleoperation for both performance measures

(number of collision, completion time).

(b) Having access to camera images will result in better performance than having

access to a laser scan only.

(c) Experts will perform better than novices.

(d) Performance will be more variable in teleoperation than in dialog and will depend

on the available information type (laser/camera) and expertise (novice/expert).

(e) There is a positive correlation between teleoperation performance and users’ self-

reported driving skills.

2. Workload will be higher in teleoperation than in dialog.

3. Dialog modes will be more usable than teleoperation.

4. The robot will be perceived as safer, more trusted, more intelligent, and more peer-like

using dialog modes.

Results The experiment used a 2x2x2 factorial design with two within-subjects variables

(driving style, information type) and one between-subjects variable (expertise) [82]. The

data was analysed by applying a three-way repeated-measures ANOVA which enables test-

ing for the overall main effects of the three variables and their interactions. The level of

statistical significance was set at p = .05. Three conventional levels are used to report

results: {.05, .01, .001}. If measures had no physical unit, they were scaled to a range of 0.0

to 1.0.
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Measure Main effects Interactions
ds it ex ds × it ds × ex

collisions • • ◦ ◦ ◦
completion time ◦ • • • •
workload I •
workload II •
usability •
perception of robot •

Table 5.4: Summary of the statistical analysis showing all effects of interest. They were
tested for significance using a three-way repeated-measures ANOVA. A filled circle rep-
resents a statistically significant effect, an empty circle means no significance was found.
Independent variables were ds: driving style, it: information type, ex: expertise.

Measure Main effects Interactions
ds it ex ds × it ds × ex

F p F p F p F p F p

collisions 11.7 ∗∗ 6.9 ∗ 1.1 n.s. 2.8 n.s. 3.0 n.s.
completion time 0.3 n.s. 11.3 ∗∗ 13.1 ∗∗ 18.1 ∗∗∗ 7.3 ∗
workload I 63.8 ∗∗∗
workload II 8.2 ∗∗
usability 5.5 ∗
perception of robot 20.3 ∗∗∗

Table 5.5: Details of the statistical analysis (see Table 5.4): all statistically significant
results are shown using F [1, 20]. Three conventional significance levels are applied here:
p < {.05, .01, .001} represented by {∗, ∗∗, ∗∗∗} (n.s. means not significant). Independent
variables were ds: driving style, it: information type, ex: expertise.

Results of the statistical analysis relevant to the hypotheses listed above are summarised

in Tables 5.4 & 5.5. A mapping from the statistical tests to the hypotheses and figures is

given in Tables 5.6 & 5.7. A discussion of the results is presented below.

Results from the performance measures are presented first. Figure 5.15(a) shows the abso-

lute numbers of collisions for all participants in the four different modes. Most collisions

occurred in teleoperation, particularly teleop/laser which accumulated twice as many as

teleop/camera. As shown in Table 5.5 and visualised in Figure 5.15(b), dialog was a signifi-

cantly safer mode than teleoperation supporting hypothesis 1(a). Having a camera available

also resulted in significantly less collisions when compared to having access to a laser scan

only supporting hypothesis 1(b). No significant overall difference in the number of colli-

sions between experts and novice could be found. As shown in Figure 5.15(d), performance
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Measure Main effects Interactions
ds it ex ds × it ds × ex

collisions 1(a) 1(b) 1(c) 1(d) 1(d)
completion time 1(a) 1(b) 1(c) 1(d) 1(d)
workload I 2
workload II 2
usability 3
perception of robot 4

Table 5.6: Mapping of hypotheses to statistical analysis. Independent variables were ds:
driving style, it: information type, ex: expertise.

Measure Main effects Interactions
ds it ex ds × it ds × ex

collisions 5.15(a)&(b) 5.15(a)&(b) 5.15(a)&(b) 5.15(d) 5.15(e)
completion time 5.16(a) 5.16(a) 5.16(a) 5.16(c) 5.16(d)
workload I 5.17(a)
workload II 5.17(b)
usability 5.17(c)
perception of robot 5.18(a)–(d)

Table 5.7: Mapping of plots to statistical analysis. Independent variables were ds: driving
style, it: information type, ex: expertise.

differences between the two information types are greater for teleoperation than for dialog.

The same is true for the two expertise levels as shown in in Figure 5.15(e). However, these

interaction effects were not statistically significant.

Completion time results are shown in Figure 5.16. Overall, completion times for teleop-

eration and dialog were nearly identical contradicting hypothesis 1(a). Having access to a

camera yielded significantly faster completion times than having access to a laser scan only

supporting hypothesis 1(b). Experts completed the task significantly faster than novices.

As shown in Figures 5.16(c) & (d), completion time differed more in teleoperation than in

dialog modes. Significant interactions were found for both expertise and information type,

i.e. completion time is dependent on both variables. This finding supports hypothesis 1(d).

Hypothesis 1(e) is investigated next. As presented above, experts were significantly faster

than novices in completing the task but no significant difference between experts and novices

was found for the number of collisions. For teleoperation, performance may depend on

factors such as hand-eye coordination and driving experience as predicted by hypothesis

1(e). To investigate the relationship between users’ driving skills and their teleoperation
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Figure 5.15: User study results for first performance measure (number of collisions). Modes
are tl: teleop/laser, tc: teleop/camera, dl: dialog/laser, dc: dialog/camera. Independent
variables were ds: driving style, it: information type, ex: expertise.

performance, a correlational analysis was conducted. Driving skills were assessed using

data from the pre-experiment questionnaire: experience in car driving, computer use, video

games, and remote driving as well as hand-eye coordination and navigation skills (see Ap-
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Figure 5.16: User study results for second performance measure (completion time). Modes
were tl: teleop/laser, tc: teleop/camera, dl: dialog/laser, dc: dialog/camera. Independent
variables were ds: driving style, it: information type, ex: expertise.

pendix B.3). The data was scaled and a weighted sum was computed with a weight ratio

of 1 : 1 : 2 : 2 : 10 : 10 with respect to the driving skill factors yielding a single score. A

similar method was used to obtain a single score for teleoperation performance: the number

of collisions and completion times were scaled and summed. A Spearman correlation was

computed yielding a statistically significant positive correlation between driving skills and

teleoperation performance confirming hypothesis 1(e) (r = +.58;n = 22; p < .01). As a

comparison, the correlation between expertise and teleoperation was also significant but

slightly smaller (r = +.53;n = 22; p < .01).

Figures 5.15(c) & 5.16(b) show the performance plots when participants were grouped into

unskilled and skilled drivers rather than novices and experts. The median of the driving

skill score was used to divide participants into two equal-sized groups. A greater differ-
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ence between participants across all modes is evident in Figure 5.15(c) when compared to

Figure 5.15(b) where the groups were separated by expertise. The same is not true for com-

pletion times where driving skill level did little to differentiate performance (Figure 5.16(b))

compared to the novice/expert division (Figure 5.16(a)).

Results for the workload measures are presented next. Figure 5.17(a) shows the number

of correctly solved maths questions per minute which is a measure of spare capacity, and

thus workload. Workload was significantly higher for teleoperation modes than for dialog

modes as shown in Table 5.5. The difference between teleop/laser and teleop/camera was

small for the novice group. This seems surprising given that the camera view provides

a larger sensor range than the laser. However, as indicated by seven participants in the

free text section of the post-experiment questionnaire, having the camera and the laser led

to information overload. Experts seemed to cope better with the overload than novices.

The slight decrease in number of correct answers from experts in dialog/camera can be

explained as follows: after answering the robot’s question, experts would often watch the

robot’s actions as a result of their answers rather than going back to solving math problems

(observed subjectively by the experimenter).

