
Active Strategies for Coordination of Solitary
Robots

by

Jordan Felicien Masakuna

Dissertation presented for the degree of Doctor of
Philosophy in the Computer Science Division, Faculty of

Science at Stellenbosch University

Supervisor: Dr. Simukai W. Utete

Co-supervisor: Prof. Steve Kroon

December 2020

The financial assistance of the African Institute for Mathematical Sciences (AIMS) and CSIR-SU Centre
for Artificial Intelligence Research Group (CSIR-SU CAIR) towards this research is hereby acknowl-
edged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily
to be attributed to the AIMS and CSIR-SU CAIR.

Declaration

By submitting this dissertation electronically, I declare that the entirety of
the work contained therein is my own, original work, that I am the sole
author thereof (save to the extent explicitly otherwise stated), that repro-
duction and publication thereof by Stellenbosch University will not infringe
any third party rights and that I have not previously in its entirety or in part
submitted it for obtaining any qualification.

December 2020
Date: .

Copyright © 2020 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Active Strategies for Coordination of Solitary Robots

Jordan Felicien Masakuna

Computer Science Division,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: Doctor of Philosophy

December 2020

This thesis considers the problem of search of an unknown environment
by multiple solitary robots: self-interested robots without prior knowledge
about each other, and with restricted perception and communication ca-
pacity. When solitary robots accidentally interact with each other, they can
leverage each other’s information to work more effectively. In this thesis,
we consider three problems related to the treatment of solitary robots: co-
ordination, construction of a view of the network formed when robots in-
teract, and classifier fusion. Coordination is the key focus for search and
rescue. The other two problems are related areas inspired by the problems
we encountered while developing our coordination method. We propose
a coordination strategy based on cellular decomposition of the search en-
vironment, which provides sustainable performance when a known avail-
able search time (bound) is insufficient to cover the entire search environ-
ment. A sustainable performance is achieved when robots that know about
each other explore non-overlapping regions. For network construction, we
propose modifications to a scalable decentralised method for constructing
a model of network topology which reduces the number of messages ex-
changed between interacting nodes. The method has wider potential appli-
cation than mobile robotics. For classifier fusion, we propose an iterative

ii

Stellenbosch University https://scholar.sun.ac.za

ABSTRACT iii

method where outputs of classifiers are combined without using any fur-
ther information about the behaviour of the individual classifiers. Our ap-
proaches for each of these problems are compared to state-of-the-art meth-
ods.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Aktiewe Strategieë vir die Koördinasie van Alleenlopnde
Robotte

Jordan Felicien Masakuna

Afdeling Rekenaarwetenskap,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD

Desember 2020

Hierdie tesis beskou die probleem van soektog in ’n onbekende omgewing
deur ’n aantal alleenstaande robotte: selfbelangstellende robotte sonder voor-
afgaande kennis van mekaar, en met beperkte persepsie- en kommunikasie-
vermoëns. Wanneer alleenstaande robotte toevallig mekaar raakloop, kan
hulle met mekaar inligting uitruil om meer effektief te werk. Hierdie te-
sis beskou drie probleme wat verband hou met die hantering van alleen-
staande robotte: konstruksie van ’n blik van die netwerk gevorm deur in-
teraksie tussen robotte, koördinasie en klassifiseerdersamesmelting. Koör-
dinasie is die hoof fokuspunt vir soek en redding. Die ander twee probleme
is uit verwante areas, gemotiveer deur uitdagings wat ons ervaar het tydens
die ontwikkeling van ons koördineringsmetode. Ons stel ’n skaleerbare de-
sentraliseerde metode voor om ’n model van netwerktopologie te bou wat
minder boodskappe tussen wisselwerkende nodusse hoet te verruil. Die
metode het wyer potensiële toepassings as mobiele robotika. Vir koördi-
nasie, stel ons ’n strategie voor gebaseer op sellulêre ontbinding van die
soekomgewing, wat volhoubare prestasie toon wanneer ’n bekende soek-
tyd onvoldoende is om die hele soekomgewing te dek. Vir klassifiseerder-
samesmelting, stel ons ’n iteratiewe metode voor, waar klassifiseerders se

iv

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL v

voorspellings gekombineer word sonder om enige verdere inligting oor die
gedrag van die individuele klassifiseerders te gebruik. Ons benaderings vir
elkeen van hierdie probleme word vergelyk met stand-van-die-kuns meto-
des.

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

Writing a thesis not only requires motivation, but also a lot of time. First,
I would like to thank my God, the Lord ALMIGHTY, the Lord of time.
It is through Him that I could complete this work. A great thanks also to
my supervisors, Dr. Simukai Utete and Prof. Steve Kroon, for giving me
the means to write this work in complete serenity through their fruitful ex-
changes, sharp scientific opinions, always accompanied with friendly en-
couragement. I have not always been a good student to them, especially
when things did not seem to work towards my advantage. Sometimes, I
was very stubborn and impatient to them, but they always treated me well
regardless of my stubbornness. Thanks to Prof. Jeff Sanders for his scien-
tific comments, and to Prof. Manya Ndjadi and Prof. Kafunda Katalay for
recommending AIMS to me. I would like also to thank my entire family,
namely: Jean, Huguette, Apho, Wens, Leon, Auguysta, Gracia and Kerticia
Masakuna. Thanks to my late sister Falonne Masakuna. Thanks to all my
friends for their inducement. I thank ACGT1 for approving this opportu-
nity, Mr. Medard Ilunga and Mr. Georges Kazad in particular. Thank you to
Pastor Dieudonne Kantu, Pastor Marcelo Tunasi, Apostle Roland Dalo and
Pastor Athom’s Mbuma for contributing to my spiritual growth through
their divine conduct, preachings and teachings.

1Agence Congolaise des Grands Travaux

vi

Stellenbosch University https://scholar.sun.ac.za

Dedications

To my dearest father and mother, Augustin Ngolpay Masakuna and Beatrice
Muniongo Indwa

vii

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iv

Acknowledgements vi

Dedications vii

Contents viii

List of Figures xii

List of Tables xv

List of Algorithms xix

Nomenclature and Notation xx

1 Introduction 1
1.1 Objectives and background of this study 1
1.2 Contributions . 4
1.3 Overview of this work . 4

2 Background 6
2.1 Introduction . 6
2.2 Basic concepts . 6
2.3 Autonomous robots . 8
2.4 Multiagent systems . 14
2.5 Conclusion . 20

viii

Stellenbosch University https://scholar.sun.ac.za

CONTENTS ix

I Coordination 22

3 Background and literature 23
3.1 General background . 23
3.2 Literature discussion and frontier-based exploration 24
3.3 Summary . 33

4 Soft obstacle coordination strategy for solitary robots 35
4.1 Introduction . 35
4.2 Considerations for the soft obstacle strategy 37
4.3 Soft obstacle coordination strategy 41
4.4 Conclusion . 51

5 Distributed system of solitary robots 53
5.1 Introduction . 53
5.2 Distributed methods for coordination of solitary robots 53
5.3 Leader election based on closeness centrality 57
5.4 Data fusion and task assignment 65
5.5 General algorithm . 67
5.6 Conclusion . 71

6 Metrics, results and discussion 78
6.1 Metrics . 79
6.2 Simulation description and experimental setup 81
6.3 Results and discussion . 87
6.4 Conclusion and avenues for future work 105

II Network view construction 108

7 Background and literature 109
7.1 General background . 109
7.2 Literature discussion . 110
7.3 Background of methods for failure detection 116
7.4 Summary . 118

8 Decentralised view construction 119
8.1 Introduction . 119
8.2 View construction . 120

Stellenbosch University https://scholar.sun.ac.za

CONTENTS x

8.3 Communication analysis . 129
8.4 Communication failure . 131
8.5 Conclusion . 139

9 Metrics, results and discussion 140
9.1 Metrics . 140
9.2 Simulation description and experimental setup 142
9.3 Results and discussion . 146
9.4 Conclusion and avenues for future work 156

III Classifier fusion 158

10 Background and literature 159
10.1 General background . 159
10.2 Literature discussion . 161
10.3 Summary . 162

11 Classifier fusion method 163
11.1 Introduction . 163
11.2 Yayambo method . 164
11.3 Complexity . 169
11.4 Conclusion . 170

12 Metrics, results and discussion 171
12.1 Metrics . 172
12.2 Simulation description and experimental setup 174
12.3 Results and discussion . 178
12.4 Conclusion and avenues for future work 193

13 Conclusions and future work 196
13.1 Summary . 196
13.2 Primary contributions . 197
13.3 Future work . 198

List of References 199

A Solitary search 213

Stellenbosch University https://scholar.sun.ac.za

CONTENTS xi

B Obstacle avoidance techniques 220

C Toy example of pruning method 224

D Toy example of Yayambo 228

E Dataset characteristics 231

F Utilities 233

G Code of Python functions 235
G.1 Network view construction . 235
G.2 Coordination . 244
G.3 Classifier fusion . 255

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 Example of an autonomous mobile robot architecture. 8
2.2 Interaction paradigms in multiagent systems. 16

3.1 Illustration of cellular decomposition. 25
3.2 Illustration of assignment of sectors upon an accidental rendezvous. . . 31

4.1 Illustration of the proposed soft obstacle coordination. 39
4.2 Virtual world enlargement. 45

5.1 State transition diagram of a single robot during search. 56
5.2 Illustration of leader election. 61
5.3 Illustration of the area scanned per motion step by a robot. 67
5.4 Illustration of how a robot can get a new exploration region inside its

actual exploration region. 70

6.1 A sample of the simulation environments used. 85
6.2 Illustration of some environments considered in this work. 86
6.3 The Victoria Park grid map [39]. 87
6.4 Individual coverage progress for different numbers of robots. 88
6.5 Individual coverage performance for different teams of robots. 89
6.6 Individual robot trajectories for different teams of robots. 90
6.7 Box-and-whiskers plots of the performance of each coordination strategy. 91
6.8 Plots of 50 scenarios using SOS, ARS and Hybrid. 93
6.9 Cumulative distribution function (CDF) of 30 scenarios using SOS

and ARS on the Victoria Park grid map. 95
6.10 The benefits of margins in SOS: unbalanced assignment. 100
6.11 The benefits of margins in SOS: balanced assignment. 101
6.12 SOS using the technique of frontiers as the search algorithm. 102

xii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xiii

6.13 Histograms of interaction network sizes observed in coordination of
solitary robots. 104

7.1 An example of the construction of a view of a communication graph. . . 114
7.2 An example of the benchmark method [118]. 115
7.3 Illustration of a communication graph. 115

8.1 Example of discovery of prunable objects. 123
8.2 Illustration of triangles (i.e. cycles of size 3) in pruning method. 123
8.3 Illustration of failure of a node or edges. 134

9.1 Histogram of diameters of random graphs. 145
9.2 Illustration of a network of solitary nodes. 145
9.3 Histogram of differences in average number of messages on the au-

tonomous graphs. 146
9.4 Histogram of differences in maximum number of messages on the au-

tonomous graphs. 146
9.5 Number of messages using benchmark and pruning methods on one

random graph. 147
9.6 Number of messages per node using both methods for view construction

in the case of failures. 149
9.7 Number of signals per node using both methods for view construction

in the case of failures. 150
9.8 Histograms of differences of shortest path distances between approx-

imate central nodes obtained using the benchmark and our pruning
methods with respect to the exact most central node on some random
graphs for failure-free cases. 152

9.9 Histograms of differences of shortest path distances between approx-
imate central nodes obtained using the benchmark and our pruning
methods with respect to the exact most central node on some random
graphs for failure cases. 153

9.10 Histogram of percentage reductions of maximum running time (in sec-
onds) between the benchmark and our pruning methods for failure-free
cases. 155

9.11 Histogram of percentage reductions of maximum running time (in sec-
onds) between the benchmark and our pruning methods for failure cases. 155

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xiv

9.12 Histogram of percentage reductions of maximum memory (in MB) be-
tween the benchmark and our pruning methods for failure-free cases. . . 156

9.13 Histogram of percentage reductions of maximum memory (in MB) be-
tween the benchmark and our pruning methods for failure cases. 156

11.1 Example of dissimilarities between probabilities using Equation 11.2.4. 168

12.1 Performances of classification and fusion techniques in active vision. . . 190

A.1 Some examples of methods for exploration of a region. 213
A.2 Application of zigzag search in different situations. 215
A.3 Illustration of a zigzag move and obstacle detection. 219

B.1 Illustration of obstacle avoidance using Distance Bug. 222

C.1 Communication graph used to illustrate pruning methods. 224
C.2 Pruned nodes from the first pruning stage. 226
C.3 Pruned nodes after the second pruning stage. 227

E.1 Photographs of four of the objects in the Columbia dataset [78]. 232

Stellenbosch University https://scholar.sun.ac.za

List of Tables

5.1 Nodes’ initialisation of leader election using Algorithm 5.2 for the com-
munication graph in Figure 5.2. 61

5.2 First iteration of leader election using Algorithm 5.2 for the communi-
cation graph in Figure 5.2. 64

5.3 Second iteration of leader election using Algorithm 5.2 for the commu-
nication graph in Figure 5.2. 64

6.1 Experimental setup for coordination. 85
6.2 The p-value and the effect size e for the coordination strategies for a

team of ten robots. 92
6.3 Results of 50 scenarios using SOS, ARS and Hybrid. 93
6.4 Result for search and rescue by 50 solitary robots on a single scenario. . 94
6.5 Number of interactions that each robot participated in. 94
6.6 Results of 30 scenarios using SOS, ARS and Hybrid on the Victoria

Park grid map. 95
6.7 The p-value and the effect size e for the coordination strategies with 50

solitary robots in the simulated search environment. 96
6.8 p-values and effect sizes e for the coordination strategies with up to

3000 solitary robots in the Victoria Park grid map. 98
6.9 The p-value and the effect size e for the coordination strategies with 50

solitary robots starting from separate locations in the simulated search
environment. 101

6.10 The p-value and the effect size e for the coordination strategies with 50
solitary robots starting from separate locations in the simulated search
environment. 103

6.11 The p-value and the effect size e for our coordination strategy (SOS)
using two different leader election methods. 104

xv

Stellenbosch University https://scholar.sun.ac.za

LIST OF TABLES xvi

7.1 Illustration of the use of Algorithm 7.1 applied on the graph in Figure
7.3. 116

8.1 Table indicating pruning using the graph in Figure 8.2. 126

9.1 Results for a sample of 5 real-world networks (1 phenomenology collab-
oration network, 1 Gnutella peer-to-peer network and 3 autonomous
networks) on the benchmark method and our proposed pruning method. 147

9.2 Shortest path distances between the exact most central node and ap-
proximate most central node for failure-free situations. 151

9.3 Shortest path distances between the exact most central node and ap-
proximate most central node for failure situations. 152

11.1 Evolution of probability distributions over iterations of the Yayambo
algorithm. 169

11.2 Evolution of supports of distributions over iterations of the Yayambo
algorithm. 169

12.1 Hyperparameters used to train classifiers on various data sets. 176
12.2 Hyperparameters used to train similar classifiers on the subsets of data

sets. 177
12.3 Hyperparameters used to train similar classifiers on the Columbia data

set. 177
12.4 The characteristics of the data set used to train classifiers. 178
12.5 The majority vote rule, Borda count rule, sum rule, product rule and

Yayambo accuracies on test data with various values of ε0 for Yayambo. 180
12.6 The majority vote rule, Borda count rule, sum rule, product rule and

Yayambo cross-entropy losses on test data. 181
12.7 Other performance metrics on classifier fusion algorithms. 182
12.8 The Borda count rule, majority vote rule, product rule, sum rule and

Yayambo accuracies on test data using similar classifiers with different
hyperparameters trained on the Columbia data set. 183

12.9 The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using classifiers trained on different
subsets of data set. 184

12.10Data set sizes for training of classifiers on different training data set. . . 184

Stellenbosch University https://scholar.sun.ac.za

LIST OF TABLES xvii

12.11The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using MLPs trained on different sub-
sets of data set. 184

12.12The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using k-NN trained on different sub-
sets of data set. 185

12.13The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using SVM trained on different sub-
sets of data set. 185

12.14The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using logistic regression trained on
different subsets of data set. 186

12.15The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using classifiers trained on different
features of data set. 187

12.16The number of features considered to train classifiers on each data set. . 187
12.17Measurement of disagreement between classifiers, trained using the Ac-

tivity data set, from a prediction point of view. 187
12.18Measurement of disagreement between classifiers, trained using the

Digits data set, from a prediction point of view. 188
12.19The Borda count rule, majority vote rule, product rule, sum rule and

Yayambo accuracies on test data. 189
12.20Expected performances of individual artificial classifiers. 192
12.21Expected agreement between individual artificial classifiers from a clas-

sification point of view. 193
12.22The Borda count rule, majority vote rule, product rule, sum rule and

Yayambo accuracies using artificial classifiers. 193
12.23The Borda count rule, majority vote rule, product rule, sum rule and

Yayambo accuracies using artificial classifiers for different runs of the
fourth and fifth classifiers as they are purely random. 193

12.24Measurement of disagreement between random classifiers from a pre-
diction point of view. 194

C.1 Initial situation before the use of pruning. 225
C.2 The results of interaction after the first iteration. 225
C.3 The results of the first pruning. 226

Stellenbosch University https://scholar.sun.ac.za

LIST OF TABLES xviii

C.4 The results of interaction after the second iteration. 226
C.5 The results of the second round of pruning. 227
C.6 Table showing the results of interaction after the third iteration. 227

Stellenbosch University https://scholar.sun.ac.za

List of Algorithms

2.1 Calculation of the inputs of the motion command of a robot 9
3.1 Our presentation of a frontier-based exploration method. 27
4.1 Choice of exploration regions. 46
5.1 Waiting for other interactions in its neighbourhood by a robot. . . . 55
5.2 Leader election based on the work by Naz [77]. 62
5.3 Our proposed soft obstacle strategy. 72
7.1 Our presentation of the benchmark method [118]. 112
8.1 Our proposed pruning method in a failure-free scenario. 127
8.2 Our proposed pruning method with failure management. 135
8.3 Our presentation of the benchmark method [118] with failure man-

agement. 138
11.1 Our proposed classifier fusion algorithm. 167
A.1 Zigzag search used by a robot to explore its exploration region Xi. . 216
B.1 A one-step move using the Distance Bug method for obstacle avoid-

ance. 223
F.1 Enumeration of robot states. 233
F.2 Enumeration of states involved in interaction of robots. 233
F.3 Enumeration of search states for a robot. 233
F.4 Creation of a rectangle and related subroutines used for coordina-

tion of solitary robots. 234

xix

Stellenbosch University https://scholar.sun.ac.za

Nomenclature and Notation

Abbreviations Page introduced

ARS accidental rendezvous strategy 78

FD failure detector 117

MB megabytes 156

PRS periodic rendezvous strategy 78

SOS soft obstacle strategy 78

Symbols related to coordination Page introduced

ai the closest corner of the exploration region of
Ri. 49

Bd(x) a closed ball centred at x of radius d. 10

B(t)i soft obstacle of Ri. 42

C(t)i the explored region known by Ri. 42

d a robot’s perception and communication
range. 67

δ(x, y) the Euclidean distance between x and y. 49

P the number of robots in an interaction. 44

Ri the i-th robot. 38

τ the total search time. 67

O the set of obstacles. 39

vi the i-th node. 60

xx

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE AND NOTATION xxi

Vi the current virtual world of Ri. 40

W the search environment. 39

xi current location of Ri. 215

Yi the list of exploration regions of Ri. 48

Xi the current exploration region of Ri. 38

U (t)
i the unexplored region of Ri. 47

Zi the interference region known by Ri. 42

Symbols related to view construction Page introduced

\ set difference. 113

← assignment. 113

〈mes〉 a message mes sent to or received by a node. 113

ci closeness centrality of node vi. 19

D a given number of iterations to construct a
view. 113

ecci the eccentricity of a node vi. 125

eij the edge between nodes vi and vj. 121

Edown
i the set of nodes in Ni incident to at least one

edge in Sdown
i . 135

F (t)
i the set of pruned nodes before the t-th prun-

ing round known by node vi. 123

Fi,t the set of pruned nodes until the t-th pruning
round known by node vi. 123

G a communication graph. 19

N down
i the set of nodes which have failed known by

node vi. 135

Ni the set of immediate neighbours of vi. 113

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE AND NOTATION xxii

N up
i,t the set of neighbours of vi which are still in-

volved in interaction at the beginning of iter-
ation t. 124

N (t)
i the set of (t + 1)-hop neighbours of vi. 113

Sdown
i the set of edges which have failed known by

node vi. 135

S (t)i the set of new edges discovered by vi after
iteration t. 121

Si,t the set of edges discovered by vi after itera-
tion t. 122

vi the i-th node in a graph. 113

Symbols related to classifier fusion Page introduced

β
(t)
ij weight assigned to the i-th probability vector

(i.e. distribution) from the j-th distribution at
the end of iteration t. 165

ck k-th type of object of interest. 164

di i-th classifier output. 164

fi i-th classifier. 164

l the number of types of objects of interest. 164

m the number of classifiers. 164

π
(t)
i i-th distribution at the end of iteration t. 165

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Objectives and background of this study

This thesis considers the problem of search by multiple solitary robots. We
consider solitary robots to be self-interested robots without prior knowl-
edge about each other, and with restricted communication capacity. Solitary
robots are robots without a common (social) goal. Some robots can imperson-
ate social signals and elicit human feelings [98]. An intention achieved by
such a robot is viewed as a (social) goal. In other words, robots are soli-
tary when individuals (not the team) are the key modelling units of a co-
ordination strategy. Solitary robots need to be autonomous, and must also
be equipped with an ability to amend their behaviour when they acquire
new information. They do “the best they can” while not being aware of
other robots, unless they accidentally meet another robot, whereupon they
may collaborate. When robots interact with each other in this way, each can
benefit from diverse information obtained from other robots to work more
effectively.

This thesis considers search and rescue in an unknown static environ-
ment, i.e. finding static targets (i.e. objects of interest) by exploring the en-
vironment. Our proposed method might be applicable to search and rescue
in various aspects of disaster management for which the choice of a static
environment is reasonable [50]. When considering solitary robots for search
of some static targets in an unknown environment, various problems could
be considered such as formation control (where a group of robots aim to
achieve some goal while preserving some spatial pattern between the robots

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

involved) and exploration. We tackle three problems: coordination, interac-
tion and classifier fusion. We aim to propose strategies that solitary robots
can apply to effectively explore an unknown environment when coordinat-
ing their exploration, interacting with each other, and recognising objects
of interest. In this thesis, the problem of coordination is the key focus for
search and rescue. The other two problems we consider are inspired by the
problems we encountered while developing our coordination method.

We consider low power robots working under weak signal conditions
[84, 103]. Weak signal conditions could be caused by the nature of the search
environment or sensor conditions. Such robots can face problems of high
propagation time in communication.

It was mentioned earlier that exploration is the problem we consider in
this thesis for coordination of solitary robots. Many search strategies [17,
31, 63] have been proposed to tackle the exploration problem. In fact, a
coordination strategy could be considered effective when individual robot
exploration is maximised.

We motivate and propose a coordination strategy for solitary robots.
Since we consider search by solitary robots, we must treat their inter-

actions carefully to optimize the benefit of the interaction. A natural way
to manage interaction of robots is for the robots to elect a leader to coor-
dinate their interaction. There are various approaches for leader election
[77]. In this thesis, we consider the approach where, before electing a leader,
each node must, in a distributed manner, construct a (limited) view of the
network formed by their interaction. The process of leader election is dis-
tributed because solitary nodes have limited communication capacity and
are autonomous. Also, because this work considers solitary robots, it is
reasonable to develop distributed systems which are decentralised, as nat-
urally solitary robots should not rely on a single robot.

In distributed networks, the topology of a network is very important.
In packet-switched store-and-forward networks [62] for instance, messages
are stored and processed at intermediary nodes when transmitted from a
source node to a destination node. Korach et al. [55] claim that, in this con-
text, it is essential for every node to have knowledge about the topology of
their interaction (i.e. each node should know its tree parent and its tree chil-
dren). Information about the network topology can be profitably employed
to develop adequate distributed methods. For example, the propagation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

time (or the amount of network traffic) required to synchronize the nodes
of a network can be minimized if the most central node of the network is
known [47, 82]. Here, we consider closeness centrality [8] to identify the
most central node of a network. We consider closeness centrality because it
is an appropriate centrality measure to use for identifying the node with the
shortest distances to all other nodes in a network.

The elected leader has an essential role to play in the interaction of robots,
which is application-dependent. For the case of search and rescue tasks
as we consider here, the goal of each robot will be to maximise its explo-
ration. However, robots maximise their joint exploration when they search
non-overlapping regions. To coordinate interaction of robots, a leader has
a two-fold role. First, a leader collects, fuses and distributes each robot’s
individual information, so that every robot can benefit from a merged view
of the situation. Second, it allocates exploration regions to each robot, to en-
hance their combined search coverage. We refer to this latter role of a leader
as coordination.

Coordination of robots requires exchange of robots’ information, such as
maps. To coordinate their future actions, the leader elected must receive
individual information from other nodes. Since interactions are local, each
receiving node combines the maps it receives with its own before it forwards
the combined map to an immediate neighbour (specifically, its spanning
tree parent, as will be discussed in Chapter 5) closer to the leader. This
coordination method is nothing but a packet-switched store-and-forward
method, as explained above.

This thesis also motivates and proposes a suitable decentralised method
robots can apply to construct views of their interaction network for leader
election.

Finally, when exploring, robots must determine the types of objects of
interest they perceive in the search area. This is termed object recognition
[107] in the machine learning community. An object recognition solution
is a mathematical model that identifies to which type or class an object of
interest belongs. Individual classifiers may provide different opinions on
the same object of interest. One way to handle this situation is to combine
the various classification results by a classifier fusion procedure. We moti-
vate and design such a classifier fusion algorithm. Note that our proposed
classifier fusion method has wider applicability.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.2 Contributions

Above we presented three problems arising when employing solitary robots
for search and rescue: interaction, coordination and classifier fusion. The
following briefly describes the contributions of this thesis in these domains:

(1) Coordination: we propose a novel coordination strategy based on cellu-
lar decomposition [17] and the use of soft obstacles [70]. The proposed
coordination method provides sustainable performance when a known
search time precludes coverage of the entire search area.

(2) Decentralised view construction: we propose an enhancement to the
method of You et al. [118] for distributed construction of a network.
Our enhancement reduces the number of messages exchanged between
nodes of the network. We also extend the algorithm to allow it to handle
communication failures.

(3) Classifier fusion: we propose a fusion method [71] for classifiers that
only report their outputs over class labels. Our proposed classifier fu-
sion method weights classifiers’ outputs unequally, even though only
their outputs are reported.

While coordination of solitary robots was the inspiration for the techniques
proposed in this thesis, the second and third contributions are more widely
applicable.

1.3 Overview of this work

Apart from the next opening chapter (Chapter 2) which reviews background
work with a focus on multiagent systems and autonomous robots, and the
closing chapter (Chapter 13) which concludes, the rest of this thesis is or-
ganised in three parts.

Part I reviews background and literature for coordination of solitary robots
(Chapter 3), describes our proposed coordination method (Chapters 4 and
5), and presents and discusses results of the proposed coordination strategy
(Chapter 6).

Part II reviews background and literature for distributed view construc-
tion of a communication graph (Chapter 7), introduces our proposed dis-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

tributed method for view construction (Chapter 8), and presents and dis-
cusses results of view construction (Chapter 9).

Part III reviews background and literature for classifier fusion (Chapter
10), introduces our proposed classifier fusion method (Chapter 11), and
presents and discusses results of classifier fusion (Chapter 12).

Coordination of solitary robots for search and rescue in an unknown
static environment is the overarching challenge of this thesis, and we aim
to develop various distributed methods to answer the following main ques-
tion: how much area can solitary robots interacting in a distributed manner
explore within a given search time?

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background

2.1 Introduction

This chapter provides background material on multiagent and distributed
systems relevant for this thesis, i.e. this chapter reviews selected paradigms
for modelling multiagent systems and how mobile robots interact with a
search environment. A multiagent system is composed of multiple agents
which can interact with each other in an environment. While the agents
could be humans, human-robot teams, purely software agents or other ma-
chines, this thesis considers the typical case where multiagent systems refer
to software systems of robots.

2.2 Basic concepts

We begin by defining various concepts that we will use to formalize the
notion of a solitary robot. The aim of this study is to develop various de-
centralised methods that a solitary robot could apply to achieve some goal.
The adjective solitary has been used previously in literature. For example,
le Roux et al. [64] compared solitary and group foraging. They investi-
gated when solitary foraging is more effective than group foraging, and
vice-versa. Solitary foraging is a type of search where agents or animals
decide to find their objects of interest alone [64, 104]. But the term solitary
used for robots in this thesis has additional connotations. Here, not only is
a solitary robot expected to find its objects of interest alone, it also has some
limitations on its perception and communication capacity.

6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 7

Before defining solitary robots, we need to introduce some other impor-
tant terms. An agent is something that acts in an environment. When an
agent is facing multiple alternatives, it can make an appropriate choice. An
agent can be autonomous: an autonomous agent is active (i.e. it can learn
from the environment) and does not require interaction with other agents
to take action, although such interaction can be beneficial. An active agent
is an online agent: it is called to take decisions as additional information
becomes available. Self-driving cars [99] are an example of autonomous
agents. A group of agents can be homogeneous, when they are equipped
with the same abilities, or heterogeneous otherwise. An agent can also be self-
interested. Agents are self-interested when individuals (not the team) are the
key modelling units of a coordination strategy. The solitary robots this work
focuses on are homogeneous and autonomous self-interested agents.

Different distributed methods that will be developed in this work are
considered active. A method is considered active when the agents which
apply the method are active, i.e. agents are called to take decisions as addi-
tional information becomes available—e.g. active vision [1]. Active strate-
gies are considered due to the nature of the solitary robots in the system, the
restricted communication between them [75], and the limited time available
to achieve goals. Active strategies are important in persistence and lifelong
learning problems [101] for autonomous robots. Lifelong learning problems
consider the study of robots which learn in isolation. Such robots transfer
knowledge between themselves when they encounter each other in order to
work more effectively. The above discussion leads us to define our central
objects of study, solitary robots:

Definition 2.2.1. Solitary robots are self-interested (i.e. robots without a common
social goal), autonomous and homogeneous robots without prior knowledge about
each other, and with restricted perception and communication capacity.

Although solitary robots do not have a common goal, it should be noted
that some solitary robots can still start searching from nearby locations and
when that happens, they are called to collaborate at that time. In some coor-
dination approaches (including our proposed coordination strategy), each
robot goes its own way with no intention of meeting the other robots again
after collaboration.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 8

Many autonomous agents, including self-driving cars, work in dynamic
environments. However, this thesis considers solitary agents acting in static
(but unknown) environments. For example, our results might be applicable
to search and rescue in various aspects of disaster management (including
housing and building damage, as well as disruption of roads, water supply,
gas, and mining) where the choice of a static environment and static objects
of interest are reasonable [50].

The following section describes autonomous robots, the agents for which
the distributed algorithms in this thesis are proposed.

2.3 Autonomous robots

Figure 2.1: Example of an autonomous mobile robot architecture.

An example architecture for an autonomous robot is illustrated in Figure
2.1.

A robot obtains information as it interacts with its environment. A robot has
sensors, which provide the robot with information about the environment,
such as objects and their shapes, sizes, directions of motion, and so on. This
information obtained is then processed by a programmable machine called
the engine, and used in further interaction with the environment. A robot
acquires knowledge by processing the information. The robot interacts with
its environment by performing some actions to achieve some goal. Actions
change robot state and interaction with environment can also change the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 9

state of the environment. As shown in Figure 2.1, a robot also has mul-
tiple actuators that are responsible for controlling robot motion. Actuators
execute instructions received from motion commands. Motion commands are
determined by the engine; the information about the next location of the
robot is provided by our search algorithm (Appendix A). Let us say a robot
is at location µt at time t. After time ∆t, the search algorithm will provide
to the robot the new location µt+∆t (i.e. odometry information) to move
to, at time t + ∆t. From odometry information, the robot will work out its
translation shift and rotational movement as described in Section 2.3.3. The
robot will then change its internal motion command based on these two
command values. The procedure for this task is given in Algorithm 2.1.

Algorithm 2.1 Calculation of the inputs of the motion command of a robot.
1: function MOTIONCOMMANDINPUTS(µt = (x1, y1, θ1), µt+∆t = (x2, y2, θ2))
2: δ1 ← arctan 2(y2 − y1, x2 − x1)− θ1
3: α←

√
(x1 − x2)2 + (y1 − y2)2

4: δ2 ← θ2 − θ1 − δ1
5: return α, δ1, δ2
6: end function

2.3.1 Physical construction of autonomous robots

Robot systems typically have requirements and specifications determined
by the nature of their intended applications which must be considered when
planning their design and construction. Some notable robotics applications
are navigation and control (for mobile robots) or planning. Important con-
siderations for robotics applications include: the types of robots to consider,
e.g. autonomous underwater vehicles (AUVs), unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs); the types of information
to handle, e.g. maps; and the types of actuation to perform, e.g. motion
only or grasping. This thesis considers mobile autonomous robots with the
ability to grasp objects of interest.

During exploration, robots acquire new information from their sensor
nodes through their interaction with the environment. Describing the envi-
ronment and the behaviour of sensors and actuators requires mathematical
models, which can face limitations in terms of computation. These models
also must take sensor noise and state uncertainty into account.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 10

While we will abstract away most of the details on physical construction
of autonomous robots in the thesis, we outline the main considerations in
this regard in Subsections 2.3.2–2.3.4.

2.3.2 Configuration space

We mentioned earlier the environment in which agents work. In robot mo-
tion planning, an environment and robots are represented by a configura-
tion space (C-space for short). In this thesis, a C-space, denoted by W , is
a 2D Euclidean space and is partitioned into free space and obstacle space.
Free space does not contain obstacles that can hinder robot motion [100].

We do not consider 3D motion in this thesis: this abstraction allows us to
focus on the main novelties introduced in this thesis.

Let Bd(z) denote a closed ball centred at z of radius d. A robot has a per-
ception range, say d: we define cz as a region which the robot can perceive
from its current location z, assuming obstacle-free space; cz = Bd(z).1

Many approaches can be used to represent environments, including oc-
cupancy grids and topological graphs [100]. We consider a (static) environ-
ment represented by an occupancy grid (a discrete representation).

An occupancy grid is composed of cells where each cell is assigned a
probability that a corresponding environmental region is occupied—an oc-
cupancy probability [114]. A cell is considered occupied when it is likely
that it contains (a portion of) an obstacle. Initially all of the cells are assigned
a prior occupancy probability. Measurements are then used to update the
occupancy probabilities [100, 114]. A cell is considered to be in one of three
states

• free: prior probability > occupancy probability;

• occupied: prior probability < occupancy probability; or

• unknown: prior probability = occupancy probability.

We use an occupancy grid to represent a search environment because we
are concerned about arrangements of objects while exploring an environ-
ment. The presence and absence of objects in an unknown environment

1Other shapes for cz can also be considered, such as rectangular shapes. The shape
employed is guided by the robot’s sensors.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 11

are well represented by occupancy grids. Other advantages are that grid-
based maps are extremely easy to construct, and that they capture essential
features of the environment [100]. However, what we lose by using a dis-
crete representation of an environment is the actual shapes of obstacles and
continuous locations of landmarks. This is because discretization allows
different maps to have the same representation—thus discretization is not
invertible.

2.3.3 Kinematics and robot motion

Kinematics is the branch of mechanics concerned with the motion of ob-
jects without reference to the force that causes the motion [100]. For mobile
robots which we consider in this thesis, the kinematic configuration of a
robot includes the robot’s position in 2D Euclidean coordinates and its ori-
entation angle (or bearing or heading direction). The pose at time t is given
by a vector

µt =

 xt

yt

θt

 . (2.3.1)

Motion is the change in displacement of a robot from µt to µt+∆t, where ∆t
denotes a time step. Motion models can be deterministic or probabilistic
[100]. For probabilistic models, there exist specific motion models based on
velocity and odometry. We next describe a velocity model.

Let vt and wt denote the translational and rotational velocities controlling
the robot at time t, respectively. The control command (i.e. combination of
the translational and rotational velocities) is given by

ut =

(
vt

wt

)
.

Under this control, after a time period ∆t of robot motion, its pose is up-
dated to

µt+∆t = µt +

 −
vt
wt

sin θt +
vt
wt

sin(θt + wt∆t)
vt
wt

cos θt − vt
wt

cos(θt + wt∆t)
wt∆t

 [100] .

Unlike the velocity model above, which provides velocity commands to a
robot’s motors, an odometry model provides odometry information such as
the distance between the robot and a nearby feature.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 12

For the odometry model, each robot has its internal coordinate system
represented by x̄t, which corresponds to µt in the global coordinate sys-
tem. The robot measures x̄t by its sensors. We assume that a robot knows
its original pose in global coordinates, but it should be noted that in some
situations the relation between robot’s internal coordinates and the global
coordinates is unknown [100]. This means the transformation from robot’s
internal coordinates to the global coordinates is not straightforward. To es-
timate µt+∆t after time of motion ∆t, the robot represents µt and µt+∆t by
x̄t and x̄t+∆t respectively. Let measurements x̄t and x̄t+∆t be represented as
follows,

x̄t =

 x1

y1

θ1

 and x̄t+∆t =

 x2

y2

θ2

 .

In our situation where the robot knows its initial pose in global coordinates,
the new pose µt+∆t is given by

µt+∆t = µt + (xt+∆t − xt) . (2.3.2)

In real applications, both motion models are generally combined. For in-
stance, when using the Kalman filter [100] to infer parameters of interest
from inaccurate or uncertain measurements, there are two steps: predic-
tion and correction. The algorithm predicts the robot pose using a velocity
model and corrects the predictions using an odometry model.

In this thesis, an odometry model for motion commands is applied dif-
ferently. The inputs of the motion commands of a robot are the current lo-
cation of the robot and its next location, with the next location provided by
a search algorithm (described later in Appendix A). From the command lo-
cation µt+∆t provided to the robot, the robot works out its translational shift
and its rotation angle. The procedure for this task is given in Algorithm 2.1.

According to Belta et al. [9], the topic of motion planning for robots can
be divided into two schools of thought: robot paths can be discrete (e.g.
methods based on cellular decomposition [17]) or continuous (e.g. methods
based on potential fields [43]). Our approach is in the family of discrete path
planning methods. There are two reasons which we consider for the discrete
nature of our approach. First, we assume that robots are fully actuated with
no control bounds—this means that we do not focus on the detailed dy-
namics or kinematics of robots. Second (as will be discussed later in Part I),

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 13

we use cellular decomposition for exploration which builds discrete motion
paths. It should be noted that integration of the strengths of the two families
of motion planning methods is desirable. In fact, Belta et al. [9] claim that
such integration is a very promising and challenging research avenue.

2.3.4 Robot measurement

Measurement models describe the process by which robots extract infor-
mation about their environment from sensors. Sensors differ based on the
type of information provided. Laser sensors and sonar sensors are examples
[100], where measurements consist of detecting the presence or absence of
an object, or discovering the range between two objects.

The internal representation of a map is usually topological or metric. But
one can also consider hybrid (combination of topological and metric) or a
semantic representation of a map [79]. In the topological representation,
only relations between sensed objects are considered. With metric represen-
tations, a map can contain objects and their locations—(feature-based)—or
simply a collection of locations—(location-based). The key difference be-
tween location-based and feature-based maps is that the former process ev-
ery sensed location (i.e. the area of the grid has almost the same size as the
area of the actual environment), whilst with the latter only locations of fea-
tures/objects are saved (i.e. the area of the grid is much smaller than the
area of the actual environment).

A feature is a description of an object. We denote the i-th feature in a map
by

mi =

 mx,i

my,i

ms,i

 , (2.3.3)

where (mx,i, my,i) denotes the i-th object’s location and ms,i its label. For a
feature-based approach, a map M is a collection of landmarks (features), mi.
For a domestic autonomous vacuum cleaner for example, a map could rep-
resent landmarks with labels such as ’wall’, ’table’, ’bed’ and so on. For the
case of search and rescue by solitary robots, the maps we consider represent
static objects of interest, static landmarks or obstacles (i.e. static environ-
ment) and explored areas.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 14

Feature-based maps have lower computational cost and more advan-
tages in adjusting for uncertain measurements than location-based maps
[100].

When a robot is at location µt and senses an object mi, there are different
ways of relating µt and mi. Using feature-based sensing, the sensor can
return information in the form

zt
i =

 dt
i

ϕt
i

si

 ,

where dt
i denotes the range between µt and mi, ϕt

i the relative bearing at
time t, and si the description of the object sensed. Typically, a robot would
be equipped with several sensor nodes. The problem of fusion of sensor
measurements can then arise. Data fusion problems can also arise when two
robots plan to combine their individual measurements. The process of data
fusion consists of combining data to refine state estimates and predictions
[95]. For example, Aragues et al. [4] studied a feature-based map fusion
algorithm. They showed how several robots, each with a limited map, can
dynamically reach consensus on the global map using the map increments
between two consecutive time steps. This is an essential stage of map con-
struction, since it allows robots to reduce uncertainty in the combined map.

In this thesis, we use a location-based map which seems to be a suitable
choice for search and rescue by solitary robots.

2.4 Multiagent systems

This thesis aims to build a multiagent system [91]. Multiagent systems refer
to the use of multiple agents to achieve some goal.

Before discussing details of multiagent systems, a relevant question re-
garding multiagent systems must be addressed. The question is derived
from the perception that using multiple agents seems more costly than us-
ing a single agent. If this is so, why do multiagent systems matter? In other
words, why not construct a single powerful agent with tremendous features
such as speed, perception and processing ability to perform what multiple
agents with lesser features can do? There are five situations where multia-
gent systems are essential [91], and one of these is relevant for our case: the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 15

task is inherently distributed. The case of self-interested robots considered
in this thesis is a realistic example of a multiagent system: although solitary
robots may not initially consider themselves as part of a distributed system
if they are not aware of others at the outset initially, they still ultimately form
a distributed system as they can communicate and coordinate their actions
by passing messages to one another when within communication range.

This section introduces relevant robotics terminology in the context of
multiagent systems. We begin by describing three main paradigms for mod-
elling multiagent systems.

2.4.1 Distributed, centralised and decentralised systems

A distributed system is defined as a system in which a collection of agents
communicate with each other by passing messages [20]. The study of dis-
tributed systems is a broad area in computer science and engineering, often
characterised by complex data structures and implementations [20]. In de-
signing such systems, one typically considers three models: the physical
model describes the types of devices to use; the architectural model spec-
ifies communication between devices; and the interaction model describes
the solution that the system should provide. This thesis considers the in-
teraction model only, i.e. we consider device coordination once the devices
and their communication mechanisms have been determined.

There are many applications of distributed systems. Sensor networks are
one example [117]. Sensor networks are often used to monitor the phys-
ical environment and provide observations for various uses. Distributed
behaviour is also found in insect colonies [12]: groups of insects achieve a
common goal, such as lifting prey, by distributed coordination of their ac-
tions through local interactions. Bitcoin and other blockchain technologies
[76] are other examples of distributed systems. Another potential applica-
tion for distributed systems concerns intelligent traffic network control sys-
tems that, in a distributed manner, minimize time spent in queues caused
by traffic conflicts or congestion to improve driver liveness and safety [26].

In distributed systems, agents are typically arranged in two main ways:
client-server or peer-to-peer systems. (Other arrangements include multi-
tier systems and pipeline systems.) In client-server systems, the clients re-
quest resources and the server provides those resources. Web servers and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 16

web browsers function together as a client-server system. In peer-to-peer
systems, which we consider here, agents are equal participants in commu-
nication and tasks are equitably distributed between all the agents. This
means that agents both provide and use resources. Gnutella is a good ex-
ample of a peer-to-peer network [66]. An illustration of a distributed system
network is given in Figure 2.2a.

Distributed systems can be centralised (e.g. client-server systems with
a single server) or decentralised (e.g. client-server systems with multiple
servers). In centralised systems (see Figure 2.2b), there is a single agent
that receives and fuses information from all other agents. This single agent
can distribute information as required. On the other hand, decentralised
systems are defined to be distributed systems in which processing is dis-
tributed to various agents [23, 24]. In other words, a decentralised system is
a distributed system with multiple central agents (see Figure 2.2c). If all the
agents are central, then the system is fully decentralised. Durrant-Whyte
[23] gives an overview of decentralised systems.

(a) (b) (c)

Figure 2.2: Interaction paradigms in multiagent systems. 2.2a: Example of a dis-
tributed system where agents have local interactions. 2.2b: Example of a centralised
system with a central agent (the red agent). 2.2c: Example of a decentralised system
with seven central agents (the red agents).

Unlike decentralised systems, in a centralised system the whole system
fails when the central agent malfunctions. The failure of a node is easier to
repair in a centralised system than in a decentralised system [20]. In this
thesis, we consider decentralised distributed systems. We treat the system
of solitary robots as a distributed system to model the limited communi-
cation capacity of solitary robots, and as a decentralised system to model
the self-interest of solitary robots. We now briefly describe another relevant
aspect of distributed systems: communication protocols.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 17

2.4.2 Communication protocols

In interaction of robots, communication methods are required to facilitate
the exchange of messages between agents. Communication protocols de-
fine rules for exchanging information. Methods for communication may
differ depending on the paradigm of the system. In a centralised system for
instance, methods such as semaphores [20] can be used.

To exchange data between robots, the following must be specified:

• nature of data: the type of information robots will exchange (e.g. maps);

• address format: how the sender and receiver are identified (e.g. robot
identifier);

• routing mechanism: selection of a path to pass data along from the
sender to the receiver when they are not directly connected (e.g. use
of a spanning tree [24]); and

• optionally, a mechanism for detection and correction of transmission
error, to ensure the success of data exchange.

For communication between two devices, there are two ways of transmit-
ting signals from one device to the other: synchronous and asynchronous.
For synchronous transmission, both devices use a common clock signal
(typically the clock signal of the sender). The receiver uses the clock sig-
nal sent by the sender. Online conferencing systems such as Skype are a
good example of synchronous transmission. For asynchronous transmis-
sion, there is no common clock signal between the sender and receiver,
and information is relayed with some time lag. Electronic mail delivery
is a good example of asynchronous communication. This thesis considers
asynchronous transmission, because the time interval between messages ex-
changed by interacting robots is not constant and there is a need to distin-
guish messages exchanged between interacting robots at different times.

In a distributed system, each agent is an isolated component and agents
use message passing methods to exchange information [20]. In message
passing methods, multiple robots communicate locally using message queues.
This thesis considers message passing methods for decentralised systems,
because of the nature of solitary robots: robots with restricted communica-
tion capacity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 18

2.4.3 Leader election based on centrality measures

Solitary robots can interact with each other. In interaction of robots, a nat-
ural way of facilitating interaction of robots is to choose a leader that can
coordinate the interaction. In our thesis, a leader is elected based on a close-
ness centrality because choosing a central node leader has the potential to
reduce the propagation time of communication.

There are several algorithms that address the problem of leader election
based on centrality measures. Naz [77] recently conducted a survey on
the state-of-the-art leader election methods based on centrality measures.
Before specifying some aspects considered in designing a leader election
method, we note three relevant properties required of a leader election al-
gorithm as specified in Coulouris et al. [20]:

1. termination: the process of choosing a leader should reach completion;

2. uniqueness: exactly one node must be elected as leader; and

3. agreement: the elected leader should be known and accepted by all
participants on completion.

In the literature, some leader election methods require the construction
of a spanning tree [34, 49, 86]. Spanning trees are important in interaction of
robots because they are acyclic (i.e. there are no cycles). Cycles (also known
as bridge loops) in networks, can cause repetitions of information during
communication which can cause extreme amounts of communication traffic
or require high processing time—which can significantly degrade network
performance.

Methods to elect a leader differ, depending on the communication paradigms
used (e.g. synchronous or asynchronous systems), how information is ex-
changed (e.g. centralized or decentralized systems), whether robots are
uniquely identifiable or not, and the network topology [77]. We consider
the problem of distributed leader election methods in networks of spatially
separated robots.

There are various centrality measures; unlike in the method proposed by
You et al. [118] where three centrality measures are considered, we only
consider closeness centrality [8, 13] because we aim to know the node with
the shortest distances to all other nodes in a network. In this thesis, we con-
sider a decentralised leader election method based on closeness centrality

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 19

where each robot, in a distributed manner, is responsible for estimating its
own closeness centrality [118].

Let δij denote the path distance between the nodes vi and vj in an (un-
weighted) graph G with vertex set V and edge set E . The distance between
two nodes is the length of the shortest path between these nodes.

Definition 2.4.1. The closeness centrality [8] of a node is the reciprocal of the
average path distance from the node to other nodes. Mathematically, the closeness
centrality ci is given by

ci =
|V| − 1
∑j δij

. (2.4.1)

Nodes with high closeness centrality score have the shortest average path
distances to all other nodes.

2.4.4 Dynamic networks

In the literature, a dynamic network is a network in which the topology
changes over time, i.e., the set of vertices or the set of edges can change
over time [57]. A typical example of such networks is a mobile ad-hoc net-
work, where nodes can join or leave–thus, communication can appear or
disappear at any time. There are three kinds of connectivity changes that
describe the dynamics of a graph: node or edge deletion only (decremen-
tal connectivity), node or edge addition only (incremental connectivity), or
both node or edge deletion and addition (fully dynamic connectivity). So-
lutions to problems such as the verification of the connectivity of a network
after node deletion induced by the dynamics of a graph, exist for each type
of connectivity. For instance, Shimon and Yossi [90] solved the case of decre-
mental connectivity with edge deletion only. The solution proposed by Shi-
mon and Yossi [90] answered the question: If we are given an undirected
graph where edges are deleted one at a time, are two nodes vi and vj of the
network in the same connected component? This may be important in ap-
plications where each node needs to know the size or the topology of the
component to which it belongs.

In this thesis, the aspect of dynamic networks comes into play because
a node can fail to communicate with another node. When a node fails to
communicate with another node, the graph topology changes because it is
the same as if an edge were deleted from the network. Failed nodes can be

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 20

restored. Restoration of nodes also defines some dynamics because addition
of nodes changes the graph topology.

2.5 Conclusion

This thesis consists of proposing active strategies for coordination of soli-
tary robots. A solitary robot is self-interested (i.e. a robot without a common
social goal), autonomous, has a restricted communication capacity, and is
equipped with an active ability to amend its behaviour when it acquires
new information. A solitary robot does “the best it can” while not being
aware of other robots, which it can accidentally meet with. When robots
accidentally encounter each other, they can collaborate to work more effec-
tively. This chapter reviewed and discussed relevant literature in the context
of distributed systems.

When a system is composed of multiple robots, there are three approaches
to model the interaction of robots, namely: distributed, centralised and de-
centralised systems. This thesis considers distributed systems which are de-
centralised because each robot does processing, and robots have restricted
communication ability.

Four other important topics were also described. First, the idea of a con-
figuration space for robots to search is required. Then, models of robot mo-
tion were discussed. We also considered how robots obtain and represent
information from the environment.

For the case of search by solitary robots which is the topic of this thesis,
maps are represented by grids. For motion commands, we provide to the
robot information about its destination which it considers to determine its
translational and rotational velocities. We also discussed two types of maps:
location-based and feature-based. In the case of this thesis, we are not con-
cerned about the type of features found in the environment except objects
of interest. So a location-based map is suitable for search and rescue.

In what follows, we describe our three proposed methods in Parts II–III
respectively:

• Part I reviews existing methods for coordination, describes our pro-
posed method and discusses the results of coordination of solitary
robots.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 21

• Part II reviews existing methods for view construction, describes our
proposed method and discusses the results of view construction.

• Part III reviews existing methods for classifier fusion, describes our
proposed method and discusses the results of classifier fusion.

We now review background work and literature for the first problem: coor-
dination.

Stellenbosch University https://scholar.sun.ac.za

Part I

Coordination

22

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Background and literature

Search and rescue by solitary robots is the overarching challenge of this the-
sis. This chapter presents background and reviews literature for coordina-
tion methods for solitary robots. We aim to design a coordinated search
strategy for solitary robots that allows them to explore more effectively,
where the robots have no prior information about each other or the search
environment.

3.1 General background

Coordination is important in robotics applications where a group of robots
must achieve some task [5, 17, 18, 29, 41, 53, 83, 85, 93, 113]. This work
considers the case of multiple robots searching an unknown environment.

Mobile robots typically have constrained communication [75]. Amigoni
et al. [3] recently conducted a survey of solutions to problems of limited
communication. One of the main concerns arising when robots with lim-
ited communication capacity explore an unknown environment is interfer-
ence: robots may obliviously search overlapping regions, which reduces
their combined efficiency.

The only time that robots detect interference is when they detect each
other. Under limited communication, the meeting of solitary robots is just a
fortunate coincidence (also known as symmetric rendezvous [2]).

Traditionally, rendezvous of robots in a network refers to a control algo-
rithm which brings together a group of robots that know about each other,
typically at the centroid of their initial positions [44]. In this work, due to the

23

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 24

nature of solitary robots, we do not treat rendezvous as a control algorithm.
Rather, we use the term rendezvous to refer to a meeting of solitary robots.
We adapt the term rendezvous as robots must take advantage of their in-
teraction, which means robots involved in a meeting behave as if they were
from a team (i.e. formation control) to work more effectively. Once interac-
tion is terminated, each robot again behaves as a solitary robot.

When search involves multiple robots, one would like a group of robots
that know about each other to explore non-overlapping regions—this is
termed sustainability [42]. We must design methods which ensure the ef-
fectiveness of robots at using information they possess. Consequently, each
member of a group of robots that know about each other might explore a
non-overlapping region with respect to other members. The more a robot
is able to avoid exploring already explored areas, the more sustainable its
performance becomes. In other words, low interference implies high sus-
tainability.

We assume that when a robot starts searching, the only information it
has about the environment is the region that it can perceive from its initial
location. The scale and boundary locations of the environment are also un-
known, although a boundary can be sensed when within perception range.
It is also assumed that robots have a limited time for search: the environ-
ment is large and robots could not explore it entirely, even were the envi-
ronment known [109]. The constraint on time could be, for example, due to
limited battery power of robots.

This work applies a cellular decomposition strategy [17] to the search of
an unknown environment by solitary robots under a time constraint. Cel-
lular decomposition is a technique in which an environment is divided into
non-overlapping regions (see an illustration of cellular decomposition in
Figure 3.1) so that every region can be assigned to at least one robot for
coverage [21].

3.2 Literature discussion and frontier-based
exploration

In the literature, the problem of coordination of robots is addressed by vari-
ous methods, including methods based on line of sight [5], frontiers [72] and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 25

Figure 3.1: Illustration of cellular decomposition with four regions. The blue lines
denote boundaries of the search space and the black squares are regions.

rendezvous [109]. The aim of coordination is to improve the robots’ perfor-
mance. For the coordination of solitary robots, two coordination methods
are found to be appropriate, namely the accidental rendezvous [42] and
periodic rendezvous strategies [109]. The accidental rendezvous strategy
refers to a strategy where robots only meet accidentally, while the periodic
rendezvous strategy refers to a strategy where robots which are initially
aware of each other schedule future meetings.

The accidental and periodic rendezvous strategies apply a frontier-based
approach for exploration of unknown environments [114, 115]. Frontier-
based exploration is the process of selecting frontiers that yield the biggest
contribution to a specific utility at an unknown environment. Frontiers are
regions at the boundary between explored and unexplored regions. So mov-
ing to frontiers, a robot will gain as much information as possible. It should
be noted that a frontier is selected based on single points which lie on bor-
ders.

For frontier-based exploration, various utility functions, including explo-
ration time utility (minimize the search time) and localization utility (min-
imize the localization error), can be used to select the next frontier to visit.
Gomez et al. [37] conducted a survey of frontier-based exploration algo-
rithms. Utility functions are used for different purposes and subject to var-
ious assumptions. For example it does not make sense to use localization
utility here because we assume that maps built by robots are accurate. Sim-
ilarly, we can not sensibly use exploration time utility because exploration

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 26

time is assumed to be limited and common to all robots.
For our purposes, we consider two main utility functions for selection

of frontiers, namely: navigation utility (minimize the displacement to fron-
tiers) and information utility (maximize the amount of new information that
can be acquired). First, for navigation utility, a robot only considers frontiers
within its perception range. We use information utility because it suits the
search and rescue task best. Second, to quantify the information utility, a
robot considers balls centred at points at the edge of its perception range
and selects the point for which the ball contains the maximum amount of
unexplored region. There might not be frontiers within perception range
of a robot. In that case, the robot will uniformly and randomly choose one
point at the edge of its perception range to move to. It should be noted that
it is possible that multiple frontiers yield the same contribution. When that
happens, robots will choose the first frontier it has scanned among those
which yield the maximum contribution. The robot selects the next point
to move to based on these two utilities using a procedure GETNEXTTAR-
GETPOINT in Algorithm 3.1. There are three conditions for a solitary robot
to select a new target point: either after reaching its previous target point,
when the robot realizes that it takes longer to reach its previous target point
than initially planned or after an interaction with other robots. (The last
condition will be discussed in the following paragraph). A frontier-based
exploration method is illustrated using FRONTIERBASEDEXPLORATION in
Algorithm 3.1. A robot avoids encountered obstacles using a Bug algorithm
[80] our implementation of which is given in procedure DISTANCEBUG in
Algorithm B.1 (see Appendix B).

The accidental rendezvous strategy is an interesting approach which pro-
vides a solution to mitigate interference: at each rendezvous, the search
space is divided into sectors (i.e. unbounded regions) to which robots are
assigned. For example, the westernmost part of the environment from a
reference location (e.g. meeting point) might be assigned to a single robot
(Figure 3.2a). An unbounded region is represented by a target point which
we term the coordination target point.

The interacting robots use a procedure GETCOORDINATIONTARGETPOINTS

(where the parameter h denotes how far the interacting robots should move
in their respective directions) in Algorithm 3.1 to spread themselves to non-
overlapping sectors. (We abstract away the details of interaction of robots in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 27

Algorithm 3.1 Our presentation of a frontier-based exploration method. The algo-
rithm gives the code run on a robot Ri. The main method is UPDATE which is run
by Ri once each step. An example of code to execute the class is given in the proce-
dure RUNARS. Robots which are involved in an interaction are called to choose a
leader which can facilitate their interaction. For the next step of coordination, af-
ter leader election, each member sends its personal information to the leader elected
(using a variant of DATAFUSION described in Algorithm 5.3). Then after it has
combined all individual information from other robots, the leader elected assigns
coordination targets to other members (using a variant of TASKASSIGNMENT de-
scribed in Algorithm 5.3). The variable h in this algorithm is a hyperparameter: we
choose h = 100 after several attempts with various values.

