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Abstract

Abdallah Kassir, BE (Hons 1) Doctor of Philosophy
The University of Sydney October 2014

Communication E�ciency in

Information Gathering through

Dynamic Information Flow

This thesis addresses the problem of how to improve the performance of multi-robot

information gathering by actively controlling the rate of communication between

robots. Examples of multi-robot information gathering applications include coopera-

tive tracking using mobile robots, cooperative search and environmental monitoring.

Unlike single robot systems, multi-robot systems can provide complementary compu-

tation capabilities, a diversity of sensors and sensor view-points, modularity and ro-

bustness against failures. Communication is essential in such systems for decentralised

data fusion and decision making, but wireless networks impose capacity constraints

that are frequently overlooked. While existing research has focussed on improving

available communication throughput, the aim in this thesis is to develop algorithms

that make more e�cient use of the communication capacity that is available. One

challenge is that information may be shared at various levels of abstraction, raising

the question of where information should be processed in the network. This decision

in turn is dependent on limits of the computational resources available. Therefore, the

�ow of information needs to be controlled based on its value with respect to the task

at hand given the communication constraints and the computation constraints. It

is thus necessary to consider a fundamental trade-o� between communication limits,

computation limits and information value.

In this thesis, we approach this trade-o� by posing the problem of deciding when,

where and in what form to communicate in terms of decentralised constrained optimi-

sation. We formalise this notion by introducing the dynamic information �ow (DIF)
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problem. Since decentralised information gathering requires communication for both

data fusion and decision making, we suggest variants of DIF that either consider data

fusion communication independently or both data fusion and decision making commu-

nication simultaneously. For the data fusion case, we propose e�cient decentralised

solutions that dynamically adjust the �ow of information to improve information gain

while obeying communication constraints. For the decision making case, we present

an algorithm for communication e�ciency targeted to linear-quadratic (LQ) systems

and then extend the algorithm to information gathering tasks through local LQ ap-

proximations. The algorithm is then integrated with our solution for the data fusion

case to produce a complete communication e�ciency solution for information gather-

ing. We analyse our suggested algorithms, present important performance guarantees

and validate the algorithms in a custom-designed decentralised simulation framework

with real-world scenarios. We also validate the algorithms through �eld-robotic ex-

perimental demonstrations involving two outdoor mobile robots, a ground station and

a stationary camera. Experimental results demonstrate that our solutions achieved

higher information gathering performance for the majority of test cases in compar-

ison to naive down-sampling of information rates that utilise the same amount of

communication bandwidth.

Our work has both theoretical and practical signi�cance. The DIF problem formu-

lation represents a new theoretical framework for studying communication e�ciency

and developing novel algorithms. Practically, our solutions to DIF enable applica-

tions of rich heterogeneous information gathering systems with many di�erent types of

sensors and computational resources without requiring manual design of the network

topology.
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Chapter 1

Introduction

The objective of this thesis is to develop a uni�ed and principled formulation and

solution to the problem of improving the e�ciency of communication resource usage

by robots in decentralised information gathering. Decentralised information gathering

involves multiple robots actively cooperating to maximise information about their

environment. While existing approaches address various elements of communication

e�ciency in decentralised information gathering, the aim is to unify the problem

of communication e�ciency under the arch of one formulation that is amenable to

practical algorithms with performance guarantees.

Decentralised information gathering systems typically rely on communication infras-

tructure, such as wireless networks, with limited resources. Communication resource

constraints limit the size, applicability and versatility of decentralised information

gathering systems. While existing research has focussed on improving available com-

munication throughput, work here is targeted to making the use of communication

more e�cient for the task of decentralised information gathering. One challenge is

that information may be shared at various levels of abstraction, raising the question

of where information should be processed in the network. This decision in turn is

dependent on limits of the computational resources available. Therefore, both com-

munication constraints and computation constraints need to be considered.



2 Introduction

Data fusion

Decision making

Communication with
other robots

Figure 1.1 � Abstract representation of information gathering for one robot.

Decentralised information gathering, as a distributed form of active perception, typ-

ically requires communication at two layers, decentralised data fusion (DDF) and

decentralised decision making (DDM), as shown in Figure 1.1. This two-layer division

is common for most implementations due to the complexity of the general information

gathering problem.

We introduce the novel dynamic information �ow (DIF) problem formulation with

three variants that either address communication e�ciency at the DDF layer inde-

pendently or at both layers. For each variant, we provide computationally e�cient

solutions. The solutions are analysed with performance guarantees provided for the

solutions at the DDF layer. The solutions are also validated through �eld-robotic

experimental demonstrations and extended simulations on a custom-designed decen-

tralised simulation framework.

From a practical perspective, the outcomes of this thesis can be applied to a wide

range of decentralised information gathering systems such as cooperative information

gathering mobile robots, wireless sensor networks and large-scale spatio-temporal

mapping systems. The suggested approaches simplify the development of such sys-

tems and advance many system designs towards practical implementations.

1.1 Decentralised Information Gathering

A decentralised information gathering task involves a team of robots that actively

cooperates to maximise information about a given phenomenon. This task forms the
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basis of many applications such as cooperative search [9, 28, 30, 46], target track-

ing [17, 18, 47, 106] and environmental monitoring [20, 39, 93]. Robot teams are

useful for information gathering because they can exploit diverse sensing and mo-

tion capabilities, access multiple simultaneous view-points, are more robust against

failures and cover large areas more rapidly than single-robot systems.

Communication is fundamental to the task because robots must cooperatively perform

data fusion and decision making. Although communication may take place over wired

or wireless networks, wireless networks are usually required for most mobile robotic

platforms. Decentralised information gathering applications di�er in their type and

rate of communication needs.

1.1.1 Cooperative Tracking

In multi-robot cooperative tracking, each robot attempts to follow the most informa-

tive path to reduce the uncertainty of the estimate about the tacked targets. Reduc-

tion in the targets' state uncertainty naturally leads to tracking. Raw sensor data

or processed observations may be shared between robots or sensor nodes. For sen-

sor nodes without processing ability, raw sensor data has to be sent to be processed

o�-board. However, data are usually exchanged over a wireless medium with limited

and shared bandwidth.

1.1.2 Cooperative Search

Another application of decentralised information gathering is cooperative search. Un-

like tracking, the belief of the target position cannot be approximated by a single

Gaussian probability density function (pdf). Instead, more complex representations

are required. One example is occupancy grids [29]. DDF using occupancy grids re-

sults in large amounts of data being exchanged. DDM may also involve exchange

of predicted observations resulting in large amounts of data transmission over the

common network.
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1.1.3 Environmental Monitoring

Environmental monitoring is a another example of a decentralised information gath-

ering application. Environmental monitoring usually involves the spatio-temporal

mapping of a phenomenon such as tra�c [15], temperature, wind �elds or water con-

tamination. The representation of these �elds using grids leads to high communication

and processing requirements.

1.2 Resource Constraints

Communication is not an in�nite resource. However, research in multi-robot systems

often makes two invalid assumptions that fail to respect the physical limits of real

communication networks. The �rst such assumption is that simultaneous commu-

nication between multiple pairs of robots is independent. In most existing wireless

networks, bandwidth resources are shared globally and link capacity decreases rapidly

as the number of robots increases [42, 107]. As illustrated in Figure 1.2, the number

of connections required is quadratic in the number of nodes. The second invalid as-

sumption, sometimes called the r-disc model, is that constant bandwidth is available

within a given radius about a robot and that zero bandwidth is available otherwise.

Real communication links are far more variable [63]. The implications of failing to

consider communication limitations are signi�cant and hence communication in real-

istic environments is currently a topic of considerable research interest [85].

One possible approach to address the issue of communication limits is to simply

increase total network bandwidth by using more powerful and sophisticated radio

hardware. However, it is always possible to generate a problem instance that exceeds

any given resource limit. Sensors such as 3D laser range-�nders generate data at

a high rate, typically 1.3 million points per second. High-resolution cameras can

produce data at even higher rates. The typical data rates for sensors commonly used

in robotics are shown in Table 1.1 while the maximum available throughput of the
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Table 1.1 � Typical data rates of commonly-used high-data-rate sensors.

Sensor Data Rate

2D Laser 576 kbps
3D Laser 41.6 Mbps
Camera 104 Mbps

latest wireless standards are shown in Table 1.2. The actual available throughput is

typically signi�cantly less in most real-world environments.

In decentralised information gathering systems, communication is also used for DDM.

Data rates required for DDM using di�erent probability distribution representations

are shown in Table 1.3. The values shown are for a two-agent system planning twice

per second with �ve possible actions each using 64-bit �oating-point precision. The

values in the table clearly show that communication immediately becomes a problem

as the planning horizon increases. Controlling the communication of these large

amounts of data is essential to real-world application of decentralised information

gathering systems.

We believe that a better approach is to develop algorithms that make e�cient use

of the communication resources at hand. We refer to this approach as improving

communication e�ciency in information gathering. The idea is to choose when and

how a given pair of robots should communicate based on the information value of the

communication and given resource limits.

Figure 1.2 � The number of connections in a mesh network is quadratic in the number of
nodes. For the network of eight nodes shown in the �gure, twenty-eight connections
are required to fully connect all the nodes.
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Table 1.2 � Typical data throughput rates of latest wireless 802.11 standards.

Wireless Technology Maximum Data Rate

802.11g 54 Mbps
802.11n 600 Mbps

802.15.4 (ZigBee) 200 kbps
Bluetooth V2.0 + EDR 3 Mbps

Table 1.3 � Typical data rates required by exhaustive-search decision making using
grid-based pdf representations. The values are for a two-agent system planning
twice per second with �ve possible actions each using 64-bit �oating-point precision.

Planning Horizon 100× 100 Grid pdf 8-Dimensional Gaussian pdf

1 3.2 Mbps 23.04 kbps
2 16 Mbps 115.200 kbps
4 400 Mbps 2.88 Mbps

1.3 Communication E�ciency in Data Fusion

The �rst main demand on communication in decentralised information gathering

teams arises from data fusion. Robots need to share sensor observations to exploit

the diversity of views provided by sensors on di�erent robots. The importance of data

sharing depends on the quality of data shared with respect to each of the robots. We

would like to investigate whether robots can share observations selectively so that they

can increase the e�ciency of communication. The main challenge is that information

may be represented at multiple levels of abstraction ranging from raw sensor data

to highly compressed forms such as target state observations. Therefore, we must

choose not only how to route data but also in what form. This decision must consider

computation costs, since data may be processed at various possible locations within

a system with varying resource capacity. A given robot may process its sensor data

on-board, transmit this data to a powerful o�-board processing station or rely on the

computation resource of another robot. Manual design of a communication policy in

this context is di�cult and can result in poor communication e�ciency. For example,

down-sampling the rate of sensor data transmission may obey bandwidth constraints

but can lead to unnecessary degradation in the performance of state estimation al-
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gorithms. The design task increases in di�culty for large heterogeneous systems as

we have shown in our previous work [78]. Moreover, if the task or hardware proper-

ties of an information gathering team are expected to change throughout operation,

then a �xed policy would fail to maintain its intended performance. Therefore, the

information �ow must be adjusted dynamically and autonomously.

An example of a decentralised information gathering task that can bene�t from com-

munication e�ciency in data fusion is that of multiple information gathering robots

with limited inter-robot communication bandwidth. In such tasks, broadcasting ob-

servations from each robot to all robots is unjusti�ed. When distributed spatially

over a large area, the priority of robots should be gathering information from their

proximities. For example, when tracking multiple dispersed targets [13], robots only

need to receive observations of nearby targets. As a consequence of communication

e�ciency, we expect the robots to select when and with whom to share observations

based on the impact of the observations on the robots' estimates and based on the

cost of communication computed according to separation distances.

Small agile robots such as quadrotors or small mobile robots provide a relatively low-

cost option to multi-robot systems. However, such robots usually lack the necessary

computational resources for processing data from sensors with high data rates such as

high-resolution cameras. With access to an o�-board processing station, these robots

can send raw data wirelessly to the processing station and receive processed observa-

tions in return. Upholding communication and computation e�ciency would dictate

that when robots move away from the processing station and available throughput

decreases, robots should process down-sampled data on-board instead of sending data

with the full rate to be processed o�-board.

Another case of interest is when surveillance robots are equipped with sensors having

a limited �eld of view. Such situations justify the use of stationary cameras to obtain

the required coverage. Images from the camera can then be sent to the robots for

object detection. The extra view-point provided by the camera can greatly aid the

robots. Due to wireless communication limitations, the robot will lose the ability

to receive the images wirelessly if its distance from the camera increases. Moreover,
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Figure 1.3 � Autonomous ground vehicle with many sensors.

the robot might not require image observations if it already has an accurate estimate

of the target. As an example of desirable behaviour, the robots should only receive

raw camera data when they are close to the camera and when the camera covers a

view-point not covered by the robots.

Finally, the problem of sensor selection also appears in the case of a single robot

with many sensors such as that shown in Figure 1.3. In such cases, processing the

entirety of the sensor data may be prohibitive. Pre-selection of the sensors before

the experiment introduces unnecessary rigidity in the system design. Instead, smart

selection of sensors according to di�erent robot missions, locations and environments

is desirable.

1.4 Communication-E�cient Information Gathering

Communication e�ciency in information gathering necessitates e�cient communica-

tion for both the data fusion and decision making layers. Therefore, communication-
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Figure 1.4 � Robots tracking a target with bearing-only sensors.

e�cient data fusion needs to be coupled with communication-e�cient decision making

to achieve communication-e�cient information gathering.

Communication is needed during cooperative decision making since robots in multi-

robot systems are usually coupled in utility or dynamics [49, 50, 68]. The degree of

cooperation required is related to the degree of coupling between robots.

In a similar manner to the data fusion case, to achieve communication e�ciency in

decision making, we would like to investigate whether robots can selectively choose

with which of the other robots in a team they should negotiate decisions. This research

question has traditionally appeared in team decision theory. Team decision theory

deals with the problem of information structures, or more speci�cally, what a robot

in a team needs to know in order to choose its optimal decision. From a di�erent

perspective, it also deals with how the amount or type of information to which a

robot has access a�ects its ability to make decisions.

Consider two robots tracking a target with bearing-only sensors as shown in Fig-

ure 1.4. Bearing-only sensors achieve optimal performance when they are situated at

a 90◦ angle relative to the target. When robots are close to each other, they need to

negotiate their movement direction so they can increase their relative angle. When

they are at the optimal angle, negotiation is only required once the target begins to

move.
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As another example, consider a team of robots with the task of mapping an envi-

ronment [23]. The mission can be formulated as a decentralised information gather-

ing problem. To achieve acceptable performance, the robots need to minimise their

exploration overlap during the mission through continuous inter-robot negotiation.

However, when the robots are far apart, and it is highly unlikely that their future

observations will overlap, then the need for negotiation is reduced.

The term negotiation, in this thesis, refers to the process of cooperative decision

making. In other words, it refers to the process by which robots in a team jointly

consider the utility or e�ect of their actions. This is opposed to local decision making

by which robots only consider the e�ect of their own actions.

1.5 Dynamic Information Flow

In this thesis, we formalise the notion of communication e�ciency in information

gathering by introducing a novel problem formulation which we call the dynamic

information �ow problem. Given a graph-based representation of a decentralised in-

formation gathering system, the objective is to maximise the information value of

communication by minimising a cost-based metric subject to constraints. The graph

representation models an information gathering team as a system where data �ows

along a typical pipeline comprising sensors, perception algorithms, estimation algo-

rithms and control algorithms. These logical elements are connected by communica-

tion links with associated costs, and a system may contain many such elements. For

example, a single laser sensor may be connected to many other elements implemented

on multiple robot platforms.

The DIF problem structure is designed to model trade-o�s between information value,

communication cost and computation cost. The information value of sensor observa-

tions is not de�ned globally but instead is de�ned relative to the belief state of each

estimator element. Link costs are abstract costs that model both communication and

computation. For example, a given sensor observation may be of high value to an
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estimator, but obtaining this information may incur a high cost due to the computa-

tional demands of a perception algorithm or due to large communication bandwidth

requirements. Formulating the problem in this way provides a mechanism to balance

these diverse costs against information value in a principled manner. Because link

costs are abstract and dynamic, the problem admits any realistic communication link

model and is not limited to the r-disc assumption. The threshold-DIF variant can

model the global bandwidth constraint imposed by common shared-channel commu-

nication systems. Modelling system elements logically as a graph where �ow rates

are dynamically optimised avoids the need to manually pre-determine the informa-

tion architecture of the system. This property is particularly useful for heterogeneous

systems with many types of robots that have a range of sensing and computational

resources.

We de�ne the DIF problem in Chapter 3 through a family of optimisation problems

with two concrete variants for the data fusion case, min-cost-DIF and threshold-DIF.

We also introduce a third variant, negotiation-DIF, that includes decision making.

1.5.1 Min-Cost-DIF and Threshold-DIF

A solution to the min-cost-DIF and theshold-DIF problems is in the form of a set of

multicast �ow rates that determine which pairs of robots communicate at any given

time. In min-cost-DIF, the objective is to minimise the sum of link costs, assuming

the relative scale of these costs is known. In threshold-DIF, the relative scale of costs

is not assumed to be known and the objective is to �nd a solution that satis�es a

given �ow threshold.

We present algorithms and analysis for both problem variants in Chapter 4. Our

solution to min-cost-DIF is based on an adaptation of multicast routing. We prove

that min-cost-DIF can be transformed such that existing multicast routing algorithms

may be applied, and we present one such algorithm. Our solution to threshold-DIF

is based on an optimisation method known as the alternating direction method of

multipliers (ADMM) [10]. We derive a decentralised version of this algorithm which
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we call the distributed alternating direction method of multipliers (DADMM) and show

how it can be applied to solve threshold-DIF. We analyse convergence and running

time for all algorithms and validate these results through simulations including up to

28 nodes.

We also present experimental results that illustrate the behaviour of our algorithms

and compare information gain performance with simple bandwidth-limiting methods.

The task we consider is to track a moving target using multiple types of sensors.

For the case of min-cost-DIF, the experimental system consists of one mobile robot

equipped with a camera and one auxiliary static ground station. We also present

simulation results for two mobile ground robots. For threshold-DIF, the experimental

system consists of two outdoor mobile robots, with and without an auxiliary static

camera. One robot is equipped with a 2D laser sensor and the other is equipped with

a 3D laser. To further evaluate the performance of our algorithms, we present results

from Monte Carlo simulations that demonstrate statistical signi�cance.

Our results demonstrate that the algorithms e�ciently use available communication

bandwidth to increase information gain. We observe that sensor data are either pro-

cessed on-board or transmitted and processed at the ground station appropriately.

We also observe that information from multiple sensor sources is communicated se-

lectively based on sensor utility, available bandwidth and route overlap.

1.5.2 Sensor Utility

An essential requirement for success in improving communication e�ciency is the ac-

curate estimation of sensor utility. Computing the exact sensor utility computation

through a decentralised partially observable Markov decision process (Dec-POMDP)

framework results in an NEXP-complete problem [8]. Instead of exact sensor utility

computation, we require approximations that are computationally e�cient. In Sec-

tion 4.1.3, we present a myopic approximation to sensor utility that was used in our

experiments.
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E�ciently computable theoretical bounds for sensor utility exist for some cases; how-

ever, they can be too conservative. In Section 4.4, we show results of a multi-robot

�eld mapping example comparing di�erent sensor utility estimates. Results empiri-

cally show that existing theoretical bounds are too conservative to be of any practical

use. They also show that the myopic approximations are usually acceptable approx-

imations of the exact utility when computed over a �xed time horizon.

In Section 5.4, we show how the sensor utility estimate can be improved when coupled

with the decision making layer. The coupling allows for the estimation of an observa-

tion's utility based on its impact on control decisions and not just on its uncertainty

reduction.

1.5.3 Negotiation-DIF

Negotiation-DIF is a problem formulation of communication e�ciency in information

gathering. Negotiation-DIF extends DIF to include communication-e�cient decision

making. Due to the complexity of information structures, negotiation-DIF only mod-

els the case of soft communication constraints. In other words, communication is

modelled as link costs instead of explicit constraints.

Negotiation-DIF is of particular importance to applications that involve large amounts

of data exchange during data fusion and cooperative decision making. Negotiation-

DIF is not limited to a particular decision-making algorithm. It can be applied to a

wide range of decentralised decision making algorithms.

A key assumption of negotiation-DIF is the decoupling between the DDF and DDM

layers. This assumption is necessary since, otherwise, robots need to jointly de-

termine communication and control actions. Although this can be done through a

Dec-POMDP framework, the resulting problem would be intractable.

The solution to negotiation-DIF requires a combination of our solution to min-cost-

DIF with an extended version of our solution to the comms-LQ problem introduced

in Section 1.5.4. As we show in Chapter 5, the amalgamation occurs quite naturally.
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The same link costs can be assigned to links sharing a common resource for both

algorithms.

We present simulation results of information gathering experiments using the negotiation-

DIF formulation to attain communication e�ciency in both data fusion and decision

making. The simulation evaluate negotiation-DIF qualitatively through a heteroge-

neous multiple-node experiment and quantitatively through a simple two-robot simu-

lation. The advantage of our communication e�ciency solution is statistically veri�ed

against naive down-sampling through a Monte-Carlo simulation.

1.5.4 Comms-LQ

We introduce comms-LQ as a communication-e�cient decision-making problem for-

mulation for the special case of a linear-quadratic (LQ) team. Comms-LQ is adapted

by negotiation-DIF extending DIF to the decision making layer. The aim of comms-

LQ is to obtain an optimal feedback control policy while minimising communication

link costs. An LQ team is de�ned as a team of robots with decoupled linear dy-

namics and a coupled quadratic cost function. Each robot's control decision requires

knowledge of the state of other robots where the state information is transferred via

communication links with associated costs.

Communication link costs are abstract costs that are suitable for representing cases

where multiple decentralised algorithms are utilising the same communication infras-

tructure. If only a single decentralised algorithm were running on the communication

network, an alternative approach which optimises decisions given a constraint on

communication capacity could be used [90]. A solution to comms-LQ is a control

policy that minimises the team quadratic cost function and communication link costs

simultaneously.

Although comms-LQ is targeted to an LQ team problem, it can be modi�ed to a

more general set of problems by acting as an auxiliary layer added to existing DDM

algorithms and by taking local LQ approximations. In particular, we extend the
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approach to adjust the frequency of negotiation in decentralised information gathering

applications in negotiation-DIF.

Our solution to comms-LQ is based on the linear matrix inequality (LMI) formulation

of the LQ problem [12, 81, 98] and is called linear-quadratic information structure

optimisation (LQISO). The LMI formulation allows for extra �exibility in the de-

sign of a feedback control law for an LQ system. We exploit this �exibility to add

communication costs to links between robots.

We show results of applying LQISO to an LQ problem having demonstrated a re-

duction in communication that is consistent with chosen communication costs. The

consequent performance demonstrates an e�cient use of the reduced communication

capacity available. The extension of LQISO is also demonstrated for a sample decen-

tralised information gathering task with results showing a reduction in communication

and no signi�cant impact on information gathering performance.

1.6 Scope and Assumptions

Work presented in this thesis introduces communication e�ciency to an existing de-

centralised information gathering method. Rather than introducing a new informa-

tion gathering solution, the communication e�ciency solutions presented add an aux-

iliary layer that regulates communication between nodes of an information gathering

team.

A key assumption made in this thesis and which is typical for large-scale systems is

the decoupling between data fusion and decision making. This assumption is closely

related to the assumption of decoupling between estimation and control for centralised

systems.

As presented in this thesis, the DIF problem formulation assumes existing commu-

nication infrastructure that can provide continuous information �ow between, albeit

at a limited rate which may also be zero. It also assumes that the infrastructure can

instantaneously switch between routes.
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Finally, we note that the solutions presented are aimed at systems involving high-

data-rate communication in such a way that the communication overhead introduced

by these solutions is negligible in comparison to the bandwidth of information being

transferred.

1.7 Contributions

The main contribution of this thesis is to improve the performance and applicabil-

ity of heterogeneous high-data-rate decentralised information gathering systems by

introducing communication e�ciency. Our algorithms address the trade-o� between

information utility and communication limits and are computationally e�cient. These

algorithms enable the implementation of rich heterogeneous systems with diverse sens-

ing, computation and mobility capabilities. A list detailing the speci�c contributions

is shown below. These contributions have so far been published in [51] and [52].

• Introduction of DIF as a novel and principled problem formulation of

communication e�ciency in information gathering. The DIF formulation repre-

sents the trade-o� between communication, computation and information gain

as a distributed optimisation. It is a general and �exible formulation that is

amenable to e�cient algorithms. DIF is introduced concretely through three

variants: min-cost-DIF, threshold-DIF and negotiation-DIF. Min-cost-DIF and

threshold-DIF consider communication for data fusion only while negotiation-

DIF considers communication for both data fusion and decision making.

• A solution to min-cost-DIF based on multicast routing achieving link-cost

communication-e�cient data fusion.

• A solution to threshold-DIF based on a distributed version of ADMM achieving

communication-e�cient data fusion with explicit global resource constraints.

