
manuscript No.
(will be inserted by the editor)

Searching and Tracking People with Cooperative Mobile Robots

Alex Goldhoorn1 · Anaís Garrell1 · René Alquézar1 · Alberto Sanfeliu1

Received: date / Accepted: date

Abstract Social robots should be able to search and track

people in order to help them. In this paper we present two

different techniques for coordinated multi-robot teams for

searching and tracking people. A probability map (belief) of

a target person location is maintained, and to initialize and

update it, two methods were implemented and tested: one

based on a reinforcement learning algorithm and the other

based on a particle filter. The person is tracked if visible,

otherwise an exploration is done by making a balance, for

each candidate location, between the belief, the distance,

and whether close locations are explored by other robots

of the team. The validation of the approach was accom-

plished throughout an extensive set of simulations using up

to five agents and a large amount of dynamic obstacles; fur-

thermore, over three hours of real-life experiments with two

robots searching and tracking were recorded and analysed.

Keywords Multi-Robot coordination · Urban Robotics ·
Search-and-Track · Decentralized Coordination

Fig. 1 The robots search and track the person (in the back wearing a

tag to recognize him) while other people are walking around obstruct-

ing the robots’ vision. In the lower map left, the localization of the

robots can be seen (orange and blue robots), and at the right, the prob-

ability maps of the person’s location of both robots are shown.

1 Introduction

Searching and tracking are important behaviors for a mobile

service robot, for example to assist people, to search and

Work partially supported by the Spanish Ministry of Science and In-

novation under project Rob-In-Coop (DPI2013-42458-P) and EU FP7

project ARCAS (INFSO-ICT-287617).

A. Goldhoorn

E-mail: agoldhoorn@iri.upc.edu; alex@goldhoorn.net

A. Garrell

E-mail: agarrell@iri.upc.edu

R. Alquézar

E-mail: ralqueza@iri.upc.edu

A. Sanfeliu

E-mail: sanfeliu@iri.upc.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159237508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Alex Goldhoorn1 et al.

rescue (Marconi et al. 2012; Sheh et al. 2016) or search for

objects (Ferrein and Steinbauer 2016).

The method can be applied to searching objects, but here

we focus on searching and tracking of a person. Even though

searching might be evident for humans, for robots it is not,

since it requires exploring; handling noisy sensors that also

can give false positives or false negatives; coping with dy-

namic obstacles, such as other people walking in front of the

robot; and in the case of multiple agents, coordination to do

an efficient search.

In previous studies (Goldhoorn et al. 2014), we described

and evaluated different methods for searching and tracking

a person in urban settings, using a single humanoid service

robot. These methods made use of the online search algo-

rithm Partially Observable Monte-Carlo Planning (POMCP;

Silver and Veness (2010)), which, in contrast to other previ-

ous approaches, can plan under uncertainty, in large contin-

uous state space and in real-time.

In this paper, we present two multi-robot approaches (the

Multi-agent HB-CR-POMCP Explorer and Multi-agent HB-

PF Explorer) that can search and track one person, using one

or more agents (robots) that cooperate by communicating

their observations and most probable locations of the per-

son. Internally, the agents use a probability map of the per-

son’s location, for which we tried two different methods: the

Highest Belief Continuous Real-time Partially Observable

Monte-Carlo Planning (HB-CR-POMCP) and the Highest

Belief Particle Filter (HB-PF) method, for which the obser-

vations of all agents are used. Thereafter, the most probable

locations are marked and sent to all agents, such that each

agent can choose the best location to explore. In the case of

a visible person, the agents track the person while updating

the probability map, since the observation could be a false

positive. The methods are able to cope with noisy sensors,

false negative detections, and, for a short time, false positive

detections. Furthermore, the methods are able to search and

track with only one agent when no communication is avail-

able. We improve the person location probability map by

also using dynamic obstacles—such as other people walk-

ing around—and a probabilistic visibility check.

Finally, the validation of the approach was accomplished

by an extensive set of simulations and a large amount of

real experiments in an urban campus environment with dy-

namic obstacles, using our mobile social robots Tibi and

Dabo (Garrell and Sanfeliu 2012), see Fig. 1.

In the remainder of the paper, we start by introducing the

related work of cooperative robotic search in Section 2, after

which a global overview of the proposed approach is given.

Next, we explain first the methods used to update the belief

1 Institut de Robòtica i Informàtica Industrial (CSIC-UPC)

Llorens Artigas 4-6, 08028 Barcelona, Spain.

(Section 4), then, in Section 5, how the goals are selected. In

Section 6, the experimental setup is explained, after which

the simulations (Section 7) and real-life experiments (Sec-

tion 8) are shown, and we end with some conclusions in

Section 9.

2 Related Work

The task of either tracking or searching by a mobile robot

has been studied previously, but in few times both are com-

bined in one method, like in ours; furthermore, we exten-

sively tested the methods in real-life experiments. A sim-

plification of the real world problem of finding people is

the hide-and-seek game, where there are one or more agents

searching, and one or more hiding. Hide-and-seek and pursuit-

evasion (Chung et al. 2011) are well-known games which

have been used in a large amount of—mostly theoretical—

works to test and compare planning algorithms. The hide-

and-seek game also requires a high number of cognitive func-

tions such as: search, navigation, coordination, anticipation

and planning (Johansson and Balkenius 2005). In (Gold-

hoorn et al. 2013b,a), we focused on the hide-and-seek game

in discrete time and space, using MOMDPs (Mixed Observ-

able Markovian Decision Processes; Ong et al. (2010)) to

search for a person. In (Goldhoorn et al. 2014) we extended

it to play in real-time with continuous states (Continuous

Real-time POMCP).

Surveillance also requires tracking, which was done by

(Capitan et al. 2016) with Unmanned Aerial Vehicles (UAVs).

They did tracking of multiple targets and they assumed them

to move independently. Their method used an MOMDP, with

as discrete state space the combination of the target’s and

UAVs’ locations, and as actions four movement directions

and one staying on the same position. For each behavior (tar-

get to track), a different POMDP policy is learned, and the

behavior is selected using an auction method. The policies

were learned for a reduced state space (a single target for

a single UAV), since it is intractable for the combined state

space. They did simulations and experiments with small UAVs

in a small artificial environment.

Volkhardt and Gross (2013) used a service robot to de-

tect and find people in a scenario with three rooms. To detect

a person they looked at the legs, face, body-shape and mo-

tion, which is a more realistic recognition method than the

use of an artificial tag; however, the tag allowed us to do ex-

periments in a large outdoor environment. Their search was

guided by a list of predefined guide points, and they assumed

there to be only one person. Challenges like RoboCup (Fer-

rein and Steinbauer 2016) try to promote research in Arti-

ficial Intelligence and robotics by organizing competitions

in different fields, first they started with soccer competi-

tions, but they also have a search-and-rescue track (Sheh

et al. 2016). Tracking has been extensively discussed in the

Searching and Tracking People with Cooperative Mobile Robots 3

SPENCER project, of which perception and tracking of peo-

ple (Linder et al. 2016) was one of the goals. In (Linder et al.

2016), authors compare different algorithms to track people

with a mobile robot in a busy airport terminal. They found

a method that uses the nearest neighbour and an extended

Kalman filter to work best. In the SHERPA project (Mar-

coni et al. 2012), they focused on search-and-rescue activi-

ties using a mixed group of ground and aerial vehicles, and

humans.

Many works make use of Particle Filters for tracking

(Thrun et al. 2005), since it is a fast algorithm, its com-

plexity mainly depends on the number of particles and it

allows for any distribution, unlike a Kalman filter, for exam-

ple, which requires a Gaussian distribution. In (Montemerlo

et al. 2002), the authors tracked a large distribution of person

locations, conditioned upon a smaller distribution of robot

poses over time. Glas et al. (2015) introduced a tracking al-

gorithm using individual particle filters to track multiple en-

tities with multiple robots. Oyama et al. (2013) presented a

robot that tracks visitors’ positions in a museum guide tour.

In contrast to the previous approaches, our method makes

use of the cooperation of several robots to not only track,

but also search, therefore, we do not need an initial observa-

tion of the person.

In (Cui et al. 2008), combined laser scanners and video

images to track multiple people are introduced, to overcome

the limitations of visual trackers; it first detected feet, and

then the person was searched in the video image; however,

they used fixed locations for the laser scanners and camera.

(Lian et al. 2015) did tracking of a person in a dynamic en-

vironment by trying to maximize the visibility of the target.

First, they used a laser range finder and an extended Kalman

filter, then a look-ahead algorithm (DWA*) to follow the

target and avoid obstacles at the same time. None of these

methods explicitly search for a person, nor do they men-

tion keeping track of people when they have been hidden

for a long time. Ahmad and Lima (2013) tracked a spher-

ical object (ball for the RoboCup soccer challenge) with a

team of robots. They used a particle filter and they shared

the observation, observation confidence and the localization

confidence. The confidences were used as weights to update

the particle filter. The method is similar to our particle fil-

ter method, but we use a fixed observation confidence. We,

however, also share the most probable locations and we do

an explicit search of the person by exploring the most prob-

able locations. Their experiments were done on a RoboCup

soccer field with four mobile robots.