1: procedure RUNARS()
2: ARSrobot←ARS(τ, d, γ, ∆t, Tw, D, η, N, h)
3: while not ARSrobot.ISENDED() do
4: ARSrobot.UPDATE()
5: end while
6: end procedure
7:
8: class ARS
9: Class variables

10: ai its current target point
11: Bug object for obstacle avoidance

12: C(t)i its explored region
13: γ motion velocity
14: Γij hash table of exploration regions of tree descendants via its tree child Rj
15: ∆t time step
16: d robot perception range
17: D maximum number of iterations for graph construction
18: Di set of tree descendants of Ri
19: Dij set of tree descendants of Ri via its tree child Rj
20: ε a small threshold for stopping condition
21: electionObject object for leader election
22: GO a variable to control the steps of leader election
23: Gi set of previous meetings of Ri and their times
24: h a variable indicating how far robots should move in their directions
25: Ii identifiers of robots currently in interaction known by Ri
26: Ji identifiers of interacting robots it knows about
27: Li a hash table with robot identifiers as keys and their locations as values
28: N sampling size
29: Ni immediate neighbours
30: O set of obstacles
31: planningState a variable to indicate robot state during planning
32: pruningObject object for network view construction
33: Ri queue messages received by Ri during task assignment
34: s number of steps required to check quantities of explored area
35: robotState a variable to indicate robot state
36: Si queue messages received by Ri during data fusion
37: stepB a variable to control the steps of network view construction
38: τ maximum search time
39: treeChildren its tree children
40: treeParent its tree parent
41: tw time elapsed since robot has been waiting
42: Tw maximum time robots can wait for other robots before they start planning
43: xi its current location
44:
45: constructor (τ, d, γ, ∆t, Tw, D, η, N, h)
46: (τ, d, γ, ∆t, h)← (τ, d, γ, ∆t, 100)
47: (N, Tw, D, t, C(0)i ,Ji,Gi)← (N, Tw, D, 0, Bd(xi), ∅, ∅)
48: (A, η, tw)← (∅, η, 0)
49: (treeChildren, treeParent)←(∅,⊥)
50: Bug← BUG(d, γ) . using Algorithm B.1
51: pruningObject←⊥
52: electionObject←⊥

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 28

53: robotState← ROBOTSTATES.SEARCHING . using Algorithm F.1
54: planningState← PLANNINGSTATES.NONE . using Algorithm F.2
55: searchState← SEARCHSTATES.INREGION . using Algorithm F.3
56: ai ← GETNEXTTARGETPOINT()
57: end constructor
58:
59: procedure UPDATE()
60: if not ISENDED() then . using Algorithm 5.3
61: t0 ← currentTime()
62: if robotState=ROBOTSTATES.SEARCHING or

robotState=ROBOTSTATES.WAITING then
63: (Ii, Wi)← NEWINTERACTION() . using Algorithm 5.3
64: if |Ii| > 0 then
65: (Ii,Wi)← (Ii, Wi)
66: robotState← ROBOTSTATES.STOP
67: tw ← t
68: else if |Wi| > 0 then
69: robotState←ROBOTSTATES.WAITING
70: else
71: SEARCHING()
72: end if
73: else if robotState=ROBOTSTATES.STOP then
74: if t− tw ≤ Tw then
75: WAITING() . using Algorithm 5.1
76: else
77: robotState←ROBOTSTATES.PLANNING
78: end if
79: else if robotState=ROBOTSTATES.PLANNING then
80: if planningState=PLANNINGSTATES.NONE then
81: pruningObject← PRUNING(Ii, D) . using Algorithm 8.1
82: pruningObject.INITIALONEHOP()
83: planningState← PLANNINGSTATES.CONSTRUCTION
84: stepB← "update"
85: GO← false
86: else if planningState=PLANNINGSTATES.CONSRUCTION then
87: TREECONSTRUCTION() . using Algorithm 5.3
88: else if planningState=PLANNINGSTATES.ELECTION then
89: LEADERELECTION() . using Algorithm 5.3
90: else if planningState=PLANNINGSTATES.FUSION then
91: DATAFUSION()
92: else if planningState=PLANNINGSTATES.TASK then
93: TASKASSIGNMENT()
94: end if
95: end if
96: t1 ← currentTime()
97: ∆t01 ← max (0, Tw − t1 + t0) . Ri shall wait for some time Tw before it can increment

its counter.
98: DELAY(∆t01)
99: t← t + ∆t
100: C(t)i ← C

(t−∆t)
i ∪ Bd(xi)

101: ∆Ti ← ∆Ti + ∆t
102: end if
103: end procedure
104:
105: function GETNEXTTARGETPOINT()
106: α← uniform(0, 2π)
107: a← xi + d(cos α, sin α)

108: (u, β)← (|Bd(a) ∩ C(t)i |,
2π
N) . Bd(a) denotes a closed ball of radius d centred at a

109: for j = 1 to N do
110: α← α + β
111: b← xi + d(cos α, sin α)

112: if |Bd(b) ∩ C
(t)
i | < u then

113: a← b
114: u← |Bd(b) ∩ C

(t)
i |

115: end if
116: end for
117: return a
118: end function
119:
120: procedure REINITINTERACTIONINFO()
121: (treeChildren, treeParent)←(∅,⊥)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 29

122: (Ii,Wi,Li, Γi,Di)← (∅, ∅, ∅, ∅, ∅)
123: tw ← 0
124: ∆Ti ← 0
125: A← ∅
126: planningState← PLANNINGSTATES.NONE
127: robotState← ROBOTSTATES.SEARCHING
128: y0 ← xi
129: ∆y← 0
130: AB ← ∅
131: end procedure
132:
133: procedure RELAYINFORMATION()
134: F ← treeChildren.clone()
135: while F 6= ∅ do
136: Ri chooses an Rj ∈ F
137: Γij ← ∅
138: for Rk ∈ Dij do
139: Γij[Rk]← ak
140: end for
141: Ri sends C(t)i , Ji, Gi, and Γij to Rj
142: F ← F \ {Rj}
143: end while
144: end procedure
145:
146: procedure TASKASSIGNMENT()
147: if treeParent =⊥ then
148: GETCOORDINATIONTARGETPOINTS()
149: for each tree child Rj of Ri do
150: for Rk ∈ Γij.keys() do
151: ak ← Γij[Rk]

152: Gi[Rk]← t . Gi is a hash table
153: end for
154: end for
155: RELAYINFORMATION()
156: else
157: whileRi.size() ≥ 1 do
158: (j, C(t)j ,Jj, Γji,Gj)← Ri.dequeue()

159: (C(t)i ,Ji)← (C(t)j .clone(),Jj.clone())
160: Gi ← Gi ∪ Gj
161: RELAYINFORMATION()
162: end while
163: end if
164: REINITINTERACTIONINFO()
165: end procedure
166:
167: procedure DATAFUSION()
168: Li[Ri]← xi . Li is a hash table
169: Di ← ∅
170: if treeChildren = ∅ then
171: Ri sends C(t)i , Ii, Li and Di to treeParent

172: planningState← PLANNINGSTATES.TASK
173: else
174: for tree child Rj of Ri do
175: Dij ← ∅
176: end for
177: while Si.size() ≥ 1 do
178: (j, C(t)j j, Ij,Lj,Dj)← Si.dequeue()

179: N (t)
i ← N (t)

i ∪N (t−1)
j

180: (C(t)i , Ii)← (C(t)i ∪ C
(t)
j , Ii ∪ Ij)

181: (J ,Dij)← (Ji ∪ Jj ∪ Ii,Dij ∪Dj)

182: Li.add(Lj) . adding a hash table into another hash table
183: Dij ← Dij ∪Dj
184: Di ← Di ∪Dj
185: end while
186: if treeParent 6=⊥ then
187: Ri sends (its combined information) C(t)i , Ii, Li and Di to treeParent

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 30

188: planningState← PLANNINGSTATES.TASK
189: else
190: planningState← PLANNINGSTATES.TASK
191: end if
192: end if
193: end procedure
194:
195: procedure SEARCH()
196: xi ←Bug.DISTANCEBUG(A, xi, ai, C

(t)
i ,O)

197: ∆y← ∆y + γ
198: if ∆y > ηδ(ai, y0) or δ(ai, xi) < ε then
199: ai ← GETNEXTTARGET()
200: y0 ← xi
201: ∆y← 0
202: end if
203: end procedure
204:
205: procedure GETCOORDINATIONTARGETPOINTS()
206: P← Li.size()
207: c← GETCENTRALPOINT() . using Algorithm 5.3
208: α← uniform(0, 2π)
209: β← 2π

P
210: for i = 1 to P do
211: bi ← c + h(cos α, sin α)
212: α← α + β
213: end for
214: B← (b1, b2, · · · , bP)
215: robotsIDS, cost← GETCOSTMATRIX(B) . using Algorithm 5.3
216: ids, indices← HUNGARIAN(cost) . from SciPy [15] assuming that P robots

are interacting. This subroutine returns identifiers corresponding to closest coordination target
points for the P robots based on their locations

217: for (j, k) ∈ zip(ids, indices) do
218: r ← robotIDS(j)
219: Γi(r)← bk
220: end for
221: end procedure
222: end class

Algorithm 3.1 because they will be discussed in Chapter 5.) Each robot will
then resume the use of the procedure GETTARGETPOINT above mentioned
once it has reached its coordination target.

However, dividing areas into sectors can result in unbalanced assign-
ment, which promotes interference [42]—robots end up with different-sized
areas to explore. For example, an unbalanced assignment arises when robots
interact close to a boundary of the environment of which they are unaware
while coordinating. In Figure 3.2b for instance, the areas assigned to two of
the robots (the blue and orange trajectories indicate these robots) are partly
outside the environment, something the robots are unaware of when co-
ordinating, as boundaries of the environment are unknown until encoun-
tered. Thus, assigning sectors under the accidental rendezvous strategy
may lead to interference [42] because sectors are unbounded. The key is-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 31

sue in such scenarios is that robots have no fallback plan and can not com-
municate with the other robots again. To address unbalanced assignment,

(a) (b)

Figure 3.2: Illustration of assignment of sectors upon an accidental rendezvous
with four robots (coloured circles are robots, the lines show their respective trajec-
tories). (3.2a): Balanced assignment with two robots: robots start at the centre of
the environment. The chance of searching in overlapping areas is small. (3.2b):
Unbalanced assignment with four robots: robots are unaware that they start close
to a boundary and since sectors are unbounded, the chance of overlap is high (see
crossed lines).

robots could schedule further meetings during their rendezvous to share
additional information—the periodic rendezvous strategy [109]. In the pe-
riodic rendezvous strategy, robots schedule further rendezvous whenever
they meet and they all meet simultaneously. Rendezvous points are in al-
ready explored areas: Unexplored regions may be occupied by obstacles,
so setting rendezvous points in unexplored regions may not work. This
strategy reduces interference, as robots share additional knowledge on a
regular basis. However, it suffers from the problem of interruptibility: robots
cease new knowledge acquisition when they travel to the rendezvous point:
robots travel through explored areas to avoid missing a rendezvous, espe-
cially when the environment is occupied by obstacles. It has been shown
that interruptibility can consume up to half of the search time [42].

Coordination methods exist which mitigate interruptibility: one is the
method proposed by de Hoog et al. [22], which uses two types of robots,
explorers and relays, and a base station. The explorers intentionally meet
and share knowledge with the relays. The relays then transfer the shared
information to the base station. Interruptibility is mitigated by the fact that
the explorers and relays meet closer to the frontiers of the explorers (i.e.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 32

they meet at the boundaries between explored and unexplored areas of the
explorers). This method requires a team hierarchy and typically aims to
gather all information at a central location, whereas sector-based methods
do not. In the approach taken in this thesis, all robots are explorers and no
base station is necessary.

Another solution in the literature which mitigates interruptibility has
robots plan to meet other robots during their exploration time before the
rendezvous time arrives [42]. Two challenging aspects must be handled in
this case: (i) forecasting the current positions of the robots involved; and
(ii) forecasting the paths to be taken by the robots from their current posi-
tions. To address these challenges, the method proposed by Hourani et al.
[42] is based on serendipity. Usually, when robots interrupt exploration to
attend a rendezvous, new information might not be gained as they travel to
the rendezvous point. To address this negative impact, some robots, which
are referred to as serendip robots, plan to interact with their colleagues be-
fore the rendezvous time arrives by forecasting their paths. When serendip
robots meet other robots, they can all coordinate before their scheduled ren-
dezvous time and at some other location than their planned rendezvous
point (the chance for serendip robots to meet all other robots before their
rendezvous time is very small). Thus interruptibility might be mitigated.
However, this approach has only been considered for obstacle-free environ-
ments: Hourani et al. [42] used graph-based maps, where nodes and edges
of the graph were obtained from free-obstacle areas, to test the suitability of
their approach.

The periodic rendezvous strategy was proposed for a team (not for soli-
tary robots) with unlimited search time. Wellman et al. [109] treat situa-
tions where robots know about each other from the outset. The authors of
the accidental and periodic rendezvous methods considered the question
of how long a team of robots would take to explore some fraction (for ex-
ample, 90%) of the search environment, given unlimited search time. Since
coverage percentage is measured based on the size of the search environ-
ment, this is not a realistic stopping criterion if the size of the environment
is unknown. Other realistic stopping criteria, for example exploration time,
may be considered. Also, the periodic rendezvous method was originally
tested in an environment with a very limited number and shape of obsta-
cles, which is very unrealistic. In this thesis, we have a different research

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 33

question for coordination: how much area can robots cover within a given
search time (i.e. limited search time).

This thesis proposes a coordination strategy that provides sustainable
performance when the time for search is limited (specifically insufficient
to cover the entire search area); it can also be used if only an upper bound
on the available search time is known.

Since cellular decomposition allows robots to explore non-overlapping
regions, we hope to mitigate interference. Cellular decomposition also al-
lows robots to avoid the need to schedule further rendezvous, thus reducing
the problem of interruptibility. Our proposed method is also in the class of
accidental rendezvous strategies.

3.2.1 Optimal selection of coordination target points

Selection of coordination target points should be treated in depth as some
coordination target points may be more optimally chosen than others—optimal
selection leads to efficient exploration. Selection is optimal when it brings
additional benefits with a favourable trade off. Burgard et al. [16] men-
tioned two criteria to make an optimal selection of coordination target points
for exploration, which we can describe as follows.

• Information utility: selected coordination target points should lead robots
to non-overlapping regions, which leads to efficient exploration.

• Navigation utility: costs (e.g. travelling distance or time) of the selected
coordination target points should be relatively minimised. This means
that robots involved in an interaction should choose coordination tar-
get points which are close to their meeting point.

3.3 Summary

This chapter reviewed background work and literature for coordination of
solitary robots. To the best of our knowledge, most work done in this area
considers coverage percentage as stopping criterion.

While research has been conducted in the area of coordination, there is
still room for improvement in this area. Since coverage percentage is mea-
sured based on the size of the search environment, this is not a realistic

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. BACKGROUND AND LITERATURE 34

stopping criterion if the size of the environment is unknown. It should be
noted that coverage percentage remains suitable for comparison to evaluate
approaches. This thesis makes contributions by proposing a new approach
based on exploration time, providing an improvement in terms of interfer-
ence and interruptibility under certain conditions.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Soft obstacle coordination strategy
for solitary robots

Portions of Part I, and particularly this chapter, appear in Masakuna et al.
[70].

4.1 Introduction

One of the main concerns encountered when robots with limited commu-
nication capacity explore an unknown environment is interference [109]. In
Chapter 3, we identified a gap for effective maximization of coverage in sit-
uations where a known upper bound on the search time precludes search of
the entire environment and robots are without a common (social) goal.

In this work, coverage is used as a proxy for finding targets: the explo-
ration performance of a robot is taken to correspond to its area covered. This
corresponds to optimizing the expected number of targets found assuming
uniformly distributed independent target locations. We also assume that a
robot can detect other robots in its perception range.

4.1.1 Contributions

Our contribution is to propose a coordination method with low interference
and low interruptibility. Three novelties are considered in our proposed
coordination method:

35

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 36

• use of bounded regions to robots for exploration (i.e. application of
cellular decomposition);

• use of margins; and

• implementation of a hybrid approach (combination of accidental and
periodic rendezvous methods).

We consider limited-time search. At coordination, robots use the remaining
search time to bound the size of their exploration regions when applying
cellular decomposition. In the case of assignment to an inaccessible region,
the robot concerned must find a new region to explore. A key change from
earlier approaches based on sectors [109] is that regions are bounded in size
because of the known time bound. The robot considers regions assigned to
other robots as soft obstacles. Thus, it eschews those regions—although a
robot can move through soft obstacles if it would otherwise be surrounded
by explored regions.

The bounded region assigned to a robot is termed an exploration region.
Since the environment is unknown, a robot’s exploration region may not be
fully accessible: it may be occupied by one or more large obstacles, which
limit the effective search space, or it might be smaller in size than first sup-
posed because it is found (on exploration) to contain one or more bound-
ary edges. To tackle this, we introduce the use of margins: robots leave
some (believed to be) unexplored space around their assigned exploration
regions. When a robot finds that it can not fully explore its assigned ex-
ploration region, it uses these margins to move to a new exploration region
which it determines by itself. Our proposed method should thus have low
interruptibility and interference.

The periodic rendezvous strategy requires an initial prearrangement of
the rendezvous location for the robots. We implement a naive version of the
periodic rendezvous strategy for solitary robots: all the robots are members
of only one team and every member must be present at each rendezvous.
We call the resulting approach a hybrid method because it essentially com-
bines the accidental and periodic rendezvous strategies.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 37

4.1.2 Limitations of our proposed coordination strategy

Our coordination strategy is not as widely applicable as other methods such
as accidental rendezvous strategy and periodic rendezvous strategy. Some
situations where our coordination method is not recommended or applica-
ble are:

• when the search time is unlimited. With unlimited search time, there
are suitable coordination methods such as in Wellman et al. [109],
while our method can not be applied.

• when the robots are from a team. The purpose of a team is that robots
keep collaborating while they explore. We consider robots with lim-
ited perception and communication capacity. There are many existing
methods that robots with limited perception and communication ca-
pacity could apply so that they keep collaborating during the search
process. Such methods include methods based on line of sight [5] and
rendezvous [109].

• when the search environment is very constrained in terms of space
(e.g. a long indoor corridor). Our proposed method assumes large
open space, so it is recommended for outdoor search.

4.2 Considerations for the soft obstacle strategy

This section discusses two important aspects for coordination of solitary
robots: the intuition underlying the proposed coordination strategy and a
property guaranteeing satisfactory coordination of solitary robots. Before
we discuss the intuition of our proposed method, we would like to formalise
the problem of coordination.

Let A(τ)
i be the region explored by a robot Ri at the end of the search,

where τ denotes a known upper bound on search time and N the number
of solitary robots. The aim is to maximise the size of the combinedA(τ)

i . We
do this approximatively using the following inclusion-exclusion principle,∣∣∣∣∣ N⋃

i=1

A(τ)
i

∣∣∣∣∣ ≥ N

∑
i=1

∣∣∣A(τ)
i

∣∣∣− N

∑
i=1

N

∑
j=1
i 6=j

∣∣∣A(τ)
i ∩A

(τ)
j

∣∣∣ , (4.2.1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 38

by trying to trade off maximizing the first term

N

∑
i=1

∣∣∣A(τ)
i

∣∣∣
with minimizing the second term

N

∑
i=1

N

∑
j=1
i 6=j

∣∣∣A(τ)
i ∩A

(τ)
j

∣∣∣ . (4.2.2)

Robots applying this approach are likely to achieve at least a lower search
performance bound while keeping individual search performance high.

4.2.1 Intuition for the soft obstacle strategy

To contribute effectively to a group search, each robot should avoid search-
ing areas others have already covered or are likely to cover in future. To
achieve this, we make use of the following two insights:

1. (Bounded exploration region). Since the upper bound on search time
is known in advance, a robot can use this information to evaluate the
maximum area it and other robots can cover.

2. (Soft obstacles). If a robot knows the regions assigned to other robots,
it can plan to avoid exploring those regions. Note that a robot becomes
aware of other robots’ assigned exploration regions only through ren-
dezvous.

These insights are used in our approach when constructing the bounded
exploration regions for the cellular decomposition strategy [17], described
in Subsection 4.3.1. However, just as with the approach of sectors (un-
bounded regions which are used in the two benchmark strategies discussed
in Chapter 3) applied in [109], there remain other major concerns when ap-
plying cellular decomposition in an unknown environment.

LetXi denote the current exploration region of Ri. (An exploration region
is assumed to be rectangular and is described in Algorithm F.4).

• The region assigned to a robot could be partly outside the environ-
ment, if the coordinating robots are not yet aware of boundary loca-
tions (e.g. region X3 in Figure 4.1).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 39

• The exploration region of a robot is likely to be occupied by obstacles
(e.g. the circular obstacle in X4 in Figure 4.1), since the environment is
not all free space.

Figure 4.1: Illustration of the proposed soft obstacle coordination with four robots.
Solid black regions denote obstacles. The green lines denote boundaries of the search
space, the red squares are assigned exploration regions Xi and the dashed lines are
margins (which we will explain in Subsection 4.3.2).

The two points described above can lead to robots having unbalanced as-
signments, making interference more likely. Let S, W and O (with S ⊇W ⊃
O) denote an open space (i.e. an outdoor area), the search environment, and
the set of obstacles respectively. The set S is an arbitrary superset of W to
serve as a universal set (any set containing W). Given the grid represen-
tation used here (as discussed in Subsection 2.3.2), W is represented by a
grid. The set of obstacles O is the set of cells that are occupied—robots learn
about O as they explore. All boundaries of W are assumed to be in O.

Initially, a solitary robot is neither aware of other robots involved in the
search space nor the locations of obstacles. To address this concern, a robot
first creates a virtual world, meaning that some parts of its exploration re-
gion might not be in the real environment or may already be explored by
other robots. When its exploration region is partly accessible, the robot ex-
plores the accessible part first (details on exploring accessible regions will
be provided in Appendix A). Subsequently, the robot selects another explo-
ration region if necessary, taking into account the exploration regions as-
signed to other robots that it is aware of which are treated as soft obstacles.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 40

No matter what might prevent one robot from exploring its assigned ex-
ploration region (such as unbalanced assignment due to unexpected bound-
aries or inaccessible regions), other robots that are aware of this assigned
exploration region are prohibited from searching in that exploration region.

In Figure 4.1, for example, most of the exploration region X3 assigned
to robot R3 is outside the environment (i.e. it is inaccessible). The robot
R3, after exploring the accessible area of its exploration region, must select
another exploration region. If R3 has encoded the exploration regions of the
other three robots as soft obstacles, it should select an exploration region
in the complement of the soft obstacle. In Figure 4.1, for example, R3 can
follow the direction indicated by the arrow above its exploration region X3.

So far, we have presented some intuition for the proposed coordination
strategy for solitary robots. In what follows, we introduce a relevant prop-
erty of coordination for effective coordination of solitary robots.

4.2.2 Unbounded world property

This section discusses a relevant property of successful coordination of soli-
tary robots: unbounded world.

When the number of robots involved in search is unpredictable and the
size of the search environment is unknown, robots can represent the search
environment by an unbounded world. Each robot initialises its own virtual
world without prior knowledge of the environment, but can grow it as nec-
essary as the robot encounters other robots or obstacles. A robot starts with
a small virtual world for which the size is based on the available search time
(bound) τ. A robot resizes its virtual world as it encounters obstacles in its
region or gains additional information: for example, when it encounters an-
other robot which informs it that some part of its region has been explored
already or allocated to other robots. Resizing a region involves expanding
its virtual world to allow it to compensate for an inaccessible region or the
area explored by or assigned to other robots. An unbounded world is re-
quired because the number of robots involved in search is unknown from
the perspective of a single robot.

Let Vi denote the current virtual world of robot Ri. The robot uses this
virtual world Vi (it is assumed to be rectangular) as a universal set encom-
passing portions of the search space W. Initially, the exploration region of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 41

Ri is Xi, and it uses the virtual world Vi = Xi.
We next describe our proposed coordination method for solitary robots:

the soft obstacle strategy.

4.3 Soft obstacle coordination strategy

The proposed coordination strategy is based on the concept of soft obstacles.
Regions that comprise the soft obstacles are first discussed, after which the
coordination strategy is described.

The proposed strategy assumes the following:

• The environment is a static, large and initially unknown 2D world—the
robots have insufficient time to cover it entirely.

• The boundaries of the environment are unknown but can be detected
when encountered. Here boundaries of the search environment are
treated as obstacles, i.e. robots can not distinguish boundaries of the
search environment from obstacles.

• Robots are solitary and uniquely identifiable.

• Solitary robots are assumed to have the same coordinate system. Situ-
ations where each robot has its own internal coordinate system would
require a suitable map merging method [54].

• Perception range is equal to communication range. This is for clarity
of exposition, but it should be straightforward to extend the approach
to relax the assumption.

The key concern with allocating sectors (i.e. unbounded regions) which
this work aims to tackle is the behaviour of robots in cases of unbalanced
assignment. We propose a way to allow a robot to explore outside of its
allocated region while taking into account regions allocated to other robots,
thus reducing interference. The main difference between our soft obstacle
strategy and the strategy of sectors [109] is thus that the soft obstacle strat-
egy assigns bounded regions to robots, while sectors are not bounded (as
discussed in Chapter 3).

This idea of soft obstacles is similar to the solution to the problem of de-
ployment of mobile sensors [43], where autonomous sensors use a reactive

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 42

strategy (which means a sensor takes actions by considering actions of other
sensors) to spread out towards uncovered regions in the search space. The
reactive strategy is based on potential fields. The fields are constructed such
that each sensor is repelled by other sensors, and therefore sensors tend to
move toward uncovered regions. The key difference between the method
based on potential fields and our method is as follows. In the method based
on potential fields, robots do not need a coordinator: nodes find exploration
areas and repel from each other independently. This works well for robots
with unlimited perception and communication range, i.e. a robot can detect
any other robot in the search environment at any time. Our method re-
quires a coordinator to assign exploration areas to participating robots. Our
method is for situations where robots have limited perception and commu-
nication range.

In what follows, variable notations will consider the following: quan-
tities typically changing at each time step incorporate a time index, while
quantities only changing periodically do not incorporate a time index.

4.3.1 Constructing soft obstacles

Two regions are considered soft obstacles by a robot: the region Ri knows
has already been explored at time t, C(t)i , and the interference region Zi ,
i.e., the exploration regions assigned to the robots Ri is aware of, including
itself. The soft obstacle B(t)i of robot Ri at time t is then

B(t)i = C(t)i ∪ Zi . (4.3.1)

The soft obstacles can take the shape of any bounded object. In this thesis,
we use an occupancy grid-based approach [100], but an alternative repre-
sentation, such as a geometric approach [111], could also be used.

During a rendezvous, robots exchange their interaction histories. Thus,
two robots do not need to interact with each other directly to obtain infor-
mation about each other. At the end of any coordination during the search,
the explored regions of the involved robots are updated to include the other
robots’ explored and exploration regions. Let I denote a set of interacting
robots. Consider an interaction involving robots with identifiers in the set
I , including Ri. The new explored region C(t)i of Ri is the union of explored

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 43

regions of the interacting robots, given by

C(t)i ←
⋃
j∈I
C(t)j . (4.3.2)

The updated interference region Z(t)
i of Ri is the union of interference re-

gions of the interacting robots, given by

Zi ←
⋃
j∈I
Zj . (4.3.3)

Before interaction, the interference region of a robot is the union of its
own previous exploration regions. The robot Ri includes its own previous
exploration region in the interference region so that after this current inter-
action of robots, each robot will continue to explore its previous exploration
region if there is still unexplored area in it before moving to a new explo-
ration region.

In applying cellular decomposition for the proposed coordination strat-
egy, the coordinator intentionally leaves unexplored spaces (or margins)
around the robots’ exploration regions. These margins allow sustained ex-
ploration when a robot leaves its exploration region to travel to a new ex-
ploration region for some reason—such as discovering that its region has
been explored already or that it is partially obstructed. Such use of margins
is part of the novelty of the proposed approach.

4.3.2 Use of margins

Let d be the perception range of robots. In Figure 4.1, margins are sections
surrounding exploration regions, with m denoting the width of the mar-
gins. To prevent robots from moving through explored regions, the value
of m should be at least 2d. We set m = 2d in this work. When searching, a
robot may not be able to cover its exploration region entirely. Encountered
obstacles or boundaries of the search environment, or interaction with other
robots, are possible reasons a robot may not cover its current exploration re-
gion entirely. When this happens, the robot can use such margins to move
from its current exploration region to another one. While margins are de-
termined by the coordinator in interaction of robots, they are not included
in the soft obstacles of the participating robots. Thus other robots can use

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 44

margins around another robot’s exploration region when needed. But ex-
ploration regions allocated respect margins. LetMi denote the margin area
around the new exploration region assigned to Ri. Let Qi denote the new
exploration region assigned to robot Ri. The augmented exploration region
of Ri isMi ∪Qi. In Chapter 5 we will see the benefit obtained by the use of
these margins.

As mentioned above, in our proposed coordination method margins are
selected during interaction only, i.e. a single robot does not select margins
while it is in the process of selecting its personal exploration region. The
reason that a single robot does not select margins in our proposed coordi-
nation method is because margins are used to allow robots that are from a
recent interaction to avoid moving through exploration regions of other col-
leagues, especially when it is found that they can not search their assigned
exploration regions effectively. The use of margins is found to be relevant
for coordination because assigned exploration regions generally fall in the
same area, so the chance that these assigned exploration regions to be near
to each other is high. One needs to consider how robots should avoid mov-
ing through their colleagues’ exploration regions when travelling to their
new exploration regions. However, we note that the use of margins for a
single robot might have some positive as well as negative impacts to our
proposed method.

We next consider the implementation of the proposed soft obstacle strat-
egy in coordination of robots.

4.3.3 Implementation of the soft obstacle strategy

Suppose P solitary robots with identifiers in I are involved in an interaction.
During the interaction, the exploration regions of the participating robots
typically change. A coordination strategy is required to select P exploration
regions for i ∈ I to spread the P robots to non-overlapping areas. The
participating robots apply the cellular decomposition strategy [17] which is
the decomposition of search space into non-overlapping regions.

Before selecting the exploration regions, robots send their explored re-
gion (the C(t)i ’s), interaction histories and the interference regions (the Zi’s)
to an elected leader using a procedure DATAFUSION in Algorithm 5.3. Let t◦
and t◦ denote times at the start and the end of interaction. If Rl is the leader,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 45

the fused explored region is then C(t
◦)

l . The elected leader can decide to en-
large its virtual world during the application of the cellular decomposition
as discussed below. The leader is responsible for assigning non-overlapping
exploration regions to the interacting robots. These exploration regions are
found from unexplored areas of its virtual world. If the leader is unable
to find exploration regions from its current virtual world, it must enlarge
its virtual world create further unexplored area. In other words, enlarge-
ment of the fused virtual world takes place on demand if there is insuf-
ficient space or the sampling approach used has failed to find a suitable
exploration region after a number of iterations.

Figure 4.2: Virtual world enlargement. The blue rectangle denotes virtual world
before enlargement and the red rectangle denotes virtual world after enlargement.

Enlarging the virtual world. The elected leader enlarges its virtual world
as follows. Let w and h be the width and height of the virtual world before
enlargement and V(w0) denote the new area to add to the virtual world for
its enlargement where w0 denotes the enlargement parameter as indicated
in Figure 4.2 (w0 is a user-defined parameter). The size of the set V(w0) is a

|V(w0)| = 2w0(h + 2w0 + w) .

The virtual world of the elected leader will then be

Vi ← Vi ∪V(w0) .

To enlarge its exploration region, a robot uses the procedure VIRTUALWORLDEN-
LARGEMENT in Algorithm 4.1. The corresponding Python implementation
for the virtual world enlargement is given in Appendix G.2.1—our imple-
mentation of virtual world enlargement assumes that a robot has sufficient

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 46

Algorithm 4.1 Choice of exploration regions. The procedures defined in this en-
vironment are run by Ri. We use Python built-in functions for various basic set
operations.

1: Global variables
2: B(t)i soft obstacles of robot Ri at time t
3: Γi a hash table of assigned exploration regions
4: d perception range of Ri
5: Ji set of identifiers of interacting robots; Vi virtual world
6: Li set of locations of interacting robots
7: L number of attempts of selecting a region before virtual world enlargement
8: m margins width
9: N sampling size

10: U (t)
i unexplored region

11: w0 width for virtual world enlargement
12:
13: procedure GETGROUPEXPLORATIONREGIONS()
14: VIRTUALWORLDENLARGEMENT()
15: (k, U, P, l)← (1,B(t)i .clone(), |Ii|, 1)
16: c← GETCENTRALPOINT() . using Algorithm 5.3

17: A← 2m +
√

Â(τ − t)
18: while k ≤ P do
19: next← true
20: l ← 1
21: while next do
22: S← Vi \U
23: w← A

2 (1 + uniform(0, 1))
24: h← A2

w
25: for j = 1 to N do
26: generate a sampled point (xU , yU) randomly and uniformly distributed over S
27: R← RECTANGLE(xU , yU , w, h) . “using Algorithm F.4”
28: E← RECTANGLETOSET(R) . using Algorithm F.4
29: if E ∩U = ∅ and E ⊆ S then
30: Qk ← RECTANGLE(R.x + m, R.y + m, R.w− 2m, R.h− 2m)
31: F ← RECTANGLETOSET(Qk)
32: Bk ← Qk .GETCLOSESTCORNER(c) . using Algorithm F.4
33: U ← U ∪ E
34: next← false
35: break
36: end if
37: end for
38: if l = L then
39: VIRTUALWORLDENLARGEMENT()
40: l ← 1
41: end if
42: l ← l + 1
43: end while
44: end while
45: B← (B1, B2, · · · , BP)
46: robotsIDS, cost← GETCOSTMATRIX(B)
47: ids, indices← HUNGARIAN(cost) . from SciPy [15] assuming that P robots are

interacting. This subroutine returns identifiers corresponding to closest exploration regions for
the P robots based on their locations

48: for (j, k) ∈ zip(ids, indices) do
49: r ← robotIDS(j)
50: Γi(r)← Qk
51: end for
52: end procedure
53:
54: function GETCOSTMATRIX(B)
55: cost← []
56: ids← []
57: for j ∈ Li.size() do
58: ids.add(j)
59: row← []
60: for b ∈ B do
61: ai ← Li[j]
62: a← δ(ai, b)
63: row.add(a)
64: end for

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 47

65: cost.add(row)
66: end for
67: return (ids, cost)
68: end function
69:
70: procedure VIRTUALWORLDENLARGEMENT()
71: V ← Vi
72: Vi ← RECTANGLE(V.x− w0, V.y− w0, V.w + 2w0, V.h + 2w0)
73: end procedure

memory to represent the virtual world. From the fused information C(t
◦)

l

and Zl, the soft obstacle B(t
◦)

l is constructed using the following equation

B(t
◦)

l = C(t
◦)

l ∪ Zl .

At the end of coordination, each robot Ri sets C(t
◦)

i ← C(t◦)l , Zi ← Zl,

B(t
◦)

i ← B(t◦)l and Vi ← Vl (all the interacting robots have the same virtual
world Vl) using a procedure TASKASSIGNMENT in Algorithm 5.3.

Once the robots’ soft obstacles are known, a cellular decomposition re-
specting these soft obstacles is obtained using the following approach.

Choice of exploration regions. We intend to choose P exploration regions
that will direct the P robots to disparate places. The P exploration regions
are chosen from the unexplored region U (t)

l = Vl \ B
(t)
l in the fused region

known by the leader Rl. Since the required area of each exploration region
can be determined from the search time bound, we first set the width and
the height of one exploration region large enough for exploration region and
margins. Then we arbitrarily choose bottom left corner of a rectangle with
that width and height. We next need to check whether the chosen rectangle
lies entirely within the unexplored region U (t)

l . To do that, the procedure
consists of uniformly generating random points in the rectangle (the num-
ber of points is user-defined). We do not brute force check if a rectangle
lies in the unexplored area because it is inefficient: every single point of the
rectangle will need to be checked. The rectangle is considered valid if all the
points generated are found in the unexplored region. If the elected leader
fails to find P exploration regions in this way, it further increases the size of
its virtual world. The coordinator can decide to increase its virtual world
as much as required. This procedure is repeated until all the interacting
robots have been assigned exploration regions. Recall that Qi denotes the
exploration region assigned to Ri from its current interaction.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 48

The P regions are chosen sequentially: The exploration regions are cho-
sen such that ⋃

i∈I
(Qi ∪Mi) ⊆ U

(t)
l and

⋂
i∈I

(Qi ∪Mi) = ∅ . (4.3.4)

The procedure for determination of an exploration region by a leader
is given in the procedure GETGROUPEXPLORATIONREGIONS in Algorithm
4.1. A Python implementation of the soft obstacle strategy can be found in
Appendix G.2.2.

Exploration of previous exploration regions. When robots meet, their cur-
rent exploration regions are also part of the soft obstacles. Although robots
are given new exploration regions in an interaction, a robot which has enough
unexplored space remaining in its previous exploration region will cover it
first before moving to the new exploration region. Let Yi denote a queue of
available exploration regions for Ri and, recall that Xi and B(t◦)

i denote the
exploration region of Ri and its soft obstacle before its current interaction.
The robot Ri queues its previous exploration region Xi to Yi if it contains
enough unexplored space (at least one sweep through region is required):

|Xi \ B
(t◦)
i | > 2d

√
wh , (4.3.5)

where w and h denote the width and height of Xi respectively.

Assignment of exploration regions. Once P exploration regions have been
identified, the assignment of these exploration regions to the participating
robots is performed using the Hungarian algorithm [58] implemented in
SciPy [15] to minimize straight-line robot-to-region travelling time. The
leader considers the closest corner of an exploration region when calcu-
lating the distance between a robot and the exploration region. Once the
allocation is completed by the elected leader, the exploration regions are
communicated to robots by the leader.

Python code that a robot uses to travel to its exploration region can be
found in Appendix G.2.3.

While robots are leaving for their respective exploration regions after in-
teraction, they will typically be within communication range of each other
for some time. To prevent triggering further interactions between robots

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 49

with no significant additional information to share, robots leaving a meet-
ing are prohibited from interacting with other robots from the same meeting
until some distance T(t)

i has been covered. Let δ(xi, ai) be the distance be-
tween the current location xi of robot Ri and the closest corner ai of its newly
assigned exploration region Qi. Then the distance T(t)

i is given by

T(t)
i = max

j∈I
δ(xj, aj) , (4.3.6)

(the longest distance to a new exploration region for a robot in the interac-
tion). Obstacles or boundaries of the search environment can make a robot’s
exploration region inaccessible via the corner closest to its current location.
If that happens, a robot considers the next closest corner of its exploration
region as its new target to reach its exploration region. If encountered ob-
stacles or boundaries prevent the robot from reaching all the corners of its
exploration region, the robot selects another exploration region.

Another reason a robot may select another exploration region is if it has
covered an unexpectedly long distance since its most recent interaction trav-
elling to its exploration region without reaching it. We set the window
distance, which a robot considers as a long distance since travelling, to be
ηδ(xi, ai) (the value η is user-defined).

Optimality of the selected exploration regions. Two criteria for effective
coordination were discussed in Section 3.2. Our proposed approach has
fully implemented the first criterion and has partly implemented the second
criterion for optimal selection of exploration regions. As discussed in the
description of SOS above, selected exploration regions are non-overlapping
regions that maximise information utility (i.e. the first criterion).

The second criterion, which is navigation utility, is partly taken into ac-
count implicitly by the fact that exploration regions are selected from the
virtual world. A virtual world could be relatively small, and we only en-
large it on demand when there is insufficient space to allocate exploration
regions. Our argument here is that the approach has a tendency to lead to
good selections because the virtual world limits examples with bad navi-
gation utility. In what follows, we illustrate some aspects of our proposed
coordination strategy.

Example. Consider three solitary robots R1, R2 and R3 and assume they
have not met up to time t. During a solitary search, each robot Ri selects

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 50

an exploration region Xi and updates its explored region C(t)i as it explores
the environment. When a robot is performing a solitary search, the only
challenge it will face is management of obstacles: a robot must avoid obsta-
cles in a way that does not hinder its progress.

Let us now suppose that R1 and R2 meet at some time t12. Upon the
meeting of these two robots, seven things will happen.

(1) First, R1 and R2 will select one of them as a coordinator. Based on the
approach we will use for leader election (discussed in Section 5.3), R1

will be chosen as the leader.

(2) Second, R2 will send its explored region C(t12)
2 to R1.

(3) Third, R1 (the leader) selects two disjoint exploration regions (Q1 and
Q2) and margins (M1 andM2) such that(

Q1 ∪M1

)
∩
(
C(t12)

1 ∪ C(t12)
2

)
= ∅ ,

and (
Q2 ∪M2

)
∩
(
C(t12)

1 ∪ C(t12)
2

)
= ∅ .

A challenge here is that, since the search environment is unknown to R1

and R2, the exploration regions Qi could be completely outside of the
search environment W or (a part of) Qi could be occupied by obstacles
without the robots knowing that in advance.

(4) Fourth, R1 will build their soft obstacles B(t12)
1 and B(t12)

2 by

B(t12)
1 ← B(t12)

2 ← C(t12)
1 ∪ C(t12)

2 ∪ Z1 ∪ Z2 ,

where
Z1 ← Z2 ← X1 ∪ X2 ∪Q1 ∪Q2 .

(5) Fifth, R1 will send B(t12)
2 and Q2 to R2.

(6) Sixth, R1 and R2 will update their exploration regions X1 and X2 by

X1 ← Q2 and X2 ← Q2 .

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 51

(7) Finally, R1 and R2 will move to their respective exploration regions,
X1 and X2, for further solitary search to update their individual sets
C(t)1 and C(t)2 (assuming their previous exploration regions are explored
completely, otherwise they will need to complete them first before they
move to their new exploration regions). If a robot Ri finds it difficult
to explore its exploration region Xi for any reason (e.g. obstacle occu-
pancy) at time t◦, it can choose another exploration region Qi such that

Qi ∩
(
Xi ∪ C

(t◦)
i ∪ B(t

◦)
i

)
= ∅ .

Let us now suppose that, at some later time t13 > t12, R1 meets with R3. The
same procedure described above which was applied between R1 and R2 also
applies for the interaction between R1 and R3. But here there is something
additional to highlight. Apart from the sharing of C(t13)

1 and C(t13)
3 between

R1 and R3, the robot R1 will also share its set B(t12)
1 with the robot R3. After

their interaction, the set of soft obstacles B(t13)
3 of R3 becomes

B(t13)
3 ← C(t13)

1 ∪ C(t13)
3 ∪ B(t12)

1 .

The coordination protocol described above is pursued by the three robots
until the search time is elapsed.

4.4 Conclusion

This chapter proposed a new accidental rendezvous strategy for the coordi-
nation of solitary robots. The existing accidental rendezvous strategy [109]
suffers from interference due to unbalanced assignments. The proposed al-
gorithm refines the accidental rendezvous strategy, as each robot, after an
accidental meeting, can better predict actions of other robots involved.

The periodic rendezvous strategy is another strategy proposed to miti-
gate the interference the accidental rendezvous strategy suffers from. The
periodic rendezvous strategy has the advantage that members of a local in-
teraction share their additional information on a regular basis, by schedul-
ing meetings. However, these scheduled meetings cause interruptibility:
when their meeting time approaches, the rendezvous is prioritized over ex-
ploration and thus robots stop searching to ensure they meet on time.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SOFT OBSTACLE COORDINATION STRATEGY FOR SOLITARY
ROBOTS 52

The soft obstacle strategy mitigates the typical interference in the acci-
dental rendezvous strategy without incurring high interruptibility as in the
periodic rendezvous strategy. With the soft obstacle strategy, to mitigate
interference, robots involved in an interaction apply cellular decomposi-
tion and each robot considers regions assigned to others as soft obstacles.
However, the soft obstacle strategy requires a search time bound and large
enough search environment. We also introduced margins which robots use
to move to new exploration regions when it can not entirely explore its cur-
rent exploration region.

This chapter described our proposed method for coordination of solitary
robots. The idea was to show how robots coordinate when they interact
with each other. The next step should be an experimental assessment of
our method. However, we cannot run experiments without providing fur-
ther details about the functioning and interaction of solitary robots. In the
following chapter, we discuss these details.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Distributed system of solitary
robots

5.1 Introduction

We described the core of our coordination strategy in Chapter 4, where we
considered allocations and management of exploration regions. Now, we
aim to consider other details about the behaviour and interaction of robots
to make a single distributed system, namely: search strategy, obstacle avoid-
ance, data fusion, task assignment and leader election. These aspects are
combined in a single system for the assessment of our proposed coordina-
tion method in Chapter 6. It should be noted that this chapter does not aim
to be state of the art, but it provides a context in which we can evaluate the
contributions of Chapter 4.

5.2 Distributed methods for coordination of
solitary robots

This section summarises the various distributed strategies considered in
this chapter.

1. Distributed view construction: the first step in the interaction of robots
consists of generating a view of the ad-hoc network of their interac-
tion. The question is, how do robots distributively build such a view
under restricted communication? Each of the robots initially has a lim-

53

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 54

ited view of the network, but by iteratively passing messages between
neighbours, they can end up with a broader view.

Every robot independently starts the process of constructing its view
of the communication graph, as follows. When some robots interact
with each other, they stop and wait for a predefined period of time,
Tw seconds, before they start sending messages to each other, to wait
for other robots that may be nearby to join the interaction. Otherwise,
a limited number of robots involved in an interaction could quickly
finish and miss other robots in their neighbourhood moving towards
them. This is valuable because larger interactions might yield more ef-
fective explorations. The parameter Tw is common to all robots. When
one of the robot in the interaction detects another robot in its neigh-
bourhood, it communicates the time tw already spent in waiting to the
new robot (tw = 0 for new robots in an interaction). Communica-
tion is assumed to be asynchronous. When a robot sends the time tw,
it also sends its state (Figure 5.1 presents different robot states). The
signal sent by the robot is: 〈WaitingSignal(tw, robotState)〉. This
distributed procedure run on robot Ri is described in Algorithm 5.1.

After Tw seconds has elapsed, robots in the interaction start the pro-
cess of coordination. For the construction of the communication graph
formed in interaction of robots, we apply the pruning method for con-
struction of a view of a communication graph that will be proposed in
Chapter 8 (Algorithm 8.1).

2. Leader election: the second step in the interaction of robots is the
choice of a leader that guides the actions of the interacting robots.
A leader combines individual information, applies the coordination
strategy and relays decisions to others. Only situations where the
choice of a leader is achieved by passing messages between robots
are treated. The method applied to choose a leader is presented in
Algorithm 5.2 and discussed in Section 5.3.

Recall that, using Algorithm 8.2, view construction ends at different
times for different robots. A way to handle this situation is that, a robot
starts the process of choosing a leader only when its view construction
is completed. While still busy constructing its view, a robot will queue
leader election messages received to treat them later.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 55

3. Data fusion: the elected leader facilitates fusion of individual infor-
mation of nodes in the network. Here, each robot sends its information
(which include maps, exploration regions and interaction histories) to
the leader via intermediate robots. A robot receiving information fuses
it with its own before the robot forwards the combined information
towards the leader as in packet-switched store-and-forward networks
[62]. The method DATAFUSION applied to fuse data is presented in
Algorithm 5.3 and discussed in Section 5.4.

4. Coordination strategy: this is where robots’ knowledge is updated
and effectively used for further search. This point was the main sub-
ject of Chapter 4.

5. Task assignment: finally, after applying the coordination strategy, the
leader shares the coordination decisions with others (the method TASKAS-
SIGNMENT in Algorithm 5.3 discussed in Section 5.4).

Algorithm 5.1 Waiting for other interactions in its neighbourhood by a robot. The
procedure defined in this algorithmic environment is run by Ri, and uses time since
waiting tw and identifiers Ii of interacting robots which Ri knows about as global
variables.

1: procedure WAITING()
2: if Ri meets a searching or waiting robot Rj then
3: Ii ← Ii ∪ {j}
4: Ri sends 〈WaitingSignal(tw, robotState)〉 to Rj
5: when Ri receives 〈WaitingSignal(t′w, robotState)〉 from Rj do
6: tw ← max(tw, t′w)
7: end when
8: end if
9: end procedure

These five tasks facilitate sharing of knowledge and coordination be-
tween robots and are distributed strategies.

During the search, each participating robots can be in one of the fol-
lowing states: searching, waiting, stopped, interacting, planning, or completed.
These states control the behaviour of robots while exploring an environ-
ment. A state transition diagram is given in Figure 5.1. A robot starts in
the searching state but can detect another robot once it enters its percep-
tion range. When a robot detects another robot in its vicinity, it stops and
initiates view construction after waiting for at least Tw seconds.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 56

Figure 5.1: State transition diagram of a single robot during search. The variable
t denotes how long a robot has been searching, τ the search time limit, ∆t the time
elapsed since a robot first encountered other robots for the current meeting and Tw
the waiting time after which the robot starts interacting.

A robot initiates an interaction by sending its neighbouring information
to all its immediate neighbours. Once a robot detects other robots in its
vicinity and the waiting time Tw has elapsed, the robot starts interaction,
which means the robot starts exchanging its neighbour information with
other robots in its neighbourhood in order to learn a view of topology of
the network (see Chapter 8). Once robots have exchanged messages a fixed
number D of times, they start identifying a leader. An interacting robot

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 57

becomes a planning robot after the choice of a leader. When a new robot
encounters a planning robot, it waits until the planning procedure is termi-
nated. A planning robot is aware of new robots (i.e. robots which arrive
in its perception range after it has become a planning robot) within its per-
ception range. After planning is complete, a planning robot goes on to the
searching state if no other robots are waiting for it. Otherwise, the planning
robot interacts with the waiting robot before going onto the searching state.
A robot moves when it is in searching mode and is stationary otherwise. A
robot completes searching when the search time has elapsed.

A list of robot states (for implementation purpose) is given in Algorithm
F.1.

So far we have established a state transition diagram to show how robots
change states during search. It was mentioned in Chapter 4 that solitary
robots are assigned bounded exploration regions for effective search by mul-
tiple robots. A search mechanism used for exploring these exploration re-
gions is described in Appendix A.

In addition to the problem of search, an obstacle avoidance system must
be incorporated. The techniques used to avoid obstacles in our system are
discussed in Appendix B.

Another important aspect of coordination is the election of a leader among
interacting solitary robots that facilitates their coordination. We discuss
leader election next.

5.3 Leader election based on closeness centrality

In Chapter 8, we introduced a distributed method for communication graph
view construction. After the construction of these views of the communica-
tion graph, each node is responsible for computing its own centrality.

5.3.1 Distributed determination of closeness centrality

We now show how a node determines its closeness centrality after building
its view of the communication graph.

To compute vi’s closeness centrality, the node must know whether it is
an element of the set Fi,t, which denotes the set of pruned nodes known
by vi after iteration t using Algorithm 8.1. At the end of Algorithm 8.1, if a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 58

node satisfies vi ∈ Fi,t, then its closeness centrality is set to 0. Otherwise,
the node evaluates its centrality given in Equation 2.4.1. The procedure is
PRUNINGCLOSENESSCENTRALITY given in Algorithm 5.2.

5.3.2 Construction of a spanning tree for communication

After selecting a leader, nodes typically build a spanning tree for effec-
tive communication by combining their individual information. We will
consider the selected leader as the root of the spanning tree. Fusion on a
spanning tree has been studied in the literature—for instance, fusion us-
ing a spanning tree is used to analyse networks in decentralised systems
[24, 38, 106]. For effective communication in a distributed system as con-
sidered in this thesis, a robot needs only to know its spanning tree parent
and children, because for the leader to receive information of other nodes
in the data fusion process, spanning tree children send their information to
the leader via their spanning tree parent. Before a node forwards its own
data to the leader via its spanning tree parent, it must receive data from its
tree children. When a node receives data from its tree children, it fuses them
with its own data before forwarding the fused data to the leader via its tree
parent. This corresponds to a packet-switched store-and-forward network
[62] as was discussed in Chapter 3, and is known as fusion by propagation
[24].

5.3.3 Leader election

The authors of the original algorithm for graph view construction [118]
which we improved in terms of number of messages in Chapter 8 did not
give further detail on how individual centralities should be exchanged be-
tween the nodes so that every node knows which is the most central node.
If every node has built the same view of the communication graph, which
occurs when every node learns the actual communication graph, each node
can evaluate the centralities of other nodes, so nodes do not need to share
their centrality information. But exchange of individual centralities between
the nodes is very important in situations where nodes can fail to communi-
cate with each other or nodes have only built limited views of the commu-
nication graph, i.e. nodes have applied an approximate method where each
node builds its own view of the communication graph. In what follows, we

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 59

leverage the idea presented by You et al. [118] where nodes exchange their
identifiers to determine the node with the lowest identifier in a distributed
manner. For our case, nodes exchange their centralities between themselves
to determine the most central node. Let ci denote the closeness centrality
of the node vi with respect to its view ST,i of the communication graph. If
there exists a node vl such that cl > cj for all vj then vl should be the leader.
In the case of a tie, the node with the smallest identifier among the nodes
with maximal centrality is selected as the leader.

As mentioned before, one way that nodes can apply to identify the most
central node after each node has evaluated its own centrality is to adapt the
approach proposed by Naz [77]. He proposed an interesting distributed al-
gorithm (called CHEUNG-BFS-ST-CB), which improves some previous dis-
tributed methods, for leader election and spanning tree construction on an
unknown connected graph: the node with the lowest identifier is selected
as the leader and a spanning tree is constructed by considering the leader as
the root. Spanning trees are important in this thesis (as will be discussed in
Section 5.4): interacting robots exchange their information using a spanning
tree topology where the leader is the root. We consider our communication
graph to be unknown to nodes because nodes have built different views of
the communication graph (see Chapter 8). In what follows, we first describe
the algorithm where a node with lower identifier is identified as a leader, af-
ter which we will present our approach where the leader is elected based on
closeness centrality.

The CHEUNG-BFS-ST-CB algorithm works as follows. To elect a leader
and construct a spanning tree, two important pieces of information are shared
among nodes, namely: nodes’ identifiers and their distances to their pre-
liminary leaders (i.e. the shortest path length from a node to its preliminary
leader). The information about distance allows a node to identify its parent
and its children among its immediate neighbours, so that a spanning tree
can be constructed. A node updates the value of its distance to a prelimi-
nary leader whenever it receives a lower identifier from its neighbours than
it has previously encountered. This means that, during the process of leader
election, each node can update information about its children and its parent.

Initially, each node considers itself as a leader, sets its distance to zero,
and shares its identifier and the value of its distance to its immediate neigh-
bours. When a node receives an identifier lower than it has previously en-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 60

countered, it updates its information and sends a message to its immediate
neighbours.

There are two types of messages exchanged between nodes in the algo-
rithm of [77]: BFSGOSignal(id, distance) and BFSBACKSignal(id, distance,

isChild). A node uses the first signal message to inform its neighbours
about a new potential leader’s id it has received and its updated distance
distance. It uses the second type of signal message for two reasons. First,
after receiving leader information and possibly updating information about
its tree parent, it uses this message to inform its previous tree parent whether
it is still its child (i.e. isChild=False) or not (i.e. isChild=True). Also, after
it has discovered its new tree parent, it uses this second message to inform
its new tree parent about their tree relationship.

The distributed method proposed by Naz [77] chooses the leader based
on nodes’ identifiers only. Here, we aim to choose a leader based on close-
ness centrality. Essentially what changes from the method proposed by Naz
[77] is that we replace the comparator between nodes for determination of
a leader, and change the parameters so the required values are available for
calculating the comparator.

The types of signals sent in the algorithm proposed by Naz [77] are then
changed as follows. The first signal is a leader message, 〈BFSGOSignal(vi, vl,
cl, distance)〉, from which a node vi informs its neighbours about the
closeness centrality cl of a potential leader vl and its distance to the leader.
The second signal is an acknowledgement message, 〈BFSBACKSignal(vi, vl,

cl, distance, isChild)〉, from which a node vi notifies its neighbour vj

whether vi is its child or not. A receiving node vj stores the two types of
messages received into two queues Gj and Bj respectively. Initially, vi con-
siders itself as a leader and sends a message BFSGOSignal(vi, ci, 0)〉 con-
taining its identifier, centrality value and its distance of zero to its immedi-
ate neighbours. The resulting decentralised algorithm to choose a leader is
given in Algorithm 5.2. At the end of this algorithm, each node vi knows the
identifier vl of the leader, its spanning tree parent treeParent, and its span-
ning tree children treeChildren. Algorithm 5.2 makes use of procedures
TREECHILDRENUPDATE and TREEPARENTUPDATE. TREECHILDRENUPDATE

is used by a node to update its tree children and to confirm their tree rela-
tionship with its tree parent. TREEPARENTUPDATE is used by a node to no-
tify its previous tree parent when the state of their tree relationship changes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 61

and its new tree parent about their new relationship.
The Python code corresponding to Algorithm 5.2 is presented in Ap-

pendix G.2.6.
We want to see the impact of reducing number of messages during graph

view construction for leader election. The method for graph view con-
struction [118] which we improved requires O(NdmaxD) messages for a
single node where N denotes the number of nodes in the communication
graph, dmax the maximum node degree and D the maximum number of it-
erations. The leader election algorithm in Algorithm 5.2 requires O(NM)

messages for a single node [77] where M denotes the number of edges in
the communication graph. For situations where O(NM) does not domi-
nate O(NdmaxD) (which result depends on D), it is noteworthy to reduce
O(NdmaxD).

Figure 5.2: Illustration of leader election using Algorithm 5.2 with D = 2.

Nodes v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
cl 0 0 0.47 0.6 0.47 0 0 0.47 0 0
treeParent ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Leader v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
treeChildren ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
distance 0 0 0 0 0 0 0 0 0 0

Table 5.1: Nodes’ initialisation of leader election using Algorithm 5.2 for the com-
munication graph in Figure 5.2. ⊥ is used to indicate that a node does not have a
tree parent.

In what follows, we illustrate the functioning of Algorithm 5.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 62

Algorithm 5.2 Leader election based on the work by Naz [77]. The algorithm is
run by a node vi to choose a leader. The main methods are TREEPARENTUPDATE
and TREECHILDRENUPDATE which are run by vi once each step. An example of
code to execute the class is given in the procedure RUNLEADERELECTION.