• A solution to negotiation-DIF achieved by integrating the multicast routing

algorithm used for min-cost-DIF with the extended version of LQISO. LQISO is
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a solution algorithm to the communication-e�cient decision-making problem for

LQ systems based on the LMI formulation of the LQ optimal control problem.

• Analysis for all algorithms and performance guarantees for the solution algo-

rithms of min-cost-DIF and threshold-DIF.

• Experimental validation using two mobile robots, a processing ground station

and a stationary camera and extended simulation results including large systems

and Monte Carlo analysis.

DIF is a novel formulation that permits decentralised, e�cient and practically imple-

mentable solutions. The novelty of DIF lies in the representation of communication

e�ciency in information gathering as a multicast graph-based decentralised optimi-

sation which is the �rst general formulation of this type for a broad class of systems

and tasks. The suggested solutions to min-cost-DIF and threshold-DIF are of partic-

ular bene�t to heterogeneous decentralised information gathering systems with vast

amounts of sensor data. The solutions allow for larger systems and/or improved

mission performance in comparison to naive down-sampling methods.

The LQISO and extended-LQISO algorithms are applicable to multi-robot systems

that exchange signi�cant amounts of information during cooperative decision making.

The algorithms guide the use of communication resources by the decision-making

process. This resource usage reduction reserves more of the available bandwidth for

data fusion and can potentially improve system performance. In general, similar to

the data fusion case, the algorithms also allow for larger systems and/or improved

mission performance in comparison to naive down-sampling methods.

Negotiation-DIF combines the bene�ts of min-cost-DIF and extended-LQISO. It is

targeted to systems with high communication usage for both data fusion and decen-

tralised decision making.
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1.8 Outline

The remainder of this thesis is organised as follows:

Chapter 2 surveys related work in the �elds of communication e�ciency in data

fusion and communication e�ciency in decision making.

Chapter 3 de�nes the DIF problem and LQISO problem in addition to the overall

problem of communication e�ciency in information gathering which is the combina-

tion of the �rst two problems.

Chapter 4 presents our solution approach to the DIF problem with detailed analysis.

Chapter 5 presents our solution approaches to comms-LQ and �nally to negotiation-

DIF.

Chapter 6 presents the results of the experiments conducted using our solution

approach to DIF, LQISO and the general communication e�ciency in information

gathering problem.

Chapter 7 summarises the thesis and suggests possible future directions.

Appendix A proves the non-submodularity of linear-Gaussian information gather-

ing.
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Related Work

Several approaches to the problem of communication constraints in multi-robot sys-

tems have been suggested in existing work in the �eld. We have divided existing

approaches into three groups. Approaches that address communication constraints

in general are surveyed in Section 2.1. Approaches that improve the communication

e�ciency of data fusion are surveyed in Section 2.2, while approaches that improve

communication e�ciency in cooperative decision making are surveyed in Section 2.3.

Finally, in Section 2.4, we provide a brief survey on methods that actively plan for

connectivity. In Section 2.5, we position our work in relation to network �ow opti-

misation problems and in Section 2.6, we list existing sensor utility approximation

methods.

We summarise the presented related work, identify possible shortcomings and then

delineate our direction in Section 2.7. While existing work in the �eld has managed

to address the problem of communication constraints for speci�c multi-robot systems,

our aim is to present a uni�ed and principled approach to communication e�ciency

in decentralised information gathering systems. We are unaware of other approaches

with these properties.
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2.1 Addressing Communication Resource Limits

Available communication hardware in multi-robot systems typically imposes resource

limits that hinder the implementation of distributed algorithms having a consequent

e�ect on the ability to achieve the team goal. For a multi-robot system that relies on

wireless communication, the main resource limit that faces multi-robot algorithms is

the available data throughput between robots. Limits on available throughput in turn

a�ect the performance of decentralised algorithms as experimentally demonstrated

by Fitch and Lal [27] for the case of decentralised planning. This fundamental issue

has been addressed di�erently by di�erent research communities.

Early work addressing communication limits in multi-robot systems, such as that

of Yoshida et al. [107], resorted to enforcing local communication to minimise in-

terference between links. Ohkawa, Shibata and Tanie [76] analysed the size of the

communication neighbourhood necessary to achieve the team task. Recently, the

problem of communication e�ciency has gained increasing prominence [85].

One group of approaches addresses the problem of communication e�ciency by intel-

ligent selection of the multi-robot network topology. Bayram and Bozma [7] propose

optimising communication e�ciency by modelling the network topology formation as

a pairwise game. The authors use a centralised coordinator to adjust the network

topology to optimise a function that includes communication cost and task utility. An

alternative set of approaches, surveyed by Zhang et al. in [108], allows communication

resources to be regulated using auction methods where nodes bid for communication

resources.

The exploitation of heterogeneous capabilities of multi-robot teams was investigated

by Donald [21] who introduced the idea of information variants, investigating condi-

tions under which communication may be replaced with computation or prior knowl-

edge for example. Inspired by the idea, Tang and Parker [96] later introduced

Automated Synthesis of Multi-Robot Task Solutions through Software Recon�gura-

tion (ASyMTRe) with the aim to automatically determine connections, in a multi-

robot team, between modules with di�erent sensing, perceptual and motor capabil-
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ities. ASyMTRe is based on a de�nition of the set of available sensors, perceptual

schemas, communication schemas and motor schemas. DIF adopts a similar formu-

lation; however, the speci�c scope of DIF, information gathering applications with

communication limits or costs, allows DIF to explicitly de�ne a graph structure on

which the communication e�ciency can be posed as a decentralised optimisation

problem.

The limitations of wireless communication have also led to novel approaches that aim

to boost the capacity of wireless networks. Multi-radio multi-channel networks [102,

104] can signi�cantly increase network capacity by using multiple communication

channels in parallel. Recent work by Kuo and Fitch [57] has shown that a single

channel may be reused in a neighbour-to-neighbour architecture while avoiding mu-

tual interference. The authors demonstrate the ability of their approach to maintain

constant throughput with an increasing number of nodes.

Approaches that deal with communication e�ciency for general multi-robot systems

do not typically consider the content of the data exchanged. While the aim of these

approaches is to maximise the throughput available from source to destination, this

thesis takes a complementary view. Instead of transmitting as much data as possible,

we attempt to transmit only the most valuable data. Thus, data with little informa-

tion value do not consume communication resources and available bandwidth is used

e�ciently.

From an optimal control point of view, the entire communication-e�cient informa-

tion gathering problem can be modelled as a Dec-POMDP [14, 35, 37, 99] which is a

powerful and general approach. Communication decisions can be designated as possi-

ble actions that are selected using existing optimal control algorithms [37]. However,

Dec-POMDPs are computationally intractable for large problems due to the �curse

of dimensionality� [8]. We are interested in large problems with many robots and

sensors, and we focus on computationally e�cient solutions to the more specialised

DIF problem.
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2.2 Communication E�ciency in Data Fusion

The issue of high communication demand appeared during pioneering work in the �eld

of data fusion in robotics [40]. Several studies of possible e�cient network topologies

were conducted by Grocholsky and Nettleton [41, 74]. Nettleton also investigated

methods that avoid overlap in information for di�erent network topologies. More

recently, Gupta et al. [43] have proposed a sensor scheduling strategy for multiple

sensors with bounds on the estimation error covariance.

Current approaches to communication e�ciency in data fusion are typically spe-

cialised in their applications. One group of approaches is speci�c to wireless sensor

networks while another group is targeted at networks with severe communication lim-

its. A third group of approaches is specialised to target tracking. We discuss research

work that has been conducted on each of these three groups.

2.2.1 Wireless Sensor Networks

Wireless sensor networks typically consist of a large number of small sensor nodes

with limited energy and processing capability. Therefore, the need for localised com-

munication in wireless sensor networks to avoid the in�ation in the number of com-

munication links was realised during early work in this area [24]. Kulik, Heinzelman

and Balakrishnan [56] introduce the SPIN routing protocol as a routing mechanism

for sensor networks. Sensor nodes send an advertising message that contains meta-

data about the sensor information available and potential recipients send requests

as required. However, the semantics of the metadata are not speci�ed and are con-

sidered application-dependent. The strategy determines the order of sensor selection

out of a set of known sensor models. Bagula et al. [5] present an e�cient multi-

path routing algorithm for wireless sensor networks. The suggested routing model

incorporates delay and reliability quality-of-service constraints. Data from di�erent

sources is considered to be independent. Instead of bandwidth limits, Schurgers and

Srivastava [87] consider the case where communication is limited by available energy



2.2 Communication E�ciency in Data Fusion 23

at network nodes. Consequently, intelligent routing methods are employed to reduce

and equally distribute energy usage. A gradient-based routing technique is proposed

where nodes are assigned heights after a user transmits an �interest� message and

information is then sent along the steepest descent path. An extensive survey on

routing techniques in wireless sensor networks can be found in [3].

Communication protocols in wireless sensor networks typically consider homogeneous

nodes. Heterogeneous nodes with di�erent capabilities which may include sensing,

processing or both introduce extra challenges. One of those challenges is the prob-

lem of dynamically selecting the processing platform for the produced sensor data.

Heterogeneity also introduces the possibility of multicast routing which is typically

overlooked in research on wireless sensor networks.

2.2.2 Strict Communication Limits

Another body of work in the �eld of communication e�ciency investigates the is-

sue of information sharing with severely limited communication throughput. This

area of research is motivated by military applications or applications with miniature

sensor nodes. Data is regulated at the level of bits. Nerurkar and Roumeliotis [73]

present a cooperative localisation framework in which robots rely on the transmission

of quantised sensor observations due to strict communication limitations. The robots

choose the quantisation rule based on the available bandwidth. The authors present

hybrid estimators through which each agent processes its own analog observations

and quantised observations from other agents. The suggested approach produces

a communication-e�cient framework for cooperative localisation. Ribeiro and Gian-

nakis [83] introduce distributed estimators for binary observations with non-Gaussian

noise probabilities.

Field-scale robotics do not su�er from the severe limitations that necessitate com-

munication regulation at the bit level. Instead, the main cause of limitation in �eld

robotics is the abundance of sensor data.
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2.2.3 Target Tracking

Target tracking with high-data-rate sensors introduces extra complexity in decid-

ing when and where to process raw sensor data. However, existing communication-

e�cient target tracking solutions have traditionally only considered point observa-

tions. Chen et al. [16] propose an algorithm for sensor networks that uses minimal

communication by only transmitting relative changes. The algorithm relies on binary

sensors that detect the presence of a sensor inside a sector of a detection disc around

each sensor. Nodes only need to transmit information to their neighbours if the tar-

get changes its sector location. Zheng et al. [109] propose an auction-based adaptive

sensor activation algorithm for the purpose of target tracking. The algorithm relies

on predicting a target location and using auction methods to assign a new cluster

whose mission is to track the target. Since nodes outside the cluster are not activated

for tracking, they do not consume any computational or communication resources.

Hence, the energy e�ciency is improved.

Approaches aimed at target tracking o�er promising results for the application of

target tracking but do not readily generalise to other information gathering applica-

tions. They do not address the challenges of heterogeneous systems. More speci�cally,

these approaches do not address the problem of selecting where to process raw data

of high-data-rate sensors.

2.3 Communication E�ciency in Decision Making

Communication e�ciency in decision making branches from team decision theory

which can be traced back to the pioneering work of Radner and Marschack [64, 79].

The work presented by these authors stems from an economical background and its

aim is to analyse the performance of teams in organisations. Team decision theory

di�ers from game theory [72] by assuming cooperative teams instead of sel�sh agents.

Therefore, team decision theory is more relevant to multi-robot systems. Results from

team decision theory are usually limited to decentralised LQ problems.
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An important research focus in team decision theory is that of information struc-

tures [45]. Information structure design attempts to answer the question of which

agent needs to know what piece of information before deciding its next action. Thus,

the information structure design problem is closely related to communication-e�cient

decision making. However, the di�culty of the problem has limited theoretical re-

sults to the simple case of LQ systems [6, 32, 45, 84], while existing results for non-LQ

systems are limited to special applications.

Notable research work in communication-e�cient decision making from a di�erent

point of view is that of Klavins [54]. The author introduces the notion of communica-

tion complexity that attempts to capture the need for communication in multi-robot

systems based on the coordination requirements. The author analyses the complexity

of several communication schemes.

2.3.1 LQ Systems

LQ systems have linear dynamics and quadratic cost and are readily solvable for the

case of unlimited communication bandwidth. Interesting research problems appear

when communication constraints are imposed. Rotkowitz and Lall [84] identify a class

of convex problems in decentralised LQ control. The authors show that decentralised

LQ problems with information structure constraints remain convex if the condition of

quadratic invariance is satis�ed. Schwager et al. [88] give a condition on the stability

of a second-order decentralised control system in terms of the network update time.

Matveev and Savkin [67] analyse the problem of a centralised controller receiving

observations over communication channels from distributed sensors. The authors

provide tight lower bounds on the channel capacities for which stabilization by the

controller is possible.

A directly related problem to information structure analysis is distributed LQ con-

trol. In distributed LQ control, communication costs are assigned to elements of the

state vector or the control decisions are explicitly subject to information structure

constraints. Speyer, Seok and Michelin [94] formulate an LQ team optimal control
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problem with stochastic dynamics and observations where communication costs are

appended to the Lagrangian. Although this is an intuitive approach, it is di�cult

to solve. Molin and Hirche [69] suggest a solution to the LQ problem with commu-

nication costs for the discrete-time �nite horizon case. The authors formulate the

scheduling decisions in a dynamic programming framework with control optimality

retained with respect to the chosen scheduling. Semsar-Kazerooni and Khorasani [89]

suggest the decomposition of a control to local and global components allowing for

a decentralised consensus algorithm with guaranteed convergence. Finally, Nguyen

et al. [75] use decentralised linear functional observers to reduce the communication

requirements of robotic formation feedback control.

The use of linear matrix inequalities (LMIs) in linear control problems allows addi-

tional design criteria to be added to the LQ problem [51, 86, 90, 91]. Lu, Xie and

Fu [62] consider the problem of choosing a �communication sequence� of observations

for a H∞ control problem. The communication sequence is assumed to be periodic

and an LMI optimisation problem is devised to determine the optimal sequence.

Scherer, Gahinet and Chilali [86] introduce an LMI approach to linear control for

multi-objective control. As an example, the approach shows how a mixture of H2

and H∞ objectives can be speci�ed using LMIs. This mixture is not achievable using

classical Riccati equation solutions. Semsar-Kazerooni and Khorasani [90] provide a

solution for the LQ team problem with a restricted information structure. In Sec-

tion 5.2, we build on this solution by introducing a novel distributed LQ control

approach that allows the designation of communication link costs instead of a �xed

information structure.

2.3.2 Non-LQ Systems

As an example of an approach to communication-e�cient decision making for a non-

LQ system, Jennings's group [25] introduces a decentralised information gathering

system where agents �rst communicate to �nd if their decisions are coupled in utility.

If they are coupled, then they ensure that each others' decisions are considered in
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their optimisation. The team utility is to maximise information over a time horizon.

Agents exchange predicted likelihoods over the time horizon and evaluate overlap.

The likelihoods have to be transmitted for all possible actions and for all steps of the

horizon. This amounts to a large amount of data being communicated. Work by Xu,

Fitch and Sukkarieh [105] allows robots to incrementally learn the prediction of other

robots' observation utility and adjust inter-robot negotiation accordingly. The work

proposes a method by which robots switch between negotiation and local decision

making based on the learnt utility. This approach is suited to homogeneous systems

with su�cient capacity for the extra computational overhead necessitated by the

learning process. Addressing the problem of spatial redeployment for a multi-robot

team due to the introduction of new agent-task pairs, Liu and Shell [61] investigate

the e�ect of inter-robot communication range on paths produced by their algorithm.

Simulations results show that little change is observed in resulting paths when robots

increase their direct neighbourhood size beyond seven. This demonstrates relevance

to applications with limited communication ranges. Other relevant pieces of work

include the work of Rekleitis et al. [82] that presents a multi-robot coverage algo-

rithm with robots only assuming line-of-sight communication and that of Otte and

Correll [77] that introduces the Any-Com method which seeks e�cient use of com-

munication for the purpose of path planning.

Task allocation is occasionally employed to simplify multi-robot coordination [55,

105]. Liu and Shell [60] introduce an algorithm for multi-robot task-allocation with

distributed variants. The distributed variants rely on message passing and do not

assume global knowledge of the problem speci�cation. In our work, we rely on algo-

rithms that reach task allocation implicitly rather than explicitly.

In the context of decentralised optimisation, we note that algorithms introduced by

Mathews [66] allow for dynamic communication rates in decentralised optimisation.

The author employs decentralised optimisation to decide on control actions over a

receding time horizon for decentralised information gathering. The algorithm dy-

namically determines the required communication rates for the optimisation by the
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estimated coupling in utility between sensor nodes. The algorithm however does not

allow for di�erent communication costs to be assigned to di�erent links.

2.4 Communication-Aware Motion Planning

Communication-aware motion planning has recently become a highly active research

area in robotics. Communication-aware motion planning is an approach to the issue of

communication in multi-robot systems through which robots actively seek to maintain

some communication quality metric while performing their tasks. Hsieh et al. [48] use

a radio signal strength map with a reactive controller to maintain communication links

between robots. Mosto� [71] represents communication quality degradation as noise

to allow for an information-theoretic trade-o� between sensing and communication.

Fink, Ribeiro and Kumar [26] use a rapidly-exploring random tree (RRT) motion

planner with a convex optimisation that is run at each tree extension to determine

if the communication quality constraints are satis�ed. Many other approaches have

also been suggested by various authors for di�erent scenarios. For instance, Stachura

and Frew [95] target motion planning for multi-hop communication scenarios while

others consider connections to a �xed ground station [34, 97]. As another example,

the work by Mather and Hsieh [65] is targeted for task allocation tasks. Finally,

Lindhé and Johansson [58] speci�cally address motion planning for tracking while

considering multipath fading and Goerner, Chakraborty and Sycara [36] address the

case of mobile robots collecting data from spatially distributed sources.

Although connectivity maintenance is imperative for multi-robot systems, the prob-

lem we de�ne in this thesis is largely orthogonal to the problem of connectivity and

with a di�erent objective. The problems we de�ne assume a connected network with

focus on using this connected network e�ciently by choosing when data should be

transmitted instead.
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2.5 Network Flow Optimisation

A classic problem in network �ow optimisation is the minimum cost �ow problem [2].

The minimum cost �ow problem has known e�cient decentralised solutions; however,

the DIF problem is more closely related to the multicast network routing problem.

This problem is equivalent to the Steiner tree problem on directed graphs which is NP-

complete [80]. In a special case using network coding, multicast routing can be solved

in polynomial time and in a decentralised manner [19, 103]. Our algorithms exploit

this special case. However, in our implementations we use an approximation that

approaches the performance provided by network coding in relatively small networks.

2.6 Sensor Utility

Sensor utility can be computed exactly using the partially observable Markov decision

process (POMDP) formulation of the information gathering problem; however, this

problem formulation is intractable since Dec-POMDPs are NEXP-complete [8]. Due

to the di�culty of the problem of sensor utility estimation, existing approaches either

rely on myopic approximations or theoretical bounds that can be obtained for simple

problems.

An approximate myopic reward for sensor utility is used in the work by Williamson,

Gerding and Jennings [100]. The utility is based on the Kullback�Leibler divergence

obtained by incorporating an observation. Sensor utility is approximated by comput-

ing the entropy reduction caused by the last observation received. This approach is

advantageous due to the simplicity of implementation since entropy reduction can be

computed without additional data storage and with a computational time indepen-

dent of the planning horizon.

Some theoretical bounds related to sensor utility have been devised for linear-Gaussian

systems. Work by Sastry's group [92] provides lower and upper bounds for the com-

munication rate required to maintain a bounded error covariance for a Kalman �lter.

Pappas's group [4] provides an upper bound on the deviation in performance after a
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speci�c time horizon due to a current deviation in the estimate. This upper bound

can be used as an upper bound of non-myopic utility of a sensor observation. How-

ever, such a bound is usually conservative and may not be of much bene�t in some

cases.

Sensor utility estimation can be made more e�cient by learning the utility of obser-

vations as a function of the robot and target states. This approach suggested by Xu,

Fitch and Sukkarieh [105] is suited to homogeneous systems with su�cient capacity

for the extra computational overhead necessitated by the learning process. To avoid

this additional overhead, in this thesis, we employ a simple myopic approximation

similar to that in [100].

2.7 Summary

Although existing approaches to communication e�ciency have addressed a large

range of outstanding problems, they unnecessarily assume the rigidity of various el-

ements in a multi-robot system. A dynamic and uni�ed strategy to the problem of

communication for information gathering tasks is achievable by modelling the trade-

o� between the resources of available hardware components and the team mission

as a distributed optimisation. While the use of multi-radio multi-channel networks

has boosted available bandwidth for a general multi-robot network, the common as-

sumption is that the bandwidth requirements cannot be adjusted throughout system

operation. Another unnecessary assumption which is of main importance to hetero-

geneous systems is the assumption of a �xed sensor-data processing pipeline. Finally,

communication-e�cient decision making approaches have typically ignored the need

to simultaneously consider communication e�ciency in data fusion.

In this thesis, we seek a principled, dynamic, uni�ed and practical approach to com-

munication e�ciency in information gathering. The �ow of information between

various nodes of the system is expected to change throughout system operation. The

dynamics of the �ow should be dictated by an optimisation of the trade-o� between
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communication resource limits and information utility. The approach should be �exi-

ble enough to consider heterogeneous systems and to consider communication at both

the data fusion and decision making layers. Finally, for practical implementation, the

approach should be decentralised and have minimal computation and communication

overhead.
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Chapter 3

The Dynamic Information Flow

Problem

In this chapter, we formally de�ne the dynamic information �ow (DIF) problem.

We introduce two variants, min-cost-DIF and threshold-DIF, both of which corre-

spond to communication e�ciency in data fusion. We then introduce a third variant,

negotiation-DIF, as a problem formulation for communication e�ciency in informa-

tion gathering by extending min-cost-DIF to include communication-e�cient decision

making.

3.1 The DIF Problem

The goal in the DIF problem is to maximise information gain by controlling the

�ow of information within a decentralised information gathering system subject to

communication and processing constraints. We de�ne the DIF problem in general

form.

Before providing the formal de�nition of DIF, we brie�y state the key assumptions

that de�ne its scope. The DIF formulation targets decentralised information gath-

ering systems with the following properties. The formulation assumes that decision
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making is decoupled from estimation or data fusion. The controller, or the decision

making module, supposes the existence of an estimator that provides an estimate of

the world with a measure of uncertainty. The separation between estimation and

control [33] is utilised due to the simpli�cation it provides. It also allows us to im-

prove communication e�ciency without the complexity of having to consider control

decisions concurrently. The second assumption is that sensors, which are the input

sources of information, continuously produce data that are consumed by other ele-

ments of the system. Moreover, raw sensor data may need to be processed before

being used in estimation.

In DIF, the �ow of data between elements is modelled through a graph structure.

A decentralised information gathering system is a con�guration of several elemental

components. Sensors are elements that generate sensor data measured by physical

sensing devices, such as laser scanners and cameras. Data from such sensors are

transformed into observations by applying algorithms such as object detection and

classi�cation. Processors are computational elements that perform these processing

tasks. Processors may be cascaded if necessary. The observations generated by pro-

cessors act as input into estimator elements that maintain belief states. For example,

an estimator could be an extended Kalman �lter (EKF) in the tracking case or an

occupancy grid in the mapping case. Controller elements use the estimate from the

estimators to make decisions and take actions. For instance, a controller may be the

path planner of a robot. For simplicity of presentation, we defer discussing the role

of controller elements to Section 3.4.

Data �ows via a communication system from sensors to processors, from processors

to other processors and from processors to estimators. The topology of the resulting

network is a directed acyclic graph, where information value, communication and

computation demands induce costs or constraints on the links in the graph. The

induced link costs may vary according to the properties of the underlying communi-

cation mechanism, which may not be the same for all links. Elements of the system

generally are physically distributed among multiple robots or ground stations and

therefore communicate using an inter-robot communication system such as a wireless
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network. It is also possible for multiple elements to reside within a single physical

platform and communicate using an intra-robot communication system such as a

wired network or in-memory communication.

These system elements can also be viewed in terms of the well-known network �ow

problem [2] as follows. The commodity that �ows through the network in this case

is information in the form of sensor data or processed observations. Sensors cor-

respond to supply nodes, estimators correspond to demand nodes, and processors

correspond to intermediate, or transshipment, nodes. Communication links between

nodes correspond to arcs or links between nodes of the network.

An example diagram of a decentralised information gathering system is shown in

Figure 3.1a. This system topology is represented by the directed acyclic graph shown

in Figure 3.1b. These diagrams could correspond, for example, to the case of two

robots tracking a target using di�erent types of sensors and with access to an o�-

board processing station. For target detection, each robot either processes its raw

sensor data on-board or transmits the data to be processed o�-board. Moreover, the

robots can choose to either share raw sensor data or processed point observations

instead.