An alternative workload measure was obtained through introspection using four Likert-scale

statements which were summarised into a single score (Figure 5.17(b)). The results agreed

with above: workload was perceived higher for teleoperation than for dialog as shown in

Table 5.5. Based on these results, hypothesis 2 was validated.

Similar to workload, usability was measured by averaging results of five Likert-scale state-

ments. Dialog modes were perceived as more usable than teleoperation modes as shown in

Figure 5.17(c) and Table 5.5. Hypothesis 3 was therefore also validated.

The users’ perception of the robot with respect to safety, trust, intelligence, and part-

nership were measured using single Likert statements in the post-task questionnaire (see

Figure 5.18). As before, the four measures were summarised into a single score for the

statistical analysis. The robot was perceived significantly safer, more intelligent, more

trustworthy and peer-like in the dialog modes compared to the teleoperation modes. Three

out of the four measures were also evaluated using the post-experiment questionnaire (mul-

tiple choice, nominal data). Figure 5.19 shows the relevant plots while Table 5.8 summarises

the statistical results using a Sign test to compare teleoperation to dialog. Based on these

results, hypothesis 4 was validated.
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(a) Spare capacity: secondary task (b) Workload: self-reported
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(c) Usability: self-reported

Figure 5.17: User study results for workload and usability. Modes were tl: teleop/laser, tc:
teleop/camera, dl: dialog/laser, dc: dialog/camera.

Measure Post-experiment (Sign test)

Safety N = 22;x = 6; p < .05
Trust N = 22;x = 6; p < .05
Intelligence N = 22;x = 1; p < .001

Table 5.8: Users’ perception of robot evaluated using data from the post-experiment ques-
tionnaire. A one-tailed Sign test was applied.

Discussion The experimental results show that performance using classical teleoperation

is highly dependent on the operators’ expertise, their driving skills, and the available in-

formation type. Similar results are reported in [117]. In contrast, performance results are

more consistent when using the dialog system to operate the robot.

More collisions occurred in teleoperation than in dialog modes. However, the experiment

also showed that completion time varies with expertise and the information type available
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(c) Partnership (d) Intelligence

Figure 5.18: User study results for users’ perception of the robot. Modes were tl:
teleop/laser, tc: teleop/camera, dl: dialog/laser, dc: dialog/camera.

to the operator. For example, the average expert completed the course 35s faster using

teleoperation than using dialog. Thus, a tradeoff exists between safety and timeliness when

an appropriate driving mode needs to be selected. A procedure to find an appropriate

driving mode is presented next.

The two performance metrics (safety and timeliness) can be combined into a scalar utility

using a weighted sum. Figure 5.20 shows plots of the utility function for different weight

ratios which reflect the relative importance of timeliness and safety. Utility is scaled from

0 to 1. The most appropriate driving mode can be found by selecting the mode where the

utility is 1.

If safety and timeliness are equally important, the preferred driving mode is dialog/camera

for novices and teleop/camera for experts as shown in Figure 5.20(a). If safety is twice as
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Figure 5.19: Results from the post-experiment questionnaire. Modes were tl: teleop/laser,
tc: teleop/camera, dl: dialog/laser, dc: dialog/camera.

important as timeliness, the results are the same (Figure 5.20(b)). However, if safety is 100

times more important, an expert should switch to dialog/laser as shown in Figure 5.20(c).

If timeliness is twice as important as safety, novices should use dialog/camera whereas

experts should use teleop/camera as shown in Figure 5.20(d). If collisions do not matter

(Figure 5.20(e)), even the novice should use teleop/camera.

Workload results are discussed next. Operator workload was significantly lower for dialog

modes than for teleoperation. This result has consequences for the scalability of a system:

one human can operate multiple robots simultaneously. The allocation between robots

and a human does not have to be fixed using dialog. It is possible to shift responsibilities

dynamically in teams involving multiple robots and multiple humans. An experimental
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(b) Weight ratio 1 : 2 (c) Weight ratio 1 : 100
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(d) Weight ratio 2 : 1 (e) Weight ratio 100 : 1

Figure 5.20: Utility functions to choose an appropriate driving mode. Weights reflect the rel-
ative importance of time and safety: (a) equally important; (b)–(c) safety more important;
(d)–(e) time more important. The driving modes are tl: teleop/laser, tc: teleop/camera,
dl: dialog/laser, dc: dialog/camera.
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demonstration of many-to-many interactions is part of future work as discussed in Sec-

tion 6.2.2.

Finally, usability and the users’ perception of the robot are discussed. Using dialog instead

of teleoperation to drive a robot was perceived to be a more usable interaction mode.

Users attributed properties such as safety, trust, and intelligence to the robot while also

acknowledging the robot as a peer. These factors may contribute to more effective human-

robot cooperation in human-robot team settings.

Conclusion Based on the discussion above, the following conclusions are reached. The

proposed dialog system has four advantages over teleoperation for a navigation task:

• Task performance does not depend as much on the background and driving skills of

the human operator.

• Task performance does not depend as much on the type of sensor information available

to the operator.

• Low workload leads to the potential of scaling up to large human-robot teams.

• Dialog modes are more usable and more appropriate for peer-to-peer human-robot

interaction.

Despite these advantages, teleoperation may still be a preferable driving mode for a given

mission. The dependency between mission priorities such as safety and timeliness and the

appropriate driving mode was demonstrated above.

5.4 Related Work

5.4.1 Control Fusion

The material presented in this chapter can be seen as a particular solution to the general con-

trol fusion problem [64]: how to combine input from multiple sources to control a common

resource. For the case where the common resource is a mobile robot, several behaviour-

based architectures have been proposed such as Subsumption [22], Motor Schemas [4], and
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DAMN [145]. The integration of human input into these systems can be achieved by letting

operators add or alter behaviours for instance [3]. Other methods include averaging over

motion vectors [64], and employing voting methods [65][63].

In contrast to the behaviour-based methods mentioned above, this work employs a purely

deliberative architecture. Rather than arbitrating multiple commands, perceptual input

from humans and robots is fused using a probabilistic model, and decisions are made ac-

cording to the model’s beliefs and utility functions.

5.4.2 Comparison to Collaborative Control

Work presented in this chapter is closely related to Fong’s Collaborative Control which,

like our approach, treats humans as a resource to robots [53]. Bidirectional communication

in the form of human-robot dialog is used to exchange information of different types such

as commands, queries and responses. He classifies his system as a form of teleoperation

which compensates for the limitations of the conventional approaches by integrating human

expertise, typically into the control loop. However, it is also anticipated that operators

can close perception loops, cognition loops or combinations of the above. The systems has

been experimentally evaluated with user studies for both single robot [55] and multi-robot

scenarios [54].

There are many parallels to our view of cooperative decision making: robots are treated as

peers, and perception loops are closed by posing queries. The main difference is the chosen

approach: while Fong uses no specific underlying mathematical method, the problem of

collaborative control is cast in a decision-theoretic formulation here. The probabilistic

representation lies at the heart of the approach from which many of the issues of human-

robot communication can be derived. This approach is contrasted with Fong’s below.

Dialog management The type of queries, how to trigger them, who and in what order

to ask, are well-defined using a decision-theoretic representation. Fong, in contrast, uses

a number of hand-crafted questions. While both approaches require a designer, it can

be argued that a decision-theoretic method is more general. The problem of finding a

suitable representation remains; however, existing robotics representations can be reused

by extending them with human-observable states.
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Autonomy A decision-theoretic framework yields a decision at any given time, i.e. the

system is always capable to operate fully autonomously by choosing the best action. This

self-reliance is a prerequisite for building collaborative control systems as Fong points out

in [53]: if no answer is available the robot should proceed regardless.