1: procedure RUNLEADERELECTION()
2: Pruningobject←PRUNING(Ni, D) . using Algorithm 8.1
3: Pruningobject.INITIALONEHOP()
4: Pruningobject.INITIALUDATE()
5: Pruningobject.FIRSTPRUNINGDETECTION()
6: while not Pruningobject.ISENDED() do
7: Pruningobject.NEXTONEHOP()
8: Pruningobject.NEXTUPDATE()
9: end while

10:
11: Leaderobject←LeaderElection(Pruningobject)
12: Leaderobject.FIRSTHOP()
13: while not Leaderobject.ISENDED() do
14: Leaderobject.TREEPARENTUPDATE()
15: Leaderobject.TREECHILDRENUPDATE()
16: end while
17: end procedure
18:
19: class LEADERELECTION
20: Class variables
21: Bi a queue of acknowledgement messages received
22: ci closeness centrality of vi
23: distance number of edges between node vi and a provisional leader
24: finished a variable used to indicate the end of the algorithm
25: Gi a queue of leader acknowledgement messages received
26: leaderCloseness a variable to keep the closeness centrality of a (provisional) leader
27: leaderID a variable to save the identifier of a (provisional) leader
28: treeParent a (provisional) tree parent
29: treeChildren a set of (provisional) tree children
30: wait a variable to store queue of neighbours to receive feedback from
31:
32: constructor (pruningObject) . Algorithm 8.1
33: Si,T ← pruningObject.Si,T
34: Fi,T ← pruningObject.Fi,T
35: Ni ← pruningObject.Ni
36: leaderCloseness← PRUNINGCLOSENESSCENTRALITY(Si,T ,Fi,T)
37: ci ← leaderCloseness
38: leaderID← i
39: distance← 0
40: treeParent←⊥
41: treeChildren← ∅
42: wait← ∅
43: finished← False
44: end constructor
45:
46: procedure TREEPARENTUPDATE()
47: while Gi.size() ≥ 1 do
48: (vj, vl , cl , dist)← Gi.dequeue()
49: if ISBIGGER(l, vl , cl) then
50: leaderID← l
51: leaderCloseness← cl
52: distance← +∞
53: treeParent←⊥
54: end if
55: if l = leaderID and dist < distance− 1 then
56: if treeParent 6=⊥ then
57: send 〈BFSBACKSignal(vi, vl, cl, distance-1, False)〉 to treeParent
58: end if
59: treeParent← vj
60: treeChildren← ∅
61: distance← dist+ 1
62: wait← ∅
63: for vk ∈ Ni \ {treeParent} do
64: send 〈BFSGOSignal(vl, cl, distance)〉 to vk

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 63

65: wait← wait∪ {vk}
66: end for
67: if wait = ∅ then
68: send 〈BFSBACKSignal(vi, vl, cl, distance-1, False)〉 to treeParent
69: finished← true
70: end if
71: else if l = leaderID then
72: send 〈BFSBACKSignal(vi, vl, cl, dist, False)〉 to vj
73: end if
74: end while
75: end procedure
76:
77: procedure TREECHILDRENUPDATE()
78: while Bi.size() ≥ 1 do
79: (vj, vl , cl , dist, isChild)← Bi.dequeue()
80: if j = leaderID and distance = dist and not finished then
81: wait← wait \ {vj}
82: if isChild then
83: treeChildren← treeChildren∪ {vj}
84: else
85: treeChildren← treeChildren \ {vj}
86: end if
87: if wait = ∅ then
88: if treeParent =⊥ then
89: finished← True
90: else
91: l ← leaderID
92: send 〈BFSBACKSignal(vi, vl, cl, distance-1, True)〉 to its tree parent
93: end if
94: end if
95: end if
96: end while
97: end procedure
98:
99: procedure FIRSTHOP()
100: for vj ∈ Ni do
101: send 〈BFSGOSignal(vi, vi, ci, 0)〉 to vj
102: wait← wait∪ {vj}
103: end for
104: finished← wait = ∅
105: end procedure
106:
107: function ISBIGGER(l, vl , cl)
108: k← leaderID
109: ck ← leaderCloseness
110: return (ck < cl) or (ck = cl and l < k)
111: end function
112:
113: function ISENDED()
114: return finished
115: end function
116:
117: function PRUNINGCLOSENESSCENTRALITY(Fi,T ,Si,T)
118: if vi ∈ Fi,T then
119: return 0
120: else
121: N ← Si,T
122: t← 1
123: ci ← 0
124: repeat
125: ci ← ci + |S

(t)
i |

126: t← t + 1
127: until t = T
128: return N−1

ci

129: end if
130: end function
131: end class

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 64

Nodes v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
cl 0.47 0.47 0.6 0.6 0.6 0.47 0.47 0.6 0.47 0.47
treeParent v3 v3 v4 ⊥ v4 v5 v5 v4 v8 v8
Leader v3 v3 v4 ⊥ v4 v5 v5 v4 v8 v8
treeChildren ∅ ∅ v1, v2 v3, v5, v8 v6, v7 ∅ ∅ v9, v10 ∅ ∅
distance 1 1 1 0 1 1 1 1 1 1

Table 5.2: First iteration of leader election using Algorithm 5.2 for the communi-
cation graph in Figure 5.2.

Nodes v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
cl 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
treeParent v3 v3 v4 ⊥ v4 v5 v5 v4 v8 v8
Leader v4 v4 v4 ⊥ v4 v4 v4 v4 v4 v4
treeChildren ∅ ∅ v1, v2 v3, v5, v8 v6, v7 ∅ ∅ v9, v10 ∅ ∅
distance 2 2 1 0 1 2 2 1 2 2

Table 5.3: Second iteration of leader election using Algorithm 5.2 for the commu-
nication graph in Figure 5.2.

Example. As mentioned before, each node initially considers itself as the
leader, sets its distance to the leader to zero, and sends its information in-
cluding its closeness centrality to all its immediate neighbours. This stage
is illustrated in Table 5.1, which shows that none of the nodes have a tree
parent or any tree children yet.

After each node has received leader information from its immediate neigh-
bours, they update their information, i.e. nodes with smaller closeness cen-
tralities update their information about the leader and information about
the spanning tree. The results of subsequent iterations are shown in Tables
5.2 and 5.3.

Chapter 2 noted that a leader election method should satisfy three condi-
tions [20]: uniqueness of the elected leader, termination of the leader elec-
tion process and agreement on the choice of leader, assuming communi-
cation is eventually reliable. Algorithm 5.2 satisfies these three properties,
assuming fully reliable failure-free communication. Termination of the al-
gorithm is guaranteed because the communication graph is finite, commu-
nication is failure-free and nodes are uniquely identifiable. Uniqueness and
agreement in the choice of a leader are also guaranteed because nodes are
uniquely identifiable and choose a leader based on closeness centrality and
node identifier which is unique for each node.

After choosing a leader, with each node knowing its spanning tree parent

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 65

and children, the next step consists of fusing the data from individual robots
and the application of the coordination strategy.

5.4 Data fusion and task assignment

Section 5.2 identified various problems involved in interaction of robots,
and noted that one effective way to handle interaction of robots is to choose
a leader to coordinate the process. In this context, a leader has three roles:
it receives data from others, it coordinates plans for their next actions based
on the available data, and it relays data and decisions (missions) to others.
Since this thesis considers search by solitary robots, the robot data will con-
tain map information. Robots must combine information from individual
maps to coordinate more effectively. Robots use the identified spanning tree
from leader election (Section 5.3) to propagate information from the leader
to other robots and vice-versa. Thus, robots know their spanning tree par-
ent and children during data fusion and task assignment. We next discuss
data fusion.

5.4.1 Data fusion

This step of interaction of solitary robots involves sending individual robot
data to the leader in a distributed manner.

In this context, data fusion consists of merging the data of individual
robots [24]. Fusion is gradually established in a distributed manner [24].
A map can be made of 2D point clouds [61]. Since we use a grid-based
map representation as mentioned in Subsection 2.3.2, we discretise point
clouds of an environment in a grid representation. The method proposed
by Konolige et al. [54] is suitable for such maps.

When robots interact in our setting, they send six types of information to
the leader. They send the area covered by each, their interference region (i.e.
each of the robots informs the leader about all prior interactions it is aware
of so that they all have the same view of the situation), their identifiers, the
history of identifiers of robots from previous meetings, their current loca-
tions and their tree descendants. Specifically, a robot Ri sends the following
data to the leader via its tree parent Rj:

(C(t)i ,Zi, Ii,Ji,Li,Di) .

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 66

Recall from Subsection 4.3.1 that

• C(t)i : denotes the explored region known by Ri,

• Zi: denotes the interference region known by Ri,

• Ii: denotes the identifiers of currently interacting robots which Ri is
aware of,

• Ji: denotes the identifiers of robots which Ri is aware of,

• Li: denotes the locations of robots which Ri is aware of andDi denotes
the set of tree descendants of robot Ri.

Robots share their current locations so that the leader can use them to as-
sign robots to their closest exploration regions after coordination. The data
fusion algorithm applied by a single robot Ri is illustrated in the procedure
called DATAFUSION in Algorithm 5.3.

When the leader has received individual information from other robots,
it begins the coordination strategy as described in Section 4.3. At the end
of coordination, robots are informed of their assigned tasks (i.e. exploration
regions).

5.4.2 Task assignment

After combining individual data from its neighbours and making plans, the
leader relays its decisions to others using the topology of the spanning tree.
Unlike data fusion where information was relayed from tree children to tree
parents, information for task assignment is relayed from tree parents to tree
children. The distributed algorithm that a robot Ri applies to spread the
coordination decisions to its spanning tree children is given in the proce-
dure TASKASSIGNMENT in Algorithm 5.3 (where Γij denotes the set of ex-
ploration regions of tree descendants Dij of Ri via its tree child Rj).

From what precedes, there are four states when robots are involved in
interaction: network view construction, leader election, data fusion and task
assignment. For implementation purpose, a list of states of robots involved
in an interaction is given in Algorithm F.2.

In the following, the individual strategies we have presented in Chapters
4 and 5 are combined to build a multi-robot search and rescue algorithm.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 67

5.5 General algorithm

We need to present the overall algorithm (Algorithm 5.3) for coordination
of solitary robots. Algorithm 5.3 is applied by each robot Ri in a distributed
manner. The algorithm receives as arguments the search bound time τ, the
perception and communication range d of robots, and enlargement width
parameter w0 (see Section 4.3). Before presenting the general algorithm, we
discuss a few important details.

5.5.1 Choice of exploration region size

The maximum possible area that a robot with circular scanning region1 of
radius d and maximum velocity γ can scan in t time units is (Figure 5.3)

Â(t) = π d2 + 2γtd , (5.5.1)

which corresponds to the area of the scanned region around a robot moving

Figure 5.3: Illustration of the area scanned per motion step by a robot.

along a straight line for t time units. Thus, the initial size of the exploration
region X (0)

i of a robot Ri is obtained by requiring

|X (0)
i | = Â(τ) .

Likewise, after interacting with other robots at time t, the size of a robot’s
exploration region is set to

|Xi| = Â(τ − t) .

5.5.2 Travel to exploration region

When a robot is assigned an exploration region, the robot first must travel to
its exploration region. To travel to its exploration region, it prefers to move

1Alternatively shaped scanning regions should have only a minor impact on this dis-
cussion.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 68

in a straight line, but must avoid obstacles and soft obstacles if encountered.
Robots use the Distance Bug algorithm [80] to avoid obstacles and soft ob-
stacles as discussed in Appendix B. It should be noted that the method for
obstacle avoidance discussed in Appendix B is a modified version of the
Distance Bug algorithm—we modify it to encourage but not enforce avoid-
ance of soft obstacles while a robot is travelling to its new exploration re-
gion. The method for the robot’s motion to its exploration region is given in
Algorithm B.1.

It follows that a robot can search either within its exploration region or
while moving to its exploration region. For implementation purpose, this
can give rise to two search states: being inside and outside of its exploration
region. A list of states of robots involved in an interaction is given in Algo-
rithm F.3.

5.5.3 Selection of a new exploration region by a single
robot

There are two main reasons that a robot may elect to select a new explo-
ration region. The first reason is that a robot discovers that some part of its
exploration region is inaccessible. The second reason is when the placement
of obstacles in its exploration region does not allow the robot to search effec-
tively. The algorithm that a robot applies to select a new exploration region
is given in the procedure GETINDIVIDUALEXPLORATIONREGION in Algo-
rithm 5.3. It should be noted that robots do not allocate themselves margins
when they choose individual exploration regions.

5.5.3.1 Inaccessible exploration region

An exploration region of a robot can contain inaccessible area. Each robot
applies the zigzag search algorithm in the accessible area of their explo-
ration region part as discussed in Appendix A. As robots have limited per-
ception and communication range, a region assigned to a robot in an in-
teraction may not fall entirely in the search space or some other unknown
robots may be exploring it. After interaction, members of the interaction
do not search in other interacting robot’s assigned exploration regions (i.e.
the robots apply the soft obstacle strategy, which was described in Section
4.3) even when their own exploration regions are not fully accessible. In

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 69

such cases, the robots involved must select new exploration regions inde-
pendently based on their knowledge of the environment, but also taking
into account the soft obstacles, thus avoiding searching in the planned ex-
ploration regions of other robots. This is also done using the procedure
GETINDIVIDUALEXPLORATIONREGION in Algorithm 5.3.

5.5.3.2 Obstacles in exploration regions

The placement of obstacles in an exploration region can complicate zigzag
search of a region as originally planned. A robot decides that it needs to
change its exploration region when it does not cover a third of what it is
supposed to cover after any sequence of three moves (this is an arbitrary
parameter). When a robot encounters obstacles in its exploration region, it
must calculate the size of unexplored area in its exploration region (unex-
plored area can contain obstacles). To estimate the size of unexplored area
in its exploration region, the robot generates sampled points randomly and
uniformly distributed over its exploration region. The size of unexplored
area is approximately proportional to to the fraction of sampled points on
the unexplored region. For example if we sample 1000 points from which
730 points lie in the unexplored region, then one says that approximately
73% of the exploration region is unexplored. The robot stays in its current
exploration region only if the unexplored area remaining in its exploration
region is big enough for further exploration and it can easily get in the unex-
plored region for exploration. Otherwise, it looks for another region outside
of its current region for further search again using the procedure GETINDI-
VIDUALEXPLORATIONREGION in Algorithm 5.3. We propose a simple strat-
egy for a robot to search the unexplored area in its region after encounter-
ing an obstacle. Consider a robot applying a motion pattern (such as the
zigzag motion described in Appendix A) to search its assigned region. If
it encounters an obstacle, it attempts to maintain the pattern to the extent
possible while avoiding the obstacle. This means that when it completes
the current motion pattern, some parts of the region might still be relatively
unexplored. When it finishes applying its current motion pattern, it there-
fore must determine whether its current exploration region still contains
enough unexplored areas to focus on, or whether it is better to select a fresh
search region based on the remaining search time. For example in Figure
5.4, a robot is first given an exploration region (Figure 5.4a) in an oblivious

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 70

manner (i.e. not initially aware of obstacles). Its initial location is indicated
by a blue circle and the robot intends to apply (N, E, S, E) as motion pat-
tern. When it first detects an obstacle, it cuts its trip short (Figure 5.4b).
When it arrives at the red circle in Figure 5.4b, it realises that it can not con-
tinue to use its actual motion pattern but there is still unexplored area in
its actual exploration region (see shaded area within red rectangle in Figure
5.4b). If there is more than one option for a new exploration region in the
current region, the robot will explore all of them, one after another. In that
case, the robot will select options based distances between its current loca-
tion and the closest exploration region’s corners. An algorithm that a robot
applies to determine the unexplored area in its exploration region is pro-
vided in the procedure FINDEXPLORATIONAREAREGION in Algorithm 5.3.
A Python implementation of how a robot determines an unexplored region
in its exploration region can be found in Appendix G.2.7.

(a) (b)

Figure 5.4: Illustration of how a robot can get a new exploration region inside its
assigned exploration region. In black is the obstacle. (5.4a): Initial exploration
region of the robot. The blue circle indicates the initial location of the robot. (5.4b):
New exploration region within an exploration region. The red circle indicates the
initial location of the robot where it realises that it needs to choose a new exploration
region inside its assigned exploration region (the new exploration region is shaded).

Figures A.2b and A.2c further illustrate obstacle avoidance and further
exploration in the region using this approach.

5.5.4 New interactions

The last important aspect we need to mention before we provide the overall
algorithm for coordination of solitary robots is how a robot detects other

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 71

robots in its perception range. There are two conditions for a robot to con-
sider another robot in its neighbourhood as a candidate for coordination.
First, a robot considers another robot as a candidate for coordination if it is
their first time encountering each other. Second, a robot considers another
robot as candidate for coordination if they have covered some distance T(tm)

i
(as defined in Equation 4.3.6) where tm denotes an interaction time. Let Ii

denotes identifiers of robots which are currently under the vicinity of Ri.
Recall that Ji denotes the set of identifiers of robots that the robot Ri is
aware of; and ∆Tij the amount of distance that has been covered since the
last meeting of Ri and Rj up to time t. The algorithm that a robot uses
to determine whether to begin a new interaction is given in the procedure
NEWINTERACTION in Algorithm 5.3.

5.5.5 Overall algorithm

The overall distributed coordination algorithm run on the robot Ri is given
in Algorithm 5.3 which uses earlier algorithms. A portion of the Python
implementation of Algorithm 5.3 can be found in Appendix G.2.8. At the
end of the search, robots stay at their respective final locations.

5.6 Conclusion

In this chapter we described the various components of a distributed system
for effective assessment of our proposed coordination method in Chapter
4. We considered four relevant aspects. We first considered the aspect of
search: a solitary robot requires a search strategy to explore an environment
effectively. We also considered the aspects of leader election, data fusion
and task assignment which take place during robot interaction. Finally, we
presented the high-level algorithm for coordination of robots.

Having described our coordination method, and discussed other impor-
tant aspects of coordination of solitary robots, we now present and discuss
our experimental results on coordination of solitary robots.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 72

Algorithm 5.3 Our proposed soft obstacle strategy which is run by each robot Ri.
The main method is UPDATE which is run by Ri once each step. An example of
code to execute the class is given in the procedure RUNSOS.

1: procedure RUNSOS()
2: SOSrobot←SOS(τ, d, γ, ∆t, s, Tw, D, w0, η, m, N, L)
3: while not SOSrobot.ISENDED() do
4: SOSrobot.UPDATE()
5: end while
6: end procedure
7:
8: class SOS
9: Class variables

10: Bug object for obstacle avoidance

11: B(t)i its soft obstacles

12: C(t)i its explored region
13: γ motion velocity
14: Γij hash table of exploration regions of tree descendants via its tree child Rj
15: η threshold for it to determine whether it needs a new exploration region
16: ∆t time step
17: d robot perception range
18: D maximum number of iterations for graph construction
19: Di set of tree descendants of Ri
20: Dij set of tree descendants of Ri via its tree child Rj
21: ε a small threshold for stopping condition
22: electionObject object for leader election
23: GO a variable to control the steps of leader election
24: Gi set of previous meetings of Ri and their times
25: Ii identifiers of robots currently in interaction known by Ri
26: Ji identifiers of interacting robots it knows about
27: L number of attempts required before virtual world enlargement
28: Li a hash table with robot identifiers as keys and their locations as values
29: m width of margins
30: Mi margins
31: N sampling size
32: Ni immediate neighbours
33: O set of obstacles
34: planningState a variable to indicate robot state during planning
35: pruningObject object for network view construction
36: Qi its new exploration region
37: Ri queue messages received by Ri during task assignment
38: s number of steps required to check quantities of explored area
39: robotState a variable to indicate robot state
40: searchState a variable to indicate a search state
41: Si queue messages received by Ri during data fusion
42: stepB a variable to control the steps of network view construction
43: τ maximum search time
44: treeChildren its tree children
45: treeParent its tree parent
46: tw time elapsed since robot has been waiting
47: Tw maximum time robots can wait for other robots before they start planning
48: Vi its current virtual world
49: w0 width for virtual world enlargement
50: xi its current location
51: Xi its current exploration region
52: Yi sequence of available exploration regions
53: Zi its interference region
54: zigzag object for zigzag motion
55:
56: constructor (τ, d, γ, ∆t, s, Tw, D, w0, η, m, N, L)
57: (τ, d, γ, ∆t)← (τ, d, γ, ∆t)
58: (s, Tw, D, w0, t, C(0)i ,B(0)i ,Ji,Gi)← (s, Tw, D, w0, 0, Bd(xi), Bd(xi), ∅, ∅)

59: (As, w, η, tw)← (2sγd
3 ,
√

Â(τ), η, 0) . Â(τ) is defined in Equation 5.5.1
60: INITIALEXPLORATIONREGION()
61: (Mi,Vi,Zi,Yi)← (∅,Xi,Xi, [])

62: (A, m, N, L, AB)← (2d
√

Â(τ), m, N, L, ∅) . m denotes a margin width
63: (treeChildren, treeParent)←(∅,⊥)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 73

64: Bug← BUG(d, γ) . using Algorithm B.1
65: pruningObject←⊥
66: electionObject←⊥
67: zigzag← ZIGZAG(d, γ) . using Algorithm A.1
68: robotState← ROBOTSTATES.SEARCHING . using Algorithm F.1
69: planningState← PLANNINGSTATES.NONE . using Algorithm F.2
70: searchState← SEARCHSTATES.INREGION . using Algorithm F.3
71: end constructor
72:
73: procedure UPDATE()
74: if not ISENDED() then
75: t0 ← currentTime()
76: if robotState=ROBOTSTATES.SEARCHING or

robotState=ROBOTSTATES.WAITING then
77: (Ii, Wi)← NEWINTERACTION()
78: if |Ii| > 0 then
79: (Ii,Wi)← (Ii, Wi)
80: robotState← ROBOTSTATES.STOP
81: tw ← t
82: else if |Wi| > 0 then
83: robotState←ROBOTSTATES.WAITING
84: else
85: SEARCHING()
86: end if
87: else if robotState=ROBOTSTATES.STOP then
88: if t− tw ≤ Tw then
89: WAITING() . using Algorithm 5.1
90: else
91: robotState←ROBOTSTATES.PLANNING
92: end if
93: else if robotState=ROBOTSTATES.PLANNING then
94: if planningState=PLANNINGSTATES.NONE then
95: pruningObject← PRUNING(Ii, D)
96: pruningObject.INITIALONEHOP()
97: planningState← PLANNINGSTATES.CONSTRUCTION
98: stepB← "update"
99: GO← false
100: else if planningState=PLANNINGSTATES.CONSTRUCTION then
101: TREECONSTRUCTION()
102: else if planningState=PLANNINGSTATES.ELECTION then
103: LEADERELECTION()
104: else if planningState=PLANNINGSTATES.FUSION then
105: DATAFUSION()
106: else if planningState=PLANNINGSTATES.TASK then
107: TASKASSIGNMENT()
108: end if
109: end if
110: t1 ← currentTime()
111: ∆t01 ← max (0, Tw − t1 + t0) . Ri shall wait for some time Tw before it can

increment its counter.
112: DELAY(∆t01)
113: t← t + ∆t
114: C(t)i ← C

(t−∆t)
i ∪ Bd(xi)

115: B(t)i ← B
(t−∆t)
i ∪ Bd(xi)

116: ∆Ti ← ∆Ti + ∆t
117: end if
118: end procedure
119:
120: procedure REINITINTERACTIONINFO()
121: (treeChildren, treeParent)←(∅,⊥)
122: (Ii,Wi,Li, Γi,Di)← (∅, ∅, ∅, ∅, ∅)
123: tw ← 0
124: ∆Ti ← 0
125: AB ← ∅
126: planningState← PLANNINGSTATES.NONE
127: robotState← ROBOTSTATES.SEARCHING
128: searchState← SEARCHSTATES.OUTREGION
129: if Yi.size()> 0 then
130: X ← Xi.clone()
131: X ←RECTANGLETOSET(X) . using Algorithm F.4
132: Yi ← ∅

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 74

133: for yi ∈ Yi do
134: Yi ← Yi∪ RECTANGLETOSET(yi) . using Algorithm F.4
135: end for
136: X ← X \ B(t)i
137: X ← X \Yi

138: A← 2d
√

Â(τ − t)
139: if |X| > 0 then
140: Q← RECTANGLEEXTRACTION(N, X) . using Algorithm F.4
141: if Q.w×Q.h > A

2 then
142: Xi ← Q
143: else
144: Xi ← Yi.pop()
145: end if
146: else
147: Xi ← Yi.pop()
148: end if
149: REINITZIGZAGPARAMS()
150: y0 ← xi
151: ∆y← 0
152: AB ← ∅
153: end if
154: end procedure
155:
156: procedure INITIALEXPLORATIONREGION()
157: X ← [RECTANGLE(xix − d, xiy − d, w, w)] . with its current location xi = (xix, xiy)

158: X.add(RECTANGLE(xix − d, xiy − w + d, w, w))

159: X.add(RECTANGLE(xix − w + d, xiy − d, w, w))

160: X.add(RECTANGLE(xix − w + d, xiy − w + d, w, w))

161: i← uniform(0, 4)
162: Xi ← X[i].clone()
163: Vi = Xi.clone()
164: searchState← SEARCHSTATES.INREGION
165: REINITZIGZAGPARAMS()
166: end procedure
167:
168: procedure REINITZIGZAGPARAMS()
169: ci ← Xi .GETCLOSESTCORNER(xi)
170: zigzag.PARAMREINIT(Xi, xi, ci) . using Algorithm A.1
171: ai ← zigzag.GETSTARTINGPOINT() . using Algorithm A.1
172: end procedure
173:
174: function ISENDED()
175: if t >= τ then
176: robotState← ROBOTSTATES.COMPLETE
177: return true
178: end if
179: return false
180: end function
181:
182: procedure SEARCH()
183: if searchState = SEARCHSTATES.INREGION then
184: if t < s or |C(t)i \ C

(t−s)
i | ≥ As then . we use short-circuit evaluation to prevent

accessing negative array indices

185: zigzag.ZIGZAGMOVE(B(t)i ,O)
186: xi ← zigzag.xi

187: B(t)i ← B
(t)
i ∪ zigzag.B

188: (y0, ∆y, AB)← (xi, 0, ∅)
189: else
190: FINEXPLORATIONAREAINREGION()
191: searchState← SEARCHSTATES.OUTREGION
192: REINITZIGZAGPARAMS()
193: (y0, ∆y, AB)← (xi, 0, ∅)
194: end if
195: else if searchState = SEARCHSTATES.OUTREGION then
196: xi ←Bug.DISTANCEBUG(AB, xi, ai, C

(t)
i ,O)

197: ∆y← ∆y + γ
198: REINITZIGZAGPARAMS()
199: if δ(xi, ai) < ε then
200: searchState← SEARCHSTATES.INREGION

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 75

201: REINITZIGZAGPARAMS()
202: (y0, ∆y, AB)← (xi, 0, ∅)
203: else if ∆y > ηδ(ai, y0) then
204: B(t)i ← B

(t)
i ∪ Xi

205: if Yi.size()> 0 then
206: Xi ← Yi.pop()
207: else
208: Xi ←GETINDIVIDUALEXPLORATIONREGION()
209: end if
210: searchState← SEARCHSTATES.OUTREGION
211: REINITZIGZAGPARAMS()
212: (y0, ∆y, AB)← (xi, 0, ∅)
213: end if
214: end if
215: end procedure
216:
217: procedure TREECONSTRUCTION()
218: if not pruningObject.ISENDED() then
219: if stepB= "update" then
220: pruningObject.INITIALUPDATE()
221: pruningObject.FIRSTPRUNINGDETECTION()
222: stepB← "nextHop"
223: else if stepB= "nextHop" then
224: pruningObject.NEXTONEHOP()
225: pruningObject.FIRSTPRUNINGDETECTION()
226: stepB← "nextUpdate"
227: else
228: pruningObject.NEXTUPDATE()
229: stepB← "nextHop"
230: end if
231: else
232: planningState← PLANNINGSTATES.ELECTION
233: leaderObject← LEADERELECTION(PRUNINGOBJECT)
234: leaderObject.FIRSTHOP()
235: GO← true
236: end if
237: end procedure
238:
239: procedure LEADERELECTION()
240: if GO then
241: leaderObject.TREEPARENTUPDATE()
242: GO← false
243: else
244: leaderObject.TREECHILDRENUPDATE()
245: GO← true
246: if leaderObject.ISENDED() then:
247: treeChildren← leaderObject.treeChildren
248: treeParent← leaderObject.treeParent
249: planningState←PLANNINGSTATES.FUSION
250: end if
251: end if
252: end procedure
253:
254: function GETCENTRALPOINT()
255: P← Li.size()
256: c← (0, 0)
257: for j ∈ Li.keys() do
258: c← c + Li[j]
259: end for
260: return c

P
261: end function
262:
263: function TIMEOFPREVIOUSMEETING(Rj)
264: tm ← −1
265: if Rj ∈ Gi.keys() then
266: tm ← Gi[Rj]

267: end if
268: return tm
269: end function

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 76

270: function NEWINTERACTION()
271: (Ii, Wi)← (∅, ∅)
272: for (Rj, jstate) such that δ(xi, xj) ≤ d do
273: tm ←TIMEOFPREVIOUSMEETING(Rj)

274: if tm = −1 or ∆Tij > T(tm)
i then . we use short-circuit evaluation to prevent

accessing negative array indices
275: Ii ← Ii ∪ {j}
276: else if jstate=RobotStates.PLANNING and j 6∈ Ii then
277: Wi ←Wi ∪ {j}
278: end if
279: end for
280: return Ii, Wi
281: end function
282:
283: procedure RELAYINFORMATION()
284: F ← treeChildren.clone()
285: while F 6= ∅ do
286: Ri chooses an Rj ∈ F
287: Γij ← ∅
288: for Rk ∈ Dij do
289: Γij[Rk]← Qk
290: end for
291: Ri sends B(t)i , Zi, Vi, Ji, Gi, and Γij to Rj
292: F ← F \ {Rj}
293: end while
294: end procedure
295:
296: procedure TASKASSIGNMENT()
297: if treeParent =⊥ then
298: GETGROUPEXPLORATIONREGIONS()
299: for each tree child Rj of Ri do
300: for Rk ∈ Γij.keys() do
301: Qk ← Γij[Rk]

302: B(t)i ← B
(t)
i ∪Qk

303: Zi ← Zi ∪Qk
304: Gi[Rk]← t . Gi is a hash table
305: end for
306: end for
307: RELAYINFORMATION()
308: else
309: whileRi.size() ≥ 1 do
310: (j,B(t)j ,Zj,Vj,Jj, Γji,Gj)← Ri.dequeue()

311: (B(t)i ,Zi,Vi,Ji)← (B(t)j .clone(),Zj.clone(),Vj.clone(),Jj.clone())
312: Gi ← Gi ∪ Gj
313: RELAYINFORMATION()
314: end while
315: end if
316: REINITINTERACTIONINFO()
317: end procedure
318:
319: procedure DATAFUSION()
320: Li[Ri]← xi . Li is a hash table
321: Di ← ∅
322: if treeChildren = ∅ then
323: Ri sends C(t)i , Zi, Ii, Li and Di to treeParent

324: planningState← PLANNINGSTATES.TASK
325: else
326: for tree child Rj of Ri do
327: Dij ← ∅
328: end for
329: while Si.size() ≥ 1 do
330: (j, C(t)j j,Zj, Ij,Lj,Dj)← Si.dequeue()

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISTRIBUTED SYSTEM OF SOLITARY ROBOTS 77

331: N (t)
i ← N (t)

i ∪N (t−1)
j

332: (C(t)i ,Zi, Ii)← (C(t)i ∪ C
(t)
j ,Zi ∪ Zj, Ii ∪ Ij)

333: (J ,Dij)← (Ji ∪ Jj ∪ Ii,Dij ∪Dj)

334: Li.add(Lj) . adding a hash table into another hash table
335: Dij ← Dij ∪Dj
336: Di ← Di ∪Dj
337: end while
338: if treeParent 6=⊥ then
339: Ri sends (its combined information) C(t)i , Zi, Ii, Li and Di to treeParent

340: planningState← PLANNINGSTATES.TASK
341: else
342: planningState← PLANNINGSTATES.TASK
343: end if
344: end if
345: end procedure
346:
347: function GETINDIVIDUALEXPLORATIONREGION()
348: l ← 1
349: A←

√
Â(τ − t)

350: while true do
351: U (t)

i ← Vi \ B
(t)
i

352: w← A
2 (1 + uniform(0, 1))

353: h← A2

w
354: for j = 1 to N do
355: generate a sampled point (xU , yU) randomly and uniformly distributed over U (t)

i
356: R← RECTANGLE(xU , yU , w, h) . using Algorithm F.4
357: S← RECTANGLETOSET(R) . using Algorithm F.4

358: if S ⊆ U (t)
i then

359: ZI ← Zi ∪ S
360: return R
361: end if
362: end for
363: if l = L then
364: VIRTUALWORLDENLARGEMENT(w0) . using Algorithm 4.1
365: l ← 1
366: end if
367: l ← l + 1
368: end while
369: end function
370:
371: procedure FINDEXPLORATIONAREAINREGION()

372: A←
√

Â(τ − t)

373: E← RECTANGLEEXTRACTION(N,Vi \ C
(t)
i) . using Algorithm F.4

374: if |E| > A then
375: Xi ← E
376: else if Yi.size()> 0 then
377: Xi ← Yi.pop()
378: else
379: Qi ←GETINDIVIDUALEXPLORATIONREGION()
380: Zi ← Zi ∪Qi
381: Xi ← Qi
382: end if
383: end procedure
384: end class

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Metrics, results and discussion

In this chapter, we present and discuss the results of our proposed coor-
dination algorithm to govern solitary robots. This proposed coordination
strategy applies in situation where the search time is known in advance
and is too short to allow robots to explore the entire environment, robots
are solitary, and they are exploring an unknown and static environment.
To assess our soft-obstacle coordination strategy (SOS) experimentally, we
compare it to the accidental rendezvous strategy (ARS) and the periodic
rendezvous strategy (PRS). We also implement an hybrid approach which
combines ARS with PRS for solitary robots.

Summary on the coordination strategies

• In ARS (discussed in Section 3.2), robots do not prearrange rendezvous,
but only meet by chance and are assigned unbounded regions for fur-
ther exploration.

• In PRS (discussed in Section 3.2), robots are aware of each other from
the outset, prearrange their rendezvous and are assigned unbounded
regions for further exploration.

• In the hybrid approach, robots do not prearrange rendezvous, but
initially only meet by chance. At rendezvous, robots involved share
their individual information, are assigned sectors for further search
and schedule future rendezvous. There are a number of challenges
when combining ARS and PRS for solitary robots, in particular man-
agement of future rendezvous: how many rendezvous should a robot

78

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 79

schedule, because a robot can encounter different robots at different
times.

For robots to be incorporated into a team, a means would be required
to schedule them into future rendezvous. Moreover, a robot encoun-
tering more than one team could have the problem of being a candi-
date for multiple possible conflicting other rendezvous. For instance,
what happens if a robot which has a rendezvous scheduled encounters
another robot with a different rendezvous scheduled? If both decide to
interact and share information, they might miss their respective meet-
ings. If they do not interact, each misses the additional information
from the other. As far as we are aware, this issue is not addressed in
the literature.

Here, we implement a naive version which adheres to the following
principles:

– only one rendezvous per robot; and

– a robot travelling to attend a rendezvous trumps interactions.

• In SOS, robots meet by chance as in ARS and are assigned bounded
regions for further exploration.

6.1 Metrics

For the coordination strategy, various metrics including exploration time,
map quality and exploration cost can be considered to quantify performance.
Yan et al. [116] conducted a survey of performance metrics for robot ex-
ploration. Performance metrics are used for different purposes subject to
various assumptions. For example it does not make sense to use map qual-
ity performance here simply because we assume that maps built by robots
are accurate. Similarly, we can not sensibly use exploration time because
exploration time is assumed to be common to all robots.

For our purposes, we identify two main measures to quantify the per-
formance of one or more robots, namely: the covered area (known as map
completeness [116]) and the number of located targets. Finding targets is
the goal of a solitary robot. Under the assumption that targets are indepen-
dently and uniformly distributed in the search space, the expected number

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 80

of targets found by a robot is proportional to the amount of area covered
by the robot. In this work, we thus equate the absolute performance of a
robot with coverage of the robot. In addition, solitary robots applying a
good coordination model should have sustainable performance. Solitary
robots which know about each other after an interaction should have small
overlapping area in their explored region.

We intend to compare our proposed method to benchmark techniques
by determining the ideal coverage of each robot, and comparing this to the
empirical coverage for each method. The comparison determines the per-
formance of the techniques relative to a theoretical ideal.

In practice we expect sub-ideal empirical performance for all approaches
since the robot can encounter obstacles, and may explore areas already ex-
plored by other robots which it is unaware of.

Let S(t)
i denote the region which the robot Ri was the first robot to explore

before time t, and |S(t)
i | its size. We define the performance of the robot Ri

after spending t units of time as

ϕi(t) =
|S(t)

i |
Â(t)

, (6.1.1)

where Â(t) is given in Equation 5.5.1. The mean ϕ(t) of the individual per-
formances is expressed by

ϕ(t) = ∑N
i=1 ϕi(t)

N
. (6.1.2)

We use the standard deviation of performance to measure sustainability of
robot’s performance—this should be small in the case of sustainable perfor-
mance. The sustainability σi(t) of robots’ performances until time t is given
by

σi(t) =

√√√√ 1
N

N

∑
i=1

(ϕi(t)− ϕ(t))2 . (6.1.3)

Another aspect of interest is to quantify the differences in the results of
our coordination methods. Researchers commonly use the p-value from
hypothesis tests as an indication of noteworthy differences between pop-
ulations. Gail and Richard [33] mentioned that the p-value is not enough
to describe the statistical difference between two groups. They reviewed
metrics to evaluate another important feature—effect size. The p-value and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 81

the effect size should be combined for more refined statistical interpreta-
tion. We will use Welch’s t-test [108] to verify whether the means of robots’
coverage using ARS, Hybrid and SOS are significantly different. We use
Welch’s t-test because we wish to compare two unpaired and independent
populations of unequal variances. We will also use a paired-sample test,
the Wilcoxon signed-rank test [110], to verify whether the means of robots’
coverage using ARS, PRS and SOS are significantly different. We use the
Wilcoxon signed-rank test because distributions are not necessarily normal,
and robots are run from the same initial conditions which makes paired-
sample tests more appropriate. We will also use effect size e to complement
the p-value we obtain. The significance level we use throughout is 0.01.

Let µi and σi be the average and the standard deviation of the coverage
of the i-th group respectively—a group refers to robots using a specific co-
ordination technique. The effect size e (Cohen’s formula) is given by

e =
µ1 − µ2√

(N−1)(σ2
1+σ2

2)
2N

[19] . (6.1.4)

The effect size e describes the amount of overlap between the distributions
of the two groups. The values of e are categorised into three groups: small
for e ∈ [0, 0.5); medium for e ∈ [0.5, 0.8); and large for e ≥ 0.8. For example
if e = 0, the means are equal. When e is at least medium, i.e. e ≥ 0.5, the
results of the two groups differ markedly.

6.2 Simulation description and experimental
setup

This section describes the experimental simulations we intend to present
and discuss the experimental results of coordination techniques in order to
assess the performance of our proposed method for coordination of solitary
robots. It also describes the programming setup we used for our simula-
tions.

6.2.1 Simulation description

To have a fair comparison between the four coordination methods we con-
sider, the methods should run under the same experimental conditions as

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 82

far as possible. However, robots in PRS have a priori knowledge about each
other (they start within perception range of each other) [42, 109], while SOS
and ARS generally consider solitary robots: robots which have no a priori
knowledge about each other. This will lead to two scenarios. We will first
compare ARS, PRS and SOS by considering the performance of robots start-
ing within perception range of each other—Hybrid is reduced to PRS when
robots start within the same perception range. Thereafter SOS will be com-
pared to the ARS and Hybrid methods for the case of solitary robots where
robots start from independent locations.

We will run several experiments in this regards. We will consider up to
3000 solitary robots for different cases. We will consider two situations: (i)
solitary robots start all from nearby locations and (ii) solitary robots where
most of them start from separated locations.

Four main aspects are investigated.

(1) We aim for our proposed coordination method to achieve sustainable
performance. To assess that, we will run simulations in some search
environments to measure the exploration performance of robots using
ARS, PRS, Hybrid and SOS. (For the case of robots starting within the
same vicinity, Hybrid is the same as PRS).

(2) We claimed that the use of margins is a part of the novelty of SOS. To
assess their impact, we will perform an experiment in various search
environments using ARS, PRS, Hybrid and SOS with and without mar-
gins, and see how the performance differs.

(3) We claimed in Chapter 5 that a search method to explore an exploration
region should be selected carefully, since some search algorithms can
yield poor performance, and proposed the use of the zigzag algorithm
for SOS. Since the technique of frontiers [114] is used in the benchmark
methods, here an SOS robot will also use the technique of frontiers to ex-
plore its assigned exploration region. We expect SOS with zigzag search
to outperform SOS with the technique of frontiers in terms of coverage
because the method of frontiers can suffer from backtracking behaviour
which hinders robot progress. To verify this, we will run simulations
in various search environments using ARS, PRS, Hybrid and SOS with
zigzag search and with the method of frontiers.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 83

(4) We proposed a method for graph view construction in interaction of
robots as part of the leader election process and we will show (in Part II)
that our proposed method reduces the number of messages exchanged
between robots. To verify the impact of the graph view construction
method on coordination, we will perform experiments with large net-
works and see the benefits of our method in coverage. For these exper-
iments, we will run SOS using both the benchmark method (Algorithm
7.1) and our proposed method (Algorithm 8.1) for network construction.
In this thesis, search time is quantified in terms of the robot’s number of
moves (time steps). We (somewhat arbitrarily) set the duration of send-
ing of one message to 0.0002 moves, i.e. if during the process of leader
election robots have exchanged 10000 messages, then that interaction
of robots will last for 2 moves. So if the search time τ was set to 100
moves and this is their only interaction, these robots will only spend 98
searching moves.

In terms of results, for robots starting near to each other, we expect ARS
and SOS to outperform PRS and Hybrid in terms of coverage, because PRS
and Hybrid suffer from interruptibility. On the other hand, PRS and Hybrid
might be expected to outperform ARS and SOS in sustainability. We expect
SOS to outperform ARS in both coverage and sustainability. We will expect
SOS using our pruning method (Algorithm 8.1) to outperform SOS using
the benchmark method (Algorithm 7.1) for network view construction.

6.2.2 Experimental setup

A simulator was built in Python and Qt (a C++ cross-platform applica-
tion framework for graphical user interfaces), which includes simulation
of location-based sensing. We implemented a distributed Python class for
the various distributed methods involved in coordination.

The perception range was typically set to d = 20, but d = 10 was used
for cases with 50 robots (see Table 6.1) and d = 8 for more than 50 robots.
The velocity was set to γ = 1.

In PRS and Hybrid, the rendezvous time tr was set as done by Hourani
et al. [42]: tr = 2a + b , where a is how long a robot can explore after the
previous rendezvous before it starts travelling back to the next rendezvous
point, and b is a threshold which provides time for robots to explore as they

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 84

move to the rendezvous point. Different values of a can yield different be-
haviours of PRS robots and the value of a is user-defined. In our setting, we
use 3 scenarios, each with a different value of a. For the first rendezvous in
the three scenarios, a is set to 30, 50 or 60 moves respectively. For Hybrid
robots in the 3 scenarios, the value of a is typically set to 10, 20 or 30 moves
respectively. We used smaller initial values of a for the hybrid method be-
cause we consider a large number of Hybrid robots (i.e. 50 robots); these
smaller initial values of a are chosen to limit the possibility of interference
which is likely to happen because of the number of solitary robots. These
initial values of a are multiplied by 1.5 for each subsequent rendezvous, b is
set to a

10 throughout. Let aj and bj denote the values for a and b at the j-th
rendezvous. We thus have

aj =
3
2

aj−1 for j ≥ 2

and
bj =

aj

10
.

Although we used three different values for the parameter a in our investi-
gation, we only report the best results for PRS and Hybrid, and use these for
the comparison. Also for rendezvous in PRS and Hybrid, some robots can
arrive at a rendezvous point before others. In our experiments, when some
robots arrive before others, robots which arrive first wait for other robots.
Each rendezvous point is chosen by the leader from the combined explored
area until that time.

Let A = |W| denote the area of the search environment. The known
upper bounds on the search time considered for up to 50 robots are chosen
as follows for various values of k (see Table 6.1):

τ = k×
(

A
2γdN

− πd
2γ

)
. (6.2.1)

This choice is motivated by the form of Equation 5.5.1; The factor k is used
to control the fraction of the environment that can be explored under ideal
conditions. For larger number of solitary robots, τ will be set manually.

6.2.3 Search environments

Here we present search environments considered in our experiments. The
environment used to run simulations was a 480× 600 grid.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 85

N 2 3 4 7 8 10 50
τ 2141 1421 1061 598 521 413 217
k 0.6 0.6 0.6 0.6 0.6 0.6 0.8
d 20 20 20 20 20 20 10
Â(τ) 86896 58096 43696 25176 22096 17776 4371

Table 6.1: Experimental setup: for each number of robots (N), the time for search
(τ), the factor (k), the perception range (d), and the maximum possible coverage per
robot Â(τ) for this time will be used to evaluate the robots’ performance.

6.2.3.1 Solitary robots starting within the same vicinity

We consider three environments to assess our methods for robots starting
within the same vicinity. The three environments are presented in Figure
6.1.

(a) (b) (c)

Figure 6.1: The simulation environments used for the first experiment.

6.2.3.2 Randomly generated search environments for solitary robots
starting from separated locations

For the case of solitary robots, we generated 50 environments (the number
of obstacles and their positions, and the initial pose of robots) randomly
from uniform distributions. Initial poses of robots are restricted to free re-
gions. The occupancy rate of obstacles can reach up to 62.5% of the en-
vironment. A sample of these environments is shown in Figure 6.2. We
considered up to 3000 solitary robots. For these environments, we compare
our proposed method (SOS) to ARS and Hybrid—PRS is not appropriate
for solitary robots since robots do not all start nearby each other.

We set the search time to τ = 200. In this case, the maximum area each
robot can cover is approximately 4400 using Equation 5.5.1. So the 50 robots

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 86

will be able to maximally cover an area of size 50× 4400 = 220000, which is
about 76% of the search area of 480× 600 = 288000.

(a) (b) (c)

Figure 6.2: Illustration of some environments considered in this work. Obstacles are in
black.

6.2.3.3 Tests with Victoria Park grid map

An important aspect of simulation is the consideration of actual search envi-
ronments to test our methods. Real-world environments are different from
simulated ones, so it is important to incorporate real-world environment to
capture realistic tasks, behaviours and outcomes of robots. We will inves-
tigate the exploration performance of 50 solitary robots using ARS, Hybrid
and SOS using the Victoria Park grid map [39], a commonly used data set
for robotics applications such as navigation and exploration [100]. The Vic-
toria Park image (Figure 6.3) represents a natural and unstructured terrain,
and contains 2D laser scanning information of the terrain, collected using a
vehicle equipped with a laser range finder. An important characteristic of
the Victoria Park grid map is that each tree in the park is seen as a separate
feature by the vehicle. The vehicle is also equipped with GPS to capture a
map of the terrain. While this data set is often used to provide ground truth
for evaluation of the accuracy of localisation and mapping algorithms [102],
we treat this data set as an unknown environment for search in this thesis.

For our Victoria Park environment, we generated initial locations of robots
randomly from uniform distributions. To create the grid map of the Victo-
ria Park terrain shown in Figure 6.3b, we created a binary image, where 0

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 87

(a) (b)

Figure 6.3: The Victoria Park grid map. (6.3a): A plan view of the Victoria Park
terrain [39]. (6.3b): An occupancy grid map of the Victoria Park terrain.

denotes that a location is occupied and 1 unoccupied—which might not be
so accurate—as follows: From the Victoria Park terrain RGB image (see Fig-
ure 6.3a), we consider each pixel λ as a tuple λ = (α, β, γ) where α, β, γ ∈
[0, 255]. To convert the image to a binary matrix, we set λ̂ the binary rep-
resentation of a pixel λ to λ̂ = 1 if α ∈ [140, 160], β ∈ [180, 205] and γ ∈
[180, 200], and λ̂ = 0 otherwise. These thresholds were obtained by explor-
ing and analysing the pixels of the RGB image. In this data set, the obstacles
are trees and boundaries of the terrain. The Victoria Park terrain has an
occupancy of approximately 30%. We considered 50 solitary robots, which
start from locations sampled uniformly from the obstacle-free region.

6.3 Results and discussion

6.3.1 Sustainability of exploration performance

Single simulation

Here, we run simulations from the same starting point in the same environ-
ment with each strategy and plot individual robot coverage over time until
the end of the search, as well as the robots’ individual trajectories (follow-
ing the representation of Hourani et al. [42]). We also perform 150 simulated
runs—50 on each of the three environments in Figure 6.1—and show means
and standard deviations of coverage per strategy.

Figures 6.4–6.6 show the results for individual coverage progress (Fig-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 88

0 250 500 750 1000 1250 1500 1750 2000
Time

0

20

40

60

80

100

Co
ve
ra
ge

 (%
)

SOS
ARS
PRS

(a)

0 200 400 600 800 1000 1200 1400
Time

0

20

40

60

80

100

Co
ve
ra
ge

 (%
)

SOS
ARS
PRS

(b)

0 200 400 600 800 1000
Time

0

20

40

60

80

100

Co
ve
ra
ge

 (%
)

SOS
ARS
PRS

(c)

0 100 200 300 400 500
Time

0

20

40

60

80

100

Co
ve
ra
ge

 (%
)

SOS
ARS
PRS

(d)

Figure 6.4: Individual coverage progress (using Equation 6.1.1) for different num-
bers of robots on the environment in Figure 6.1a. (6.4a): Two robots. (6.4b): Three
robots. (6.4c): Four robots. (6.4d): Seven robots.

ure 6.4), differences of final coverages between the benchmark and our pro-
posed methods (Figure 6.5), and the robot trajectories (Figure 6.6) for dif-
ferent teams of robots starting their search from locations within sensing
range (i.e. all robots are initially in the same communication network) for
the environments in Figure 6.1.

In the case of two robots, all three strategies perform well in terms of
sustainability using the environments in Figure 6.1a. This can be observed
in Figure 6.4a as robots have similar performance within each approach.
Robots had a balanced assignment. ARS and SOS had good performance
in terms of coverage, but PRS has less coverage which can be attributed to
interruptibility, which took roughly 49% of the search time: as can be seen
in Figure 6.4, the PRS robots typically covered half the area covered by other
robots.

The experiments with groups of three and four robots investigate the case
of unbalanced assignments because robots start close to a boundary which
they are unaware of. The unbalanced assignments can be viewed in Figures

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 89

R1 R2
Robots

0

5

10

15

20

25

30

35

40

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

)

SOS-ARS
SOS-PRS

(a)

R1 R2 R3
Robots

0

10

20

30

40

50

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

) SOS-ARS
SOS-PRS

(b)

R1 R2 R3 R4
Robots

0

10

20

30

40

50

60

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

) SOS-ARS
SOS-PRS

(c)

R1 R2 R3 R4 R5 R6 R7
Robots

0

10

20

30

40

50

60

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

) SOS-ARS
SOS-PRS

(d)

Figure 6.5: Individual coverage performance for different teams of robots following
the representation of Hourani et al. [42]. Positive values indicate that our proposed
method outperforms the benchmark methods. (6.5a): A team of two robots. (6.5b):
A team of three robots. (6.5c): A team of four robots. (6.5d): A team of seven robots.

6.6d and 6.6g. When treating an unbalanced assignment, our method gives
better results than ARS and PRS in coverage (Figures 6.5b–6.5c). With ARS
in the team of three robots for instance, two robots (R1 and R3) suffered from
high interference. Trajectories of robots (as illustrated in Figure 6.6) confirm
that robots using SOS generally explore non-overlapping regions, whereas
in the ARS case there is overlapping of explored regions.

Figure 6.5d shows coverage results for the case of seven robots. In Figure
6.5d with ARS, R1, for example, has low coverage as it was exploring an
already explored region (see the green robot in Figure 6.6k).

As expected, from results run on environments in Figure 6.1 PRS and
SOS provide more sustainable performance than ARS. PRS has a very small
standard deviation of coverage per robot—partly also attributable to lower
coverage values of PRS.

The issue of unbalanced assignments does not affect the sustainability
of PRS significantly because robots meet on a regular basis and share indi-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 90

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.6: Individual robot trajectories for different teams of robots (SOS, ARS
and PRS from left to right). Starting points are depicted by dots. (6.6a–6.6c): A
team of two robots. (6.6d–6.6f): A team of three robots. (6.6g–6.6i): A team of four
robots. (6.6j–6.6l): A team of seven robots.

vidual information so that each robot involved in the meeting is aware of
activity of other robots.

For ARS in particular, ARS robots provides good coverage performance
with approximately 25% of interference which is small. We evaluated the
level of interference by determining overlapping area in the explored re-
gions of robots as a post hoc.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 91

Multiple simulations

Figure 6.7 summarises the coverage results from 50 simulations for each en-
vironment in Figure 6.1 for the cases of two, three, four, seven, eight and ten
robots. Robots start from random and obstacle-free locations in close prox-
imity to each other (with the same starting positions for each technique).
For each coordination strategy and number of robots, we give a box-and-
whiskers plot of the performance.

SOS ARS PRS
Techniques

20

30

40

50

60

70

80

90

100

Co
ve
ra
ge

 (%
)

(a)

SOS ARS PRS
Techniques

20

30

40

50

60

70

80

90

100

Co
ve
ra
ge

 (%
)

(b)

SOS ARS PRS
Techniques

20

30

40

50

60

70

80

90

100

Co
ve
ra
ge

 (%
)

(c)

SOS ARS PRS
Techniques

20

30

40

50

60

70

80

90

100

Co
ve
ra
ge

 (%
)

(d)

SOS ARS PRS
Techniques

20

30

40

50

60

70

80

90

100

Co
ve
ra
ge

 (%
)

(e)

SOS ARS PRS
Techniques

20

30

40

50

60

70

80

90

100

Co
ve
ra
ge

 (%
)

(f)

Figure 6.7: Box-and-whiskers plots of the performance of each coordination strat-
egy. (6.7a): Two robots. (6.7b): Three robots. (6.7c): Four robots. (6.7d): Seven
robots. (6.7e): Eight robots. (6.7f): Ten robots.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 92

For the coverage results presented in Figure 6.7, the results confirm again
that PRS provides the most sustainable performance as had been expected:
its standard deviation is very small. The smaller deviation is also due in
part to smaller average coverage. Still, it achieves less coverage due to in-
terruptibility.

Hypothesis test and effect size

We also used a Wilcoxon signed-rank test and the effect size (see Table 6.2) to
verify whether the mean coverages for ARS, PRS and SOS are significantly
different.

(p, e) ARS PRS
SOS (2.29× 10−26, 1.62) (2.29× 10−26, 1.98)
ARS − (2.29× 10−26, 1.89)

Table 6.2: The p-value and the effect size e for the coordination strategies. This
table indicates the p-value using Wilcoxon signed-rank test and the effect size e by
comparing the results summarised in Figure 6.7.

We observed a p-value of 2.29× 10−26 between every pair of the methods
(see Table 6.2), which are less than the threshold 0.01. So the means of the
coverage results using the two strategies (ARS and PRS) against SOS are
significantly different.

In terms of effect size, according to the classification in Gail and Richard
[33], the effect sizes between SOS and ARS and between SOS and PRS are
large (e ≥ 0.8). This indicates that the coverage results between all pairs are
markedly different.

In the case of balanced assignments for robots starting from nearby lo-
cations, we did not observe difference between SOS and ARS in terms of
coverage. Rather, the robot performance obtained with SOS is more sus-
tainable than that with ARS in cases of unbalanced assignments. However,
since robots can not determine the type of their assignment (i.e. whether it
is balanced or unbalanced) a priori, it is beneficial for robots to apply SOS
rather than ARS as it is robust to unbalanced assignments. Our results con-
firm that SOS outperforms other strategies in coverage by utilizing informa-
tion on the available search time.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 93

6.3.1.1 Solitary robots starting from separate locations

Sustainability

We now consider sustainability of exploration performance for solitary robots
using ARS, Hybrid and SOS.

Results of 50 scenarios using ARS, Hybrid and SOS
Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ARS 46 65 40 43 60 57 52 37 46 63 37 54 45 36 56 65 51 36 41 57 55 49 59 45 55
Hybrid 55 36 57 32 39 51 57 33 45 45 38 33 44 44 38 50 53 35 59 37 30 54 48 34 43
SOS 48 63 55 41 67 45 69 66 60 44 52 54 56 57 69 50 68 41 57 66 63 55 46 54 56
Scenarios 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
ARS 41 41 38 60 50 58 45 38 61 46 51 39 46 41 49 40 64 51 43 37 55 47 64 53 54
Hybrid 31 51 57 49 40 45 59 48 44 46 58 52 57 41 32 38 54 55 56 33 49 56 49 30 50
SOS 44 47 52 50 53 49 42 58 48 68 61 51 64 67 48 60 60 54 52 48 70 69 62 65 66

Table 6.3: Results of 50 scenarios using SOS, ARS and Hybrid. The results are
in terms of the average percentage of ideal coverage achieved by individual robots
in each experiment. We evaluate the average coverage by individual robots in each
strategy. Bold values indicate high coverage.

30 35 40 45 50 55 60 65 70
Coverage

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ARS
Hybrid
SOS

Figure 6.8: Cumulative distribution function (CDF) of 50 scenarios using SOS,
ARS and Hybrid. The average percentage of ideal coverage achieved by individual
robots for these 50 scenarios are presented in Table 6.3.

Table 6.3 and Figure 6.8 show the results of each of the 50 scenarios,
each using a different environment. In Table 6.3, the averages and stan-
dard deviations (in percentages) of coverage using ARS, Hybrid and SOS
are 49.22± 8.61, 45.49± 9 and 56.08± 8.48 respectively. So SOS outperforms
the other two approaches, in terms of average and standard deviation of the
coverage on these simulations. Figure 6.8 shows that coverage progresses

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 94

obtained with the three techniques are linear with different slopes; SOS out-
performed the other two techniques noticeably.

Table 6.4 shows the individual robot coverage results using SOS, ARS
and Hybrid, and Table 6.5 shows the number of interactions that each robot
participated in. In SOS, robots have achieved 49.7% of average coverage
with standard deviation of 18.0%. In ARS they have achieved 46.1% average
coverage with standard deviation of 18.8%. In Hybrid they have achieved
45.1% average coverage with standard deviation of 15.8%.

Individual robot coverage per technique
Robots R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25

ARS 25 52 65 55 38 51 12 25 34 88 42 24 22 68 15 64 65 54 87 34 64 77 59 57 52
Hybrid 32 34 47 46 39 18 44 58 55 63 26 22 23 65 36 41 36 44 72 42 76 45 48 56 36
SOS 77 49 34 39 53 43 46 35 56 78 50 65 38 61 54 43 55 45 46 29 31 62 36 72 31
Robots R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50

ARS 28 39 44 38 38 52 32 73 14 29 49 59 58 17 46 33 46 29 49 82 60 58 27 46 29
Hybrid 37 41 38 27 43 46 39 63 37 30 60 72 61 65 62 54 25 33 36 67 69 66 14 46 17
SOS 68 19 52 44 62 45 62 29 79 56 44 38 38 36 52 45 47 45 21 50 42 35 26 49 74

Table 6.4: Individual robot coverage results for search and rescue using SOS, ARS
and Hybrid. Bold values indicate highest coverage. Robots using SOS outperform
robots using ARS with averages of 49.7± 18.0% and 46.1± 18.8% respectively.