Formally, the data fusion layer of a decentralised information gathering team is rep-

resented by a directed acyclic graph (DAG) G = {V,E} where V is the set of vertices

(or equivalently, nodes) and E is the set of edges or links. In the graph G, for every

i, k ∈ V , if (i, k) ∈ E then we say that k is a child node of i and i is a parent node of

k. The set C(i) = {k ∈ V : (i, k) ∈ E} is the set of children of node i. Similarly, the

set P(k) = {i ∈ V : (i, k) ∈ E} is de�ned as the set of parents of node k. We de�ne

N (i) = P(i)∪ C(i) as the neighbourhood of node i. A node with no parents is called

a head node. A node with no children is called a tail node. We denote the depth of

the graph G as κ(G) de�ned as the number of nodes in the longest path from a head

node to a tail node. The set C̄(i) = {k ∈ V : there exists a directed path from i to k}
is referred to as the set of successors of node i. The set P̄(k) = {i ∈ V : there exists

a directed path from i to k} is referred to as the set of ancestors of node i.



36 The Dynamic Information Flow Problem

Robot 1 Robot 2
Ground Station
Computer
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Detection
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Planner
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Planner
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Sensor 1 Sensor 2

Processor 1 Processor 2 Processor 3

Estimator 1 Estimator 2

(b)

Figure 3.1 � (a) An example of a decentralised information gathering system with two
robots and one o�-board processor. (b) The corresponding network topology in our
dynamic information �ow formulation.

The set of nodes is partitioned into three mutually exclusive subsets: the set of sensors

Vs which act as sources, the set of processor nodes Vp which act as intermediate nodes

and the set of estimator nodes Ve which act as destination nodes. Links connect nodes

in Vs to nodes in Vp, within Vp and nodes in Vp to nodes in Ve.

Sensor data is multicast from each sensor node m ∈ Vs to all connected estimator

nodes j ∈ Ve. Sensor m produces data at a �xed rate and this data is consumed by

connected estimators at the same rate. To represent this production/consumption

rate we introduce the variable rmi (j) at node i for each sensor m and destination j.

Variable rmi (j) is called the inward �ow and is set to sensor m's data rate if i=m or

else the negative of sensorm's data rate if i=j or 0 otherwise. The time-averaged data

rate of the �ow passing through link (i, k) originating from source m and destined

to j is de�ned as xmik(j). As an example, Figure 3.2 shows a graph of an acyclic

network with a single source. The inward �ow variables are indicated for the source
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rm(j1) = rm(j2) = 1

m

i1 i2

i3

i4

j1 j2

rj1(j1) = −1 rj2(j2) = −1

[0.5, 0.5] [0.5, 0.5]

[0, 0.5] [0.5, 0]

[0.5, 0.5][0.5, 0]

[0.5, 0]

[0, 0.5]

[0, 0.5]

Figure 3.2 � An example routing con�guration for the butter�y network. Numbers
within brackets are the �ow values for each link. The �rst value corresponds to
destination j1 and the second corresponds to destination j2.

and destination nodes. A possible �ow variable con�guration is also shown for each

link inside square brackets. The left entry is for j1 and the right entry is for j2.

A set of �ow variables {xmik(j) : j ∈ Ve} will lead to an average total �ow of hmik

on link (i, k). The relation between the total �ow and the destination-speci�c �ow

variables will also depend on the underlying multicast implementation. Network

coding allows data received at a node to be encoded or decoded. It has been shown

that, with a proper choice of encoding/decoding functions, the total �ow is simply

the maximum �ow over all destinations as de�ned in Equation 3.1 [1]. This relation

will be assumed for the current problem formulation. The general validity of this

assumption is discussed further in Section 4.1.3.

hmik = max
j∈Ve

xmik(j) (3.1)

Communication load, computation load and sensor observation utility induce a net

link cost of cmik per unit of data �ow from source m passing through link (i, k). The
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link cost is multiplied by the total �ow hmik to obtain the total link cost arising from

source m. Summing over all sources, link (i, k) has a total cost of
∑

m c
m
ikh

m
ik.

Sensor observations induce a reward when reaching an estimator. In order to represent

this reward, the information value of sensor m to estimator j is subtracted from the

cost of each link incident to j.

Because a sensor observation may have little value for a given estimator, the system

requires a mechanism by which a sensor can decide not to send any data to a certain

destination. We model this option by adding a virtual zero-cost link directly from

each sensor to all connected estimators.

We now de�ne the general dynamic information �ow problem as follows. Given link

costs {cmik} and inward �ow rates {rmi (j)}, choose the set of �ow variables {xmik(j)}
such that the total cost summed over all links in the network is minimised subject to

constraints. Link costs and constraints may vary over time.

3.2 Min-Cost-DIF

We de�ne the �rst concrete form of the general problem, min-cost-DIF, according to

the constrained optimisation de�ned in (3.2-3.5). Information value, communication

and computation resource demand are represented using link costs. This formulation

is appropriate for situations where the relative costs between the items are known a

priori.

minimise
∑

(i,k)∈E,m∈Vs

cmikh
m
ik (3.2)

subject to xmik(j) ≥ 0 (3.3)

hmik = max
j∈Ve

xmik(j) (3.4)∑
l∈P(i)

xmli (j)−
∑
k∈C(i)

xmik(j) + rmi (j) = 0 (3.5)
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The �rst constraint given by Inequality 3.3 ensures that �ow is always positive. The

second constraint given by Equation 3.4 represents the multicast condition and the

third constraint given by Equation 3.5 ensures that the sum of all inward and outward

�ow at a node is zero.

In min-cost-DIF, link costs may change over time due to changes in communication

and processing costs as well as changes in sensor utility. For example, robots may

move closer or further away from each other, resulting in a change in communication

costs. Sensor viewpoint may also change, leading to a change in the value of on-board

sensor observations.

3.3 Threshold-DIF

We introduce a second problem variant, threshold-DIF, to represent the case where

the correct scale between communication costs, computation costs and information

value is not known a priori. In this case, communication bandwidth and processing

power are viewed as limited resources. The goal of threshold-DIF is thus to max-

imise information gain subject to communication bandwidth and processing power

constraints.

We augment the optimisation problem (3.2-3.5) to include the two additional con-

straints (3.6-3.7) and de�ne three additional input parameters, νmik , Cik and Ks, to

represent resource capacity limits. Constraint 3.6 bounds the weighted sum of �ows

originating from di�erent sensors to respect a �xed capacity Cik. The summation

over all sensors in Vs is required since a link may carry messages originating from

di�erent sensors. Weights {νmik} are used to scale �ow values hmik on a per-link basis.

For example, variations in required communication bandwidth due to link quality

can be modelled by assigning appropriate values to {νmik}. Similar to link costs, these

variables may change over time.

∑
m∈Vs

νmikh
m
ik ≤ Cik (3.6)
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∑
(i,k)∈Ss

∑
m

νmikh
m
ik ≤ Ks (3.7)

To motivate the constraints introduced by threshold-DIF, consider the network dia-

gram in Figure 3.3 which is a subset of the diagram in Figure 3.1. The limit Cik in

Constraint 3.6 for instance might represent the limit on the image-processing frame-

rate applied to the link from the camera to the object detection module in Robot 1.

Now, if we consider the link from the object detection module in Robot 1 to Robot

2, it may hold processed observations originating from both the camera and laser. To

account for the possible discrepancy in the data rates from these sensors, the weights

νmik are chosen to accordingly. To motivate Constraint 3.7, we need to consider links

that share a common resource.

Referring once more to Figure 3.3, Constraint 3.7 may be used to represent the fol-

lowing resource constraints. If the two robots in this example exclusively use wireless

communications to share observations, then all four links that cross the robot bound-

aries share a common resource (the wireless communication medium). This constraint

is indicated in the �gure by the dashed link. Moreover, if each robot only uses one

computer for all processing requirements then the links from both sensors to each of

the object detection modules share another common resource, the on-board process-

ing computer. These constraints are indicated in the �gure by dotted links. This class

of constraints, which we call inter-link constraints, is represented by Equation 3.7,

where Ks is a �xed upper bound on resource s and Ss is the set of links sharing

resource s. Again, the �ow rates are weighted because inter-link constraints impose

bounds on the total �ow across di�erent links with data from di�erent sources. For

example, the link holding raw images from the camera will typically hold higher data

rates than that from the laser, yet the di�erence in this data rate might decrease

after processing. Links involved in such constraints could either be emanating from

di�erent nodes, as shown in the example in Figure 3.3, or from the same node, when

a node sends to many nodes using the same medium.
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Robot 1 Robot 2

Camera Laser

Object
Detection

Object
Detection

EKF and Path
Planner

EKF and Path
Planner

Figure 3.3 � An example of a system with inter-link constraints. Links tagged with
the dashed line share a wireless communication medium, while those tagged with a
dotted line share a common processing resource.

3.4 Negotiation-DIF

The third problem addressed in this thesis is negotiation-DIF. Negotiation-DIF ex-

tends DIF to include communication e�ciency in decision making. The objective

of negotiation-DIF is to minimise communication costs for data fusion and decision

making simultaneously.

In negotiation-DIF, a decision making layer is added to the DIF formulation. The

decision making layer includes controller nodes that take as input the state of an

estimator and produce as output an action decision. The controller nodes may only

require a subset of the estimator state. The controllers also negotiate collaterally

over the available communication medium to achieve a cooperative team decision.

Figure 3.4 is an example diagram of a decentralised information gathering system

with the decision making layer shown.

The decision making layer does not retain the directed acyclic property of the DIF

network. Therefore, the approaches to min-cost-DIF and threshold-DIF are not appli-

cable. The objective of negotiation-DIF can be achieved through a partially observ-

able Markov decision process (POMDP) formulation; however, this formulation leads

to an intractable problem. Instead, we aim to solve a simpler problem by making the

following assumptions. We assume that the information gathering problem layers

decentralised data fusion (DDF) and decentralised decision making (DDM) are de-
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Robot 1 Robot 2 Robot 3

Sensor Sensor Sensor

Processor Processor Processor

Estimator Estimator Estimator

Controller Controller Controller

Data Fusion

Decision
Making

Figure 3.4 � Communication layers of a decentralised information gathering system.

coupled. We further assume that the DDF layer has a DIF representation. The �nal

assumption is that the DDM layer includes negotiation that occurs at an adjustable

rate.

Since the two layers share a common resource, the wireless communication medium,

the usage of this resource should be regulated collectively. For simplicity, we resort to

link costs and adopt the min-cost-DIF formulation for the data fusion layer. The two

layers use the same values for link costs but communication e�ciency is optimised

separately.

The separation between DDF and DDM is closely related to the issue of separation

between estimation and control studied by stochastic-control theorists [101]. This

separation retains equivalence for some special cases. Nevertheless, it is a common

assumption for most practical information gathering implementations. The separation

means that communication for each layer can be adjusted separately, avoiding the

di�culty of balancing the utility of communication between the two layers. However,

we attempt to retain some coupling between the layers by assigning the same link
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costs. Furthermore, as delineated later in Section 5.4, the solution at the DDM layer

also attempts to improve the sensor utility estimate for the DDF.

Negotiation-DIF is de�ned abstractly as follows. Given the two sets of equivalent

link costs for DDF and DDM communication, determine the communication rates

for DDM and the routing variables {xmik(j)} of the min-cost-DIF network based on

the sensor utility. The comms-linear-quadratic (LQ) problem de�ned in Section 3.4.1

permits a concrete problem de�nition for communication e�ciency at the decision

making layer.

3.4.1 Comms-LQ

Comms-LQ is a communication-e�cient decision making problem formulation for LQ

systems. The objective of comms-LQ is to obtain a communication-e�cient feedback

control policy of an LQ team based on the communication costs between robots.

Although comms-LQ is targeted to LQ systems, it can be extended to non-LQ systems

through local LQ approximations.

An LQ team is a decentralised team of robots with the following properties. The

robots have decoupled linear dynamics. The dynamics of robot i are given by Equa-

tion 3.8, where xi is the state vector, and ui is the control vector. The team has a

global quadratic cost de�ned in Equation 3.9, which is known to all robots. The team

state vector is denoted by x, and u is the team control vector. The team control cost

R is assumed to be block diagonal. Since the robot dynamics are decoupled, the team

dynamics matrices (A, B) will also be block diagonal.

ẋi = fi(xi, ui) = Aixi +Biui (3.8)

J =
1

2

∫
xTQx+ uTRu dt (3.9)

We assume that the control policy has the form given by Equation 3.10 where K is a

feedback gain matrix which is always positive semi-de�nite. Since R and B are block
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diagonal, the control policy for robot i is given by Equation 3.11 where Ki is the i-th

row of the matrix K and Ri is the i-th block of R.

u = −R−1BTKx (3.10)

ui = −R−1
i BT

i Kix (3.11)

In comms-LQ, we assume that the required communication rate between agents can be

directly determined from the values of the feedback gain matrix K. This assumption

is not strictly correct; however, it serves as a useful approximation. Furthermore,

the interpretation of this relation is not unique. One interpretation of this relation

is achieved by taking the absolute value of the terms in K as proportionality weights

for the communication rates required between robots.

In general, the obtained matrixK is dense. This means that the control vector for each

robot depends on the entire team state. For a decentralised system, this means that

each robot must continuously receive state information from all robots. To improve

communication e�ciency, we would like to reduce the required communication based

on a given set of communication costs.

To this end, de�ne the symmetric communication cost matrix U ∈ Sn with the

same dimensions as K. Each element in U is a positive communication cost of the

corresponding element in K. This cost corresponds to the communication cost of the

link represented by the element in K. Further de�ne the diagonal matrix Ū which

contains the lower-triangular elements of U placed along its diagonal. Finally, de�ne

the vector vec(K) as the vector which consists of the lower-triangular elements of K

put in vector form.

The comms-LQ problem is formally de�ned by Problem 3.13. The objective is given

by Equation 3.12. Given a set of communication link costs U , state cost Q, control

cost R, the solution of comms-LQ is to �nd a feedback matrix K that minimises Ob-

jective 3.12. By assumption, this matrix K provides an appropriate communication

policy. Problem 3.13 is a di�cult problem to solve with no tractable solution to the

best of the author's knowledge. In Section 5.2, we present an approximate solution
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based on the linear matrix inequality (LMI) formulation of the LQ optimal control

problem.

Jc =
1

2

{∫
xTQx+ uTRu dt+ vec(K)T Ūvec(K)

}
(3.12)

minimise (3.12)

subject to (3.8) and (3.10)
(3.13)

3.4.2 Problem Formulation

With the de�nition of comms-LQ, we can concretely de�ne the negotiation-DIF prob-

lem. Since the comms-LQ problem formulation is limited to LQ teams, we assume a

local LQ approximation of the information gathering problem. This assumption en-

tails both the attainability of an LQ approximation as well as its representativeness.

Another key assumption, which follows from the decoupling assumption mentioned

in the negotiation-DIF graph representation, is that the decision making layer as-

sumes unconstrained information �ow at the data fusion layer. Negotiation-DIF is

now de�ned as follows. Given the sensor utility, common communication costs for

both DDF and DDM and a local LQ approximation, solve the problem (3.2-3.5) and

Problem 3.13. Figure 3.5 schematically shows how the same link cost is assumed for

both layers.

3.5 Sensor Utility

Sensor utility is one of the main inputs into the DIF problem because the goal in

DIF is to maximise information gathering performance under resource constraints.

Sensor utility is a measure that includes the relative importance of sensor data with

respect to a speci�c estimator. From an information gathering perspective, this im-

portance corresponds to the predicted entropy reduction or mutual information that

is commonly used as a decision metric in that domain.
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Robot 1 Robot 2

Sensor Sensor

Processor Processor

Estimator Estimator

Controller Controller

Estimation

Decision
Making

same link costs

Figure 3.5 � Layout of negotiation-DIF.

Computing the exact sensor utility is possible through the decentralised partially ob-

servable Markov decision process (Dec-POMDP) formulation. However, given that

Dec-POMDPs are NEXP-complete, for the demonstrations shown in this thesis, we

employed a simple myopic approximation. This approximation is presented in Sec-

tion 4.1.3 with a discussion of the validity of this approximation provided in Sec-

tion 4.4. This discussion shows that e�ciently computable theoretical bounds for

sensor utility can be too conservative to be of practical importance. It also shows

that the myopic approximation, on the other hand, can be relatively accurate when

planning occurs over a �xed �nite horizon.

In DIF, sensor utility is represented by a value that is subtracted from the cost of links

incident to estimators. The DIF problem formulation assumes an objective function

that is linear in the �ow-rate variables. The resultant cost contribution of source m

on each link (i, k) is equal to cmikh
m
ik. This assumption implies that the reward at an

estimator should be proportional to the �ow rate. This assumption is not valid in
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general; however, with the sensor utility being continuously updated, the error caused

by this assumption remains practically acceptable.

An important concept is the evaluation of sensor utility based on the change sensor

observations induce in action decisions. Interestingly, this concept intersects with

the idea of non-myopic sensor utility estimation since it considers the future e�ect

of an observation. In Section 5.4, we show how the sensor utility estimate can be

improved when coupled with the decision making layer through the negotiation-DIF

formulation.

3.6 Resource Costs and Limits

DIF relies on the speci�cation of communication and/or computation costs or lim-

its. The intent is that costs represent contention for resources while limits represent

resource constraints. Obtaining a model that infers these costs or limits from the

underlying hardware con�guration has been studied by various researchers [36, 85],

yet this issue is outside the scope of this thesis. The crude model employed by the

demonstrations shown in this thesis is speci�ed in Section 4.1.3.

3.7 Summary

This chapter presented the three DIF problems for which we aim to introduce a

solution in this thesis. Solutions to the �rst two DIF variants, min-cost-DIF and

threshold-DIF are presented in Chapter 4. A solution to the third variant is presented

in Chapter 5.
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Chapter 4

Min-Cost-DIF and Threshold-DIF

In this chapter, we present algorithms that solve the min-cost-DIF and threshold-

DIF problems de�ned in Section 3.1. The solution to min-cost-DIF is presented in

Section 4.1. Section 4.2 then presents a distributed optimisation method required by

our solution to threshold-DIF which appears in Section 4.3. Section 4.4 provides a

brief empirical analysis on the myopic approximation of sensor utility used by our

implementation of the algorithms used in this chapter.

4.1 Min-Cost-DIF

In this section, we present a message-passing algorithm that solves the min-cost-

DIF problem. We introduce a mapping that transforms an instance of min-cost-

DIF into an instance of multicast network routing, prove equivalence and show that

an algorithm that was originally developed for multicast network routing also �nds

an optimal solution to min-cost-DIF. We then describe our implementation of this

algorithm in the context of min-cost-DIF.
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4.1.1 Min-Cost-DIF Using Multicast Network Routing

An instance of min-cost-DIF can be transformed into an instance of multicast network

routing [19, 103] as follows. The �ow variable xik(j) is replaced with ti(j)φik(j), where

ti(j) is the total �ow passing through i and destined to j while φik(j) is the routing

variable for link (i, k); more speci�cally, it is the fraction of ti(j) that is routed to k.

Following this change of variables, the resulting formulation is given by the optimi-

sation problem (4.1-4.5). Constraint 4.3 states that the sum of the routing variables

for each node is equal to one, while Equation 4.4 and Equation 4.5 are equivalent to

Equation 3.4 and Equation 3.5 respectively.

minimise
∑

(i,k)∈E

cikhik (4.1)

subject to φik(j) ≥ 0 (4.2)∑
k∈C(i)

φik(j) = 1 (4.3)

hik = max
j
ti(j)φik(j) (4.4)

ti(j) = ri(j) +
∑
l∈P(i)

tl(j)φli(j) (4.5)

Given this mapping, existing algorithms for multicast network routing can be applied.

Here we summarise one such algorithm, originally presented in [19]. The algorithm

is based on message passing and relies on obtaining the marginal cost δik(j) for each

link. The marginal cost is the rate at which the total cost increases due to a unit

increase in �ow along that link and is given by Equation 4.6.
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δik(j) =



cik/n+
∑
l∈C(k)

φkl(j)δkl(j)

if ti(j)φik(j) and n−1 other

�ows on link (i, k) are the

maximum

∑
l∈C(k)

φkl(j)δkl(j) otherwise

(4.6)

Recall from Chapter 3 that in the context of information gathering sources correspond

to sensors, processors to intermediate nodes and estimators to destination nodes.

Min-cost-DIF can be solved for each source m independently and in parallel. The full

problem can be decomposed into independent sub-problems, one for each source, since

the objective is additive and there are no inter-source constraints. This is evident from

the problem formulation (3.2-3.5). Therefore, for simplicity of notation the subscript

m is dropped from all variables in this section.

At the start of the algorithm, the routing variables {φik(j)} are initialised arbitrarily

such that they obey Constraints 4.2 and 4.3. The routing variables are then repeatedly

updated such that after iteration t the routing variables are set as φt+1
ik (j) = φtik(j) +

∆φik(j)
t. The update direction ∆φik(j)

t is de�ned in Equation 4.7. The set Ej is the

set of edges belonging to the subgraph containing the ancestors of destination j and

δi,min(j) = mink δik(j).

∆φik(j)
t =



0 if (i, k) ∈ Ej

−min

{
φtik(j),

α(δik(j)− δi,min(j))

ti(j)

}
if δik(j) 6= δi,min(j)∑

δip(j)6=
δi,min(j)

∆φip(j)
t if δik(j) = δi,min(j)

(4.7)

The algorithm runs synchronously. First, the head nodes send messages with their

�ow contributions to their children. Once a node receives messages from all of its

parents, it passes the message to its own children and so forth. The purpose of
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this downward sweep is to allow nodes to compute the �ow of the current routing

con�guration. The �ow values are necessary to compute the marginal costs required

in the upward sweep. The downward sweep is followed by an upward sweep during

which the marginal costs are computed according to Equation 4.6 and the routing

variables are updated according to Equation 4.7. The downward and upward sweeps

are decentralised, synchronous and are guaranteed to visit every node. Their sequence

is dictated by Algorithm 4.1. The synchronicity property of Algorithm 4.1 is proved

in Lemma 4.1.

Due to possible changes in link costs, this message passing optimisation runs contin-

uously throughout system operation. As the system con�guration changes, link costs

are updated with new values. To ensure convergence, the interval between updates

is set to an adequate time period. Further details on the appropriate length of the

interval between updates can be found in Section 4.1.3.

Algorithm 4.1: Synchronous message passing on DAGs

1: For node i
2: if i is a head node then
3: Perform a downward update and send downward message to children
4: end if
5: loop
6: if a downward message is received from all parents then
7: Perform a downward update and send downward message to children
8: if i is a tail node then
9: Perform an upward update and send upward message to parents
10: end if
11: end if
12: if an upward message is received from all children then
13: Perform an upward update and send upward message to parents
14: if i is a head node then
15: Perform a downward update and downward message to children
16: end if
17: end if
18: end loop
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Lemma 4.1 (Graph traversal synchronicity). In Algorithm 4.1, after node i has

performed its t-th downward update and before forwarding this update:

1. Node i and all of its successors would have performed exactly t − 1 upward

updates

2. All of its ancestors would have performed exactly t downward updates

Proof. Suppose one of node i's successors has performed t′ > t− 1 upward updates.

This means that at least one tail node in the successors has performed t′ downward

updates. This is impossible because node i has only yet forwarded t − 1 downward

messages. Since node i has performed t updates then its ancestors have performed

at least t updates. Now, suppose one of node i's ancestors has performed t′′ updates

where t′′ > t. Then, the head nodes in the ancestry have performed at least t′′

updates. This in turn means that they have performed t′′ − 1 upward updates which

means the tail nodes have performed t′′ − 1 > t − 1 updates, which is impossible

as just shown. This means that node i has forwarded at least t′ − 1 ≥ t downward

updates, which leads to a contradiction.

Due to observation rewards, negative costs may be assigned to links incident to an

estimator j ∈ Ve. These negative costs are handled within the framework of the

multicast network routing algorithm by solving an equivalent problem. A large enough

constant c̄ is added to all {cij : j ∈ Ve} to obtain a set of non-negative cost variables

{c′ik} de�ned in (4.8).

The equivalence of solving the optimisation problem (4.1-4.5) to solving the problem

with cost variable c′ik instead of cik is proved in Theorem 4.1.

c′ik =

 cik + c̄ if k ∈ Ve

cik otherwise
(4.8)

Theorem 4.1 (Multicast routing with negative terminal links). Replacing link cost

cik in problem (4.1-4.5) with c′ik de�ned in Equation 4.8 results in another problem

instance equivalent to the original problem.



54 Min-Cost-DIF and Threshold-DIF

Proof. For every link (i, j) such that j ∈ Ve, Equation 4.4 turns into Equation 4.9

instead since the only �ow that should run along that link is the �ow destined to

estimator j.

hij = ti(j)φij(j), ∀j ∈ Ve, ∀(i, j) ∈ E (4.9)

After adding c̄ to the cost of these links to obtain {c′ij}, a total of c̄
∑

(i,j) hij is added

to the problem objective. Since c̄ is constant, we now proceed to prove that
∑

(i,j) hij

is constant. After substituting hij from Equation 4.9, we obtain Equation 4.10.

∑
(i,j)

hij =
∑
j∈Ve

∑
i∈P(j)

ti(j)φij(j) (4.10)

The right hand side of the equation is equal to the total �ow arriving at a destination

node summed over all destinations. By de�nition, this �ow is equal to the source �ow

multiplied by the number of destinations and hence is constant.