In (Luber et al. 2011), a combined multi-hypothesis track-

ing method is presented; it uses a Kalman Filter with an on-

line detector that has as input color and depth data. Their

experiments were in a crowded indoor environment using

three Microsoft Kinect sensors. Also (Choi et al. 2011)

used Kinect sensors to track people, using a variant of a

particle filter to keep track of several targets. Authors in

(Brscic et al. 2013) did tracking of people in large public

environments, where they used multiple 3D range sensors

mounted at above the human height, to reduce occlusions.

Each tracked person was assigned an identifier if he/she had

been visible as a new cluster during several steps; if the dis-

persion of the cluster got too high, the person got deleted,

and was recovered when the person got detected close to the

identifier. Experiments in a shopping centre showed good

results. Although several 3D sensors, such as the Kinect,

give good detection results indoors, they do not work well

outdoors. We have detected the person, by combining the

person legs detection with a Lidar and the detection of an

artificial tag to recognize a specific person.

To do tracking with multiple agents, the combination of

decentralized techniques and particle filters has led to Dis-

tributed Particle Filters (DPFs) (Sheng et al. 2005; Hlinka

et al. 2013), which have been used by, for example (Vázquez

and Míguez 2017). These works focus on tracking of one or

more people with a Wireless Sensor Network, where they

use a large number of connected sensors. Our method on

the contrary, works with one or more mobile robots, without

depending on a pre-installed fixed sensor network.

Researchers (Sheng et al. 2005) use DPFs to localize and

track several targets with a wireless sensor network, and in

order to reduce the information sent between nodes, they use

a low dimension Gaussian Mixture Model (GMM). They

compared methods that work separately, in sensor groups,

and hierarchically. They worked with a previously proposed

Centralized Particle Filter (CPF) tracking algorithm in which

the posterior distribution is updated based on all measure-

ments, however, Sheng et al. do the update in groups of sen-

sors. Tests were done in simulations on an area of 100 ×
100 m2 with 25 fixed sensors and two targets to track. Vázquez

and Míguez (2017) presented a DPF that uses the median

posterior probability in order to combine efficiently local

Bayesian estimators; in simulations they showed that their

method is more robust.

Multi robot teams are also used, as in (Xu et al. 2013),

who tracked a visible target with a decentralized robot team,

thereby learning the utility models of the robots and negoti-

ating with the other robots. They used an Information Filter

(IF), which is a variant of a Kalman filter, with as goal min-

imizing the uncertainty and optimizing the information ob-

tained by the robots. Experiments were done with two Seg-

way RPM robots, one with 360◦, and another with 180◦ vi-

sion.

Hollinger et al. (2010) presented an online decentralized

multi-agent search algorithm that creates a path to find a per-

son on a graph. It generates a scheduler to calculate a search

plan for multiple agents. They tried to optimize the path

based on an adversarial and non-adversarial person model.

Whereas we use a probabilistic approach to keep track of

4 Alex Goldhoorn1 et al.

the probable locations of the person, Hollinger et al. kept

track of a list of contaminated nodes (areas that not yet have

been checked, or where the person could have returned to),

thereby assuring the person to be found. However, to assure

a person to be found, a minimum number of search agents

are necessary, which depend on the map configuration. Fur-

thermore, their maps were converted to graphs, where in

each node they assumed full vision, whereas we use a vi-

sion probability based on distance and obstacles. Next, they

did not handle on-line changes in the environment, where

we do take into account dynamic obstacles. And finally, they

only searched for the person, but our methods also track the

person. In (Hollinger et al. 2015), they focused on data fu-

sion between the agents, and they kept track of the probabil-

ity of the person being in each of the vertices. When there

is communication, they take into account the other agents’

paths, otherwise, after reconnection the beliefs are fused.

They showed two simulated experiments, one in a map like

in the previously mentioned paper, the second in an under-

water sea environment, where communications disturbance

is a real problem. In our method we do not send the com-

plete belief, but we send the observations of the agents, and

after having locally updated the probability map (belief), the

most probable locations are sent to the other agents.

Charrow et al. (2013) used a team of robots with range

sensors to localize a fixed radio source. For each robot a

measurement of the distance to the radio source was taken,

which was used as input to a particle filter. The robots had

a reading, but with noise, depending on how many obsta-

cles are between it and the target. They used the entropy

to optimize the control strategy for all the robots, reducing

the uncertainty of the estimation of the target location. They

did experiments with real robots on two environments up to

40 m × 35 m. In our work, we use sensors that requires the

target to be in the field of view, and within a certain distance

in order to recognize the person, which is a more realistic sit-

uation, even though we make use of a marker to recognize

the person.

3 Overview of the Approach

This section gives a global overview of the proposed ap-

proach, thereby also mentioning the constraints.

3.1 System Architecture

In this work we present a method for multiple mobile robots

to search and track a person autonomously and coopera-

tively, which at the same time, allows the robots to operate

individually when there is no communication between them,

or when only a single robot is available. The method uses a

probability map (belief) to represent the probability of the

location of the person. It also requires a map of the environ-

ment on which each robot should be able to localize itself.

This map was created beforehand using the odometry and

the laser range detectors, as explained in Section 6.3.

The diagram in Fig. 2 gives an overview of the approach

presented in this work, which consists of four phases. In

the first phase, for Robot Localization, Odometry and Lidar

are used. People Detection is accomplished by a Lidar, and

markers are used to recognise the person (Section 6.2). The

detected people are also taken into account in the Update

Belief algorithm (as dynamic obstacles). Finally, the Obser-

vation Filter makes sure that the locations of the person and

robot are legal (i.e. within the map and not in an obstacle),

by taking the closest most probable location. Note that the

Person Localization module can be replaced by any other

detector, in order to search and track a specific object for

example.

Together with the observations of the other agents, the

belief is updated in the Person Localization phase, for which

two algorithms were tried: the Multi-agent HB-CR-POMCP

Explorer (based on Goldhoorn et al. (2014)), in which each

robot uses the probability map of the CR-POMCP to search

and track a person; and the Multi-agent HB-PF Explorer,

which makes use of a particle filter.

In the third phase, the belief and observations are used

to decide on the locations where the robots should search

for the person—which we will call goals. If a robot detects

the person, then Tracking is carried out, otherwise the Ex-

ploration method is applied. The latter chooses the goals for

each robot from the list of highest belief points of all the

robots. The goals are chosen by taking into account the prob-

ability, the distance to the goal and whether another agent

already has a goal close to it.

Finally, the robot’s path planner (Section 6.3) plans and

executes the path to the chosen goal.

3.2 Problem Constraints and Model Assumptions

This subsection describes the assumptions made for the model

in simulation, and the limitations we came across while test-

ing our model in real-life scenarios. There are at least two

types of problem constraints: the first derive from the robot’s

perception and actuators; the second are the result of human

behavioural reactions to the robot’s instructions. The effects

of these limitations on our study and the model assumptions

are summarized below:

– For safety reasons the robots were not allowed to go

faster than around 1 m/s.

– Also for safety, the robots are kept at a minimum dis-

tance of the person, other persons, other robots and any

detected obstacles.

Searching and Tracking People with Cooperative Mobile Robots 5

Fig. 2 The schema shows the complete search-and-track approach for n agents, with the same diagram for each agent and the communicated data,

where the diagram of the first agent is shown in detail. At the left the phases of the search-and-track method are shown. The blocks are algorithms

or groups of algorithms, the orange bold lined blocks were created by us. The black arrows show how the output of one algorithm is used as input

for another, and the blue arrows show the communication between the agents. The sections in which the items are discussed are shown between

parenthesis.

– The person being followed is asked not to walk too fast

(i.e. less than 1 m/s).

– The map of the environment, i.e. location of obstacles

(walls, doors, objects, etc.) has to be known beforehand

in order to plan and predict, therefore, we use a map of

the environment.

– There are no methods to recognise a person robustly

outdoors from a large distance and from any perspec-

tive. For that reason and because our research is focused

on searching and tracking, we make use of an artificial

marker (Section 6.1) to recognise the person.

– A 360◦ view is assumed, to reduce the state space, and

therefore, simplify the planning (not taking into account

the orientation and field of view).

– For simplicity, the static obstacles are assumed to oc-

clude everything and do not allow to let anyone pass.

– Dynamic obstacles occlude like static obstacles, but they

can move and are not present in the map. In simulation

6 Alex Goldhoorn1 et al.

we do allow the agents to collide with them, to prevent

the simulation becoming too complex.

– In simulation we also allow agents to collide with each

other, also to prevent a too complex simulator.

4 Belief Update

In this work, we use the probability of the location of the

person on a known map, the probability map is called belief.

Two methods were tried to create the belief: the first is based

on Partially Observable Monte-Carlo Planning (POMCP;

Silver and Veness (2010)); the second is based on Parti-

cle Filters (Thrun et al. 2005). Both methods use particles

to represent the belief, but the first uses the belief update

method of the POMCP, whereas the second method uses the

standard Particle Filter update.