Number of meetings per robot
Robots R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25

ARS 2 1 4 6 3 1 0 0 1 0 2 1 0 0 3 0 3 0 0 0 3 1 2 0 2
Hybrid 0 0 0 4 1 0 2 0 0 0 2 2 3 1 9 0 1 2 0 0 0 0 1 0 0
SOS 0 0 0 2 0 3 0 0 1 3 3 1 3 0 0 1 1 1 3 1 0 1 4 2 1
Robots R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50

ARS 1 4 2 0 0 4 1 7 1 0 2 0 0 0 0 3 0 4 7 0 2 1 0 0 2
Hybrid 2 3 2 0 0 1 0 2 0 0 0 2 0 1 8 1 0 3 0 0 0 0 0 0 0
SOS 0 1 2 1 1 0 1 0 0 1 2 2 2 1 1 5 0 1 2 6 0 1 0 1 0

Table 6.5: Number of interactions that each robot participated in for search and
rescue using SOS, ARS and Hybrid which coverage results presented in Table 6.4.
Bold values indicate highest number of meetings.

Table 6.6 and Figure 6.9 show the results of 30 simulations using our Vic-
toria Park grid map each using 50 solitary robots. In Table 6.6, the averages
and standards deviations (in percentages) of coverage using ARS, Hybrid
and SOS are 57.7± 3.80, 56.46± 4.65 and 60.7± 4.46 respectively. So SOS
outperforms the other two in average coverage, while ARS slightly outper-
forms the other approaches in standard deviation. That means ARS was
more sustainable than SOS in this setting. Figure 6.9 shows that coverage
progresses obtained with the three techniques are linear with SOS slightly
better than the other two techniques.

Table 6.3 has confirmed that SOS outperforms ARS and Hybrid in coor-
dinating solitary robots in these specific environments. This difference is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 95

Results of 30 scenarios using ARS, Hybrid and SOS on the Victoria Park grid map
Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ARS 59 53 63 58 50 55 60 59 61 52 64 58 57 64 60 53 60 58 59 54 58 59 52 61 62 62 60 56 52 54
Hybrid 52 61 62 63 51 52 64 59 52 56 52 60 53 60 56 61 50 50 62 52 59 63 58 59 50 54 52 52 56 63
SOS 60 58 55 65 55 67 54 57 67 68 57 62 60 59 61 59 56 54 65 61 65 56 58 60 68 68 59 65 57 65

Table 6.6: Results of 30 scenarios using SOS, ARS and Hybrid on the Victoria
Park grid map. The results are in terms of the average percentage of ideal coverage
achieved by individual robots in each experiment. We evaluate the average coverage
by individual robots in each strategy. Bold values indicate highest coverage.

50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5
Coverage

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ARS
SOS
Hybrid

Figure 6.9: CDF of 30 scenarios using SOS, ARS and Hybrid on the Victoria Park
grid map. The average percentage of ideal coverage achieved by individual robots
for these 30 scenarios are shown in Table 6.6.

well observed when treating coverage of solitary robots given interactions
(Figure 6.5). Although the results show that SOS outperforms ARS and Hy-
brid in most cases, as in Table 6.3, this does not mean SOS always performs
better than ARS or Hybrid on average when robots have different configura-
tions in the three strategies (i.e. robots have different behaviour in the three
methods but they all start from the same locations). The results show that in
some cases ARS still outperforms SOS, in situations where ARS robots have
a better initial scattering distribution.

In the case of unbalanced assignments with a large number of interact-
ing robots, SOS might not outperform the other two strategies—in Table
6.3, ARS outperforms SOS in some experiments for example. This is prob-
ably because when considering a large number of robots, robots may have
different experiences using ARS and SOS.

We also used Welch’s t-test and the effect size to verify whether the means
of results of ARS, Hybrid and SOS are significantly different. We test the
null hypotheses that the means of the coverage for each strategy are equal.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 96

(p, e) ARS Hybrid
SOS (1.35× 10−4, 0.7449) (3.38× 10−8, 1.036)
ARS − (3.8627× 10−2, 0.4143)

Table 6.7: The p-value and the effect size e for the coordination strategies. This
table indicates the p-value using Welch’s t-test and the effect size e by comparing
the results using our coordination strategies with 50 solitary robots in the simulated
search environment.

We observed a p-value of 1.35× 10−4 between SOS and ARS, and a p-
value of 3.38× 10−8 between SOS and the hybrid method (see Table 6.7),
which are less than the threshold 0.01. So the means of the coverage results
using the two strategies (ARS and Hybrid) against SOS are significantly dif-
ferent for the environments. Table 6.7 shows that there is not enough evi-
dence in coverage to confidently distinguish the performances of ARS and
Hybrid.

In terms of effect size, according to the classification in Gail and Richard
[33], the effect size between SOS and ARS is medium (e ∈ [0.5, 0.8)) and
the effect size between SOS and the hybrid method is large (e ≥ 0.8). This
indicates that the differences in coverages between SOS and both ARS and
Hybrid are marked: the average discrepancy in performance is about 0.75-
1.05 standard deviations.

In the three coordination strategies it seems that achieving a higher num-
ber of interactions does not necessarily mean the strategy will achieve bet-
ter performance. In Table 6.5, R5 had three interactions using ARS and one
interaction using Hybrid, but none using SOS. However R5 using SOS out-
performed R5 using ARS and Hybrid, and R5 using both ARS and Hybrid
yield almost the same result (Table 6.4). This result may mean that R5 using
SOS had a better search behaviour than R5 using ARS and Hybrid.

Similarly, although R45 had six interactions in SOS and no interaction in
ARS or Hybrid, R45 using ARS and Hybrid both outperformed R45 using
SOS. This result supports our earlier claim that performance of robots not
only depends on their initial configurations (location and type of environ-
ment) but also on the balance of their assignment. Another important point
to highlight is that the high performance of R45 in ARS could cause poor per-
formance of other robots which could be in its region. That is because more
robots in a region leads to higher interference before interactions. Further-
more, the robots R15 and R40 have many interactions using Hybrid. These

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 97

two robots have chances to meet with other robots after their initial interac-
tions. In coverage, R40 achieves high performance while R15 has a low per-
formance. Many considerations could explain the poor performance of R15

despite its high number of interactions; the most likely factor is interrupt-
ibility. For R40, it probably learns more information about the environment
from its later interactions than from its initial team. This could allow R40 to
search in regions which lead to low interference.

While robots using SOS outperformed robots using ARS and Hybrid
overall, we observe more interactions in ARS and Hybrid than in SOS (Table
6.5). This indicates that ARS robots or Hybrid robots may end up encoun-
tering one another again after earlier interactions, but SOS splits robots up
more effectively.

It was said earlier that ARS, Hybrid, and SOS can perform differently
even when applied to the same setting. The same robot Rj may have differ-
ent opportunities to interact, although the robot uses the same initial config-
uration in these strategies. However, running several experiments on differ-
ent environments may give some indications of the superiority of a method:
If one method outperforms another method in most situations with differ-
ent configurations, we may conclude that the first method seems to be better
than the second. This is the view we consider below when comparing the
various methods.

In light of this, we conclude that SOS seems to be generally better than
ARS. It was observed that SOS outperforms ARS in 31 out of the 50 cases:
both methods give almost the same results in 11 cases, and ARS outper-
forms SOS in the 8 remaining cases. Based on the p-value (see Table 6.7),
there is not enough evidence in coverage to confidently distinguish the per-
formances of ARS and Hybrid, but Hybrid outperforms ARS in 3 cases only
(Table 6.3).

Table 6.5 again indicates that there are more interactions in ARS than in
SOS, while SOS outperforms ARS in overall coverage. Interactions are the
only reliable means by which robots may avoid overlapping search. This
indicates that SOS has some superiority over ARS because, though fewer
meetings are performed in SOS, SOS still achieves higher overall coverage.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 98

The Victoria Park grid map

Table 6.6 indicates that SOS typically, but not always, outperforms ARS and
Hybrid in coordinating solitary robots on the Victoria Park grid map. We
also used the Welch’s t-test to verify whether the mean coverages of ARS,
Hybrid and SOS are pair-wise significantly different for this map. We ob-
served a p-value of 0.00925 between SOS and ARS, and a p-value of 0.0008
between SOS and Hybrid, which are both less than the threshold 0.01. So
the means of the coverages using the two benchmark strategies (ARS and
Hybrid) are significantly different to that of SOS. The coverages of ARS and
Hybrid do not differ significantly (p = 0.2482). We also observed an effect
size of 0.668 between SOS and ARS, and an effect size of 0.8439 between SOS
and the Hybrid approach. From [33], the effect size between SOS and ARS
is medium (e ∈ [0.5, 0.8)), and between SOS and the Hybrid method is large
(e ≥ 0.8), so the means of the coverage results using the two benchmark
strategies (ARS and Hybrid) differ markedly from that of SOS.

Large networks of solitary robots

We also consider large networks of solitary robots using the Victoria Park
grid map and compare our coordination strategies. Results are shown in
Table 6.8.

(p, e) ARS Hybrid
N = 100, τ = 150 (0.0008, 0.4863) (4.5601× 10−16, 1.2659)
N = 1000, τ = 90 (4.5011× 10−19, 0.4036) (5.3330× 10−122, 1.2659)
N = 2000, τ = 50 (6.3885× 10−8,−0.1714) (6.8996× 10−275, 1.2149)
N = 3000, τ = 30 (1.7937× 10−72, 0.4714) (0, 1.1876)

Table 6.8: p-values and effect sizes e for the two benchmark coordination strategies
(ARS and Hybrid) against SOS. This table indicates the p-value using Welch’s t-
test and the effect size e by comparing the coverage of individual robots on a single
run using our coordination strategies with up to 3000 solitary robots in the Victoria
Park grid map.

With regards to the p-values and effect sizes observed in Table 6.8, Hy-
brid achieves considerably poorer results than SOS: results of these two co-
ordination strategies are significantly different. The interruptibility of Hy-
brid has a definite negative impact on the performance of Hybrid robots.
Compared to ARS, SOS achieves better results in 3 cases out of 4. ARS

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 99

achieves better than SOS for the case with 2000 solitary robots. This is why
the corresponding effect size is negative.

For solitary robots, our results indicate that SOS is better than ARS and
Hybrid as it outperforms ARS and Hybrid in most cases, both for simulated
search environments and for the Victoria Park grid map. We conclude that
it is beneficial for solitary robots to apply SOS when an upper bound on
search time is available. We note that the simulated search environments are
more cluttered than the Victoria Park grid map, but SOS performed better
relative to ARS and Hybrid in these simulated environments compared to
the Victoria Park grid map. This may mean that the benefits offered by SOS
are more likely to manifest in very cluttered search environments.

6.3.2 The benefits of margins in SOS

6.3.2.1 Solitary robots starting from nearby locations

For this simulation, the team of robots start their searches from locations
within sensing range, and use the search environment in Figure 6.1a. Fig-
ures 6.10 and 6.11 show the individual trajectories (Figures 6.10a and 6.10b
for the case of unbalanced assignment, and Figures 6.11a and 6.11b for
the case of balanced assignment), coverage results (Figures 6.10c and 6.11c
for the cases of unbalanced and balanced assignments respectively), and
progress results (Figures 6.10d and 6.11d for the cases of unbalanced and
balanced assignments respectively) for a team of 8 robots using SOS with
and without margins. Some margins are illustrated as gray boxes in Figures
6.10a and 6.11a. These results give a preliminary indication that it is benefi-
cial to SOS robots to use margins when robots have unbalanced assignment,
which is the type of situation for which we motivated the design of SOS.

The advantage of using margins with SOS is that robots can use some
parts of them while travelling to their new exploration regions without
overlapping with other robots which they know about. This situation hap-
pens mostly when robots have an unbalanced assignment as is the case in
Figure 6.10, which we consider below. Among the 8 robots, the exploration
regions for the four left-hand side robots fall entirely in the search environ-
ment, and the four exploration regions for the four right-hand side robots
are partly outside of the search environment. The four robots with balanced
assignment achieve almost the same performance, with or without the use

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 100

(a) (b)

R1 R2 R3 R4 R5 R6 R7 R8
Robots

0

10

20

30

40

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

)

(c) (d)

Figure 6.10: SOS with and without the use of margins for the case of unbalanced assign-
ment. (6.10a): Trajectories of the 8 SOS robots using margins. Gray box is an illustration
of margins between exploration regions. (6.10b): Trajectories of the 8 SOS robots without
the use of margins. (6.10c): Differences of coverages for SOS with and without margins.
(6.10d): Coverage progress of SOS robots with and without margins.

of margins—although we could see benefits from margins in very cluttered
environments as well. This is not surprising because their exploration re-
gions have enough space where robots can search. But the other four robots
need to select new exploration regions after covering their assigned explo-
ration regions early. In this situation, robots are most likely to overlap. So by
the use of margins, robots can minimise this chance of overlapping between
themselves.

In Figure 6.11, where the 8 robots have balanced assignment using SOS
with or without margins yields almost the same results, both in terms of
robot coverage (Figure 6.11c) and coverage progress (Figure 6.11d).

6.3.2.2 Solitary robots starting from separated locations

We also compare SOS without the use of margins to ARS and Hybrid for
region exploration, for the 50 solitary robots in simulated environments. We

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 101

(a) (b)

R1 R2 R3 R4 R5 R6 R7 R8
Robots

−2

0

2

4

6

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

)

(c) (d)

Figure 6.11: SOS with and without the use of margins for the case of balanced assignment.
Some trajectories through obstacles are caused by the image rendering effects. (6.11a):
Trajectories of the 8 SOS robots using margins. (6.11b): Trajectories of the 8 SOS robots
without the use of margins. (6.11c): Differences of coverages for SOS with and without
margins. (6.11d): Coverage progress of SOS robots with and without margins.

compare these variants of SOS using Welch’s t-test and consider the effect
size, and the statistical results are as follows (see Table 6.9).

The p-values obtained indicate that the coverage using SOS is signifi-
cantly better than ARS and Hybrid with a medium effect size. However,
compared to the results obtained between SOS with margins, and ARS and
Hybrid (that were discussed in the previous section), the use of margins is
beneficial to SOS, when solitary robots explore an unknown environment.
The same conclusions can also be drawn from the results of the effect size.

(p, e) ARS Hybrid
SOS without margins (0.00025, 0.525) (1.18× 10−5, 0.68)

Table 6.9: The p-value and the effect size e for the coordination strategies. This
table indicates the p-value using Welch’s t-test and the effect size e by comparing
the results using our coordination strategies with 50 solitary robots in the simulated
search environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 102

These results indicate that it is beneficial for SOS robots to use margins.

6.3.3 Selection of a search mechanism for SOS robots

6.3.3.1 Solitary robots starting from nearby location

Figure 6.11a and Figure 6.12a show the results for individual trajectories for
a team of 8 robots using SOS with its default zigzag search and SOS using
the technique of frontiers for exploration of exploration regions respectively.
The relative coverages of each team’s robots are plotted in Figure 6.12b. The
teams of robots start their searches from locations within sensing range, and
use the search environment in Figure 6.1a. These results indicate that it is
slightly beneficial to SOS robots to use zigzag for exploration of their regions
rather than the technique of frontiers.

(a)

R1 R2 R3 R4 R5 R6 R7 R8
Robots

0

5

10

15

20

25

30

Di
ffe

re
nc

es
 o
f C

ov
er
ag

es
 (%

)

(b)

Figure 6.12: SOS using the technique of frontiers as the search algorithm. (6.12a): Trajec-
tory of the 8 SOS robots using the technique of frontiers. (6.12b): Differences of coverages
for SOS using the technique of frontiers and zigzag search.

The advantage of using zigzag search with SOS is that robots do not
backtrack, as in the case of the technique of frontiers. A robot selects fron-
tiers which maximise some utility function. In our case, since robots ex-
plore unknown environments, we define utility as the area of unexplored
region. So it is very likely that robots choose frontiers which will lead
them to some backtracking behaviour. Such backtracking behaviour is in-
dicated by crossing trajectories in Figure 6.12a. This situation often hap-
pens with frontier-based search because frontiers are selected from local in-
formation and the search environment is unknown to robots. This back-
tracking behaviour hinders robot progress. In Figure 6.12b, we see that SOS

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 103

robots using zigzag search yielded better performance than SOS robots us-
ing frontiers. Another reason why SOS robots using the technique of fron-
tiers achieve worse results than SOS robots with zigzag search is because
robots explore a bounded region. Exploration of a bounded region with the
technique of frontiers adds too many constraints to the motion behaviour
of robots, so some backtracking behaviour is likely to occur even when the
region is obstacle-free. The technique of frontiers is good for unbounded
search, i.e sectors: when the region assigned to a robot to search is large,
environment boundaries should not be encountered as often, so less back-
tracking would be required—in such a setting, the technique of frontiers
could be better than zigzag search.

6.3.3.2 Solitary robots starting from separate locations

For the comparison of SOS frontier techniques and the other two methods
(ARS and Hybrid) for region exploration by 50 solitary robots, the statistical
results are as follows (see Table 6.10). For SOS with the technique of frontier
and ARS, we obtained a p-value of 0.021 (which is greater than the threshold
0.001) and on effect size e of 0.124 (i.e. effect size e is small). For SOS with
the technique of frontier and Hybrid, we obtained a p-value less than the
threshold and a small effect size. This means that the results of SOS and ARS
are almost equal. This indicates that a careful choice of a search technique
for SOS is important.

(p, e) ARS Hybrid
SOS with frontiers (0.021, 0.124) (0.000912, 0.41)

Table 6.10: The p-value and the effect size e for the coordination strategies. This
table indicates the p-value using Welch’s t-test and the effect size e by compar-
ing the results using our strategies with 50 solitary robots in the simulated search
environment.

6.3.4 The benefits of our pruning method in coordination
of solitary robots

We also consider SOS with two different methods (Algorithms 8.3 and 8.2)
that interacting solitary robots use to select a coordinator. Results are shown
in Table 6.11. The maximum and distribution of interaction network sizes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 104

(i.e. the number of robots involved in interactions) for different numbers of
solitary robots are also given in Table 6.11 and Figure 6.13 respectively.

N P (p, e)
2 0 (0.6856, 0.9367)
8 2 (0.8837, 0.0851)
10 3 (0.2873,−0.5449)
50 11 (0.0095, 0.5410)
100 20 (0.7813, 0.0397)
1000 42 (2.2232× 10−20, 0.5068)
2000 65 (4.7325× 10−60, 0.5259)
3000 140 (1.3359× 10−173, 0.7500)

Table 6.11: The p-value and the effect size e for our coordination strategy (SOS)
using two different leader election methods. This table indicates the p-value using
Welch’s t-test and the effect size e by comparing the results using our coordination
strategy with at up to N = 3000 solitary robots in the simulated search environ-
ment. P denotes the maximum interaction network size for the corresponding total
number of solitary robots N.

(a) (b) (c)

(d) (e) (f)

Figure 6.13: Histograms of interaction network sizes observed in coordination of: (6.13a):
10, (6.13b): 50, (6.13c): 100, (6.13d): 1000, (6.13e): 2000 and (6.13f): 3000, solitary
robots.

Table 6.11 shows that there is no need for using our pruning method for
leader election when small networks of solitary robots are considered. We
see that for up to 100 solitary robots, the largest interaction network was
about 20 robots. With such small interaction networks, one can simply use

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 105

the benchmark technique [118] for graph construction because our prun-
ing method does not offer a significant advantage. But for larger networks
of solitary robots (i.e. from 1000 to 3000 solitary robots), the interaction
networks become larger (140 robots approximately). For these cases, the
use of our pruning method for leader election has a substantial impact on
the coverage performance of the robots as shown Table 6.11: because the
larger the interaction network, the higher time required for view construc-
tion gets. Most large interaction networks are formed in initialisation of
search: a large number of robots are found to start from nearby locations.

For these experiments, we set the duration of sending one message in
interaction of robots to 0.0002, which is small. But for situations where the
cost of sending a message is high, our pruning method will have a more sub-
stantial impact even on small networks. In other words, the higher the cost
of sending a message or the larger the interaction network, the more sub-
stantial impact our pruning method has relative to the benchmark method
for graph view construction.

6.4 Conclusion and avenues for future work

Our aim was to propose a coordination method with low interference and
low interruptibility. Details of our contributions and their novelty can be
found in Section 4.1.1.

This part contrasted three main coordination strategies, namely: ARS ,
PRS and SOS in terms of their applicability and the use of solitary robots.

PRS is used to manage a team of robots which can schedule meetings
among themselves [42, 109]. In the case of solitary robots, a robot can en-
counter different robots at different times. We implemented a naive way of
combining ARS and PRS for solitary robots (the Hybrid approach).

However, for situations such as map building where robots are bound
by a team goal, ARS and SOS should not be recommended. When bound
by a team goal, robots must maintain collaboration. Scheduled meetings
are a sound strategy that solitary robots can apply to maintain collabora-
tion among themselves. In ARS and SOS, collaboration of solitary robots is
always accidental.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 106

6.4.1 Findings summary

In our experiments we found that SOS provides more sustainable coverage
performance than other methods in general. This indicates that bounding
an exploration region based on the available known upper bound search
time is important for coordination of solitary robots in an unknown envi-
ronment.

We also found that the use of margins is beneficial to SOS. Since the na-
ture of assignments (balanced or unbalanced) is not known in advance, us-
ing SOS with margins is recommended to provide robustness to unbalanced
assignments.

Both the choice of search technique and coordination strategy have an
impact on the performance of robots. We noted that, when using SOS,
the search method should be selected carefully. The use of SOS with some
search methods may not yield good performance.

Finally, we showed the impact of the cost of sending message in coordina-
tion of robots. We showed that a careful choice of a graph view construction
technique for larger networks can be important in reducing the number of
messages in large networks.

6.4.2 Avenues for future work

We identify the following promising avenues for future work:

1. Treatment of uncertainty in map fusion which is involved in coordi-
nation of solitary robots would be important to consider.

2. The proposed coordination strategy is a one-shot process (which means
that robots only search in the environment once), applied in static en-
vironments. The case of dynamic environments where robots search
iteratively could possibly be investigated in future.

3. For the assessment of our coordination method, we implemented a
naive hybrid method which combines ARS and PRS for solitary robots.
More sophisticated hybrid versions which consider different approaches
to combining ARS and PRS could be investigated in future.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. METRICS, RESULTS AND DISCUSSION 107

In this part we have covered our proposal for coordination of solitary
robots. In the following part, we cover our proposal for the second problem
considered in this thesis: view construction.

Stellenbosch University https://scholar.sun.ac.za

Part II

Network view construction

108

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Background and literature

In interaction of robots, a communication graph is a graph that indicates
which robots can communicate with which other robots. Communication
is considered here as the exchange (sending and receiving) of messages
or information between adjacent nodes in a network. We are restricted to
peer-to-peer communication because nodes have limited communication
capacity. This chapter reviews background and literature for distributed
graph view construction methods. Our contribution will be to enhance a
distributed method for graph view construction by reducing the number of
messages exchanged.

It should be noted that the ultimate goal of graph view construction is
decentralised computation of node centrality quantities. In Chapter 1, for
effective coordination during interaction of robots, we motivated the selec-
tion of a leader based on closeness centrality.

7.1 General background

In a distributed system, the process of building a view of a communication
graph can be centralised or decentralised. It is centralised when the con-
struction of the view of a communication graph is performed by a single
node, known as an initiator. Once the initiator has the view of a commu-
nication graph, it may send it to the other nodes [77]. If the initiator is not
known in advance, the first stage of constructing a view of a communication
graph involves selecting the initiator.

Robustness to failure in the implementation of distributed systems is es-

109

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 110

sential in critical applications. We consider a decentralised solution because
centralized solutions do not offer robustness to failure of a central node,
and are seldom adequate due to computational and communication limita-
tions [67]. A decentralised method to construct a view of a communication
graph, on the other hand, is one in which each node builds its own view of
their interaction network, with no single initiator [118]. We propose a de-
centralised method to construct a view of a communication graph. Since we
consider an approximate and decentralised method to construct a view of a
communication graph, inevitably nodes will construct different topologies
describing their interaction network. We will use the term view as shorthand
for view of a communication graph.

7.2 Literature discussion

Decentralised methods to construct views can be exact or approximate. Naz
[77] reviews recent literature on methods to construct views. Exhaustive
methods build the complete topology of the communication graph—they
involve an all-pairs shortest path computation. As a consequence, exact
approaches suffer from problems of scalability [77]. This can be a particular
issue for large networks of nodes with constrained computational power
and restricted memory resources.

Approximate methods have been proposed to overcome this problem.
Unlike exhaustive methods, approximate methods do not provide complete
knowledge of the communication graph. These methods provide only an
approximate topology.

Many distributed methods for view construction are centralised, i.e. they
require a single initiator in the process of network construction. The disad-
vantage of a unique initiator for approximate methods is that the structure
of a view depends on the choice of the initiator. For example, Kim and
Wu [47] propose an interesting distributed approach for view construction,
where an initiator constructs a tree as the view of a communication graph
for which it is the root.

To the best of our knowledge and according to Naz [77], decentralised
approximate methods for view construction are very scarce and the algo-
rithm proposed by You et al. [118] is the state of the art for decentralised
approximate algorithms for view construction. This method simply runs

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 111

breadth-first search [92] on each node. Here we focus on reducing the num-
ber of messages received by nodes. A careful treatment of network commu-
nication for robotics search and rescue by low power robots under weak sig-
nal conditions is crucial [84, 103]. Weak signal conditions could be caused
by the nature of the search environment or sensor conditions. A network
of low power robots working under weak signal conditions can face high
propagation time of communication.

For the comparison of our proposed method with You et al.’s method
[118] in terms of the number of messages, we consider the total and maxi-
mum number of messages received per node. We wish to see the impact of
our proposed mechanism on message complexity in the entire network. We
wish to reduce the maximum number of messages per node because if the
communication time per message is the bottleneck, reducing only the total
number of messages may not be helpful.

We next show the decentralised construction of a view using the algo-
rithm in You et al. [118].

7.2.1 Decentralised view construction

The method by You et al. was proposed for decentralised approximate com-
putation of centrality measures (closeness, degree and betweenness central-
ities) of nodes in arbitrary networks. As treated in You et al.’s method [118],
these computations require a limited view of the communication graph.
At the end of the interaction between nodes, each node will evaluate its
centrality based on its own view of the network (which may be different
from other nodes’ views). Here we consider connected, undirected and un-
weighted (i.e. edges of the communication graph are of unit weight) graphs
of uniquely identifiable nodes.

In You et al.’s method [118], nodes construct a view of the communica-
tion graph only from local interactions. A node’s view of a communication
graph is gradually constructed by message passing. Each node sends its
neighbour information (i.e. information about nodes it is aware of but not
shared to its immediate neighbours yet) to all of its immediate neighbours
which relay it onward through the network. Nodes apply asynchronous
communication to build their views of the communication graph, i.e. there
is no common clock signal between the sender and receiver.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 112

Algorithm 7.1 Our presentation of the benchmark method [118]. The algorithm
gives the code run on node vi. The main methods are ONEHOP and UPDATE
which are run by vi once each iteration. An example of code to execute the class is
given in the procedure RUNDISTRIBUTEDBFS.

1: procedure RUNDISTRIBUTEDBFS()
2: BFSobject←DISTRIBUTEDBFS(Ni, D)
3: while not BFSobject.ISENDED() do
4: BFSobject.ONEHOP()
5: BFSobject.UPDATE()
6: end while
7: end procedure
8:
9: class DISTRIBUTEDBFS

10: Class variables
11: D the maximum number of iterations
12: Mi a queue used for messages received by the node vi
13: Ni a list of immediate neighbours of the node vi

14: N (t)
i the set of (t + 1)-hop neighbours of vi

15: Ni,t the set nodes known by vi until the end of iteration t
16: t the current iteration number
17:
18: constructor (Ni, D)
19: t← 0
20: N (0)

i ← {vj : vj ∈ Ni}
21: D ← D
22: Nt,i ← N

(0)
i .clone()

23: end constructor
24:
25: procedure ONEHOP()
26: if not isEnded() then
27: for vj ∈ Ni do

28: vi sends 〈NeighbouringMessage(i,N (t−1)
i)〉 to vj

29: end for
30: end if
31: end procedure
32:
33: procedure UPDATE()
34: if not isEnded() then
35: t← t + 1
36: N (t)

i ← ∅
37: whileMi.size() ≥ 1 do
38: (j,N (t−1)

j)←Mi.dequeue()

39: N (t)
i ← N (t)

i ∪N (t−1)
j . vi fuses the messages received

40: end while
41: N (t)

i ← N (t)
i \ Nt−1,i

42: Nt,i ← Nt−1,i ∪N
(t)
i

43: end if
44: end procedure
45:
46: function ISENDED()
47: return N (t)

i = ∅ or t = D
48: end function
49: end class

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 113

Let Ni denote the set of neighbours of vi and N (t)
i the set of (t + 1)-hop

neighbours of vi. The initial set of neighboursN (0)
i is assumed to be known

and has the following form:

N (0)
i = {vj : vi is a one-hop neighbour of vj} . (7.2.1)

During each iteration, each node sends its neighbouring information to all
its immediate neighbours. Each node waits for communication from all of
its immediate neighbours after which it updates an internal round counter
which indicates the distance between the node and the farthest nodes it
knows about. The set N (t−1)

j is what is being communicated from vj to vi

after round t. The neighbouring message sent by a node vj to its neighbours

is 〈NeighbouringMessage(j,N (t−1)
j)〉. A node vi stores messages received

in a queue, represented byMi. The node queues messages based on their
arrival times. After round t, the topology of vi’s view of the communication
graph is updated as follows

N (t)
i =

⋃
vj∈Ni

N (t−1)
j \ Ni,t , (7.2.2)

where

Ni,t =
t−1⋃
k=0

N (k)
i . (7.2.3)

The algorithm in You et al. [118] that each node vi uses to construct its view
of the communication graph is given in Algorithm 7.1.

The algorithm terminates after at most D iterations, where D is the input
of the algorithm. It can also be set or determined in a distributed manner
(i.e. the value of D can be determined by nodes during interaction) [35].
But some nodes can also reach their equilibrium stage before the D-th iter-
ation (e.g. nodes which are more central than others). Such nodes should
terminate when equilibrium is reached (see Line 47 in Algorithm 7.1).

At the end, every node has a view of network, and so the required cen-
tralities can be calculated locally. This view construction method is approx-
imate when the total number of iterations D is less than the diameter of the
communication graph, otherwise it is exhaustive, i.e. all views correspond
to the exact correct information, assuming a failure-free scenario. With a de-
centralised approximate method as presented in Algorithm 7.1, nodes may
have different views of the network at the end. Each node will evaluate its
centrality based on the view of the network it has.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 114

Figure 7.1: An example of the construction of a view of a communication graph of
diameter d = 6 using the method of You et al. [118]. The method is run on the
red node: black nodes are its 1-hop neighbours, blue nodes are its 2-hop neighbours,
green nodes are its 3-hop neighbours and pink node its 4-hop neighbour.

This approach is similar to breadth-first search [92]: after round t, the
view of a node vi is the subset of the set of nodes of the communication
graph containing nodes up to distance t + 1 from itself. As with many other
decentralised approaches, such as decentralised data fusion, we use prop-
agation of information in neighbourhoods to make global estimates from
local communication and computation [23].

In what follows, we illustrate Algorithm 7.1 with an example.

Example. Figures 7.1 and 7.2 illustrate the development of a view of the
communication graph in Algorithm 7.1. Each node learns about its t-hop
neighbours after iteration t− 1. In Figure 7.1 the red node is initially aware
of its one-hop neighbours (nodes in black). After the first iteration, it is
aware of its two-hop neighbours (nodes in blue) and so on.

Figure 7.2 illustrates Algorithm 7.1 in a large communication graph with
250 nodes, 581 edges and a diameter of 56 (Figure 7.2a). The various subfig-
ures show how the green node learns the communication graph.

In what follows, we illustrate Algorithm 7.1 with another example.

Example. Consider the communication graph in Figure 7.3, with D = 3.
The results for the execution of Algorithm 7.1 at each node are shown in
Table 7.1. At each iteration t, each node vi learns its (t + 1)-hop neighbours.
At the end of the algorithm (i.e. after iteration t = 3), only the node v3 has
learnt the complete view of the communication graph.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 115

(a) (b) (c)

(d) (e) (f)

Figure 7.2: An example of the benchmark method [118] showing the graph discovered by
the green node (node on which the algorithm execution is being visualized) with a network
of 250 nodes, 581 edges, and a diameter of 56. Blue nodes are nodes discovered by the green
node. (7.2a): The communication graph considered. (7.2b): This illustrates the discovered
subgraph after the first iteration of the algorithm. (7.2c–7.2f): Later rounds up to round
35.

Figure 7.3: Illustration of a communication graph.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 116

Discovery t = 0 t = 1 t = 2 t = 3
N (t)

1 v2, v3 v4, v7 v5, v6, v8 v9, v10

N (t)
2 v1, v3, v4 v5, v6, v7 v8 v9, v10

N (t)
3 v1, v2, v7 v4, v8 v5, v6, v9, v10 ∅
N (t)

4 v2, v5, v6 v1, v3 v7 v8

N (t)
5 v4 v2, v6 v1, v3 v7

N (t)
6 v4 v2, v5 v1, v3 v7

N (t)
7 v3, v8 v1, v2, v9, v10 v4 v5, v6

N (t)
8 v7, v9, v10 v3 v1, v2 v4

N (t)
9 v8 v7, v10 v3 v1, v2

N (t)
10 v8 v7, v9 v3 v1, v2

Table 7.1: Illustration of the use of Algorithm 7.1 applied on the graph in Figure
7.3.

Let di denote the degree of node vi. In Algorithm 7.1, the number of
messages received by vi isO(diD), and the average number of messages per
node is O(d̄D), where d̄ is the average node degree of the communication
graph.

We next review some existing methods for failure detection and handling
of recovery from communication failures.

7.3 Background of methods for failure detection

Network communication is subject to failures: some nodes or edges could
malfunction at any time. Communication is successful when messages sent
are received uncorrupted, and ineffective communication is considered a
failure. There are two main techniques involved in communication failures
to enable reliable delivery of messages: error detection and error correction.
The former is the detection of malfunctions of some entities (nodes or edges)
in the network. The latter not only detects errors, but also reconstructs the
original message to produce an error-free message. In this thesis, we con-
sider error detection only, i.e. we can only detect failure of a functioning
node/edge or recovery of a failed node/edge. We consider a technique to
detect and recover from communication failures when applying our prun-
ing method.

There are several solutions for communication failures [56, 81]. Based on
architectural organization, solutions to communication failures are grouped
into two categories: centralized and decentralized approaches [81]. Central-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 117

ized solutions have a single node which detects and manages failures in the
system. For example, Stoller [96] proposed a simple centralized solution for
failure detection: it proposes implementing a failure detector (FD) to de-
tect and report failures of nodes, and also to report the restoration of nodes
when they recover. When the FD detects the failure of a node, it reports a
down signal to other nodes. Note that Stoller [96] considers the FD as a sep-
arate module which monitors all the nodes. In this thesis, we are interested
in decentralized solutions.

Kshirsagar and Jirapure [56] group decentralized solutions for manage-
ment of communication failures into three categories:

• node self-detection approaches, where each node can identify its own
malfunction by performing self-diagnosis;

• neighbour coordination approaches, where nodes coordinate with their
immediate neighbours to detect malfunctioning nodes and report their
recoveries; and

• clustering approaches, where the entire network is split into clusters
and each cluster has a local coordinator responsible for performing
tasks for failure management task.

From the three categories of decentralized approaches for failure detec-
tion, we find the neighbour coordination approach proposed by Sheth et al.
[89] most suitable. The disadvantage of the node self-detection approach is
that a node is not aware of failure of other nodes in the system. This ap-
proach may be suitable for monitoring system where one needs to study,
for example, the impact of failure of a node in the entire system without
propagating such information to other components of the system. The clus-
tering approach is quite similar to the neighbour coordination approach,
but the former is inappropriate for our use since it requires that the network
be split in advance and that the local coordinators be known to other cluster
members. In the neighbour coordination approach, each node can monitor
the behaviour of its immediate neighbours, which suits our decentralised
approach well.

Two situations can cause communication failure in our case. First, a node
can fail to send a message. Second, a communication channel (i.e. an edge)
can fail to (fully) transmit a message. A node or an edge is said to be down

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. BACKGROUND AND LITERATURE 118

when it fails to transmit messages/information. For our purposes, a node
will only need to know the states of nodes and edges in its neighbourhood.

7.4 Summary

This chapter reviewed background work and literature for decentralised
distributed communication graph construction. According to discussions
by Naz [77], there has not been much work done in this direction. Most
methods for graph construction are centralised, i.e. there exists, or the par-
ticipating nodes choose, one node to be the initiator. Based on the nature
of solitary robots for search and rescue which we consider in this thesis,
and the need for robustness to failures, we were interested in developing a
decentralised method for graph construction. To this end, we described an
existing method, proposed in You et al. [118], which, based on our knowl-
edge, seems to be the leading decentralised distributed method for view
construction. In this method, each node effectively runs breadth-first search
[92] to construct its graph view.

While research has been conducted in the area of communication graph
construction, there is still room for improvement for this area. This the-
sis makes contributions by refining an existing approach [118], providing a
favourable tradeoff for the problem that we consider.

The next chapter presents our proposed pruning method.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Decentralised view construction

8.1 Introduction

In distributed networks, the topology of a network is very important, espe-
cially when one needs to know a central node in a network. Chapter 7 has
reviewed background and literature for distributed views construction of
a communication graph. This chapter introduces our proposed distributed
methods for view construction with a reduced number of messages.

Each node builds a view of the communication graph to evaluate its
closeness centrality. We consider applications where we care about nodes
with high closeness centrality (e.g. leader election based on a closeness cen-
trality measure as discussed in Subsection 5.3).

8.1.1 Contributions

Not all nodes ultimately need to build a view of the network formed in their
interaction since some nodes may realize quickly that they are not suitably
central, i.e. they have small closeness centralities. The question is how to
identify such insignificant nodes in a decentralised algorithm? This work
tackles this problem by introducing a pruning strategy that also reduces the
number of messages exchanged between nodes compared to the algorithm
from You et al. [118]. When a leader is chosen based on closeness central-
ity, we observe that in the algorithm of You et al. [118], even nodes which
can not play a central role, for example leaves, overload communication by
receiving messages. (Except in special cases, a leaf node should not play an
important role).

119

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 120

At each iteration of view construction, each node prunes some nodes in
its neighbourhood once and thereafter interacts only with the unpruned
nodes to construct its view of the communication graph. We refer to this
approach as pruning. The more of these prunable nodes a network con-
tains the better our algorithm performs relative to the algorithm proposed
by You et al. [118] in terms of number of messages. We further modify
the algorithm to take communication failure into account (and analyse the
impact of such failures on performance of the algorithm).

8.1.2 Limitations and potential applications of our
proposed method

Our proposed method is recommended for situations where only one node
is meant to be selected as a central node. It is not recommended for situa-
tions where one wishes to know the approximated centralities of all nodes
of the network.

Our proposed method is not limited to interaction networks for solitary
robots, but can be applied to arbitrary distributed communication networks,
and is most likely to be valuable when nodes form very large networks: re-
ducing the number of messages will be a more pressing concern in large-
scale networks. Such applications include driverless or instrumented cars,
monitoring systems, swarm robotics, mobile sensor networks or general
mobile ad-hoc networks.

8.2 View construction

The idea behind our pruning technique is that, during view construction,
some nodes can be deactivated (i.e. some nodes will no longer communicate
with other nodes). Nodes put on hold are not involved in subsequent steps
of the algorithm and their closeness centralities [8] are treated as zero.

In You et al.’s method [118], at iteration t, a node learns of nodes at
distance t + 1 from itself, and it initially knows its immediate neighbours.
Pruning is applied after each iteration t of communication, i.e., pruning is
applied after every iteration a node is aware of its (t + 1)-hop neighbour
information. At that stage, each node checks whether it or any nodes in its
one-hop neighbourhood should be put on hold. It is desirable that nodes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 121

can determine which other nodes in their neighbourhood are deactivated
so that they do not need to wait for or send messages to them. This reduces
the number of messages exchanged between nodes.

Given two immediate neighbours vi and vj, their sets of nodes known to
be pruned are not necessarily the same, and nodes do not exchange such
information between themselves.

In what follows we describe our pruning method to construct a view.

8.2.1 Pruning

Before describing our proposed pruning method, we note some changes we
make to the benchmark method [118].

8.2.1.1 Replacement of the set of nodes N (t)
i by a set of edges S (t)i

In the method proposed by You et al. [118], each node vi keeps record of new
nodesN (t)

i it discovers at each round t. We find this way to be inconsistent,
specifically in situations where nodes can fail to communicate, which we
will consider in this thesis. (Note that You et al. [118] did not treat commu-
nication failure.) In situations where nodes only keep record of new nodes
they have discovered, when some nodes fail, other nodes may not construct
their views of the communication graph consistently as a node needs to
know which nodes are immediate neighbours. Unlike in the method pro-
posed by You et al. [118], here each node keeps record of new edges it has
discovered at each round. In other words, each node knows which of the
nodes it has discovered are immediate neighbours. So, in case of failures
of some nodes during the process, nodes will construct their views of the
communication graph consistently.

An edge between nodes vi and vj is denoted by

eij = eji = (min(i, j), max(i, j)) .

We will use S (t)i to denote the set of new edges discovered by vi after

round t. The initial set of edges S (0)i has the following form:

S (0)i = {eij : vi is a one-hop neighbour to vj} . (8.2.1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 122

After round t, the topology of vi’s view of the communication graph is up-
dated as follows

S (t)i =
⋃

vj∈Ni

S (t−1)
j \ Si,t , (8.2.2)

where

Si,t =
t−1⋃
k=0

S (k)i . (8.2.3)

8.2.1.2 Description

It is worth to recall that we are not aiming to compute exact closeness cen-
trality distribution on a graph. We aim to propose a method for approxima-
tion of closeness centrality values. While we are aiming to compute close-
ness centrality distribution on a graph using pruning, the concept of prun-
ing can directly be related to eccentricity centrality [40]. The eccentricity of a
node is the maximum distance between the node and another node. Eccen-
tricity and eccentricity centrality are reciprocal to each other, i.e. nodes with
high eccentricity have low eccentricity centrality. We consider the following
points to achieve our goal.

• Pruned nodes have relatively high eccentricities or low eccentricity
centralities (as will be discussed later in Lemma 8.2.3).

• It was found that eccentricity and closeness centralities are highly and
positively correlated for various types of graphs [7, 73]. This is partly
due to the fact that they both operate on the concepts of paths.

From what precedes, our proposed pruning method is then recommended
for approximations of closeness centralities for categories of graphs where
eccentricity and closeness centralities are highly correlated.

We will first show how a node identifies prunable nodes after each iter-
ation. There are two types of objects (leaves, and nodes causing triangles)
that a node can prune after the first iteration. When a node is found to be
a leaf or to cause a triangle, this node is put on hold by itself and each of
its immediate neighbours. Let di denote the degree of node vi. Since nodes
have learnt about their 2-hop neighbours by the first iteration, a node vi

knows the neighbours Nj of each of its immediate neighbours vj.

Definition 8.2.1 (A leaf). A node vi is a leaf if di = 1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 123

Definition 8.2.2 (A node causing a triangle). A non-leaf node vj causes a trian-
gle if dj = 2 and its two immediate neighbours are non-leaves and also immediate
neighbours to each other.

Let F (t)
i denote the set of pruned nodes known by a node vi at the end of

iteration t (with t ≥ 1).
We can illustrate elements of F (1)

i in Figure 8.1. For example in Figure
8.1, from the perspective of v3, nodes v4 and v5 are leaves. Also, nodes v11

and v14 are nodes causing a triangle from the perspective of v10.

Figure 8.1: Example of discovery of prunable objects.

Figure 8.2 illustrates another case of nodes causing triangles. For exam-
ple, Figure 8.2 has a triangle between the nodes v1, v2 and v3. From the
perspective of each of v1, v2 and v3 (using Definition 8.2.2), v1 causes the
triangle. So each of these three nodes will put v1 on hold.

Figure 8.2: Illustration of triangles (i.e. cycles of size 3) in pruning method. A triangle
exists between nodes v1 v2 and v3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 124

Our proposed pruning method is decentralised, so each node is respon-
sible for identifying prunable nodes in its neighbourhood, including itself.

Let N up
i,t denote the set of neighbours of vi which are still involved in

interaction at the beginning of iteration t, i.e. nodes that have not been
pruned. Functions that a node vi applies to detect prunable elements in its
neighbourhood after the first iteration are given in Algorithm 8.1.

For graphs of diameter 1 (i.e. a complete graph), pruning is not involved
because, after the first iteration each node will realise that it its current view
of the communication graph is complete.

So far, we have described how elements of F (1)
i are identified by node vi.

We now consider the case of further pruning which is straightforward: new
nodes should be put on hold when they have no new information to share
with their other active neighbours. Thus a node stops relaying neighbour-
ing information to neighbours from which it receives no new information.

At the end of iteration t, a node vi considers itself as element of F (t)
i (i.e.

prunes itself) if it gets all its new information from only one of its neigh-
bours at that iteration. Also, node vi prunes vj if the neighbouring informa-

tion S (t)j sent by vj to vi does not contain new information, i.e.

S (t)j ⊆
⋃
l<t

S (l)i . (8.2.4)

At the end of our pruning method, we hope that the most central node is
among nodes which are unpruned. Equation 8.2.4 indicates for a node vj

to be pruned, there must be another node vi which is unpruned because a
comparison must be done. This is true because there are always unpruned
nodes which remain after the first iteration, except a graph of 2 connected
nodes in which case pruning is not involved. This means that at the end of
our pruning method, there will always remain some unpruned nodes.

Nodes in F (t)
i for t ≥ 2 could be viewed as leaves in the subgraph ob-

tained after the removal of all pruned nodes from previous iterations as
they can have only one unpruned node remaining. Recall that an unpruned
node only interacts with its neighbours which are not deactivated. This
means that the number of the unpruned neighbours of a node may get re-
duced over iterations. So at some iteration an unpruned node can be viewed
as leaf if it remains only with one unpruned neighbour.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 125

Let

Fi,t =
t⋃

l=1

F (l)
i .

After describing pruning, we now connect it to eccentricity (see Lemma
8.2.3) as mentioned above. Let ecci denote the eccentricity of a node vi and
recall that δij denotes the shortest path length between the nodes vi and vj

in an (unweighted) graph G with vertex set V . The eccentricity of a node is
given by

ecci = max
vj∈V

δij . (8.2.5)

Lemma 8.2.3. If vj ∈ Ni such that

vj ∈
⋃
t≥1

F (t)
i ,

then
eccj ≥ ecci .

Proof. Recall that N (t)
i denotes the set of (t + 1)-hop neighbours of vi. Ac-

cording to Definitions 8.2.1 and 8.2.2, and Equation 8.2.4, a node vj is pruned
if it has an immediate neighbour vi from which it can learn more about the
graph (i.e. it can receive new information) while at the same time it can not
provide new information to that neighbour. Given two direct neighbours vj

and vi where vj has been pruned at iteration t by vi, we have

N (t)
j ⊆

t⋃
l=1

N (l)
i . (8.2.6)

From the definition of N (t)
i and Equation 8.2.6, it is straightforward that

eccj ≥ ecci.

From Lemma 8.2.3 it can be seen that prunable nodes are nodes with rela-
tively high eccentricities. So pruning can not introduce errors when search-
ing for a node of maximum eccentricity centrality. Since eccentricity and
closeness centralities are highly correlated [7, 73], it can be concluded that
prunable nodes are likely to be nodes with relatively low closeness central-
ity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 126

The procedure for how a node vi detects elements of F (t)
i at the end of

each iteration t ≥ 2 is given in Algorithm 8.1 (see function FURTHERPRUN-
INGDETECTION in Algorithm 8.1). A Python implementation of how prun-
able nodes are detected in a distributed manner can be found in Appendix
G.1.

The algorithm requires one parameter—the maximum number of itera-
tions, D—and returns the view Si,t of node vi and the set Fi,t of pruned
nodes known by vi.

Example. Consider the communication graph in Figure 8.2, with D = 4.
The results of our pruning method on this graph are as follows.

Node sets ecci t = 1 t = 2 t = 3 t = 4
F (t)

1 4 v1 ⊥ ⊥ ⊥
F (t)

2 4 v1 v4 v2 ⊥
F (t)

3 3 v1 ∅ v2, v7 >
F (t)

4 5 v5, v6 v4 ⊥ ⊥
F (t)

5 6 v5 ⊥ ⊥ ⊥
F (t)

6 6 v6 ⊥ ⊥ ⊥
F (t)

7 4 ∅ v8 v7 ⊥
F (t)

8 5 v9, v10 v8 ⊥ ⊥
F (t)

9 6 v9 ⊥ ⊥ ⊥
F (t)

10 6 v10 ⊥ ⊥ ⊥

Table 8.1: Table indicating pruning using the graph in Figure 8.2. ⊥ indicates
that the corresponding node has put itself on hold and> indicates that the node has
reached an equilibrium.

After the first iteration, each node must identify prunable nodes in its
neighbourhood, including itself. Using Algorithm 8.1, F (1)

1 = {v1}, so v1

will put itself on hold. Also, F (1)
2 = F (1)

3 = {v1}, so v2 and v3 will put v1

on hold. The same procedure applies for other nodes (see the third column
in Table 8.1). At the first iteration, all the leaves (i.e. v5, v6, v9 and v10) are
pruned; they all have ecci = 6. But, a non-leaf node, v1 (with ecci = 4), is
also pruned on the first iteration. As was mentioned before, the node v1 is
pruned now because it causes a triangle.

At the beginning of iteration t = 2, v1, v5, v6, v9 and v10 are no longer in-
volved since they have been identified as prunable nodes at the end of the
previous iteration; F (2)

2 = F (2)
4 = {v4} and F (2)

7 = F (2)
8 = {v8}; and the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 127

Algorithm 8.1 Our proposed pruning method in a failure-free scenario. The main
methods are NEXTONEHOP and NEXTUPDATE which are run by vi once each
iteration. The algorithm gives the code executed for node vi. An example of code to
execute the class is given in the procedure RUNPRUNING.

1: procedure RUNPRUNING()
2: Pruningobject←PRUNING(Ni, D)
3: Pruningobject.INITIALONEHOP()
4: Pruningobject.INITIALUDATE()
5: Pruningobject.FIRSTPRUNINGDETECTION()
6: while not Pruningobject.ISENDED() do
7: Pruningobject.NEXTONEHOP()
8: Pruningobject.NEXTUPDATE()
9: end while

10: end procedure
11:
12: class PRUNING
13: Class variables
14: F (t)

i set of pruned nodes known by vi at the end of iteration t
15: Fi,t set of pruned nodes known by vi up to iteration t
16: Mi a message queue for neighbouring messages received by the node
17: Ni set of immediate neighbours of vi
18: N up

i,t set of immediate neighbours of vi which are still active up to iteration t
19: Qij the one-hop neighbours of node vj sent to vi at the first iteration

20: S (t)i set of new edges discovered by vi at the end of iteration t
21: Si,t view of communication graph of vi up to iteration t
22: t current iteration number
23:
24: constructor (Ni, D)
25: S (0)i ← {eij : ∀vj ∈ Ni}
26: Si,0 ← S

(0)
i .clone() . vi detects its immediate neighbours

27: end constructor
28:
29: procedure NEXTONEHOP()
30: if not ISENDED() then
31: t← t + 1
32: N up

i,t ← N
up
i,t \ Fi,t

33: S (t)i ← ∅
34: for vj ∈ N

up
i,t do

35: vi sends 〈NeighbouringMessage(i,S (t−1)
i)〉 to vj

36: end for
37: end if
38: end procedure
39:
40: procedure NEXTUPDATE()
41: if not ISENDED() then
42: whileMi.size() ≥ 1 do
43: (j,S (t−1)

j)←Mi.dequeue()

44: S (t)i ← S (t)i ∪ S
(t−1)
j . vi fuses the messages received

45: end while
46: S (t)i ← S (t)i \ St−1,i

47: Si,t ← Si,t−1 ∪ S
(t)
i

48: F (t)
i ← FURTHERPRUNINGDETECTION()

49: Fi,t ← Fi,t ∪ F
(t)
i

50: end if
51: end procedure
52:
53: function INITIALONEHOP()
54: for vj ∈ Ni do

55: vi sends 〈NeighbouringMessage(i,S (0)i)〉 to vj
56: end for
57: end function

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 128

58: procedure INITIALUPDATE()
59: S (1)i ← ∅
60: whileMi.size() ≥ 1 do
61: (j,S (0)j)←Mi.dequeue()

62: S (1)i ← S (1)i ∪ S (0)j . vi fuses the messages received

63: Qij ← S
(0)
j

64: end while
65: S (1)i ← S (1)i \ Si,0

66: Si,1 ← Si,0 ∪ S
(t)
i

67: end procedure
68:
69: function LEAVESDETECTION() . vi detects leaves in its neighbourhood

70: F (1)
i ← ∅

71: for vj ∈ Ni ∪ {vi} do
72: if |Qij| = 1 then

73: F (1)
i ← F (1)

i ∪ {vj}
74: end if
75: end for
76: return F (1)

i
77: end function
78:
79: function TRIANGLEDETECTION(F (1)

i) . vi detects elements causing triangles in its
neighbourhood

80: for vj ∈ N
up
i,1 ∪ {vi} do

81: if |Qij| = 2 then
82: Let v f , vg be the two immediate neighbours of vj
83: if v f is a node in Qig then

84: F (1)
i ← F (1)

i ∪ {vj}
85: end if
86: end if
87: end for
88: return F (1)

i
89: end function
90:
91: procedure FIRSTPRUNINGDETECTION()
92: F (t)

i ← LEAVESDETECTION()

93: F (t)
i ← TRIANGLEDETECTION(F (t)

i)

94: Fi,t ← F
(t)
i .clone()

95: end procedure
96:
97: function FURTHERPRUNINGDETECTION(). vi detects elements of F (t)

i in its neighbourhood

98: F (t)
i ← ∅

99: for vj ∈ N
up
i,t do

100: if S (t)j ⊆ Si,t−1 then

101: F (t)
i ← F (t)

i ∪ {vj}
102: end if
103: end for
104: if |N up

i,t | = 1 and S (t)i 6= ∅ then

105: F (t)
i ← F (t)

i ∪ {vi}
106: end if
107: return F (t)

i
108: end function
109:
110: function ISENDED()
111: return t = D or S (t)i = ∅ or vi ∈ Fi,t
112: end function
113: end class

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 129

node v3 has not identified any prunable node at this iteration. At this itera-
tion, the remaining nodes with high ecci (i.e. nodes v4 and v8) are pruned.
The results for the remaining iterations are shown in Table 8.1.

A detailed toy example of pruning is illustrated in Appendix C.
We are aware that starvation or deadlock [20] are situations which must

be addressed in distributed systems. In our proposed distributed system, at
the end of each iteration each node is aware of its immediate neighbour’s
status (whether they are pruned or not). A pruned node neither sends a
message nor waits for a message. So when a node is still unpruned, it
knows which immediate neighbours to send messages to and which to wait
messages from. This prevents the nodes from suffering from starvation or
deadlock.

Having described the pruning method, we next evaluate the amount of
communication of the pruning method we have described. This complexity
analysis considers algorithms without failure detection.

8.3 Communication analysis

In this section we analyse the amount of communication required by our
proposed pruning method, against the benchmark technique [118]. Let di

and u(t)
i denote the number of neighbours of vi and the number of neigh-

bours of vi which are pruned at the end of iteration t respectively. Let Y(D)
i

and P(D)
i be the number of messages that the node vi receives according to

the benchmark algorithm (Algorithm 8.3) [118] and the number of messages
vi receives through the use of the pruning strategy for D rounds respec-
tively. Then the number of messages ∆(D)

i the node vi saves due to the use
of a pruning strategy (Algorithm 8.2) is

∆(D)
i = Y(D)

i − P(D)
i . (8.3.1)

We expect ∆(D)
i ≥ 0 for all vi ∈ V . We consider situations with the number

of iterations D ≥ 2 since, our proposed algorithm and the algorithm in [118]
give the same number of messages for D = 1, for failure-free cases.

The maximum number of iterations to terminate the algorithm is D and
a node vi is supposed to receive di messages at the end of each iteration t
using the benchmark method. Recall that our proposed pruning and the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 130

benchmark methods can also terminate when an equilibrium is reached.
Let Hi denote the iteration after which a node vi applying the benchmark
and our proposed methods reaches an equilibrium. The value of Hi is the
same for both algorithms because at iteration t, a node vi (which should be
an unpruned node using our proposed method) has the same view (i.e. it
has learnt up to (t + 1)-hop neighbours) using both algorithms. Note that
for our pruning method, a pruned node does not reach an equilibrium. Let
h(t)i be the number of neighbours of vi which have reached equilibrium at
iteration t. It is clear that if there exists at least one neighbour of vi which
has reached equilibrium at iteration t, then vi will reach its equilibrium at
iteration t + 1. For the benchmark method,

Y(D)
i =

min(Hi,D)

∑
t=1

di − h(Hi−1)
i ∀vi ∈ V . (8.3.2)

In the following, we present results showing how our proposed pruning
method decreases the number of messages exchanged between nodes while
communicating in a failure-free scenario.

Lemma 8.3.1. Let Li denote the round at which a node vi is put on hold (Li = +∞
for unpruned node vi). The number of messages received by a node vi ∈ V is

P(D)
i =

min(D,Hi)

∑
t=1

(di − u(t−1)
i)− h(Hi−1)

i ,

for unpruned nodes and

P(D)
i =

Ti

∑
t=1

(di − u(t−1)
i) ,

for pruned nodes where
Ti = min(D, Li) .

Proof. After any round of pruning, the number of messages received by vi

in the next round is reduced depending on the number of its neighbours put
on hold at that round of pruning. So at the end of each iteration t, the node
vi receives (di − u(t−1)

i) messages. Note that u(0)
i = 0. Also a node can stop

interacting with other nodes after it is put on hold. If the node vi is put on
hold at the end of iteration Ti ≤ D, then it stops receiving messages. Also at
iteration Hi, an unpruned node vi does not receive messages from its direct
neighbours which have reached equilibrium at iteration Hi − 1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 131

Theorem 8.3.2. Let Li denote the round at which a node vi is put on hold (with
Li = +∞ for an unpruned node vi). The number of messages saved by a node
vi ∈ V in a failure-free scenario is

∆(D)
i =

Ti

∑
t=2

u(t−1)
i +

min(Hi,D)

∑
t=Ti+1

di + h(Hi−1)
i .