4.1.2 Analysis

Subject to the choice of step size parameter α, the multicast routing algorithm is

guaranteed to converge to the global optimum [19]. Since a DAG contains no loops

by de�nition, no contingencies are required to avoid routing loops. By Theorem 4.1, a

min-cost-DIF instance with negative costs on links to an estimator can still be solved

using the multicast routing algorithm by adding a su�ciently large positive constant

to all such links.

The running time of multicast network routing with network coding is not explicitly

provided in [19, 103] but is implied to be polynomial in the size of the network. In

practice we have observed a polynomial rate of increase as a function of network size,

as shown in Section 4.1.3 below.
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4.1.3 Implementation and Scalability

Implementing multicast routing for min-cost-DIF involves three main challenges.

First, we need to allow all nodes to �nd the available sources and destinations in

a decentralised manner. Second, we need to ensure that the nodes have a suitable

mechanism to compute any changing input parameters. Finally, we must choose a

suitable multicast policy to implement the chosen �ow rates {xik(j)}.

Each node must �nd the set of sources and destinations to which it is connected in the

network. Initially, each node is aware of its direct neighbours only. By performing

only one downward sweep and one upward sweep of message passing described in

Algorithm 4.1, each node can obtain the list of sources and destinations to which it is

connected. In our implementation, the downward messages contain the set of source

identities received so far and the upward messages contain the set of destination

identities received so far.

Link Costs

Link costs are continuously computed due to changes in the team con�guration

throughout the progress of its mission. In our implementation, communication costs

are simply set proportional to inter-robot distance. Processing costs are assumed to

be constant throughout the system operation. The DIF formulation does not specify a

particular model for communication costs. Many complicated models for robotics ap-

plications have been suggested by various researchers [71, 85]. These models take into

consideration various phenomena that a�ect communication quality including noise,

attenuation and multipath fading. The investigation of di�erent models is outside

the scope of this thesis. Therefore, we assume a simple distance-proportional model

while noting that the DIF formulation is not restricted to any particular model. The

distance-proportional model simply sets the communication cost of a link between

robots proportional to the inter-robot distance. The constant of proportionality is

set to a value �xed by the operator.
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Sensor Utility

In our implementation, the utility of a sensor is evaluated based on the improvement

it induces in the estimate of each estimator. Sensor utility depends both on the sensor

and on the current state of an estimator. Speci�cally, an estimator approximates a

sensor utility by evaluating the most recent sensor observation received. The value of

the observation is computed as the reduction in entropy realised by fusing the obser-

vation into the estimator. For a Gaussian representation, this value is proportional

to the reduction in the log-determinant of the covariance matrix after an observation.

Sensor utility can be di�cult to compute since each estimator must receive obser-

vations from a sensor in order to evaluate this utility. We maintain sensor utility

values dynamically though an exploration-exploitation model. Each node obeys the

chosen �ow rate xik(j) with probability (1− ε) (exploitation) and switches to another

randomly selected �ow rate with probability ε (exploration). The value of ε is set to

a small positive number less than one.

Flow Rates

The chosen �ow rates {xik(j)} are implemented using a multicast policy that deter-

mines how the inward �ow of messages at a node is distributed amongst its children.

In our problem formulation, we assume that network coding is used. For small-sized

networks, network coding can introduce unnecessary complication with little perfor-

mance advantage [53, 59]. As an alternative, multicast routing can be implemented

without network coding by using randomisation. The probability of sending a given

inward message along a given outward edge is set proportional to �ow variable xik(j).

In this case, the average total �ow hik through the link for a source �ow rate of r is

given by Equation 4.11 instead of the network coding relation given in Equation 3.1.

h̄ik = r −
∏
j

(r − xik(j)) (4.11)
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For a given set of �ow variables, randomisation will result in higher total �ow through

a link. The extra capacity required in comparison to network coding is given by the

relation in Equation 4.12. From the relation, we deduce that the gap is zero if the

maximum �ow variable over a link is equal to either zero or the source �ow and that

the gap is less signi�cant when there are fewer destinations. Therefore, for ease of

implementation we use randomisation to implement the multicast policy. However,

the total �ow is still approximated by Equation 3.1 since Equation 4.11 otherwise

leads to a non-convex problem. We found this approximation to be valid in practice.

h̄ik − hik = r − hik −
∏
j

(r − xik(j))

≤ r − hik − (r −max
j∈Ve

xik(j))
Nj

= r −max
j∈Ve

xik(j)− (r −max
j∈Ve

xik(j))
Nj

(4.12)

Scalability

To demonstrate the scalability of the algorithm, we performed an empirical study

of the convergence time for a given set of link costs. This study, which gives a

convergence time estimate, also gives further insight into the time required between

link cost updates.

We evaluated the convergence time in min-cost-DIF through a simulated network

using randomised but �xed link costs. Our simulated network includes one sensor

and a variable number of processors and estimators where the number of processors

is always one more than the number of estimators. Results of the simulation for an

increasing number of nodes are shown in Figure 4.1. The convergence condition is

satis�ed when the change in the solution variables is below a certain threshold.

Convergence time depends both on the number of iterations required until convergence

and the time expended in each iteration. The number of iterations to convergence is

hardware independent and the results shown in Figure 4.1 indicate that the number

of iterations to convergence is a sub-linear function of the network size. The time
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Figure 4.1 � Execution time and convergence time of the message passing optimisation
as a function of the number of nodes in a simulated network. The simulated network
includes one sensor and an increasing number of processors and estimators where
the number of processors is always one more than the number of estimators.

required for each iteration involves computing routing updates and transmitting the

updated values. The time complexity of the routing updates in Equation 4.6 and

Equation 4.7 is polynomial in the size of the network. Transmission time, on the

other hand, is typically linear in the size of the transmitted message which in turn is

proportional to the size of the network.

The convergence times shown do not account for communication delay. To esti-

mate such delay in practice, we observed from experiment data (experiment shown

in Section 6.4.1 speci�cally) that the time for one iteration over wireless networks is

typically less than 100 milliseconds. This value corresponds to networks concurrently

being utilised for transmission of sensor data and processed observations. Based on

this estimate and the number of iterations at convergence, we can estimate typical

values for convergence time for networks from 5 to 10 nodes to be between 50 and

150 seconds.
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This empirical analysis indicates that the running time of our algorithm is polynomial

in the size of the network for typical problem instances of interest. We observed that

the number of iterations required until convergence is sub-linear in the number of

nodes, and the time complexity of each iteration is polynomial in the number of

nodes. In practice, we found iteration times to be dominated by communication

delay resulting in the convergence time indicated above. We envisage that this period

can be reduced by employing various quality of service protocols, yet this solution is

deferred to future work.

Based on the above analysis, we can now specify nominal values for the interval

between link cost updates. The frequency of link cost updates is set such that the

multicast routing algorithm has su�cient time to converge. In our implementation,

we chose �xed values between 50 and 150 seconds. However, we note that while the

optimisation algorithm is iterating, a valid routing is available and information can

continuously �ow through the network. The frequency of link cost updates determines

how reactive the algorithm is to changes in estimated sensor utility, and thus the

importance of a higher update frequency would be to handle situations where sensor

utility changes rapidly. We leave consideration of this case to future work.

4.2 Distributed Optimisation for Threshold-DIF

In this section, we introduce a distributed optimisation method that will form the

basis of our solution to threshold-DIF. The method is a distributed version of the al-

ternating direction method of multipliers (ADMM) which we call the distributed alter-

nating direction method of multipliers (DADMM). DADMM solves distributed non-

smooth constrained convex optimisation problems with a DAG structure. Thresold-

DIF is a distributed optimisation problem since its objective is a sum of local objec-

tives and it only has neighbour-to-neighbour constraints. It is non-smooth due to the

linear objective, and it has the structure of a DAG by de�nition.

First, a brief introduction to ADMM is provided for convenience. Then, DADMM is

presented by �rst de�ning the set of problems it solves, then describing the straight-
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forward extension to inequality constraints and �nally providing the algorithm fol-

lowed by an analysis of complexity.

4.2.1 ADMM

ADMM is a method that allows for the decomposition of the optimisation of non-

smooth convex problems. For convenience, this section provides a brief summary of

ADMM based on [10].

ADMM solves optimisation problems of the form given by Problem 4.13. The objec-

tive is assumed to be a sum of two proper convex functions f1 and f2 where the �rst

is a function of the vector z1 and the other is a function of the vector z2. We refer

to z1 as the primary vector variable and to z2 as the secondary vector variable. The

augmented Lagrangian of the problem is given by Equation 4.14.

minimise f1(z1) + f2(z2)

subject to A1z1 + A2z2 = b
(4.13)

L(z1, z2, y) =f1(z1) + f2(z2) + yT (A1z1 + A2z2 − b)

+ (ρ/2)‖A1z1 + A2z2 − b‖2
2

(4.14)

ADMM is summarised by the updates shown in Equations 4.15. Each iteration in-

volves three updates. The primary update minimises the Lagrangian about z1, the

secondary update minimises the Lagrangian about z2 and the third updates the La-

grangian variable y. Proof of the convergence of the updates is shown in [10].

zk+1
1 := arg min

z1

L(z1, z
k
2 , y

k)

zk+1
2 := arg min

z2

L(zk+1
1 , z2, y

k)

yk+1 := yk + ρ(A1z
k+1
1 + A2z

k+1
2 − b)

(4.15)
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4.2.2 Problem Formulation

The general form of optimisation problems that are solved by DADMM is described

as follows. Consider the DAG G = {V,E} de�ned in Section 3.1. Attach to each node

i ∈ V a vector variable xi and a proper convex function fi(xi), that is not necessarily

smooth. Node i can have constraints with its parents as per Equation 4.17 where gi

is an a�ne function. The notation xU where U = {i1, ..., in} ⊂ V is de�ned as the

concatenation of all vectors xi such that i ∈ U , i.e. xU = (xi1 , ..., xin). Function gi is

interpreted as a vector valued function with its dimension indicating the number of

constraints nig. The goal of DADMM is to solve the optimisation problem (4.16-4.17).

minimise
∑
i∈V

fi(xi) (4.16)

subject to gi(xi, xP(i))) = 0, ∀i ∈ V (4.17)

4.2.3 Inequality Constraints

The standard form of ADMM does not include inequality constraints. Thus, we

have only included equality constraints gi in the problem de�nition. This is a non-

restrictive assumption since by adding extra variables, inequality constraints can be

transformed into equality constraints as we will show. Suppose that instead of gi we

have a function ḡi that is required to satisfy Inequality 4.18.

ḡi ≤ 0 (4.18)

By adding a slack variable pi, this inequality constraint becomes an equality constraint

plus a non-negative constraint on pi as shown in Constraints 4.19. The slack variable

pi can be viewed as a variable belonging to a virtual parent node whose objective is

an indicator function that is zero when pi is non-negative and in�nity otherwise.
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gi = ḡi + pi = 0

pi ≥ 0
(4.19)

The distributed nature of DADMM allows pi to be optimised independently. The so-

lution of the optimisation over pi is given by Equation 4.20. Although Equation 4.18

may also be substituted with an indicator function, it cannot be optimised indepen-

dently through a simple projection since it involves variables that are included in

other objectives.

pi := max{−ḡi, 0} (4.20)

4.2.4 DADMM

DADMM consists of a preliminary decentralisation step followed by the main opti-

misation process. The decentralisation step is only performed once during which the

optimisation problem is modi�ed, through the addition of variables and constraints,

such that it only requires neighbour-to-neighbour communication. In the optimisation

process, message passing and optimisation updates run in a sequence that enforces

decentralisation while retaining equivalence to centralised ADMM.

The decentralisation step modi�es Constraint 4.17. For every vector xi where i ∈ V ,
a mirror vector x̄i is introduced. The vector x̄i acts as an interface for all other

nodes. Any child node k that has a constraint including xi replaces xi with a local

copy x̃ki and an equality constraint between x̃ki and x̄i is added. Symmetrically, from

node i's perspective xP(i) is replaced with x̃P(i). Therefore, from node i's perspective,

Constraint 4.17 is replaced with the set of constraints (4.21-4.23).

gi(xi, x̃
i
P(i)) = 0 (4.21)

xi − x̄i = 0 (4.22)
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x̃iP(i) − x̄P(i) = 0 (4.23)

The new constraints are assigned the following Lagrangian multiplier vectors. The

Lagrangian multiplier λi is associated with Constraint 4.21, µi is associated with

Constraint 4.22 and ηiP(i) is associated with Constraint 4.23.

All the above constraints and variables except x̄P(i) are attached to node i. This

means that x̄P(i) is node i's only dependency on its parent nodes and x̄i is the interface

variable that is shared with node i's children. We note that Constraint 4.21 is now

an internal constraint. This decentralisation has decoupled the parents of node i.

The decoupling is evident by noting that Equation 4.23 is a decoupled set of equality

constraints: x̃il = x̄l, ∀l ∈ P(i). The decentralisation step is shown schematically in

Figure 4.2.

From the ADMM perspective, the sets of vector variables xi and x̃iP(i) are mapped

to z1 in Problem 4.13 and the sets of variables x̄i are mapped to z2. The sets of con-

straints (4.21-4.23) are collectively mapped to the equality constraint in Problem 4.13.

De�ne x̂i =
(
xi, x̃

i
P(i)

)
. Based on the mapping to ADMM, x̂i is the primary vector

variable while x̄i is the secondary vector variable.

The main optimisation process consists of message passing and optimisation updates

de�ned in a sequential and decentralised manner that is equivalent to the centralised

version in Equation 4.15. The process begins with the head nodes and then proceeds

to traverse the graph according to Algorithm 4.1. The algorithm refers to two types

of updates and two types of messages, upward and downward. We will now proceed

to de�ne what takes place during each update and what each message contains.

At the outset, each node i ∈ V is initialised with 1xi,
1x̄i,

1x̃iP(i)
0λi,

0µi and
0ηiP(i).

In the t-th downward update, node i updates its Lagrangian multipliers to obtain

tλi,
tµi and

tηiP(i). It then updates the primary variables to obtain t+1xi and
t+1x̃iP(i).

The node's downward message contains tx̄i that is required by its children nodes

to update their primary variables. In the t-th upward update node, i updates its
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Figure 4.2 � Decentralisation step of DADMM. In Figure 4.2a, node i is shown with
its parents and children in a DAG. It is assumed that node i has constraints that
include all of its parents. By transforming the network into that of Figure 4.2b,
each of node i's parents only needs to communicate with node i given that they are
not coupled elsewhere.
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secondary variables to obtain t+1x̄i. It then sends its upward message containing

variables t+1x̃iP(i) and Lagrangian multipliers tηiP(i).

The decentralised nature of the process is evident from the de�nition of the updates

at the node level. We need to show that the process is in fact equivalent to performing

the centralised version of ADMM on the entire system. A proof of this equivalence is

provided in Theorem 4.2 following Lemma 4.2.

Lemma 4.2 (DADMM sequence following). In Algorithm 4.1, every downward up-

date t of node i is followed by an upward update t. Moreover, every upward update t

of node i is followed by a downward update t+ 1.

Proof. From Lemma 4.1, we know that if node i has just performed the t-th update

then it has performed t − 1 upward updates. Now, suppose that the next update is

the t+ 1-th downward update. This is impossible because according to Lemma 4.1,

node i would have performed t upward updates. The second part of the statement

can be proved through a similar argument.

Theorem 4.2 (DADMM sequence correctness). For each node i, after the t-th update

of the Lagrangian multipliers in the downward update, the variables owned by the node

are equal to the ADMM update t of those variables.

Proof. The proof is by induction. Before the start of the algorithm, the variables of

node i are set to 1xi,
1x̄i,

1x̃iP(i)
0λi,

0µi and
0ηiP(i). During the �rst downward update,

node i's Lagrangian variables are updated according to Equations 4.24. The node

would have received 1x̄P(i) from its parents' downward messages. At this stage, all

variables belong to the ADMM update at t′ = 1.

1λi := 0λi + g(1xi,
1x̃iP(i))

1µi := 0µi + (1xi − 1x̄i)

1ηiP(i) := 0ηiP(i) + (1x̃iP(i) − 1x̄P(i))

(4.24)

Assume that after node i's t − 1-th Lagrangian update, all variables belong to the

ADMM update at t′ = t−1. We now prove the statement for t′ = t. After the t−1-th
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Lagrangian variable update, node i directly updates its primary variables according

to Equation 4.25.

(t+1xi,
t+1x̃iP(i)) :=

arg min
xi,x̃iP(i)

L1
i (xi, x̃

i
P(i),

tx̄i,
tx̄P(i),

tλi,
tµi,

tηiP(i))
(4.25)

According to Lemma 4.2, the downward update is followed by an upward update. In

the upward update, node i would have received t+1x̃
C(i)
i from its children as well as

the corresponding Lagrangian variables tη
C(i)
i . After receiving these variables, node i

updates the secondary variables according to Equation 4.26.

t+1x̄i := arg min
x̄i

L2
i (
t+1xi,

t+1x̃
C(i)
i , x̄i,

t−1µi,
tη
C(i)
i ) (4.26)

The minimisation over x̄i can be written explicitly as shown in Equation 4.27.

t+1x̄i :=

1

|C(i)|+ 1

t+1xi + tµi +
∑
k∈C(i)

[
t+1x̃ki + tηki

] (4.27)

Finally, from Lemma 4.2, we have given that the upward update is followed by down-

ward update t+1 during which the Lagrangian variables are updated in an analogous

manner to Equation 4.24 to obtain t+1λi,
t+1µi and

t+1ηiP(i). Hence, the t+1-th ADMM

update is complete.

4.2.5 Analysis

In this section, we analyse the computational complexity of one iteration of DADMM.

Analysis of the full problem depends on its convergence rate, which we consider for

the special case of threshold-DIF in Section 4.3.
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First, we de�ne the following terms:

nig : number of constraints for node i

nmax
g := max

i∈V
nig

ni := |xi| = |x̄i|

n′i := |x̃iP(i)|

nmax := max
i∈V

ni

. (4.28)

The worst-case complexity of one iteration of DADMM is given by Theorem 4.3.

Theorem 4.3 (DADMM complexity). Each iteration of DADMM over a DAG G =

{V,E} runs in
O(κ(G)(nmax|V |)2(nmax

g + nmax|V |))

time.

Proof. Each ADMM iteration consists of three updates: the primary update, sec-

ondary update and the Lagrangian update. Since the algorithm is decentralised and

synchronous, its running time is dominated by the time to update a single node

multiplied by the depth of G.

We now develop an upper bound on the computation performed by an arbitrary node

i. The primary update involves solving ∇x̂iL = 0. This equation is a linear equation,

since the Lagrangian is quadratic and has the form Ax̂i = d, where A ∈ R(ni+n
′
i)

2
and

d ∈ Rni+n
′
i since the primary vector x̂i has dimension equal to ni+n

′
i. Each element in

A potentially contains a term from the objective and a term from each constraint in

which the corresponding element in x̂i is involved. Each element of x̂i is involved in an

equality constraint (with the secondary variables) and may appear in the constraints

of gi. Therefore, the elements of A can be computed in O((ni + n′i)
2(2 + nig)) =

O((ni + n′i)
2nig) time. Each element in d can include a secondary variable and a

Lagrangian multiplier from each constraint. The time complexity of computing the

elements of d is O((ni + n′i)(1 + nig)). Solving for x̂i, assuming a dense matrix A,
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takes O((ni + n′i)
3) time. Therefore, the time complexity of the primary update is

O((ni + n′i)
2(ni + n′i + nig)).

The secondary update computes an average over xi and x̃
C(i)
i to obtain x̄i. Thus, its

time complexity is O(ni(1 + |C(i)|)) = O(ni|C(i)|).

The Lagrangian update involves an evaluation of all constraints given by Equa-

tions 4.21, 4.22 and 4.23. The evaluation of each element of gi involves at most

ni +n′i variables. The evaluation of the other constraints involves two variables each.

Therefore, the time complexity of the Lagrangian update is O(nig(ni+n′i)+ni+n′i) =

O(nig(ni + n′i)).

The total time complexity is the sum of these three updates. Thus, we have O((ni +

n′i)
2(ni+n

′
i+n

i
g))+O(ni|C(i)|)+O(nig(ni+n

′
i)) = O((ni+n

′
i)

2(ni+n
′
i+n

i
g)+ni|C(i)|).

We now restate the bound as a function of nmax, n
i
g and |V |. Since nmax is an upper

bound for ni, nmax|P(i)| is an upper bound on n′i. An upper bound for the number

of children or the number of parents is simply the number of nodes |V |. Hence, a

more conservative upper bound for n′i is nmax|V |. Therefore, the overall time com-

plexity for the work performed by node i can be rewritten as O((nmax|V |)2(nmax
g +

nmax|V |)). The total time complexity for one iteration of the algorithm is thus

O(κ(G)(nmax|V |)2(nmax
g + nmax|V |)).

4.3 Threshold-DIF

In this section, we show how DADMM can be applied to the threshold-DIF problem.

The mapping from threshold-DIF to the general problem formulation of DADMM

is presented in detail. A detailed complexity analysis of DADMM in terms of the

threshold-DIF problem size is provided.
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4.3.1 Threshold-DIF Using DADMM

The threshold-DIF problem can be solved using DADMM. However, we �rst must

reformulate Constraints 3.4 and 3.7 such that they are compatible with the DADMM

framework.

The maximum function in Equation 3.4 is replaced by Inequality 4.32. The maxi-

mum function is non-smooth and cannot be optimised in one step. With the Inequal-

ities 4.32, the objective and all equality and inequality constraints of the optimisation

become linear as required by DADMM.

The set of inequalities in Equation 4.32 is equivalent to the maximum relation in

Equation 3.4 as long as one of the constraints is active. One constraint will always be

active for hmik if the link cost cmik is positive. From the problem formulation, we know

that the link cost cmij can only be negative if j ∈ Ve, i.e. if the link is incident to an

estimator j. For these links, we replace the set of inequalities in Equation 4.32 with

the set of equalities given in Equation 4.29.

xmik(j) = 0, if k 6= j

xmik = hmik, if k = j
(4.29)

The inter-link constraint given in Equation 3.7 is replaced by Constraint 4.35 where

Sis is the set of links emanating from node i involved in the inter-link constraint

s. The DADMM format only permits constraints between a node and its parents.

Therefore, Constraint 4.35 only applies between links from node i and links from node

i's parents. This condition is not restrictive since an extra link can be added between

non-neighbouring nodes with inter-link constraints while retaining the directed acyclic

property of the graph. The graph remains acyclic by preserving any ordering between

the two nodes between which the extra link is added. Since the network is a connected

DAG, then, by de�nition, for any two nodes i and k either k is a successor of node i

(k ∈ C̄(i)) or k is an ancestor of i (k ∈ P̄(i)) or neither. If k ∈ C̄(i), the link should

extend from i to k. If k ∈ P̄(i), the link should extend from k to i. If there is no

directed path between the nodes, then either direction retains the acyclic property.
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After transforming the constraints, we obtain the problem (4.30-4.35) shown below.

minimise
∑

(i,k)∈E

cmikh
m
ik (4.30)

subject to xmik(j) ≥ 0 (4.31)

xmik(j) ≤ hmik (4.32)∑
l∈P(i)

xmli (j)−
∑
k∈C(i)

xmik(j) + rmi (j) = 0 (4.33)

∑
m

νmikh
m
ik ≤ Cik (4.34)∑

k∈Sis

∑
m

νmikh
m
ik+∑

l∈P(i)

∑
k′∈Sls

∑
m

νmlk′h
m
lk′ ≤ Ks (4.35)

To solve threshold-DIF, all that is required at this stage is that the threshold-DIF

variables and constraints be mapped to the variables of the distributed optimisation

problem (4.16-4.17). This can be done as follows. The sets of variables {hmik : m ∈
Vs, k ∈ C(i)} and {xmik(j) : m ∈ Vs, j ∈ Ve, k ∈ C(i)} are mapped to xi. The objective

function fi in Equation 4.16 is represented by
∑

k∈C(i)
∑

m c
m
ikh

m
ik and the indicator

functions resulting from the inequality constraints. The constraint gi in Equation 4.17

is represented by the equality constraints and the equality versions of the inequality

constraints involving node i in the problem (4.30-4.35).

DADMM runs continuously throughout system operation. As the system con�gura-

tion changes, link costs and weights are updated with new values. To ensure conver-

gence, the interval between updates is set to an adequate time period. In practice,

this interval was found to be of similar length to that determined for min-cost-DIF

in Section 4.1.3.

In our implementation, to account for link quality degradation, a value proportional

to the inter-robot distance is added to the weights {νmik}. This signals a need for
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re-transmission due to a decline in link quality. The constant of proportionality is

a �xed value set by the operator. More complicated communication models can be

employed but this investigation is outside the scope of this thesis.

4.3.2 Analysis

In this section, we provide time complexity analysis of DADMM when applied to

threshold-DIF. The complexity is expressed in terms of the size of the threshold-DIF

input parameters.

Complexity analysis is provided for the entire optimisation process including the

number of iterations required for convergence. We �rst determine the complexity

of one iteration following directly from Theorem 4.3. We then �nd a bound on the

number of iterations based on the algorithm's convergence rate.