Authority Relationship Since everything about the world and the platforms is encoded

in the underlying representation, there is no explicit distinction between humans and robots

in our framework. This is an interesting outcome of the formulation which emphasises the

concept of humans and robots acting as peers. This criteria does not apply to Fong’s work

since no underlying mathematical model is used.

Operator Uncertainty Similar to us, Fong employs stereotype user profiles, namely

novice, scientist, and expert. Each profile has a fixed level of three user attributes: re-

sponse accuracy, expertise level, and query interval. The approach of this work is to use

probabilistic HSMs to encode accuracy and expertise, and thus treat human input the same

way as robotic sensor readings. The benefits of this approach were presented in detail in

Section 3.2.

Human Attention and Delays One of the results of Fong’s user studies is that “human

assistance is a limited resource that must be carefully managed” [55]. His query arbitration

mechanism ranks queries with respect to priority and expiration. Expiration times are

included in the transmitted messages which the query manager uses to sort the queue. In

the approach presented here, the cost for human attention is handled explicitly by VOI

theory. While time-outs are handled in a similar way to Fong, expected time delays are not

taken into consideration yet. Time delays can be incorporated into the VOI calculation as

discussed in Section 6.2.2.

Human-Pull Fong also considers questions originating from operators and addressed to

the robot. He hand-crafted a number of questions which operators did not use often dur-

ing the user studies [55][54]. As is the case for robot-pull, the type of questions to ask is

well-defined in our system because all relevant information is encoded in the probabilistic
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representation. Operators can query the robot’s belief at any time for monitoring pur-

poses. Beliefs include uncertainty and relaying this information to operators can contribute

significantly to enhance Situation Awareness (SA) [49].

System Evaluation Fong evaluates his system from an engineering point of view fo-

cussing on qualitative measures to improve system design and usability [55]. The quanti-

tative evaluation method presented in Section 5.3.1 aimed at measuring team effectiveness

to find an appropriate autonomy level. The proposed method is only applicable if a math-

ematical representation of the autonomy level exists – the cost of obtaining evidence in our

case.

5.4.3 Adjustable Autonomy

The fields of Adjustable Autonomy (AA) and Mixed Initiative Control aim at bridging

the gap between full human control and full autonomy [67][23][117][150]. The fundamental

questions in these fields are how to decide when to relinquish control and on what criteria

to base that decision [149]. In many AA systems, the human operators are in charge of

switching between a set of predefined discrete modes which imposes a significant responsi-

bility on the operator as pointed out in [24]. In contrast, the approach advocated here is

to let the robot decide when to query operators for input based on the uncertainty in the

robot’s beliefs. This can be seen as a robot-initiated shift to lower autonomy at run-time.

How often this shift occurs depends on the previously set autonomy level which acts as a

design parameter.

Similar to us, Gunderson et al. believe that the degree of autonomy should be based on

the amount of uncertainty which includes sensor inaccuracies, action failures and exogenous

events [74]. They show in simulation that these three types of uncertainties have functional

correlations to plan success. If a plan cannot be completed successfully, the agent needs

to use external resources (e.g. humans) which can be accessed by adjusting its autonomy.

They do not, however, address the question of how to model uncertainty or how a request

for more information would be triggered.

Another approach addressing the problem of when to request help from human operators

is presented in [155]. Like in our system, requesting help is one of several possible com-

munication modes and is motivated by both the scarceness of the human resource and the
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requirement to integrate multiple robots. The decision of when to request help is computed

using a decision tree taking expected time delays and the likelihood of success into account.

The latter requires a model of the user which is another parallel to the work presented

here [154]. Unlike in the applications anticipated as part of this work, operators can ac-

tively participate in the task. The application they present is the large-scale assembly of

structures in a simulated space environment. In contrast, this work regards robots as the

sole decision-makers and humans are treated as a resource to robots.

A non-robotics AA system which uses probabilistic methods to decide when to switch control

is presented by Scerri et al. [149][150]. A set of Markov Decision Processes (MDPs) are

utilised to make autonomous decisions on behalf of users and query their input if necessary.

The application is a distributed software scheduler able to schedule meetings and order

meals. Scerri’s work specifically addresses the problems of making decisions and switching

autonomy when multiple agents have a common goal. Multiple robots having a common

objective has not been considered as part of this work. Scerri’s approach may be applied

in future work. For robotics applications, however, more uncertainties need to be taken

into account than MDPs can handle which suggests the use of Partially Observable Markov

Decision Processes (POMDPs) [20].

A fundamental difference between all classical AA (including Scerri’s work) and the ap-

proach presented in this chapter is the type of human input. Whereas classical AA systems

transfer decision-making control to humans [149], the system presented here queries humans

for observations and the decision making remains with the agent/robot. This exhibits true

peer-to-peer interaction since humans are not able to override the robots’ decisions.

5.4.4 Applications Using VOI

Using VOI theory to decide what information source to query is not new and has been

applied to a wide range of applications. A few examples are listed below. To the best

of the author’s knowledge, this work is the first to apply VOI theory to human-robot

communication.

An early work using VOI for planning a robot’s order of sensing actions is presented in [102].

The cost in this case was the time spent on the sensory action. In the sensor network field,

a trade-off between certainty of the estimated states and power consumption exists [101].
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Each sensor only has a limited power budget in this work and the goal is to find the most

informative subset of observations in the network. The research area of distributed sensor

management uses information value theory for problems such as sensor-target assignments,

sensor cueing or mode management [116][131]. Another problem in distributed systems is

to decide when to communicate information. This problem can be approached similarly

using the value of communication as a measure [39][12].

5.4.5 Human-Robot Interaction Metrics

A methodology for measuring the effectiveness of a human-robot team was presented in

Section 5.3.1. Others have addressed the problem of finding metrics to evaluate human-robot

systems more formally [32][165][133][143][5]. One of the goals of measuring the effectiveness

of a human-robot team is to enable the prediction of an appropriate number of robots

a user can effectively operate for a given task (“Fan-Out”) [133][32]. Another goal is to

compare different human-robot system configurations for a given task. An example is a

planetary exploration task where different options may exist to combine human and robotic

resources [143]. In contrast, effectiveness was measured here to determine an appropriate

autonomy level for an adjustable autonomy system.

Crandall et al. propose a set of general metric classes applicable to all parts of a human-

robot system: operators, individual robots, and the overall team [32]. The methodology

proposed in Section 5.3.1 falls in the metric class of Interaction Efficiency measuring, among

other things, how human input affects robot performance.

The simulation presented in Section 5.3.1 can be seen as a proof-of-concept method which

needs to be complemented by experiments employing “real” human subjects in the fu-

ture. For the anticipated experiments, additional metrics could be incorporated to mea-

sure human-robot team effectiveness. They include the Mean Time Between Interventions

(MTBI) and the Mean Time To Intervene (MTTI) as defined by Arnold [5], and metrics

related to the operators’ SA [195][153][43].
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5.5 Summary

This chapter demonstrated how human operators can contribute information to improve

robotic decision making. A probabilistic representation in the form of an influence diagram

lies at the heart of the approach. The representation is used to fuse observations from

sensors with observations from human operators. Operators are treated as an expensive

resource in this chapter which motivates the use of the robot-pull communication pattern:

robots decide when it is necessary to query operators, and thus, when to relinquish full

autonomy.

The questions of what queries to pose and when to pose them were addressed in Section 5.1.

It was argued that answers to these questions can be derived from the probabilistic rep-

resentation. Furthermore, it was shown how the representation can be used to overcome

difficulties specific to requesting information from operators.