Proof. This is straightforward by Equations 8.3.1 and 8.3.2, and Lemma 8.3.1.

It is clear that the pruning method requires more computation than the
benchmark method in order to detect nodes to prune. Also pruned nodes
build very limited views of a communication graph as they stop interacting
with others once they are pruned. These nodes would have built broader
views using the benchmark method [118]. Thus if considering applications
where all nodes are required to build broader views of the communication
graph, our pruning method is not recommended.

Having described the pruning method for failure-free cases and evalu-
ated the amount of communication of the pruning method, we next describe
the pruning method for failure cases.

8.4 Communication failure

So far we have introduced a pruning method for constructing a view of a
communication graph, with an advantageous characteristic: pruning should
reduce the number of messages exchanged between nodes during view con-
struction. But network communication is subject to failures (as discussed in
Section 7.3): we assumed that pruned nodes can not fail when building net-
work views using our proposed method.

We next describe the approach (Algorithm 8.2) we propose for failure
detection. Our proposed method is a neighbour coordination approach [89]:
each node monitors the behaviour of its immediate neighbours, which suits
our decentralised approach well (as motivated in Section 7.3).

8.4.1 Neighbour coordination approach

In our case, each node will have an FD component to monitor its immediate
neighbours or incident edges in order to detect and report their failures. It

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 132

also reports when failed nodes and edges recover. In other words, a node
is monitored by all its immediate neighbours and an edge is monitored by
both nodes that the edge connects. There are two ways a node can detect
failure of its neighbour or an incident edge. A node vi considers another
node vj in its neighbourhood down if vi does not receive a message from
vj for T units of time (the variable T is user-defined), unless the node vj is
on hold. It is assumed that any other nodes, say vk, than the failed node
vj assigns the same T to vj. We use checksums in our various algorithms
to detect failure in communication channels. In our algorithms, the check-
sum is a boolean function: it returns false if no errors were detected during
transmission, otherwise it returns true.

The value of T depends on the maximum number of iterations. For a
typical value of D, T can be set to 1 second for D iterations corresponding
to D seconds (i.e. 1 second corresponds to 1 iteration), as done in our ex-
periments. We choose 1 second because each node is supposed to receive
information from its neighbours at the end of each iteration (i.e. every sec-
ond).

To inform its immediate neighbours about the failure of a node or the
failure of a channel, the node vi sends a down signal to its immediate neigh-
bours. Nodes relay these signals further through the network. This ap-
proach can lead to loops of failure signals. To avoid such loops, each signal
is uniquely identified by the FD nodes. Every node stores failure signals
it has received, which it removes when it receives a recovery signal corre-
sponding to that failure signal. In this way, a node relays a failure signal
only if such signal is absent in its storage memory under the assumption
that a node or an edge only fails once per iteration (this is checked using
the subroutine ISPERSISTENT in Algorithm 8.2). This means that if a non-
neighbour of a failed node receives multiple failure signals of that failed
node, it will only relay the first failure signal. Also a node sends or relays
a failure signal to a neighbour only after receiving a message from it. In
this way, loop avoidance will be reinforced. The format of a failure signal is
〈Signal(S, Q, i, c)〉 to denote a signal concerning c (c is either an edge or a
node) of type S and Q (S and Q are used to indicate whether it is a failure
signal or a recovery signal) is sent from the node vi. For failure of a node
vj, the signal sent by vi is 〈Signal(0, 0, i, j)〉. For failure of an edge ejk, the
signal sent by vi is 〈Signal(0, 1, i, ejk)〉.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 133

If some node is down, other nodes keep exchanging messages. What-
ever its condition (failed or not), an edge is always used by both the nodes
incident to it. In other words, if an edge is down, both the nodes incident
to it keep exchanging messages through the failed channel until a possible
recovery of the failed edge (i.e. until a message is successfully received)—a
better approach might be to poll the connection periodically, after increasing
intervals. Otherwise, they will never know the recovery of the edge when
that happens. If there is still some failed nodes or edges which have not
recovered by the end of view construction, functioning nodes shall remove
them from their final views (see Line 161 in Algorithm 8.2). A failed node
or edge can speed up or delay the communication process between nodes.
That is because the removal of a node or edge from a network can change
path lengths between remaining nodes (Figure 8.3) and thus the complexity
of the process of constructing a view.

When a failed node or edge is restored, the FD nodes send a restoration
signal to their immediate neighbours, for relaying through the network. A
failed node is considered restored when the FD node receives a message
from it. Also a failed edge is considered restored when it is successful. For
restoration of a node vj, the signal sent by node vi is 〈Signal(1, 0, i, j)〉. For
restoration of an edge ejk, the signal sent by node vi is 〈Signal(1, 1, i, ejk)〉. A
node that recovers should simply carry on sending neighbouring messages.
A node stores failure signals in a queue Pi.

There are four situations for the report of failure. The first situation is
when a node, say vi, has detected a failure of a node in its neighbourhood.
The second situation is when the node vi has detected a failure of an edge
in its neighbourhood. The third situation is when the node vi has detected
a recovery in its neighbourhood. The fourth situation is when a node vi has
received a failure or recovery signal from its neighbour, which means the
node vi is not a neighbour of the failed node or incident to the failed edge.
In the last case, it can forward the signal received to its other neighbours. As
mentioned before, a node relays a failure signal if only such signal is absent
in its storage memory (this is checked using the subroutine ISPERSISTENT

in Algorithm 8.2). The approaches for these four situations are given in Al-
gorithm 8.2 (see procedures NODEFAILUREDETECTION, EDGEFAILUREDE-
TECTION, RECOVERYDETECTION and FORWARDFAILURESIGNALS).

One might argue that a node which receives a neighbouring message

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 134

from its neighbour which has just recovered from a failure must consider
the time of failure of its neighbour while integrating the message received.
Otherwise, it may end up with an incorrect view of the communication net-
work. This would have been true in the case where neighbouring informa-
tion was described by nodes only, as one may need to know which nodes
are direct neighbours for an effective integration. In our case, neighbouring
information is represented by edges (i.e. from neighbouring information
a node knows which nodes are direct neighbours), so there is no need to
consider time of failure while a node is integrating the message received.

(a) (b) (c)

Figure 8.3: Illustration of failure of a node or edges. (8.3a): Initial configuration of a
communication graph with a diameter of 4. (8.3b): Failure of the node vi to communicate.
The new graph has a diameter of 4. (8.3c): Failure of the three edges in dashed red lines.
The new graph has a diameter of 6.

Our last step is to include the FD in the pruning method in Algorithm
8.1. The new pruning algorithm including FD is presented in Algorithm
8.2. The main difference is that Algorithm 8.2 takes into account detection
and reporting of failures (and recovery).

The original distributed method [118], presented in Algorithm 7.1, did
not discuss any mechanism for communication failures. Since we aim to
compare our proposed method to the original method while considering the
impact of node failures, it is thus important to also incorporate the mecha-
nism for failure handling into Algorithm 7.1. The modified version of Algo-
rithm 7.1 including FD is presented in Algorithm 8.3.

A Python implementation of Algorithm 8.2 can be found in Appendix
G.1.

The downside of this view construction approach with FD (Algorithms
8.2 and 8.3) is that there might be ambiguous situations where a node vi can

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 135

Algorithm 8.2 Our proposed pruning method with failure management. The algo-
rithm gives the code executed for node vi. The main methods are NEXTONEHOP
and NEXTUPDATE which are run by vi once each iteration. Apart from the vari-
ables used in Algorithm 8.1, additional global variables of this algorithm are listed
in the beginning of the algorithm. It should be noted that in this algorithm assign-
ments make copies of objects. An example of code to execute the class is given in the
procedure RUNPRUNINGFD.

1: procedure RUNPRUNINGFD()
2: PruningobjectFD←PRUNINGWITHFD(Ni, D, T)
3: PruningobjectFD.INITIALONEHOP()
4: PruningobjectFD.INITIALUDATE()
5: PruningobjectFD.FIRSTPRUNINGDETECTION()
6: while not PruningobjectFD.ISENDED() do
7: PruningobjectFD.NEXTONEHOP()
8: PruningobjectFD.NEXTUPDATE()
9: end while

10: PruningobjectFD.FINALITERATION()
11: end procedure
12:
13: class PRUNINGWITHFD
14: Class variables
15: A set of current neighbours of vi
16: Γi the set of signals received by vi
17: Edown

i the set of nodes in Ni incident to at least one edge in Sdown
i

18: N down
i set of failed nodes known by vi

19: N up
i,t set of neighbours of vi which are still involved in interaction at iteration t

20: Pi the queue of failure signals received by node vi
21: Sdown

i set of failed edges known by vi
22: T maximum number of iterations for a node to detect failures of its neighbours
23: Tij the last time node vi received a message from node vj
24:
25: constructor (Ni, D, T)
26: (Ni, D, T)← (Ni, D, T)
27: (Γi,N

up
i,t ,S (0)i)← (∅,Ni.clone(), {eij : ∀vj ∈ Ni})

28: Si,0 ← S
(0)
i .clone() . vi detects its immediate neighbours

29: (N down
i ,Sdown

i , Edown
i ,S (1)i)← (∅, ∅, ∅, ∅)

30: end constructor
31:
32: procedure NEXTONEHOP()
33: if not ISENDED() then
34: t← t + 1
35: N up

i,t ← Ni \ (Fi,t ∪N down
i ∪ Edown

i)

36: S (t)i ← ∅
37: for vj ∈ N

up
i,t do

38: vi sends 〈NeighbouringMessage(i,S (t−1)
i)〉 to vj

39: end for
40: end if
41: end procedure
42:
43: procedure NEXTUPDATE()
44: if not ISENDED() then
45: whileMi.size() ≥ 1 do
46: for vk ∈ N

up
i,t do

47: NODEFAILUREDETECTION(vk)
48: end for
49: (j,S (t−1)

j)←Mi.dequeue()
50: Tij ←currentTime()

51: isDown←EDGEFAILUREDETECTION(S(0)
j)

52: if !isDown then
53: S (t)i ← S (t)i ∪ S

(t−1)
j . vi fuses the messages received

54: end if
55: RECOVERYDETECTION(vj, isDown)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 136

56: N up
i,t ← N

up
i,t \ (N

down
i ∪ Edown

i)

57: end while
58: FORWARDFAILURESIGNALS()
59: S (t)i ← S (t)i \ St−1,i

60: St,i ← St−1,i ∪ S
(t)
i

61: F (t)
i ← FURTHERPRUNINGDETECTION() . vi detects elements of F (t)

i in its
neighbourhood, defined in Algorithm 8.1

62: Fi,t ← Fi,t ∪ F
(t)
i

63: end if
64: end procedure
65:
66: procedure INITIALONEHOP()
67: t← 1
68: for vj ∈ Ni do

69: vi sends 〈NeighbouringMessage(i,S (0)i)〉 to vj
70: Tij ←currentTime()

71: end for
72: end procedure
73:
74: procedure INITIALUPDATE()
75: whileMi.size() ≥ 1 do
76: for vk ∈ N

up
i,t do

77: NODEFAILUREDETECTION(vk)
78: end for
79: (j,S (0)j)←Mi.dequeue()
80: Tij ←currentTime()

81: isDown←EDGEFAILUREDETECTION(S(0)
j) . it returns false if no error was detected

82: if !isDown then
83: S (1)i ← S (1)i ∪ S (0)j . vi fuses the messages received

84: Qij ← S
(0)
j .clone()

85: end if
86: RECOVERYDETECTION(vj, isDown)
87: N up

i,t ← N
up
i,t \ (N

down
i ∪ Edown

i)

88: end while
89: FORWARDFAILURESIGNALS()
90: S (1)i ← S (1)i \ Si,0

91: Si,1 ← Si,0 ∪ S
(t)
i

92: end procedure
93:
94: procedure NODEFAILUREDETECTION(vj). a procedure to send a failure signal when a node

detects failure of a neighbour in its neighbourhood
95: if currentTime()− Tij > T then
96: N up

i,t ← N
up
i,t \ {vj}

97: N down
i ← N down

i ∪ {vj}
98: vi sends 〈Signal(0, 0, i, j)〉 to N up

i,t
99: end if
100: end procedure
101:
102: function EDGEFAILUREDETECTION(vj,S

(t)
i) . a procedure to send a failure signal when a

node detects failure of an edge in its neighbourhood

103: isDown← checksum(S (t)i)
104: if isDown then
105: Sdown

i ← Sdown
i ∪ {eij}

106: Edown
i ← Edown

i ∪ {vj}
107: vi sends 〈Signal(0, 1, i, eij)〉 to N up

i,t
108: end if
109: return isDown
110: end function

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 137

111: procedure RECOVERYDETECTION(vj, hasFailed) . a procedure to send a recovery signal
when a node detects recovery in its neighbourhood

112: if vj ∈ N down
i then

113: if !hasFailed then
114: N up

i ← N up
i ∪ {vj}

115: N down
i ← N down

i \ {vj}
116: vi sends 〈Signal(1, 0, i, j)〉 to N up

i,t
117: end if
118: end if
119: if edge eij ∈ Sdown

i then
120: if !hasFailed then
121: Sdown

i ← Sdown
i \ {eij}

122: Edown
i ← Edown

i \ {vj}
123: vi sends 〈Signal(1, 1, i, eij)〉 to N up

i,t
124: end if
125: end if
126: end procedure
127:
128: function ISPERSISTENT(〈Signal(S, Q, k, c)〉, Γ) . a procedure to check whether the node

receives the signal for the first time
129: if 〈Signal(S, Q, k, c)〉 6∈ Γ then
130: Γ← Γ ∪ {〈Signal(S, Q, k, c)〉}
131: Γ← Γ \ {〈Signal(¬S, Q, k, c)〉}
132: return true
133: end if
134: return false
135: end function
136:
137: procedure FORWARDFAILURESIGNALS(). a procedure to send a failure signal when a node

receives a failure signal
138: while Pi.size() ≥ 1 do
139: (S, Q, k, c)← Pi.dequeue()
140: if ISPERSISTENT(〈Signal(S, Q, k, c)〉, Γi) then
141: if S = 0 and Q = 0 then
142: N down

i ← N down
i ∪ {vc}

143: else if S = 0 and Q = 1 then
144: Sdown

i ← Sdown
i ∪ {c}

145: else if S = 1 and Q = 0 then
146: N down

i ← N down
i \ {vc}

147: else if S = 1 and Q = 1 then
148: Sdown

i ← Sdown
i \ {c}

149: end if
150: vi sends 〈Signal(S, Q, k, c)〉 to N up

i,t
151: end if
152: end while
153: end procedure
154:
155: procedure FINALITERATION()
156: if t < D then
157: for vj ∈ N

up
i,t do

158: vi sends 〈NeighbouringMessage(i, ∅)〉 to vj
159: end for
160: end if
161: Si,t ← Si,t \ (Sdown

i ∪ {ejk ∈ Si,t : vj ∈ N down
i ∨ vk ∈ N down

i })
162: end procedure
163: end class

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 138

Algorithm 8.3 Our presentation of the benchmark method [118] with failure man-
agement. The algorithm gives the code executed for node vi. The main methods
are ONEHOP and UPDATE which are run by vi once each iteration. The same class
variables used in Algorithm 8.2 are also treated as class variables here, as appropri-
ate. It should be noted that in this algorithm assignments make copies of objects.
An example of code to execute the class is given in the procedure RUNDISTRIBUT-
EDBFSFD.

1: procedure RUNDISTRIBUTEDBFSFD()
2: BFSobjectFD←DISTRIBUTEDBFSWITHFD(Ni, D, T)
3: while not BFSobjectFD.ISENDED() do
4: BFSobjectFD.ONEHOP()
5: BFSobjectFD.UPDATE()
6: end while
7: end procedure
8:
9: class DISTRIBUTEDBFSWITHFD

10: constructor (Ni, D, T)
11: (Ni, D, T)← (Ni, D, T)
12: t← 0
13: S (0)i ← {eij : vj ∈ Ni}
14: St,i ← S

(0)
i .clone()

15: (Γi,N down
i ,Sdown

i , Edown
i)← (∅, ∅, ∅, ∅)

16: N up
i,t ← Ni.clone()

17: for vj ∈ N
up
i,t do

18: Tij ←currentTime()

19: end for
20: end constructor
21:
22: procedure ONEHOP()
23: if not ISENDED() then
24: t← t + 1
25: S (t)i ← ∅
26: for vj ∈ N

up
i,t do

27: vi sends 〈NeighbouringMessage(i,S (t−1)
i)〉 to vj

28: end for
29: end if
30: end procedure
31:
32: procedure UPDATE()
33: if not ISENDED() then
34: whileMi.size() ≥ 1 do
35: for vk ∈ N

up
i,t do

36: NODEFAILUREDETECTION(vk) . defined in Algorithm 8.2
37: end for
38: (j,S (t−1)

j)←Mi.dequeue()

39: Tij ←currentTime() isDown←EDGEFAILUREDETECTION(S(0)
j)

40: if !isDown then
41: S (t)i ← S (t)i ∪ S

(t−1)
j . vi fuses the messages received

42: end if
43: RECOVERYDETECTION(vj, isDown) . defined in Algorithm 8.2
44: N up

i,t ← N
up
i,t \ (N

down
i ∪ Edown

i)

45: end while
46: FORWARDFAILURESIGNALS() . defined in Algorithm 8.2

47: S (t)i ← S (t)i \ Si,t−1

48: Si,t ← Si,t−1 ∪ S
(t)
i

49: end if
50: end procedure
51:
52: function ISENDED()
53: return t = D or S (t)i = ∅
54: end function
55: end class

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. DECENTRALISED VIEW CONSTRUCTION 139

wrongly think that it has reached an equilibrium state at the end of iteration
t because its S (t)i is found to be empty. This may arise in situations where
there is an overload of failures. Such ambiguous situations are acceptable in
this work because, as was motivated throughout this part, we do not expect
network views across nodes to be the same or exact—each node considers
the view it has constructed until the end of the procedure. It should also be
noted that this approach invalidates the invariant that nodes know all their
t-hop neighbours (in the underlying failure-free communication graph) af-
ter t− 1 iterations.

8.5 Conclusion

This chapter described our proposed pruning method to construct a view of
a communication graph in a distributed manner. For the construction of a
view of a communication graph, a variant of the decentralised algorithm in
You et al. [118] was proposed, which we extended for failures. The benefit
of this new variant over the state of the art is in terms of the number of
messages involved in the construction of a communication graph view.

The focus of the proposed distributed method was on reducing the num-
ber of messages received by nodes during the view construction. However,
algorithms that contribute to reducing running time and energy consump-
tion would obviously also be valuable. For instance, the running time that
a node requires to construct its view of a communication graph depends on
the availability of messages from its immediate neighbours. Our pruning
method reduces the number of messages exchanged between nodes. Thus
our pruning method may run faster than the method in You et al. [118].
Also pruned nodes are not involved in subsequent communications, thus
the proposed algorithm may have lower energy cost. These are by-products,
not treated further in this thesis, but interesting in and of themselves. The
following chapter presents and discusses our results for view construction.

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Metrics, results and discussion

This chapter presents and discusses our results for view construction. Our
proposed variant (Chapter 8) for constructing a view will be compared to
the original algorithm [118]. Our proposed method aims to reduce the
number of messages/signals involved in interaction of robots for view con-
struction. Thus, we will compare the methods in terms of number of mes-
sages/signals.

Summary on the decentralised methods

1. In the benchmark method, each node exchanges messages with all its
immediate neighbours at each iteration (Algorithms 7.1 and 8.3).

2. In the pruning method, each node detects which of its immediate
neighbours to put on hold (or prune) at each iteration, including itself.
It only interacts with unpruned neighbours in subsequent iterations
(Algorithms 8.1 and 8.2).

9.1 Metrics

Recall that Y(D)
i is the number of messages that the node vi must receive

according to the original benchmark algorithm [118] and P(D)
i the number

of messages vi receives through the use of the pruning strategies after D
rounds. To compare the methods, we consider two performance measures:
the average number of messages received per node and the maximum num-
ber of messages received per node. A good method has a low total number

140

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 141

of messages and a low maximum number of message per node. Recall that
N denotes the number of nodes in a given graph. The average number of
messages is thus

Ȳ(D) =
1
N ∑

vi∈V
Y(D)

i , (9.1.1)

for the benchmark technique and

P̄(D) =
1
N ∑

vi∈V
P(D)

i , (9.1.2)

for our method.
The maximum number of messages is

Y(D)
max = max

vi∈V
{Y(D)

i } , (9.1.3)

for the benchmark technique and

P(D)
max = max

vi∈V
{P(D)

i } , (9.1.4)

for our pruning method. Our theoretical results indicate that we should
have

Y(D)
i ≥ P(D)

i ∀vi ∈ V , (9.1.5)

and so
Y(D)

max ≥ P(D)
max . (9.1.6)

We can have Y(D)
i = P(D)

i or Y(D)
max = P(D)

max when the communication graph
does not contain a prunable node. In terms of the structure of the graph, this
means that the exact diameter of the graph is 1 or 2 (e.g. star and complete
graphs) or all the nodes are central points (e.g. ring graph)—a central point
of a graph is a node with minimum average distances between itself and all
other nodes of the graph.

Another aspect of interest is to quantify the differences in the results of
our view construction methods. As discussed in Section 6.1, we will use the
Wilcoxon signed-rank test [110] and the effect size [19] to verify whether the
averages of number of messages using pruning and the benchmark method
are significantly different. We will also use Wilcoxon signed-rank test and
the effect size to verify quality of approximate node centrality values using
pruning and the benchmark method.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 142

9.2 Simulation description and experimental
setup

This section describes what we intend to present and discuss to assess the
performance of our proposed method for view construction. It also de-
scribes the programming setup we consider for our simulations.

9.2.1 Description of experiments

For the experimental investigation, we consider four ways to compare the
two strategies:

(1) In the description of our pruning method in Chapter 8, we claimed
that our proposed pruning method improves the benchmark method
in terms of the number of messages. We would like to verify these re-
sults experimentally. As such, we run simulation experiments and plot
the number of messages received by nodes for each method on various
networks to assess their number of messages. We consider failure-free
cases here.

(2) We discussed the impact of failures on our method. We noted that fail-
ures of nodes or edges can cause an increase in the number of messages
exchanged between nodes. Also failures can cause a decrease in the
number of messages exchanged between nodes due to non-communication.
But failures also introduce exchanges of signals between nodes. We run
some simulation experiments with the benchmark and pruning meth-
ods on networks in the case of failures and plot the variation in the num-
ber of messages received per node. To do this, we define the probability
p f of 0.1 that a functioning node or an edge can fail at a given iteration.
We also define the probability pr of 0.8 that a failed node or edge recov-
ers independently at each time step. A node or an edge can fail many
times. It should be noted that each node/edge fails or recovers inde-
pendently at the end of each iteration for both algorithms and these are
conditional probabilities, i.e. these are the probability that a working
node/edge fails, and the probability a failed node/edge recovers.

(3) We motivated our view construction method for distributed evaluation
of node closeness centrality. It is thus important to see how good the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 143

closeness centralities determined from the views constructed by our
method are, compared to those constructed by the benchmark method.
To do that, we run the benchmark method and our pruning method on
some graphs, set different values of D, and choose the leader based on
closeness centrality. We then determine the exact most central node us-
ing the actual graph. To compare the two methods, we calculate the
shortest path distance between the exact most central node and the ap-
proximate most central nodes obtained with our method. A good ap-
proximation should choose a most central node with a small distance
to the exact most central node. In Chapter 8, we showed that pruning
is related to node eccentricity which allows us to ensure approximation
of closeness centrality using pruning because eccentricity and closeness
centralities are positively and strongly correlated [7, 73]. We run sim-
ulation experiments to determine the Spearman’s ρ [94] and Kendall’s
τ [45] coefficients between eccentricity and closeness centralities. We
consider the Spearman’s ρ and Kendall’s τ coefficients because they are
appropriate correlation coefficients to measure the correspondence be-
tween two rankings. They both output values in the interval [−1, 1].
Values close to 1 indicate strong agreement between the two rankings
(i.e. the two rankings are strongly and positively correlated), values
close to −1 indicate disagreement between the two rankings is strong
(i.e. there is a strong negative correlation between the two rankings). A
value close to zero indicates a weak relationship between the two rank-
ings.

(4) Our research was primarily motivated by reducing the number of mes-
sages in interaction of nodes, compared to the benchmark method [118].
However, we also compare these methods in terms of running time and
memory use. We expect the pruning method to outperform the bench-
mark method in terms of running time and storage use. Intuitively, we
think that the number of messages should be positively correlated with
running time and memory size since messages need to be processed and
their content stored before subsequent communication.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 144

9.2.2 Experimental setup

We implemented a simulation of our pruning method using Python and
NetworkX, 1 an open library for networks. Our simulation was run on two
HPCs (High Performance Computing clusters) hosted by Stellenbosch Uni-
versity.2

We use the Python library Pympler3 to determine the memory size of an
object, and the Python library Timer4 to determine the running time of the
distributed algorithm. Given a graph, in our implementation each node has
its own clock and its own memory and we picked the maximum running
time and the maximum memory usage which we report per graph.

9.2.3 Input graphs

We ran several simulations with random graphs generated as discussed be-
low, and considered the following two scenarios.

Randomly generated networks. For the first scenario, we used a grid of
200x200 points with integer coordinates and generated 50 random connected
undirected graphs as follows. We generated N uniformly distributed grid
locations (sampling without replacement) as nodes. The number of nodes,
N, was sampled uniformly from [50, 500]. Two nodes are considered con-
nected if the Euclidean distance between them is less than the communi-
cation range d—we took d = 8 using Euclidean distance. Generating a
random graph in this way can give rise to a disconnected graph. If a dis-
connected graph is generated, we repeat the process until a connected graph
is obtained. The number of edges and the diameter range were in [50, 2000]
and [20, 60] in all cases respectively. An example of a communication graph
of solitary nodes generated in this way can be found in Figure 9.2a. A his-
togram of diameters of these generated graphs is given in Figure 9.1.

Real-world networks. We also consider 34 real-world networks. The 34
real-world graphs are a phenomenology collaboration network [66], a snap-

1https://networkx.github.io/
2https://www0.sun.ac.za/hpc/index.php?title=Main_Page
3Pympler is a Python library which measures, analyses and monitors the memory be-

haviour of an object at runtime.
4Timer is a Python module used to handle algorithmic tasks which involve time.

Stellenbosch University https://scholar.sun.ac.za

https://networkx.github.io/
https://www0.sun.ac.za/hpc/index.php?title=Main_Page

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 145

Figure 9.1: Histogram of diameters of random graphs. We use a binwidth of 2.

(a) (b) (c)

Figure 9.2: Illustration of a network of solitary nodes. (9.2a): A communication graph of
250 nodes and a diameter of 56. (9.2b): Propagation of information using the approach of
You et al. [118]. Running the approach on the green node, blue indicates known nodes and
black indicates nodes the green node is not aware of, after 32 iterations. (9.2c): Propagation
of information using once-off pruning. Here, red nodes represent pruned nodes and black
nodes those that are not pruned.

shot of the Gnutella peer-to-peer network [66], and 32 autonomous graphs
[65]. The phenomenology collaboration network represents research col-
laborations between authors of scientific articles submitted to the Journal of
High Energy Physics. In the Gnutella peer-to-peer network, nodes represent
hosts in the Gnutella network and edges represent connections between the
Gnutella hosts. Autonomous graphs are graphs composed of links between
Internet routers. These graphs represent communication networks based
on Border Gateway Protocol5 logs. Some characteristics of some of these
real-world networks can be found in Table 9.1.

5Border Gateway Protocol is a gateway protocol for exchanging routing and reachabil-
ity information among autonomous systems.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 146

9.3 Results and discussion

9.3.1 Average and maximum number of messages

(a) (b)

Figure 9.3: Histogram of differences in average number of messages between the bench-
mark and our pruning methods on 32 autonomous graphs. Positive values indicate that our
pruning method is better than the benchmark method in terms of average number of mes-
sages. (9.3a): Reductions in the average number of messages. (9.3b): Percentage reductions
in the average number of messages.

(a) (b)

Figure 9.4: Histogram of differences in maximum number of messages between the bench-
mark and our pruning methods on 32 autonomous graphs. Positive values indicate that
our pruning method is better than the benchmark method in terms of maximum number
of messages. (9.4a): Reductions in the maximum number of messages. (9.4b): Percentage
reductions in the maximum number of messages.

Our experiments illustrate the improved communication performance
over the benchmark method [118] resulting from our proposed enhance-
ment. Figures 9.3 and 9.4 show differences between the averages and dif-
ferences between the maximum numbers of messages per node between

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 147

Y P
Techniques

0

50

100

150

200

250

300

Nu
m
be

r o
f m

es
sa
ge

s p
er
 n
od

e

Figure 9.5: Box-and-whisker plots of the number of messages per node using both methods
on a random graph with D = 10. On the horizontal axis Y and P denote the benchmark
and pruning method respectively.

the benchmark and our pruning method on 32 autonomous graphs. Posi-
tive values indicate that our pruning method is better than the benchmark
method.

Nodes Edges Diameter Y P Ym Pm
Three autonomous networks
G1
1486 3422 9 28.0 8.8 7005 1413
G2
2092 4653 9 27.2 7.9 3312 552
G3
6232 13460 9 25.4 6.9 7295 1459
Phenomenology collaboration network
10876 39994 9 52.2 14.3 721 120
Gnutella peer-to-peer network
9877 25998 13 63.0 8.3 3705 787

Table 9.1: Properties, average, and maximum numbers of messages for a sample
of 5 real-world networks (the phenomenology collaboration network, the Gnutella
peer-to-peer network, and 3 autonomous networks) on the benchmark method and
our proposed method. Y and P denote average numbers of messages for the bench-
mark and pruning method respectively. Ym and Pm denote maximum numbers of
messages for the benchmark and pruning method respectively. The poorest and best
performances are shown in italic and bold respectively.

The number of messages per node on one random graph using our algo-
rithms are presented in Figure 9.5. Table 9.1 shows the results of the average
and the maximum number of messages per node in five real-world graphs
respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 148

For applicable graphs (where the sets of prunable nodes are non-empty),
putting some nodes on hold provides an improvement over the benchmark
method [118] in terms of messages exchanged. The results confirm that the
pruning method is better (in terms of average number of messages) than the
benchmark method (Figure 9.3).

Hypothesis test

We also used a Wilcoxon signed-rank test and the effect size to verify whether
the mean differences of the number of messages between pruning and the
benchmark method are significantly different.

We observed a p-value of 7.96× 10−90 and an effect size of 21.1140 be-
tween the number of messages obtained with our pruning and the bench-
mark methods on 50 random graphs containing 500 nodes each. The p-
value is less than the threshold 0.01, so the means of the number of messages
using the benchmark method against pruning are significantly different. In
terms of effect size, according to the classification in Gail and Richard [33],
the effect size between our pruning and the benchmark methods is large
(e ≥ 0.8). So the means of the number of messages using the benchmark
method against pruning are different markedly.

The motivation of pruning was to reduce the communication overhead
in the entire network. For this, it was mentioned that the total number of
messages is a good indicator. However, this reduction in the total number
of messages can speed up the process of view construction only when the
maximum number of messages is also reduced. Figure 9.4 shows that the
maximum number of messages per node for the same graphs as in Figure
9.3 is also reduced using the pruning method.

Figure 9.5 and Table 9.1 also confirm that pruning method reduces both
the total and the maximum numbers of messages. Having both the total
number of messages and the maximum number of messages per node re-
duced indicates that our proposed method may have a positive impact on
other performance metrics as will be discussed later in this section.

Furthermore, having the number of messages per node reduced indicates
that our proposed method may have a positive impact on the effect of com-
munication failures. Since pruned nodes are not involved in subsequent
communication, any impact of their failure is reduced and they do not need
to receive failure signals.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 149

9.3.2 Impact of failure on the number of messages

We also compare the impact of node and edge failures on the number of
messages exchanged during the process of view construction using the bench-
mark and our pruning method. Figure 9.6 shows the number of messages
received by nodes when considering both a failure-free situation and the
case of failure on the same network for four of the randomly generated net-
works. Figure 9.7 shows the number of signals received by nodes for the
four randomly generated networks. There are a number of nodes or edges
which fail in each iteration.

Y P YF PF
Techniques

0

10

20

30

40

50

Nu
m
be

r o
f m

es
sa
ge

s p
er
 n
od

e

(a)

Y P YF PF
Techniques

0

10

20

30

40

50

60

Nu
m
be

r o
f m

es
sa
ge

s p
er
 n
od

e

(b)

Y P YF PF
Techniques

0

10

20

30

40

50

Nu
m
be

r o
f m

es
sa
ge

s p
er
 n
od

e

(c)

Y P YF PF
Techniques

0

10

20

30

40

50

Nu
m
be

r o
f m

es
sa
ge

s p
er
 n
od

e

(d)

Figure 9.6: Number of messages per node using both methods for view construction in the
case of failures with D = 13. On the horizontal axis Y, P, YF and PF denote the benchmark
method without failure, the pruning method without failure, the benchmark method with
failures and the pruning method with failures respectively. Number of messages on four
graphs of diameter, node size and edge size of (9.6a): 115; 965 and 2217. (9.6b): 113; 867
and 1921. (9.6c): 116; 909 and 2103. (9.6d): 71; 999 and 2428.

Figures 9.6 indicates that when some nodes or edges fail, the number of
messages received per node decreases. The number of messages per node
decreases because nodes intend to report failure information to the entire
network—when a node or an edge fails or recovers, its immediate neigh-
bours report this information to the entire network—as shown in Figure 9.7.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 150

YF PF
Techniques

0

20

40

60

80

100

120

Nu
m
be

r o
f s

ig
na

ls
pe

r n
od

e

(a)

YF PF
Techniques

0

25

50

75

100

125

150

175

200

Nu
m
be

r o
f s

ig
na

ls
pe

r n
od

e

(b)

YF PF
Techniques

0

25

50

75

100

125

150

175

200

Nu
m
be

r o
f s

ig
na

ls
pe

r n
od

e

(c)

YF PF
Techniques

0

20

40

60

80

100

120

140

Nu
m
be

r o
f s

ig
na

ls
pe

r n
od

e

(d)

Figure 9.7: Number of signals per node using both methods for view construction in the
case of failures with D = 10. On the horizontal axis YF and PF denote the benchmark
method and the pruning method respectively. Number of messages on four graphs of di-
ameter, node size and edge size of (9.7a): 115; 965 and 2217. (9.7b): 113; 867 and 1921.
(9.7c): 116; 909 and 2103. (9.7d): 71; 999 and 2428.

The larger the network, the higher the risk of node and edge failures. When
many nodes or edges fail or recover, it will require a considerable number
of signals to be sent to all remaining nodes in order to report the situations
of failed nodes or edges.

Figure 9.7 shows that the pruning method is less affected by the impact
of node or edge failures. This is simply because pruned nodes are not in-
volved in subsequent communication, so they are not notified of communi-
cation failures. This indicates that it is worthwhile to reduce the number of
messages during graph view construction in order to reduce the impact of
failures on the overall number of messages that must be exchanged between
nodes.

9.3.3 Quality of selected most central node

Foremost, for various graphs considered here, the averages and standard
deviations of the Spearman’s ρ and Kendall’s τ coefficients between eccen-
tricity and closeness centralities are 0.9237± 0.0508 and 0.7839± 0.0728 re-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 151

spectively, and the correlation coefficients were all positive. This shows that
there is predominantly a fairly strong level of correlation between eccen-
tricity and closeness centralities for various graphs considered here. This
confirms the results by Batool and Niazi [7], and Meghanathan [73]. Since
pruning is related to eccentricity, this indicates that pruning can be used for
approximation of closeness centrality.

Tables 9.2 and 9.3 show the shortest path distances between the exact
most central node and approximate most central nodes using our pruning
method and the benchmark method [118] for 2 random graphs for failure-
free cases and failure cases respectively. The first random graph is com-
posed of 70 nodes and has diameter of 35. The second random graph is
composed of 100 nodes and has diameter of 49. Also Figures 9.8 and 9.9
show differences of shortest path distances between approximate central
nodes obtained between the benchmark and our pruning method with re-
spect to the exact most central node on three random graphs for failure-free
cases and failure cases respectively. For each of the graphs, we vary D in a
range of values smaller than the diameter of the graph.

D Y1 P1 Y2 P2
2 5 5 14 14
6 14 10 19 5
10 13 1 20 0
14 14 4 19 2
18 8 0 0 0
22 0 0 0 2
26 0 0 0 0

Table 9.2: Shortest path distances between the exact most central node and approx-
imate most central node using pruning and the benchmark method for failure-free
situations. We use two random graphs with 70 nodes and diameter of 35, and with
72 nodes and diameter of 32 respectively. The best approximations for each graph
and choice of D are highlighted in bold. One method achieves better approximations
than another if the distance of the selected node from the true most central node is
smaller. Yi and Pi indicate shortest path distances for the benchmark and pruning
methods on the i-th randomly generated graph respectively.

The evaluation of node closeness centrality based on a limited view of
the communication graph has an impact on the choice of the most cen-
tral node. When using our pruning method and the benchmark method
to choose a leader based on closeness centrality, the methods can yield dif-
ferent results under the same conditions. For failure-free cases, we found

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 152

D Y1 P1 Y2 P2
2 6 31 40 15
6 18 15 30 28
10 27 6 10 8
14 15 6 10 30
18 6 38 30 8
22 6 15 12 30
26 6 6 40 10

Table 9.3: Shortest path distances between the exact most central node and ap-
proximate most central node using pruning and the benchmark method for failure
situations. We use two random graphs with 70 nodes and diameter of 35, and with
72 nodes and diameter of 32 respectively. The best approximations for each graph
and choice of D are highlighted in bold. One method achieves better approximations
than another if the distance of the selected node from the true most central node is
smaller. Yi and Pi indicate shortest path distances for the benchmark and pruning
methods on the i-th randomly generated graph respectively.

(a) (b) (c)

Figure 9.8: Histograms of differences of shortest path distances between approximate cen-
tral nodes obtained using the benchmark and our pruning methods with respect to the exact
most central node on three random graphs (for failure-free cases): (9.8a): the first (diameter
of 26, 125 nodes and 180 edges), (9.8b): second (diameter of 36, 289 nodes and 597 edges),
and (9.8c): third (diameter of 40, 301 nodes and 668 edges) random graphs. Positive values
indicate that our method is better than the benchmark method, and negative values indicate
the opposite.

that (Table 9.2) our pruning method gives better approximations to close-
ness centrality than the benchmark method for failure-free cases when D
is smaller than the diameter. In such cases, the benchmark method yields
poorer results, as shown in Table 9.2. The results of the benchmark method
improve as D increases. This indicates that our pruning method might ef-
fectively identify nodes which can not be chosen as leaders as they do not
have the highest closeness centrality. Note that, even though the two meth-
ods sometimes give the exact most central nodes for some D (for example
for D = 26 in Table 9.2), these exact most central nodes are not guaranteed.
Also the benchmark method can yield better results than pruning as illus-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 153

(a) (b) (c)

Figure 9.9: Histograms of differences of shortest path distances between approximate cen-
tral nodes obtained using the benchmark and our pruning methods with respect to the exact
most central node on three random graphs (for failure cases): (9.9a): the first (diameter of
26, 125 nodes and 180 edges), (9.9b): second (diameter of 36, 289 nodes and 597 edges),
and (9.9c): third (diameter of 40, 301 nodes and 668 edges) random graphs. Positive values
indicate that our method is better than the benchmark method, and negative values indicate
the opposite.

trated in Table 9.2 for D = 22. This is also seen in Figure 9.8. As mentioned
before, this can be caused by the value of the maximum number of iterations
D—this should be expected when this value is smaller than the diameter of
the communication graph considered. For failure cases (Table 9.3 and Fig-
ure 9.9), the benchmark method outperforms our pruning method in some
cases and our pruning method outperforms the benchmark method in other
cases—this odd situation can be due to the handling of failure in both meth-
ods. This may indicate that both methods can be used for selection of the
most central node of a network in failure situations.

The reason why the benchmark method yields poor results when D is
smaller than the diameter of the graph for failure-free cases is as follows.
When some of the nodes have different views of the communication graph
and each evaluates its closeness centrality only based on its view of the com-
munication graph, a node with small exact closeness centrality (which it
does not know) may have a high approximate closeness centrality. This
can lead to poor conclusions, i.e. nodes may have high approximate cen-
trality, despite having low exact centrality. Our pruning method can also
suffer from the same problem. However, the advantage of pruning is that
only unpruned nodes compute their approximate closeness centralities, i.e.
many such nodes are pruned using our proposed pruning approach. This
reduces the chance of yielding poor performance as the central node is se-
lected from a shorter list of candidates, i.e. the unpruned nodes. In the
benchmark method, the central node is selected from all nodes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 154

Hypothesis test

We also used a Wilcoxon signed-rank test and the effect size to verify whether
the mean differences of shortest path distances between approximate cen-
tral nodes obtained using the benchmark and our pruning methods with
respect to the exact most central node on some random graphs are signifi-
cantly different.

We observed a p-value of 0.1197 and an effect size of 0.3174 between the
results obtained with our pruning and the benchmark methods on 50 ran-
dom graphs of 500 nodes each. The p-value is greater than the threshold
0.01, so there is no significant difference between the means for the two ap-
proaches. In terms of effect size, the effect size between our pruning and
the benchmark methods is small (e ≤ 0.5). So the results obtained from our
pruning and the benchmark methods are not different. This means that the
qualities of the selected most central nodes using both methods are almost
the same. This is beneficial to pruning—though they both provide almost
the same qualities of selected most central nodes, pruning reduces the num-
ber of messages significantly compared to the benchmark method [118].

9.3.4 Running time and memory usage complexities

We also consider maximum running time and maximum memory usage
to compare our techniques. Figures 9.10 and 9.11 show differences in the
maximum running time (in seconds) results between the benchmark and
pruning techniques on the 50 random graphs for failure-free cases and fail-
ure cases respectively. Figures 9.12 and 9.13 show difference in the maxi-
mum storage memory usage results between the benchmark and pruning
methods on the same 50 graphs for failure-free cases and failure cases re-
spectively.

In general, the pruning method builds a view with a reduced number of
messages received by nodes, compared to the benchmark method [118]. But
the process of pruning can take additional time. However, after pruning a
graph, nodes in the subgraph obtained will have a reduced degree. Thus
our method may possibly still run faster than the method in [118]. In fact,
Figures 9.10 and 9.11 show that the pruning method reduces running time
compared to the benchmark method. This means that with a time/commu-
nication budget one can get a larger network view (i.e. greater D) with the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 155

Figure 9.10: Histogram of percentage reductions of maximum running time (in seconds)
on the 50 random graphs between the benchmark and our pruning methods for failure-free
cases. These values indicate that our pruning method is better than the benchmark method
in terms of maximum running time.

Figure 9.11: Histogram of percentage reductions of maximum running time (in seconds)
on the 50 random graphs between the benchmark and our pruning methods for failure
cases. These values indicate that our pruning method is better than the benchmark method
in terms of maximum running time.

pruning approach. In the pruning method, prunable nodes finish running
earlier than the unprunable nodes. Pruned nodes are also not involved in
subsequent computations, thus the proposed algorithm has a lower energy
cost. The trade-off is that nodes which are pruned in the pruning method
have very limited views of the communication graph, compared to the same
nodes using the benchmark technique. These limited views of the commu-
nication graph result in less memory being used by the pruning method.
This can be observed in Figures 9.12 and 9.13 where maximum memory us-
age of the pruning method is smaller than that of the benchmark method in
all cases for failure-free situations (Figure 9.12) and in most cases for failure
situations (Figure 9.13)—the pruning method requires less storage capacity

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 156

Figure 9.12: Histogram of percentage reductions of maximum memory usage (in MB)
on the 50 random graphs between the benchmark and our pruning methods for failure-free
cases. These values indicate that our pruning method is better than the benchmark method
in terms of maximum memory usage.

Figure 9.13: Histogram of percentage reductions of maximum memory usage (in MB) on
the 50 random graphs between the benchmark and our pruning methods for failure cases.
These values indicate that our pruning method is better than the benchmark method in
terms of maximum memory usage in most of the random graphs we considered.

because the memory required for storing pruned nodes by unpruned nodes
is less than the the storage capacity that would have been required by the
same nodes to store their own views of the communication graph using the
benchmark technique.

9.4 Conclusion and avenues for future work

We proposed an enhancement to a benchmark method [118] for view con-
struction in Chapter 8. The main motivation of this enhancement was to
reduce communication complexity: we aim to reduce the number of mes-
sages exchanged between nodes during interaction. Our main contribution

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. METRICS, RESULTS AND DISCUSSION 157

was how nodes can identify other nodes, including themselves, less likely
to be a central nodes. Such nodes are put on hold during subsequent iter-
ations of view construction. Details of our contributions and novelties for
graph view construction can be found in Section 8.1.1.

9.4.1 Findings summary

We confirm our theoretical results showing that our proposed method im-
proves the benchmark method in terms of number of messages. In our
experiments we found that our proposed method is less affected by the
number of signals exchanged between nodes when handling communica-
tion failures. We also found that reduction of the number of messages has
a positive impact on other types of performance metrics, namely running
time and memory usage.

9.4.2 Future work

When counting messages in our proposed distributed method, we ignore
the fact that in large networks, message may need to comprise multiple
packets. Analysis of the savings of our proposed approach in terms of the
number of edges communicated, or the actual amount of data communi-
cated could be investigated in future. Furthermore, our goal was that our
proposed pruning method improves the benchmark method [118], in terms
of number of messages (in failure-free cases) and the number of signals (in
failure cases), and this was verified empirically in all the experiments run
in this chapter. We only considered theoretical analysis of number of mes-
sages. We ultimately hope to investigate the number of signals of our pro-
posed pruning method theoretically in future. Finally, it is worth investigat-
ing whether we can apply further results from combinatorics or graph the-
ory to study how our proposed method impacts the computation of graph-
related quantities.

This concludes our investigation of our proposed method on network
view construction. In the previous two parts we have covered proposals for
coordination of solitary robots and decentralised view construction. In the
following part, we cover our proposal on the last problem considered in this
thesis: classifier fusion.

Stellenbosch University https://scholar.sun.ac.za

Part III

Classifier fusion

158

Stellenbosch University https://scholar.sun.ac.za

Chapter 10

Background and literature

When a robot is exploring an environment, it should be able to recognise
targets of interest to achieve its goal. We consider robots provided with
multiple sensor nodes (i.e. processing units embedded in a robot) to mea-
sure information. Each sensor node of a robot performs classification tasks
to identify the types of any objects detected [97]. This is termed object recog-
nition [107] in the machine learning community.

In classifying an observation, the members of an ensemble of (probabilis-
tic) classifiers will typically disagree, with individual classifiers sometimes
producing markedly different predictions for the same observation. Lever-
aging such disagreement can be the very basis of improved overall perfor-
mance [30]. One of the key motivations for ensemble techniques in machine
learning is the no free lunch theorem [112], which states the impossibility of
realising a universal best classification methodology. This chapter reviews
literature on the problem of classifier fusion when classifiers’ outputs are the
only information available. This means that we do not know how classifiers
work, and do not have information on training or other past performances
of classifiers. We consider situations where classifiers have been trained to
perform the same task.

10.1 General background

Various approaches have been developed to take advantage of diverse clas-
sifier performance in different settings [60, 69, 87, 107] including Bayesian
methods [48] and Dempster-Shafer methods [28]. In classifier fusion, two

159

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. BACKGROUND AND LITERATURE 160

cases can be considered: models can be trained collaboratively (e.g. boost-
ing methods [87]) or separately. We consider the case of classifiers being
trained separately but from the same underlying distributions. It is not im-
perative that classifiers be trained on the same data. They can be trained on
different data and with possibly different features, but for the same prob-
lem. In this case, we consider two categories of classifier fusion methods,
depending on the information available:

(1) If classifiers’ outputs are the only information explicitly given, then meth-
ods based on the principle of indifference with respect to hypotheses
could be applied [51, 60].

(2) If other information, such as confusion matrices, is also explicitly given,
then Bayesian or Dempster-Shafer methods could be applied [36, 48, 60].

We are interested in the situation (1), i.e. a challenging situation where
we have outputs from classifiers, but we are not given additional evidence
such as the validation or test error to distinguish hypotheses (i.e. a “zero-
knowledge” situation): we do not know what model each classifier uses,
how and on what data the classifier was trained, what features it was trained
with, its performance on any past data, or any of its predictions on any
previous observations. Such information would permit a classifier fusion
technique to explicitly take into account the quality of the classifiers when
combining different classifiers’ outputs. For Dempster-Shafer methods for
instance, such information is used to form basic probability assignments
(also known as mass functions) of all subsets of the set of hypotheses (or
classes in our case) [28]. In the absence of such information, it may seem
that classifiers should all be treated equally—this is termed the principle
of indifference. The lack of evidence to distinguish hypotheses prompts us
to use methods based on the principle of indifference, rather than existing
Bayesian or Dempster-Shafer methods.

In this setting, prominent approaches based on the principle of indiffer-
ence are the majority vote rule, the sum rule and the product rule, with the
product rule corresponding to Bayesian classifier fusion assuming a uni-
form prior over class labels, one of the classifiers is correct, and each classi-
fier is equally likely to be correct a priori.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. BACKGROUND AND LITERATURE 161

10.2 Literature discussion

While there is a vast literature on classifier fusion, the “zero-knowledge”
situation we consider in this thesis has received relatively little attention.
The lack of evidence to distinguish individual classifiers prompts us to use
methods based on the principle of indifference. Kittler et al. [51, 52] in-
dicated that, in terms of performance, the sum rule is the best fusion rule
based upon the principle of indifference: after conducting an analysis of er-
ror sensitivity and experimental investigations of the sum rule versus the
product rule, they showed that the sum rule is much less affected by esti-
mation errors. We next introduce the sum rule, product rule, majority vote
rule [51] and Borda count rule [25] after introducing some notation.

The approach taken in this work combines classifiers’ outputs on an in-
put vector xin. There are m classifiers, and each one’s output values are
treated as probability vectors. A classifier f j outputs dj, i.e. dj = f j(xin).
Let djk denote the probability that the input xin belongs to the k-th class of
objects according to classifier output f j, and v = (v1, v2, · · · , vl) be the
fusion output (i.e. a probability distribution) we wish to determine and let
the classifiers’ outputs for input xin be represented by the following output
matrix,

d1
...

dm

 , (10.2.1)

where dj = (dj1, dj2, · · · , djl) and l denotes the number of class labels.

Sum rule. Considering the classifiers’ outputs in Equation 10.2.1, the sum
rule output is

v ≡ 1
m

m

∑
j=1

dj =
1
m

(m

∑
j=1

dj1,
m

∑
j=1

dj2, · · · ,
m

∑
j=1

djl

)
, (10.2.2)

Product rule. Considering the classifiers’ outputs in Equation 10.2.1, the
product rule output is

v ≡ α
m

∏
j=1

dj = α

(m

∏
j=1

dj1,
m

∏
j=1

dj2, · · · ,
m

∏
j=1

djl

)
, (10.2.3)

where α denotes a normalisation constant.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. BACKGROUND AND LITERATURE 162

Majority vote rule. This is the typical majority vote rule applied to each
probability distribution. Let ∆jk be defined by

∆jk =

1 if djk = maxl
s=1 djs

0 otherwise.

The fused output according to the majority vote rule is

1
m

(m

∑
j=1

∆j1,
m

∑
j=1

∆j2, · · · ,
m

∑
j=1

∆jl

)
. (10.2.4)

Borda count rule. In the Borda count rule, classifiers rank classes in order
of preference by giving each class a number of points corresponding to the
number of classes ranked lower. Let β jk be defined by

β jk = l − |{dji : dji > djk ∨ (dji = djk ∧ i < k)}| .

The fused output according to the Borda count rule is

2
ml(l + 1)

(m

∑
j=1

β j1,
m

∑
j=1

β j2, · · · ,
m

∑
j=1

β jl

)
. (10.2.5)

In the classification tasks considered in this work, we employ the terms
fused output and fused decision as follows. Given an input, a fused output
is a probability distribution over class labels. A fused decision is the class
with largest fused output. In the case of ties, which occur when two or more
class labels are assigned the maximum probability, we arbitrarily consider
the minimum index of corresponding maximum values. For instance, if the
fused output is (0.4, 0.35, 0.25) over three class labels, the fused decision
could be the first class label as it is assigned the highest probability.

10.3 Summary

This chapter reviewed background work and literature for classifier fusion
based on the principle of indifference. Classifier fusion methods based on
the principle of indifference are used when information on the performance
of individual classifiers is not provided. We propose a classifier fusion
method that takes advantage of the reputability of the classifiers when only
classifiers’ outputs are provided.

Having reviewed and discussed background and literature on our pro-
posed classifier fusion method, we now describe our proposed method.

Stellenbosch University https://scholar.sun.ac.za

Chapter 11

Classifier fusion method

Portions of Part III, and particularly this chapter, appear in Masakuna et al.
[71].

11.1 Introduction

This chapter introduces a novel iterative approach to the problem of classi-
fier output fusion that robots use to recognise objects of interest: a once-off
classifier fusion method based on the principle of indifference—no exter-
nal information is provided to enhance the fusion process. We consider
the problem of classification where outputs from various classifiers must be
combined to make a consensus decision, i.e. a decision all members agree
to support in the best interest of the whole group [68].

11.1.1 Contributions

In this work, we assume some regularity between classifiers that is not con-
sidered in other methods based upon the principle of indifference. This
assumption of regularity is motivated by the fact that classifiers have been
optimized for the same problem. Our proposed method is inspired by a ne-
gotiation process by which shareholders (corresponding to classifiers) can
attempt to reach a consensus decision, with shareholders gradually update
their position over time as negotiations progress until consensus is reached.
Their initial positions are the outputs obtained from classifiers. Consensus
is reached when their transformed positions converge (i.e. they correspond
sufficiently) or until some prescribed maximum number of iterations.

163

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 164

To reach a consensus decision through classifier fusion, a form of support
between probability distributions is computed to allow these distributions
to contribute unequally to the fused result. A support is a non-negative vec-
tor of scores that encodes a notion of similarity between two distributions:
when two distributions are more similar, they assign stronger support to
each other, as reflected by larger class supports. The key idea of our pro-
posed classifier fusion method is that the similarities of the classifier outputs
in regions where they have a fair amount of confidence, and the discrepan-
cies of the classifier outputs in regions where they have contradicting views
will be used to update their initial predictions.

11.1.2 Limitations and application of our proposed method

Our proposed method is not suitable in situations where some likelihood-
type of loss function is appropriate. When distributions converge, our pro-
posed method assigns high probability (of almost one) to the consensus
class, and low probability (of almost zero) to other classes. Thus, our ap-
proach may perform poorly for cases where the loss function yields high
losses for overconfident misclassification.

Our proposed method has a wider applicability than robotics.

11.2 Yayambo method

We propose a classifier fusion method where distributions are collected from
some classifiers and iteratively updated until they converge (or after some
pre-specified number of iterations). We call this fusion method the Yayambo1

algorithm.

11.2.1 Notation

The approach taken in this work combines classifiers’ outputs on an input
vector xin. Given xin, each classifier fi outputs a probability distribution
di = fi(xin) over class labels which will serve as initial distributions π

(0)
i .

1Yayambo means the first in Kikongo, one of the languages spoken in the Democratic
Republic of Congo.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 165

11.2.2 Description

During each iteration t, each current distribution π
(t−1)
i is updated to a

new distribution π
(t)
i . These updates are performed based on a vector of

non-negative weights computed between each pair of current distributions.
Each vector component expresses a level of support for one distribution’s
prediction for a specific class from another, and is called class support. Such
a vector of class supports is termed a support. These supports are used to
update distributions π

(t−1)
i to π

(t)
i as follows. Let β

(t)
ji denote the support

for π
(t−1)
i from π

(t−1)
j . The distribution π

(t)
i and the support β

(t)
ji are non-

negative vectors, and each distribution π
(t)
ik is updated in each iteration us-

ing the rule
π
(t)
ik = α

(t)
i π

(t−1)
ik ∑

j 6=i
β
(t)
ji,k , (11.2.1)

where the subscript k denotes a vector component (one per class), and α
(t)
i

is a normalisation constant. This yields valid probability distributions at
each iteration since the supports will be non-negative (as discussed later).
When consensus is reached, the algorithm terminates: this occurs when
π
(t)
i ≈ π

(t−1)
i for all i at the end of iteration t, or at a pre-specified maximum

iteration T. To verify convergence, our implementation uses the condition

m

∑
i=1
‖π(t)

i − π
(t−1)
i ‖2 < mε , (11.2.2)

for a predefined small ε > 0.
When the algorithm terminates, say at the end of iteration T, the consen-

sus distribution is then formed using the sum rule:

v ≡ 1
m

m

∑
i=1

di =
1
m

(m

∑
i=1

π
(T)
i1 ,

m

∑
i=1

π
(T)
i2 , · · · ,

m

∑
i=1

π
(T)
il

)
. (11.2.3)

On termination, the use of the sum rule in Equation 11.2.3 simply pro-
vides a mechanism for resolving potential cases that do not reach consensus
by the iteration limit.

The final detail to complete the algorithm is specifying how the required
supports β

(t)
ji are calculated based on the current distributions π

(t−1)
j and

π
(t−1)
i . Supports influence how much π

(t)
i changes. We do not require sup-

port of distributions to necessarily be symmetric.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 166

This notion of support is related to the Matthew Effect [74], where group
members with similar beliefs about a topic amplify and collect ever-larger
support from each other. In the setting of our work here, if we cluster stake-
holders (classifiers) into groups whose predictions are similar, the members
of each group will assign stronger support to each other, and assign weaker
support to members of other groups.

While various support functions could be defined, the function we con-
sider is inspired by Kullback-Leibler divergence [59].

The class support for π
(t−1)
i from π

(t−1)
j with respect to class ck depends

principally on two things: first, the probability π
(t−1)
j assigns to class ck

(a larger probability corresponds to a higher weight), and second on how
closely the probabilities that π

(t−1)
i and π

(t−1)
j assign to class ck align (larger

differences in probability lead to a smaller weight). Specifically, we define
the support β

(t)
ji,k for π

(t)
i from π

(t)
j on xin for a class label ck at iteration t as

β
(t)
ji,k =

π
(t−1)
jk

1 + D(π
(t−1)
ik , π

(t−1)
jk)

, (11.2.4)

where the dissimilarity on the k-th component of distributions π
(t)
j and π

(t)
i

is

D(π
(t)
ik , π

(t)
jk) = π

(t)
ik

∣∣∣∣∣∣log
π
(t)
ik + ε0

π
(t)
jk + ε0

∣∣∣∣∣∣ , (11.2.5)

where ε0 a smoothing term to avoid zero division. In Equation 11.2.5 we use
the absolute value to make the log-ratio symmetric. This is our implemen-
tation inspired from the Kullback-Leibler divergence as mentioned above.
Other formulations could also be applied.