To decide where the robots should search for the per-

son, the points with the highest probability, the highest belief

points, are calculated (Section 4.4). It also explained how

this information is combined with the other agents’ highest

belief points.

Finally, we explain how the search goals for the robots

are chosen, by selecting the points with the high probabil-

ity, the highest belief points. And we explain how this in-

formation is combined with the other agents’ highest belief

points. After the highest belief points are calculated, they are

used to send the robots to their goals, as Section 5 explains.

Section 5 explains how the highest belief points are used to

calculate the goals of the robots.

4.1 Preliminary

The input of the belief update algorithms is the list of ob-

servations OOO = {ooo1,ooo2, · · · ,ooon} of the different agents, as

shown in Fig. 2. Each observation oooi = 〈oagent,i,operson,i, po,i〉
contains the location of the robot (oagent,i), the observation of

the person (operson,i, which can be empty) and a correctness

probability po,i. The correctness probability indicates how

much a person detector can be trusted and was estimated

based on experimental results.

Ideally, the observations are sent and received synchro-

nously, however, in the real world this was not the case.

In simulation there was no delay of the observations of the

other agents, but in the real-life experiments there was. There-

fore, we set a time limit for the observation to be used in the

other robots. If the observation was too old (we have used

the limit of 3 s), it was not used. Although asynchronous

or delayed observation messages do result in a difference in

the beliefs of the agents, in a later step they send each other’s

highest belief points.

The methods make use of a known map on which the

location of the person is estimated, and the location of other

visible dynamic obstacles (such as people) is used. The vi-

sion of the agent is limited by static and dynamic obstacles,

the probability of seeing position s1 from position s2 is given

by:

Pvis(s1,s2) =

0, if RAY(s1,s2)not free

pv,max, else if d < dv,max

max(0, pv,max

−αvis(d −dv,max)), otherwise

(1)

where RAY is the raytrace function, which makes use of the

discrete map; d = ‖s1−s2‖; pv,max is the maximum visibility

probability; dv,max is the distance until which it has a maxi-

mum visibility probability; and αvis is the slope with which

the probability function reduces. The parameter values were

tuned based on real world data and are shown in Table 1.

The time complexity of the raytrace algorithm is linear with

the number of cells, but in practice it is constant, since we

cache the results.

For the multi robot case, the probabilities are combined

to calculate the probability of seeing position s2 from any

position s1 ∈ S:

P̄vis(S,s2) = 1− ∏
s1∈S

(1−Pvis(s1,s2)) (2)

4.2 Multi-agent HB-CR-POMCP Explorer

POMCP is a reinforcement learning method that is based

on the Partially Observable Markovian Decision Process

(POMDP; Pineau et al. (2003); Kurniawati et al. (2008)),

and uses Monte-Carlo simulations instead of finding the op-

timal value function—using value iteration (Pineau et al.

2003) for example. POMDPs have states, observations, ac-

tions, rewards and two probability functions. States, in our

case, are the locations of the person and robot (both continu-

ous); observations are the robot’s location and the observed

location of the person (discrete for the policy tree), or hid-

den if not visible; and the reward is the negative distance

to the person, i.e. higher when closer to the person. There

were nine actions: moving one step in eight directions and

staying at the same position. For POMDPs two probability

functions are defined; one function defines the probability

of going from one state to another with a specific action;

the other defines the probability of an observation given a

state and action. For the POMCP, instead of using the entire

probability matrix, a POMDP simulator (s′,o,r) = G (s,a)

is used, which returns a new state s′, observation o, and re-

ward r, based on a current state s, and action a. This results

in a computational complexity that mainly depends on the

number of simulations nsim.

Instead of knowing the current state, a belief is main-

tained, which is the probability of being in any of the states.

Searching and Tracking People with Cooperative Mobile Robots 7

In POMCPs, the belief is maintained as a list of nbelief pos-

sible states, instead of a probability of each state. Note that

for the POMDPs, normally, states are discrete which lets the

belief be stored per state, whereas for the POMCP the belief

can be continuous, as in the Continuous Real-Time POMCP

(CR-POMCP; Goldhoorn et al. (2014)). The system is ini-

tialized with a belief b0, which in our problem is based on

the initial observation o0 of the agent. When the person is

visible initially, all belief is located there (with some added

noise), otherwise, it is spread among the not visible loca-

tions. For this we use the map and the probability of visibil-

ity (2).

The POMCP algorithm (Silver and Veness 2010) gen-

erates a policy tree—which indicates what action to take to

reach the highest reward. The policy is created by doing a

large number of nsim simulations, using the POMDP simu-

lator G . In (Goldhoorn et al. 2014), the policy tree is gen-

erated real-time and in each step it indicates the best action

to take. The next belief is calculated during the policy gen-

eration phase, and when the action has been executed and

the new observation has been obtained, the new policy tree

root is chosen from the tree itself (using the observation and

action). The new tree root’s belief is extended if necessary,

to contain at least nbelief points.

From the experiments with the robot, however, it was

found that using the actions of the POMCP policy resulted

in an inefficient movement behavior (Goldhoorn et al. 2014).

Therefore, we decided to only use the belief of the POMCP,

from which the highest belief points were chosen as search

locations for the robot.

To cope with sensor noise and actuator noise, Gaussian

noise was added in the POMDP simulator with a standard

deviation of σperson for the person’s movement, and σrobot

for the robot’s movement. Also false negative and false posi-

tive observations were simulated with probabilities pfalse_neg

and pfalse_pos respectively. The list of parameters and their

values is shown in Table 1, and more details about the HB-

CR-POMCP can be found in (Goldhoorn et al. 2014).

4.2.1 Multi-agent POMCP

In the initialization phase the belief is calculated based on

the visibility, like explained earlier. For the multi-robot case

all the observations each have their own probability (po,i),

which was added to take into account the accuracy and trust-

worthiness of the sensors of specific robots. To generate the

initial belief, nbelief states are generated by randomly pick-

ing observations o= 〈oagent,operson, po〉 ∈OOO with probability

po and some Gaussian noise added (with standard deviation

σperson). If the person is not visible in that observation, a

random position is chosen, which is not visible to any agent.

After having generated the belief, the POMCP policy

tree is created by doing nsim simulations. Then, the best ac-

Algorithm 1 The belief consistency check function, with as

input the state s and the observation vector OOO. The function

RANDP generates a random value between 0 and 1.

1: function CONSISTENCYCHECK(s,OOO)
2: isVisible = false
3: for o ∈ OOO do
4: if not operson is hidden then

5: if ‖sperson −operson‖> dcons then
6: return false
7: else
8: isVisible = true
9: end if

10: end if
11: end for
12: p = P̄vis({oagent|o ∈ OOO},sperson)
13: if isVisible then
14: if RANDP()> p then return false
15: end if
16: else
17: if RANDP()≤ p then return false
18: end if
19: end if
20: return true
21: end function

tion is chosen from the policy tree, and when it has been

executed, the belief update is done.

Before the belief update, all the observations OOO are re-

ceived from all agents, as can be seen in Fig. 2. The belief is

updated with the observation o, which includes only the in-

formation of the own agent, because including other agents’

positions would make the policy tree grow very wide, and

thereby resulting in an exponential growth of the policy search.

The belief is first updated by choosing the new belief

root from the policy tree. Second, the states in the new be-

lief are checked for consistency with all the observations.

States that were not found to be consistent were removed

from the belief. Algorithm 1 shows the consistency check,

which is done for each state in the belief (s ∈ B), using the

observations of all agents OOO. First, it checks if the observed

person locations are either hidden or close to the belief state

s, then (2) is used to calculate the probability that the person

location of the state should be visible to any of the agents.

Finally, a random function is used to decide the consistency,

taking into account the visibility probability.

As third step, states are added to the belief until it has

nbelief states. Each new state s is randomly chosen from OOO,

and if sperson is hidden, then it is set to a random location

where the person is not visible to any of the agents’ loca-

tions.

4.3 Multi-agent HB-PF Explorer

The way we use the CR-POMCP algorithm to track the per-

son resembles the way particle filters (Thrun et al. 2001)

are used to track an agent. In the CR-POMCP algorithm,

8 Alex Goldhoorn1 et al.

Algorithm 2 A basic Particle Filter.

1: S̄t = St = /0
2: for i = 1 to nparticles do

3: sample si
t ∼ p(st |si

t−1)

4: si
t,w = p(o|si

t)

5: S̄t = S̄t ∪{si
t}

6: end for
7: for i = 1 to nparticles do

8: sample si
t ∈ S̄t with probability si

t,w

9: St = St ∪{si
t}

10: end for

the belief contains a list of possible locations, which can be

compared to the particles in a Particle Filter.

Particle filters and Kalman filters have been applied in

many works to localize a robot (Montemerlo et al. 2002;

Glas et al. 2015; Oyama et al. 2013), however, they require

an observation. In our problem we do not always observe

the position of the person, so the Kalman filter and particle

filter only could do a prediction step, which might be suf-

ficient for very short time periods. For longer periods, the

prediction will get invalid, since the person is not always

going straight. We have chosen to use particle filters, since

they have been proven to work well for tracking, are able to

represent different types of distributions, are easy to adapt

to our problem and have a low computational complexity.