The complexity of a DADMM iteration was determined in Section 4.2. The complex-

ity of one iteration in terms of threshold-DIF problem speci�cation can be determined

by substituting the appropriate values for nmax and nmax
g . To begin, we denote the

number of sources, destinations and inter-link constraints in the network as follows:

• Nm: number of sources in the network.

• Nj: number of destinations in the network.

• Ns: number of inter-link constraints.

The maximum number of primary variables nmax is proportional to the maximum

number of routing variables which, in turn, is proportional to the number of sources

multiplied by the number of destinations multiplied by the number of children. The

number of children is bounded from above by the number of nodes. Therefore, nmax

is bounded such that nmax ≤ NmNj|V |.

The maximum number of constraints nmax
g is bounded by the maximum number of

�ow consistency constraints in Equation 4.33 and the maximum number of inter-link
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constraints in Inequality 4.35. The number of consistency constraints is proportional

to the number of sources multiplied by the number of destinations. Therefore, nmax
g

is bounded such that nmax
g ≤ NmNj +Ns.

Substituting the obtained bounds into the result of Theorem 4.3, the complexity of one

iteration of DADMM for threshold-DIF becomes O(κ(G)(|V |2NmNj)
2(|V |2NmNj +

Ns)). In threshold-DIF, the depth of the underlying graph is a function of processor

cascading which is independent of the number of robots. Therefore, the depth is

assumed to be constant. Hence, the time complexity of one iteration can be restated

as O((|V |2NmNj)
2(|V |2NmNj +Ns))

To determine the complexity of the whole optimisation process, the convergence rate

is required. A convergence rate in an ergodic sense is established in [44] with relatively

mild assumptions.

The result is restated here after establishing the appropriate notation. De�ne the

primal vector of the k-th iteration as zk = (zk1 , z
k
2 ) where zk1 and zk2 are the ADMM

primary and secondary vectors de�ned in Section 4.2.1. De�ne the ergodic average

z̃k =
∑k+1

k′=1 z
k′ and de�ne z∗ and y∗ as the optimal primal and dual vectors. Then, if

we assume that z0 = 0 and y0 = 0, the convergence result is given by Inequality 4.36.

The positive constants α and β are independent of the dimension and value of both

the primal and dual variables.

L(z̃k, y∗)− L(z∗, y∗) ≤ α‖z∗‖2 + β‖y∗‖2

(k + 1)
(4.36)

From Equation 4.36, it is clear that in order to obtain a bound on the convergence

rate, we need to �nd an upper bound on the norm of the primal and dual optimal

vectors. The absolute value of the elements in the primal vector have an upper bound

uz which follows from the problem de�nition in Section 4.3.1. Hence, an upper bound

on the squared norm of the primal vector is given by Equation 4.37.

‖z∗‖2 ≤ nzu
2
z (4.37)
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We now seek a bound for the squared norm of the dual vector ‖y∗‖2. To simplify the

analysis, we note that the centralised ADMM version of the threshold-DIF problem

has the form of the optimisation problem de�ned in Equation 4.38 where the indicator

function I≥0 is de�ned in Equation 4.39 below. The set I contains the indices of the

variables added to convert any inequality constraint into an equality constraint as

described in Section 4.2. These variables need to satisfy the inequality constraint

z(i) ≥ 0 and they only appear in one row of the set of equality constraints Az = b.

minimise cT z +
ρ

2
‖Az − b‖2 +

∑
i∈I

I≥0(z(i))

subject to Az = b

A ∈ Rng×nz , b ∈ Rng

(4.38)

I≥0(z(i)) =

 0 if z(i) ≥ 0

∞ otherwise
(4.39)

An upper bound on ‖y∗‖2 can be obtained from the following lemma.

Lemma 4.3 (ADMM Lagrangian multiplier boundedness). Assume that the equality

constraints and the inequality constraints zi ≥ 0 active at x∗ are all linearly indepen-

dent. Then, there exists a positive constant γ independent of z, nz and ng such that

‖y∗‖2 ≤ γ‖c‖2.

Proof. At optimality, we have Az − b = 0 and zero belongs to the subdi�erential of

the Lagrangian as shown in Equation 4.40. The i-th element of the vector bI ∈ Rnz is

de�ned in Equation 4.41 where ∂I≥0 is the subgradient of the non-smooth indicator

function.

0 ∈ c+ ATy∗ + bI (4.40)

bI (i) =

 ∂I≥0 if i ∈ I and the constraint zi ≥ 0 is active

0 otherwise
(4.41)
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The subgradient ∂I≥0 evaluated at 0 is an unbounded set and therefore cannot be used

to directly bound y∗. However, the optimality condition in Equation 4.40 has nz rows

while y∗ has dimension ng. Furthermore, the maximum number of active inequality

constraints, i.e. constraints where bI (i) 6= 0, is equal to (nz − ng) since otherwise, x∗

would be over-de�ned by the constraints due to the linear independence assumption.

Consequently, if all rows in Equation 4.40 such that bI (i) 6= 0 are removed, there will

remain at least ng rows.

To this end, we need to make sure that the matrix ĀT obtained after removing the

rows from AT remains full rank. When active, the inequality constraint z(i) ≥ 0

becomes z(i) = 0. If this equality is augmented as a row vector to the matrix A,

due to the linear independence assumption, the rank of A becomes nz + 1. Through

elementary row operations, any non-zero element on the column corresponding to z(i)

can be changed to zero with no change in the rank of the matrix. At this stage, the

row z(i) = 0 can then be removed with the rank of the matrix dropping back to ng.

Once the row is removed, the column corresponding z(i) column is now all zeros and

can hence be removed with no change in rank. This proves that ĀT has full rank ng.

Therefore, the optimality condition in Equation 4.40 can be restated as Equation 4.42

where c̄ is the vector obtained after removing all the corresponding rows from c. The

vector bI becomes a zero vector after removing these rows.

ĀTy∗ = −c̄ (4.42)

From Equation 4.42 we obtain Equation 4.43 where σmin(ĀĀT ) is the minimum eigen-

value of ĀĀT and is greater than zero since Ā is full rank.

‖c̄‖2

‖y∗‖2
=
y∗T ĀĀTy∗

‖y∗‖2
≥ σmin(ĀĀT ) (4.43)

The proof is established by setting γ = 1/σmin(ĀĀT ) and noting that ‖c̄‖2 ≤ ‖c‖2

since c̄ is obtained by removing elements from c.
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We assume that all elements in c are upper-bounded by a constant value uc. This is

a reasonable assumption since c represents the link cost vector and only the relative

cost is of importance. Consequently, from Lemma 4.3, we have the upper bound given

in Equation 4.44 for the squared norm of the dual vector.

‖y∗‖2 ≤ γu2
cng (4.44)

We can now state the main complexity result given by Theorem 4.4. The complexity

is polynomial as expected since the problem is convex and the number of variables is

polynomial in the number of nodes.

Theorem 4.4 (Threshold-DIF complexity). Obtaining an ε-optimal solution for the

threshold-DIF problem using DADMM has a computational complexity of

O((|V |2NmNj)
2(|V |2NmNj +Ns)(|V |3NmNj +Ns)/ε) (4.45)

Proof. Bounds in Equation 4.44 and Equation 4.37 mean that the left hand side of

Equation 4.36 is bounded by a constant weighted sum of nz and ng. Therefore, an

upper bound on the number of iterations k required to produce an error ε is given as

O((nz + ng)/ε).

From the proof of Theorem 4.3, we note that the number of primary variables nz

is bounded by O(|V |2NmNj) multiplied by the number of nodes. Therefore, we

have nz ≤ O(|V |3NmNj). The number of constraints ng, on the other hand, can

be bounded such that ng ≤ O(|V |3NmNj + Ns). Thus, the resulting number of

iterations of the optimisation process is given by Equation 4.46.

k ≤ O(|V |3NmNj +Ns)/ε (4.46)

The complexity of the whole optimisation process is obtained by multiplying the num-

ber of iterations by the complexity of each iteration. Thus, for an ε-optimal solution,

DADMM for threshold-DIF runs in O((|V |2NmNj)
2(|V |2NmNj + Ns)(|V |3NmNj +

Ns)/ε) time.
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4.4 Myopic Sensor Utility Approximation

In this section, we provide a brief empirical analysis of the validity of the myopic

approximation of sensor utility used in our DIF implementations. In our DIF imple-

mentations, an estimator approximates sensor utility by evaluating the most recent

sensor observation received. The value of the observation is computed as the reduc-

tion in entropy realised by fusing the observation into the estimator. This approach

is advantageous due to the simplicity of implementation. Entropy reduction can

be computed e�ciently without additional data storage. The disadvantage of this

approximation is that it is myopic. Myopic approximations only re�ect the instan-

taneous e�ect of a sensor observation on the information gathering performance of a

single robot. Myopic approximations are commonly used since the long-term value of

a sensor observation can be di�cult to compute in the general case [100].

Inspired by the recent success in exploiting the submodularity property of mutual

information for the sensor selection problem [38], one may assume that such property

would prove bene�cial for providing a sensor utility estimate. However, submodularity

does not readily extend to information gathering tasks with dynamic environments

which is the case of interest. For further details, Appendix A provides an analysis of

the submodularity of linear-Gaussian systems and gives a simple counterexample.

Further insight into the error introduced by a myopic approximation for linear-

Gaussian systems can be obtained by the comparison with the upper bound provided

in [4]. De�ne Pk as the covariance matrix of the estimate at time k and de�ne φk as the

propagation function of the covariance from time 0 to time k such that Pk = φk(P0).

Then, due to the concavity of the discrete Riccati equation [92] we have the upper

bound given by Equation 4.47 for the error introduced by an ε deviation of P0 in the

direction of Q ∈ S+. If we assume that αI � Pk � βI, then we have the bound

given by Equation 4.48 and λmin(Pk) ≥ α and the �nal bound on the error is given
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by Equation 4.49.

log |φk(P0 + εQ)| − log |φk(P0)| ≤ d

dε
log |φk(P0 + εQ)|

= tr

(
(φk(P0))−1 d

dε
φk(P + εQ)

)
≤ 1

λmin(φk(P0))
tr

(
d

dε
φk(P0 + εQ)

) (4.47)

tr

(
d

dε
φk(P0 + εQ)

)
≤ β

(
β

β + α

)k
tr(P−1

0 Q) (4.48)

log |φk(P0 + εQ)| − log |φk(P0)| ≤ β

α

(
β

β + α

)k
tr(P−1

0 Q) (4.49)

To evaluate the myopic approximation for �xed receding-horizon planning relative to

the upper bound, a multi-robot mapping simulation was performed. The simulation

scenario included two mobile robots mapping a spatio-temporal varying �eld. To

permit the use of the performance bound, open-loop control was assumed. At the

end of each time horizon, the �rst robot computed the expected information content of

its estimate at the end of the second horizon with and without fusing the observation

from the second robot. The resulting information content during the simulation is

shown alongside the utility bound in Figure 4.3. As shown in the �gure, the myopic

approximation is much closer to the multiple time-step utility when compared with

the conservative upper-bound. Although the upper bound is easy to compute, for

many practical applications, the myopic approximation provides a better estimate.

4.5 Summary

In this chapter, we proposed an e�cient decentralised solution for both the min-cost-

DIF and threshold-DIF problems de�ned in Sections 3.2 and 3.3. Our solution to min-

cost-DIF was adapted from recent results in multicast routing, which we extended

to allow for negative link costs that represent sensor utility. In threshold-DIF, �ow
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Figure 4.3 � Comparison of �xed-horizon sensor utility approximations. The solid line
shows the exact sensor utility computed over a �xed time horizon. The dashed line
shows the myopic approximation while the dotted line shows the concavity-based
approximation.

rates are optimised based on the value of information while obeying local computation

limits and global communication limits. Our solution to threshold-DIF is based on a

distributed version of ADMM that requires neighbour-to-neighbour communication

only. Finally, we proved that the convergence time of our solution is polynomial in

the size of the network. In the following chapter, we present a solution to the third

problem considered in this thesis, negotiation-DIF.



Chapter 5

Negotiation-DIF

In this chapter, we present a solution to the negotiation-DIF problem. Negotiation-

DIF addresses communication e�ciency at both the data fusion and decision making

layers concurrently.

First, we begin with a brief introduction of background material in Section 5.1. This

introduction will aid our presentation of linear-quadratic information structure op-

timisation (LQISO), a solution algorithm for the comms-LQ problem. Presented in

Section 5.2, LQISO provides a communication-e�cient decision making solution for

LQ problems. Then, in Section 5.3, we extend LQISO to provide a communication-

e�ciency solution for decision making in decentralised information gathering. Finally,

in Section 5.4, we combine the solution of min-cost-DIF with the extended version of

LQISO to present a solution to negotiation-DIF.

5.1 LMIs in LQ Optimal Control

In this section, we introduce background material on the use of linear matrix in-

equalities (LMIs) in LQ optimal control. This background information is necessary

for the presentation of the algorithm described in Section 5.2. A detailed discussion

on LMIs and optimal control is outside the scope of this thesis and can be found in
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[12, 81]. LMI formulations of the LQ optimal control problem allow the addition of

extra criteria such as communication constraints.

To this end, consider a system with linear dynamics given by Equation 5.1 and

quadratic cost function given by Equation 5.2. Assume that the control vector is

set to the feedback law given by Equation 5.3. When the matrix K is the solution

of the algebraic Riccati equation, then Equation 5.3 is the optimal feedback control

policy.

ẋ = f(x, u) = Ax+Bu (5.1)

g(x, u) =
1

2

(
xTQx+ uTRu

)
(5.2)

u = −R−1BTKx (5.3)

If we consider the quadratic function given by Equation 5.4 where K positive de�nite,

then the dissipation inequality [98] is given by Equation 5.5 and in di�erential form

in Equation 5.6.

V (x) =
1

2
xTKx (5.4)

t1∫
t0

g(x, u)dt+ V (x1) ≥ V (x0) (5.5)

∂V

∂x

T

f(x, u) ≥ −g(x, u) (5.6)

If V satis�es the dissipation inequality for the choice of control action, then it is a

lower bound on the value function of the system. If we substitute the de�nitions of

V , f and g into the dissipation inequality we obtain Inequality 5.7. Consequently, we

obtain the inequalities (5.8-5.11). Inequality 5.9 is obtained since a scalar is equal to

its transpose. Inequality 5.10 results from the arbitrary choice of x and Inequality 5.11

is a result of the Schur complement lemma.

xTKAx− xTKBR−1BTKx+
1

2
xTQx+

1

2
xTKBR−1BTKx ≥ 0 (5.7)
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xTKAx− 1

2
xTKBR−1BTKx+

1

2
xTQx ≥ 0 (5.8)

1

2
xTKAx+

1

2
xTATKx− 1

2
xTKBR−1BTKx+

1

2
xTQx ≥ 0 (5.9)

KA+ ATK −KBR−1BTK +Q � 0 (5.10) KA+ ATK +Q KB

BTK R

 � 0 (5.11)

The set de�ned by Inequality 5.11 contains a maximal element which corresponds to

the solution of the algebraic Riccati equation when it exists [81]. In Section 5.2, we

search this set for other solutions that take into account communication costs.

5.2 LQISO

This section introduces LQISO as a novel solution approach to comms-LQ. Although

the solution is an approximation, it has proven to be useful for the purpose of com-

munication e�ciency. We present the algorithm, analyse its complexity and provide

some examples.

5.2.1 Algorithm

Due to the di�culty of solving comms-LQ as de�ned in Probem 3.13, LQISO solves

a surrogate problem instead. The LQISO algorithm relies on the LMI formulation of

the LQ optimal control problem.

The optimisation problem de�ned in Problem 5.12 is equivalent to solving the alge-

braic Riccati equation, obtaining the steady-state optimal feedback control of the LQ

problem. The optimisation problem is convex and can be solved through semi-de�nite

programming (SDP) methods. Communication costs are added to the objective of the

LMI formulation as a convex quadratic penalty function. As de�ned in Section 3.4.1,

U is the communication cost matrix. The matrix U has the same dimensions as the

team feedback gain matrix K. Each element in U is a positive communication cost of
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the corresponding element in K. This cost corresponds to the communication cost of

the link represented by the element in K. The resulting optimisation problem with

communication costs added is given by Problem 5.13. The matrix Ū contains the

lower-triangular elements of U placed along its diagonal. The vector vec(K) consists

of the lower-triangular elements of K put in vector form.

min. − tr(K)

s.t.


KA+ ATK +Q KB 0

BTK R 0

0 0 K

 � 0
(5.12)

min. − tr(K) +
1

2
vec(K)T Ūvec(K)

s.t.


KA+ ATK +Q KB 0

BTK R 0

0 0 K

 � 0
(5.13)

The modi�ed formulation with communication costs is another LMI convex optimisa-

tion problem that is readily solvable using interior-point methods. We note that the

original LMI formulation is a convex optimisation problem. The added communica-

tion cost is also convex since Ū , being diagonal with positive terms, is always positive

semi-de�nite. Thus, the modi�ed formulation with communication costs is convex.

The outcome of the optimisation problem de�ned by Problem 5.13 is a modi�ed

gain matrix K which takes into account communication costs. According to the

assumptions of the comms-LQ problem, the matrix K can be used to determine the

communication rates subject to di�erent interpretations. We present an interpretation

below through an intuitive motivation. A slightly di�erent interpretation is adopted

in Section 5.3.

Based on robot i's feedback policy de�ned by Equation 3.11, and repeated in Equa-

tion 5.14 for convenience, the structure of K will determine how an element of the

control vector belonging to a certain robot will depend on an element of the state
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vector belonging to another robot. Hence, the elements of Ki give an indication of

the coupling between robots. When multiplied by −R−1
i BT

i they indicate the degree

that the control action of robot i depends on the state of robot i and other robots.

Therefore, we interpret the absolute value of the elements of K as proportionality

weights for the communication rates required between robots. For example, if the

magnitude of an element of the matrix pertaining to one robot is twice that of the el-

ement pertaining to another robot then the �rst robot is set to communicate at twice

the rate of the second. Approximating weights as communication rates is accurate

for short time steps when the state vector path is continuous.

ui = −R−1
i BT

i Kix (5.14)

Standard SDP Form

The optimisation problem can be transformed to the standard SDP form with a lin-

ear objective form through Schur's lemma [12] and a simple change of variables. The

quadratic term in the objective is replaced with the single variable f and Inequal-

ity 5.15. Using Schur's lemma, Inequality 5.15 is transformed to the semi-de�nite

form in Inequality 5.16. Adding this inequality to the original inequality we obtain

an optimisation problem in standard SDP form shown in Problem 5.17.

f − vec(K)T Ūvec(K) ≥ 0 (5.15)

 Ū vec(K)

vec(K)T f

 � 0 (5.16)
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min. − tr(K) + f

s.t.



KA+ ATK +Q KB 0
BTK R

K

0 Ū vec(K)

vec(K)T f


� 0

(5.17)

5.2.2 Analysis

We analyse the complexity of the optimisation in SDP form based on self-concordance

of the objective and the barrier function. The objective function f is self-concordant

since the log-determinant function and the quadratic term vec(K)TUvec(K) are self-

concordant. The constraint is a semi-de�nite inequality which is also self-concordant.

f = t(−tr(K) + vec(K)TUvec(K))− log det (F ) (5.18)

Based on self-concordance, the number of Newton iterations required until conver-

gence is given by Equation 5.19 where θ̄ is the degree of the positive-de�nite cone [11].

In our case θ̄ = nk where nk × nk is the dimension of K.

O
(√

θ̄ log(θ̄)
)

(5.19)

Each Newton update requires the computation of the Jacobian and the Hessian of f .

The Jacobian of f with respect to the ijth element ofK is given by Equation 5.20. The

Hessian of f is given by Equation 5.21. The complexity of computing the Jacobian

and Hessian is O(n6
k).

∂f

∂Kij

= t (UijKij − δij)− tr

(
F−1 ∂F

∂Kij

)
(5.20)
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∂2f

∂Kij∂Kkl

= tδikδjlUij + tr

(
F−1 ∂F

∂Kkl

F−1 ∂F

∂Kij

)
(5.21)

5.2.3 Examples

The LQISO algorithm was tested in simulation for LQ teams with di�erent combi-

nations of communication costs and utility couplings. The LQ team consists of two

vehicles moving in a 2D plane with linear dynamics and such that the acceleration

in each dimension is separately and directly controllable. The individual state vector

and dynamics matrices are shown in Equation 5.22 for i ∈ {1, 2}. The hat (̂·) notation
is included to avoid confusion with the state vector symbol xi.

xi =


x̂i

˙̂xi

ŷi

˙̂yi

 Ai =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 Bi =


0 0

1 0

0 0

0 1

 (5.22)

Table 5.1 displays the results for the di�erent combinations for one dimension only, x̂

for instance. The cost matrices Q shown in the table can be chosen to represent robots

seeking to reach the origin but from opposite directions. The non-zero o�-diagonal

terms penalise the product x̂1x̂2 while the diagonal terms force the two robots to

the origin. The communication cost matrices U penalise inter-robot terms to reduce

communication.

From case 1 to case 2 and from 3 to 4, the communication cost increases from 1 to 10.

This results in a decrease in the inter-controller gains of K to cater for the increase

in communication costs. Also evident is the decrease in the controller's self gains;

this allows each robot to take smaller steps due to the reduction in communication.

Comparing case 1 with case 3, it is noticed that the reduction in cost coupling reduces

the inter-controller gains, signalling a reduced need for communication. These results

clearly relate with intuition.



86 Negotiation-DIF

Table 5.1 � Results of running LQISO on di�erent combinations of team cost functions
and communication costs for one dimension of the problem in Section 5.2.3

Q U K

Case 1


2 0 1 0
0 2 0 0
1 0 2 0
0 0 0 2




0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0




2.90 1.31 0.90 0.31
1.31 2.14 0.31 0.14
0.90 0.31 2.90 1.31
0.31 0.14 1.31 2.14



Case 2


2 0 1 0
0 2 0 0
1 0 2 0
0 0 0 2




0 0 10 10
0 0 10 10
10 10 0 0
10 10 0 0




2.09 1.02 0.09 0.02
1.02 2.01 0.02 0.01
0.09 0.02 2.09 1.02
0.02 0.01 1.02 2.01



Case 3


2 0 0.5 0
0 2 0 0

0.5 0 2 0
0 0 0 2




0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0




3.08 1.40 0.50 0.17
1.40 2.19 0.17 0.08
0.50 0.17 3.08 1.40
0.17 0.08 1.40 2.19



Case 4


2 0 0.5 0
0 2 0 0

0.5 0 2 0
0 0 0 2




0 0 10 10
0 0 10 10
10 10 0 0
10 10 0 0




2.68 1.24 0.09 0.02
1.24 2.12 0.02 0.01
0.09 0.02 2.68 1.24
0.02 0.01 1.24 2.12



Figure 5.1a shows the paths chosen by robots with free communication and the paths

chosen by robots with communication costs as in case 1 of Table 5.1 in Figure 5.1b.

The cost function is also that of case 1. The robots start from the upper corners

at the bullseye symbols and approach the origin from opposite directions. Instead

of communicating their state vector at every time step, the robots send the required

state component, at a rate proportional to the element of the gain matrix. The abrupt

changes in path directions correspond to a time step when communication occurred

and from the paths, it is seen that robots in the case of Figure 5.1b waited longer to

communicate. Robots in the case of Figure 5.1b transfer 20% less data than those
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(a) Assuming free communication

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

(b) With communication costs

Figure 5.1 � Paths taken by two vehicles with a coupled quadratic cost. Robots start
from the upper corners of the �gure and head towards the origin approaching from
opposite directions. Dashed lines indicate communication. The communication
cost chosen are as per case 1 of Table 5.1

in the case of Figure 5.1a, yet they still trace similar paths and approach the origin

from opposite directions. The results presented demonstrate that the LQISO can in

fact be used to reduce communication while upholding performance.

5.3 Extended-LQISO

This section describes extended-LQISO which extends LQISO to non-LQ problems.

The aim of extended-LQISO is to introduce communication e�ciency into decision

making for decentralised information gathering. Extended-LQISO acts as an auxiliary

layer added to existing decentralised decision making algorithms. It does not serve

as a decision making method on its own.

5.3.1 Algorithm

Suppose a decentralised information gathering team employs a particular DDM al-

gorithm. A typically valid assumption is that the DDM algorithm involves commu-
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nication at a certain rate. LQISO can be adapted to regulate this communication

demand by adjusting communication rates between robots.

The steps of the algorithm are described in Algorithm 5.1. Before robots choose their

next team decision using the DDM algorithm, they produce a local LQ approximation.

The state dynamics are linearised and a quadratic approximation of the cost is also

produced. Once the LQ approximation is obtained, the robots run LQISO which

outputs the feedback gain matrix K.

In Section 5.2, communication rates were set directly proportional to the value of

the o�-diagonal elements. However, in the case of extended-LQISO, communication

decisions are reached in a di�erent manner, mainly for simplicity. Robots sum the

absolute value of the terms (L1 norm) of the matrix which are exclusive to themselves.