An additional information about Equation 11.2.5 it is that one should con-
sider the influence ε0 has on the final decision. An illustration showing the
dissimilarities for probabilities is shown in Figure 11.1.

We call this fusion method the Yayambo algorithm, and it is given in
Algorithm 11.1. A Python implementation of Yayambo can be found in Ap-
pendix G.3.

Example. Let f1 and f2 be two classifiers with outputs

π
(0)
1 = (0.3, 0.7) and π

(0)
2 = (0.8, 0.2) ,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 167

Algorithm 11.1 Our proposed classifier fusion method. The main function
(GETCONSENSUS) receives as input the classifier outputs π

(0)
i and outputs the

fusion probability distribution v and class prediction.
1: class YAYAMBO
2: Class variables
3: ε the convergence threshold
4: ε0 a small threshold ε0 to avoid zero division
5: m the number of classifiers
6: T the maximum number of iterations
7:
8: constructor (m, T, ε, ε0)
9: (m, T, ε, ε0)← (m, T, ε, ε0) . the number if distributions π

(0)
i to fuse

10: end constructor
11:
12: function GETCONSENSUS(π(0)

i ∀i)
13: for t = 1 to T do
14: for i = 1 to m do
15: for j 6= i do
16: (β

(t)
ji,1, β

(t)
ji,2, · · · , β

(t)
ji,l)← SUPPORT(π

(t−1)
i , π

(t−1)
j)

17: end for
18: π

(t)
i ←UPDATE(π(t−1)

i , β
(t)
1i , · · · , β

(t)
mi)

19: end for
20: if CONVERGENCE(π

(t−1)
i , π

(t)
i ∀i) then

21: return SUMRULE(π
(t)
i ∀i)

22: end if
23: end for
24: return SUMRULE(π

(t)
i ∀i)

25: end function
26:
27: function SUPPORT(π(t−1)

i , π
(t−1)
j)

28: for k = 1 to l do

29: β
(t)
ji,k ←

π
(t−1)
jk

1+π
(t−1)
ik | log

π
(t−1)
ik +ε0

π
(t−1)
jk +ε0

|

30: end for
31: return (β

(t)
ji,1, β

(t)
ji,2, · · · , β

(t)
ji,l)

32: end function
33:
34: function CONVERGENCE(π(t−1)

i , π
(t)
i ∀i)

35: difference← 0
36: for i = 1 to m do
37: difference← difference+ ‖π(t)

i − π
(t−1)
i ‖2

38: end for
39: return difference < mε
40: end function
41:
42: function UPDATE(π(t−1)

i , β
(t)
1i , · · · , β

(t)
mi)

43: π
(t)
i ← (0, 0, · · · , 0)

44: α
(t)
i ← 0

45: for j 6= i do
46: for k = 1 to l do
47: π

(t)
ik ← π

(t)
ik + π

(t−1)
ik β

(t)
ji,k

48: α
(t)
i ← α

(t)
i + π

(t)
ik

49: end for
50: end for

51: return π
(t)
i

α
(t)
i

52: end function
53:
54: function SUMRULE(π(t)

i ∀i)
55: c← 0

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 168

0.0 0.2 0.4 0.6 0.8 1.0
probability of the classifier assigning support

0.0

0.2

0.4

0.6

0.8

1.0
pr
ob

ab
ilit

y
of
 th

e
cla

ss
ifi
er
 re

ce
iv
in
g
su

pp
or
t

0.00

0.49

0.98

1.47

1.96

2.45

2.94

3.43

3.92

17.50

(a)

0.0 0.2 0.4 0.6 0.8 1.0
probability of the classifier assigning support

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
of
 th

e
cla

ss
ifi
er
 re

ce
iv
in
g
su

pp
or
t

0.00

0.49

0.98

1.47

1.96

2.45

2.94

3.43

3.92

17.50

(b)

0.0 0.2 0.4 0.6 0.8 1.0
probability of the classifier assigning support

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
of
 th

e
cla

ss
ifi
er
 re

ce
iv
in
g
su

pp
or
t

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

(c)

Figure 11.1: Example of dissimilarities between probabilities (as defined in Equation
11.2.4) showing for which relationship of input probabilities the scaling factor is large, and
for which it is small. (11.1a): The absolute value of the log-ratio defined in Equation 11.2.5.
(11.1b): The dissimilarity (i.e. scaled absolute value of the log-ratio) defined in Equation
11.2.5. (11.1c): Supports between probabilities.

56: v ← 0
57: for k = 1 to l do
58: vk ← 0
59: for i do
60: vk ← vk + π

(t)
ik

61: end for
62: vk ← vk

m
63: if vk > v then
64: v ← vk
65: c← k
66: end if
67: end for
68: return ((v1, v2, · · · , vl), c)
69: end function
70: end class

where we set the convergence threshold ε to 10−6. Let π(t) denote the com-
bined distribution.

From the initial probability distributions (i.e. classifier outputs) above
illustrated, it can be seen that there is a disagreement between the distri-
butions on the class of the object of interest: the first distribution has high
belief for the second class while the second distribution assigns high belief
to the first class.

The results when executing Algorithm 11.1 are shown in Table 11.1 (prob-
ability vectors or beliefs) and Table 11.2 (supports between beliefs). In this
example, consensus is reached at the end of iteration t = 7.

It can be observed that towards convergence (from iteration t = 4), the
first component of supports is getting close to 1 and the second component
of supports is getting close to 0. As was mentioned before, with our pro-
posed method, the component of supports on the class which is likely to
be the consensus class increases and the components of supports on other

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 169

t π
(t)
1 π

(t)
2 π(t) ∑2

i=1 ‖π
(t)
i − π

(t−1)
i ‖

0 (0.3, 0.7) (0.8, 0.2) (0.55, 0.45) −
1 (0.7130, 0.2870) (0.5458, 0.4542) (0.6294, 03706) 0.9435
2 (0.7394, 0.2606) (0.7589, 0.2411) (0.7491, 0.2509) 0.3387
3 (0.8994, 0.1006) (0.8992, 0.1008) (0.8993, 0.1007) 0.4247
4 (0.9876, 0.0124) (0.9876, 0.0124) (0.9876, 0.0124) 0.2498
5 (9.9984× 10−1, 1.5727× 10−4) (9.9984× 10−1, 1.5727× 10−4) (9.9984× 10−1, 1.5727× 10−4) 0.0346
6 (9.9999× 10−1, 2.4740× 10−8) (9.9999× 10−1, 2.4740× 10−8) (9.9999× 10−1, 2.4740× 10−8) 0.0004
7 (9.9999× 10−1, 6.1208× 10−16) (9.9999× 10−1, 6.1208× 10−16) (9.9999× 10−1, 6.1208× 10−16) 6.9976× 10−16

Table 11.1: Evolution of probability distributions over iterations of the Yayambo
algorithm.

t β
(t)
1 β

(t)
2

0 (0.6184, 0.1067) (0.1682, 0.5600)
1 (0.4585, 0.4105) (0.6224, 0.2376)
2 (0.7445, 0.2364) (0.7251, 0.2558)
3 (0.8990, 0.1007) (0.8992, 0.1006)
4 (0.9876, 0.0124) (0.9876, 0.0124)
5 (9.9984× 10−1, 1.5727× 10−4) (9.9984× 10−1, 1.5727× 10−4)
6 (9.9999× 10−1, 2.4740× 10−8) (9.9999× 10−1, 2.4740× 10−8)

Table 11.2: Evolution of supports of distributions over iterations of the Yayambo
algorithm.

classes decreases. Consequently, the consensus class (the first class) is as-
signed a probability of almost 1 as shown in π

(7)
i above.

A detailed example of the execution of the Yayambo algorithm can be found
in Appendix D.

11.3 Complexity

We now consider the computational complexity of the Yayambo algorithm.
Computing the support β

(t)
ij,k between l class labels, ck, of two beliefs is O(l)

(Equation 11.2.5). Each iteration requires m2 computations of β
(t)
ij —one for

every pair of probability distributions. Assuming that T is the number of
iterations until termination of the algorithm, the complexity of Yayambo
method is thus O(Tm2l).

The computational complexity of the sum rule and product rule methods
is O(ml), and of the majority vote rule and the Borda count rule is O(ml2).
In terms of computational cost, the Yayambo method is more costly than the
benchmark fusion methods. However, for typical m and T, this complexity
is hardly noticeable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 11. CLASSIFIER FUSION METHOD 170

11.4 Conclusion

Recognition of objects of interest is required in many applications, includ-
ing search and rescue by solitary robots. This chapter proposed a classi-
fier fusion method. We considered situations where no information about
classifiers’ performances is provided, only their probabilistic outputs. In-
dividual classifiers may provide different opinions on the type of the same
object of interest. Distributions of different classifiers are combined by itera-
tively assigning support to them until they converge or after the maximum
number of iteration is reached. An asymmetric notion of support is used
to assign credences to probability distributions, so convergence of distribu-
tions means that a consensus decision is reached. While consensus belief
does not necessarily mean correct belief, achieving consensus from differ-
ent initial distributions using an asymmetric support concept may indicate
something good about their final judgement on the type of the object of in-
terest.

Unlike existing fusion methods based on the principle of indifference,
Yayambo uses and processes the similarities and discrepancies of the clas-
sifier outputs before making the final combination. The similarities of the
classifier outputs capture regions where classifiers have a fair amount of
confidence, and their discrepancies capture regions where they have con-
tradicting views, which will be used to update their initial predictions.

Yayambo assigns a score of almost 1 to the consensus class and of almost
0 to other classes, and is thus an over-confident fusion method and not suit-
able when calibrated fused probabilities are desired. Our proposed fusion
method is better situated to situations where downstream tasks require a
commitment to a single object type.

Having described our proposed method for classifier fusion, the follow-
ing chapter presents and discusses results for classifier fusion.

Stellenbosch University https://scholar.sun.ac.za

Chapter 12

Metrics, results and discussion

In this chapter, we present and discuss results evaluating the proposed clas-
sifier fusion method. We consider situations where no information about
the performance of classifiers is available, only their outputs. Because of the
lack of additional information that can be used to weight classifiers’ outputs
differently, our proposed classifier fusion method will be compared to the
sum rule [51, 52]—a fusion method based on the principle of indifference.
We will also consider the product rule, majority vote rule and Borda count
rule (as discussed in Section 10.2) in some cases. All the methods we con-
sider are based on the principle of indifference (i.e. classifiers are considered
equally), although Yayambo weights classifiers’ outputs.

Summary on the classifier fusion methods

• The sum rule averages classifiers’ outputs to get a fused decision.

• The product rule performs element-wise multiplications across classi-
fiers’ outputs to get a fused decision.

• The majority vote rule performs element-wise votes across classifiers’
outputs to get a fused decision.

• The Borda count rule uses a preferential ballot to rank classes in a
sequence on the ordinal scale and then performs element-wise votes
across these values to get a fused decision.

171

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 172

• In the Yayambo algorithm, before the fusion of classifiers’ outputs oc-
curs, initial probability distributions are collected and iteratively up-
dated based on their similarities until consensus is reached.

12.1 Metrics

There are many ways to measure the quality of a classifier fusion method.
One way of evaluating classifier fusion methods is to consider the quality of
the fused classifiers, using traditional approaches (i.e. performance metrics)
for assessing classifier quality. The most commonly used is accuracy, but
other popular metrics include cross-entropy loss and multi-class precision
[88].

To compare our classifier fusion method to the benchmark methods, we
consider five different performance metrics: accuracy, multi-class precision,
multi-class recall, F1-score and cross-entropy loss. We use these metrics to
describe the behaviour of the classifier fusion approaches as one metric may
not fully do so. These five metrics, defined later in this section, convey dif-
ferent information which can help us to make a fair decision on the perfor-
mance of a classifier.

It was mentioned earlier that a classifier aims to assign an object to its
true category, but it can fail. Numbers of successful and unsuccessful as-
signments by a classifier are generally represented by a confusion matrix.
Let N be the number of observations in some data set, and l the number of
classes. Consider the confusion matrix M given by (for each technique)

M =

c1 c2 · · · cl

c1 M11 M12 · · · M1l

c2 M21 M22 · · · M2l
...

...
...

cl Ml1 Ml2 · · · Mll

 . (12.1.1)

In Equation 12.1.1, rows of M represent ground truth classes and columns
represent predicted classes. For example, M11 indicates the number of test
observations in class c1 correctly classified while M12 indicates the number
of test observations in class c1 incorrectly classified as instances of class c2.
Let pik denote the predicted probability that observation i is of class k, and yi

the correct class of observation i so that y = (y1, y2, · · · , yN) is the sequence

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 173

of correct classes of the N observations. Let Y be a label binarization or
“one-hot encoding” of y [11]. The resulting matrix, composed of entries Yik

for observation i and class label ck, is given by

Yik =

1 if yi = ck ,

0 otherwise .
(12.1.2)

For precision, recall and F1-score, we average over each class as positive
class, since these measures depend on class (i.e. they are sensitive to choice
of the positive class). The metrics are defined as follows. The accuracy
(ACC) measures the overall proportion of correct assignments of labels to
objects and is given by

ACC =
1
N

l

∑
k=1

Mkk . (12.1.3)

For precision and recall, we use their average over various class labels as
the positive class. The averaged precision or positive predictive value (PPV)
measures the average of the proportion of objects labelled as each class that
are actually members of that class and is given by

PPV =
1
l

l

∑
k=1

Pk , (12.1.4)

where the precision on a class ck is

Pk =
Mkk

∑l
j=1 Mjk

. (12.1.5)

The averaged recall or true positive rate (TPR) evaluates the average of the
proportion of actual class members that are correctly classified, and is given
by

TPR =
1
l

l

∑
k=1

Rk , (12.1.6)

where the recall on a single class ck is

Rk =
Mkk

∑l
j=1 Mkj

. (12.1.7)

The averaged F1-score (F1) is the harmonic mean of averaged precision and
averaged recall, and is given by

F1 = 2× PPV × TPR
PPV + TPR

. (12.1.8)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 174

Finally, the cross-entropy loss C measures the performance of a probabilistic
classification model (it increases as the predicted probability vector diverges
from the actual one-hot encoded label) and is given by

C = − 1
N

N

∑
i=1

l

∑
k=1

Yik log pik . (12.1.9)

12.2 Simulation description and experimental
setup

This section describes what we intend to present and discuss to assess the
performance of our proposed classifier fusion method. It also describes our
implementation and experimental setup used for our simulations.

12.2.1 Simulation description

Due to their probabilistic formulation, we expect the sum rule and prod-
uct rule to outperform our proposed method in terms of cross-entropy loss
which corresponds to a cross-entropy loss for a probabilistic model. Our
hope is that our method will outperform the sum rule, the product rule, the
majority vote rule and the Borda count rule in terms of accuracy. Our ex-
periments considered the following cases for each data set, in an attempt to
comprehensively test the proposed approach and identify its limitations:

(1) We will train different types of classifiers on exactly the same training
data set, apply the fusion techniques and compare the original and fused
classifiers on the test data set. This should be an effective way of com-
paring the fusion techniques if the classifiers are really diverse. Also,
Equation 11.2.5 requires a parameter ε0 during the evaluation of sup-
port between distributions and this parameter can influence the final
decision. We will vary the values of ε0 to see how it influences the final
decision.

(2) We will train the same type of classifier with different parameters on
the same training data set, apply the fusion techniques and compare
the original and fused classifiers on the test data set. This investigation
is meant to see the impact on the fusion technique when classifiers are
trained with different parameters.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 175

(3) We will also train different types of classifiers on different subsets of the
training data set and compare the performances of the fusion methods
on the test data set. This is almost like using classifiers with different
expertises. This way of training classifiers may produce highly diverse
classifiers, which is the type of investigation we are interested in. Data
points of subsets are randomly chosen without replacement.

(4) We will also train different classifiers on different subsets of features
and see how the fusion methods respond. This corresponds to robotics
where sensors can detect different aspects of an object. We are keen to
see how the fusion techniques will behave in such cases. Features are
randomly chosen without replacement.

(5) We will also consider fusion of an increasing number of classifiers and
see how the various classifier fusion methods behave as the number of
classifiers increases.

(6) Another aspect will be to verify the active part of our thesis—it was said
that solitary robots (the type of robots we consider in this thesis) are ac-
tive, which means they amend their decisions as additional information
is provided. To capture an object in active vision, only a limited number
of viewpoints of the object are first captured and gradually more view-
points are added. The method applied for the collection of one of the
data sets we consider (the Columbia data set) corresponds to how active
experiments are often done. So we will show the behaviour of classifier
fusion techniques as the number of viewpoints of an object increases.

Finally, we will consider some artificial classifier outputs with potentially
extreme disagreement, where our assumptions of regularity of trained clas-
sifiers (discussed in Chapter 11) may be violated.

12.2.2 Experimental setup

For our experiments, we use Python and the scikit-learn library.1 We
used five types of classifiers—classifiers with different behaviours captured
in their performances. Any classifier which outputs a probability distribu-
tion over classes can be used; the classifiers which we considered in these
experiments were:

1An open library for machine learning [11].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 176

• logistic regression (LR) fit with liblinear [27] (f1),

• k-nearest neighbours (k-NN) (f2),

• a support vector machine (SVM) with the sigmoid function kernel (f3),

• an SVM with the radial basis function (RBF) kernel (f4), and

• a multi-layer perceptron (MLP) trained with stochastic gradient de-
scent (f5).

With the scikit-learn library, by the use of softmax function [10], clas-
sifiers’ outputs are provided in forms of probabilities over classes, except
k-nearest neighbours. For k-nearest neighbours, a vote mechanism is used
to output a probability distribution. The hyperparameters we selected to
train these classifiers are given in Tables 12.1, 12.2 and 12.3. These hyperpa-
rameters were deliberately tuned to produce highly similar as well as highly
diverse classifiers. For other hyperparameters, we used default values pro-
vided by scikit-learn.

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
f1 C = 2 C = 30 C = 0.2 C = 0.002 C = 0.05 C = 0.002 C = 0.002
f2 k = 50 k = 15 k = 2000 k = 500 k = 150 k = 500 k = 80
f3 C = 200 C = 80 C = 0.05 C = 0.03 C = 0.8 C = 0.005 C = 0.005
f4 C = 300 C = 20 C = 0.03 C = 0.015 C = 0.5 C = 300 C = 300

f5

H = 5 H = 5 H = 5 H = 5 H = 5 H = 5 H = 5
λ = 0.2 λ = 0.2 λ = 0.2 λ = 0.2 λ = 0.2 λ = 0.2 λ = 0.045
T = 200 T = 200 T = 300 T = 300 T = 500 T = 500 T = 500

Table 12.1: Hyperparameters used to train classifiers. For f1, f3 and f4, C de-
notes the penalty parameter of the error term. For the second classifier, which is
a k-nearest neighbours classifier, k denotes the number of neighbours. For the last
classifier, which is an artificial neural network, H, λ and T denote the number of
hidden layers, the learning rate and the number of epochs for training.

For the first investigation (we mentioned seven investigations above), we
considered various values for the parameter ε0 required in Equation 11.2.5.
For the remaining investigations, the convergence threshold ε0 was set to
10−6. Over all the experiments, the number of iterations for Yayambo to
reach convergence was in the range [5, 23].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 177

Data sets LR k-NN SVM MLPs

Iris
C = 100 k = 20, w=uniform C = 100 H = 5, λ = 0.1, T = 500

solver=newton-cg solver=ball tree solver=rbf solver=lbfgs, σ=tanh

Gesture
C = 0.000001 k = 100, w=distance C = 1 H = 1, λ = 0.045, T = 300
solver=lbfgs solver=ball tree solver=poly solver=sgd, σ=relu

Activity
C = 0.000001 k = 800, w=uniform C = 20 H = 3, λ = 0.1, T = 500

solver=liblinear solver=ball tree solver=sigmoid solver=adam, σ=logistic

Satellite
C = 0.01 k = 1000, w=distance C = 0.01 H = 5, λ = 0.2, T = 500

solver=sag solver=kd tree solver=poly solver=lbfgs, σ=tanh

Digits
C = 0.0000001 k = 2000, w=distance C = 1000 H = 2, λ = 0.1, T = 100

solver=saga solver=brute solver=sigmoid solver=adam, σ=relu

Occupancy
C = 0.00001 k = 1500, w=uniform C = 1 H = 3, λ = 0.02, T = 300
solver=lbfgs solver=kd tree solver=rbf solver=sgd, σ=logistic

Columbia
C = 0.25 k = 200, w=uniform C = 0.25 H = 5, λ = 0.3, T = 400

solver=liblinear solver=brute solver=poly solver=lbfgs, σ=logistic

Table 12.2: Hyperparameters used to train similar classifiers on the subsets of data
sets. For support vector machines, C denotes the penalty parameter of the error
term. For k-nearest neighbours classifier, k denotes the number of neighbours. For
artificial neural network, H, λ and T denote the number of hidden layers, the learn-
ing rate and the number of epochs for training.

Techniques h1 h2 h3 h4 h5

MLP
H = 10 H = 3 H = 3 H = 3 H = 2

solver=sgd solver=adam solver=lbfgs solver=adam solver=sgd
λ = 0.045 λ = 0.5 λ = 0.5 λ = 0.1 λ = 0.045
T = 500 T = 100 T = 100 T = 500 T = 500
σ=relu σ=relu σ=tanh σ=logistic σ=sigmoid

k-NN
k = 30 k = 60 k = 90 k = 120 k = 150

w=uniform w=distance w=uniform w=uniform w=distance
solver=ball tree solver=ball tree solver=kd tree solver=brute solver=brute

SVM
C = 3 C = 0.000001 C = 0.1 C = 100 C = 1

kernel=rbf kernel=linear kernel=poly kernel=sigmoid kernel=rbf
tol= 0.001 tol= 0.01 tol= 0.1 tol= 0.001 tol= 0.001
degree= 3 degree= 4 degree= 5 degree= 10 degree= 10

Table 12.3: Hyperparameters used to train similar classifiers on the Columbia data
set. For support vector machines, C denotes the penalty parameter of the error term.
For k-nearest neighbours classifier, k denotes the number of neighbours. For artifi-
cial neural network, H, λ and T denote the number of hidden layers, the learning
rate and the number of epochs for training.

12.2.3 Data sets

We compared the Yayambo algorithm, the sum rule, the product rule, the
majority vote rule and the Borda count rule on six data sets from the UCI
Repository [6], and one from from the Columbia Image Library [78]: Iris;
Gesture; Activity recognition; Handwritten digits; Satellite; Occupancy and
Columbia. Some characteristics of these data sets are given in Table 12.4.

Stellenbosch University https://scholar.sun.ac.za

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 178

Data set Training Test Attributes Classes

Iris 105 45 4 3

Gesture 785 336 19 5

Activity recognition 4725 2025 6 7

Handwritten digits 10000 3000 784 10

Satellite 4435 2000 36 6

Occupancy 8143 2665 5 2

Columbia 765 315 97 15

Table 12.4: The characteristics of the data set used to train classifiers.

Further descriptions of the various data sets can be found in Appendix E.
For the Columbia data set, which consists of images of objects, each ob-

ject was captured from different views (72 views, at 5◦ intervals around the
object, in total). This yields 72 images per object. In our experiment, we
only consider 15 types of objects. We convert the RGB images, which we
flatten to a sequence of 16384 grayscale values. We use PCA for feature re-
duction where we retained 97 components. We build the PCA model on all
the training data.

For the Columbia data set, it is expected that the more views of the object
we consider, the better performance we can achieve. In our experiments, we
will consider some limited number of views of the objects and see how the
number of views of an object will impact the performance of the classifier
fusion methods.

To make a final classification decision using the classifier fusion approaches
(sum rule, product rule, majority vote rule, Borda count rule and Yayambo),
we select the class with the largest posterior probability.

12.3 Results and discussion

12.3.1 Classifiers trained on the same data set

The results of the five metrics we considered when applying the the major-
ity vote rule, the Borda count rule, the sum rule, the product rule and the
Yayambo fusion technique for classifiers trained on the same data set are
presented in Tables 12.5–12.7.

While almost all the fusion algorithms exhibited perfect accuracy, preci-
sion, recall and F1-score values on the Iris test data set (the Iris data set is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 179

especially “easy” because it is very clean), the decisions resulting from the
Yayambo method outperformed those from the sum rule, the product rule,
the majority vote rule and the Borda count rule on all the other data sets
for all of these metrics.2 Our results also confirm those of Kittler [51] in
that the sum rule generally outperformed the product rule and the major-
ity vote rule on these metrics. We see that all five fusion methods behave
similarly when all of the individual classifiers are strong. The Yayambo
method is most beneficial when the predictions are highly diverse, i.e. the
classifiers give different opinions for the same input. This reflects in better
fusion performance when combining classifiers with more widely differing
performance levels, such as in the Columbia data set in Table 12.5. When
classifiers were highly diverse, Yayambo outperformed the sum rule, prod-
uct rule, majority vote rule and Borda count rule methods more notably in
terms of accuracy. These results indicate that it is beneficial to use Yayambo
as it provides robustness to the quality of individual classifiers (when accu-
racy, precision, recall and F1-score are considered).

We also considered various values for ε0 as required in Equation 11.2.5
(see Table 12.5). The results show that this parameter can influence the final
fusion decision using Yayambo. For various values ε0 ≤ 10−4, Yayambo
yields the same performances. But its performance starts degrading when
increasing ε0. In Table 12.5 for instance, Yayambo achieves poorer accuracies
for ε0 = 10−3 than for ε0 > 10−3 on Activity. Also, Yayambo’s accuracies for
ε0 = 10−2 are all poor on most test data. This indicates that the performance
of Yayambo is robust to a range of small values for ε0, but degrades (not
badly) once these values become too large, as expected. Also, the choice of
values for ε0 does not impact the number of iterations to convergence.

As expected, the sum rule and product rule outperformed Yayambo in
terms of cross-entropy loss (see Table 12.6) in all cases except the Iris data
set, where no prediction errors were made. This is because the sum rule and
product rule methods each return a sort of average of the probability distri-
butions of individual classifiers, so that these two methods will not return
overconfident predictions. Thus, in the case of misclassified observations,
the contribution to the loss with the sum rule and product rule are limited.
On the other hand, Yayambo’s consensus-seeking approach leads to over-

2The only exception was a tie in the precision of the product rule and Yayambo on the
Activity data set.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 180

confident classifications, with extremely high corresponding loss values in
the case of misclassification: this results from the probability of the correct
class being driven down to zero. These high loss values typically easily out-
weigh the reduction in loss caused by more confident correct classifications.
It was also observed that, in most cases, one or more individual classifiers
performed better than all the fusion methods in terms of cross-entropy loss.
It should be noted that there is no clear explanation of why fusion methods
achieve poor results in terms of cross-entropy loss, a clearer explanation re-
quires a more in-depth investigation.

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
f1 0.9111 0.6845 0.7491 0.5675 0.9063 0.6353 0.8762
f2 0.9556 0.6667 0.6642 0.7885 0.8753 0.9295 0.6635
f3 0.9778 0.6488 0.6104 0.6925 0.9047 0.6353 0.5270
f4 0.9778 0.6101 0.6459 0.6785 0.9117 0.8912 0.6444
f5 0.9778 0.6815 0.5012 0.6280 0.8217 0.6353 0.7268
Majority vote rule 0.9777 0.6455 0.7356 0.8090 0.8905 0.9033 0.8878
Borda count rule 1.0000 0.6728 0.7446 0.8122 0.8886 0.9133 0.8996
Product rule 1.0000 0.6665 0.7455 0.8110 0.8905 0.9042 0.8852
Sum rule 1.0000 0.6875 0.7644 0.8010 0.9153 0.9163 0.9048
Yayambo (ε0 = 10−6) 1.0000 0.7054 0.7788 0.8120 0.9167 0.9365 0.9535
Yayambo (ε0 = 10−5) 1.0000 0.7054 0.7788 0.8120 0.9167 0.9365 0.9535
Yayambo (ε0 = 10−4) 1.0000 0.7054 0.7788 0.8120 0.9167 0.9365 0.9535
Yayambo (ε0 = 10−3) 1.0000 0.7054 0.7786 0.8120 0.9167 0.9365 0.9535
Yayambo (ε0 = 10−2) 1.0000 0.6996 0.7600 0.8092 0.9111 0.9365 0.9444

Table 12.5: The majority vote rule, Borda count rule, sum rule, product rule and
Yayambo accuracies on test data with various values of ε0 for Yayambo. Bold values
indicate best performance.

We found that Yayambo is over-confident in its predictions as it assigns
a score of almost 1 to the consensus class, so any misclassification will in-
crease the cross-entropy loss disproportionally to the change in accuracy.

The Borda count rule and majority vote rule were outperformed by other
fusion methods in various experiments run. A potential weakness of the
Borda count rule and majority vote rule is that the specific values of the
probabilities are ignored when performing the fusion (although this might
make them robust to outliers or overconfident classifiers).

In Tables 12.5–12.7, we considered five fusion methods: majority vote
rule, Borda count rule, sum rule, product rule and Yayambo. In what fol-
lows, we will focus almost exclusively on Yayambo and the sum rule. We
want to focus on Yayambo and the sum rule because the sum rule was re-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 181

Model Iris Gesture Activity Satellite Digits Occupancy Columbia
f1 0.4798 0.8798 0.9229 1.3969 0.4225 0.5783 2.7037
f2 0.4451 1.1447 1.2374 0.5073 0.4451 0.1597 0.8634
f3 0.0891 0.8817 0.7077 0.5501 0.2899 0.2133 2.7086
f4 0.1125 0.8791 0.6057 0.5532 0.2720 0.3716 1.2267
f5 0.0495 0.8786 0.6889 0.8709 0.7405 0.7304 6.7406
Borda count rule 0.0512 0.8574 1.2443 1.4677 1.0010 0.9000 1.2442
Majority vote rule 0.2012 0.8657 0.8888 1.2282 0.6767 1.1989 1.2111
Product rule 0.1021 0.8541 0.9542 1.2564 0.9985 1.2564 1.2020
Sum rule 0.2135 0.7485 0.7586 0.6459 0.3304 0.2873 1.1151
Yayambo (ε0 = 10−6) 0.0000 10.7262 3.5044 3.0495 1.6125 0.6944 1.9882
Yayambo (ε0 = 10−5) 0.0000 10.7262 3.5044 3.0495 1.6125 0.6944 1.9882
Yayambo (ε0 = 10−4) 0.0000 10.7262 3.5044 3.0495 1.6125 0.6944 1.9882
Yayambo (ε0 = 10−3) 0.0000 10.7262 4.5584 5.8452 2.7445 0.6944 1.9882
Yayambo (ε0 = 10−2) 0.0000 14.5241 4.5896 5.2002 2.4214 0.6944 1.9882

Table 12.6: The majority vote rule, Borda count rule, sum rule, product rule and
Yayambo cross-entropy losses on test data. Bold values indicate best performance.

ported to be the best fusion method [51] for methods based on principle of
indifference—it was also found in our experiments that the product rule, the
majority vote rule and the Borda count rule typically achieve poorer results
than the sum rule and Yayambo.

Also in our further experiments, we will only consider two metrics: accu-
racy and loss. In our experiments, Yayambo was found to achieve the best
on the other three metrics. So to avoid repeating the same conclusions, the
results on these other metrics will be omitted.

12.3.2 Similar classifiers trained with different parameters
on the same data set

Results of the Borda count rule, majority vote rule, product rule, sum rule
and Yayambo on the Columbia data set using the same classifiers with dif-
ferent hyperparameters are presented in Table 12.8. Here h1 to h5 are all
classifiers of the same type—denoted by the row heading—with hyperpa-
rameters as specified in Table 12.3. The two fusion methods yielded the
same accuracy with k-NN classifiers, with two of the individual classifiers
outperforming both classifier fusion methods. Yayambo outperformed the
sum rule with MLP and SVM classifiers, where the two fusion methods out-
performed all the individual classifiers. In Table 12.8, individual classifiers
have widely differing outputs for the test observations and generally have
poor performance. The fusion methods leverage these differences from in-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 182

Data set Methods Precision Recall F1-score

Iris Majority vote rule 0.9800 0.9800 0.9800
Borda count rule 1.0000 1.0000 1.0000
Sum rule 1.0000 1.0000 1.0000
Product rule 1.0000 1.0000 1.0000
Yayambo 1.0000 1.0000 1.0000

Gesture Majority vote rule 0.6700 0.6800 0.6100
Borda count rule 0.6600 0.6800 0.6000
Sum rule 0.7000 0.6900 0.6500
Product rule 0.6900 0.6900 0.6400
Yayambo 0.7100 0.7100 0.6900

Activity Majority vote rule 0.7700 0.7500 0.7500
Borda count rule 0.7800 0.7800 0.7800
Sum rule 0.7700 0.7600 0.7600
Product rule 0.7800 0.7700 0.7600
Yayambo 0.7800 0.7800 0.7800

Satellite Majority vote rule 0.7900 0.7900 0.7800
Borda count rule 0.7800 0.7900 0.7900
Sum rule 0.8000 0.8000 0.8000
Product rule 0.7800 0.7800 0.7900
Yayambo 0.8200 0.8100 0.8100

Digits Majority vote rule 0.9100 0.9100 0.9100
Borda count rule 0.9100 0.9100 0.9100
Sum rule 0.9100 0.9100 0.9100
Product rule 0.9100 0.9100 0.9100
Yayambo 0.9200 0.9200 0.9200

Occupancy Majority vote rule 0.9000 0.9100 0.9200
Borda count rule 0.9000 0.9000 0.9200
Sum rule 0.9300 0.9200 0.9200
Product rule 0.9000 0.9100 0.9200
Yayambo 0.9600 0.9500 0.9500

Columbia Majority vote rule 0.9200 0.9000 0.8900
Borda count rule 0.9300 0.8900 0.8800
Sum rule 0.9300 0.9000 0.9000
Product rule 0.9300 0.8900 0.8800
Yayambo 0.9500 0.9400 0.9400

Table 12.7: Precision, recall (the true positive rate), and F1 score for the fusion
techniques on the seven benchmark data set. The Yayambo approach performed best
on all metrics for all these data sets. Bold values indicate best performance. As in
Tables 12.5 and 12.6, there is no much difference with various values of ε0. For the
performances reported here, ε0 was set to 10−6.

dividual classifiers to achieve better prediction.
Since differences observed in classifiers’ performances mean that classi-

fiers provide different views on some data points (i.e. classifiers disagree),
Yayambo is a good fusion method for fusion of highly diverse classifiers’
outputs. This indicates that it is beneficial to use Yayambo as it provides
robustness in terms of the quality (i.e. accuracy) of individual classifiers.

In Table 12.8, k-NN outperforms all the fusion methods. For the Yayambo

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 183

Techniques MLP k-NN SVM
h1 0.6444 0.8381 0.6444
h2 0.4635 0.8127 0.7937
h3 0.4667 0.5937 0.9534
h4 0.4857 0.4762 0.6095
h5 0.1238 0.7400 0.1048
Borda count rule 0.6052 0.6873 0.9016
Majority vote rule 0.7014 0.7714 0.7968
Product rule 0.6557 0.7714 0.9778
Sum rule 0.7486 0.7841 0.9810
Yayambo 0.8000 0.7841 0.9905

Table 12.8: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using similar classifiers with different hyperpa-
rameters trained, on the Columbia data set where hi denotes the i-th instance of the
corresponding classification method. Accuracy of individual classifier and fusion
techniques on the Columbia data set. Bold values indicate best performance.

fusion approach, we might hope that the exchange of supports might help
us avoid this, but these results illustrate that it is quite possible for classifiers
with low accuracies (i.e. h3, h4 and h5) to support each other’s erroneous
predictions, outweighing support for the correct predictions by the other
classifiers: recall that the classifiers do not have a prior notion of which
other classifiers perform better.

12.3.3 Classifiers trained on different subsets of a data set

Results of our proposed fusion method and the benchmark fusion methods
when classifiers are trained on different subsets of a data set are presented
in Table 12.9. We observe that our fusion technique typically achieved better
accuracy than the sum rule. Table 12.10 shows the data set sizes for training
of classifiers on different data sets. Data points of subsets were randomly
chosen without replacement. Tables 12.11–12.14 show the results of using
the same classifier (with hyperparameters as specified in Table 12.2) trained
on different subsets of the training data sets.

Table 12.9 shows that, when classifiers are trained on different subsets
of a training data set, Yayambo again outperforms the sum rule on most
data sets. They both yield the same accuracy on one data set; Yayambo
outperforms the sum rule on four data sets and the sum rule outperforms
Yayambo in two cases. When classifiers are trained on different data sets,
they are more likely to have different views on the prediction of future test
data points. If this is the case, the better performance of Yayambo over the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 184

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
f1 0.6889 0.3125 0.6089 0.7065 0.6420 0.8640 0.8381
f2 0.9111 0.5268 0.7728 0.8220 0.8747 0.7809 0.5111
f3 0.7556 0.3214 0.5807 0.2305 0.9080 0.7595 0.2032
f4 0.9333 0.5833 0.6336 0.7995 0.9403 0.9808 0.5460
f5 0.9556 0.4791 0.5032 0.7030 0.8933 0.9852 0.7302
Borda count rule 0.9122 0.6022 0.7022 0.8001 0.9014 0.9234 0.8015
Majority vote rule 0.9668 0.6211 0.7625 0.8044 0.8325 0.9419 0.9143
Product rule 0.9778 0.6328 0.7555 0.8220 0.9044 0.9499 0.8793
Sum rule 0.9778 0.6429 0.7644 0.8220 0.9143 0.9535 0.8793
Yayambo 0.9778 0.6607 0.7802 0.8240 0.8793 0.9519 0.9143

Table 12.9: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using classifiers trained on different subsets of data
set. Bold values indicate best performance.

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
f1 95 544 2513 3492 9198 4761 619
f2 57 401 3829 2700 5723 7176 540
f3 76 473 3563 3024 6252 4271 441
f4 95 528 2389 3898 8128 5009 620
f5 56 727 3341 2875 5036 7972 517

Table 12.10: Data set sizes for training of classifiers on different data sets.

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
h1 0.9556 0.2024 0.7807 0.8595 0.3023 0.9782 0.6317
h2 0.9778 0.4464 0.7970 0.8440 0.3223 0.9782 0.6825
h3 0.9556 0.2024 0.7709 0.8445 0.4987 0.9786 0.8349
h4 0.9556 0.1815 0.7664 0.8420 0.3193 0.9782 0.7968
h5 0.9556 0.1756 0.8040 0.8555 0.0930 0.9786 0.7302
Borda count rule 0.9556 0.3423 0.8044 0.8590 0.5530 0.9782 0.9397
Majority vote rule 0.9778 0.4464 0.8005 0.8565 0.4773 0.9782 0.8921
Product rule 0.9556 0.4196 0.8025 0.8620 0.6890 0.9782 0.9587
Sum rule 0.9778 0.4256 0.8005 0.8615 0.6550 0.9782 0.9365
Yayambo 0.9778 0.4107 0.8010 0.8605 0.6780 0.9782 0.9524

Table 12.11: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using MLPs trained on different data sets. Bold
values indicate best performance.

sum rule provides support to this view that Yayambo is more suitable for
highly diverse classifiers, i.e. classifiers with differing views on some obser-
vations (it depends on the extent of the differences in classifier outputs).

Table 12.9 shows results of using various classifiers of the same type but
with different hyperparameters when trained on different subsets of the
training data sets. Unlike Table 12.9, Tables 12.11–12.14 show that when the
same classifier type was trained on different subsets of a data set, Yayambo

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 185

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
h1 1.0000 0.7083 0.7022 0.7440 0.6170 0.9006 0.1460
h2 0.9556 0.5923 0.7447 0.7185 0.5550 0.9212 0.1175
h3 0.9778 0.6875 0.7378 0.7275 0.5840 0.8998 0.0794
h4 0.9778 0.6994 0.7131 0.7575 0.6037 0.9036 0.3714
h5 0.9778 0.7232 0.7442 0.7245 0.4907 0.9152 0.1492
Borda count rule 0.9778 0.6905 0.7442 0.7275 0.5723 0.9036 0.1587
Majority vote rule 0.9778 0.6935 0.7462 0.7285 0.5723 0.9036 0.1873
Product rule 0.9778 0.6875 0.7536 0.7335 0.5763 0.9186 0.1048
Sum rule 0.9778 0.6935 0.7531 0.7335 0.5790 0.9186 0.0857
Yayambo 0.9778 0.6935 0.7546 0.7310 0.5727 0.9186 0.0984

Table 12.12: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using k-NN trained on different data sets. Bold
values indicate best performance.

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
h1 0.9778 0.5982 0.8281 0.6850 0.9127 0.9786 0.9937
h2 0.9778 0.4851 0.8272 0.7045 0.9077 0.9786 0.9841
h3 0.9778 0.5387 0.8232 0.6945 0.9143 0.9782 0.9841
h4 0.9778 0.5565 0.8277 0.6940 0.9113 0.9782 0.9937
h5 0.9556 0.5952 0.8291 0.6735 0.9120 0.9786 0.9810
Borda count rule 0.9778 0.5685 0.8286 0.6895 0.9220 0.9786 0.9873
Majority vote rule 0.9778 0.5565 0.8281 0.6895 0.9213 0.9786 0.9937
Product rule 1.0000 0.5744 0.8242 0.6875 0.9237 0.9786 0.9937
Sum rule 1.0000 0.5744 0.8242 0.6870 0.9227 0.9786 0.9937
Yayambo 1.0000 0.5744 0.8252 0.6865 0.9227 0.9786 0.9937

Table 12.13: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using SVM trained on different data sets. Bold
values indicate best performance.

and the sum rule achieve almost identical performances. This might indi-
cate that the both fusion methods are recommended when classifiers are
highly similar. It is also observed that the other three fusion methods (i.e.
the Borda count rule, majority vote rule and product rule) outperform the
sum rule and Yayambo in some cases when using similar classifiers. In Table
12.11 for instance, the Borda count rule outperforms the other fusion meth-
ods on the Activity data set. Also the product rule outperforms the other
fusion methods on the Satellite, Digits and Columbia data sets. This might
indicate that all the fusion methods are recommended when classifiers are
highly similar.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 186

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
h1 0.9778 0.6310 0.7842 0.7505 0.1173 0.6353 0.9619
h2 1.0000 0.6310 0.7842 0.7385 0.1173 0.6353 0.9651
h3 1.0000 0.6310 0.7822 0.7420 0.1173 0.6353 0.9683
h4 1.0000 0.6280 0.7793 0.7540 0.1173 0.6353 0.9651
h5 0.9778 0.6399 0.7827 0.7410 0.1173 0.6353 0.9651
Borda count rule 1.0000 0.6250 0.7812 0.7415 0.1173 0.6353 0.9683
Majority vote rule 1.0000 0.6250 0.7812 0.7420 0.1173 0.6353 0.9683
Product rule 1.0000 0.6250 0.7807 0.7435 0.1173 0.6353 0.9651
Sum rule 1.0000 0.6250 0.7807 0.7445 0.1173 0.6353 0.9651
Yayambo 1.0000 0.6250 0.7817 0.7425 0.1173 0.6353 0.9683

Table 12.14: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies on test data using logistic regression trained on different data
sets. Bold values indicate best performance.

12.3.4 Classifiers trained on different subsets of features

The comparison of our proposed fusion method and the benchmark fusion
methods when classifiers are trained on different features of a data set is
presented in Table 12.15. We observe that, for many of the data sets, most of
the individual classifiers outperform the fusion methods, and f4 (SVM with
RBF kernel) outperformed the other classifiers in most of the data sets. This
might mean that classifiers have different behaviours for different features,
and f4 works well for the selected features. This might indicate that when
classifiers have learnt from different features, it would be desirable to ran-
domly select and report results of a single classifier. (A classifier would need
to be randomly chosen in this case because classifiers’ performances on the
training data sets are not available.) It is also observed that, in the Digits
data set, all the fusion methods are almost as bad as the weakest individual
classifier (i.e. f1). This might mean that individual classifiers perform well
in different regions of the input space, as illustrated in Table 12.18. We quan-
tify disagreement between classifiers using mean and standard deviation of
L1 distance per point between classifiers’ outputs.

When compared to disagreement between classifiers’ outputs using the
Activity data set (we choose the Activity data set for comparison because
the number of classes in the Activity data set is close to the number of classes
in the Digits data set) shown Table 12.17, Table 12.18 shows that individual
classifiers have high disagreement on the Digits data set, as illustrated by
high mean values (although their standard deviations are almost the same).
High mean values indicate low agreement between classifiers based on clas-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 187

sifiers’ predictions. It should be noted that there is no clear explanation of
why fusion methods achieve poor results, a clearer explanation requires a
more in-depth investigation.

The results show that our fusion technique and the sum rule method
achieve roughly the same average performance (accuracy in this case) on
some data sets. Table 12.16 shows the number of features considered for
each data set. Features were randomly selected without replacement.

Techniques Iris Gesture Activity Satellite Digits Occupancy Columbia
f1 0.2667 0.3095 0.2893 0.2210 0.6423 0.6353 0.8762
f2 0.6285 0.6190 0.7348 0.8535 0.8846 0.8671 0.6095
f3 0.1206 0.5536 0.6128 0.8310 0.8566 0.6352 0.6413
f4 0.7238 0.9048 0.7550 0.8775 0.9376 0.5101 0.6413
f5 0.1333 0.6845 0.6083 0.8475 0.8930 0.5830 0.8190
Borda count rule 0.1223 0.4254 0.2622 0.4880 0.6910 0.6155 0.7587
Majority vote rule 0.1332 0.4624 0.2333 0.4877 0.6770 0.6001 0.7446
Product rule 0.1333 0.4524 0.2555 0.4887 0.6907 0.6111 0.7338
Sum rule 0.1333 0.4524 0.2622 0.4910 0.6910 0.6200 0.7587
Yayambo 0.1333 0.4672 0.2889 0.5300 0.6367 0.6000 0.8031

Table 12.15: The Borda count rule, majority vote rule, product rule, sum rule
and Yayambo accuracies on test data using different classifiers trained on different
features of data set. Bold values indicate best performance.

Data sets Iris Gesture Activity Satellite Digits Occupancy Columbia
n−/n 2/4 12/19 4/6 25/36 299/784 2/5 54/97

Table 12.16: The number of features considered to train classifiers on each data set
where n indicates the total number of features of the corresponding data set and n−

the number of features selected. Features were selected without replacement.

f2 f3 f4 f5
f1 0.6559± 0.1550 0.8972± 0.3734 0.7446± 0.3213 0.9320± 0.4045
f2 − 0.3031± 0.2553 0.3793± 0.0781 0.5493± 0.2937
f3 − − 0.3365± 0.3920 0.4442± 0.5410
f4 − − − 0.4587± 0.4273

Table 12.17: Measurement of disagreement between classifiers, trained using the
Activity data set, from a prediction point of view. We quantify disagreement be-
tween classifiers using mean and standard deviation of L1 distance per point be-
tween classifiers’ outputs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 188

f2 f3 f4 f5
f1 0.6246± 0.2449 1.1341± 0.3270 0.8435± 0.2241 0.8903± 0.2006
f2 − 1.2590± 0.3608 0.8276± 0.3131 0.8078± 0.4430
f3 − − 1.0605± 0.2305 1.4987± 0.6742
f4 − − − 0.9271± 0.3704

Table 12.18: Measurement of disagreement between classifiers, trained using the
Digits data set, from a prediction point of view. We quantify disagreement between
classifiers using mean and standard deviation of L1 distance per point between
classifiers’ outputs.

12.3.5 Increasing the number of classifiers

Table 12.19 shows the accuracies of the fusion methods when increasing the
number m of classifiers. For the selection of classifiers, we sample 2 ≤ m ≤ 5
classifiers (without replacement) and average classifier performances. Given
m, we consider a single sampling of m classifiers and we apply the same se-
lected classifiers in the different data sets. For m = 2 we used f1 and f2; for
m = 3, we used f2, f3 and f5; for m = 4, we used f1, f3, f4 and f5.

In Table 12.19, with two classifiers, the sum rule generally outperformed
Yayambo in terms of accuracy. But for m ≥ 3, Yayambo outperformed the
sum rule almost across the board. (On the Iris and Occupancy data sets,
both techniques yield almost identical results. This is probably because clas-
sifiers trained on these two data sets are fairly similar, i.e. they give almost
the same accuracy.)

Obviously, the number of classifiers can influence the quality of the fused
output. The quality of the fusion output in this case will also depend on the
quality of each classifier.

To conclude this section, Yayambo is found to be more beneficial with
more classifiers and it is more robust to one poor classifier.

12.3.6 An active vision case

Recall that coordination of solitary robots for search and rescue is the over-
arching challenge of this thesis, and one aspect mentioned in the descrip-
tion of solitary robots was active vision [1] (see Section 2.2). In an active
vision system, agents are called to take decisions as additional information
becomes available. An active vision system is one that can manipulate the
viewpoints of an object to get better information from it. This section inves-
tigates active vision for classification, and we consider the Columbia data

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 189

Size Methods Iris Gesture Activity Satellite Digits Occupancy Columbia

m = 2 Borda count rule 0.9111 0.5514 0.7444 0.8005 0.8651 0.6352 0.5212
Majority vote rule 0.9111 0.5514 0.7364 0.76604 0.8575 0.6222 0.5333
Product rule 0.9111 0.5514 0.7444 0.8225 0.8762 0.6352 0.5333
Sum rule 0.9111 0.5514 0.7501 0.8225 0.8771 0.6352 0.5333
Yayambo 0.9111 0.5514 0.7466 0.7801 0.8771 0.6352 0.5333

m = 3 Borda count rule 0.9777 0.5465 0.7446 0.8032 0.9230 0.6310 0.7596
Majority vote rule 0.9778 0.5449 0.7822 0.8020 0.9111 0.6223 0.8889
Product rule 0.9778 0.5444 0.7348 0.8060 0.9207 0.6298 0.7685
Sum rule 0.9778 0.5476 0.7536 0.8130 0.9207 0.6352 0.7685
Yayambo 0.9778 0.5595 0.7837 0.8150 0.9257 0.6352 0.8889

m = 4 Borda count rule 0.9556 0.6339 0.7544 0.8115 0.9229 0.6345 0.7443
Majority vote rule 0.9556 0.6499 0.7900 0.8200 0.9334 0.6407 0.8777
Product rule 0.9556 0.6429 0.7646 0.8265 0.9322 0.625 0.7522
Sum rule 0.9556 0.6429 0.7644 0.8265 0.9393 0.6353 0.7524
Yayambo 0.9778 0.6458 0.7906 0.8230 0.9433 0.6407 0.8857

m = 5 Borda count rule 0.9777 0.6455 0.7356 0.8090 0.8905 0.9033 0.8878
Majority vote rule 1.0000 0.6728 0.7446 0.8122 0.8886 0.9133 0.8996
Product rule 1.0000 0.6665 0.7455 0.8110 0.8905 0.9042 0.8852
Sum rule 1.0000 0.6875 0.7644 0.8010 0.9153 0.9163 0.9048
Yayambo 1.0000 0.7054 0.7788 0.8120 0.9167 0.9365 0.9535

Table 12.19: Accuracy values of fusion techniques on benchmark data sets. The
value m denotes the number of classifiers considered for each case. Bold values
indicate best performance.

set for this experiment. The idea is to vary the number of viewpoints of
objects and observe how the number of object viewpoints influences the
performances of the classifier fusion methods.

A fixed camera and a turntable were used to collect the Columbia data.
The objects were placed on a motorized turntable against a black back-
ground. The turntable was rotated through 360 degrees to vary object pose
with respect to the camera. Images of the objects were taken at pose inter-
vals of 5 degrees. Further description of the Columbia data set can be found
in Appendix E.

As shown in Table 12.4, we consider 15 types of objects in the Columbia
data set where each of the types of objects has 72 views. We used the same
five classifiers and considered the following 11 numbers of viewpoints: 1, 6, 11, 16,
21, 26, 31, 36, 41, 46 and 51. We ran three repetitions with different random
initializations for each technique whereby we plot accuracy and loss of clas-
sification and fusion techniques in Figure 12.1.

It is observed that, the performance generally improves with the num-
ber of viewpoints of the object, as expected. When only one viewpoint of
an object is considered, the results show that the fusion methods do not

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 190

(a) (b)

(c) (d)

(e) (f)

Figure 12.1: Accuracies (left) and losses (right) of classification and fusion tech-
niques in active vision. (12.1a): Accuracies of the techniques in the first simulated
run. (12.1b): Losses of the techniques in the first simulated run. (12.1c): Accura-
cies of the techniques in the second simulated run. (12.1d): Losses of the techniques
in the second simulated run. (12.1e): Accuracies of the techniques in the third
simulated run. (12.1f): Losses of the techniques in the third simulated run.

achieve the best performance, both in accuracy and loss. A possible expla-
nation to the poor results of the fusion methods can be that poor individual
classifiers are overconfident, so their outputs dominate the outputs from the
strongest individual classifier (f1). Overconfidence of individual classifiers
are indicated by high losses in Figures 12.1b, 12.1d and 12.1f (their losses
get improved as the number of views get larger). For Yayambo in particu-
lar, this is probably because, when classifying objects made of limited views,
most of the classifiers are weak and try to support each other’s erroneous

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 191

predictions during the fusion process. Also, given small number of view-
points, Yayambo outperformed the sum rule in terms of accuracy, while the
sum rule achieved lower loss. This matches what we expect in terms of
Yayambo’s susceptibility to large loss because it is not calibrated for proba-
bilistic outputs. Note that adding an additional viewpoint of an object can
decrease or increase the performance of a classification technique (i.e. in-
dividual classifiers and classifier fusion methods) which can be illustrated
by the zigzagging behaviour in Figure 12.1a. In Figure 12.1a for instance,
the Yayambo’s performance is worse with 16 viewpoints compared to 11
viewpoints, and with 26 viewpoints compared to 21 viewpoints. This might
mean that additional view points can make individual classifiers stronger
or weaker, and overconfident as illustrated by high losses in Figure 12.1.
This might indicate that selection of features (or view points in this case) for
training of classifiers is crucial.

It is also observed (in Figure 12.1) that there is a regularity to the increases
and decreases of classifiers’ performances when adding new view points. It
should be noted that there is no clear explanation of why such regularity is
observed—a clearer explanation requires a more in-depth investigation.

12.3.7 Artificial classifiers

Our empirical results so far provide evidence that the Yayambo fusion ap-
proach often outperforms other fusion methods, but we also see cases where
this does not hold. Here we consider fusing outputs of some hypothetical
classifiers which we define by specifying their behaviour, rather than train-
ing them. The hope is that the extreme setting we describe here sheds fur-
ther light on the behaviour of our proposed fusion method.

For the artificial classifier outputs, we have the following situation. We
consider fusing five classifiers for a binary classification task, where

• the first classifier, f1, always classifies correctly, with probability pre-
dictions 0.51 for the correct class and 0.49 for the incorrect class;

• the second classifier, f2, also classifies perfectly, but its probability pre-
dictions are 0.90 for the correct class and 0.1 for the incorrect class;

• the third classifier is always wrong: it predicts 0.49 for the correct class,
and 0.51 for the incorrect class;

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 192

• with the fourth classifier, for 65% of outputs, the classifier correctly
classifies a test point with probability of 0.7 (i.e. probability of 0.7 for
correct class and 0.3 for the other class). For the remaining outputs, it
outputs a distribution with a first class probability sampled uniformly
from (0, 1); and

• the fifth classifier always outputs a distribution with a first class prob-
ability sampled uniformly from (0, 1).

To be able to evaluate accuracies of our artificial classifiers, we provide 5000
outcomes to each class which will be used as ground truth (i.e. each class
will contain 5000 data points). Expected performance for each of the 5 in-
dividual artificial classifiers is shown in Table 12.20 and expected agree-
ments between classifiers from a classification point of view are shown in
Table 12.21. Our results for fusion of artificial classifiers are presented in Ta-
bles 12.22 (where we consider an increasing number of classifiers) and 12.23
(where we consider all classifiers).

Note that viewed at the output level, the first and the third classifiers are
in close agreement—see the small value at the intersection of f1 and f3 in
Table 12.24—while they differ substantially from the other three classifiers.
On the other hand, from a decision perspective, the first and the second
classifiers agree exactly—see the high value at the intersection of f1 and
f2 in Table 12.21; we used accuracy to evaluate classification disagreement
between two classifiers, say fi and f j, where fi’s outputs are considered as
ground truth and f j’s outputs as predictions. The third classifier disagrees
totally with the first two classifiers and, the fourth and fifth classifiers can
agree or disagree with others depending on the random outputs.

Techniques Expected accuracy
f1 1.0000
f2 1.0000
f3 0.0000
f4 0.8250
f5 0.5000

Table 12.20: Expected performances for each of the 5 individual artificial classifiers.

Table 12.22 confirms that the accuracy of fused decisions may degrade
as we add weaker (or erratic) classifiers. These results support our earlier
argument that Yayambo relies on regularity in the behaviour of classifiers

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 193

f2 f3 f4 f5
f1 1.0000 0.0000 0.8250 0.5000
f2 − 0.0000 0.8250 0.5000
f3 − − 0.1750 0.5000
f4 − − − 0.5000

Table 12.21: Expected agreement between individual artificial classifiers from a
classification point of view. Values range in [0, 1] and high values indicate high
agreement between classifiers based on their expected accuracy.

Techniques Case 1 Case 2 Case 3 Case 4
f1 1.0000 1.0000 1.0000 1.0000
f2 1.0000 1.0000 1.0000 1.0000
f3 − 0.0000 0.0000 0.0000
f4 − − 0.8242 0.8242
f5 − − − 0.5017
Borda count rule 1.0000 1.0000 0.9123 0.9123
Majority vote rule 1.0000 1.0000 0.9123 0.9123
Product rule 1.0000 1.0000 0.9617 0.9011
Sum rule 1.0000 1.0000 0.9617 0.9365
Yayambo 1.0000 1.0000 0.9617 0.9333

Table 12.22: The Borda count rule, majority vote rule, product rule, sum rule
and Yayambo accuracies using artificial classifiers. Here, cases refer to numbers of
classifiers considered. Bold values indicate best performance.

Techniques Case 1 Case 2 Case 3
f1 1.0000 1.0000 1.0000
f2 0.0000 1.0000 1.0000
f3 0.0000 0.0000 0.0000
f4 0.8221 0.8280 0.8164
f5 0.5013 0.5088 0.5050
Borda count rule 0.9099 0.9137 0.9074
Majority vote rule 0.9087 0.9097 0.9017
Product rule 0.9087 0.9097 0.9017
Sum rule 0.9376 0.9387 0.9283
Yayambo 0.9350 0.9344 0.9253

Table 12.23: The Borda count rule, majority vote rule, product rule, sum rule and
Yayambo accuracies using artificial classifiers. Here, cases refer to different runs of
the fourth and fifth classifiers as they are purely random. Bold values indicate best
performance.

resulting from their being trained on the same task, resulting in similar be-
haviour on future observations.