An influence diagram for a mobile robot navigation task was introduced in Section 5.2. The

model was used to explain how cooperative human-robot decision making works in practice.

An experimental evaluation using the model was presented in Section 5.3. Two experiments

were conducted: (1) simulated human, and (2) a user study.

The simulated human experiment demonstrated that robot performance increases with more

human input. Better performance comes at the cost of a larger number of operator queries.

These two metrics were used to measure the overall effectiveness of the human-robot team

as a function of the autonomy level. Both metrics were summed and weighted into a

single scalar called team effectiveness. The weights were chosen manually according to the

constraints and priorities of a mission. Using three example scenarios, it was shown how

the team effectiveness measure can be used to find an appropriate autonomy level.

Results from the simulated human experiment were used as a guide to set the autonomy

level for the user study. The user study was conducted to compare the developed system

to a benchmark method of robot navigation – conventional teleoperation. Metrics were

performance, operator workload, usability, and users’ perception of the robot which were

measured both objectively and by self-report using questionnaires. The results showed that

the proposed robot-pull system has four advantages over teleoperation: (1) less performance

variability among operators, (2) less dependency on available sensor information, (3) lower

workload, (4) higher usability and potential for peer-to-peer interactions.



Chapter 6

Conclusions

This chapter starts by summarising the contents of this thesis in Section 6.1. Section 6.2

proceeds with discussing avenues for future research based on this work, and presents an-

ticipated real-world applications. Finally, Section 6.3 concludes.

6.1 Summary

Chapter 1 motivated the objective of this thesis: to investigate methods of combining the

perceptual abilities of humans and robots to cooperate effectively. It was argued that com-

munication is necessary if humans and robots are to solve a task together. The approach

to realise communication was outlined in general terms, and the focus of the thesis was

introduced, namely human-robot information fusion. Four relationship taxonomies based

on communication were introduced. Complemented by standard taxonomies from the lit-

erature, the full set of taxonomies was used to classify related human-robot systems. The

same set was applied to classify the contents of each chapter in this thesis.

Chapter 2 contained the background of probabilistic representations which was required to

present the rest of the document. Probabilistic robotics representations from the literature

were reviewed using the categories of perception, decision making, and planning. Arguments

were presented in favour of using graphical model representations such as Bayesian Networks

(BNs) and Influence Diagrams (IDs) for human-robot communication. An overview of these

representations and techniques for inference and learning was presented briefly. The chapter
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finished with a human-robot system graph showing an ID representation for human-robot

communication.

Chapter 3 proposed probabilistic data types such as likelihoods and posteriors for bidirec-

tional human-robot communication. From that point on, the main data flow was restricted

to human-to-robot which led to the concept of regarding humans as information sources or

high-level sensors. Arguments in favour for this concept were presented and submitting in-

formation was compared to providing actions. The differences between robotic and human

sensors were highlighted. It was shown how these differences can be incorporated using

the type of probabilistic representations introduced in Chapter 2. The approach to user

modelling taken in this thesis, namely Human Sensor Models (HSMs), was introduced next.

Limitations of the overall approach were also discussed. The experimental section of the

chapter demonstrated both the benefits and limitations of human-robot information fusion

in simulation, and presented a HSM for range observations built from real user data.

Chapter 4 presented an application of human-robot information fusion in the context of

scalable, fully decentralised information gathering in an outdoor environment. First, algo-

rithms for decentralised fusion were presented which impose constraints on the integration

of human operators into a decentralised system and hence the roles they can play. A shared

environment representation for geometric and visual feature properties was introduced. The

use of the shared representation for human-robot information fusion was particularly em-

phasised. The experimental section presented results from the deployment of a human-robot

team comprised of a UAV, a ground vehicle, and two human operators. Operators submitted

observations using the human-push communication pattern in the experiment. The main

results were presented as five information exchange patterns demonstrating human-robot

information fusion in a qualitative manner.

Chapter 5 added platform decision making to the representation. The same information

fusion mechanism as in previous chapters was used to combine human and robotics evi-

dence into probabilistic beliefs. In addition, the robot utilised its beliefs to make decisions.

Human operators were regarded as a sparse resource available to the robot in this chapter.

This motivated the usage of the robot-pull communication pattern to query operators for

information only when the expected value of their observation exceeded the cost of obtain-

ing it. The system can be viewed as an adjustable autonomy system whereby the robot

adjusts its autonomy at run-time based on the uncertainty of its beliefs. A navigation task
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was used to demonstrate the adjustable autonomy system. Two experiments were presented

using the navigation task: (1) a quantitative evaluation of human-robot team effectiveness

to determine an appropriate autonomy level, and (2) an extensive user study.

6.2 Future Work

Broadly, there are two areas which have a large potential for future research. The first one

is concerned with probabilistic modelling, the second one with human-robot dialog.

6.2.1 Probabilistic Modelling Issues

The potential of probabilistic representations for human-robot communication has not been

fully exploited yet in this thesis. Firstly, models were simplified which was required to keep

the work focussed on human-robot information fusion. Secondly, the main usage of the

models was online inference which assumed a fixed model structure and parameters. Both

points offer a potential for future work.

Advanced Models The visual model used in Chapter 4 consisted of two levels only. It is

desirable to demonstrate the usage of representations containing many levels of abstraction

and different time scales. An example of a good application for a multi-level model is given

in [109]. A person’s daily movement through the community is modelled and inferred using

GPS sensor measurements. An extension of that work could be to add observations from

human operators at higher levels, e.g. current transportation mode, to infer other states in

the model more accurately.

A different type of simplification was applied to the navigation model used in Chapter 5:

the robot’s decision model was static and only used the current state to make navigation

decisions. For higher-level decision making such as path planning, it is necessary to look

ahead, i.e. have the capability to plan into the future. Partially Observable Markov Decision

Processes (POMDPs) [20] are a suitable representation which may be utilised in future work

for human-robot information fusion.
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Learning from Human Observations The work in this thesis relied on building models

of the world by either offline learning (Chapter 4) or expert design (Chapter 5). Human and

robotic observations are fused online given the fixed model. As pointed out in Chapter 3,

this approach is limited: the model may have to adapt online and human input can help to

achieve this.

Supervised machine learning techniques are often applied offline with operators supplying

data labels. Using Bayesian techniques, it is also possible to adapt models at run-time

using incremental learning. Every human observation can be used to adjust the model’s

parameters. Operators may also be queried by the system to label data: the field of Active

Learning investigates what training data should be selected for labelling [27].

An application of this idea to a robotic navigation task is presented in [112]. A service robot

uses a POMDP model to plan and navigate through a populated indoor space in this work.

To achieve portability to new locations, the transition and observation model parameters

are adapted using a human-guided exploration phase. During this active learning phase,

operators are occasionally queried to confirm the robot’s most likely belief state.

The results of that work are encouraging to achieve the objective of lifelong learning [93]

where robots use all interactions with humans to constantly update their model. One

research question in this context is how to minimise the number of required operator queries.

Learning from Human Decisions The previous section anticipated online model adap-

tation using human perceptual input. This is in line with the rest of this work’s philosophical

stance of regarding humans as information sources. However, humans are also excellent de-

cision makers which is a capability more commonly exploited for human-robot collaboration,

e.g. in many adjustable autonomy systems. If the robot uses a decision-theoretic model to

make decisions, human input in form of actions can be used to improve the model.

Similar to active learning as presented in the previous section, operators can be queried for

actions while the system incrementally adjusts the decision model. Reinforcement learning

techniques have successfully been applied by some researchers, e.g. to update personalised

user models [149].