4.3.1 Particle Filters

Particle filters are used to estimate the posterior of the state,

based on observations. Here the state is the position of the

person, and we focus on searching and tracking the person

We do not use the same method to track the robot’s posi-

tion, such as done in (Montemerlo et al. 2002) for example.

A standard particle filter (Thrun et al. 2005) estimates the

current state based on all its observations: p(st |o0:t). Algo-

rithm 2 shows that there are different steps, first a predic-

tion step (line 3), then the weight is calculated based on the

observation (line 4), and finally, resampling is done (line 8)

based on the weight. The complexity of this method is linear

with the number of particles.

4.3.2 Adaptations for Search-and-Track

Tracking algorithms normally start with an initial particle

distribution close to the measured location of the person, in

our case however, we do not always know the person’s lo-

cation. Therefore, when the person is not visible to us, the

nparticles particles are spread on the map over the areas which

are not visible to the agent(s), as explained in Section 4.2.1.

The prediction step is a Gaussian movement in a random

direction: st = st−1 + N (1,σperson)[cosθ ,sinθ]T , where

σperson is the standard deviation, and θ a random direction.

Algorithm 3 The update step of the search-and-track parti-

cle filter.

1: function UPDATE(OOO,S,nparticles)

2: ∀s∈S : sw = mino∈O(w(s,o)) ⊲ get minimum weight
3: ∀s∈S : sw = sw/∑k∈S sw ⊲ normalize

4: S̄ = /0
5: for i = 1 to nparticles do
6: sample from s̄ ∈ S with probability s̄w

7: S̄ = S̄∪{s̄}
8: end for
9: S = S̄

10: end function

The update step is shown in Algorithm 3, where first the

weight is calculated using the following equation:

w(s,o) =

0, if ¬ISVALID(s)

e−|operson−s|2/σ2
b , else if ¬(opers. = hidden)

wcons, else if Pvis(o,s) = 0

winc(1−Pvis(o,s)), otherwise

(3)

where ISVALID indicates whether the state is within the

map, and not in an obstacle; σb can be used to tune the area

over which the weight is spread, we set it to 1.0. Pvis (1) gives

the probability of being visible, therefore, if there is no ob-

servation (i.e. hidden), and the particle position is consistent

with the observation, then we assign a constant weight wcons

(0.01). Otherwise, a lower weight winc ≪ wcons is given (we

set it to 0.001).

In Algorithm 3, the weights are calculated for each ob-

servation o ∈ OOO in line 2, where they are aggregated taking

the minimum. Using the maximum would cause that incon-

sistencies are only detected if all agents detect them as in-

consistent (and thus give it a low score, see (3)), otherwise

agents that are far enough not to see the particle, score it

higher (wcons ≫ winc). In this case a minimum should work

better, because it remarks the inconsistency of the particle.

Finally, an average can also work, since it takes into ac-

count all the observations, but it will eliminate inconsistent

particles slower. To verify if both these methods work we

have done simulations, taking the minimum and the average

score.

4.4 Highest Belief

Finally, to decide a goal for the seeker agent, we can use the

average position of the particles, which makes sense when

only tracking is done, since the particles will be close to the

target and normally distributed. In our case however, this

will not be the case when the agent has to search the person,

which can be any not visible location. Therefore, we make

Searching and Tracking People with Cooperative Mobile Robots 9

Algorithm 4 The explorer finds the goals gi for all agents i

using the score function (4).

1: for all h ∈ HHH do
2: Uh = 1
3: end for
4: for all i ∈ Agents do
5: gi = argmaxh∈HHH EXPL_SCORE(sperson,i,h)
6: for all h ∈ HHH do
7: Uh =Uh −P(DIST(h,gi))
8: end for
9: end for

use of a 2-dimensional histogram to find the highest proba-

ble location. This method, the Highest Belief, was proposed

in (Goldhoorn et al. 2014).

The 2D histogram is made by counting the number

of particles per cell, and dividing them by the number of

particles (nparticles or nbelief) to get the probability of the

person being there, see Fig. 7 for an example of the his-

togram. The size of the cells of the histogram should be large

enough to increase the stability, but small enough to have

enough precision. In our experiments we have used cells of

3.2 m × 3.2 m.

Next, the nhp highest belief points Hi are selected, and

are sent to the other agents. Each h ∈ Hi contains a posi-

tion hpos, and a belief hb. The received highest probability

points (Hi) of all agents and of the agent itself are joined by

summing the beliefs for each highest probability point, and

thereby generating the set of all highest belief points HHH.

5 Goal Selection

After the belief is updated and the Highest Belief points

are created, received, and joined, the Goal Decision phase

(Fig. 2) starts, where the robots either tracks the person or

explore the most probable locations. If the person is visible

and the observations are consistent, then the agents follows

the person side-by-side (Garrell et al. (2013); Tracking in

Fig. 2). Otherwise, the agents explore the joined highest be-

lief locations HHH, as shown in Algorithm 4, which is based

on the work of (Burgard et al. 2005). Each agent calculates

the goals for all agents, using the joined highest belief points

HHH. A score is calculated for each highest belief points h ∈ HHH

per agent location s:

EXPL_SCORE(s,h) = wuUh +wd

DIST(s,h)

dmax
+wb

bh

bmax
(4)

where Uh is a utility function for highest belief point h, s

the agent’s position, and DIST calculates the shortest path

distance. The second and third term are normalized by the

maximum distance dmax and maximum belief bmax, with re-

spect to the list of potential target locations HHH. The utility

Uh (Burgard et al. 2005) is initialized with 1 (line 1 of Algo-

rithm 4), and updated before searching the goal of the other

robot (line 4), where gi is the already assigned goal to agent

i, and:

P(d) =

{

1.0− d
dmax_range

, if d < dmax_range

0, otherwise
(5)

with dmax_range being the range within which we want to re-

duce the chance of other agents’ goals being chosen. The

terms of (4) are weighted by wu, wd , and wb, and the val-

ues we found to work well are: wu = 0.4, wd = 0.4, and

wb = 0.2.

The order in which the agents are assigned the goals

is important, since the assignment of a goal h to an agent

reduces Uh, and therefore reduces the probability of other

agents being assigned this goal. We chose to assign the

agent with the highest sum of probabilities (∑h∈Hp
bh) a

goal first, and the lowest last. Most importantly, the order

should be consistent for all agents such that all agents cal-

culate the same goals, assuming they have received all high-

est belief points Hi. With this method it can occur that an

agent a1 is assigned a goal g1 that is further away than

a goal g2 assigned to a2, because the latest was assigned

firstly. Note that finding the closest goals g ∈ G, such that

the sum of the distances with the agents a ∈ A is mini-

mum: mina∈A ∑g∈G DIST(a,g) has a complexity of O(‖A‖!).
Therefore, we approximate it, by re-iterating over the calcu-

lated goals and assign the closest goals, in the same order

(i.e. on sum of the highest belief). It can be seen that for

agents from which no positions have been received, no goals

are calculated.

Finally, to prevent changing the goal too often, the goal

is only changed every tupdate time, or when the person is vis-

ible.

The method explained in this section is only guaranteed

to give the same search goals for all agents if they receive

all the highest belief points of all agents synchronously. If

not all highest belief points are received, the resulting search

goal positions may be close to each other, which results in a

less efficient search.

6 Experimental Setup

In this section the used robot and environmental maps are

explained.

6.1 The Robots

For the experiments we have used our mobile service robots,

Tibi and Dabo, which have been created during the URUS

project (Sanfeliu et al. 2010) to interact with people in urban

pedestrian areas. They are based on a two-wheeled Segway

10 Alex Goldhoorn1 et al.

RMP200 platform, which can work as an inverted pendu-

lum in constant balancing, can rotate on the spot (nonholo-

nomic), and they have wheel encoders providing odometry

and inclinometers providing pitch and roll data. To perceive

the environment they are equipped with two Hokuyo UTM-

30LX 2D laser range sensors, used to detect obstacles and

people, giving scans over a local horizontal plane at 40 cm

above the ground, facing forward and backward. The lasers

have a long detection range of 30 m, and a field of view of

270◦, which is limited to 180◦ for each of the lasers because

of the carcass of the robot. Additionally, a distance of about

45 cm between the front and rear laser causes a blind zone.

As video camera Dabo uses a PointGrey Ladybug 2 360◦

camera, located on the top of its head; whereas Tibi uses a

Bumblebee 2 stereo camera at the front and two Flea 2 cam-

eras at the back, which in total cover much less than 360◦,

and therefore has less vision.

As social robots, Tibi and Dabo are meant to interact

with people, and to perform this, they have: a touchscreen,

speaker, movable arms and head, and LED illuminated face

expressions. Power is supplied by two sets of batteries, one

for the Segway platform and one for the computers and sen-

sors, giving about a five hours of full working autonomy.