12.4 Conclusion and avenues for future work

We proposed a once-off classifier fusion method based on the principle of
indifference—no external information or prior performance is provided to
enhance the fusion process. Our proposed classifier fusion method takes ad-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 194

f2 f3 f4 f5
f1 55.1443 2.8284 32.66384 41.0806
f2 − 57.9228 48.1349 69.7933
f3 − − 34.1587 41.0897
f4 − − − 51.7427

Table 12.24: Measurement of disagreement between classifiers from a prediction
point of view. We used the Euclidean distance between classifiers’ outputs to eval-
uate prediction disagreement between classifiers. Values range in [0, ∞) and high
values indicate low agreement between classifiers based on classifiers’ predictions.

vantage of prediction similarities to enhance consensus decision-making in
weighting the relative importance of individual classifiers unequally, where
the loss function is symmetric. One caveat is that our proposed fusion
method is found to be over-confident in its predictions, i.e. the method does
not output calibrated probabilities for the various classes. In other words,
the approach is not recommended for use in downstream tasks where such
probabilities are desirable. Limitations of our proposed classifier fusion
method can be found in Subsection 11.1.2.

12.4.1 Findings summary

Our experiments compare our proposed method to four established black-
box classifier fusion methods, the sum rule, the product rule, the majority
vote rule and the Borda count rule. We found that our proposed method
yields the best accuracies in most of the cases we considered, for both highly
similar as well as highly diverse classifiers. This indicates that our proposed
method is more robust to the quality of individual classifiers than the sum
rule, product rule and majority vote rule. However, our proposed method
is not a probabilistic method, which results in a high cross-entropy loss. So
Yayambo is not suitable in situations where cross-entropy loss function is
appropriate. The sum rule and the product rule are recommended for gen-
erating calibrated fused outputs. It is possible that other fusion approaches
might be more recommended for black-box fusion.

Furthermore, we observed empirically that even though supports as-
signed to predictions are asymmetric, the updated probability vectors con-
verge. This is interesting as from all the probability vectors we can output
the same class of an object of interest for which classifier outputs confer dif-
fering views before the fusion process. While a consensus decision is not
necessarily correct, we contend that achieving consensus from different ini-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 12. METRICS, RESULTS AND DISCUSSION 195

tial distributions using such an asymmetric notion of support confers some
credence on the final decision.

Finally, we observed different behaviours of Yayambo for various values
of ε0 which is required to quantify support between distributions. Values for
ε0 should be chosen carefully, otherwise, Yayambo may yield poor results.

12.4.2 Avenue for future work

We identify the following promising avenues for future work:

1. Our hope was that Yayambo converges, and it converged in all the
experiments run in this chapter. We ultimately hope to investigate the
convergence of Yayambo theoretically in future.

2. It may be possible to obtain a closed form expression for the consen-
sus class from initial distributions without performing the iteration
explicitly, possibly with some modifications to the forms of the equa-
tions used for the supports.

3. It would be interesting to consider how to formalize a probabilistic
prior interpretation of the regularity assumption we are making, and
what posterior it leads to in the Bayesian probability setting. This may
lead to support formulae with better theoretical motivations and fur-
ther improved performance. It would also lay a solid foundation for
fusion of multiple sequential observations, rather than the once-off
case considered by our algorithm.

Having reviewed and discussed background and literature on our three
problems, presented our contributions to each, and discussed the results of
investigations, we now conclude this thesis.

Stellenbosch University https://scholar.sun.ac.za

Chapter 13

Conclusions and future work

13.1 Summary

The overarching challenge of this thesis was search and rescue in an un-
known static environment by solitary robots. The research question was
how solitary robots can coordinate their actions when some of them meet
to work more effectively. We introduced various algorithms or algorithm
enhancements for three problems arising from this context, namely: coordi-
nation, construction of a view of a network, and classifier fusion. Although
three problems were treated, coordination is the main problem involved for
search and rescue. Network view construction and classifier fusion are re-
lated problems inspired by the problem of coordination.

In what follows we provide a brief summary of the methods and re-
sults contained in this thesis, excluding the opening chapters (Chapter 1
and Chapter 2) and closing chapter (Chapter 13). The thesis was composed
of three parts for the three topics considered. Each part considered back-
ground work and presented a literature review of the topic, before present-
ing novelties followed by experimental results and discussion.

Part I discussed a novel coordination strategy for multiple solitary robots:
coordination by soft obstacles based on the principle of cellular decomposi-
tion given limited available time. The proposed approach targets situations
where the available search time is known and limited. We considered search
coverage as a proxy to evaluate robots’ expected performance, which corre-
sponds to assuming targets located independently and uniformly in space.

Part II discussed the proposed decentralised method each node applies

196

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 13. CONCLUSIONS AND FUTURE WORK 197

to construct its view of their interaction network. Our proposed method
focuses on reducing the number of messages received by nodes during the
view construction.

Classifiers are used to identify the category of an object. Different clas-
sifiers may give different opinions on the type of a target of interest and it
might be difficult to select the best classifier to use. One way to improve
classification performance is to combine diverse classifiers. In Part III, we
described a classifier fusion method to combine classifiers’ outputs for clas-
sification of targets.

13.2 Primary contributions

We now present what we view as the chief contributions of this thesis.

(1) For the problem of coordination of multiple solitary robots, we con-
sidered two benchmark methods, ARS and PRS [42, 109]. ARS suffers
from high interference while PRS suffers from high interruptibility. Our
proposed coordination strategy is based on the cellular decomposition
strategy [17] and the use of margins, and produced a low interrupt-
ibility and low interference strategy [70]. In this strategy, after apply-
ing cellular decomposition by solitary robots, each robot considers re-
gions assigned to others to be soft obstacles which should be avoided
as much as possible. Cellular decomposition allows robots to explore
non-overlapping regions, thus interference is mitigated; it also allows
robots to avoid the need to schedule further rendezvous, thus reducing
the problem of interruptibility.

(2) For the problem of managing interaction of robots, our proposed variant
on the benchmark method that a robot applies to construct its view of a
communication graph [118] reduces the number of messages exchanged
between robots in an interaction. Our method is based on the principle
of pruning. While constructing a view of the communication graph, we
identify certain types of nodes that are not required to be involved in
every round of the algorithm; such nodes are deactivated. This con-
sideration significantly reduces the number of messages various nodes
must receive while constructing a view of the communication graph.
We also propose a version of pruning that is robust to failure.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 13. CONCLUSIONS AND FUTURE WORK 198

(3) For the problem of classifier fusion, we considered situations where we
have multiple classifiers and only their outputs on a test point are pro-
vided. To reach a consensus in classifier fusion, classifiers assign some
support to each other to score their outputs. We believe that classifiers
should still be able to find a way to determine the quality of their out-
puts in the absence of information about their performance. We intro-
duced a novel way [71] to combine such classifiers by quantifying sup-
port between predictions, and using these to weight predictions to reach
a consensus decision. This way of combining classifiers without addi-
tional information about their performance outperformed the sum rule,
product rule, majority vote rule and Borda count rule methods which
we used as the benchmark methods. The proposed fusion method at-
tempts to take advantage of the expectation of similar behaviour of clas-
sifiers trained for the same task, i.e. our proposed fusion method lever-
ages the belief that homogeneity of classifier predictions contains valu-
able information.

The research reported in this thesis has investigated three problems: man-
agement of interaction, coordination and classifier fusion. In our setting,
the three problems are considered as an all-in-one problem, i.e. these three
problems are subproblems of the overarching search and rescue problem.

13.3 Future work

Avenues for future work for the three methods are discussed in Chapters
9.4, 6.4 and 12.4 respectively.

We ran experiments for our three proposed methods separately. We also
ran experiments with the integration of the first two approaches (i.e. coor-
dination and graph view construction). The incorporation of our third pro-
posed method (i.e. classifier fusion method) in the system requires some
real applications (applications where real robots are deployed to an un-
known environment containing real objects of interest, e.g. mining). We
ultimately hope to test our three methods as part of a whole hardware sys-
tem of mobile robots running real applications.

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active Vision. International
Journal of Computer Vision, 1(4):333–356, 1988.

[2] S. Alpern. The Rendezvous Search Problem. SIAM Journal on Control and
Optimization, 33(3):673–683, 1995.

[3] F. Amigoni, J. Banfi, and N. Basilico. Multirobot Exploration of
Communication-Restricted Environments: A Survey. IEEE Intelligent Sys-
tems, 32(6):48–57, 2017.

[4] R. Aragues, C. Sagues, and Y. Mezouar. Feature-Based Map Merging
with Dynamic Consensus on Information Increments. Autonomous Robots,
38(3):243–259, 2015.

[5] R. C. Arkin and J. Diaz. Line-of-Sight Constrained Exploration for Reactive
Multiagent Robotic Teams. In 7th International Workshop on Advanced Motion
Control, pages 455–461. IEEE, 2002.

[6] A. Asuncion and D. Newman. UCI Machine Learning Repository. Available
at https://archive.ics.uci.edu/ml/datasets.html, 2007.

[7] K. Batool and M. A. Niazi. Towards a Methodology for Validation of Cen-
trality Measures in Complex Networks. PloS one, 9(4):e90283, 2014.

[8] A. Bavelas. Communication Patterns in Task-Oriented Groups. The Journal of
the Acoustical Society of America, 22(6):725–730, 1950.

[9] C. Belta, V. Isler, and G. J. Pappas. Discrete Abstractions for Robot Mo-
tion Planning and Control in Polygonal Environments. IEEE Transactions on
Robotics, 21(5):864–874, 2005.

[10] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[11] E. Bisong. Introduction to Scikit-learn. In Building Machine Learning and Deep
Learning Models on Google Cloud Platform, pages 215–229. Springer, 2019.

199

Stellenbosch University https://scholar.sun.ac.za

https://archive.ics.uci.edu/ml/datasets.html

LIST OF REFERENCES 200

[12] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from
social insect behaviour. Nature, 406(6791):39, 2000.

[13] P. Bonacich. Power and Centrality: A Family of Measures. American Journal
of Sociology, 92(5):1170–1182, 1987.

[14] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library. " O’Reilly Media, Inc.", 2008.

[15] E. Bressert. SciPy and NumPy: An Overview for Developers. " O’Reilly Media,
Inc.", 2012.

[16] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated Multi-
Robot Exploration. IEEE Transactions on Robotics, 21(3):376–386, 2005.

[17] H. Choset. Coverage for Robotics–A Survey of Recent Results. Annals of
Mathematics and Artificial Intelligence, 31(1-4):113–126, 2001.

[18] L. Cigler and B. Faltings. Decentralized Anti-Coordination Through Multi-
Agent Learning. Journal of Artificial Intelligence Research, 47:441–473, 2013.

[19] J. Cohen. The Statistical Power of Abnormal-Social Psychological Research:
A Review. The Journal of Abnormal and Social Psychology, 65(3):145, 1962.

[20] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design. Pearson Education, 2005.

[21] D. Das, S. Mukhopadhyaya, and D. Nandi. Techniques in Multi-Robot Area
Coverage: A Comparative Survey. In Handbook of Research on Design, Control,
and Modeling of Swarm Robotics, pages 741–765. IGI Global, 2016.

[22] J. de Hoog, S. Cameron, and A. Visser. Selection of Rendezvous Points for
Multi-Robot Exploration in Dynamic Environments. In Workshop on Agents
in Realtime and Dynamic Environments, International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 2010.

[23] H. Durrant-Whyte. A Beginner’s Guide to Decentralised Data Fusion. Tech-
nical Document of Australian Centre for Field Robotics, University of Sydney, Aus-
tralia, pages 1–27, 2000.

[24] H. Durrant-Whyte, M. Stevens, and E. Nettleton. Data Fusion in Decen-
tralised Sensing Networks. In 4th International Conference on Information Fu-
sion, pages 302–307, 2001.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 201

[25] P. Emerson. The Initial Borda Count and Partial Voting. Social Choice and
Welfare, 40(2):353–358, 2013.

[26] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani. State-of-the-Art Deep Learning: Evolving Machine Intelligence toward
Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communica-
tions Surveys & Tutorials, 19(4):2432–2455, 2017.

[27] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A
Library for Large Linear Classification. Journal of Machine Learning Research,
9(Aug):1871–1874, 2008.

[28] L. Fei, J. Xia, Y. Feng, and L. Liu. A Novel Method to Determine Basic Prob-
ability Assignment in Dempster–Shafer Theory and its Application in Multi-
sensor Information Fusion. International Journal of Distributed Sensor Networks,
15(7):1–16, 2019.

[29] O. Feinerman, A. Korman, Z. Lotker, and J.-S. Sereni. Collaborative Search on
the Plane without Communication. In Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing, pages 77–86. ACM, 2012.

[30] A. C. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Incon-
sistency Handling in Multiperspective Specifications. IEEE Transactions on
Software Engineering, 20(8):569–578, 1994.

[31] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, and M. E. Moses. A
Distributed Deterministic Spiral Search Algorithm for Swarms. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4430–
4436. IEEE, 2016.

[32] A. Fujimori, P. N. Nikiforuk, and M. M. Gupta. Adaptive Navigation of Mo-
bile Robots with Obstacle Avoidance. IEEE Transactions on Robotics and Au-
tomation, 13(4):596–601, 1997.

[33] M. S. Gail and F. Richard. Using Effect Size–or Why the P Value Is Not
Enough. Journal of Graduate Medical Education, 4(3):279–282, 2012.

[34] R. G. Gallager, P. A. Humblet, and P. M. Spira. A Distributed Algorithm for
Minimum-Weight Spanning Trees. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 5(1):66–77, 1983.

[35] F. Garin, D. Varagnolo, and K. H. Johansson. Distributed Estimation of Di-
ameter, Radius and Eccentricities in Anonymous Networks. IFAC Proceedings
Volumes, 45(26):13–18, 2012.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 202

[36] A. Gelman, A. Vehtari, P. Jylänki, T. Sivula, D. Tran, S. Sahai, P. Blomstedt,
J. P. Cunningham, D. Schiminovich, and C. Robert. Expectation Propagation
as a Way of Life: A Framework for Bayesian Inference on Partitioned Data.
arXiv preprint arXiv:1412.4869, 2017.

[37] C. Gomez, A. C. Hernandez, and R. Barber. Topological Frontier-Based
Exploration and Map-Building Using Semantic Information. Sensors,
19(20):4595, 2019.

[38] S. Grime, H. F. Durrant-Whyte, and P. Ho. Communication in Decentralized
Data-Fusion Systems. In 1992 American Control Conference, pages 3299–3303.
IEEE, 1992.

[39] J. Guivant, J. Nieto, and E. Nebot. Victoria Park Dataset. Available at http:
//www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm, 2012.

[40] P. Hage and F. Harary. Eccentricity and Centrality in Networks. Social Net-
works, 17(1):57–63, 1995.

[41] Z. B. Hao, N. Sang, and H. Lei. Cooperative Coverage by Multiple Robots
with Contact Sensors. In IEEE Conference on Robotics, Automation and Mecha-
tronics, pages 543–548. IEEE, 2008.

[42] H. Hourani, E. Hauck, and S. Jeschke. Serendipity Rendezvous as a Mitiga-
tion of Exploration’s Interruptibility for a Team of Robots. In IEEE Interna-
tional Conference on Robotics and Automation, pages 2984–2991. IEEE, 2013.

[43] A. Howard, M. J. Matarić, and G. S. Sukhatme. Mobile Sensor Network De-
ployment using Potential Fields: A Distributed, Scalable Solution to the Area
Coverage Problem. In Distributed Autonomous Robotic Systems 5, pages 299–
308. Springer, 2002.

[44] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of Groups of Mobile
Autonomous Agents Using Nearest Neighbor Rules. IEEE Transactions on
Automatic Control, 48(6):988–1001, 2003.

[45] M. G. Kendall. A New Measure of Rank Correlation. Biometrika, 30(1/2):81–
93, 1938.

[46] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. In Autonomous Robot Vehicles, pages 396–404. Springer, 1986.

[47] C. Kim and M. Wu. Leader Election on Tree-Based Centrality in Ad Hoc
Networks. Telecommunication Systems, 52(2):661–670, 2013.

Stellenbosch University https://scholar.sun.ac.za

http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm
http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm

LIST OF REFERENCES 203

[48] H.-C. Kim and Z. Ghahramani. Bayesian Classifier Combination. In Proceed-
ings of the 15th International Conference on Artificial Intelligence and Statistics,
pages 619–627, 2012.

[49] T. W. Kim, E. H. Kim, J. K. Kim, and T. Y. Kim. A Leader Election Algorithm
in a Distributed Computing System. In Proceedings of the Fifth IEEE Computer
Society Workshop on Future Trends of Distributed Computing Systems, pages 481–
485. IEEE, 1995.

[50] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou,
and S. Shimada. Robocup Rescue: Search and Rescue in Large-Scale Dis-
asters as a Domain for Autonomous Agents Research. In Proceedings of the
1999 IEEE International Conference on Systems, Man, and Cybernetics, volume 6,
pages 739–743. IEEE, 1999.

[51] J. Kittler. Combining Classifiers: A Theoretical Framework. Pattern Analysis
and Applications, 1(1):18–27, 1998.

[52] J. Kittler, M. Hatef, R. P. Duin, and J. Matas. On Combining Classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998.

[53] C. S. Kong, N. A. Peng, and I. Rekleitis. Distributed Coverage with Multi-
Robot System. In Proceedings of the 2006 IEEE International Conference on
Robotics and Automation, pages 2423–2429. IEEE, 2006.

[54] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart. Map Merging for
Distributed Robot Navigation. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), volume 1, pages 212–217. IEEE, 2003.

[55] E. Korach, D. Rotem, and N. Santoro. Distributed Algorithms for Finding
Centers and Medians in Networks. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 6(3):380–401, 1984.

[56] R. V. Kshirsagar and B. Jirapure. A Survey on Fault Detection and Fault Tol-
erance in Wireless Sensor Networks. In International Conference on Benchmarks
in Engineering Science and Technology, pages 6–9, 2012.

[57] F. Kuhn, N. Lynch, and R. Oshman. Distributed Computation in Dynamic
Networks. In Proceedings of the Forty-second ACM Symposium on Theory of
Computing, pages 513–522. ACM, 2010.

[58] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval
Research Logistics (NRL), 2(1-2):83–97, 1955.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 204

[59] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[60] L. I. Kuncheva. Switching Between Selection and Fusion in Combining Clas-
sifiers: An Experiment. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 32(2):146–156, 2002.

[61] K. Lai and D. Fox. Object Recognition in 3D Point Clouds using Web
Data and Domain Adaptation. The International Journal of Robotics Research,
29(8):1019–1037, 2010.

[62] S. Lam and M. Reiser. Congestion Control of Store-and-Forward Networks
by Input Buffer Limits–an Analysis. IEEE Transactions on Communications,
27(1):127–134, 1979.

[63] S. M. LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. Technical Report TR 98-11, Computer Science Department, Iowa State
University, 10 1998.

[64] A. Le Roux, M. I. Cherry, L. Gygax, and M. B. Manser. Vigilance Behaviour
and Fitness Consequences: Comparing a Solitary Foraging and an Obligate
Group-Foraging Mammal. Behavioral Ecology and Sociobiology, 63(8):1097–
1107, 2009.

[65] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over Time: Densification
Laws, Shrinking Diameters and Possible Explanations. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, pages 177–187. ACM, 2005.

[66] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph Evolution: Densification
and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):2, 2007.

[67] X. Li, G. Chen, E. Blasch, J. Patrick, C. Yang, and I. Kadar. Multi-Sensor
Management for Data Fusion in Target Tracking. In Signal Processing, Sensor
Fusion, and Target Recognition XVIII, volume 7336, page 73360Y. International
Society for Optics and Photonics, 2009.

[68] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman. Decentralized
Environmental Modeling by Mobile Sensor Networks. IEEE Transactions on
Robotics, 24(3):710–724, 2008.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 205

[69] U. G. Mangai, S. Samanta, S. Das, and P. R. Chowdhury. A Survey of De-
cision Fusion and Feature Fusion Strategies for Pattern Classification. IETE
Technical review, 27(4):293–307, 2010.

[70] J. F. Masakuna, S. W. Utete, and S. Kroon. A Coordinated Search Strategy for
Solitary Robots. In 2019 Third IEEE International Conference on Robotic Com-
puting (IRC), pages 433–434. IEEE, 2019.

[71] J. F. Masakuna, S. W. Utete, and S. Kroon. Performance-Agnostic Fusion
of Probabilistic Classifier Outputs. In IEEE 23rd International Conference on
Information Fusion, pages 1–8. IEEE, 2020.

[72] M. McNeill and D. Lyons. An Approach to Fast Multi-Robot Exploration in
Buildings with Inaccessible Spaces. In International Conference on Robotics and
Biomimetics (ROBIO19), pages 1–8. IEEE, 2019.

[73] N. Meghanathan. Correlation Coefficient Analysis of Centrality Metrics for
Complex Network Graphs. In Computer Science On-line Conference, pages 11–
20. Springer, 2015.

[74] R. K. Merton. The Matthew Effect in Sciencee: The Reward and Communi-
cation Systems of Science are Considered. Science, 159(3810):56–63, 1968.

[75] A. R. Mosteo, L. Montano, and M. G. Lagoudakis. Multi-Robot Routing
under Limited Communication Range. In IEEE International Conference on
Robotics and Automation (ICRA), pages 1531–1536. IEEE, 2008.

[76] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Available at
https://bitcoin.org/bitcoin.pdf, Accessed in January 2019.

[77] A. Naz. Distributed Algorithms for Large-Scale Robotic Ensembles: Centrality,
Synchronization and Self-Reconfiguration. PhD thesis, Université Bourgogne
Franche-Comté, 2017.

[78] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library
(coil-100). Technical Report TR CUCS-005-96, Computer Vision Laboratory,
Computer Science Department, Columbia University, 2 1996.

[79] A. Nüchter and J. Hertzberg. Towards Semantic Maps for Mobile Robots.
Robotics and Autonomous Systems, 56(11):915–926, 2008.

[80] J. Oroko and G. Nyakoe. Obstacle Avoidance and Path Planning Schemes for
Autonomous Navigation of a Mobile Robot: A Review. In Proceedings of the

Stellenbosch University https://scholar.sun.ac.za

https://bitcoin.org/bitcoin.pdf

LIST OF REFERENCES 206

2012 Mechanical Engineering Conference on Sustainable Research and Innovation,
pages 314–318, 2012.

[81] M. Pasin, S. Fontaine, and S. Bouchenak. Failure Detection in Large Scale
Systems: A Survey. In IEEE Network Operations and Management Symposium
Workshops, pages 165–168. IEEE, 2008.

[82] R. J. Ramírez and N. Santoro. Distributed Control of Updates in Multiple-
Copy Databases: A Time Optimal Algorithm. In Proceedings of the 4th Berkeley
Conference on Distributed Data Management and Computer Networks (Berkeley,
Calif, Aug.), pages 191–207, 1979.

[83] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited Communica-
tion, Multi-Robot Team Based Coverage. In Proceedings of the 2004 IEEE In-
ternational Conference on Robotics and Automation, volume 4, pages 3462–3468.
IEEE, 2004.

[84] K. A. Remley, G. Koepke, D. G. Camell, C. Grosvenor, G. Hough, and R. T.
Johnk. Wireless Communications in Tunnels for Urban Search and Rescue
Robots. In Proceedings of the 8th Workshop on Performance Metrics for Intelligent
Systems, pages 236–243. ACM, 2008.

[85] N. Roy and G. Dudek. Collaborative Robot Exploration and Rendezvous:
Algorithms, Performance Bounds and Observations. Autonomous Robots,
11(2):117–136, 2001.

[86] N. Santoro. Design and Analysis of Distributed Algorithms, volume 56. John
Wiley & Sons, 2006.

[87] R. E. Schapire. The Boosting Approach to Machine Learning: An Overview.
In Nonlinear Estimation and Classification, pages 149–171. Springer, 2003.

[88] N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse. A Study on the Relationships
of Classifier Performances Metrics. In 21st International Conference on Tools
with Artificial Intelligence, pages 59–66. IEEE, 2009.

[89] A. Sheth, C. Hartung, and R. Han. A Decentralized Fault Diagnosis System
for Wireless Sensor Networks. In IEEE International Conference on Mobile Ad-
hoc and Sensor Systems, pages 1–3. IEEE, 2005.

[90] Y. Shiloach and S. Even. An On-Line Edge-Deletion Problem. Journal of the
ACM (JACM), 28(1):1–4, 1981.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 207

[91] B. Siciliano and O. Khatib. Springer Handbook of Robotics, chapter 40, pages
921–941. Springer Science & Business Media, 2008.

[92] S. S. Skiena. The Algorithm Design Manual, volume 1. Springer Science &
Business Media, 1998.

[93] A. Solanas and M. A. Garcia. Coordinated Multi-Robot Exploration Through
Unsupervised Clustering of Unknown Space. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) , volume 1, pages 717–721.
IEEE, 2004.

[94] C. Spearman. “General Intelligence” Objectively Determined and Measured.
American Journal of Psychology, 15:663–671, 1961.

[95] A. N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the JDL Data
Fusion Model. In Sensor Fusion: Architectures, Algorithms, and Applications III,
volume 3719, pages 430–442. International Society for Optics and Photonics,
1999.

[96] S. D. Stoller. Leader Election in Distributed Systems with Crash Failures.
Technical Report TR 481, Department of Computer Science, Indiana Univer-
sity, 4 1997.

[97] L. Susperregi, B. Sierra, M. Castrillón, J. Lorenzo, J. Martínez-Otzeta, and
E. Lazkano. On the Use of a Low-Cost Thermal Sensor to Improve Kinect
People Detection in a Mobile Robot. Sensors, 13(11):14687–14713, 2013.

[98] A. Tapus and M. J. Mataric. Towards Socially Assistive Robotics. Journal of
the Robotics Society of Japan, 24(5):576–578, 2006.

[99] S. Thrun. Toward Robotic Cars. Communications of the ACM, 53(4):99–106,
2010.

[100] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT press, 2005.

[101] S. Thrun and T. M. Mitchell. Lifelong Robot Learning. Robotics and Au-
tonomous Systems, 15(1-2):25–46, 1995.

[102] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot. Fast-
SLAM: An Efficient Solution to the Simultaneous Localization and Mapping
Problem with Unknown Data Association. Journal of Machine Learning Re-
search, 4(3):380–407, 2004.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 208

[103] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa,
F. Ruess, M. Suppa, and D. Burschka. Toward a Fully Autonomous UAV:
Research Platform for Indoor and Outdoor Urban Search and Rescue. IEEE
Robotics & Automation Magazine, 19(3):46–56, 2012.

[104] H. Torres-Contreras, R. Olivares-Donoso, and H. M. Niemeyer. Solitary For-
aging in the Ancestral South American Ant, Pogonomyrmex Vermiculatus. Is
It Due to Constraints in the Production or Perception of Trail Pheromones?
Journal of Chemical Ecology, 33(2):435–440, 2007.

[105] I. Ulrich and J. Borenstein. VFH+: Reliable Obstacle Avoidance for Fast Mo-
bile Robots. In IEEE International Conference on Robotics and Automation, 1998,
volume 2, pages 1572–1577. IEEE, 1998.

[106] S. Utete and H. F. Durrant-Whyte. Routing for Reliability in Decentralised
Sensing Networks. In American Control Conference, volume 2, pages 2268–
2272. IEEE, 1994.

[107] S. W. Utete, B. Barshan, and B. Ayrulu. Voting as Validation in Robot Pro-
gramming. The International Journal of Robotics Research, 18(4):401–413, 1999.

[108] B. L. Welch. The Generalization of Student’s’ Problem when Several Different
Population Variances are Involved. Biometrika, 34(1/2):28–35, 1947.

[109] B. L. Wellman, S. Dawson, J. de Hoog, and M. Anderson. Using Rendezvous
to Overcome Communication Limitations in Multirobot Exploration. In IEEE
International Conference on Systems, Man and Cybernetics, pages 2401–2406,
2011.

[110] F. Wilcoxon. Individual Comparisons by Ranking Methods. In Breakthroughs
in Statistics, pages 196–202. Springer, 1992.

[111] D. Wolf, A. Howard, and G. S. Sukhatme. Towards Geometric 3D Mapping
of Outdoor Environments Using Mobile Robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1507–1512. IEEE, 2005.

[112] D. H. Wolpert. The Lack of a Priori Distinctions Between Learning Algo-
rithms. Neural Computation, 8(7):1341–1390, 1996.

[113] K. M. Wurm, C. Stachniss, and W. Burgard. Coordinated Multi-Robot Explo-
ration using a Segmentation of the Environment. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1160–1165. IEEE, 2008.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 209

[114] B. Yamauchi. A Frontier-based Approach for Autonomous Exploration. In
Proceedings of the 1997 IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation, pages 146–151. IEEE, 1997.

[115] B. Yamauchi. Frontier-based Exploration Using Multiple Robots. In Proceed-
ings of the Second International Conference on Autonomous Agents, pages 47–53.
ACM, 1998.

[116] Z. Yan, L. Fabresse, J. Laval, and N. Bouraqadi. Metrics for Performance
Benchmarking of Multi-Robot Exploration. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3407–3414. IEEE, 2015.

[117] J. Yick, B. Mukherjee, and D. Ghosal. Wireless Sensor Network Survey. Com-
puter Networks, 52(12):2292–2330, 2008.

[118] K. You, R. Tempo, and L. Qiu. Distributed Algorithms for Computation of
Centrality Measures in Complex Networks. IEEE Transactions on Automatic
Control, 62(5):2080–2094, 2017.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Solitary search

In Chapter 4, we described our coordination method where robots are called
to explore assigned exploration regions. In this section, mechanisms for
exploration of a region are discussed.

(a) (b) (c)

Figure A.1: Some examples of methods for exploration of a region. A.1a: Circular
spiral search. A.1b: Square spiral search. A.1c: Zigzag search.

Exploration regions discussed in Chapter 4 are bounded. From the per-
spective of a bounded region, a spiral-based search (Figures A.1a and A.1b)
seems to be a good strategy to effectively cover a region. There exist vari-
ous spiral-based search methods, with two major approaches being: circular
and square spiral search methods. A spiral search strategy has the following
property [31]: detection of nearest targets. Detection of the nearest targets
is particularly important for robots bound by a team goal (e.g. if robots
are called to drop discovered targets to some central or rendezvous point),
because it minimises the per-target trip time to the rendezvous point.

When compared to the square spiral search method, the circular spi-
ral search method gives complete coverage of exploration region and suf-

213

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SOLITARY SEARCH 214

fers from repeated sampling (i.e. repeated exploration or backtracking be-
haviour). But the level of repeated sampling of the spiral search strategy
is low when compared to other search strategies such as random search or
frontier-based methods which suffer from high level of repeated sampling.
However, since there is repeated sampling in the circular spiral search strat-
egy, a square spiral search (Figure A.1b) could be applied. Repeated sam-
pling in circular spiral is caused by adjustment of circular trajectories. A
square spiral search does not have repeated exploration because the trajec-
tory is straight. But a square spiral search leaves uncovered locations inside
the covered region (we assume that a robot’s sensed area is circular). How-
ever, backtracking hinders good search performance (i.e. a square spiral
search does not give complete coverage).

To address the above concerns, we use an alternative strategy with com-
pleteness, but which does not repeat explored regions (which the circular
spiral strategy suffers from) and does not leave uncovered locations in-
side the covered region (which the square spiral strategy suffers from). To
cover an exploration region, the strategy applied is a back-and-forth mo-
tion, which is known as zigzag search (Figure A.1c) or the lawnmower pat-
tern [17]. The zigzag search strategy also, when using a circular scanning
region in a rectangular region which we consider in this thesis, leaves un-
covered locations as the square spiral search but outside the covered region.
This means that for zigzag search, completeness without repeated sampling
requires exploring uncovered locations from outside the exploration region.

Application of zigzag search

In zigzag search, the robot moves back and forth from one side of its region
to the other, along parallel paths. For instance, a robot may move in an
east-and-west pattern towards the north (Figure A.2a).

To apply zigzag search, two aspects are important, namely pattern and
direction of the robot. Only the four compass directions are considered:
North (N), South (S), West (W) and East (E), and the robot’s travel is de-
scribed by moves in these directions. A pattern refers to a sequence of di-
rections for robot motion. Let D and D− denote a direction and its oppo-
site respectively. Starting from D, going clockwise, one gets D, D+, D−, D+

where D+ is an orthogonal direction to D. For instance, if D is North then

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SOLITARY SEARCH 215

(a) (b) (c)

Figure A.2: Application of zigzag search in different situations. (A.2a): An
obstacle-free exploration region. (A.2b): A region occupied by a regular polygo-
nal obstacle. (This is essentially like a Bug algorithm [80] along obstacles. We
discuss Bug algorithms in Appendix B). (A.2c): A region occupied by an irregular
polygonal obstacle.

D− is South, D+ is West. For Di and Dj two distinct orthogonal directions,
a zigzag pattern is described by,

pattern = (Di, Dj, D−i , Dj) . (A.0.1)

This allows eight possible patterns: (E, N, W, N), (E, S, W, S), (W, N, E,
N), (W, S, E, S), (N, E, S, E), (N, W, S, W), (S, E, N, E) and (S, W, N, W). For
instance, with the pattern (E, N, W, N), the robot will move east, then north,
followed by west and north, repeatedly as in Figure A.2a.

A robot reaches its exploration region from a corner. A robot chooses
its pattern when it arrives at a corner of its exploration region—a Python
implementation of zigzag patterns can be found in Appendix G.2.4. It ran-
domly chooses a pattern among the two possible patterns for the corner it
has reached. For example, if a robot reaches its exploration region from the
south-western corner of the region, it chooses between patterns (N, E, N,
W) and (E, N, W, N). The procedure SETPATTERN defined in Algorithm A.1
shows how a robot chooses its pattern after reaching the closest corner ai of
its exploration region.

A robot changes directions when applying zigzag behaviour. A trip refers
to motion between two turning points. Given a motion scale, γ > 0, a trip
in the northern direction adds (0, γ) to the current location xi of the robot;
a southward trip adds (0,−γ); a westward trip adds (−γ, 0); and an east-
ward trip adds (γ, 0). For instance if xi = (0.5, 1.2) , γ = 0.1 and robot has
travelled north, then xi becomes (0.5, 1.3). The procedure SETDIRECTION

defined in Algorithm A.1 shows how a robot sets its direction once within
its exploration region.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SOLITARY SEARCH 216

Algorithm A.1 Zigzag search used by a robot Ri to explore its exploration region
Xi. The main function (see ZIGZAGMOVE) requires O a set of obstacles within
robot perception range. Xi is a rectangle implemented using Algorithm F.4 and a
corner ai = (ai(0), ai(1)).

1: class ZIGZAG
2: Class variables
3: ai the closest corner of its current exploration region
4: γ its motion velocity
5: d its perception range
6: direction its current zigzag direction
7: dist the distance already travelled in its current zigzag trip
8: distance the distance of its current zigzag trip
9: J an indicator for its current trip

10: P list of zigzag motion patterns
11: pattern the current zigzag pattern of Ri
12: xi its current location
13: Xi its exploration region
14:
15: constructor (d, γ)
16: (d, γ, P)← (d, γ, [])
17: P.add((E(), N(), W(), N()))
18: P.add(((E(), S(), W(), S())))
19: P.add((W(), N(), E(), N()))
20: P.add((W(), S(), E(), S()))
21: P.add((N(), E(), S(), E()))
22: P.add((N(), W(), S(), W()))
23: P.add((S(), E(), N(), E()))
24: P.add((S(), W(), N(), W()))
25: end constructor
26:
27: procedure PARAMREINIT(Xi, xi, ai)
28: (Xi, xi, ai, dist, J)← (Xi, xi, ai, 0, 1)
29: SETPATTERN()
30: SETDIRECTION()
31: SETDISTANCE()
32: end procedure
33:
34: function GETPATTERNS()
35: return P
36: end function
37:
38: function N()
39: return [0, γ]
40: end function
41:
42: function S()
43: return [0,−γ]
44: end function
45:
46: function E()
47: return [γ, 0]
48: end function
49:
50: function W()
51: return [−γ, 0]
52: end function
53:
54: function SETPATTERN()
55: if Xi.x == ai(0) and Xi.y == ai(1) then
56: pattern← P[random.choice(0, 4)]
57: else if Xi.x == ai(0) and Xi.y+Xi.h == ai(1) then
58: pattern← P[random.choice(1, 6)]
59: else if Xi.x+Xi.w == ai(0) and Xi.y == ai(1) then
60: pattern← P[random.choice(2, 5)]
61: else
62: pattern← P[random.choice(3, 7)]
63: end if
64: end function

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SOLITARY SEARCH 217

65: function SETDIRECTION()
66: direction← pattern[(J − 1) (mod 4)]
67: end function
68:
69: function GETSTARTINGPOINT()
70: if (pattern[0] == N() and pattern[1] == E()) or (pattern[0] == E() and

pattern[1] == N()) then
71: return ai + (d, d)
72: else if (pattern[0] == S() and pattern[1] == E()) or (pattern[0] == E() and

pattern[1] == S()) then
73: return ai + (d,−d)
74: else if (pattern[0] == N() and pattern[1] == W()) or (pattern[0] == W() and

pattern[1] == N()) then
75: return ai + (−d, d)
76: else
77: return ai + (−d,−d)
78: end if
79: end function
80:
81: function SETDISTANCE()
82: if J is odd then
83: if absoluteValue(direction)== (0, γ) then
84: distance← Xi.h− 2d
85: else
86: distance← Xi.w− 2d
87: end if
88: else
89: if absoluteValue(direction)== (0, γ) then
90: distance← min(2d,Xi.h− dJ)
91: else
92: distance← min(2d,Xi.w− dJ)
93: end if
94: end if
95: end function
96:
97: function ZIGZAGMOVE(O)
98: B← ∅
99: x ← xi + direction
100: if not OBSTACLEDETECTION(x,O) and dist<=distance−γ and ISINSIDE(x) then
101: xi ← x
102: dist← dist+ γ
103: else
104: if OBSTACLEDETECTION(x,O) then
105: j← 1
106: for k =dist to distance do
107: y← xi + j× distance
108: B← B ∪ Bd(y) . where Bd(y) denotes a closed ball of radius d centred at y
109: j← j + 1
110: end for
111: end if
112: dist← γ
113: J ← (J + 1) (mod 4)
114: direction← pattern[J]
115: SETDISTANCE()
116: x ← xi + direction
117: if not OBSTACLEDETECTION(x,O) and ISINSIDE(x) then
118: xi ← x
119: end if
120: end if
121: end function
122:
123: function OBSTACLEDETECTION(xi,O)
124: x′ ← xi + d× direction
125: return x′ ∈ O
126: end function
127:
128: function ISINSIDE(xi)
129: return xi ∈ Xi
130: end function
131: end class

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SOLITARY SEARCH 218

To perform a zigzag trip, a robot follows a direction according to its pat-
tern. Let L be the length of a robot’s trip. The robot travels that far in the
chosen direction. It then changes its direction and updates the distance,
travels again and so on. The full behaviour of zigzag search is shown in
Algorithm 5.3.

In zigzag search, all parallel trips have the same length and only two dis-
tances are applied (assuming obstacle-free move): a short distance and a
long distance. The short distance is always chosen to be 2d, which avoids
gaps or repeated sampling within a covered area arising from smaller or
longer distances respectively. The long distance is obtained from the side
length of the exploration region of the robot as well as the pattern and the
direction of the robot. Let w denote the width of a robot’s exploration re-
gion. For example if the robot’s pattern is (E, N, W, N), the long distance
will be L = w − 2d. We subtract 2d from w because a robot can detect a
boundary of its exploration region when the boundary is within its per-
ception range. The value of L is set before the robot starts exploring its
exploration region. Once set, the robot uses L throughout the exploration
of its current region. But a robot can cut a trip short when it encounters an
obstacle in its exploration region, as shown in Figure A.2b.

The zigzag search algorithm is applied when a robot starts searching or
when it has reached its assigned exploration region. A robot reaches its
exploration region from a corner ai (see Figure A.3a) and starts applying the
zigzag pattern once it is at position si (see Figure A.3a). We want the robot
to enter its exploration region from ai so that it can apply the zigzag pattern
properly. The procedure of how a robot moves to reach ai or si is described
in Section 5.5. The procedure GETSTARTINGPOINT in Algorithm A.1 shows
how a robot Ri selects its starting point si.

Before we provide further details about a zigzag trip, we must mention
a crucial consideration involved in search: obstacle avoidance. A mobile
robot needs to be able to detect and avoid obstacles for effective search.
The obstacle avoidance mechanism is the subject of Appendix B. Here, in
an abstract way, we illustrate how a robot can detect an obstacle. A robot
is equipped with sensors to detect an edge of an obstacle once it is within
perception range. Sensors which fit this setting would be range sensors or
tactile sensors [100].

Let x′ denote a location further along robot’s current direction such that

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. SOLITARY SEARCH 219

δ(x, x′) = d (Figure A.3b). A robot decides to change its direction when x′ ∈
O, where O denotes the set of obstacle locations. The algorithm for obstacle
detection given in the procedure OBSTACLEDETECTION in Algorithm A.1.

(a) (b)

Figure A.3: Illustration of a zigzag move and obstacle detection. (A.3a): An initial
configuration of robot’s exploration region. (A.3b): An illustration of zigzag move
and obstacle detection.

We now present the zigzag move mechanism (Algorithm A.1). This algo-
rithm is presented from the perspective of a solitary search and it is assumed
that γ < d, to avoid obstacles. A robot uses the procedure GETDISTANCE

(see Algorithm A.1) to determine the length of its next trip. A Python im-
plementation of the zigzag trip can be found in Appendix G.2.5.

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Obstacle avoidance techniques

A robot needs to avoid obstacles while exploring a region. This section dis-
cusses the obstacle avoidance mechanisms a solitary robot applies in our
methods to avoid obstacles encountered while searching. Various meth-
ods could be applied for this, including the potential field, vector field his-
togram and local navigation methods [32, 46, 105]. For simplicity, we use a
Bug algorithm [80] to avoid obstacles. There exist various variants of Bug
algorithms, including Bug1, Bug2, and Distance Bug (also known as Tan-
gent Bug). We use the Distance Bug algorithm [80] as it is an improvement
of the other two Bug algorithms. Bug algorithms are simple methods used
for path planning to avoid an unexpected obstacle in the robot motion by
updating the directional angle of a robot when an obstacle is detected.

We also use Bug algorithms because they assume only local knowledge of
the search environment (i.e. obstacle shapes are unknown), the exact direc-
tion and distance to its goal, which satisfies the requirements for exploration
of an unknown environment by solitary robots. When a robot using a Bug
algorithm for obstacle avoidance detects an obstacle, it follows the bound-
ary of the obstacle. This is achieved by using the following two principles:

• the robot attempts to navigate around the nearest detected obstacle;

• if there is no obstacle in perception range, the robot moves straight
towards the goal.

In Distance Bug, when a robot encounters an obstacle, it chooses an obstacle-
free location to move to, which minimises the distance to the goal while
avoiding the obstacle. It should be noted that we modify the implementa-

220

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. OBSTACLE AVOIDANCE TECHNIQUES 221

tion of Distance Bug in this thesis—apart from obstacle avoidance, robots
are also called to avoid moving through soft obstacles. This means that
even when no obstacles are encountered by a robot, it might select a lo-
cation based on the amount of information but which does not necessarily
minimise the distance to the goal. This is done with the purpose of maximis-
ing coverage. However, we note that this additional condition might have
an impact on the performance of Distance Bug when the travelling time to
the goal is estimated assuming robots move in a straight line, but actually
they are restricted to compass directions. In our setting, the goal can be ei-
ther the closest corner ai or the starting point si of the exploration region of
the robot (when the robot is travelling to its exploration region, see Figure
A.3a). Since an exploration region is selected from an unexplored area using
our proposed coordination method, we expect robots to take straight lines
to their exploration regions most of the time. A robot takes also a straight
line to the goal when surrounded by explored area.

When an obstacle is detected, a robot chooses a location which yields
high amount of information and short distance to the goal a. Let u(b) de-
note an utility function associated to locations xi and b, I(b) the amount of
information (i.e. unexplored area) the robot can obtain by moving to a loca-
tion b and δ(b, a) the distance from a location b and the goal a. Considering
our proposed coordination method (see Algorithm 5.3), this utility function
will basically allow the robot to move to its new exploration region through
margins (unexplored areas around its current exploration region). Recall
that Bd(b) denotes a closed ball of radius d centred at b. Let B(t)i denotes the
set of (soft) obstacles. The utility function u(b) is given by

u(b) =
1 + I(b)

1 + δ(b, a)
, (B.0.1)

where
I(b) = |Bd(b) \ B

(t)
i | .

A procedure for a robot to select a location to move to is given in the proce-
dure UTILITY in Algorithm B.1.

Situations where a robot is found to be in an enclosed space in the search
environment using the Distance Bug method could occur. To avoid such
situation, it is assumed that each open areas in the search environment are
connected in the following way: each open cell allows movement in at least

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. OBSTACLE AVOIDANCE TECHNIQUES 222

two of the cardinal directions. Also, it is possible that a robot alternate west
and east, or north and south while using the Distance Bug algorithm. The
use of soft obstacles allows a robot to avoid some backtracking behaviour.

An abstract algorithm for one-step move using Distance Bug is given in
Algorithm B.1, while a Python implementation can be found in Appendix
G.2.9. An illustration of repeated use of Algorithm B.1 is shown in Figure
B.1, i.e. a robot moves from an initial location to a goal using Algorithm B.1
repeatedly.

Figure B.1: Illustration of obstacle avoidance using Distance Bug where the red
filled circle denotes a robot Ri, the black rectangle an obstacle, and the white square
with black boundary, Xi, the exploration region of Ri. This happens by applying
the function DISTANCEBUG in Algorithm B.1 repeatedly as applied in Algorithm
5.3.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. OBSTACLE AVOIDANCE TECHNIQUES 223

Algorithm B.1 A one-step move using the Distance Bug method for obstacle avoid-
ance. The main function (see DISTANCEBUG) requires A set of visited locations,
xi current location of the robot, a the goal, B(t)i the set of soft obstacles and O the
set of obstacles.

1: class BUG
2: Class variables
3: d perception range
4: γ motion velocity
5:
6: constructor (d, γ)
7: (d, γ)← (d, γ)
8: end constructor
9:

10: function DISTANCEBUG(A, xi, a,B(t)i ,O)
11: x ← xi + γ a−xi

‖a−xi‖

12: if x 6∈ O and |Bd(x) \ B(t)i | > 0 then . Bd(x) denotes a closed ball of radius d centred at x
13: return x
14: else
15: B← {xi + (0, γ), xi + (0,−γ), xi + (γ, 0), xi + (−γ, 0)}
16: B← B \ O
17: if B == ∅ then
18: return xi
19: end if
20: b← B.pop() . returns a random set element
21: D ← δ(a, b) . δ(a, b) denotes Euclidean distance between a and b
22: I ← |Bd(b) \ B

(t)
i |

23: u← UTILITY(I, D)
24: for bi ∈ B do
25: Di ← δ(a, bi)

26: Ii ← |Bd(bi) \ B
(t)
i |

27: ui ← UTILITY(Ii, Di)
28: if u < ui then
29: b← bi
30: u← ui
31: end if
32: end for
33: return b
34: end if
35: end function
36:
37: function UTILITY(I, D)
38: return 1+I

1+D
39: end function
40: end class

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Toy example of pruning method

To illustrate the pruning method, consider the following communication
graph (Figure C.1).

We set D to 3. It is assumed that nodes know their immediate neighbours
in advance. Table C.1 shows the initial situation of each node in the commu-
nication graph where each node knows its 1-hop neighbours only. At this
stage, a node can not identify which nodes in its neighbourhood should be
pruned. So they need to exchange their neighbouring information at least
once.

For example, during the first round of pruning of this communication
graph it can be observed that v1, v10, v11, v14 should be pruned. The up-
dated node information after the first iteration is given in Table C.2. At
this stage, all nodes know their 2-hop neighbours, so they can now identify
which nodes in their respective neighbourhood should be deactivated in a
distributed manner.

The node information after completion of the first pruning round is shown

Figure C.1: Communication graph used to illustrate pruning methods. This com-
munication graph has diameter of 9, and contains 14 nodes and 15 edges.

224

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. TOY EXAMPLE OF PRUNING METHOD 225

Nodes Pruned? t−hop Fi,0
v1 False 1 None
v2 False 1 None
v3 False 1 None
v4 False 1 None
v5 False 1 None
v6 False 1 None
v7 False 1 None
v8 False 1 None
v9 False 1 None
v10 False 1 None
v11 False 1 None
v12 False 1 None
v13 False 1 None
v14 False 1 None

Table C.1: Initial situation before the use of pruning.

Nodes Pruned? t−hop Fi,0
v1 False 2 None
v2 False 2 None
v3 False 2 None
v4 False 2 None
v5 False 2 None
v6 False 2 None
v7 False 2 None
v8 False 2 None
v9 False 2 None
v10 False 2 None
v11 False 2 None
v12 False 2 None
v13 False 2 None
v14 False 2 None

Table C.2: The results of interaction after the first iteration.

in Table C.3 and Figure C.2. At this stage, each node knows whether it
should be pruned or not, as well as which of its immediate neighbours
should be put on hold. For example the node v10 and its immediate neigh-
bour v9 know that v10 should be pruned. This means that there will be a
reduced number of messages to be exchanged between nodes during sub-
sequent communication interactions.

Now nodes which are put on hold do not participate in the subsequent
interactions. Table C.4 shows updated information of the remaining nodes
after the second iteration.

Other nodes will be pruned during the later rounds of pruning. For in-
stance, in the second iteration, node v2 will have no new information to

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. TOY EXAMPLE OF PRUNING METHOD 226

Nodes Pruned? t−hop Fi,1
v1 True 2 v1
v2 False 2 v1, v11
v3 False 2 v11
v4 False 2 None
v5 False 2 None
v6 False 2 None
v7 False 2 None
v8 False 2 None
v9 False 2 v10
v10 True 2 v10
v11 True 2 v11
v12 False 2 None
v13 False 2 v14
v14 True 2 v14

Table C.3: The results of the first pruning.

Figure C.2: Pruned nodes from the first pruning stage. In red are nodes pruned
and in black are nodes which are still involved in interaction.

forward to node v3, so it should be put on hold after the second iteration.

Nodes Pruned? t−hop Fi,1
v2 False 3 v1, v11
v3 False 3 v11
v4 False 3 None
v5 False 3 None
v6 False 3 None
v7 False 3 None
v8 False 3 None
v9 False 3 v10
v12 False 3 None
v13 False 3 v14

Table C.4: The results of interaction after the second iteration.

After the second round of communication, the remaining nodes once
again identify nodes among themselves which need to be put on hold. Table

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. TOY EXAMPLE OF PRUNING METHOD 227

Figure C.3: Pruned nodes after the second pruning stage. In red are nodes pruned
up to this stage, and in black are nodes which are still involved in interaction.

C.5 and Figure C.3 show new nodes which need to be put on hold. In this
case, the nodes v2, v9 and v13 are now pruned. Only the remaining nodes,
i.e. v3, v4, v5, v6, v7 and v8, should further interact with each other.

Nodes Pruned? t−hop Fi,2
v2 True 3 v1, v2, v11
v3 False 3 v2, v11
v4 False 3 None
v5 False 3 None
v6 False 3 None
v7 False 3 None
v8 False 3 v9
v9 True 3 v9, v10
v12 False 3 v13
v13 True 3 v13, v14

Table C.5: The results of the second round of pruning.

Nodes Pruned? t−hop Fi,2
v3 False 4 v2, v11
v4 False 4 None
v5 False 4 None
v6 False 4 None
v7 False 4 None
v8 False 4 v9
v12 False 4 v13

Table C.6: Table showing the results of interaction after the third iteration.

After the third iteration—with results as shown in Table C.6—the remain-
ing nodes would usually again need to identify other nodes which should
be put on hold, in this case we stop the algorithm because D was set to 3.

Stellenbosch University https://scholar.sun.ac.za

Appendix D

Toy example of Yayambo

To illustrate the Yayambo method, consider the following matrix giving the
outputs of three classifiers for a four-class classification task,

π(0) =

c1 c2 c3 c4

1 0.1 0.5 0.2 0.2
2 0.3 0.3 0.3 0.1
3 0.195 0.005 0.795 0.005

 . (D.0.1)

The convergence threshold is set to 10−6 and the maximum number of iter-
ations is set to 10. We first compute the support that is obtained from the ith
distribution to another by applying the divergence (Equation 11.2.4) to the
initial belief matrix π(0). At time t = 1, the supports assigned to distribu-
tions 2 and 3 from distribution 1 are

(c1 c2 c3 c4

2 0.2538 0.2105 0.2644 0.0813
3 0.1756 0.0010 0.5449 0.0023

)
, (D.0.2)

the supports assigned to distributions 1 and 3 from distribution 2 are

(c1 c2 c3 c4

1 0.0647 0.3985 0.1664 0.1794
3 0.1606 0.0016 0.5349 0.0034

)
, (D.0.3)

and the supports assigned to distributions 1 and 2 from distribution 3 are

(c1 c2 c3 c4

1 0.0823 0.4822 0.0708 0.1943
2 0.2632 0.2905 0.1311 0.0977

)
. (D.0.4)

228

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. TOY EXAMPLE OF YAYAMBO 229

In Yayambo, supports are assigned to distributions, and we use an asym-
metric metric to compute support. For example, in Equation D.0.2 a score
of 0.1756 is assigned to distribution 3 for class c1 from distribution 1, while a
score of 0.0823 is assigned to distribution 1 for the same class from distribu-
tion 3 (Equation D.0.4). Towards convergence, almost the same support will
be assigned to all distributions from all others on a particular class—this
score could be high or small depending on whether it is meant to be the
consensus class or not. That means with more iterations, class supports get
closer. This is quite different from the sum rule method or any other fu-
sion method based on indifference where each distribution contributes to a
consensus decision equally.

So, using Equation 11.2.1, the belief matrix, after the first iteration is

π(1) =

c1 c2 c3 c4

1 0.1311 0.3232 0.4945 0.0511
2 0.1623 0.2883 0.5054 0.0439
3 0.2889 0.0165 0.6883 0.0062

 .

Checking convergence using Equation 11.2.2,

3

∑
j=1
‖π(1)

j − π
(0)
j ‖2 ≈ 0.7720 > 3(10−6) . (D.0.5)

Since convergence has not yet been reached, Equation 11.2.4 is applied again.
At time t = 2, the supports assigned to distributions 2 and 3 from distribu-
tion 1 are (c1 c2 c3 c4

2 0.1551 0.2717 0.4965 0.0434
3 0.2466 0.0064 0.5410 0.0054

)
, (D.0.6)

the supports assigned to distributions 1 and 3 from distribution 2 are

(c1 c2 c3 c4

1 0.1240 0.3065 0.4855 0.0505
3 0.2500 0.0070 0.5463 0.0055

)
, (D.0.7)

and the supports assigned to distributions 1 and 2 from distribution 3 are

(c1 c2 c3 c4

1 0.0951 0.2991 0.3587 0.0501
2 0.1271 0.2677 0.3733 0.0431

)
. (D.0.8)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. TOY EXAMPLE OF YAYAMBO 230

Thus the distribution matrix becomes (using Equation 11.2.1),

π(2) =

c1 c2 c3 c4

1 0.0800 0.1366 0.7795 0.0038
2 0.0899 0.1339 0.7725 0.0036
3 0.1110 0.0163 0.8716 0.0010

 .

Again checking convergence using Equation 11.2.2,
3

∑
j=1
‖π(2)

j − π
(1)
j ‖2 ≈ 0.9226 > 3(10−6) , (D.0.9)

we see that another iteration is required. Convergence is finally reached at
time t = 6, with

3

∑
j=1
‖π(6)

j − π
(5)
j ‖2 ≈ 0.2240(10−6) < 3(10−6) .

Below we show class supports in the last iteration. At time t = 6, the sup-
ports assigned to distributions 2 and 3 from distribution 1 are

(c1 c2 c3 c4

2 4.26× 10−8 1.93× 10−8 9.99× 10−1 2.03× 10−20

3 4.35× 10−8 1.02× 10−8 9.99× 10−1 1.54× 10−20

)
, (D.0.10)

the supports assigned to distributions 1 and 3 from distribution 2 are

(c1 c2 c3 c4

1 4.16× 10−8 1.93× 10−8 9.99× 10−1 2.03× 10−20

3 4.35× 10−8 1.02× 10−8 9.99× 10−1 2.03× 10−20

)
, (D.0.11)

and the supports assigned to distributions 1 and 2 from distribution 3 are

(c1 c2 c3 c4

1 4.16× 10−8 1.93× 10−8 9.99× 10−1 2.03× 10−20

2 4.26× 10−8 1.93× 10−8 9.99× 10−1 2.03× 10−20

)
. (D.0.12)

So the distribution matrix becomes (using Equation 11.2.1),

π(6) =

c1 c2 c3 c4

1 4.16× 10−8 1.93× 10−8 9.99× 10−1 2.03× 10−20

2 4.26× 10−8 1.93× 10−8 9.99× 10−1 2.03× 10−20

3 4.35× 10−8 1.02× 10−8 9.99× 10−1 2.03× 10−20

 .

It is observed that a high score is assigned to the consensus class c3 from all
distributions.

Stellenbosch University https://scholar.sun.ac.za

Appendix E

Dataset characteristics

The Iris dataset contains 150 observations, 50 each of 3 types of iris plant.
Each observation is described by four features: sepal length, sepal width,
petal length and petal width (all the features are measured in centimetres).
The three types of iris plants are: Iris Setosa, Iris Versicolour and Iris Virginica.
This is an exceedingly simple domain.

The Gesture dataset is composed of features extracted from 7 videos with
people gesticulating holding a Microsoft Kinect sensor, aiming at studying
Gesture Phase Segmentation. The dataset contains 19 numeric attributes
and five types of gestures which are: rest, preparation, stroke, hold and
retraction.

The Activity recognition dataset represents a real-life benchmark in the
area of activity recognition applications. The dataset is provided for the
task of classifying the activity performed by the user from time-series data
generated by a Wireless Sensor Network (WSN). The WSN is composed
of 3 sensors and each provides the Received Signal Strength (RSS) of the
beacon packets they exchange among themselves in the WSN. The dataset
has 6 attributes which are the average and standard deviation of the signal
strength provided from each sensor. The dataset has 7 types of activity:
walking, standing, sitting, lying, cycling and two types of bending.