Another option is to sense the operators’ decisions passively, i.e. in a natural and non-

intrusive manner. An example application area is intelligent buildings where occupants
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switch lights manually [124]. Using this information, the system can continuously update

the preferred light switching strategies and become gradually smarter.

Generating Model Structure Using Human Input So far, online learning of model

parameters has been discussed as a direction for future research. Besides parameter values,

the structure of the model also needs to be specified. Typically, as done in this thesis,

a knowledge engineer designs the structure by incorporation of domain knowledge. As

intelligent systems gradually enter everyday life, it is desirable to be able to learn from

non-experts such as ordinary computer users. An example of integrating information from

multiple “noisy experts” to generate the structure of a BN is presented in [142].

The idea of exploiting knowledge from non-experts to design the model structure could be

applied to distributed robotic systems. Research is required to investigate how to translate

from a user-understandable abstraction layer to a graphical model structure. An example

application is a smart building where lights are switched according to people’s typical motion

paths. Users could specify typical routes of building occupants by drawing on a GUI

which displays the floor plan. This “meta-structure” could be combined with additional

background information and get translated into a BN structure.

6.2.2 Human-Robot Dialog

The human-robot information exchange investigated in this thesis has been limited to four

simple communication patterns as described in Section 1.3.2. The number of interactions

per exchange is either one (push patterns) or two (pull patterns: query & response). The

scope of this thesis was further restricted to human-to-robot data flow and the usage of

perceptual information to demonstrate human-robot information fusion.

Several extensions to the established communication framework are possible: usage of other

probabilistic data types, investigation of robot-to-human data flow, and ultimately the

establishment of a human-like dialog between humans and robots. The different directions

are discussed below.

Human as a Decision Maker This thesis regarded human operators as information

sources where information was defined as observations or likelihoods. Chapter 3 argued
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that information can be superior to actions, mainly for scalability reasons. However, other

probabilistic data types such as utility functions and policies may be utilised for robot

control as visualised in Figure 6.1. One avenue of research is to investigate how scalable

these methods are, i.e. how well a single user can operate multiple robots. Another research

question is how to combine human and robotic decisions on different control layers (“shared

control”) as addressed in [137].
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Figure 6.1: Human operator acting as a decision maker by submitting decision data such
as actions, utility functions, and policies. A research question is how many robots can be
operated simultaneously using these methods.

Robot-to-Human Data Flow The main data flow direction investigated in this thesis

has been human-to-robot. The reverse direction as indicated in Figure 6.2 affords opportuni-

ties for future research. Operators often require data transmitted by robots to comprehend

the current state of the world and the robotic platforms, e.g. in situations where operators

are remotely located and are responsible to make decisions. The research area of Situa-

tion Awareness (SA) deals with the problem of generating accurate mental models [49]. In

robotics, better mental models may be generated if humans have access to adequate abstrac-
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tions of the data stored in the robot’s representation. Translating probabilistic beliefs into

human-understandable forms is an interesting approach which needs further investigation.

Another objective of human-to-robot data flow is the enhancement of humans’ trust in

the autonomous system. Trust in automation is a well-researched topic in human-machine

interaction [48]. A novel contribution could be to let the robot explain its reasoning and

decision making to humans, e.g. through a request (human-pull). The research hypothesis

predicts a more accurate mental model which in turn, enhances humans’ trust in robots’

actions. One research question is how to translate between the mechanisms of probabilistic

inference and decision making and a human-understandable output. Different modalities

could be used to implement the output, e.g. graphical representations, speech, and text.
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Figure 6.2: Robot-to-human data flow to increase SA and humans’ trust in automation.
Beliefs and decisions can be visualised and explained to generate more accurate mental
models.

Advanced Dialog The ultimate objective for human-robot communication is to estab-

lish a more sophisticated human-like dialog between humans and robots. The following

difficulties need to be overcome when managing human-like dialog [108]: asynchronicity

(dialog events at overlapping time periods), mixed task initiative (robot or human can ini-
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tiate dialog), open-endedness (no clear start and end points for dialog), resource-binding

(actions must be produced in time to be effective dialog contributions), and simultaneous-

ness (actions may be produced and received at the same time). Future work will investigate

if probabilistic robotics representations can be used to develop sophisticated human-robot

dialog with the properties listed above.

User Models Simple probabilistic user models named Human Sensor Models (HSMs)

have been used throughout this thesis. As discussed in Section 3.6.3, more sophisticated

models are required if (1) the operators’ mental states become important, or (2) the indi-

viduality of operators needs to be modelled more accurately. The first condition becomes

true for more advanced dialog systems as presented above. Robots need to know what the

operators’ goals and intentions are (context) to establish a meaningful dialog.

The second condition becomes true if better resource allocation in a mixed human-robot

team needs to be achieved. For instance, the Requestservice in Chapter 5 could also take

current operator workload into account when querying operators for their observations. The

cost for obtaining observations from operators can be adapted online based on the current

belief of the users’ workload. A similar idea is presented in [80] where computer users are

alerted based on the belief of their current activity. The workload state could also be used

to predict the operators’ response time delays. Time delays are straight-forward to integrate

into the cost as part of VOI theory as shown in [179] and [196].

Adapting the cost online by considering operator workload and expected time delays would

result in a more intelligent adjustable autonomy system. The anticipated system would

adjust its autonomy online based on both the environment’s and the human operators’

states.

Scalability Chapter 4 argued that truly scalable systems can only be achieved if the rep-

resentation is concerned solely with the environment, not the robotic platforms themselves.

The feasibility of scalable human-robot interactions was demonstrated using decentralised

inference which was applied to an information gathering task.

Scalability has not been experimentally demonstrated for cooperative human-robot decision

making. However, the system presented in Chapter 5 was designed with scalability in mind.
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Two research directions are envisioned to realise scalability: firstly, apply decentralised in-

ference to tasks such as path planning and exploration where the shared representation is

concerned with the environment only. Secondly, for tasks where the representation contains

platform states, investigate to what extend other probabilistic data types such as utility

functions and policies are scalable. Experimental demonstrations involving multiple hu-

mans and robots will be conducted to measure scalability, e.g. through workload and task

performance.

End-to-End AA System The adjustable autonomy system presented in Chapter 5 was

concerned with a simple navigation task. It is desirable to build a more practical end-to-

end system whose architecture includes higher-level control layers, e.g. for path planning.

Operator queries should still be triggered by the robot to avoid the burden of having the

operator switch between a set of discrete autonomy modes [24]. In future work, a proba-

bilistic multi-layer decision model will be built (see [38]) with human-observable nodes at

every level – a straight-forward extension of the material presented in Chapter 5.

6.2.3 Real-World Applications

This section provides a brief discussion about potential real-world applications of the work

provided in this thesis and its extensions proposed above.

Reconnaissance & Crisis Management These two applications can be implemented

based on the material presented in Chapter 4. Information gathering may be carried out

semi-autonomously by UAVs, ground vehicles, sensor networks, and human operators who

either work in the field or remotely. Often, operators are decision makers as part of these

missions, so gaining SA is also an important issue.

Search And Rescue (SAR) & Fire Fighting SAR missions may be carried out by

UAVs and rescue staff, e.g. to search for lost targets at sea [17]. Rescue staff may contribute

information which is fused with sensor data to change the shape of the probability distri-

bution of the target’s location. The probability distribution is used to optimise the search

strategy the UAVs employ.
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To be able to predict bush fires, various mathematical models of fire spread have been de-

veloped [169]. Among them are probabilistic approaches which may be utilised or extended

for human-robot information fusion. Fire fighters could enter higher-level information based

on their experience which propagates to lower levels to predict routes the fire is likely to

take.

Information entered by either SAR or fire fighting personnell could also be used to update

the parameters and structure of the probabilistic models. This would be particularly useful

in these domains since lost targets and fire spread are hard to model.