Two onboard computers (Intel Core 2 Quad CPU @ 2.66

and 3.00 GHz with 4 GB RAM) manage all the running pro-

cesses and sensor signals. As operating system the systems

run Ubuntu 14.04 with ROS (Robot Operating System), a

middleware.

6.2 People Recognition

To detect people, and recognize the target person, both range

laser and vision have been combined. A boosting leg detec-

tor (Arras et al. 2007) provides the position of potential peo-

ple in the scene, using the horizontal front and rear range

laser sensors. False positives are reduced by filtering out de-

tections that are close to, or inside a known obstacle. A Mul-

tiple Hypothesis Tracking For Multiple Targets (Blackman

2004) keeps the trail of the people and assigns them identi-

fiers.

A people detection algorithm is not enough, because we

also have to recognize the person we are looking for. A

robust method is to use AR Markers (Augmented Reality

Markers) (Amor-Martinez et al. 2014), which were worn

by the person, see Fig. 1. The AR algorithm gives an es-

timation of the pose with respect to the camera. We used

an improved version of this Pose Estimation algorithm of

Amor-Martinez et al, which in combination with previous

local window binarization makes the method more robust to

outdoors lighting issues. On Dabo we use the Ladybug 360◦

camera (which internally has five cameras) to detect a tag

from any direction, and on Tibi we use four cameras with

smaller angles of view. The AR detection algorithm is run

on one computer for all cameras and ran on average at 4 Hz.

False positive detections of the AR Markers are reduced by

accepting only detections close to a laser detection; which,

as side-effect, generates some false negatives.

6.3 Robot Mapping and Navigation

Prior to the experiments, a map was generated by the robot

using the range lasers, with the ROS package GMapping,

which implements OpenSlam’s GMapping. This is a highly

efficient Rao-Blackwellized particle filer that learns grid

maps from laser range data (Grisetti et al. 2007). Although

this method can be used for localization and mapping, we

did not want to use it during the experiments, because it also

can mark persons as being obstacles if they stand still for too

long. Instead, we used the Adaptive Monte Carlo Localiza-

tion (AMCL) approach, also available as ROS package, for

localization. This method uses a particle filter to track the

pose of a robot against a known map (Arulampalam et al.

2002).

The robot moved through the environment using a set of

navigation algorithms provided by ROS. A Dijkstra global

planner uses the previously generated map to calculate the

shortest path. To avoid dynamic obstacles, a local Trajectory

Roll Out planner is used, which generates and scores trajec-

tories over a costmap that is updated with range laser data.

The input of the navigation algorithm is the desired goal co-

ordinates and orientation.

6.4 Environments and Maps

Experiments were conducted in the Barcelona Robot Lab

(BRL), Telecos Square of the North Campus of the Univer-

sitat Politècnica de Catalunya (UPC), Barcelona, Spain, see

Figures 1 and 7. The area has a size of 60 m × 55 m (about

1400 m2 free space), and contains a square with trees, a ter-

race and a covered area with several columns.

7 Simulations

This section explains the setup of the simulations and a de-

tailed analysis of the results.

7.1 Setup

The maps contain discrete cells that either are free or contain

a (static) obstacle. The agents cannot see through obstacles

(static or dynamic), and they can not pass through static ob-

stacles. To make the simulation not too complex, the agents

can pass through each other and across dynamic obstacles.

Searching and Tracking People with Cooperative Mobile Robots 11

Although the map contains cells, coordinates of the agents

are continuous. And for each iteration the agents do a step

of 1 cell distance (also in diagonal, thus not
√

2) in the di-

rection of its goal. The simulations do not include neither

acceleration, nor friction, nor collision, for simplicity.

A ray tracing algorithm is used in simulation to detect

visibility due to obstacles. In contrast to our previous work

(Goldhoorn et al. 2014) we limit the visibility also based on

the distance using a probability function (1) and the parame-

ters (shown in Table 1) were tuned based on real world data.

A crowded environment was simulated by adding a

group of 10 or 100 people (dynamic obstacles) to the scene,

who reduce the robot’s visibility, but they did not block the

agents’ paths. The movements of the simulated people (in-

cluding the person to be found) were semi-random, they

were given a random goal to which they navigated to, using

a shortest path algorithm; a new random goal was assigned

to them when the goal was reached.

More than 40,000 experiments were done, repeating

each of the conditions at least 250 times. For each run of

simulations the robot’s start position, and the person’s start

and path were generated randomly. To make the compari-

son as fair as possible, the same positions were used for all

the algorithms and conditions, such that the initial state and

the paths of the person and the dynamic obstacles were the

same.

7.2 Simulation Goals

In the simulations the two belief update algorithms were

tested: the Multi-agent HB-CR-POMCP Explorer and the

Multi-agent HB-PF Explorer. For the latter, two fusing

methods were tried for the observations of the different

agents in the update phase: the average and the minimum.

As an upper line we added a best-case algorithm, the See All

Follower, which is a follower that always knows the location

of the person, independent of the distance or any obstacles

being between the seeker and the person.

The goals of the simulations were to see how well the

presented search-and-track methods worked for multiple

agents and under different circumstances. Here we limited

the tests to adding up to 100 dynamic obstacles and using up

to five seekers that either had communication or had not. We

split the simulations in two types: in searching and tracking.

For searching, the person should be found as fast as possi-

ble, and for tracking, the agent should be close to the person

as long as possible while seeing him/her. In all cases the

See All Follower should work best, since it always sees the

person.

The searching simulations were started with the person

being hidden to all the seekers and without moving. The

simulations ended when either a robot reached the person

at a distance of 1 cell (0.8 m in the used map), or 2000 steps

were reached. The simulations were measured using the

time it took for at least one seeker to see and to be next to the

person. The tracking simulations were done with the person

being visible to one or more of the seekers and continued

for 500 time steps. Another measurement was the distance

between the seeker and the person, hereby taking the lowest

distance over all of the seekers.

Furthermore, a measurement of the belief (probability

map) of the person εb has been introduced, which indicates

the error of the person’s location in the belief with respect to

the real location, which can only be calculated in the simu-

lation. The value εb is a weighted distance between the per-

son’s location in the probability map and in reality:

εb = ∑
x∈A

bx‖x− p‖ (6)

where A is the discrete map, x represents a grid cell, bx is the

probability of cell x and p is the real (continuous) location

of the person.

7.3 Algorithm Parameter Values

The values of the parameters used in the simulations and real

experiments, which were explained in Sections 4 and 5, are

shown in Table 1. The HB-CR-POMCP method updated its

belief every 3 s in the real experiments and every 3 iterations

in the simulations; the other parameters for the HB-CR-

POMCP algorithm are explained in more detail in (Gold-

hoorn et al. 2014). The parameters po,Tibi and po,Dabo indi-

cate the trustworthiness of the sensors, and since the vision

of Tibi was less than the 360◦ vision of Dabo, we gave it

a lower probability. All the parameters were tuned first in

simulation, and later while doing tests with the real robots.

7.4 Results

The results of the search simulations are shown in Fig. 3,

where the average time (discrete steps) it took to find the

person is visualized. The time is measured until one of the

seekers found the person and is next to him/her. The influ-

ence of communication is shown in the rows and the effect

of the number of dynamic obstacles is shown in the columns.

Since none of the data were normal, we used the Wilcoxon

ranksum test, 2-sided to compare the different conditions.

For all cases the See All Follower was significantly faster

(p < 0.001) than any other algorithm, since it was always

able to see everything. Fig. 3 shows that it took more than

four times longer when using one seeker with the particle

filter method. When using only one seeker, the particle filter

was significantly faster than the CR-POMCP (p < 0.001).

For the multi-agent simulations, the use of communication

12 Alex Goldhoorn1 et al.

Table 1 The parameters values used during the real experiments and

the simulations.

Parameter Value Description

Common Parameters

σperson 0.2 m standard deviation of Gaussian noise
pv,max 0.85 maximum probability visibility (1)
αvis 0.17 reduction factor (1)
dv,max 3.0 m maximum distance full visibility (1)
po,Tibi 0.3 trustworthiness of Tibi’s observations
po,Dabo 0.7 trustworthiness of Dabo’s observations

Multi-agent HB-CR-POMCP Explorer

nsim 2500 number of simulations
nbelief 2000 number of belief points
pfalse_pos 0.001 false positive probability
pfalse_neg 0.3 false negative probability
dcons 0.7 m consistency check distance Algorithm 1

Multi-agent HB-PF Explorer

nparticles 2000 number of particles
σb 1.0 tune spread of particle weight (3)
wcons 0.001 weight (3) when observation consistent
winc 0.0001 weight (3) when obs. inconsistent

Highest Belief

cell size 3.2 m × 3.2 m 2D histogram cell size
nhb 10 number of highest belief points
tupdate 3 s / 3 steps wait time to re-calculate goal

Goal Selection

wu 0.4 utility weight for explorer score (4)
wd 0.4 distance weight for explorer score (4)
wb 0.2 belief weight for explorer score (4)
dmax_range 30 m maximum range of influence score (5)

was also significantly better (p < 0.05), except for some

cases with the Multi-agent HB-CR-POMCP Explorer. In

most of the cases, the Multi-agent HB-PF Explorer was the

fastest method, and in particular the version that used the

average.