These elements lie in square matrices along the diagonal. Then, the robots obtain the

L1 norm of the terms which couple them with other robots. For each pair of robots, if

the ratio of the coupling value to the sum of the robots' local values is below a certain

threshold, the robots do not cooperate through DDM. Currently, the threshold is a

parameter chosen by the algorithm designer.

An essential requirement of the algorithm is the ability to produce a Hessian of the

cost as a function of the state vector at the predicted team state. Since calculat-

ing the Hessian is cumbersome in most applications, the Hessian can be recursively

estimated through Equation 5.23 which is a modi�ed version of the Hessian approxi-

mation formula used in the Broyden-Fletcher-Golfarb-Shanno (BFGS) quasi-Newton

optimisation method. To ensure the update is positive semi-de�nite, the absolute

value of δJT δx is used.

Qk+1 = Qk +
δJδJT

|δJT δx|
− Qkδx(Qkδx)T

δxTQkδx
(5.23)

For information gathering tasks, the team state vector includes the robots' state

vector, the targets' position estimate and covariance. In addition to the robots' dy-

namics, both the target estimate and its covariance also have their own dynamics

equations. Based on Shannon information theory, a suitable objective for an infor-
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Algorithm 5.1: Extended-LQISO

1: loop
2: Perform DDF
3: Linearise dynamics and obtain quadratic cost approximation
4: Exchange LQ dynamics and cost
5: Run LQISO to determine if cooperation is required
6: if Cooperation is required then
7: Run DDM
8: else
9: Run local decision making
10: end if
11: end loop
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mation gathering task is to maximise information or minimise entropy. Alternatively,

the reward function, which is the derivative of the value function along an optimal

path, is mutual information and the cost function is the negative of the reward func-

tion. In the next section, the results of a simulated sample problem are demonstrated

showing the e�ect this algorithm has on reducing communication while maintaining

good performance for information gathering.

5.3.2 Sample Problem

Extended-LQISO was applied to the following decentralised information gathering

example. Two robots with dynamics as in Equation 5.22 are equipped with range-

only sensors. The robots' task is to minimise the uncertainty in the estimate of two

moving targets. An EKF is used for estimation. The sensor model function for the

range only sensor is given by Equation 5.24. Abusing notation, xi is the position of

robot i, xt is the targets' state, and zi is robot i's observation of the targets.

zi = h(xi, xt) = ‖xi − xt‖2 + vi, vi ∼ N (0, V ) (5.24)

The EKF approximation results in the �rst order Taylor approximation of the sensor

model about the targets estimate given by Equation 5.25.

∆zi = Hi(xi, xt)∆xt =
(xt − xi)T

‖xi − xt‖2

∆xt (5.25)

A constant velocity model is used for the target dynamics. The target dynamics

given by Equation 5.26 include additive Gaussian noise represented by w with a �xed

covariance matrix W . The covariance of the targets estimate is denoted by P . Since

the cost is also a function of the covariance, then the covariance dynamics need to

be considered. The covariance dynamics of the EKF approximation is the di�erential

Riccati equation which is nonlinear. The corresponding dynamics of the covariance

matrix can be derived as in Equation 5.27. By treating P as a vector and the equation

on the right hand side as a multivariate function, the equation can be linearised.
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ẋt = Atxt + w, w ∼ N (0,W ) (5.26)

Ṗ = AtP + PATt −
2∑
i=1

PHT
i V

−1HiP +W (5.27)

Quadratic Approximation of Utility

The team cost function can be derived to obtain Equation 5.28. This equation is the

negative of mutual information. For the approximation of the Hessian, the Jacobian

of the cost function needs to be calculated at the expected state and then the di�er-

ence in state and Jacobian is used to recursively approximate the Hessian through

Equation 5.23. The Jacobian needs to be computed relative to the estimate of xt, the

xi's and P . The Jacobian of the cost function can be derived through straight-forward

arithmetic.

g = tr

(
At + ATt −

2∑
i=1

HT
i V

−1HiP + P−1W

)
(5.28)

Results

To evaluate the bene�t of extended-LQISO, the information gathering task was sim-

ulated using three di�erent communication strategies. Figure 5.2 displays the paths

taken by the robots for each of the three di�erent cases. In the case of Figure 5.2a,

the strategy was set so that robots cooperate at every third time step. In the case

of Figure 5.2b, extended-LQISO was used to control when the robots cooperated. In

the case of Figure 5.2c, robots cooperated at every time step. Figure 5.3a and Fig-

ure 5.3b display a plot of the corresponding entropy of the targets estimate and the

total data transferred over the network respectively, for all three cases. By observing

Figure 5.3b, it is clear that the extended-LQISO case (crosses) used less than 60%

of the total communication bandwidth required by the full communication case (cir-

cles). Meanwhile, the entropy reduction performance was only a�ected during a few

time steps, as shown in Figure 5.3a. On the other hand, unlike the subsampling case
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(a) Resulting paths where robots cooperated

at every third time step
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(b) Resulting paths where robots used the

extended-LQISO algorithm
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(c) Resulting paths where robots cooperated

at every time step

Figure 5.2 � Resulting paths of robots using three di�erent communication strategies.
The corresponding entropy reduction and communication loads for the three cases
are shown in Figures 5.3a and 5.3b Robot paths are represented by the lines with
circle markers. Target paths are represented by the lines with cross markers. The
starting positions are indicated by the �lled circles.

(dots), extended-LQISO detected an increased need for cooperation after time step 6

and hence managed to maintain its information gathering performance until the con-

clusion of the simulation. The fact that extended-LQISO is observed to outperform

the case where robots consistently cooperate is due to the randomness induced into

the observations used in the simulation to mimic a real-world sensor.
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(a) Resulting target estimate entropy for the three di�erent

strategies. The dot-marked line represents the case where

robots cooperated every third time step. The cross-marked

line represents the case where robots used extended-LQISO.

The circle-marked line represents the case where the robots

cooperated at each time step.
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(b) Communication required for the three di�erent strategies.

The line styles correspond to the same cases as described in

Figure 5.3a. The slope of the lines indicate whether the robots

cooperated at that time step. A small amount of data is still

transmitted when robot do not cooperate. This is due to other

tasks requiring communication such as data fusion.

Figure 5.3 � Entropy and communication using di�erent communication strategies.
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5.4 Solution to Negotiation-DIF

In this section, we introduce our solution to negotiation-DIF attained by integrating

extended-LQISO with our solution to min-cost-DIF. In addition to the composition

of the two algorithms, we show how extended-LQISO provides the DIF framework

with a sensor utility based on the impact on control actions and at the individual

target granularity level.

Our solution to negotiation-DIF consists of our solution to min-cost-DIF and extended-

LQISO running concurrently using the same communication costs for links utilising

the same communication resource. Extended-LQISO runs as described in Section 5.3

and our solution to min-cost-DIF is used to adjust data fusion in a manner identical

to Section 4.1. However, in this case, the sensor utilities are estimated with the aid

of extended-LQISO.

The outcome of extended-LQISO in Section 5.3 is a positive de�nite matrix K ob-

tained for each time step. The row block Ki of the matrix provides an approximation

of the coupling between the control action of robot i and the current estimate and

the state of other robots. This can be seen clearly for the case of a two-state envi-

ronment and three robots with the aid of Equation 5.29 where {j1, j2} correspond
to the environment estimate column blocks and {k1, k2, k3} correspond to the robot

blocks. These coupling values are in one-to-one correspondence with the links shown

in Figure 5.4.

While the coupling terms between the control action and the state of other robots are

used to determine the frequency of negotiation required between robots as outlined

in Section 5.3, in this case, the terms between robot states and the current estimate

are also used for the purpose of estimating sensor utility. Since a separate term

is obtained for each element of the estimate state vector, the sensor utility can be

estimated down to the individual element level. For the case of target tracking, this

granularity means that robots can determine which target is of higher priority to its

decisions at the current system state.
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Robot 1 Robot 2 Robot 3

States States States

Estimators

... ... ...

Controllers

Robot State Robot State Robot State

Action Action Action

Figure 5.4 � Information structure topology of a decentralised information gathering
system.

The sensor utility is estimated as follows. The entropy reduction is calculated for

each target. Then, the obtained value for each target is multiplied by the L2 norm

of the block in the coupling matrix relating the robot state to that target's estimate.

The obtained values are then summed to compute the sensor utility.

ui = −R−1
i BT

i

[
Ki,j1 Ki,j2 Ki,k1 Ki,k2 Ki,k3

]


xj1

xj2

xk1

xk2

xk3


(5.29)

5.5 Summary

In this chapter, we presented a solution to the negotiation-DIF problem de�ned in

Section 3.4. The solution was obtained by combining our solution to min-cost-DIF

with extended-LQISO presented in Section 5.3. The result of our negotiation-DIF

solution is a complete communication e�ciency solution for information gathering.



96 Negotiation-DIF



Chapter 6

Experiments

This chapter contains the results of experiments validating our algorithms presented

in Chapter 4 and Chapter 5. The main aim of the experiments is to demonstrate that

the suggested algorithms enhance the communication e�ciency of decentralised infor-

mation gathering systems. The experiments also aim to demonstrate the scalability

and �exibility of the DIF formulations and their corresponding solutions. Not only

do the experiments aim to validate technical correctness, but they also aim to reveal

interesting qualitative behaviour that can be intuitively related to communication

e�ciency.

We �rst describe our indoor and outdoor experimental systems in Section 6.1 and Sec-

tion 6.2 respectively. Then, the results for min-cost-DIF are shown in Section 6.3 fol-

lowed by the results for threshold-DIF in Section 6.4. The results for negotiation-DIF

are shown in Section 6.5. Finally, Section 6.6 provides a discussion of the signi�cance

of the results presented and highlights the lessons learnt.

6.1 Indoor Experimental System

The indoor test site is a bounded and unobstructed ground space in the �eld lab at

the Australian Centre for Field Robotics (ACFR) with approximate dimensions of
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Figure 6.1 � The Pioneer P3-DX robot used in the indoor experiment.

5m×5m. For our indoor mobile robot experiment, we use a modi�ed ActiveMedia

Robotics Pioneer P3-DX robot. An image of the robot is shown in Figure 6.1. The

robot is retro�tted with an on-board computer with an Intel Atom N270 1.6 GHz

processor. The robot is equipped with a SICK LMS291 2D lidar used exclusively for

localisation. The robot has an on-board Logitech webcam used as a 2D bearing-only

sensor. Object detection is implemented using a crude colour-based object extraction

method under controlled background and lighting conditions. The ground station

for the experimental system is a standard laptop that is connected wirelessly to the

robot and is used to monitor the experiment status. The laptop also acts as the o�-

board processing station. Software is written in the ROS framework. For simulation,

Gazebo was used to simulate the platforms as well as the environment.
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Figure 6.2 � The Segway RMP 400 robots used in the experiments.

6.2 Outdoor Experimental System

The main components of the outdoor experimental system are the mobile robots, the

experimental site, the ground station, the communication system and the software.

Each of these components is described in the sections that follow.

6.2.1 Mobile Robots

Our outdoor mobile robot experiments use two modi�ed Segway RMP 400 robots.

An image of the robots is shown in Figure 6.2. The �rst robot is equipped with a

Velodyne 3D Lidar with a 360◦ �eld of view. The second robot is equipped with a

2D SICK LMS291 horizontally mounted laser scanner with a 180◦ �eld of view. Each

robot is also equipped with a server-class computer with an eight-core processor.

For localisation, the two robots rely on high-accuracy Novatel inertial measurement

unit (IMU) and di�erential global positioning system (DGPS) modules.
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Figure 6.3 � The outdoor experimental site.

6.2.2 Experiment Site

The outdoor experiments were conducted in a semi-urban environment at The Uni-

versity of Sydney. The site is a rectangular-shaped lawn outside the ACFR with

approximate dimensions of 12m×30m shown in Figure 6.3.

6.2.3 Ground Station

The ground station used for the outdoor experiments comprises two standard laptop

computers, one for each robot, functioning as control stations and monitors and a

third laptop functioning as the main control terminal. Communication with the

robots takes place over a 5GHz 802.11a WiFi network. The network is formed of

two Netgear wireless access points connected using 802.3ab gigabit Ethernet at the

ground station and a Netgear wireless network card in each of the robots. The o�-

board stationary camera used as a third sensor node in the experiments is a Prosilica

GC2450 camera acting as a bearing-only sensor located at the ground station.
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6.2.4 Communication System

The communication system is depicted schematically in Figure 6.4. Each of the two

robots connects directly to its own access point over 5GHz WiFi. These two wireless

links are set to a separate channels to prevent interference. Experimental testing

conducted on the wireless hardware resulted in a maximum data-rate of 20Mbps for

each link. The two access points are connected to a gigabit Ethernet switch to which

the camera and control station computers are connected. A third access point also

connected to the switch, denoted as WAP3 in the �gure, provides internet access to

the system.

Robot1 Robot2

WAP1 WAP2WAP3

Control Station Switch

Camera

5GHz WiFi 5GHz WiFi
to internet

Figure 6.4 � Communication system used for outdoor experiments. Solid lines represent
gigabit Ethernet connections while dashed lines represent wireless connections.

6.2.5 Software

All DIF algorithms are implemented as a distributed multi-node ROS system. An

EKF implementation is used for estimation and data fusion. For the experiments,

the DIF algorithms are added as an auxiliary layer to an existing LIDAR object

detection system [22, 70]. Object detection for camera images is achieved using

�ducial markers generated and detected by ArUco library [31]. The min-cost-DIF

and threshold-DIF experiments rely on the path planner described in [106]. On the

other hand, negotiation-DIF experiments use a discrete-action �xed-horizon planner
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that selects actions based on an exhaustive forward search. For simulations, the

DIF algorithms and path planning software are identical to the case of hardware

experiments. Sensor observations are simulated at the point observation level. The

platform is also simulated through a simpli�ed dynamics model.

6.3 Min-Cost-DIF

This section presents the results of our solution to min-cost-DIF demonstrated on

scenarios where the link costs are readily attainable. We present results for two

scenarios. The �rst scenario was tested in simulation and involves two robots. The

purpose of this scenario is to validate the advantage of our solution to min-cost-

DIF over simple down-sampling of information. It also highlights the bene�ts of

assuming the ability for multicast. The other scenario was tested in both simulation

and hardware and involves a robot aided by a processing ground station. The purpose

of this scenario is to demonstrate the �exibility of min-cost-DIF in allowing for the

dynamic selection of a sensor-data processing location.

6.3.1 Two-Robot Simulation

We evaluated our solution to min-cost-DIF for a scenario consisting of two mobile

robots tracking a moving target. The aim of this simulation is to demonstrate the

multicast behaviour of dynamic information �ow and to show the improvement in

information gain realised in the min-cost-DIF setting in comparison to uniform down-

sampling of data rates.

The experimental setup is shown in Figure 6.5 and is based on the outdoor experimen-

tal system described in Section 6.2. The two mobile robots are assigned to separate

workspaces with approximate dimensions of 5m×5m each. The �rst robot has a 360◦

�eld-of-view sensor and the second robot has a 180◦ �eld-of-view sensor. The sensors

are bearing-only sensors, forcing cooperation between the robots. A moving target
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Figure 6.5 � Demonstration setting of the two-robot simulation and experiment.
Robots 1 and 2 are shown with their boundaries. Sample target tracks are shown
making a square pattern inside the region of interest.

tracked by the robots moves in a circular pattern within a square region of interest

outside the robots' workspaces. The region is approximately 10m×10m in size.

The network diagram of the system is shown in Figure 6.6. The object detection

routine on each robot imposes a processing cost. Due to the multicast property,

the processing cost of each processing module is distributed among the receiving

estimators. Therefore, if the estimators collectively evaluate an observation utility

greater than the processing cost, then the sensor raw data should be processed and

sent forward. Virtual links, not shown in the �gure, allow for the no-send policy. The

cost of the links incident onto the estimators is adjusted throughout the simulation

by the robots' sensor utility evaluations.

To validate the performance of the algorithm, a control test was also run. In the

control test, the sensor rates were reduced to the same average rate used in the

dynamic case. The control test is also referred to as down-sampled communication.
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Robot 1 Robot 2

Laser Laser

Object
Detection

Object
Detection

EKF and Path
Planner

EKF and Path
Planner

0.4 0.4

Figure 6.6 � The min-cost-DIF network diagram for the two-robot simulation. Virtual
links are omitted for clarity.

The information for each of the robots' estimate over time is shown in Figure 6.7 and

the corresponding average bars are shown in Figure 6.8. In Figure 6.7a, the informa-

tion in Robot 1's estimate is higher on average for the dynamic �ow case. By using

a �xed rate, the performance of the down-sampled displayed long periods of poor

information gathering performance for particular system con�gurations; for example,

when the target was outside the �eld of view of Robot 2. This behaviour was pre-

vented in the case of dynamic �ow since inter-robot communication was boosted when

required. The advantage of the dynamic �ow case can also be seen more distinctly

in Figure 6.8a. The dynamic case for Robot 2 observed some lag in information

gathering performance initially. This may be attributed to the delay in sensor utility

estimation. The dynamic case eventually outperformed the down-sampled case as

shown in Figure 6.7b and its overall advantage is con�rmed in Figure 6.8b.

The �ow rates and estimated sensor utilities for the dynamic �ow case are plotted

against time in Figure 6.9. The �ow rates shown correspond to the percentage of

observations transmitted while the sensor utilities correspond to the resulting di�er-

ence in the log determinant of the estimate's covariance matrix after an observation.

The plots show consistency between sensor utility and �ow. In particular, the oblique

parts of the �ow curve correspond to time periods where a robot would receive sensor

observations freely due to raw data already being processed for the other robot. This

free reception of data is a feature of multicast routing.
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As noted in Section 4.1.3, discrete �ow decisions minimise the error from our maxi-

mum �ow approximation of the total �ow in each link. As seen in Figure 6.9, with

the exception of transient periods, the �ow variables were mainly either 0 or 100.
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Figure 6.7 � The information value (negative entropy) of the robots' target estimate
for the two-robot simulation. The plots are shown for two communication methods,
sub-sampled and dynamic, with both requiring the same amount of computation
on average. The values correspond to the negative entropy with the addition of an
o�set value.
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Figure 6.8 � Time averages of the plots of Figure 6.7 shown in bar format. The
improvement for the dynamic case over sub-sampling is clearly observed.
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Figure 6.9 � Flow rates and sensor utility for the two-robot simulation. Flow rates are
shown in solid lines while the evaluated sensor utility is shown in dashed lines. The
�ow rates shown correspond to the percentage of observations transmitted while
the sensor utilities correspond to the resulting di�erence in the log determinant of
the estimate's covariance matrix after an observation.
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6.3.2 Robot and Ground Station Simulation

We also evaluated our solution for a scenario including one mobile robot and one

ground station. The main purpose of this simulation is to show the generality of the

min-cost-DIF approach.

Transmitting raw data to be processed at a ground station with increased computa-

tional resources can reduce the time delay observed in processing. This reduction, in

turn, can have a positive e�ect on information gathering performance. However, this

reduction is only possible if the delay caused by transmission does not outweigh the

performance advantage of the extra computational resources. In addition, on-board

processing can also cause reduced battery life for mobile robots. However, relaying

processing o�-board is only advantageous if transmitting raw data does not require

similar amounts of energy. This simulation and the hardware experiment that follows

demonstrate the ability of min-cost-DIF to represent such scenarios.

The experimental system corresponds to the simulation case of that described in

Section 6.1. It includes one mobile robot equipped with a camera and a ground

station. The robot's on-board processing is computationally expensive; however, it

has wireless access to the o�-board processing station. The demonstration begins with

the robot near the processing station. The robot then proceeds to gain information

about a moving target. As the robot distances from the processing station, the

communication cost increases.

The network diagram of the demonstration is depicted in Figure 6.10. Subject to

communication cost, which is set proportional to distance, the robot's decision is

expected to vary between on-board and o�-board processing. The maximum �ow

assumption is valid for this scenario since there is only one destination node.

Figure 6.11 shows the �ow between the robot and the ground station, the communi-

cation cost and the robot's processing cost over time. The processing cost is assumed

to be a �xed value of 0.6 as shown in the �gure. The communication cost is set to

the distance between the robot and the ground station and the �ow multiplied by

0.1. In Figure 6.11, at around time step 50, communication cost outweighs the cost
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of on-board processing. This leads to a switch from o�-board processing to on-board

processing. It should be noted that the communication cost displayed in the plot

is only for transmission from the sensor to the processor. When compared with on-

board processing cost, the total communication cost is doubled. The results of this

simulation show the generality of the dynamic �ow formulation. Even though the

expected behaviour here is quite obvious, the aim is to show that this behaviour was

achieved within the min-cost-DIF framework without modi�cation.

Robot Ground Station
ComputerCamera

Object Detection Object Detection

EKF and Path
Planner

Figure 6.10 � The min-cost-DIF diagram of the robot and ground station demonstra-
tion scenario.
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Figure 6.11 � Flow, communication cost and processing cost of the link from the sensor
to the ground station processor for the one robot/one ground station simulation.
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6.3.3 Robot and Ground Station Experiment

We also validated the demonstration scenario of Section 6.3.2 in a hardware experi-

ment using the experimental system described in Section 6.1. The mobile robot used

the on-board webcam as a 2D bearing-only sensor to track a moving target. With the

exception of the o�-board processing ground station, all processes were executed on-

board the robot computers including localisation, image processing (when required),

estimation, decision making and the information �ow control algorithm.

The change in �ow, communication cost and processing cost over time is shown in

Figure 6.13. These results are consistent with the simulation results for the analogous

case. We observe that the robot initially chooses to send images to be processed o�-

Figure 6.12 � Snapshot from the one robot/one ground station experiment. The image
shows the robot having moved away to follow the target. At this distance, the robot
prefers to perform processing on-board.
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Figure 6.13 � Flow, communication cost and processing cost of the link from the sensor
to the ground station processor for the one robot/one ground station experiment.
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board by the ground station. The ground station performs object detection and sends

point observations back to the robot. As the robot moved away to track the target,

the communication cost increased and thus the robot chose to perform processing

on-board. A snapshot of the moment when the robot decided to switch to on-board

processing is shown in Figure 6.12.
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6.3.4 Monte Carlo Simulation

We performed a Monte Carlo simulation for the experimental setting of Section 6.3.1,

comparing the dynamic communication with down-sampling. The aim of the simula-

tion is to analyse the statistical signi�cance of the performance advantage introduced

by our solution to min-cost-DIF.

The dynamic communication case was compared against two down-sampling rates.

The �rst rate of 50% is chosen to be approximately equal to the average usage of

51.5% for the dynamic case while the second rate is 60%. Each method was tested in

twenty randomised trials running for three minutes each.

The results of the Monte Carlo simulation are shown in Figure 6.14 in box-plot for-

mat. The results shown assume each trial as one sample. Dynamic communication

outperforms the down-sampling rate of 50% with a Welch's t-test for statistical sig-

ni�cance resulting in a p-value of 0.0143. The p-value for the comparison against

the down-sampling rate of 60% is 0.5086 which shows that the performance of the

dynamic case is comparable to that of a 60% down-sampling rate.
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Figure 6.14 � Monte Carlo simulation results comparing down-sampling with dynamic
information �ow. Each method was tested on the two-robot scenario for twenty
trials running for one minute each. In the results depicted, a trial acts as one
sample. The box extents represent the �rst and third quartile, while the whiskers
represent the extrema. The median is represented by the horizontal line inside the
box. The values correspond to the negative entropy with the addition of an o�set
value.
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6.4 Threshold-DIF

This section presents results of demonstrations illustrating di�erent features of our so-

lution to threshold-DIF. These features include the ability to explicitly assign global

communication limits, improved information gathering performance and the ability to

switch between sensors on-line. Two information gathering demonstration scenarios

were tested in addition to a multiple-node simulation. The �rst scenario, tested in a

hardware experiment, aims to demonstrate how two robots can intelligently share lim-

ited communication bandwidth to improve information gathering performance. The

second scenario introduces an auxiliary stationary camera that transmits raw images

wirelessly. The camera needs to interrupt any data fusion communication between

the robots to send images. We show in both a simulation and hardware experiment

how this is achieved within the threshold-DIF framework. Finally, we show the results

of a multi-node network simulation with the purpose of demonstrating the scalability

of our solution. Information rates are assumed by the simulation and sensor utilities

are randomised.

6.4.1 Two-Robot Experiment

We tested our solution to threshold-DIF in a demonstration scenario of two mobile

robots tracking a moving target. The aim of this experiment is to show the infor-

mation gain advantage of dynamic information �ow in the case of limited inter-robot

communication bandwidth.

Experimental Setup

The experimental system used for this experiment is the outdoor system described in

Section 6.2, while the experimental setting is the same as that of Section 6.3.1 depicted

in Figure 6.5. The two robots are placed in two separate areas with virtually bounded

geographical regions to avoid collision. Target tracking is limited to a geographically
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bounded region of interest and for the purpose of the demonstration, tracking was

limited to one target performing circular patterns.

The network diagram for this demonstration is shown in Figure 6.16. It is assumed

that maximum communication bandwidth is limited and does not allow both robots

to send sensor data at the full rate. We also assume that communication throughput

decreases with inter-robot distance. Therefore, the robots are required to share the

available bandwidth. The bandwidth sharing constraint is indicated by the dashed

line drawn between the two inter-robot links. Virtual links, not shown in the �gure,

allow for the no-send decision. It is expected that through dynamic information �ow

Figure 6.15 � The outdoor experimental setup with robots visible outside the tracking
region of interest. The border of the tracking region is designated by solid lines.