Mining Automating mining operations has recently gained attention in field robotics [1][33].

One of the objectives is to compile an accurate picture of the entire mine site including its

geometry and geology, the location of all mining equipment, vehicles, and people. This task

offers an opportunity for human-robot information fusion. One example is a model of the

mine face geology which is hard to fully automate and laborious for humans. Geologist

could cooperate with a semi-autonomous sensing system: sensors measure the geometry of

different layers and provide an estimate of the geology while the geologist enters information

for estimates which are too uncertain.

Another mining application is the automation of haul trucks where a single operator would

be responsible for a fleet of autonomous trucks. The end-to-end AA system described above

could be applied to keep operator workload low.

Planetary Exploration Robots have successfully been deployed for remote planetary

exploration tasks on Mars [190]. These robots have been teleoperated from Earth (“So-

journer”, 1997) or ran in a semi-autonomous mode (“Spirit” & “Opportunity”, 2004) to

minimise communication1. The robot-pull method as presented in Chapter 5 could be

applied to this application where robots query operators only when necessary.

Intelligent Vehicles The ultimate goal of the intelligent vehicles domain is to develop a

reliable and robust driverless car [192]. Besides the technical, legal and political problems

which need to be overcome, a social issue is to get people to trust autonomous vehicles. It

1Dependent on the relative positions of Earth, Mars and the Sun, the communication delay between
Earth and Mars ranges from 6.5 to 44 minutes [191].



6.3 Conclusion 149

may be possible to build up trust gradually if the vehicle is able to explain its (uncertain)

reasoning and decision making when queried by the passenger (see Section 6.2.2).

Intelligent Buildings The vision of intelligent buildings with pervasive and embedded

sensing, actuation, and computation has been around for at least two decades [29]. The

interaction of everyday users with an autonomous system provides new challenges to human-

system interaction research. For this application, a potential for incremental and lifelong

learning as described in Section 6.2.1 may exist.

6.3 Conclusion

This thesis has made a contribution towards realising effective human-robot cooperation.

It was shown how the perceptual abilities of humans and robots can be combined using

probabilistic human-robot information fusion. Two application domains were successfully

addressed with this method: scalable information gathering and cooperative decision mak-

ing. A general human-robot communication framework was also proposed as part of this

thesis. While the focus was on human-to-robot information flow, extensions are possible

to reach the ultimate goal of establishing sophisticated human-like dialog between humans

and robots.



Appendix A

Visual Model Evaluation

The objective for the visual model presented in Section 4.2.2 is to build a compressed repre-

sentation of feature appearance properties that can be efficiently communicated and fused in

the DDF network. Even though the model is also used for classification, the primary objec-

tive is to preserve the information content of the high-dimensional space. In this appendix,

the superiority of Isomap for this task compared to PCA is empirically demonstrated. PCA

is chosen as a comparison because it is a standard unsupervised method for dimensionality

reduction. An unsupervised scheme is required since only some of our data is labelled for

the purpose of building a human visual model as described in Section 4.2.2.

As a second step, model performance with respect to classification is investigated. For

this purpose, a supervised method for dimensionality reduction is added to the discussion,

namely the Fisher Linear Discriminant Analysis (FDA). Discrimination performance of

all three methods (Isomap/PCA/FDA) is compared by (1) using a benchmark classifica-

tion method, k-nearest neighbour (k-NN), and (2) fitting Gaussians to demonstrate class

separability.

A.1 Dimensionality Reduction

Dimensionality reduction using PCA PCA projects high-dimensional data onto a

lower-dimensional subspace reducing the reconstruction error in a linear manner [46]. It

first calculates the scatter matrix of the data set. Then, eigenvectors are computed and
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sorted according to decreasing eigenvalues which represent the variance of the data along the

principal components. The eigenvectors with the largest eigenvalues are chosen to represent

the high-dimensional data.

Figure A.1(a) shows a comparison of PCA’s and Isomap’s estimate of the manifold’s di-

mensionality by computing the residual variances as described in [170]. The results are

similar to theirs: even though the true dimensionality of the manifold is unknown here,

PCA tends to overestimate the dimensionality and the curve does not cease to decrease

significantly with added dimensions. Isomap’s graph, in contrast, shows an “elbow” from

which the intrinsic dimensionality can be estimated. A similar behaviour is reported for a

hyperspectral data set in [185].

Figure A.1(b) shows a bar graph with the 10 largest eigenvalues as computed by Isomap and

PCA. It can be concluded that Isomap is able to represent the high-dimensional manifold

with less dimensions than PCA.

Dimensionality reduction using FDA While PCA finds components which are useful

for representing data, discriminant analysis is designed to seek components that are efficient

for discrimination. A natural generalisation of FDA for c classes was implemented which

involves c− 1 discriminant functions [46]. Unlike PCA or Isomap which give an estimate of

the dimensionality of the reduced space, FDA fixes it to c − 1 which is 16 for the data set

under consideration.

A.2 Classification Performance

Classification using k-NN k-NN is a simple non-parametric method to estimate prob-

ability densities or perform classification [46]. A training sample in multi-dimensional space

is classified by a majority vote of its closest k neighbours. Euclidian distance is used to

compute distances between points. Figure A.1(c) shows the misclassification rate as a func-

tion of the dimensionality of the state space generated by Isomap and PCA (FDA is not

shown because its dimensionality is fixed to 16). Three neighbours were used to classify a

data set which was divided into training and test sets using 10-fold cross-validation. Error

bars indicate one standard deviation. Isomap performs better for all dimensions which is

also reported for a face images classification task in [106].
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Figure A.1: Comparison of the Isomap model to other standard methods: (a) shows the
residual variance as a function of dimensionality computed for PCA and Isomap, Isomap
shows an “elbow” in the curve where PCA does not; (b) shows the first 10 eigenvalues for
PCA and Isomap as a bar graph, Isomap needs less dimensions than PCA to represent the
data; (c) shows the k-NN misclassification rate for Isomap/PCA as a function of dimension-
ality, standard error bars are included for 10-fold cross-validation, number of neighbours
k = 3; (d) shows the k-NN misclassification rate for Isomap/PCA/FDA as a function of
neighbourhood size, number of dimensions d = 16.

Figure A.1(d) shows the misclassification rate as a function of the neighbourhood size (num-

ber of k’s) for the three methods. For a valid comparison, 16 dimensions have to be used

which is given by FDA. Comparing unsupervised methods, Isomap performs better than

PCA in separating classes with the same label. Lower test errors are expected from FDA

since it is a supervised method and optimised for discrimination. For the data set under

consideration, FDA only performs better than Isomap if more than 8 neighbours are used.

Note that using k-NN is not an option for our task which is finding a probabilistic visual

representation rather than pure classification. k-NN is a non-probabilistic method which
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Figure A.2: State spaces with fitted Gaussians for (a) PCA, (b) Isomap, and (c) FDA. Only
2 dimensions are visualised with 4 Gaussian components. Isomap and FDA separate classes
better than PCA.

cannot be integrated into a filtering scheme. It also requires all training data to be stored in

memory for online classification while a closed-form probabilistic representation only stores

a small number of parameters.

Class separability To visualise how the three methods under consideration separate

classes, 2-dimensional Gaussians are fitted to data points in low-dimensional space as shown

in Figure A.2. As expected, PCA performed worst in clustering data points with the same

label whereas Isomap and FDA achieve comparable results.



Appendix B

User Study

This appendix contains three things related to the user study presented in Chapter 5: (1)

a VOI analysis for the navigation task is presented in Section B.1, (2) user study results of

secondary importance are discussed in Section B.2, and (3) documents given to participants

of the user study are shown in Section B.3.