For the track phase we want the seeker to stay close to

and have the person visible as long as possible. Fig. 4 shows

the average time it took to find the person again after losing

him/her. The See All Follower still was best, but between the

tested methods there was no clear winner, nor did communi-

cation give an advantage for one or another method, which

most probably was because the robots were close to the per-

son already (see Fig. 4). The increasing number of robots

reduced the recovery time significantly, however, we did not

simulate robots blocking each other’s path, which in the real

world would have reduced the efficiency of having multiple

robots in a small area.

The average distance between the person and the closest

agent when tracking is shown in Fig. 5. The particle filter

method resulted in lower distances, and also using commu-

nication resulted in lower tracking distances.

The belief error (6) was calculated for the algorithms

that use a probability map of the location of the person. For

the search simulations the overall average and standard de-

viation of the belief error were 25.4±8.9 m when there was

communication and 27.8± 7.5 m without. Fig. 6 shows the

average belief error for the track phase. The lowest belief er-

ror for the search simulations with communication was with

the Multi-agent HB-PF Explorer method, using the mini-

mum weight combination. There was no clear difference in

the other cases.

The influence of having more dynamic obstacles is not

clear (i.e. no significant difference for most cases) in the

search time (Fig. 3), because they only block the agents’

vision and not the path, i.e. the robot can go through the dy-

namic obstacles. From Fig. 4 can be seen that 10 dynamic

obstacles almost did not influence the recovery time, but 100

did. Because of the large surface (1400 m2), having 10 peo-

ple walking around randomly had a low probability of in-

fluencing the vision of the robot, whereas 100 had a much

higher probability. Finally, the influence of dynamic obsta-

cles can also be seen in the average distance to the person

(Fig. 5) and the belief error (Fig. 6).

To summarize, we found that, as expected, the base line

See All Follower was faster in searching, and it tracked the

person during the longest time. For searching we found the

Multi-agent HB-PF Explorer to be faster than the Multi-

agent HB-CR-POMCP Explorer in most cases, and in gen-

eral, there was an improvement when using communication.

Tracking showed no statistical difference between the meth-

ods (except for the See All Follower) in recovery time; it

only showed that having more seeker agents resulted in a

better performance. For the distance to the person while

tracking, the Multi-agent HB-PF Explorer showed slightly

better results. As weight combination method for the Multi-

agent HB-PF Explorer when searching, the average was

found to be slightly faster, but the minimum resulted in a

slightly lower belief error.

8 Real-life Experiments

The simulated experiments were done to know how well

the different methods worked under different circumstances

(dynamic obstacles and with several seeker agents). We

however, also wanted to verify how well the method worked

in real-life. Therefore, we used our robots Tibi and Dabo to

verify the Multi-agent HB-PF Explorer method in a large

environment, the UPC campus (Telecos Square). We tried

the version that used the minimum scores when using the

observations in the particle filter update phase.

Like in the simulations, for the search behaviour we

measured the time to encounter the person (by the first

robot), and for the track behavior, we measured the recov-

ery time and average distance to the person. Since we did not

have a ground truth available, we had to use the information

obtained through the sensors of the robots and the videos,

which show the behavior of the robots. This had as conse-

quence that the distance to the person was only measured

when the person was visible.

Searching and Tracking People with Cooperative Mobile Robots 13

0

50

100

150

200

250

300

tim
e

(s
te

ps
)

Comm(nication, 0 dynamic obstacles

Follower S.All
M(lti HBParticle Filter
M(lti HBCRPOMCP
M(lti HBParticle Filter (a)g)
M(lti HBParticle Filter (min)

Comm(nication, 10 dynamic obstacles Comm(nication, 100 dynamic obstacles

1 2 3 4 5
N(mber of seekers

0

50

100

150

200

250

300

tim
e

(s
te

ps
)

No comm(nication, 0 dynamic obstacles

1 2 3 4 5
N(mber of seekers

No comm(nication, 10 dynamic obstacles

1 2 3 4 5
N(mber of seekers

No comm(nication, 100 dynamic obstacles

Fig. 3 The graphs show the average (and 95% confidence interval bars) of the time it took for one or more seekers to find and get close to the

person. In the first row there is communication between the seekers, in the second there is not. In the columns the number of dynamic obstacles

change. As a reference, the See All Follower took 34.7±0.6 steps (mean ± standard error).

8.1 Analysis

Different types of experiments were done: exploration with-

out a person, searching and tracking, and tracking only;

they took several weeks of testing and experimenting, from

which we obtained a total of about 3 hours of experimen-

tal data, and whereby the robots drove each a total distance

of about 3 km. A few persons were used during the experi-

ments in which they hid behind one of the obstacles, or just

stood out in the open. The robots tried to follow the person

at a distance of 1 m, and they always tried to maintain a

minimum distance of 1 m to the other robot. The parameters

used during the experiments are shown in Table 1.

Table 2 gives an overview of the different statistics of all

the experiments. The distances shown were measured us-

ing the robot’s sensors, i.e. the robot’s movement, but also

the person’s moved distance, and therefore, is not complete,

since the person was not visible the whole time. The dis-

tance per robot indicates the total distance covered on aver-

age by the robots during the experiments, the measured dist.

person indicates the distance which was covered by the per-

son, while the robot measured it. The visibility indicates the

time the person was visible to a robot, the time connected

indicates the time the robots were exchanging data. The av-

erage distance to the person is the distance between the

robot and the person, measured when the person was visible.

The number of dynamic obstacles are the average number of

people which were visible simultaneously. The average time

found is the time it took, on average, for a robot to find the

person. Finally, the average recovery time is the time it took

to find the person after having lost him/her.

In the next subsections we try to compare the results

with the simulations, using the time found for the search

experiments, and the recovery time and average distance

to the person. However, in the real experiments the robot

sometimes stopped or slowed down (due to obstacles, noisy

signals or the low speed), therefore, the comparisons with

the simulations should be done with the distance. Since the

speed in the simulations was continuous (0.8 m per discrete

time step), we can use this to calculate the distance covered,

and then compare the distances to the distance found and re-

covery distance. Nevertheless, we should take into account

that we can not do a statistical comparison of the results,

since this would require many more experiments.

Fig. 7 shows two recordings taken during the experi-

ments: the snapshots, the maps with the robot locations,

14 Alex Goldhoorn1 et al.

0

10

20

30

40

50

tim
e

(s
te

ps
)

Comm(nication, 0 dynamic obstacles

Follower S.All
M(lti HBParticle Filter
M(lti HBCRPOMCP
M(lti HBParticle Filter (a)g)
M(lti HBParticle Filter (min)

Comm(nication, 10 dynamic obstacles Comm(nication, 100 dynamic obstacles

1 2 3 4 5
N(mber of seekers

0

10

20

30

40

50

tim
e

(s
te

ps
)

No comm(nication, 0 dynamic obstacles

1 2 3 4 5
N(mber of seekers

No comm(nication, 10 dynamic obstacles

1 2 3 4 5
N(mber of seekers

No comm(nication, 100 dynamic obstacles

Fig. 4 The graphs show the average (and 95% confidence interval bars) time to discover the person after having lost him/her, due to (dynamic)

obstacles for example.

Table 2 Summary of the data recorded during all the experi-

ments. The averages (avg) are shown as average±standard deviation.
∗Measurements which include the person location were only available

when the person was visible to a robot.

E
x
p
lo

ra
ti

o
n

S
ea

rc
h

&
T

.

T
ra

ck
in

g

T
o
ta

l

Distance per 1.2 1.2 0.7 3.2
robot (km)

Measured dist. - 0.4 0.5 0.9
person∗ (km)

Total time (h) 1.1 1.2 0.9 3.2

Avg. visibility 0 16.3 36.4 15.3
(%)

Avg. time 95.0 79.5 85.8 86.6
connected (%)

Avg. distance - 8.4±6.4 8.4±5.6 8.3±5.9
to person (m) ∗

Avg. number 2.0±1.5 0.6±1.3 3.9±2.8 1.9±2.2
dynamic obst.∗

Avg. time - 106.8±138.7 23.5±42.5 72.9±117.6
found (s)

Avg. distance - 69.3±74.0 6.2±13.6 27.3±53.3
found (m)

Avg. time - 19.6±39.0 12.0±28.3 15.3±33.6
recovered (s)

Avg. distance - 8.5±12.3 3.3±9.3 3.6±9.5
recovered (m)

and the belief maps of both robots. The belief map shows

that, when the person was detected, the localization was rel-

atively precise (right), but when it was not detected for some

time, the location probability is more spread (left). Further

information and videos of the experiments can be found on:

http://www.iri.upc.edu/groups/lrobots/search-

and-track/ar2016/

First we will explain the three different kind of experi-

ments done, followed by a short discussion.

8.1.1 Exploration Only

In these experiments we wanted to have a look at the search

behavior, and therefore no person was present; this can be

seen in Table 2, because there is no person distance. An ex-

ploration/search phase is shown in the left of Fig. 7, where

none of the robots saw the person and both have a differ-

ent belief. The experiments showed that the robots clearly

explored the whole environment several times, because the

belief slowly propagated to locations that were not visible to

the robot.