Robot 1 Robot 2

Laser Laser

Object
Detection

Object
Detection

EKF and Path
Planner

EKF and Path
Planner

Figure 6.16 � The theshold-DIF diagram for the two-robot scenario. Virtual links are
omitted for clarity.
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the bandwidth will be shared e�ciently with respect to sensor utility. The maximum

�ow assumption is valid in this scenario since no processing costs are assigned.

To validate the performance of dynamic information �ow, two control tests were run

for the purpose of comparison. The �rst control test allows unconstrained commu-

nication between all nodes and shall be referred to as the unconstrained case. This

test mainly acts as a benchmark since it violates bandwidth constraints. The second

control test involves a reduced communication rate that obeys bandwidth bounds.

This test shall be referred to as the down-sampled case.

Results

The information value for the robots' target estimates over time is shown in Fig-

ure 6.17 with the corresponding average bars shown in Figure 6.18. In both these

�gures, we observe minimal di�erence in information value across the three commu-

nication methods for Robot 1. Because Robot 1 has a 360◦ �eld-of-view sensor, the

target is always visible, and therefore tracking does not depend on observations re-

ceived from Robot 2. However, we do observe a di�erence in information value for

Robot 2. Figure 6.18b shows that the down-sampled method results in reduced in-

formation gathering performance when compared to our method. This e�ect is also

evident in Figure 6.17b where there is a clear decline in information for the down-

sampled case at times 20 and 60. This decline occurs because the target drops outside

the robot's sensor �eld of view. Dynamic �ow ensured that information was directed

from Robot 1 to Robot 2, but down-sampling naively shared the communication

medium.

The advantage of dynamic information �ow is further con�rmed in Figure 6.19. The

bottom two plots in the �gure show the approximate sensor observation utilities

and data �ow rates between robots over time for the dynamic �ow case. The �ow

rates shown correspond to the percentage of observations transmitted while the sensor

utilities correspond to the resulting di�erence in the log determinant of the estimate's

covariance matrix after an observation. The �ow from Robot 1 to Robot 2 dominates
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bandwidth usage when the target is not in Robot 2's sensor �eld of view. However,

at times 40 and 80, the �ow was directed from Robot 2 to Robot 1 because the target

was closer to Robot 2. The top plot shows the distance between the robots over time.

Modelling loss of link quality, the weights {νmik} were increased by adding 0.1 of the

separation distance. At the average inter-robot distance, the available bandwidth is

limited to approximately half of the maximum bandwidth. As expected, the sum of

the information �ows obeys this reduced capacity.
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Figure 6.17 � The information value (negative entropy) of the robots' target estimate
for the two-robot hardware experiment. Plots shown are for all three communica-
tion methods: unconstrained, down-sampled and dynamic. The sudden drops in
information are due to target loss. The values correspond to the negative entropy
with the addition of an o�set value.
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Figure 6.18 � Time averages of the plots in Figure 6.17 shown in bar format. Data
rates are shown superimposed. The dynamic case shows a clear improvement in
information gain in comparison to down-sampling for Robot 2.



6.4 Threshold-DIF 121

5

10

15
Inter−Agent Distance

D
is

ta
n
c
e
 (

m
)

0

50

100

F
lo

w

Robot 1 to Robot 2

0

5

10

U
ti
lit

y

0 20 40 60 80 100
0

50

100

F
lo

w

Robot 2 to Robot 1

0 20 40 60 80 100
0

5

10

15

U
ti
lit

y

Figure 6.19 � Inter-robot �ow rates and sensor utility over time for the dynamic �ow
case of the two-robot experiment. In the �rst plot, the inter-robot distance is shown.
In the lower plots, �ow rate is shown as solid lines and sensor utility is shown as
dotted lines. Flow rate varies with utility and available bandwidth varies with inter-
robot distance. The �ow rates shown correspond to the percentage of observations
transmitted while the sensor utilities correspond to the resulting di�erence in the
log determinant of the estimate's covariance matrix after an observation.
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6.4.2 Three-Sensor-Node Experiment

We also evaluated our approach in a more complex scenario. This scenario involves

the two robots from the previous experiment with the addition of a stationary camera.

The aim of this three-sensor-node scenario is to show the generality of our method

and to emphasise the multicast behaviour of dynamic information �ow.

Experimental Setup

In this scenario, the two robots are aided in tracking by the o�-board stationary

camera acting as a bearing-only sensor. The camera is placed outside the tracking

region of interest opposite the robots. The camera sends raw images to Robot 2

which processes the images and shares the observations with Robot 1. Hence, wireless

communication is required for three links: 1) the link from the camera to Robot 2,

2) the link from Robot 1 to Robot 2 and 3) the link from Robot 2 to Robot 1. In

the experiment, the robots remained stationary. This does not a�ect the results of

the demonstration since separation distance is ignored in this scenario. Simulation

results with moving robots in a similar setup are shown later in Section 6.4.3.

The network diagram is shown in Figure 6.20. The experiment assumes that available

bandwidth is su�cient for the two mobile robots to share observations. However, if

images are to be transmitted wirelessly from the static camera, then the wireless

Robot 1 Robot 2

Laser Laser Camera

Object
Detection

Object
Detection

EKF and Path
Planner

EKF and Path
Planner

Figure 6.20 � The threshold-DIF diagram for the three-sensor-node scenario. Virtual
links are omitted for clarity.
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network reaches capacity at only half the full rate of data from the camera. The

camera provides accurate tracking when the target is in its proximity and inside its

�eld of view. Dynamic �ow is expected to allow images to be sent from the camera in

such a situation with the �ow from the camera being accompanied by a simultaneous

reduction of �ow in the other links sharing the medium.

All three communication methods were tested - unconstrained, down-sampling and

dynamic. However, for this experiment, images sent from the camera to Robot 2

caused congestion in the wireless network and e�ectively reduced the unconstrained

transfer rate.

Results

The information value for each of the robots' estimates is plotted over time in Fig-

ure 6.21 with the corresponding average bars shown in Figure 6.22. The �gures show

that the dynamic case outperforms down-sampling for both robots. They also show

better performance for the dynamic case in comparison to the unconstrained case for

Robot 1. This may be attributed to the fact that the unconstrained case would have

failed to produce the desired communication rates due to infrastructure bandwidth

limitations. The results for Robot 2 show similar performance between the dynamic

case and the unconstrained case.

One of the main objectives of this experiment is to highlight the multicast behaviour.

Multicast behaviour can be observed by analysing the bottom two plots of Figure 6.23.

Figure 6.23 shows the �ow rates and approximate sensor utilities for relevant links.

The �ow rates shown correspond to the percentage of observations transmitted while

the sensor utilities correspond to the resulting di�erence in the log determinant of

the estimate's covariance matrix after an observation. At times 80, 150 and 190, the

�ow from the camera to Robot 2 retains a high value even though the camera utility

for Robot 2 is low during those times. Robot 2 receives these observations without

inducing additional cost since observations destined to Robot 1 are processed on-

board Robot 2. Robot 1 receives these observations due to their high utility for
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Robot 1 but these observations must be processed on-board Robot 2 according to

the system architecture. Multicast routing ensures that such �ow does not get tallied

twice. The top two plots con�rm that the system obeys the bandwidth limits as the

drop in �ow takes place concurrently with the rise in �ow from the camera. It should

be noted that the maximum possible �ow from the o�-board stationary camera is

only 50% according to bandwidth bounds.

These results also validate the maximum �ow approximation of total �ow. The �ow

in each of the inter-robot links shown in the top two plots in Figure 6.23 holds data

to only one destination. Therefore, there is no error arising from the maximum �ow

approximation for those links. The link from the camera holds data destined to both

robots. At instances when the camera link is at zero or at maximum �ow, there is

no loss due to the maximum �ow approximation. Also, the number of destinations

in this case is two and hence the loss calculated from Equation 4.12 is at most a

reduction of 25% of maximum �ow for all other instances.
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Figure 6.21 � The information value (negative entropy) of the robots' target estimate
for the three-sensor-node experiment. Plots are shown for all three communication
methods: unconstrained, down-sampled and dynamic. The values correspond to
the negative entropy with the addition of an o�set value.
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Figure 6.22 � Time averages of the plots of Figure 6.21 shown in bar format. The
communication data rate is shown to the right of each average bar. The performance
advantage of dynamic information �ow is clearly observed.
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Figure 6.23 � Inter-robot information �ow and sensor utility over time for the dynamic
�ow case of the three-sensor-node experiment. Flow rates are shown in solid lines
while sensor utility is shown in dashed lines. Based on the bandwidth constraints
and the camera's data rate, 50 is the maximum �ow available for the data sourced
from the camera. At approximately 120 seconds, communication from the camera
interrupts communication between robots due to the increased utility of camera
observations. The �ow rates shown correspond to the percentage of observations
transmitted while the sensor utilities correspond to the resulting di�erence in the
log determinant of the estimate's covariance matrix after an observation.
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6.4.3 Three-Sensor-Node Simulation

We repeated the experiment presented in Section 6.4.3 in simulation. Here, we allow

robots to move in order to improve tracking performance.

Experimental Setup

The experimental setting is similar to that of Section 6.4.2. Sensor output was sim-

ulated through point observations. Therefore, no raw images were involved and the

raw-data communication rate was chosen arbitrarily. In a similar manner to the hard-

ware case, communication is required for the links between the robots as well as the

link from the camera.

The network diagram for this experiment is the same as shown earlier in Figure 6.20.

Through dynamic information �ow, the camera is expected to selectively interrupt

communication between the two robots in order to send its images based on the

bene�t of its observations as evaluated by the robots.

The simulation was run for all three communication methods. The unconstrained

communication method is naturally expected to produce higher information gain

since the bandwidth bounds are not enforced due to the �ctitious data rates.

Results

The information value of the robots' target estimates over time is shown in Fig-

ure 6.24 with the corresponding average bars shown in Figure 6.25. As expected,

unconstrained communication results in higher information on average. However,

this communication setting violates the bandwidth bounds. Nevertheless, Figure 6.8

shows that the dynamic case outperforms the down-sampled case for both robots.

Figure 6.24 shows that the dynamic case dominates the down-sampled case at time

70, between times 150 and 200 and between times 250 and 300. Observations were

received from the camera at these times for the dynamic �ow case as shown in Fig-
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ure 6.26. These times correspond to the con�guration where the target enters the

camera's �eld of view and becomes closer to the camera than the mobile robots.

The bottom two plots shown in Figure 6.26 highlight an aspect of multicast behaviour

di�erent to that highlighted by the hardware analogue of this simulation. When only

one robot evaluates a higher utility for camera observations, such as at times 120,

150 and 220, no signi�cant change in �ow is observed. However, when both robots

evaluate an improvement in the utility, the increase in the �ow from the camera can

be clearly seen.

Similarly to the hardware case, we note there is no error arising from the maximum

�ow assumption in the links between the two robots. The loss occurring in the link

from the camera is negligible.
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Figure 6.24 � The information value (negative entropy) of the robots' target estimate
for the three-sensor-node simulation. Plots are shown for all three communication
methods: unconstrained, down-sampled and dynamic. The values correspond to
the negative entropy with the addition of an o�set value.
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Figure 6.25 � Time averages of the plots in Figure 6.24 shown in bar format. The
data rates are shown superimposed. The improvement for Robot 2 achieved by
dynamic communication over down-sampling using the same communication rates
is clearly observed. The unconstrained method violates the bandwidth constraints
and is only included as a benchmark.
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Figure 6.26 � Information �ow and sensor utility for the three-sensor-node simulation.
Flow rates and sensor utility are represented as in Figure 6.23. The maximum �ow
rate available for the data sourced from the camera is assumed to be 50. The �ow
rates shown correspond to the percentage of observations transmitted while the
sensor utilities correspond to the resulting di�erence in the log determinant of the
estimate's covariance matrix after an observation.
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6.4.4 Multiple-Node Simulation

We demonstrated our decentralised algorithm on a simulated �fteen-node threshold-

DIF network. The purpose of the simulation is to demonstrate our approach for a

problem that is not amenable to manually designed communication protocols. The

simulation was limited to �fteen nodes to maintain near-real-time performance.

The simulated network comprises �ve agents each equipped with a sensor, a processor

and an estimator. The network has a fully connected topology such that each sensor

is connected to all processors and each processor is connected to all estimators. The

agents are spatially distributed evenly in a linear manner. Each sensor is assumed

to produce data at a rate of 100 units. A global communication constraint of 500

units was applied. In addition, a per-link capacity constraint of 200 units was applied

to each processor-estimator link. Sensor utilities were externally randomised and

provided to the estimators.

Results

Figure 6.27 displays, in chronological order, the routing state of the network at various

time instances throughout the simulation. Each column represents one agent equipped

with a sensor, processor and estimator. This con�guration is a matter of choice rather

than a restriction of the algorithm. The links shown in the �gure represent those that

carried more than 10 units of data during the simulation. The �gure demonstrates

the shift of �ow from one part of the network to another as the sensor utilities change.

More importantly, the routing states shown cannot be determined based merely on

intuition. From an inter-agent perspective, the active links for the corresponding time

instances are also shown in Figure 6.28. The average number of active inter-agent

links at each time instance is less than half the fully-connected network maximum

of ten links. Figure 6.29 and Figure 6.30 show the �ow rates of sensor observations

from processors 1 and 2 to estimators 1 and 2. The �ow rates shown correspond to

the percentage of observations transmitted.
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(a) (b)

(c) (d)

Figure 6.27 � Routing state of multiple-node simulation at various times depicting
active wireless links. Each column represents one agent equipped with a sensor,
processor and estimator. Active links are represented by green lines. A link is
considered active if it holds more than 10 units of data �ow.

(a) (b)

(c) (d)

Figure 6.28 � Active inter-agent communication links sharing the same communication
medium for the con�gurations in Figure 6.27. Each agent is composed of a sensor,
processor and an estimator. In our simulated environment, the agents are assumed
to be spatially distributed in a linear manner as shown in the �gure.
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Figure 6.29 � Data �ow for links from processors 1 and 2 arriving at estimator 1 for
the multiple-node simulation. The �ow rates shown correspond to the percentage
of observations transmitted

0

20

40

60

80

100

F
lo

w

Processor 1 to Estimator 2

 

 

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

0 500 1000 1500 2000
0

20

40

60

80

100

F
lo

w

Processor 2 to Estimator 2

Time (s)

Figure 6.30 � Data �ow for links from processors 1 and 2 arriving at estimator 2 for
the multiple-node simulation. The �ow rates shown correspond to the percentage
of observations transmitted
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6.4.5 Monte Carlo Simulation

To validate the performance of dynamic information in comparison to down-sampling,

we conducted a Monte Carlo simulation for the experimental setting of Section 6.4.1.

The aim of the simulation is to analyse the statistical signi�cance of performance

improvement due to our solution to threshold-DIF.

The results of the Monte Carlo simulation are shown in Figure 6.31 in box-plot format.

For each communication method, we ran twenty randomly initialised trials running

for one minute each. The results shown assume each trial as one sample. Dynamic

communication outperforms down-sampling with p-value less than 0.03 based on the

Welch's t-test.
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Figure 6.31 � Monte Carlo simulation results comparing down-sampling with dynamic
information �ow. Each method was tested on the two-robot scenario for twenty
trials running for one minute each. In the results depicted, a trial acts as one
sample. The box extents represent the �rst and third quartile, while the whiskers
represent the extrema. The median is represented by the horizontal line inside the
box. The values correspond to the negative entropy with the addition of an o�set
value.
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6.5 Negotiation-DIF

In this section, we show the results of a complete and integrated solution of communi-

cation e�ciency in information gathering applied to a simulated real-world example.

The solution addresses communication e�ciency for both data fusion and decision

making. The example is a multiple-node real-world scenario that uses the negotiation-

DIF formulation. It is implemented in our decentralised simulation framework. This

scenario is representative of many applications in agriculture, surveillance and mining.

The complexity of the scenario precludes the possibility of a manually designed com-

munication strategy. The �ow of information throughout the network needs to con-

tinuously adjust to changes in the system's state. In addition to data fusion, commu-

nication is required for decision making so the robots can coordinate their decisions.

Our solution to negotiation-DIF enhances communication e�ciency at both the data

fusion and decision making layers concurrently.

The scenario has been designed to highlight performance on large systems as well as

the �exibility features of negotiation-DIF and its corresponding solution. In addition,

it demonstrates interesting behaviour such as switching processing locations, selective

cooperation and interjection of images from the stationary camera.

The section also includes a simple two-robot simulation that aims to verify the per-

formance of negotiation-DIF in comparison to other communication methods. The

advantage of our communication e�ciency solution is also veri�ed against naive down-

sampling through a Monte Carlo simulation test.

6.5.1 Multiple-Node Simulation

The multiple-node scenario involves two mobile robots, two processing ground stations

and one stationary camera. The mission of the robots is to track two moving targets.

The aim of this simulation is to demonstrate the applicability of negotiation-DIF to

real-world applications. The experimental scenario of this simulation mimics scaled
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versions of applications in agriculture and surveillance. In agriculture, the ability to

track and herd cattle using multi-robot systems is desirable. In surveillance applica-

tions, using a combination of mobile agents and static sensors for tracking is bene�cial

for real-time security requirements.

Manual design of a communication strategy is not possible due to the complexity of

this scenario caused by several factors. First, there are three types of sensors, a �xed

camera and two sensors with di�erent �elds of view and each mounted on a mobile

robot. These sensors' utility will vary throughout the demonstration. Second, the

sensors on board the cameras are bearing-only sensors that require coordination be-

tween the robots in order to maximise their joint utility. Another cause of complexity

is the multiplicity of routes between sensors and estimators.

Qualitatively, this scenario induces interesting behaviour that corresponds to com-

munication e�ciency. For instance, it is expected that the robots will relay raw data

to be processed o�-board only when they are close to one of the processing stations.

Furthermore, it is expected that the robots will only receive image observations from

the stationary camera when they are su�ciently close to the camera and when their

current estimates have high uncertainty. In addition, the robots are not expected to

cooperate when they are distanced from each other and when each robot is tracking

a di�erent target.

Experimental Setup

The experimental setting is depicted in Figure 6.32 and is based on the outdoor

experimental system. The setting includes two mobile robots, two processing ground

stations and one stationary camera. The two robots are equipped with bearing-only

sensors, one with a 360◦ �eld of view and the other with a 180◦ �eld of view. The

robots share a large operating region and track two targets circulating the outside

border of the region. The robots have access to an o�-board camera and two o�-board

processing stations.
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Figure 6.32 � Demonstration setting of the multiple-node simulation. The two mobile
robots are shown within their movement region. Targets tracks are shown circulat-
ing outside the robot region. The ground stations and camera are also depicted.

The network diagram for this demonstration is shown in Figure 6.33. A common

wireless medium is used for all communication between the robots, the camera and

processing stations. The link cost increases with increasing communication distance

through a crude distance-proportional model. Virtual links, not shown in the �gure,

allow for the no-send decision.

Results

The �ow rates for wireless links to the estimator of Robot 1 are shown in Figure 6.34,

while the �ow rates for wireless links to the estimator of Robot 2 are shown in Fig-

ure 6.35. The �ow rate correspond to the percentage of observations transmitted. For
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Figure 6.33 � The negotiation-DIF diagram for the multiple-node simulation. Virtual
links are omitted for clarity.

a visually-oriented display of the results, snapshots of the system state with active

wireless links are shown in Figure 6.36. In Figure 6.36a, both robots are close to the

camera. Therefore, they both receive aiding observations from the camera. This is

evident from the values at time 50 shown in the �ow plots. At time 125, Robot 1

receives observations from the camera while Robot 2 is completely disconnected from

other nodes. At time 170, the robots exchange observations. In the same time,

Robot 2 is close to Station 2 and therefore, it relays sensor data processing to the

stations instead of processing the data on-board. At time 175, Robot 1 receives ob-

servations from the camera. However, the camera data is �rst processed at Station 1

and then relayed to Robot 1. The use of a processing station as a relay is particularly

interesting since it was not directly anticipated by the author.

The results of this simulation show that real-time performance is maintained for a

network involving eleven nodes. Real-time performance is evident from the time-scale
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Figure 6.34 � Data �ow for links arriving at Robot 1's estimator for the multiple-node
simulation. The �ow rates shown correspond to the percentage of observations
transmitted.

of the �ow switching observed both in Figure 6.36 and in the plots of Figure 6.34 and

Figure 6.35.
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(a) t=50 seconds (b) t=60 seconds (c) t=75 seconds

(d) t=100 seconds (e) t=125 seconds (f) t=155 seconds

(g) t=160 seconds (h) t=170 seconds (i) t=175 seconds

Figure 6.36 � System state of multiple-node simulation at various times t. Active
wireless links are represented by green lines.
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6.5.2 Two-Robot Simulation

To validate the performance of our solution over other communication strategies, we

tested and compared di�erent communication strategies in a simulated environment

involving two mobile robots cooperatively tracking a moving target.

Experimental Setup

The experiment setting is shown in Figure 6.37 and is based on the outdoor system

of Section 6.2. The two robots are equipped with bearing-only sensors, one with a

360◦ �eld of view and the other with a 180◦ �eld of view. In this case, the two mobile

robots are assigned to the same rectangular workspace. This experimental setting

also involved two targets that circulated around the robots' workspace. The fact

Figure 6.37 � Demonstration setting of the two-robot simulation. Robots 1 and 2
are shown with their boundary. Sample target tracks are shown making a square
pattern around the robots' workspace.
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that the robots now share the same workspace and are required to track two targets

increases the need for cooperative decision making between robots.

The network diagram for this demonstration is shown in Figure 6.38. Data fusion

and decision making share a common wireless communication medium. The links

representing both processes are assigned the same link cost. Without communication

constraints, data fusion requires bandwidth of approximately 2KB/s while cooperative

decision making requires approximately 8KB/s. The link cost increases with inter-

robot distance. We employ a crude model that sets the link cost proportional to

distance. Virtual links, not shown in the �gure, allow for the no-send decision.

To validate the advantage of the dynamic information �ow formulation, three control

tests were run for the purpose of comparison. The �rst control test allows uncon-

strained data fusion and negotiation between all nodes. This test is referred to as

the unconstrained case. In the second control test, communication is reduced to the

same rate used by the dynamic information �ow case for both data fusion and de-

cision making. This test is referred to as the down-sampled case. The third control

test allows unconstrained communication for data fusion but involves local decision

making only. The purpose of the third control test, referred to as the no negotiation

case, is to validate the bene�t of negotiation.

Results

The information value for the robots' target estimates over time is shown in Fig-

ure 6.39 with the corresponding average bars shown in Figure 6.40. The dynamic

case achieves an information gathering performance comparable to the unconstrained

case while requiring approximately 50 % less communication bandwidth for data fu-

sion and decision making. The percentage of bandwidth saved for decision making

is particularly important since decision making consumes more bandwidth in this

experiment.

Figure 6.41 shows the inter-robot distance and the chosen data �ow and negotia-

tion rates over time as selected by our dynamic �ow method. The �ow rates shown
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Figure 6.38 � The negotiation-DIF diagram for the two-robot simulation. Virtual links
are omitted for clarity.

correspond to the percentage of observations transmitted while the negotiation rate

corresponds to the percentage of time steps for which robots cooperatively made

decisions. The sensor utilities correspond to the resulting di�erence in the log de-

terminant of the estimate's covariance matrix after an observation. The inter-robot

distance was used to determine the communication cost with a constant of propor-

tionality of 1. The second and third plots show many instances of complementarity

in transmission indicating an intelligent usage of available bandwidth. The last plot

shows how bandwidth usage due to negotiation was saved when inter-robot coupling

was determined to be of a reduced impact on performance with the threshold set at

0.2.
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Figure 6.39 � The information value (negative entropy) of the robots' target estimate
for the two-robot simulation. Plots shown are for all four communication methods:
unconstrained, down-sampled, dynamic and no-negotiation. The values correspond
to the negative entropy with the addition of an o�set value.
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Figure 6.40 � Time averages of the plots of Figure 6.39 shown in bar format. The
data rates are shown superimposed. The data rate values are ratios to the uncon-
strained rate for both data fusion and negotiation. The dynamic case shows a clear
improvement in information gain in comparison to down-sampling for Robot 2.
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Figure 6.41 � Inter-robot data �ow and negotiation rates for the dynamic case of the
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6.5.3 Monte Carlo Simulation

We performed a Monte Carlo simulation for the experimental setting of Section 6.5.2,

comparing the dynamic communication with down-sampling. The aim of the simu-

lation is to provide statistically signi�cant results that verify the performance of our

solution to negotiation-DIF.

The dynamic communication case was compared against two sets of down-sampling

rates. The �rst set of 50% for DDF and 70% for DDM is chosen to be approximately

equal to the average usage of 51.2% and 67% of the dynamic case. The second set

is chosen to be 60% and 70%. Each method was tested in twenty randomised trials

running for two minutes each.

The results of the Monte Carlo simulation are shown in Figure 6.42 in box-plot format.