B.1 VOI Analysis

This section presents a VOI analysis of a typical robot through the simulated maze employed

in the user study. Figure B.1 shows the maze from a global point of view. Figure B.1(a)

shows the extruded world including columns and pushable spheres while Figure B.1(b)

shows an example of the robot’s history just before it reaches the last waypoint.

The part of the world enclosed in a window on the bottom right of the figure is used to

show VOI results. It also serves to show the changes in the robot’s state when encountering

an obstacle as summarised in Table B.1 (see Section 5.2 for a complete description of the

navigation representation).

Figure B.2 shows the VOI analysis for the section of the path highlighted within the window

of Figure B.1(b). It is evident that information from experts is worth more than information

from novices. The red asterisks correspond to the three states listed in Table B.1.
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(a) World view

(b) Typical path

Figure B.1: Representative robot path through the maze: (a) the simulated extruded world
including solid columns and pushable spheres, (b) the robot’s path history before reaching
the last waypoint. The part of the world encapsulated by a window on the bottom right
corner serves to show detailed VOI results.

In state 1, the robot has not encountered any obstacles and there is no information to be

gained from asking for ObsTypNov,Exp (V OI ≈ 0). There is a low expected gain from

querying for SafSpdNov,Exp and SafDirNov,Exp.

In state 2, the robot has found an obstacle and knowing ObsTypNov,Exp has now become

valuable. However, there is no change for SafSpdNov,Exp because the obstacle is still far
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Figure B.2: VOI analysis for path section highlighted in Figure B.1(b). The x-axis is the
x-coordinate of the robot’s pose. The three states shown in Table B.1 correspond to the
red asterisks.
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Commanded-
Direction

straight straight left

DirectionTo-
Obstacle

none left left

DistanceTo-
Obstacle

far far close

Table B.1: Three consecutive state changes of the robot when encountering an obstacle.
The figures represent the part of the world enclosed in a window shown in Fig. B.1(b).
Solid blue bars point towards the next waypoint while red arrows denote current speed and
turnrate.

away. The small reduction in VOI for SafDirNov,Exp compared to state 1 can be explained

as follows: in state 1, DirectionToObstacle was unspecified (none) while in state 2 it is left

which does not conflict with CommandedDirection (straight).

In state 3, the robot has moved close to the obstacle. VOI for all three variables are highest

for this “critical” state. CommandedDirection (left) now conflicts with the DirectionToOb-

stacle (also left) which increases the VOI for SafDirNov,Exp.

B.2 Dialog Measures

This section presents results from the user study which are not directly related to the

hypotheses listed in Section 5.3.2. More specifically, they are concerned with the dialog

system only (not teleoperation) and serve as feedback to improve the system design including

the chosen representation and human sensor models.

B.2.1 Suitability of Dialog

This section presents measures which were used to evaluate the dialog system with respect

to (1) the number of operator queries, (2) answer time1, (3) appropriateness of the questions,

and (4) ease of answering different types of questions. The last two were evaluated using

1Answer time is also referred to as Interaction Time (IT) in the literature [133][32].
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Figure B.3: Evaluation of dialog modes (dl: dialog/laser, dc: dialog/camera, vel.: velocity,
dir.: direction, type: obstacle type (pushable or not)).

four Likert statements in the the post-task questionnaire, and one multiple choice question

in the post-experiment questionnaire. Figure B.3 shows the results for all four measures.

The number of queries posed by the robot was different for experts and novices due to the

different sensor models used. Figure B.3(a) shows the number of queries for each mode.

More queries were posed in dialog/camera than in dialog/laser. On average, the robot

queried the operator 8.7 times per episode.

The average answer times per query were 8.1 and 7.5 seconds for the two modes. For

experts, answer time was larger when a camera was available (Figure B.3(b). This can

be explained by the information overload mentioned in Section 5.3.2: experts tended to

interpret the scene more thoroughly whereas novices answered quickly. This was observed
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subjectively by the experimenter and indicated by four participants of the experts group in

the free text section of the post-experiment questionnaire.

Appropriateness of questions was ranked high with no significant differences between the

two modes and the novice/expert groups (Figure B.3(c)). No statistically significant dif-

ferences were found between the ease of answering the 3 different questions as visualised in

Figure B.3(d).

B.2.2 Human Sensor Model

The dialog system used different a priori human sensor models (HSMs) for expert and

novice groups. HSMs were required to compute the VOI which the robot used to decide

whether to query a human operator. In this section, the objectives are to investigate how

accurate the participants’ answers were, how much they differ between experts and novices,

and ultimately, to refine the a priori HSMs.

In this study, the answers participants gave to the robot’s queries were logged, together with

the robot’s belief of the SafeDirection and SafeSpeed states. Tables B.2 & B.3 show the

distribution of the answers with the most likely state (the mode of the discrete distribution)

as columns and the participants observations as rows. If the distribution’s mode represented

the truth, the tables could be used as the HSMs, or alternatively, fused with the a priori

HSMs.

It is debatable whether the mode can be considered the truth for all entries. If it were the

case, most answers would be expected to lie on the main diagonal of the table “matrix”.

When asked for the safe direction, participants often answered straight as can be seen from

the high number in the straight rows of Table B.2. The most likely state, however, was

either right or left which is simply more conservative. The participants answers, therefore,

were not “wrong” in this case (they did not lead to collisions).

The same applies to Table B.3: participants often observed the safe speed to be fast whereas

the most likely state was slow. In most cases, however, no collisions occurred, so the answers

were not “wrong”. Interestingly, experts were more confident to specify fast than novices

(71.4% vs. 59.8%).

The distribution’s mode can be considered the truth for some off-diagonal elements which

are underlined in Table B.2. They represent more severe disagreements on the safe direction
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than discussed above and occasionally lead to collisions. Experts made less mistakes than

novices here, but only slightly (15.7% vs. 15.0% and 6.9% vs. 3.6%).

In summary, it is difficult to judge the accuracy of participants’ answers by using the most

likely state as the “truth”. A better “truth” could be obtained by letting the experimenter

note the most appropriate answer subjectively whenever participants respond to queries.

This method will be applied in future experiments and the data will then be used to refine

the a priori HSMs.

A second result is that answers to dialog questions did not differ much between novices

and experts in this experiment. This is not unexpected when such a coarsely grained state

space is used. Larger differences are expected when, instead of using few choices (slow, fast,

right, left), a more fine-grained or continuous value was requested.

Participants’ Most likely state
observations right left straight

right 13 (25.5%) 2 (6.9%) 0

left 8 (15.7%) 9 (31.0%) 0

straight 30 (58.8%) 18 (62.1%) 0

Σ 51 (100.0%) 29 (100.0%) 0

(a) Novice

Participants’ Most likely state
observations right left straight

right 9 (22.5%) 1 (3.6%) 0

left 6 (15.0%) 6 (21.4%) 0

straight 25 (62.5%) 21 (75.0%) 0

Σ 40 (100.0%) 28 (100.0%) 0

(b) Expert

Table B.2: HSMs for SafeDirection. Rows represent the participants’ observations, columns
the most likely state (mode of the discrete distribution). The straight columns are filled
with zeros because straight never became the most likely state.
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Participants’ Most likely state
observations stop slow fast

stop 0 0 0
slow 0 39 (40.2%) 0
fast 0 58 (59.8%) 4 (100.0%)

Σ 0 97 (100.0%) 4 (100.0%)

(a) Novice

Participants’ Most likely state
observations stop slow fast

stop 0 0 0
slow 0 18 (28.6%) 1 (100.0%)
fast 0 45 (71.4%) 0

Σ 0 63 (100.0%) 1 (100.0%)

(b) Expert

Table B.3: HSMs for SafeSpeed.Rows represent the participants’ observations, columns the
most likely state (mode of the discrete distribution). The stop columns are filled with zeros
because stop never became the most likely state. The stop rows are filled with zeros because
participants never chose to stop the robot.