The Handwritten digits dataset contains images of digits (0–9) hand writ-
ten. Each digit is represented by a 28x28 image, which means each digit
contains 784 pixels (or attributes). Here, the task is classifying the digits.

The Satellite database consists of multiple spectral values of pixels in 3x3
neighbourhoods in a satellite image, and the pixel type associated with the
central pixel in each neighbourhood. The dataset contains 36 attributes per

231

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. DATASET CHARACTERISTICS 232

observation (4 spectral bands and 9 pixels in neighbourhood) and 6 types of
pixels which are: red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble, and very damp grey soil.

The Occupancy detection dataset consists of observations of occupancy
of a room. The attributes of the dataset are temperature, relative humidity,
light level, CO2 level and humidity ratio. The task is a binary classification:
whether the room is occupied or not.

The Columbia dataset [78] is a database of 128x128 RGB (Red Green Blue)
images of 100 types of objects (see Figure E.1 for some examples). A fixed
camera and a turntable were used to collect these data. The objects were
placed on a motorized turntable against a black background. The turntable
was rotated through 360 degrees to vary object pose with respect to the cam-
era. Images of the objects were taken at pose intervals of 5 degrees. This
yields 72 images per object. This dataset was used in a multi-sensor system
for object recognition. Each sensor could identify an object and display its
angular pose. In our experiment, we arbitrarily only consider 15 types of
objects. We use the OpenCV1[14] (Open Source Computer Vision) library to
convert the RGB images, which we flatten to a sequence of 16384 grayscale
values with Numpy2 [15]. Finally we use PCA for feature reduction where
we retained 97 components. We build the PCA model on the all training
data.

(a) (b) (c) (d)

Figure E.1: Photographs of four of the objects in the Columbia dataset [78]. (E.1a):
Object 1. (E.1b): Object 2. (E.1c): Object 3. (E.1d): Object 4.

1OpenCV is an open source computer vision and machine learning software library. It
provides a common infrastructure for computer vision applications and accelerates the use
of machine perception.

2Numpy is a fundamental Python library for scientific computing of N-dimensional
array objects.

Stellenbosch University https://scholar.sun.ac.za

Appendix F

Utilities

This section presents the following algorithmic structures used in our pro-
posed coordination method (which was described in Chapters 3–5): an enu-
meration of robot states (Algorithm F.1); an enumeration of robot states dur-
ing planning (Algorithm F.2); an enumeration of robot states during search
(Algorithm F.3); a class to model a rectangle to represent an exploration re-
gion or a virtual world (Algorithm F.4): we use Numpy to find the lowest left-
most point and the highest rightmost point for construction of a bounding
rectangle where the x and y components are sorted separately. This leads to
efficient approximations.

Algorithm F.1 Enumeration of robot states.
1: enum ROBOTSTATES
2: COMPLETE
3: INTERACTING
4: PLANNING
5: SEARCHING
6: STOP
7: WAITING
8: end enum

Algorithm F.2 Enumeration of states involved in interaction of robots.
1: enum PLANNINGSTATES
2: CONSTRUCTION
3: ELECTION
4: FUSION
5: TASK
6: end enum

Algorithm F.3 Enumeration of search states for a robot.
1: enum SEARCHSTATES
2: INREGION
3: OUTREGION
4: end enum

233

Stellenbosch University https://scholar.sun.ac.za

APPENDIX F. UTILITIES 234

Algorithm F.4 Creation of a rectangle and related subroutines used for coordina-
tion of solitary robots. We use Math.min and Math.max to find the lowest leftmost
point (see LOWESTLEFTMOSTPOINTOF) and highest rightmost point (see HIGH-
ESTRIGHTMOSTPOINTOF) of a set.

1: class RECTANGLE
2: Class variables
3: x x-coordinate of the left-lower corner of Xi
4: y y-coordinate of the left-lower corner of Xi
5: w its width
6: h its height
7:
8: constructor (x, y, w, h)
9: (x, y, w, h)← (x, y, w, h)

10: end constructor
11:
12: function RECTANGLEEXTRACTION(N, D)
13: sample a set S of N points randomly and uniformly over D
14: (xlow, ylow)← LOWESTLEFTMOSTPOINTOF(S)
15: (xhigh, yhigh)← HIGHESTRIGHTMOSTPOINTOF(S)
16: R← ∅
17: for (l, h) ∈ S do
18: L← {(px, py) ∈ S : (xlow ≤ l ≤ xhigh) ∧ (h = py)}
19: H ← {(px, py) ∈ S : (l = px) ∧ (ylow ≤ h ≤ yhigh)}
20: if |L ∪ H| ≥ yhigh−ylow+xhigh−xlow

2 then
21: R← R ∪ L ∪ H
22: end if
23: end for
24: (xlow, ylow)← LOWESTLEFTMOSTPOINTOF(R)
25: (xhigh, yhigh)← HIGHESTRIGHTMOSTPOINTOF(R)
26: return RECTANGLE(xlow, ylow, xhigh − xlow, yhigh − ylow)

27: end function
28:
29: function RECTANGLETOSET(R)
30: S← ∅
31: for i = R.x to R.x + R.w do
32: for j = R.y to R.y + R.h do
33: S← S ∪ {(i, j)}
34: end for
35: end for
36: return S
37: end function
38:
39: function SETTORECTANGLE(S)
40: (x, y)← LOWESTLEFTMOSTPOINTOF(S)
41: (q, r)← HIGHESTRIGHTMOSTPOINTOF(S)
42: (w, h)← (q− x, r− y)
43: R← RECTANGLE(x, y, w, h)
44: return R
45: end function
46:
47: function GETCORNERS()
48: return {(x, y), (x, y + h), (x + w, y), (x + w, y + h)}
49: end function
50:
51: function GETCLOSESTCORNER(xi)
52: corners← GETCORNERS()
53: c← corners.pop()
54: u← δ(c, xi)
55: for ci ∈ corners do
56: ui ← δ(ci, xi)
57: if ui < u then
58: c← ci
59: u← ui
60: end if
61: end for
62: return c
63: end function
64: end class

Stellenbosch University https://scholar.sun.ac.za

Appendix G

Code of Python functions

This thesis has proposed solutions to three types of problems, namely: de-
centralised construction of a view of a communication graph, coordination
and classifier fusion. We have implemented these solutions to test their rel-
evance in the literature. The source code for our solutions can be found at
https://bitbucket.org/jmf-mas/codes. This chapter presents some of the
main modules involved in our code for the clarification of our thesis, as they
are referred to in the main text of this thesis. It should noted that apart from
the Python implementations of various classes for our proposed methods
found in the repository, we also implemented two additional classes (mes-
saging.py and messageTypes.py) for message management between inter-
acting nodes. In the first class we implement management of sending and
reception of messages between interacting nodes (or interacting robots for
coordination). We use the concepts of serialization and deserialization, as
well as dictionary. The second class is an enumeration for different types of
messages nodes can exchange between themselves.

G.1 Network view construction

This is the implementation of how a node checks whether it or its neighbour
should be put on hold while constructing a view of the network formed in
their interaction. We illustrate the codes for leaves, special neighbours of
leaves, nodes and edges causing a triangle.

1 from pympler import a s i z e o f
2 import time
3 import networkx as nx
4 import os

235

Stellenbosch University https://scholar.sun.ac.za

https://bitbucket.org/jmf-mas/codes

APPENDIX G. CODE OF PYTHON FUNCTIONS 236

5 os . chdir (" . . ")
6 from messaging import Messaging
7 from messageTypes import MessageTypes
8
9 c l a s s PruningNode :

10
11 def _ _ i n i t _ _ (s e l f , i , Ni , D=10) :
12
13 s e l f . _id = i
14 s e l f . _Ni = Ni . copy ()
15 s e l f . _NitUp = Ni . copy ()
16 s e l f . _ S i t = [s e t ([s e l f . edge (i , j) f o r j in s e l f . _Ni])]
17 s e l f . _ S j t = { j : [] f o r j in s e l f . _Ni }
18 s e l f . _S i = s e t ([s e l f . edge (i , j) f o r j in s e l f . _Ni])
19 s e l f . _Qi = []
20 s e l f . _ c e n t r a l i t y = −1
21
22 s e l f . _D = D
23 s e l f . _equi l ibr ium = F al se
24 s e l f . _ t = 0
25 s e l f . _ f i n i s h e d = F a ls e
26
27 s e l f . _nbMessages = 0
28 s e l f . _runningTime = time . time ()
29 s e l f . _memorySize = 0
30
31 s e l f . _msgType = MessageTypes
32 s e l f . _messaging = Messaging ()
33
34 s e l f . _hold = Fa l se
35
36 def edge (s e l f , i , j) :
37
38 return (min (i , j) , max(i , j))
39
40 def init ialOneHop (s e l f) :
41
42 s e l f . _ t += 1
43 f o r j in s e l f . _NitUp :
44 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
45 M = s e l f . _messaging . addTo (M, j , s e l f . _id , s e l f . _ S i t [−1])
46 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
47 s e l f . _nbMessages +=1
48
49 def i n i t i a l U p d a t e (s e l f) :
50
51 i f not s e l f . _ f i n i s h e d :
52 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
53
54 i f s e l f . _id in M and not s e l f . _equi l ibr ium and s e l f . _t < s e l f . _D :
55 S = s e t ([])
56 Q = { s e l f . _id : s e t (s e l f . _NitUp) }
57
58 while (len (M[s e l f . _id]) >=1) :
59 s e l f . _nbMessages +=1

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 237

60 j = l i s t (M[s e l f . _id] . keys ()) [0]
61 St = M[s e l f . _id] [j]
62
63 i f j in s e l f . _ S j t :
64 s e l f . _ S j t [j] . append (St)
65 e l s e :
66 s e l f . _ S j t [j] = [St]
67 S = S . union (St)
68 q = s e t ([k f o r l in St f o r k in l])
69 i f s e l f . _ t ==1:
70 q = q . d i f f e r e n c e (s e t ([j]))
71 Q[j] = q
72 M = s e l f . _messaging . deleteFrom (M, s e l f . _id , j)
73
74 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
75
76 s e l f . _Qi . append (Q)
77 S = S . d i f f e r e n c e (s e l f . _S i . copy ())
78 s e l f . _ S i t . append (S)
79 s e l f . _S i = s e l f . _S i . union (S)
80
81 s e l f . _equi l ibr ium = S== s e t ([])
82
83 def l e a v e s D e te c t i o n (s e l f) :
84
85 F i t = s e t ([])
86 f o r j in s e t (s e l f . _NitUp) . union (s e t ([s e l f . _id])) :
87 i f len (s e l f . _Qi) >0 and j in s e l f . _Qi [0] and len (s e l f . _Qi [0] [j]) ==1:
88 F i t . add (j)
89
90 return F i t
91
92 def t r i a n g l e D e t e c t i o n (s e l f , F i t) :
93
94 f o r j in s e t (s e l f . _NitUp) . union (s e t ([s e l f . _id])) :
95 i f len (s e l f . _Qi) >0 and j in s e l f . _Qi [0] and len (s e l f . _Qi [0] [j]) ==2:
96 f , g = s e l f . _Qi [0] [j]
97 i f g in s e l f . _Qi [0] and f in s e l f . _Qi [0] [g] :
98 F i t . add (j)
99

100 return F i t
101
102 def fur therPruningDetec t ion (s e l f) :
103
104 F i t = s e t ([])
105 St = s e l f . _S i . d i f f e r e n c e (s e l f . _ S i t [−1])
106
107 f o r j in s e l f . _NitUp :
108 i f len (s e l f . _ S j t [j]) >0 and s e l f . _ S j t [j] [−1] . i s s u b s e t (S t) :
109 F i t . add (j)
110
111 i f len (s e l f . _NitUp) ==1 and s e l f . _ S i t [−1]!= s e t () :
112 F i t . add (s e l f . _id)
113 s e l f . _equi l ibr ium = True
114 s e l f . _hold =True

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 238

115
116 return F i t
117
118 def f i r s t P r u n i n g D e t e c t i o n (s e l f) :
119
120 s e l f . _hold = Fa l se
121 F i t = s e l f . l e a v e s D e t e c t i o n ()
122 F i t = s e l f . t r i a n g l e D e t e c t i o n (F i t)
123 s e l f . _ F i t = F i t
124 s e l f . _Fi = F i t
125 i f s e l f . _id in s e l f . _Fi :
126 s e l f . _equi l ibr ium = True
127 s e l f . _hold = True
128
129 def nextOneHop (s e l f) :
130
131 i f not s e l f . _ f i n i s h e d :
132 s e l f . _ t += 1
133 s e l f . _NitUp = s e t (s e l f . _NitUp) . d i f f e r e n c e (s e l f . _Fi)
134 i f not s e l f . _equi l ibr ium :
135 f o r j in s e l f . _NitUp :
136 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
137 M = s e l f . _messaging . addTo (M, j , s e l f . _id , s e l f . _ S i t [−1])
138 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
139 s e l f . _nbMessages +=1
140
141 def nextUpdate (s e l f) :
142
143 i f not s e l f . _ f i n i s h e d :
144 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
145
146 i f s e l f . _id in M and not s e l f . _equi l ibr ium and s e l f . _t < s e l f . _D :
147 S = s e t ([])
148 while (len (M[s e l f . _id]) >=1) :
149 s e l f . _nbMessages +=1
150 j = l i s t (M[s e l f . _id] . keys ()) [0]
151 St = M[s e l f . _id] [j]
152 s e l f . _ S j t [j] . append (St)
153 S = S . union (St)
154 M = s e l f . _messaging . deleteFrom (M, s e l f . _id , j)
155
156 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
157
158 S = S . d i f f e r e n c e (s e l f . _S i . copy ())
159 s e l f . _ S i t . append (S)
160 s e l f . _S i = s e l f . _S i . union (S)
161
162 s e l f . _ F i t = s e l f . fur therPruningDetec t ion ()
163 s e l f . _Fi = s e l f . _Fi . union (s e l f . _ F i t)
164
165 s e l f . _equi l ibr ium = S== s e t ([])
166
167 def isEnded (s e l f) :
168
169 i f not s e l f . _ f i n i s h e d :

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 239

170 s e l f . _ f i n i s h e d = s e l f . _ t== s e l f . _D or s e l f . _equi l ibr ium or s e l f . _hold
171 i f s e l f . _ f i n i s h e d :
172
173 s e l f . _runningTime = time . time ()− s e l f . _runningTime
174 s e l f . _memorySize = 0 . 0 0 0 0 0 1 * a s i z e o f . a s i z e o f ([s e l f])
175 i f not s e l f . _hold and len (s e l f . _S i) >0:
176 G = nx . Graph ()
177 G. add_edges_from (s e l f . _S i)
178 s e l f . _ c e n t r a l i t y = nx . c l o s e n e s s _ c e n t r a l i t y (G) [s e l f . _id]
179 e l s e :
180 s e l f . _ c e n t r a l i t y = 0
181
182 return s e l f . _ t== s e l f . _D or s e l f . _equi l ibr ium or s e l f . _hold

Listing G.1: Implementation of the pruning method for failure-free cases

1 c l a s s PruningNodeFD (PruningNode) :
2
3 def _ _ i n i t _ _ (s e l f , i , Ni , D=10 , T= 0 .01 , pf = 0 . 1 , pr = 0 . 8) :
4
5 super (PruningNodeFD , s e l f) . _ _ i n i t _ _ (i , Ni)
6
7 s e l f . _Gi = s e t ([])
8 s e l f . _NiDown = s e t ([])
9 s e l f . _SiDown = s e t ([])

10 s e l f . _EiDown = s e t ([])
11 s e l f . _Ti = { j : time . time () f o r j in s e l f . _Ni }
12 s e l f . _T = T
13 s e l f . _pf = pf
14 s e l f . _pr = pr
15 s e l f . _isDown = F al se
16
17 def i s P e r s i s t e n t (s e l f , s i g n a l) :
18
19 i f s i g n a l not in s e l f . _Gi and np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f

. _pf]) ==1:
20 s e l f . _Gi = s e l f . _Gi . union (s i g n a l)
21 (S , Q, c) = s i g n a l
22 i f (1−S , Q, c) in s e l f . _Gi :
23 s e l f . _Gi . remove((1−S , Q, c))
24 return True
25 return F a l se
26
27 def nodeFai lureDetect ion (s e l f , j) :
28
29 i f time . time ()−s e l f . _Ti [j] > s e l f . _T :
30 s e l f . _NitUp . remove (j)
31 s e l f . _NiDown . add (j)
32 f o r k in s e l f . _NitUp :
33 P = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . P)
34 P = s e l f . _messaging . addTo (P , k , s e l f . _id , [0 , 0 , j])
35 s e l f . _messaging . s e r i a l i z e (P , s e l f . _msgType . P)
36
37
38 def edgeFai lureDetec t ion (s e l f , j) :

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 240

39
40 isDown = F a ls e
41 i f s e l f . edge (s e l f . _id , j) not in s e l f . _Gi :
42 i f np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f . _pf]) ==0:
43 s e l f . _Gi . add (s e l f . edge (s e l f . _id , j))
44 isDown = True
45
46 P = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . P)
47 i f isDown :
48 s e l f . _SiDown . add (s e l f . edge (s e l f . _id , j))
49 s e l f . _EiDown . add (j)
50 f o r k in s e l f . _NitUp :
51 P = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . P)
52 P = s e l f . _messaging . addTo (P , k , s e l f . _id , [0 , 1 , s e l f . edge (

s e l f . _id , j)])
53 s e l f . _messaging . s e r i a l i z e (P , s e l f . _msgType . P)
54 s e l f . _nbMessages +=1
55 return isDown
56
57 def recoveryDetec t ion (s e l f , j , isDown) :
58
59 i f isDown and j in s e l f . _NiDown :
60 i f np . random . choice ([0 , 1] , p=[s e l f . _pr , 1− s e l f . _pr]) ==0:
61 s e l f . _NitUp . add (j)
62 s e l f . _NiDown . remove (j)
63 s e l f . _EiDown . add (j)
64 P = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . P)
65 f o r k in s e l f . _NitUp :
66 P = s e l f . _messaging . addTo (P , j , s e l f . _id , [0 , 1 , j])
67 s e l f . _messaging . s e r i a l i z e (P , s e l f . _msgType . P)
68 s e l f . _nbMessages +=1
69
70 i f isDown and s e l f . edge (s e l f . _id , j) in s e l f . _SiDown :
71 s e l f . _SiDown . remove (s e l f . edge (s e l f . _id , j))
72 s e l f . _EiDown . remove (j)
73 P = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . P)
74 f o r k in s e l f . _NitUp :
75 P = s e l f . _messaging . addTo (P , j , s e l f . _id , [1 , 1 , s e l f . edge (s e l f .

_id , j)])
76 s e l f . _messaging . s e r i a l i z e (P , s e l f . _msgType . P)
77 s e l f . _nbMessages +=1
78
79
80 def forwardFa i lureS igna ls (s e l f) :
81
82 P = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . P)
83 i f s e l f . _id in P :
84
85 while (len (P [s e l f . _id]) >=1) :
86 j = l i s t (P [s e l f . _id] . keys ()) [0]
87 (S , Q, c) = P [s e l f . _id] [j]
88 i f s e l f . i s P e r s i s t e n t ((S , Q, c)) :
89 i f (S , Q) ==(0 , 0) :
90 s e l f . _NiDown . add (c)
91 i f (S , Q) ==(0 , 1) :

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 241

92 s e l f . _SiDown . add (c)
93 i f (S , Q) ==(1 , 0) :
94 s e l f . _NiDown = s e l f . _NiDown . d i f f e r e n c e (s e t ([c]))
95 i f (S , Q) ==(1 , 1) :
96 s e l f . _SiDown = s e l f . _SiDown . d i f f e r e n c e (s e t ([c]))
97 f o r k in s e l f . _NitUp :
98 P = s e l f . _messaging . addTo (P , k , s e l f . _id , [S , Q, c])
99 s e l f . _messaging . s e r i a l i z e (P , s e l f . _msgType . P)

100
101 s e l f . _messaging . deleteFrom (P , s e l f . _id , j)
102 s e l f . _nbMessages +=1
103
104 def init ialOneHop (s e l f) :
105
106 i f not s e l f . _ f i n i s h e d :
107 s e l f . _ t += 1
108
109 i f not s e l f . _isDown :
110 i f np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f . _pf]) ==0:
111 s e l f . _isDown = True
112 e l s e :
113 f o r j in s e l f . _NitUp :
114 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
115 M = s e l f . _messaging . addTo (M, j , s e l f . _id , s e l f . _ S i t [−1])
116 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
117 s e l f . _Ti [j] = time . time ()
118
119 i f np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f . _pf]) ==0:
120 s e l f . _Gi . add (s e l f . edge (s e l f . _id , j))
121 e l s e :
122 i f np . random . choice ([0 , 1] , p=[s e l f . _pr , 1− s e l f . _pr]) ==0:
123 s e l f . _isDown = Fa ls e
124
125 def nextOneHop (s e l f) :
126
127 i f not s e l f . _ f i n i s h e d :
128 s e l f . _ t += 1
129 s e l f . _NitUp = s e t (s e l f . _NitUp) . d i f f e r e n c e (s e l f . _Fi)
130 i f not s e l f . _isDown :
131 i f np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f . _pf]) ==0:
132 s e l f . _isDown = True
133 e l s e :
134 i f not s e l f . _equi l ibr ium :
135 f o r j in s e l f . _NitUp :
136 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
137 M = s e l f . _messaging . addTo (M, j , s e l f . _id , s e l f . _ S i t

[−1])
138 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
139 s e l f . _Ti [j] = time . time ()
140
141 i f np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f . _pf])

==0:
142 s e l f . _Gi . add (s e l f . edge (s e l f . _id , j))
143 e l s e :
144 i f np . random . choice ([0 , 1] , p=[s e l f . _pr , 1− s e l f . _pr]) ==0:

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 242

145 s e l f . _isDown = Fa ls e
146
147 def i n i t i a l U p d a t e (s e l f) :
148
149 i f not s e l f . _ f i n i s h e d :
150 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
151 i f s e l f . _id in M:
152 S = s e t ([])
153 Q = { s e l f . _id : s e t (s e l f . _NitUp) }
154
155 while (len (M[s e l f . _id]) >=1) :
156 NitUp = s e l f . _NitUp . copy ()
157 f o r k in NitUp :
158 s e l f . nodeFai lureDetect ion (k)
159 s e l f . _nbMessages +=1
160 j = l i s t (M[s e l f . _id] . keys ()) [0]
161 St = M[s e l f . _id] [j]
162 s e l f . _Ti [j] = time . time ()
163 isDown = s e l f . edgeFai lureDetec t ion (j)
164 i f not isDown :
165 s e l f . _ S j t [j] . append (St)
166 S = S . union (St)
167 q = s e t ([k f o r l in St f o r k in l])
168 i f s e l f . _ t ==1:
169 q = q . d i f f e r e n c e (s e t ([j]))
170 Q[j] = q
171 s e l f . recoveryDetect ion (j , isDown)
172
173 Nup = s e l f . _NitUp . copy ()
174 Nup = Nup. d i f f e r e n c e (s e l f . _EiDown)
175 Nup = Nup. d i f f e r e n c e (s e l f . _NiDown)
176 s e l f . _NitUp = Nup. copy ()
177 M = s e l f . _messaging . deleteFrom (M, s e l f . _id , j)
178
179 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
180
181 s e l f . _Qi . append (Q)
182 s e l f . forwardFai lureS igna ls ()
183 S = S . d i f f e r e n c e (s e l f . _S i . copy ())
184 s e l f . _ S i t . append (S)
185 s e l f . _S i = s e l f . _S i . union (S)
186
187 s e l f . _equi l ibr ium = S== s e t ([])
188 s e l f . f i n a l I t e r a t i o n ()
189
190 def nextUpdate (s e l f) :
191
192 i f not s e l f . _ f i n i s h e d :
193 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
194 i f s e l f . _id in M and not s e l f . _equi l ibr ium :
195 S = s e t ([])
196 while (len (M[s e l f . _id]) >=1) :
197 NitUp = s e l f . _NitUp . copy ()
198 f o r k in NitUp :
199 s e l f . nodeFai lureDetect ion (k)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 243

200 s e l f . _nbMessages +=1
201 j = l i s t (M[s e l f . _id] . keys ()) [0]
202 St = M[s e l f . _id] [j]
203 s e l f . _ S j t [j] . append (St)
204 S = S . union (St)
205
206 s e l f . _Ti [j] = time . time ()
207 isDown = s e l f . edgeFai lureDetec t ion (j)
208
209 i f not isDown :
210 s e l f . _ S j t [j] . append (St)
211 S = S . union (St)
212
213 s e l f . recoveryDetect ion (j , isDown)
214
215 Nup = s e l f . _NitUp . copy ()
216 Nup = Nup. d i f f e r e n c e (s e l f . _EiDown)
217 Nup = Nup. d i f f e r e n c e (s e l f . _NiDown)
218 s e l f . _NitUp = Nup. copy ()
219 M = s e l f . _messaging . deleteFrom (M, s e l f . _id , j)
220
221 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
222
223
224 S = S . d i f f e r e n c e (s e l f . _S i . copy ())
225 s e l f . _ S i t . append (S)
226 s e l f . _S i = s e l f . _S i . union (S)
227 s e l f . forwardFai lureS igna ls ()
228 s e l f . _ F i t = s e l f . fur therPruningDetec t ion ()
229 s e l f . _Fi = s e l f . _Fi . union (s e l f . _ F i t)
230 s e l f . _equi l ibr ium = S== s e t ([])
231 s e l f . f i n a l I t e r a t i o n ()
232
233 def f i n a l I t e r a t i o n (s e l f) :
234
235 i f s e l f . _equi l ibr ium and s e l f . _t < s e l f . _D :
236 i f not s e l f . _isDown :
237 i f np . random . choice ([0 , 1] , p=[s e l f . _pf , 1− s e l f . _pf]) ==0:
238 s e l f . _isDown = True
239 e l s e :
240 i f s e l f . _equi l ibr ium and s e l f . _t < s e l f . _D :
241 Nup = s e l f . _NitUp . copy ()
242 Nup = Nup. d i f f e r e n c e (s e l f . _EiDown)
243 Nup = Nup. d i f f e r e n c e (s e l f . _NiDown)
244 s e l f . _NitUp = Nup. copy ()
245 f o r j in s e l f . _NitUp :
246 M = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType .M)
247 M = s e l f . _messaging . addTo (M, j , s e l f . _id , s e l f . _ S i t

[−1])
248 s e l f . _messaging . s e r i a l i z e (M, s e l f . _msgType .M)
249
250 i f s e l f . _equi l ibr ium :
251 E = s e t ([])
252 f o r j in s e l f . _NiDown :
253 f o r k in s e l f . _NiDown :

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 244

254 i f s e l f . _id != k :
255 E . add (s e l f . edge (j , k))
256 s e l f . _S i = s e l f . _S i . d i f f e r e n c e (E)
257 e l s e :
258 i f np . random . choice ([0 , 1] , p=[s e l f . _pr , 1− s e l f . _pr]) ==0:
259 s e l f . _isDown = Fa ls e
260
261 def isEnded (s e l f) :
262
263 i f not s e l f . _ f i n i s h e d :
264 s e l f . _ f i n i s h e d = s e l f . _ t== s e l f . _D or s e l f . _equi l ibr ium
265 i f s e l f . _ f i n i s h e d :
266 s e l f . _runningTime = time . time ()− s e l f . _runningTime
267 s e l f . _memorySize = 0 . 0 0 0 0 0 1 * a s i z e o f . a s i z e o f ([s e l f])
268
269 return s e l f . _ t== s e l f . _D or s e l f . _equi l ibr ium

Listing G.2: Implementation of the pruning method for failure cases

G.2 Coordination

We present some code segments for the coordination strategy for solitary
robots in this section.

G.2.1 Virtual world enlargement

This code implements how a robot enlarges its virtual world.
1 def _virtualWorldEnlargement (s e l f) :
2
3 s e l f . _Vi . x −= s e l f . _w0
4 s e l f . _Vi . y −= s e l f . _w0
5 s e l f . _Vi .w +=2* s e l f . _w0
6 s e l f . _Vi . h +=2* s e l f . _w0

Listing G.3: Implementation of virtual world enlargement

G.2.2 Soft obstacles

This code implements how a leader determines new exploration regions of
robots in an interaction—cellular decomposition.

1 def _getCoordinat ionTargets (s e l f , Mi=100) :
2
3 xmin , ymin = min (s e l f . _ B i t [−1])
4 xmax , ymax = max(s e l f . _ B i t [−1])
5 s e l f . _Vi = Rectangle ([xmin , ymin] , xmax−xmin , ymax−ymin)
6 dtau = s e l f . _tau − s e l f . _ t

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 245

7 A = (np . pi * s e l f . _d **2+2* s e l f . _d * s e l f . _gamma * (dtau))
8 A = (np . s q r t (A) +2* s e l f ._m) * * 2
9 x i = s e l f . _ge tCentra lPo in t ()

10 s e l f . _virtualWorldEnlargement ()
11 P = len (s e l f . _ I i)
12 k = 1
13 Xs = []
14 Ms = []
15 s e l f . _ B i t [−1] = s e l f . _ B i t [−1] . union (s e l f . _Ci t [−1])
16 U = s e l f . _ B i t [−1] . copy ()
17 B = []
18
19 while k<=P :
20 l = 1
21 nextSampling = True
22 while nextSampling :
23
24 VS = s e l f . _ rec tangleToSet (s e l f . _Vi)
25 Q = VS . d i f f e r e n c e (U)
26 Qr = l i s t (Q)
27 N = min (Mi , len (Qr))
28 i n d i c e s = np . random . choice ([j f o r j in range (len (Qr))] , r e p l a c e=

False , s i z e =N)
29
30 f o r i in i n d i c e s :
31
32 w = i n t (np . random . randint (2 * (s e l f . _d+ s e l f ._m) , np . s q r t (A) + 2 * (

s e l f . _d+ s e l f ._m)))
33 h = max (2 * (s e l f . _d+ s e l f ._m) , i n t (A/w))
34 lx , ly = Qr [i]
35 R = Rectangle ([lx , ly] , w, h)
36 RS = s e l f . _ rec tangleToSet (R)
37
38 i f RS . i n t e r s e c t i o n (U) == s e t ([]) and RS . i s s u b s e t (VS) :
39
40 U. add ((lx , ly))
41 U = U. union (RS)
42 X = Rectangle ([R . x+ s e l f . _m, R . y+ s e l f ._m] , R .w−2* s e l f . _m, R

. h−2* s e l f ._m)
43 XSet = s e l f . _ rec tangleToSet (X)
44 M = RS . d i f f e r e n c e (XSet)
45 Xs . append (X)
46 Ms. append (M)
47 B . append (s e l f . _getClosestCorner (X , x i))
48 k +=1
49 nextSampling = Fa lse
50 break
51
52 l +=1
53 i f l == s e l f . _L :
54 l = 1
55 s e l f . _virtualWorldEnlargement ()
56
57 robotsIDS , c o s t = s e l f . _getCostMatrix (B)
58 ids , t a r g e t s = assignment (c o s t)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 246

59 s e l f ._Gamma = { robotsIDS [i] : Xs [a] f o r (i , a) in zip (ids , t a r g e t s) }

Listing G.4: Implementation of soft obstacles

G.2.3 Trip to an exploration region

This function shows how a robot moves to its exploration region, after an
interaction, or when it decides to choose a new exploration region under
some circumstances.

1 def _ t r a v e l l i n g T o X i (s e l f) :
2
3 x0 = s e l f . _x i + np . array ([0 , s e l f . _gamma])
4 x1 = s e l f . _x i + np . array ([s e l f . _gamma, 0])
5 x2 = s e l f . _x i + np . array ([− s e l f . _gamma, 0])
6 x3 = s e l f . _x i + np . array ([0 , −s e l f . _gamma])
7
8 B = s e t ([tuple (x0) , tuple (x1) , tuple (x2) , tuple (x3)])
9 B = B . d i f f e r e n c e (s e l f . _O)

10 B = B . d i f f e r e n c e (s e l f . _AB)
11
12 i f B!= s e t ([]) :
13 i f np . l i n a l g . norm (s e l f . _xi−s e l f . _ a i) >2* s e l f . _d :
14 I = 2* s e l f . _gamma* s e l f . _d
15 Us = []
16 f o r b i in B :
17 b a l l = B a l l (bi , s e l f . _d + s e l f . _gamma)
18 I_ = len (b a l l . B a l l . d i f f e r e n c e (s e l f . _ B i t [−1]) . d i f f e r e n c e (s e l f .

_O))
19 b = np . array (b i) . copy ()
20 i f I_ >= I :
21 Us . append (b)
22 i f len (Us) ==0:
23 b = B . pop ()
24 d i s t = np . l i n a l g . norm (np . array (b)−s e l f . _ a i)
25 f o r b i in B :
26 d i s t _ = np . l i n a l g . norm (np . array (b i)−s e l f . _ a i)
27 i f d i s t_ < d i s t :
28 d i s t = d i s t _
29 b = bi
30 s e l f . _x i = np . array (b)
31 e l s e :
32 b = Us . pop ()
33 d i s t = np . l i n a l g . norm (np . array (b)−s e l f . _ a i)
34 f o r b i in Us :
35 d i s t _ = np . l i n a l g . norm (np . array (b i)−s e l f . _ a i)
36 i f d i s t_ < d i s t :
37 b = bi
38 s e l f . _x i = np . array (b)
39 e l s e :
40 b = B . pop ()
41 d i s t = np . l i n a l g . norm (np . array (b)−s e l f . _ a i)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 247

42 f o r b i in B :
43 d i s t _ = np . l i n a l g . norm (np . array (b i)−s e l f . _ a i)
44 i f d i s t_ < d i s t :
45 d i s t = d i s t _
46 b = bi
47 s e l f . _x i = np . array (b)
48 s e l f . _AB . add ((i n t (s e l f . _x i [0]) , i n t (s e l f . _x i [1])))

Listing G.5: Trip to an exploration region

G.2.4 Zigzag pattern

Here we define the four zigzag directions and the eight zigzag patterns.
1 # d i r e c t i o n towards north
2 def N() :
3 re turn [0 , gamma]
4 def S () :
5 re turn [0 , −gamma]
6 def E () :
7 re turn [gamma, 0]
8 def W() :
9 re turn [−gamma, 0]

10 # l i s t of the e i g h t zigzag p a t t e r n s
11 def pat terns_z igzag () :
12 re turn [[E () , N() ,W() , N()] , [E () , S () ,W() , S ()] ,
13 [W() , N() ,E () , N()] , [W() , S () ,E () , S ()] ,
14 [N() , E () , S () , E ()] , [N() , W() , S () , W()] ,
15 [S () , E () ,N() , E ()] , [S () , W() ,N() , W()]]

Listing G.6: Zigzag pattern

G.2.5 One zigzag trip algorithm

This is the implementation of an algorithm for a zigzag trip which a robot
applies to explore its assigned region.

1 import numpy as np
2 from c o o r d i n a t i o n U t i l s import B a l l
3
4 c l a s s Zigzag :
5
6 def _ _ i n i t _ _ (s e l f , gamma, d) :
7
8 s e l f . _d = d
9 s e l f . _gamma = gamma

10
11 def paramReinit (s e l f , Xi , xi , c i) :
12
13 s e l f . _Xi = Xi
14 s e l f . _x i = x i

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 248

15 s e l f . _ c i = c i
16 s e l f . _ d i s t = 0
17 s e l f . _ J = 1
18 s e l f . s e t P a t t e r n ()
19 s e l f . s e t D i r e c t i o n ()
20 s e l f . s e t D i s t a n c e ()
21
22 def g e t P a t t e r n s (s e l f) :
23
24 return [[s e l f . East () , s e l f . North () , s e l f . West () , s e l f . North ()] ,
25 [s e l f . East () , s e l f . South () , s e l f . West () , s e l f . South ()] ,
26 [s e l f . West () , s e l f . North () , s e l f . East () , s e l f . North ()] ,
27 [s e l f . West () , s e l f . South () , s e l f . East () , s e l f . South ()] ,
28 [s e l f . North () , s e l f . East () , s e l f . South () , s e l f . East ()] ,
29 [s e l f . North () , s e l f . West () , s e l f . South () , s e l f . West ()] ,
30 [s e l f . South () , s e l f . East () , s e l f . North () , s e l f . East ()] ,
31 [s e l f . South () , s e l f . West () , s e l f . North () , s e l f . West ()]]
32
33 def North (s e l f) :
34
35 return [0 , s e l f . _gamma]
36
37 def South (s e l f) :
38
39 return [0 , −s e l f . _gamma]
40
41 def East (s e l f) :
42
43 return [s e l f . _gamma, 0]
44
45 def West (s e l f) :
46
47 return [− s e l f . _gamma, 0]
48
49 def s e t P a t t e r n (s e l f) :
50
51 x , y , w, h = i n t (s e l f . _Xi . x) , i n t (s e l f . _Xi . y) , i n t (s e l f . _Xi .w) , i n t (s e l f .

_Xi . h)
52 i f x == s e l f . _ c i [0] and y == s e l f . _ c i [1] :
53 s e l f . _pat tern = s e l f . g e t P a t t e r n s () [np . random . choice ([0 , 4])]
54 e l i f x == s e l f . _ c i [0] and y + h == s e l f . _ c i [1] :
55 s e l f . _pat tern = s e l f . g e t P a t t e r n s () [np . random . choice ([1 , 6])]
56 e l i f x + w == s e l f . _ c i [0] and y == s e l f . _ c i [1] :
57 s e l f . _pat tern = s e l f . g e t P a t t e r n s () [np . random . choice ([2 , 5])]
58 e l s e :
59 s e l f . _pat tern = s e l f . g e t P a t t e r n s () [np . random . choice ([3 , 7])]
60
61 def s e t D i r e c t i o n (s e l f) :
62
63 s e l f . _ d i r e c t i o n = s e l f . _pat tern [i n t (s e l f . _ J %4)−1]
64
65 def g e t S t a r t i n g P o i n t (s e l f) :
66
67 i f (s e l f . _pat tern [0]== s e l f . North () and s e l f . _pat tern [1]== s e l f . East ()) or (

s e l f . _pat tern [0]== s e l f . East () and s e l f . _pat tern [1]== s e l f . North ()) :

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 249

68 return np . array (s e l f . _ c i) + [s e l f . _d , s e l f . _d]
69 e l i f (s e l f . _pat tern [0]== s e l f . South () and s e l f . _pat tern [1]== s e l f . East ()) or

(s e l f . _pat tern [0]== s e l f . East () and s e l f . _pat tern [1]== s e l f . South ()) :
70 re turn np . array (s e l f . _ c i) + [s e l f . _d , −s e l f . _d]
71 e l i f (s e l f . _pat tern [0]== s e l f . North () and s e l f . _pat tern [1]== s e l f . West ()) or

(s e l f . _pat tern [0]== s e l f . West () and s e l f . _pat tern [1]== s e l f . North ()) :
72 re turn np . array (s e l f . _ c i) + [− s e l f . _d , s e l f . _d]
73 e l s e :
74 re turn np . array (s e l f . _ c i) + [− s e l f . _d , −s e l f . _d]
75
76 def s e t D i s t a n c e (s e l f) :
77
78 i f s e l f . _ J %2==1:
79 i f np . abs (s e l f . _ d i r e c t i o n) . t o l i s t () ==[0 , s e l f . _gamma] :
80 s e l f . _ d i s tance = i n t (s e l f . _Xi . h−2* s e l f . _d)
81 e l s e :
82 s e l f . _ d i s tance = i n t (s e l f . _Xi .w−2* s e l f . _d)
83 e l s e :
84 i f np . abs (s e l f . _ d i r e c t i o n) . t o l i s t () ==[0 , s e l f . _gamma] :
85 s e l f . _ d i s tance = i n t (np . min ([2 * s e l f . _d , s e l f . _Xi . h−s e l f . _d * s e l f . _ J

]))
86 e l s e :
87 s e l f . _ d i s tance = i n t (np . min ([2 * s e l f . _d , s e l f . _Xi .w−s e l f . _d * s e l f . _ J

]))
88
89 def zigzagMove (s e l f , B , O) :
90
91 s e l f . _B = s e t ([])
92 x i = s e l f . _x i + s e l f . _ d i r e c t i o n
93 o b s t a c l e = s e l f . o b s t a c l e D e t e c t i o n (xi , O)
94 i f not o b s t a c l e and s e l f . _d is t <= s e l f . _dis tance−s e l f . _gamma and s e l f .

i s I n s i d e (x i) :
95 s e l f . _x i = x i
96 s e l f . _ d i s t += s e l f . _gamma
97 e l s e :
98
99 i f o b s t a c l e :

100 j = 1
101 f o r d in range (s e l f . _d is t , s e l f . _d i s tance) :
102 b a l l = B a l l (s e l f . _x i + j *np . array (s e l f . _ d i r e c t i o n) , s e l f . _d)
103 j +=1
104 s e l f . _B = B . union (b a l l . B a l l)
105
106 s e l f . _ J = (s e l f . _ J +1)%4
107 s e l f . _ d i r e c t i o n = s e l f . _pat tern [s e l f . _J−1]
108 x i = s e l f . _x i + s e l f . _ d i r e c t i o n
109 s e l f . _ d i s t = s e l f . _gamma
110 s e l f . s e t D i s t a n c e ()
111 o b s t a c l e = s e l f . o b s t a c l e D e t e c t i o n (xi , O)
112 i f not o b s t a c l e and s e l f . i s I n s i d e (x i) :
113 s e l f . _x i = x i
114
115 def o b s t a c l e D e t e c t i o n (s e l f , x , O) :
116
117 x0 = i n t (x [0]) + s e l f . _d * s e l f . _ d i r e c t i o n [0]

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 250

118 y0 = i n t (x [1]) + s e l f . _d * s e l f . _ d i r e c t i o n [1]
119
120 return (x0 , y0) in O
121
122 def i s I n s i d e (s e l f , x i) :
123
124 xin = s e l f . _Xi . x + s e l f . _d/2 <= x i [0] <= s e l f . _Xi . x + s e l f . _Xi .w − s e l f . _d/2
125 yin = s e l f . _Xi . y + s e l f . _d/2 <= x i [1] <= s e l f . _Xi . y + s e l f . _Xi . h − s e l f . _d/2
126
127 return xin and yin

Listing G.7: Implementation of a one-zigzag trip

G.2.6 Leader election method

This is the implementation of the leader election algorithm used in interac-
tion of robots.

1 c l a s s LeaderElec t ion :
2
3 def _ _ i n i t _ _ (s e l f , Node) :
4
5 s e l f . _id = Node . _id
6 s e l f . _Ni = Node . _Ni
7 s e l f . _ l C e n t r a l i t y = Node . _ c e n t r a l i t y
8
9 s e l f . _ t r e e P a r e n t = None

10 s e l f . _ t reeChi ldren = s e t ([])
11
12 s e l f . _ leaderID = s e l f . _id
13 s e l f . _d i s tance = 0
14 s e l f . _wait = s e t ([])
15
16 s e l f . _ f i n i s h e d = F a ls e
17
18 s e l f . _msgType = MessageTypes
19 s e l f . _messaging = Messaging ()
20
21 def f i rs tHop (s e l f) :
22
23 f o r j in s e l f . _Ni :
24
25 BFS_GO = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . BFS_GO)
26 BFS_GO = s e l f . _messaging . addTo (BFS_GO , j , s e l f . _id , [s e l f . _leaderID ,

s e l f . _ l C e n t r a l i t y , s e l f . _d i s ta nce])
27 s e l f . _messaging . s e r i a l i z e (BFS_GO , s e l f . _msgType . BFS_GO)
28 s e l f . _wait . add (j)
29
30 s e l f . _ f i n i s h e d = s e l f . _wait== s e t ([])
31
32 def i s B i g g e r (s e l f , l , c l) :
33
34 k = s e l f . _leaderID

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 251

35 ck = s e l f . _ l C e n t r a l i t y
36
37 return (ck< c l) or ((ck== c l) and l <k)
38
39 def isEnded (s e l f) :
40
41 return s e l f . _ f i n i s h e d
42
43 def treeParentUpdate (s e l f) :
44 BFS_GO = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . BFS_GO)
45 i f s e l f . _id in BFS_GO :
46 while len (BFS_GO[s e l f . _id]) >=1:
47
48 j = l i s t (BFS_GO[s e l f . _id] . keys ()) [0]
49 (mid , c l , d i s t) = BFS_GO[s e l f . _id] [j]
50 BFS_GO = s e l f . _messaging . deleteFrom (BFS_GO , s e l f . _id , j)
51 s e l f . _messaging . s e r i a l i z e (BFS_GO , s e l f . _msgType . BFS_GO)
52
53 i f s e l f . i s B i g g e r (mid , c l) :
54 s e l f . _leaderID = mid
55 s e l f . _d i s tan ce = 99999999999999
56 s e l f . _ t r e e P a r e n t = None
57 s e l f . _ l C e n t r a l i t y = c l
58
59 i f s e l f . _leaderID==mid and d i s t +1< s e l f . _d i s tan ce :
60 BFS_BACK = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . BFS_BACK)
61 i f s e l f . _ t r e e P a r e n t !=None :
62 BFS_BACK = s e l f . _messaging . addTo (BFS_BACK , s e l f .

_ t reeParent , s e l f . _id , [s e l f . _leaderID , s e l f . _ l C e n t r a l i t y , s e l f . _dis tance −1,
Fa l se])

63
64 s e l f . _ t r e e P a r e n t = j
65 s e l f . _ t reeChi ldren = s e t ([])
66 s e l f . _d i s tan ce = d i s t + 1
67 s e l f . _wait = s e t ([])
68
69 Ni = s e t (s e l f . _Ni) . copy ()
70 Ni = Ni . d i f f e r e n c e (s e t ([s e l f . _ t r e e P a r e n t]))
71 f o r k in Ni :
72 BFS_GO = s e l f . _messaging . addTo (BFS_GO , k , s e l f . _id , [s e l f .

_leaderID , s e l f . _ l C e n t r a l i t y , s e l f . _d i s tance])
73 s e l f . _wait . add (k)
74
75 i f s e l f . _wait == s e t ([]) :
76 BFS_BACK = s e l f . _messaging . addTo (BFS_BACK , s e l f .

_ t reeParent , s e l f . _id , [s e l f . _leaderID , s e l f . _ l C e n t r a l i t y , s e l f . _dis tance −1,
True])

77 s e l f . _ f i n i s h e d = True
78 s e l f . _messaging . s e r i a l i z e (BFS_BACK , s e l f . _msgType . BFS_BACK)
79 e l i f s e l f . _leaderID==mid :
80 BFS_BACK = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . BFS_BACK)
81 BFS_BACK = s e l f . _messaging . addTo (BFS_BACK , j , s e l f . _id , [mid ,

c l , d i s t , Fa l se])
82 s e l f . _messaging . s e r i a l i z e (BFS_BACK , s e l f . _msgType . BFS_BACK)
83 s e l f . _messaging . s e r i a l i z e (BFS_GO , s e l f . _msgType . BFS_GO)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 252

84
85 def treeChildrenUpdate (s e l f) :
86
87 BFS_BACK = s e l f . _messaging . d e s e r i a l i z e (s e l f . _msgType . BFS_BACK)
88
89 i f s e l f . _id in BFS_BACK :
90 while len (BFS_BACK[s e l f . _id]) >=1:
91
92 j = l i s t (BFS_BACK[s e l f . _id] . keys ()) [0]
93 (mid , c l , d i s t , i s C hi l d) = BFS_BACK[s e l f . _id] [j]
94 BFS_BACK = s e l f . _messaging . deleteFrom (BFS_BACK , s e l f . _id , j)
95
96 i f s e l f . _leaderID==mid and s e l f . _d i s tan ce== d i s t and not s e l f .

_ f i n i s h e d :
97 s e l f . _wait = s e l f . _wait . d i f f e r e n c e (s e t ([j]))
98 i f i sC hi ld :
99 s e l f . _ t reeChi ldren . add (j)

100 e l s e :
101 s e l f . _ t reeChi ldren = s e l f . _ t reeChi ldren . d i f f e r e n c e (s e t ([j

]))
102 i f s e l f . _wait== s e t () :
103 i f s e l f . _ t r e e P a r e n t==None :
104 s e l f . _ f i n i s h e d = True
105 e l s e :
106 BFS_BACK = s e l f . _messaging . addTo (BFS_BACK , s e l f .

_ t reeParent , s e l f . _id , [s e l f . _leaderID , s e l f . _ l C e n t r a l i t y , s e l f . _dis tance −1,
True])

107 s e l f . _ f i n i s h e d =True
108 s e l f . _messaging . s e r i a l i z e (BFS_BACK , s e l f . _msgType . BFS_BACK)

Listing G.8: Implementation of the leader election algorithm

G.2.7 Determination of a new region within an exploration
region

This code implements how a robot determines an unexplored region within
its exploration region when the location of encountered obstacles do not
allow it to continue applying its planned zigzag pattern.

1 def _f inExplorat ionAreaInRegion (s e l f) :
2
3 xmin , xmax = i n t (s e l f . _Xi . x) , i n t (s e l f . _Xi . x+ s e l f . _Xi .w)
4 ymin , ymax = i n t (s e l f . _Xi . y) , i n t (s e l f . _Xi . y+ s e l f . _Xi . h)
5 X = s e t ([(px , py) f o r px in range (xmin , xmax) f o r py in range (ymin , ymax)

])
6 Q = X . d i f f e r e n c e (s e l f . _ B i t [−1])
7 A = np . pi * s e l f . _d * * 2 + 2* s e l f . _d * s e l f . _gamma * (s e l f . _tau−s e l f . _ t) /2
8
9 xmin , xmax , ymin , ymax = i n t (s e l f . _Vi . x) , i n t (s e l f . _Vi . x+ s e l f . _Vi .w) , i n t (

s e l f . _Vi . y) , i n t (s e l f . _Vi . y+ s e l f . _Vi . h)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 253

10 V = s e t ([(px , py) f o r px in range (xmin , xmax) f o r py in range (ymin , ymax)
])

11 Q = s e l f . _ r e c t a n g l e E x t r a c t i o n (s e l f . _N, V. d i f f e r e n c e (s e l f . _Ci t [−1]))
12
13 i f Q.w*Q. h>=A:
14
15 s e l f . _Xi = Q
16
17 e l i f len (s e l f . _Yi t) >0:
18 s e l f . _Xi = s e l f . _Yi t . pop ()
19 e l s e :
20 s e l f . _Xi = s e l f . _get IndividualExplorat ionRegion ()
21 s e l f . _Y i t = []

Listing G.9: Determination of a new region within an exploration region

G.2.8 A full behaviour of a robot applying the soft obstacle
strategy

This code combines some of the main functions during exploration of ex-
ploration regions by a single robot.

1 i f not s e l f . isEnded () :
2 i f s e l f . _ s t a t e in [RobotStates . S , RobotStates .W] :
3
4 I i , Wi = s e l f . _newInteract ion (meetings)
5 i f len (I i) >=1:
6
7 s e l f . _ I i , s e l f . _Wi = I i . copy () , Wi . copy ()
8 s e l f . _ s t a t e = RobotStates .TW
9 s e l f . _t imeSinceWait ing = s e l f . _ t

10
11 e l i f len (s e l f . _Wi) >=1:
12
13 s e l f . _ s t a t e = RobotStates .W
14 e l s e :
15 s e l f . _search ()
16
17
18 e l i f s e l f . _ s t a t e ==RobotStates .TW:
19
20 i f (s e l f . _t−s e l f . _t imeSinceWait ing) <= s e l f . _tw :
21 s e l f . _wait ing (meetings)
22 e l s e :
23 s e l f . _ s t a t e = RobotStates . P
24
25 e l i f s e l f . _ s t a t e == RobotStates . P :
26 i f s e l f . _planningState ==None :
27 s e l f . _pruningObject = PruningNode (s e l f . _id , s e l f . _ I i)
28 s e l f . _pruningObject . oneHop ()
29 s e l f . _planningState = PlanningSta tes . B
30 s e l f . _stepB = " update "

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 254

31 s e l f ._GO = F a ls e
32
33 e l i f s e l f . _planningState==PlanningSta tes . B :
34 s e l f . _ t re e Co ns t ruc t i on ()
35
36 e l i f s e l f . _planningState==PlanningSta tes . S :
37
38 s e l f . _ l e a d e r E l e c t i o n ()
39
40 e l i f s e l f . _planningState==PlanningSta tes .D:
41 s e l f . _dataFusion ()
42
43 e l i f s e l f . _planningState == PlanningSta tes . T :
44 s e l f . _taskAssignment ()
45
46 b a l l = B a l l (s e l f . _xi , s e l f . _d)
47 s e l f . _Ci t . append (s e l f . _Ci t [−1] . union (b a l l . B a l l))
48 s e l f . _ B i t . append (s e l f . _ B i t [−1] . union (b a l l . B a l l))
49 s e l f . _ t += s e l f . _del taT
50 s e l f . _Del taTi += s e l f . _del taT

Listing G.10: A full behaviour of of a robot applying the soft obstacle
strategy

G.2.9 Distance bug algorithm

This is the implementation of the distance bug algorithm used to avoid ob-
stacles and soft obstacles when a robot explores.

1 from c o o r d i n a t i o n U t i l s import B a l l
2 import numpy as np
3
4 c l a s s Bug :
5
6 def _ _ i n i t _ _ (s e l f , d , gamma) :
7 s e l f . _d = d
8 s e l f . _gamma = gamma
9

10 def distanceBug (s e l f , A, x , a , C, O) :
11
12 x0 = x+np . array ([0 , s e l f . _gamma])
13 x1 = x+np . array ([s e l f . _gamma, 0])
14 x2 = x+np . array ([− s e l f . _gamma, 0])
15 x3 = x + np . array ([0 , −s e l f . _gamma])
16
17 B = s e t ([tuple (x0) , tuple (x1) , tuple (x2) , tuple (x3)])
18 B = B . d i f f e r e n c e (O)
19
20 i f B== s e t ([]) :
21 re turn x
22
23 b = B . pop ()

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 255

24 d i s t = np . l i n a l g . norm (np . array (b)−a)
25 b a l l = B a l l (b , s e l f . _d)
26 I = len (b a l l . B a l l . d i f f e r e n c e (C))
27 u = s e l f . u t i l i t y (d i s t , I)
28 f o r b i in B :
29 d i s t = np . l i n a l g . norm (np . array (b i)−a)
30 b a l l = B a l l (bi , s e l f . _d)
31 I = len (b a l l . B a l l . d i f f e r e n c e (C))
32
33 i f u< s e l f . u t i l i t y (d i s t , I) :
34 b = np . array (b i) . copy ()
35 u = s e l f . u t i l i t y (d i s t , I)
36 re turn np . array (b)
37
38 def u t i l i t y (s e l f , d i s t , I) :
39
40 return (1 + I) /(1 + d i s t)

Listing G.11: Implementation of the distance bug algorithm

G.3 Classifier fusion

This is the implementation of the proposed classifier fusion method (Yayambo).

1 import numpy as np
2 from c l a s s i f i e r F u s i o n import sum_rule
3
4 c l a s s Yayambo :
5
6 def _ _ i n i t _ _ (s e l f , m, T=50 , eps i lon = 1 . 0 e−06, eps i lon0 = 0 . 0 0 0 0 0 1) :
7
8 s e l f . __T = T
9 s e l f . __eps i lon = eps i lon

10 s e l f . __eps i lon0 = eps i lon0
11 s e l f . __m = m
12
13 def support (s e l f , x , y) :
14
15 dis = []
16 f o r xi , y i in zip (x , y) :
17 dis . append (np . abs (x i *np . log ((s e l f . __eps i lon0+ x i) /(s e l f . __eps i lon0+yi))

))
18 re turn y /(1 .+np . array (dis))
19
20 def convergence (s e l f , OD, LD) :
21
22 d i f f = np . l i n a l g . norm (OD−LD, a x i s =1)
23 d i f f = np . sum(d i f f)
24 re turn d i f f < s e l f . __m* s e l f . __eps i lon
25
26 def update (s e l f , pi , be tas) :
27

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. CODE OF PYTHON FUNCTIONS 256

28 S = pi *np . sum(betas , a x i s =0)
29 S /=np . sum(S)
30 return S . t o l i s t ()
31
32 def getConsencus (s e l f , D) :
33
34 m, l = np . array (D) . shape
35 Dcopy = np . copy (D)
36
37 f o r t in range (s e l f . __T) :
38 tempD = []
39
40 f o r i in range (m) :
41 betas = []
42
43 f o r j in range (m) :
44
45 i f j != i :
46 b j i = s e l f . support (Dcopy [i] , Dcopy [j])
47 betas . append (b j i)
48
49 tempD . append (s e l f . update (Dcopy [i] , be tas))
50
51 i f s e l f . convergence (Dcopy , tempD) :
52 d i s t r i b u t i o n , d e c i s i on = sum_rule (Dcopy)
53 re turn d i s t r i b u t i o n , d e c i s i on
54 Dcopy = np . copy (tempD)
55 d i s t r i b u t i o n , d ec i s i on = sum_rule (Dcopy)
56
57 return d i s t r i b u t i o n , d e c i s i on

Listing G.12: Implementation of the Yayambo algorithm

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature and Notation
	Introduction
	Objectives and background of this study
	Contributions
	Overview of this work

	Background
	Introduction
	Basic concepts
	Autonomous robots
	Multiagent systems
	Conclusion

	Coordination
	Background and literature
	General background
	Literature discussion and frontier-based exploration
	Summary

	Soft obstacle coordination strategy for solitary robots
	Introduction
	Considerations for the soft obstacle strategy
	Soft obstacle coordination strategy
	Conclusion

	Distributed system of solitary robots
	Introduction
	Distributed methods for coordination of solitary robots
	Leader election based on closeness centrality
	Data fusion and task assignment
	General algorithm
	Conclusion

	Metrics, results and discussion
	Metrics
	Simulation description and experimental setup
	Results and discussion
	Conclusion and avenues for future work

	Network view construction
	Background and literature
	General background
	Literature discussion
	Background of methods for failure detection
	Summary

	Decentralised view construction
	Introduction
	View construction
	Communication analysis
	Communication failure
	Conclusion

	Metrics, results and discussion
	Metrics
	Simulation description and experimental setup
	Results and discussion
	Conclusion and avenues for future work

	 Classifier fusion
	Background and literature
	General background
	Literature discussion
	Summary

	Classifier fusion method
	Introduction
	Yayambo method
	Complexity
	Conclusion

	Metrics, results and discussion
	Metrics
	Simulation description and experimental setup
	Results and discussion
	Conclusion and avenues for future work

	Conclusions and future work
	Summary
	Primary contributions
	Future work

	List of References
	Solitary search
	Obstacle avoidance techniques
	Toy example of pruning method
	Toy example of Yayambo
	Dataset characteristics
	Utilities
	Code of Python functions
	Network view construction
	Coordination
	Classifier fusion