The results shown assume each trial as one sample. Dynamic communication outper-

forms the down-sampling rate of 50% and 70% with a Welch's t-test for statistical

signi�cance resulting in a p-value less than 0.001.
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Figure 6.42 � Monte Carlo simulation results comparing down-sampling with dynamic
information �ow. Each method was tested on the scenario of Section 6.5.2 for
twenty trials running for one minute each. In the results depicted, a trial acts
as one sample. The box extents represent the �rst and third quartile, while the
whiskers represent the extrema. The data median is represented by the horizontal
line inside the box. The values correspond to the negative entropy with the addition
of an o�set value.
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6.6 Discussion and Lessons Learnt

The results shown demonstrate the performance advantage of the solutions in Chap-

ters 4 and 5 and their applicability to heterogeneous information gathering systems.

The performance advantage of the solutions over naive down-sampling of data rates

was validated experimentally through Monte Carlo simulations. The experimental

settings shown in this chapter involved heterogeneous systems with nodes possessing

di�erent sensor types and levels of computation. The range of sensors included cam-

eras, 2D lasers with a 180◦ �eld of view and a 3D laser with a 360◦ �eld of view. The

computational capabilities of nodes in the experiments ranged from nil for the case

of the �xed camera to eight-core computers.

The real-time performance of the algorithms was demonstrated for networks up to

eleven nodes as shown in the multiple-node simulation of Section 6.5.1. Nevertheless,

the scalability of the algorithms is not without limit since the complexity remains

superlinear. In practice, we have found that networks up to �fteen nodes, such as

that of Section 6.4.4, maintain real-time performance.

The myopic approximation of sensor utility did not cause critical reduction in perfor-

mance as testi�ed by the advantage of our algorithms over down-sampling. However,

an observable e�ect was the lag in any performance boost caused by the algorithms.

This e�ect was observed in the results of Section 6.3.1. We hope to address this issue

in future work.

The hardware experiments con�rmed our claim that any algorithm introduced to deal

with communication e�ciency needs to be itself communication-e�cient. During

the experiments, we realised a slight delay in the performance of our algorithms

over loaded wireless networks. For example, the maximum time between updates

for the simulation in Section 6.4.3 was approximately 0.14 seconds while this time

was approximately 0.31 seconds for the corresponding hardware experiment. This

observation supports the hypothesis that other methods with extra communication

and computation overhead will fail to produce the required communication e�ciency.
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From an implementation perspective, several remarks about the algorithms need to

be noted. First, the data fusion framework needs to be able to deal with inter-

mittent reception of observations in addition to the reception of observations from

several di�erent sources. Although the solution to threshold-DIF obeys the speci�ed

resource limits, the algorithm is not an any-time algorithm and thus approximations

are required until the algorithm has converged.
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Chapter 7

Conclusions and Future Work

This thesis has presented algorithms that improve communication e�ciency in de-

centralised information gathering in a global and principled manner. Improved com-

munication e�ciency, in turn, eases current limits on the size, heterogeneity, appli-

cability and versatility of decentralised information systems. This chapter provides

a summary of the thesis, a summary of contributions and possible future research

directions.

7.1 Thesis Summary

This thesis introduced a comprehensive and principled approach to improving the

e�ciency of communication required by the data fusion and decision making layers

in decentralised information gathering. The approach is based on the novel dynamic

information �ow problem formulation. We introduced three variants of the DIF prob-

lem that model di�erent types of communication resource limitations. The problem

formulations of the three variants were presented in Chapter 3.

The �rst variant, min-cost-DIF, permits assigning communication costs for links used

at the data fusion layer. In Section 4.1, we proposed a solution to min-cost-DIF based

on optimal multicast routing algorithms. We proved equivalence of our problem for-

mulation to the standard multicast routing problem. The proposed solution allows
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the system to decide on-line when, to whom and at what level of abstraction should

information �ow between robots while taking into account the multicast nature of

data sharing. In Section 6.3, we presented simulation and experimental results of de-

centralised information gathering systems involving mobile robots tracking a moving

target. In one experiment, a robot was shown to switch from o�-board to on-board

processing as its distance from the station increased. In another, robots selectively

processed raw sensor data and shared observations whenever the combined sensor

utility computed by both robots justi�ed the processing cost. The resulting informa-

tion gathering performance surpassed that of simple down-sampling methods. This

performance advantage was further validated through the results of a Monte Carlo

simulation.

The second variant, threshold-DIF, improves on min-cost-DIF by allowing explicit

bandwidth constraints to be assigned to communication links. Thus, threshold-DIF

avoids the di�culty required in assigning scaling factors between communication,

computation and sensor utility. In Section 4.3, we proposed a solution to threshold-

DIF based on a distributed version of ADMM and provided a detailed complexity

analysis in terms of the problem size. In Section 6.4, we presented experimental results

for two scenarios. The �rst involved two mobile robots tracking a moving target. The

inter-robot communication bandwidth was assumed to be limited and inadequate

for simultaneous two-way communication. The communication direction alternated

during the experiment according to sensor utility. The second scenario involved the

two robots tracking a moving target with the aid of a stationary camera. When the

camera's observation utility was valuable, inter-robot communication halted so the

camera could send raw images to one of the robots for processing. In both scenarios,

our solution outperformed simple down-sampling methods using the same amount of

communication bandwidth. For the �rst scenario, this performance advantage was

further validated through a Monte Carlo simulation. We also presented a simulation

of threshold-DIF implemented on a network with �fteen nodes to demonstrate the

performance of our solution on networks for which manual design is challenging.
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The third variant, negotiation-DIF, extends min-cost-DIF to allow for the simul-

taneous improvement of communication e�ciency at the data fusion and decision

making layers. In negotiation-DIF, the data fusion and decision making layers share

a common communication link cost. The proposed solution to negotiation-DIF was

presented in Chapter 5. The solution is based on the solution to min-cost-DIF com-

bined with the extended-LQISO algorithm proposed in Section 5.3. The output of

extended-LQISO provides the min-cost-DIF layer with sensor utility scaling factors

that relate feedback control actions to sensor observations. These scaling factors are

also used to enhance sensor utility estimation. Negotiation-DIF is bene�cial for sys-

tems that communicate large amounts of data during decision making negotiations. In

Section 6.5, we veri�ed our solution to negotiation-DIF in simulation for a two mobile

robot scenario. The results of the simulation showed the robots concurrently decid-

ing on communication at the data fusion and decision making layers. The robots

simultaneously decided whether to share observations and whether to negotiate or

take decisions independently instead. Monte Carlo simulation results demonstrated

a statistically signi�cant improvement caused by negotiation-DIF in comparison with

simple subsampling. We also presented simulation results for a complex decentralised

information gathering system that mimics real applications. The system involved one

camera, two processing ground stations and two mobile robots actively tracking two

moving targets.

7.2 Summary of Contributions

This section provides a discussion of the contributions towards communication e�-

ciency in information gathering that were introduced by this thesis. The discussion

is divided into individual sections for each contribution.
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7.2.1 DIF Formulation

This thesis introduced the novel DIF formulation of communication e�ciency in in-

formation gathering. The bene�t of the DIF formulation is that it is general since it

is applicable to any system that is composed of sensors, processors, estimators and

controllers. It is also general because, unlike existing methods, it is not speci�c to

a particular application. The DIF formulation permits decentralised, e�cient and

practically implementable algorithms due to its graph structure representation and

its capacity to include local and global costs, utilities and constraints.

Three problem variants of dynamic information �ow were de�ned. The �rst two target

applications where communication is dominated by data fusion while the third targets

applications where communication is dominated by both data fusion and negotiation.

These options are useful in practice because most information gathering systems

involve data fusion and some also require high bandwidth for decision making.

7.2.2 Min-Cost-DIF Solution

This thesis introduced an e�cient decentralised solution to min-cost-DIF. The so-

lution was adapted from recent results in multicast routing, which we extended to

allow for negative link costs that represent sensor utility. The bene�ts of the solution

to min-cost-DIF are mainly applicable to heterogeneous systems with large amounts

of sensor data. Min-cost-DIF is targeted to applications where communication limits

are more suitably represented as link costs. This is the case in applications where

link costs are dynamic or di�cult to specify due to links being shared with other

algorithms.

7.2.3 Threshold-DIF Solution

This thesis introduced an e�cient decentralised solution to threshold-DIF. The solu-

tion is based on a distributed version of ADMM that requires neighbour-to-neighbour
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communication only. Similar to the min-cost-DIF case, the solution is of importance

to heterogeneous systems with large amounts of data. However, threshold-DIF is

targeted to applications where communication limits are known and need to be both

globally and explicitly speci�ed, such as standard mesh networks or WiFi networks.

7.2.4 Sensor Utility

This thesis provided a concise empirical analysis of sensor utility approximations. For

a simple multi-robot mapping application, we showed that the myopic approximation

is much closer to the exact sensor utility than a conservative theoretical upper bound.

7.2.5 LQISO

This thesis introduced the LQISO algorithm. LQISO is based on the LMI formulation

of the LQ team problem that allows the addition of communication costs onto the

optimal control problem. The result is a convex optimisation solvable in polynomial

time. The thesis also demonstrated how this can be extended to reduce communi-

cation required by a DDM algorithm for information gathering while simultaneously

maintaining acceptable team performance.

7.2.6 Negotiation-DIF Solution

This thesis introduced a solution to negotiation-DIF. The solution was obtained by

combining our solution to min-cost-DIF with extended-LQISO. The result of our

negotiation-DIF solution is a complete solution to communication e�ciency in infor-

mation gathering. The solution to negotiation-DIF extends the bene�ts of dynamic

communication to information gathering applications with high communication de-

mand for both data fusion and decision making.
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7.3 Future Work

Many future research directions exist for both communication-e�cient data fusion

independently as well as for communication-e�cient information gathering. These

future directions either aim to theoretically extend or address shortcomings of the

suggested algorithms or improve the algorithms towards a simpler implementation

with the goal of wide usage within the domain of decentralised information gathering.

7.3.1 Communication E�ciency in Data Fusion

For communication e�ciency in data fusion, we project the following future directions:

• Non-myopic sensor utility: An important future advancement of our so-

lutions to DIF is an accurate non-myopic sensor utility estimate. A possible

direction might include machine learning techniques that learn the sensor util-

ity as a function of the platform state. The main challenge for this direction

is computation and communication e�ciency of the learning algorithms. A

non-myopic estimate will reduce rapid variations in sensor utility.

• Any-time feasible solution: A future goal is to transform our current dis-

tributed solution to threshold-DIF into an any-time feasible solution. This will

greatly simplify implementation avoiding any need for approximations. Our

prediction is that any-time feasibility might be achieved through feasibility pro-

jection methods from optimisation theory.

• Learn communication policies: Communication patterns observed during

conducted DIF experiments suggest that machine learning techniques can be

employed to learn communication policies directly. Machine learning techniques

add an extra layer of intelligence and can further improve communication e�-

ciency particularly over larger time horizons.

• Plug-and-play capability: A future ambition is to provide our algorithms

with a plug-and-play capability. In our current implementation, the identities
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of the nodes in the network need to be globally known. We envisage that this

is not a necessary requirement and can be replaced by an automated discovery

process. Nodes can advertise their types and then run a handshaking procedure

with appropriate nodes before establishing connections.

• Select sensor operational modes: Another future direction worth investi-

gating is the adaptation of DIF to the case of selecting operational modes of

a sensor. By modelling each mode as a separate sensor, the DIF formulation

could potentially lead to decisions on which mode should operate for di�erent

time periods.

7.3.2 Communication E�ciency in Information Gathering

For the case of communication e�ciency in information gathering, we project the

following future directions:

• Assign explicit resource constraints: A desirable future research outcome

is the ability to assign explicit resource constraints instead of link costs as is

currently required by negotiation-DIF. By assigning explicit constraints, a sys-

tem designer can con�rm that the limit on communication will not be violated

and hence the system will not fail. Since negotiation-DIF is an amalgamation

of min-cost-DIF and comms-LQ, we aim to fuse threshold-DIF with comms-LQ

to allow for explicit communication constraints.

• Decentralise LQISO: The LQISO algorithm introduced in Section 5.2 is

amenable to several future improvements. One desirable improvement is de-

centralising the algorithm. Decentralising the algorithm may expand its appli-

cability to large teams of small unmanned aerial vehicles (UAVs) performing

coordination tasks in applications such as aerial surveillance or construction.

• Reduce the complexity of LQISO: Another possible improvement to LQISO

is the reduction in the algorithm's time complexity. The time complexity of the

current version of the algorithm is determined by the complexity of SDP.
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• Add stability criteria to LQISO: We desire to add stability criteria to

LQISO. This means that LQISO can then be used directly for distributed LQ

control. This can have many implications for industries that rely on distributed

control such as the chemical engineering industry.

• Use multi-radio multi-channel networks: Finally, we hypothesise that em-

ploying recent advances in multi-radio multi-channel networks [57] in the im-

plementation of our algorithms will help further exploit the bene�ts of these

algorithms.

7.3.3 Applications

Since the solution methods in this thesis are applicable to general information gath-

ering applications, in the future, we predict that our algorithms will be of bene�t for

applications such in agriculture, cooperative mapping, urban surveillance, chemical

plants and mining:

• Agriculture: In agriculture, automated herding of cattle over large areas

through mobile robots requires cooperative tracking and coordination by the

robots. The large area to be covered and the necessity of using bandwidth-

limited wireless communication naturally lead to the DIF formulation of the

problem. Hence, we predict that such systems can be enabled through the

solutions we have provided or enhancements thereof.

• Mapping: A large team of mobile robots exploring a wide area does not need

to continuously share the entire discovered portion of the map. We hypothesise

that our algorithms can provide an automated and dynamic communication-

e�cient solution.

• Urban surveillance: A traditional problem in urban surveillance is the over-

abundance of information available. Once more, we predict that our algorithms

can provide a solution for this problem.
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• Tracking personnel and equipment: We believe that the DIF problem for-

mulation applies to the problem of tracking personnel and equipment in indus-

tries with geographically large areas such as ports and mines. The adaptation of

DIF into such commercial applications is de�nitely a future ambition we desire

to achieve.
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Appendix A

Non-Submodularity of

Linear-Gaussian Systems

Submodularity does not extend to information gathering tasks with environment dy-

namics. We show this by analysing the required conditions for the submodularity of

linear-Gaussian systems and by giving a simple counterexample.

De�nition A.1 (T-submodularity). The information structure of an information

gathering problem is said to be T-submodular if the sensor observation utility is sub-

modular after the estimate is propagated T timesteps.

We analyse the 1-submodularity of the sensor selection problem for linear-Gaussian

systems and we give a simple counterexample to 1-submodularity.

A.1 Properties of the log-determinant function

To analyse the mutual-information-based sensor selection problem for linear Gaussian

systems, we analyse the sign of the derivatives of the log-determinant function.

De�ne a log-determinant function g such that g(r, s, t) = log |A + rB + sC + tD|
where A, B, C and D are any positive semi-de�nite matrices. The �rst and second

derivatives of g have the properties given by Lemma A.1.
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Lemma A.1 (Sign of log-determinant derivatives). The �rst and second derivatives

of g(r, s, t) = log |A+ rB+ sC + tD| where A, B, C and D are positive semi-de�nite

have the following properties.

1. The derivatives along r, s and t are non-negative.

∂f(r, s, t)

∂r
≥ 0 ,

∂f(r, s, t)

∂s
≥ 0 ,

∂f(r, s, t)

∂t
≥ 0 (A.1)

2. The second derivatives of g are non-positive.

∂2f(r, s, t)

∂s2
≤ 0 ,

∂2f(r, s, t)

∂r2
≤ 0 ,

∂2f(r, s, t)

∂t2
≤ 0 (A.2)

∂2f(r, s, t)

∂s∂r
≤ 0 ,

∂2f(r, s, t)

∂t∂r
≤ 0 ,

∂2f(r, s, t)

∂t∂s
≤ 0 (A.3)

Proof.

1.
∂f(r, s, t)

∂r
= tr

[
(A+ rB + sC + tD)−1B

]
= tr

[
B

1
2 (A+ rB + sC + tD)−1B

1
2

]
≥ 0

(A.4)

∂3f(r, s, t)

∂t∂s∂r
≥ 0 (A.5)

By symmetry, the same follows for s and t.

2.

∂2f(r, s, t)

∂s∂r
=

∂(∂f(r,s,t)
∂r

)

∂s

= tr
[
−(A+ rB + sC + tD)−1C(A+ rB + sC + tD)−1B

]
= − tr

[
B

1
2 (A+ rB + sC + tD)−1C(A+ rB + sC + tD)−1B

1
2

]
≤ 0

(A.6)
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By symmetry, the same follows for the other variable combinations.

The sign semi-de�niteness of the �rst and second derivatives of the log-determinant

function allow us to prove the monotonicity and submodularity of the log-determinant

function and subsequently the monotonicity and submodularity of the sensor selection

problem without environment dynamics.

Theorem A.1 (Log-determinant submodularity).

1. The log det function is monotonic over the positive de�nite cone.

log |A+B| ≥ log |A| (A.7)

2. The log det function is submodular over the positive de�nite cone.

log |A+B + C| − log |A+ C| ≤ log |A+B| − log |A| (A.8)

Proof.

1.

log |A+B| − log |A| =
1∫

0

∂f

∂r
(r, 0, 0) dr ≥ 0 (A.9)

Since ∂f
∂r
≥ 0 for all r ≥ 0 Therefore,

log |A+B| − log |A| ≥ 0

log |A+B| ≥ log |A|
(A.10)

2.

log |A+B| − log |A| =
1∫

0

∂f

∂r
(r, 0, 0) dr (A.11)
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log |A+B + C| − log |A+ C| =
1∫

0

∂f

∂r
(r, 1, 0) dr (A.12)

1∫
0

∂f

∂r
(r, 1, 0) dr −

1∫
0

∂f

∂r
(r, 0, 0) dr =

1∫
0

∂

∂s

1∫
0

∂f

∂r
(r, s, 0) dr ds

=

1∫
0

1∫
0

∂2f

∂s∂r
(r, s, 0) dr ds ≤ 0

(A.13)

The result follows immediately.

The submodularity of the sensor selection problem with environment dynamics is

related to the third derivative of the log-determinant function. More speci�cally, if

the third derivatives are always positive for a set of sensors and a particular dynamics

model, then the sensor selection problem is submodular. The general third derivative

is given by Equation A.14. For simplicity of notation, de�ne Er,s,t = A+rB+sC+tD.

∂3f(r, s, t)

∂t∂s∂r
=

∂
(
∂2f(r,s,t)
∂s∂r

)
∂t

= tr
[
E−1
r,s,tDE

−1
r,s,tCE

−1
r,s,tB

]
+ tr

[
E−1
r,s,tCE

−1
r,s,tDE

−1
r,s,tB

] (A.14)

The positive-de�niteness of the third derivatives leads to the monotonicity of the

submodularity gap de�ned in De�nition A.2.

De�nition A.2 (Submodularity gap). The submodularity gap of the log det function

is de�ned as:

log |A+B| − log |A| − log |A+B + C|+ log |A+ C| (A.15)

If the third derivatives are positive semi-de�nite then we can show that the submodu-

larity gap of the log-determinant function is monotonically decreasing over the space

of positive semi-de�nite matrices using the same approach as in Theorem A.1. The
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submodularity gap at t = 0 is given by Equation A.16 while the submodularity gap

at t = 1 is given by Equation A.17. The di�erence given in Equation A.18 is positive

if all third derivatives are positive and in that case Inequality A.19 holds.

log |A+B| − log |A| − log |A+B + C|+ log |A+ C|

= −
1∫

0

1∫
0

∂2f

∂s∂r
(r, s, 0) dr ds

(A.16)

log |A+B +D| − log |A+D| − log |A+B + C +D|+ log |A+ C +D|

= −
1∫

0

1∫
0

∂2f

∂s∂r
(r, s, 1) dr ds

(A.17)

1∫
0

1∫
0

∂2f

∂s∂r
(r, s, 1) dr ds−

1∫
0

1∫
0

∂2f

∂s∂r
(r, s, 0) dr ds

=

1∫
0

∂

∂t

1∫
0

1∫
0

∂2f

∂s∂r
(r, s, t) dr ds ds

=

1∫
0

1∫
0

1∫
0

∂3f

∂t∂s∂r
(r, s, t) dr ds ds

(A.18)

log |A+B| − log |A| − log |A+B + C|+ log |A+ C|

≥ log |A+B +D| − log |A+D| − log |A+B + C +D|+ log |A+ C +D|
(A.19)

We now relate the monotonicity of the submodularity gap of the log-determinant

function to the submodularity of the mutual-information-based sensor selection prob-

lem for a linear-Gaussian system. To this end, consider the linear Gaussian system

given by Equation A.20.

xk+1 = Axk + wk, where wk ∼ N (0,W ) (A.20)
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Based on the equations of the discrete Kalman �lter, the entropy of the estimate at

timestep 2 conditioned on the observation set Z1 = {z1, ..., zN} at timestep 1 is given

by Equation A.21.

H(x2|Z1) = H(x1|Z1) +H(x2|x1)−H(x1|x2, Z1)

=
1

2

[
log
(
(2πe)n|Px1|Z1|

)
+ log ((2πe)n|W |)− log

(
(2πe)n|Px1|x2,Z1|

)]
=

n

2
log(2πe) +

1

2

[
− log |P−1

x1|Z1
|+ log |W |+ log |P−1

x1|x2,Z1
|
]

(A.21)

The posterior covariance at time step 1 after fusing the set of observations Z1 is given

by Equation A.22. On the other hand, Px1|x2,Z1 can be computed by treating x2 as

an observation with the information matrix F TW−1F as shown in Equation A.23.

Px1|Z1 = P−1
x1

+ Iz1 + . . .+ IzN (A.22)

P−1
x1|x2,Z1

= P−1
x1|Z1

+ F TW−1F (A.23)

By substituting Equation A.22 and Equation A.23 into Equation A.21, we obtain

Equation A.24.

H(x2|Z1) =
n

2
log(2πe) +

1

2

[
− log |P−1

x1
+ Iz11 + . . .+ Iz1N |+ log |Q|

+ log |P−1
x1

+ Iz11 + . . .+ Iz1N + F TW−1F |
] (A.24)

The information gain after is the change in entropy as is given by Equation A.25.

I(x2;Z1) = H(x1)−H(x2|Z1) (A.25)

For any two sets X1, Y1 ⊂ Z1, the conditional information gain is given by Equa-

tion A.26.

I(x2;X1|Y1) = I(x2;X1, Y1)− I(x2;Y1) = H(x2|X1)−H(x2|X1, Y1) (A.26)
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We can now show that 1-submodularity of the sensor selection problem corresponds to

the positive-de�niteness of the submodularity gap. Consider three sensor observations

za, zb, zc ∈ Z1. Then the corresponding sensor selection problem is 1-submodular if

the value in Equation A.27 is positive.

I(x2; za, zb)− I(x2; za)− I(x2; {za, zb, zc}) + I(x2; {za, zc})

= H(x2|za)−H(x2|{za, zb})−H(x2|{za, zc}) +H(x2|{za, zb, zc})

=
1

2

[
log |P−1

x1
+ Iza + F TW−1F | − log |P−1

x1
+ Iza|

− log |P−1
x1

+ Iza + Izb + F TW−1F |+ log |P−1
x1

+ Iza + Izb|

− log |P−1
x1

+ Iza + Izc + F TW−1F |+ log |P−1
x1

+ Iza + Izc|

+ log |P−1
x1

+ Iza + Izb + Izc + F TW−1F | − log |P−1
x1

+ Iza + Izb + Izc|
]

(A.27)

By setting the variables of Equation A.19 such that A := P−1
x1

+Iza , B := Izb , C := Izc

and D := F TW−1F , it is clear that the positive-de�niteness of the submodularity gap

corresponds to the submodularity of the sensor selection problem.

A.2 Counterexample

We give a simple linear-Gaussian counterexample that shows that the sensor selection

problem is not 1-submodular. Suppose the dynamics of the estimated state are given

by Equations A.28-A.30.

xk+1 = Axk + wk, wk ∼ N (0,W ) (A.28)

A =


1 dt 0 0

0 1 0 0

0 0 1 dt

0 0 0 1

 (A.29)
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W = σ2
w


dt3/3 dt2/2 0 0

dt2/2 dt 0 0

0 0 dt3/3 dt2/2

0 0 dt2/2 dt

 (A.30)

Further suppose we have three sensors with the linear sensor models given according

to Equation A.31 and suppose a prior covariance given by Equation A.32.

H1 =
[

1 0 1 0
]

H2 =
[

1 0 0 0
]

H3 =
[

0 0 1 0
] (A.31)

Px1 =


4.9760 0.3760 −5.2032 1.1435

0.3760 9.2592 2.8160 6.0227

−5.2032 2.8160 6.9280 2.1174

1.1435 6.0227 2.1174 8.5429

 (A.32)

By setting dt = 10, the submodularity gap is negative as computed in Equation A.33.

− log |Px1|z1,z2|+ log |Px1|z1,z2,z3 |+ log |Px1|z1| − log |Px1|z1,z3| = −0.1011 (A.33)
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