B.3 User Study Documents

This section contains documents which were given to participants of the user study, namely

the written instructions and the questionnaires.
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B.3.1 Written Instructions

Instructions for Participants

The goal of this user study is to compare four different modesfor driving a robot
in a simulated environment. You will operate all four of themand will be asked
to fill in a questionnaire after each task.

It is important to understand that we are not testing you but our system. Honest
answers to the questions are critical for meaningful results. No names or other
personal information will be recorded and all results are stored using a randomly
assigned user name.

For each mode, the primary task is to get the robot to its goal as quickly as
possible while making sure it is safe. A secondary task is to answer simple maths
questions (adding 2-digit numbers). You should only do the secondary task if you
have spare capacity to do so. Please do not stop the robot justto answer the math
question. Only give an answer if you are pretty sure you got itright.

The experiment has several phases. Each one of them is described below:

1. User name: You will receive a random user name by drawing from a pool
of user names.

2. Pre-experiment questionnaire: The purpose is to get an impression of
how experienced you are in driving vehicles.

3. Math practice: This is to practice answering the math questions. Again,
it’s irrelevant how you personally score here.

4. Robot driving: You will drive the robot in four different modes. Each
mode will be explained to you beforehand and you’ll get as much time as
you like to practice and become familiar before the actual experiment starts.
The experiments can be paused if you feel like something is unclear. After
each mode, a post-task questionnaire is to be filled in.

5. Post-experiment questionnaire: One more questionnaire is to be filled in
at the end to give an idea of the overall user experience.

Please feel free to ask any questions you may have. Thank you very much for
participating. Enjoy the ride!

World

Fig. 1 shows the kind of environment you will be driving in. It’s a maze which
contains two types of obstacles: (1) solid columns, and (2) spheres which the
robot can push, i.e. you can drive into the spheres without penalty. The robot has
a laser which scans the area in front of it (180 degrees, 3 meters) and a camera.
You can see the laser scan and the camera image in the figure.
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Figure 1: Example world, laser scan (blue), camera view.

Modes

This section will describe the 4 different modes. You can usethis sheet to remind
you of the different modes when filling in the questionnaires.

Teleop/Laser You will use a joystick to drive the robot manually in this mode.
Fig. 2 shows what you will see on the screen. The red line is therobot’s noisy
laser scan (there’s probably a wall in front of it). The blue bar indicates where
the next waypoint is from the robot’s point of view (you should turn left in the
example). The bar will turn into a circle when a waypoint is reached. The dark
red arrows show the current speed and turnrate: the larger the arrows the faster the
robot drives and turns. In this case the robot drives fast while turning a little to the
right.

Teleop/Camera The same as above but you also get the view of the camera
which is mounted on top of the robot as shown in Fig. 3. You can see the sphere
showing up in the laser scan.

Dialog/Laser The robot will drive itself in this mode. Every now and then, it
will ask you a couple of questions as shown in Fig. 4. You can choose whether
you want to answer one, two or none. You will base your answer on the laser scan
you can see in the figure. If you don’t answer within 30 seconds, the robot will
decide what to do without your help.

Dialog/Camera The same as above but you also get the view of the camera on
top of the robot as shown in Fig. 5. Note that the camera will pan a little towards
the obstacle, so you can see it better. This means the camera image does not show
the direction the robot points at. You can see that when you compare the camera
image to the laser scan. The sphere is actually a little to theleft, not directly in
front of the robot.
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Figure 2: Teleop/laser

Figure 3: Teleop/camera
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Figure 4: Dialog/laser

Figure 5: Dialog/camera
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B.3.2 Pre-experiment Questionnaire

Pre-experiment questionnaire

General

User name: Age: Gender:� Male� Female

Education

� High School � Bachelor � Master � PhD

Discipline:

Driving experience

Do you have a driving licence?� Yes� No
If yes, how often do you drive:

� daily � weekly � monthly � rarely � never

Computer experience

How often do you use a computer?
� daily � weekly � monthly � rarely � never

What type of user do you consider yourself?
� novice � experienced � developer

Video game experience

How often do you play video games?
� daily � weekly � monthly � rarely � never

What type of video games do you play?
� action � strategy � adventure � other

Remote driving experience

What vehicles have you ever driven remotely?
� ground robot � aerial robot � toy car � other � none

If any, how often?
� Once � A few times � Many times
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Other skills

On a scale from 1 to 10 (10 being best): how do you rate your hand-eye coordina-
tion?

On a scale from 1 to 10 (10 being best): how do you rate your navigation skills?
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B.3.3 Post-Task Questionnaire

Post-task questionnaire

User name:

Mode:
� teleop/laser � teleop/camera � dialog/laser � dialog/camera

Scale

This questionnaire consists of a number of statements. You are asked to express
how much you agree with the statements using a 7 point scale. Please tick the
appropriate boxes. They mean the following (from left to right):

1. very strongly agree
2. strongly agree
3. agree
4. undecided
5. disagree
6. strongly disagree
7. very strongly disagree

Important note: all statements refer to the primary task – getting the robot safely
and fast to goal. Do no take answering the maths questions into consideration
when you express your agreement/disagreement.

Getting the robot to its goal was mentally demanding in this mode.
agree � � � � � � � disagree

I felt rushed doing the task in this mode.
agree � � � � � � � disagree

It felt like hard work to accomplish the task.
agree � � � � � � � disagree

I felt insecure, discouraged, irritated, stressed and annoyed.
agree � � � � � � � disagree

This mode was easy to use and operate.
agree � � � � � � � disagree
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I would imagine most people would learn to operate this mode very quickly.
agree � � � � � � � disagree

I found this mode very cumbersome to use.
agree � � � � � � � disagree

I felt very confident using this mode.
agree � � � � � � � disagree

I needed to practice quite a bit until I became familiar with this mode.
agree � � � � � � � disagree

I think the robot was safe in this mode.
agree � � � � � � � disagree

I trusted the robot in this mode.
agree � � � � � � � disagree

The robot felt more like a partner rather than a tool in this mode.
agree � � � � � � � disagree

The robot seemed to be smart in this mode.
agree � � � � � � � disagree

Dialog

The following questions are only applicable to dialog modes.

I found it easy to answer the robot’s questions.
agree � � � � � � � disagree

I think the robot asked reasonable questions.
agree � � � � � � � disagree

The robot asked me too many questions.
agree � � � � � � � disagree

I got annoyed by answering these questions.
agree � � � � � � � disagree
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B.3.4 Post-Experiment Questionnaire

Post-experiment questionnaire

User name:

It was easiest to achieve the task in the following mode:
� teleop/laser � teleop/camera � dialog/laser � dialog/camera

I felt most stressed in the following mode:
� teleop/laser � teleop/camera � dialog/laser � dialog/camera

The robot was safest in the following mode:
� teleop/laser � teleop/camera � dialog/laser � dialog/camera

It trusted the robot most in the following mode:
� teleop/laser � teleop/camera � dialog/laser � dialog/camera

The robot appeared most “intelligent” in the following mode:
� teleop/laser � teleop/camera � dialog/laser � dialog/camera

I found it easiest to answer questions about:
� velocity � direction � type of obstacle (pushable or not)

Describe what you liked (specify relevant modes):

Describe what annoyed you (specify relevant modes):

Anything else you’d like to say?
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