1,735 research outputs found

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    PCA-ANN Based Algorithm for the Determination of Asymmetrical Network Failures of Network-Connected Induction Generators

    Get PDF
    Presented in this study is a principal component analysis - artificial neural network based hybrid failure determination system that can make failure determination selectively and rapidly in asymmetrical external failures that might occur on the network side of a grid-connected induction generator. By creating asymmetrical external failures in the developed simulation model, analysis of noisy and unbalanced fluctuations that carry effects of positive, negative and zero sequence in currents were realized. The suggested model depends on entering data taken from the simulation into the artificial neural network model as a training data by being simplified with principal component analysis, in phase-phase, phase-ground and two phase-ground failures. The protection model makes correct classification with acceptable errors in case of above stated failures. However, in current fluctuations caused by sudden load changes and operation under an unbalanced load, it may remain insensitive by behaving selectively

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Optimización de la gestión de redes de riego a presión a diferentes escalas mediante Inteligencia Artificial

    Get PDF
    Factors such as climate change, world population growth or the competition for the water resources make freshwater availability become an increasingly large and complex global challenge. Under this scenario of reduced water availability, increasing droughts frequency and uncertainties associated with a changing climate, the irrigated agriculture sector, particularly in the Mediterranean region, will need to be even more efficient in the use of the water resources. In Spain, many irrigation districts have been modernized in recent years, replacing the obsolete open channels by pressurized water distribution networks towards improvements in water use efficiency. Thanks to this, water use has reduced but the energy demand and the water costs have dramatically increased. Thus, strategies to reduce simultaneously water and energy uses in irrigation districts are required. This thesis consists of nine chapters, which include several models to optimize the management of the irrigation districts and increase the efficiency of water and energy use.Factores tales como el cambio climático, el crecimiento de la población mundial o la competencia por los recursos hídricos hacen que la disponibilidad de agua se esté convirtiendo en un desafío global cada vez más grande y complejo. En este escenario de reducción de la disponibilidad de agua, aumento de la frecuencia de las sequías y de las incertidumbres asociadas a un cambio climático, el sector de la agricultura de regadío, en particular en la región mediterránea, tendrá que ser aún más eficiente en el uso de los recursos hídricos. En España, muchas comunidades de regantes se han modernizado en los últimos años, sustituyendo los obsoletos canales abiertos por redes de distribución de agua a presión con el objetivo de mejorar la eficiencia en el uso del agua. Gracias a esto, el uso del agua se ha reducido, pero la demanda de energía y los costos del agua se han incrementado drásticamente. Por lo tanto, se requieren estrategias para reducir simultáneamente el uso de agua y energía en las comunidades de regantes. Esta tesis consta de nueve capítulos que incluyen varios modelos para optimizar la gestión de las comunidades de regantes y aumentar la eficiencia en el uso del agua y la energía

    Forecasting Automobile Demand Via Artificial Neural Networks & Neuro-Fuzzy Systems

    Get PDF
    The objective of this research is to obtain an accurate forecasting model for the demand for automobiles in Iran\u27s domestic market. The model is constructed using production data for vehicles manufactured from 2006 to 2016, by Iranian car makers. The increasing demand for transportation and automobiles in Iran necessitated an accurate forecasting model for car manufacturing companies in Iran so that future demand is met. Demand is deduced as a function of the historical data. The monthly gold, rubber, and iron ore prices along with the monthly commodity metals price index and the Stock index of Iran are Artificial neural network (ANN) and artificial neuro-fuzzy system (ANFIS) have been utilized in many fields such as energy consumption and load forecasting fields. The performances of the methodologies are investigated towards obtaining the most accurate forecasting model in terms of the forecast Mean Absolute Percentage Error (MAPE). It was concluded that the feedforward multi-layer perceptron network with back-propagation and the Levenberg-Marquardt learning algorithm provides forecasts with the lowest MAPE (5.85%) among the other models. Further development of the ANN network based on more data is recommended to enhance the model and obtain more accurate networks and subsequently improved forecasts

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations

    Credit Risk Evaluation as a Service (CREaaS) based on ANN and Machine Learning

    Get PDF
    Credit risk evaluation is the major concern of the banks and financial institutions since there is a huge competition between them to find the minimum risk and maximum amount of credits supplied. Comparing with the other services of the banks like credit cards, value added financial services, account management and money transfers, the majority of their capitals has been used for various types of credits. Even there is a competition among them for finding and serving the low risk customers, these institution shares limited information about the risk and risk related information for the common usage. The purpose of this paper is to explain the service oriented architecture and the decision model for those banks which shares the information about their customers and makes potential customer analysis. Credit Risk Evaluation as a Service system, provides a novel service based information retrieval system submitted by the banks and institutions. The system itself has a sustainable, supervised learning with continuous improvement with the new data submitted. As a main concern of conflict of interest between the institutions trade and privacy information secured for internal usage and full encrypted data gathering and as well as storing architecture with encryption. Proposed system architecture and model is designed mainly for the commercial credits for SME’s due to the complexity and variety of other credits

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Electrical power prediction through a combination of multilayer perceptron with water cycle ant lion and satin bowerbird searching optimizers

    Get PDF
    Predicting the electrical power (PE) output is a significant step toward the sustainable development of combined cycle power plants. Due to the effect of several parameters on the simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue. First, a nonlinear neural network framework is formed to link the PE with influential parameters. Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in the training phase showed that the proposed WCA can find an optimal solution for capturing the relationship between the PE and influential factors with less than 1% error. Likewise, examining the test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are extracted and presented

    Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks.

    Get PDF
    Política de acceso abierto tomada de: https://www.aimspress.com/index/news/solo-detail/openaccesspolicyThe blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict “buy” or “sell” decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.This research was funded by the Universitat de Barcelona, under the grant UB-AE-AS017634
    corecore