8.1.2 Search-and-Track

In these experiments a person was present and the robots

started not seeing him/her. The robots kept communicat-

ing the observations and therefore, could update their be-

lief. They also explored in different directions looking for

Searching and Tracking People with Cooperative Mobile Robots 15

0

5

10

15

20

25

di
st

an
ce

 (
m

)

Communication, 0 dynamic obstacles

Follo)er S.All
Multi HBParticle Filter
Multi HBCRPOMCP
Multi HBParticle Filter (a(g)
Multi HBParticle Filter (min)

Communication, 10 dynamic obstacles Communication, 100 dynamic obstacles

1 2 3 4 5
Number of seekers

0

5

10

15

20

25

di
st

an
ce

 (
m

)

No communication, 0 dynamic obstacles

1 2 3 4 5
Number of seekers

No communication, 10 dynamic obstacles

1 2 3 4 5
Number of seekers

No communication, 100 dynamic obstacles

Fig. 5 The graphs show the average distance between the person and the closest seeker when following. The rows show communication or not,

and in the columns the number of dynamic obstacles change. The See All Follower had the person always in sight and therefore was at a distance

of about 0.88 m, i.e. the following distance.

the person. As soon as one robot saw the person, the other

robot also went there. There were also situations where the

person was lost, because he went faster than the robot, or

because one robot temporarily failed; however, the belief of

the working robot still helped to recover the person.

The distance covered by the robots until a person was

found, was on average 69.3± 74.0 m, which is close to the

distance covered in simulation, 67.5 ± 66.9 m (see Fig. 3

for the time with 0–10 dynamic obstacles, which was con-

verted to distance). For the tracking part, the recovery dis-

tance is 8.5±12.3 m, which is also close to the simulation’s

5.1±7.5 m (converted to distances, see Fig. 4). ehe average

distance to the person shows a low value (8.4 m on average),

because only measurements were taken when the person was

detected by the robot.

8.1.3 Tracking

In the tracking experiments the robots started with the per-

son being visible, and then followed him/her, but due to

speed or (dynamic) obstacles they lost the person out of

sight temporarily. Nonetheless, the person was found rela-

tively quickly again, because he/she was tracked using the

belief.

For some of the tracking experiments, the robots had to

detect the person first, which took on average 23.5 s, but only

6.2 m, because the person was close. The recovery distance

is 3.3±9.3 m, which is also close to the values in simulation

(5.1±7.5 m). The average distance to the person was a bit

higher, because the robot was relatively slow, and because

having two robots tracking the person requires them to be at

a minimum safe distance.

In the last experiment the robots searched for the per-

son, which was behind or close to a group of people who

occluded him/her, see Fig. 1. Since there were two robots,

they had a higher probability of seeing the person, but when

they did not see the person, the belief grew in all directions

with a higher probability on areas where the robot probably

would not see anything. Here, the dynamic obstacles (small

light blue circles in the belief map) were taken into account,

and the particles propagated behind fixed obstacles and dy-

namic obstacles (which was not done previously). Due to

the low resolution of the belief map, there was also a belief

at the location of the other people and the robot. Note that

16 Alex Goldhoorn1 et al.

0

5

10

15

20

25

30

35

40

be
lie
f e
rr
or
 (
m
)

Track, Communication, 0 dynamic obstacles

Multi HBParticle Filter
Multi HBCRPOMCP
Multi HBParticle Filter (avg)
Multi HBParticle Filter (min)

Track, Communication, 10 dynamic obstacles Track, Communication, 100 dynamic obstacles

1 2 3 4 5
Number of seekers

0

5

10

15

20

25

30

35

40

be
lie
f e
rr
or
 (
m
)

Track, No communication, 0 dynamic obstacles

1 2 3 4 5
Number of seekers

Track, No communication, 10 dynamic obstacles

1 2 3 4 5
Number of seekers

Track, No communication, 100 dynamic obstacles

Fig. 6 The average belief error (using (6)) when following. The rows show communication or not, and the columns the number of dynamic

obstacles. The See All Follower does not use a belief and is therefore not mentioned.

the low resolution of the map was chosen such that we could

group enough particles to create a higher certainty.

8.2 Discussion

The experiments showed that the robots explored the whole

environment, thereby taking into account the location of

each other. And when tracking, it was also demonstrated that

maintaining the belief continuously is important when the

person gets out of sight. Furthermore, the robustness of the

multi-agent method was shown in experiments where one

robot suddenly stopped (because of a hardware or software

problem). Then, the other robot recovered the person’s po-

sition, since it had been receiving the person’s location until

the other robot stopped and it did not receive any informa-

tion from the other robot. Therefore, using its own belief and

observation, it only planned the next goal for itself.

False positive detections only occurred a few times, con-

centrating the belief slowly on that location, but—when the

duration of the false positive was not longer than a few

seconds—the belief expanded again, allowing the robots

to continue searching. False negative detections simply de-

layed detecting the person.

Finally, we will discuss some issues with the meth-

ods while doing the experiments. First, the robots took the

same path several times when they explored while this—

according to a human point of view—might not be most ef-

ficient, since taking different paths allows them to explore

more. Our exploration algorithms, however, do not take into

account the path, only the goals are optimized such that

the robots choose the closest most probable goal, which is

not yet chosen by the other. To take the path into account,

we should change the navigation algorithm, which might be

complex when the number of seekers is high. Charrow et al.

(2013) tried to optimise for maximal information and there-

fore, indirectly take the paths into account.

Second, the belief maps of Tibi and Dabo were

not always equal, even though they received the same

observations—if the communication worked—because

there is a random factor in the propagation of the particles,

which causes a different spread of the belief. When the seek-

ers are without communication, they can only use their own

observations and therefore, their beliefs will most likely be

different. When they recover the communication they do not

send historical information, and although this might be a

useful feature, it can be a large amount of information if

the amount of seekers is high. In (Hollinger et al. 2015), the

Searching and Tracking People with Cooperative Mobile Robots 17

beliefs are fused by taking a weighted sum of the neighbors’

beliefs.

The robots sometimes were not able to drive up or down

the ramp due to the narrow passage and the inclined posi-

tion, which made the horizontal lasers detect the floor as an

object. In some cases this caused the planner to avoid the

ramp and take a detour. In order to cope with ramps, a three

dimensional map and navigation method should be used.

9 Conclusion

In this work, we have presented a unified method for search-

ing and tracking a person using a group of mobile robots

in a large continuous urban environment with dynamic ob-

stacles. The observations are obtained from a leg detec-

tion algorithm that uses laser sensors and a marker detec-

tion algorithm in order to recognise the person. However,

our method does not require a specific sensor type, but re-

quires a location of the person or an empty observation—if

not visible—as input; moreover, the observations of all other

agents are used. At first, the belief of the person’s location

is maintained using either the Multi-agent HB-CR-POMCP

Explorer or the Multi-agent HB-PF Explorer, then this be-

lief is segmented in a histogram matrix to obtain the loca-

tions with the highest probability of the person being there.

Thereafter, in the goal decision phase, the agents are either

sent directly to the location of the person if he/she was vis-

ible, otherwise an exploration is done of the most probable

locations.

Simulations were done in a large urban environment,

part of a campus, with up to 100 dynamic obstacles mov-

ing around. For searching, in most cases, the Multi-agent

HB-PF Explorer was fastest in finding the person, and in

particular using the average weight, when using the obser-

vations of all agents. Also communication showed signif-

icant improvement for searching. For tracking we did not

find any significant difference between the methods, neither

when using communication. Furthermore, when looking at

the tracking distance, the Particle Filter methodsegot closer

to the person. And having multiple robots communicating,

reduced the average tracking distance. Finally, the belief of

the Particle Filter method was found to be closer to the real

position.

The real experiments showed consistent results with the

simulations and demonstrated it to be a pragmatic method to

search and track a person in the real world with two robots.

The search behavior showed an exploration over the field,

whereby both robots were coordinating, and the communi-

cation between them also showed a more robust system, for

example when one robot failed the other continued track-

ing the person quickly. The method was also shown to be a

robust tracker when several people (dynamic obstacles) ob-

structed the vision of the robot temporarily, because they

were able to find the person quickly again.

9.1 Future Work

The exploration can be improved by taking into account the

path which the robots take such that they also explore the

environment, like (Charrow et al. 2013) for example who

try to maximize the mutual information of the agents.

In our experiments, the robots were able to communi-

cate during most of the time, but when during some time the

communication is not possible, the information of the other

robots is not used to update the belief. To compensate this,

the belief of each robot could be communicated such as in

(Hollinger et al. 2015), but when the number of agents is

high, the network bandwidth might be too high.

Finally, in order to analyse the effects of the commu-

nication delays and to verify the rest of the methods more

simulations and real-life experiments should be done.

References

Ahmad A, Lima P (2013) Multi-robot cooperative spherical-object

tracking in 3D space based on particle filters 61(10):1084 – 1093,

selected Papers from the 5th European Conference on Mobile

Robots (ECMR 2011)

Amor-Martinez A, Ruiz A, Moreno-Noguer F, Sanfeliu A (2014) On-

board Real-time Pose Estimation for UAVs using Deformable Vi-

sual Contour Registration. In: Proceedings of the IEEE Interna-

tional Conference in Robotics and Automation (ICRA)

Arras KO, Mozos OM, Burgard W (2007) Using boosted features

for the detection of people in 2D range data. In: Proceedings of

the IEEE International Conference on Robotics and Automation

(ICRA), pp 3402–3407

Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on

particle filters for online nonlinear/non-gaussian bayesian track-

ing. IEEE Transactions on Signal Processing 50(2):174–188

Blackman SS (2004) Multiple hypothesis tracking for multiple tar-

get tracking. IEEE Aerospace and Electronic Systems Magazine

19(1):5–18

Brscic D, Kanda T, Ikeda T, Miyashita T (2013) Person tracking in

large public spaces using 3-d range sensors. IEEE Transactions on

Human-Machine Systems 43(6):522 – 534

Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordi-

nated multi-robot exploration. IEEE Transactions on Robotics

21(3):376–386

Capitan J, Merino L, Ollero A (2016) Cooperative decision-making

under uncertainties for multi-target surveillance with multiples

UAVs. Journal of Intelligent & Robotic Systems 84(1):371–386

Charrow B, Michael N, Kumar V (2013) Cooperative multi-robot

estimation and control for radio source localization. In: Desai

PJ, Dudek G, Khatib O, Kumar V (eds) Experimental Robotics:

The 13th International Symposium on Experimental Robotics,

Springer International Publishing, Heidelberg, pp 337–351

Choi W, Pantofaru C, Savarese S (2011) Detecting and tracking people

using an RGB-D camera via multiple detector fusion. In: Work-

shop on Challenges and Opportunities in Robot Perception (in

conjunction with ICCV-11)

Chung T, Hollinger G, Isler V (2011) Search and pursuit-evasion in

mobile robotics. Autonomous Robots 31(4):299–316

18 Alex Goldhoorn1 et al.

Fig. 7 Two different scenes during the experiments where the robots search for and track the person. The large maps show the robots (blue and

orange) and the trajectories they have executed; the red circle indicates that the person has been detected at that location, and a white circle means

that the person was detected there. The smaller maps represent the beliefs of Tibi (up) and Dabo (down): black squares are obstacles, the blue

circles are the robots, and the white to red squares refer to a low to high probability of the person being there.

Cui J, Zha H, Zhao H, Shibasaki R (2008) Multi-modal tracking of

people using laser scanners and video camera. Image and Vision

Computing 26(2):240 – 252

Ferrein A, Steinbauer G (2016) 20 years of robocup. KI - Künstliche

Intelligenz 30(3):225–232

Garrell A, Sanfeliu A (2012) Cooperative social robots to accompany

groups of people. The International Journal of Robotics Research

31(13):1675–1701

Garrell A, Villamizar M, Moreno-Noguer F, Sanfeliu A (2013) Proac-

tive behavior of an autonomous mobile robot for human-assisted

learning. In: Proceedings of IEEE RO-MAN, pp 107–113

Glas DF, Morales Y, Kanda T, Ishiguro H, Hagita N (2015) Simul-

taneous people tracking and robot localization in dynamic social

spaces. Autonomous Robots 39(1):43–63

Goldhoorn A, Alquézar R, Sanfeliu A (2013a) Analysis of methods for

playing human robot hide-and-seek in a simple real world urban

environment. In: ROBOT (2), Springer, Advances in Intelligent

Systems and Computing, vol 253, pp 505–520

Goldhoorn A, Alquézar R, Sanfeliu A (2013b) Comparison of

MOMDP and heuristic methods to play hide-and-seek. In: Gib-

ert K, Botti VJ, Bolaño RR (eds) CCIA, IOS Press, Frontiers in

Artificial Intelligence and Applications, vol 256, pp 31–40

Goldhoorn A, Garrell A, Alquézar R, Sanfeliu A (2014) Continuous

real time pomcp to find-and-follow people by a humanoid service

robot. In: Proceedings of the IEEE-RAS International Conference

on Humanoid Robots, pp 741–747

Grisetti G, Stachniss C, Burgard W (2007) Improved techniques for

grid mapping with rao-blackwellized particle filters. Journal IEEE

Transactions on Robotics 23(1):34–46

Hlinka O, Hlawatsch F, Djuric PM (2013) Distributed particle filtering

in agent networks: A survey, classification, and comparison. IEEE

Signal Processing Magazine 30:61–81

Hollinger G, Yerramalli S, Singh S, Mitra U, Sukhatme G (2015) Dis-

tributed data fusion for multirobot search. IEEE Transactions on

Robotics 31(1):55–66

Hollinger GA, Singh S, Kehagias A (2010) Improving the efficiency of

clearing with multi-agent teams. International Journal of Robotics

Research 29(8):1088–1105

Johansson E, Balkenius C (2005) It’s a child’s game: Investigating cog-

nitive development with playing robots. In: Proceedings of the 4th

International Conference on Development and Learning, pp 164–

164

Kurniawati H, Hsu D, Lee W (2008) SARSOP: Efficient point-based

POMDP planning by approximating optimally reachable belief

spaces. In: Proceedings of Robotics: Science and Systems IV,

Zurich, Switzerland

Lian FL, Chen CL, Chou CC (2015) Tracking and following algo-

rithms for mobile robots for service activities in dynamic environ-

ments. International Journal of Automation and Smart Technology

5(1):49–60

Linder T, Breuers S, Leibe B, Arras KO (2016) On multi-modal people

tracking from mobile platforms in very crowded and dynamic en-

vironments. In: Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pp 5512–5519

Luber M, Sinello L, Arras K (2011) People tracking in RGB-D

data with on-line boosted target models. In: Proceedings of the

IEEE International Conference on Intelligent Robots and Systems

(IROS), pp 3844–3849

Marconi L, Melchiorri C, Beetz M, Pangercic D, Siegwart R,

Leutenegger S, Carloni R, Stramigioli S, Bruyninckx H, Doherty

P, Kleiner A, Lippiello V, Finzi A, Siciliano B, Sala A, Tomatis

N (2012) The SHERPA project: Smart collaboration between hu-

mans and ground-aerial robots for improving rescuing activities

in alpine environments. In: Proceedings of the IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR), pp

1–4

Montemerlo M, Thrun S, Whittaker W (2002) Conditional particle

filters for simultaneous mobile robot localization and people-

tracking. In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), IEEE, vol 1, pp 695–701

Ong SCW, Png SW, Hsu D, Lee WS (2010) Planning under Uncer-

tainty for Robotic Tasks with Mixed Observability. International

Journal of Robotics Research 29(8):1053–1068

Oyama T, Yoshida E, Kobayashi Y, Kuno Y (2013) Tracking visitors

with sensor poles for robot’s museum guide tour. In: Proceedings

of the 6th International Conference on Human System Interactions

Searching and Tracking People with Cooperative Mobile Robots 19

(HSI), IEEE, pp 645–650

Pineau J, Gordon G, Thrun S (2003) Point-based value iteration: An

anytime algorithm for POMDPs. In: Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, pp 477–484

Sanfeliu A, Andrade-Cetto J, Barbosa M, Bowden R, Capitán J,

Corominas A, Gilbert A, Illingworth J, Merino L, Mirats JM,

Moreno P, Ollero A, Sequeira Ja, Spaan MTJ (2010) Decentral-

ized Sensor Fusion for Ubiquitous Networking Robotics in Urban

Areas. Sensors 10(3):2274–2314

Sheh R, Schwertfeger S, Visser A (2016) 16 years of robocup rescue.

KI - Künstliche Intelligenz 30(3):267–277

Sheng X, Hu YH, Ramanathan P (2005) Distributed particle filter with

GMM approximation for multiple targets localization and tracking

in wireless sensor network. In: Proceedings of the 4th international

symposium on Information processing in sensor networks (IPSN),

IEEE Press, Piscataway, NJ, USA

Silver D, Veness J (2010) Monte-Carlo planning in large POMDPs.

Proceedings of 24th Advances in Neural Information Processing

Systems (NIPS) pp 1–9

Thrun S, Fox D, Burgard W, Dellaert F (2001) Robust Monte Carlo

localization for mobile robots. Artificial Intelligence 128(1–2):99–

141

Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press

Volkhardt M, Gross HM (2013) Finding people in apartments with a

mobile robot. In: IEEE International Conference on Systems, Man,

and Cybernetics, pp 4348–4353

Vázquez MA, Míguez J (2017) A robust scheme for distributed particle

filtering in wireless sensors networks. Signal Processing 131:190

– 201

Xu Z, Fitch R, Sukkarieh S (2013) Decentralised coordination of mo-

bile robots for target tracking with learnt utility models. In: Pro-

ceedings of the IEEE International Conference on Robotics and

Automation (ICRA), IEEE, pp 2014–2020

