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TÍTULO DE LA TESIS: Optimización de la gestión de redes de riego 

a presión a diferentes escalas mediante Inteligencia Artificial 

DOCTORANDO: Rafael González Perea 

INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE 

LA TESIS 

En los últimos años, el sector del regadío ha 

experimentado un proceso de modernización en el que las redes 

a presión han sustituido a las tradicionales redes de canales 

abiertos. Esto ha permitido aumentar considerablemente la 

eficiencia en el uso del agua, pero por el contrario, implica una 

mayor dificultad en la gestión, dado que entran en juego nuevos 

aspectos como la alta demanda energética de los sistemas a 

presión. Así, los gestores se ven en la necesidad de asegurar un 

suministro adecuado de agua, en términos de caudal y presión, 

pero minimizando el gasto en energía. 

El desarrollo de nuevos sensores y sistemas de adquisición 

de dato y la mejora de las comunicaciones, cada vez a precios más 

reducidos, está cambiando la agricultura actual, la cual tiende a 

ser una actividad de precisión en la que se dispone de gran 

cantidad de información para la ayuda a la toma de decisiones 
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óptima. No obstante, es necesario desarrollar herramientas que, 

usando toda la información generada, ayuden a los gestores y 

técnicos de las zonas regables para usar los distintos recursos de la 

manera más eficiente posible. Así, técnicas que hasta ahora no 

eran comunes (inteligencia artificial, big data, lógica difusa, etc.) 

adquirirán cada vez más, un papel más importante en la gestión 

del regadío. 

La presente Tesis Doctoral se organiza en dos grandes 

secciones que abordan los temas anteriormente citados.  

En una primera sección se analiza el uso eficiente del agua 

y de la energía a escalas de red de distribución y de parcela. De 

esta forma, en el primer trabajo se analiza la función de los puntos 

críticos (hidrantes con elevados requerimientos de energía) en la 

gestión de la red de distribución de agua, estableciéndose 

estrategias para minimizar el impacto de los mismos en el 

consumo energético, pero sin afectar de una manera significativa 

a la productividad de los cultivos. Este aspecto se complementa 

con un segundo trabajo, más centrado a escala de parcela, pero 

que integra el modelo de crecimiento de cultivos Aquacrop y 

Sistemas de Información Geográfica para conocer con mayor 

precisión la variabilidad espacial en la productividad dentro de la 

finca y vincularla a la uniformidad del sistema de riego. 

En el último trabajo de esta sección, se analiza la gestión 

de la zona regable como un todo, integrando la programación del 
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riego en cada una de las parcelas con la gestión de la red de riego, 

estableciendo estrategias de sectorización óptimas (turnos de riego 

con similares requerimientos de energía). Este trabajo representa 

un cambio en el concepto de gestión tradicional de las zonas 

regables, en el que la gestión de la red y la programación del riego 

en parcela no se hacen de forma conjunta. 

La segunda sección de la Tesis se centra en la predicción 

de la demanda de riego a diferentes escalas. La predicción de la 

demanda es un aspecto cada vez más importante dado que, entre 

otras cosas, es esencial para una correcta contratación de la 

potencia y la energía. 

En el primero de los trabajos de esta sección se usan 

algoritmos neuro-genéticos para predecir la demanda de agua 

diaria en la zona regable de la Zona Regable de la Margen Derecha 

del Río Bembézar, consiguiendo un error estándar de únicamente 

el 12.6 %.  

Esta sección se complementa con otros dos trabajos en los 

que se usan técnicas de redes neuronales artificiales, lógica difusa 

y algoritmos genéticos para predecir los eventos de riego en cada 

parcela (cuando riega un agricultor en particular) y la demanda 

horaria de riego en toda la zona regable. 

Por todo esto, consideramos que se trata de una Tesis de 

gran calidad y que aborda un problema real, de gran actualidad y 
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Summary 

Factors such as climate change, world population growth or the 

competition for the water resources make freshwater availability 

become an increasingly large and complex global challenge. 

Under this scenario of reduced water availability, increasing 

droughts frequency and uncertainties associated with a changing 

climate, the irrigated agriculture sector, particularly in the 

Mediterranean region, will need to be even more efficient in the 

use of the water resources. In Spain, many irrigation districts have 

been modernized in recent years, replacing the obsolete open 

channels by pressurized water distribution networks towards 

improvements in water use efficiency. Thanks to this, water use 

has reduced but the energy demand and the water costs have 

dramatically increased. Thus, strategies to reduce simultaneously 

water and energy uses in irrigation districts are required. 

This thesis consists of nine chapters, which include several 

models to optimize the management of the irrigation districts and 

increase the efficiency of water and energy use. Chapter 1 

provides the framework in which the present PhD thesis has been 

developed and the objectives are presented in Chapter 2. 
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The following chapters are organized in two thematic sections, 

with three chapters each. The first section includes Chapters 3, 4 

and 5 and presents methodologies to increase the energy use 

efficiency considering both, water distribution networks and on-

farm irrigation systems.  

Chapter 3 shows a new approach of critical points control 

considering the interaction between the water distribution 

network and the irrigation system’s performance in the critical 

field, which is the one supplied by hydrants with the highest 

energy requirements. Thus, the impacts of changes in the 

manometric regulation of the pump station has in the irrigation 

system of the critical field has been analyzed. The methodology 

has been applied to a real irrigation district, achieving average 

energy cost savings of 15 % with no significant yield losses. 

The simplicity of the crop yield estimation in Chapter 3 leaded 

up to Chapter 4. Here a new methodology to assess the impacts 

of irrigation heterogeneity on crop yield using geospatial analysis 

and crop modelling techniques was developed. This chapter was 

done in collaboration with researchers from Cranfield University 

(UK) and the methodology developed was applied to a case study 

in Eastern England. 

Chapter 5 describes a new methodology for water distribution 

networks sectoring but considering the soil water balance and 
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irrigation scheduling in each farm, using the multiobjetive genetic 

algorithm NSGA-II. The developed model determines the 

optimal threshold values of relative soil moisture in each field to 

identify the hydrants that make up the operating irrigation sector 

including farmer’s profit and energetic criteria. The methodology 

has been applied to a real irrigation district achieving average 

energy cost savings of 27 %. 

Section II is composed of Chapters 6 to 8 in which several models 

to predict the irrigation demand at different spatial and time 

scales have been developed. In chapter 6, a short-term forecasting 

model of daily irrigation water demand at irrigation district level 

using Artificial Neural Networks and the multiobjective 

algorithm NSGA-II has been developed. This predictive model 

was applied to a real irrigation district located in southern Spain.  

The results show that the model explains 93 % of the variability 

of the observed water demand with a standard error of 12.63 %.  

Chapter 7 is aimed at modelling the farmer´s behavior and 

prediction of irrigation events. Thus, a new model combining 

Decision Trees and Genetic Algorithms is developed. The model 

was applied in a real irrigation district, classifying properly 

between 99.16 % and 100 % of the irrigation events.  

Chapter 8 presents a model attempting to modelling the farmer’s 

behavior and forecast the daily irrigation depth used by each 
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farmer using Artificial Neural Networks, Fuzzy Logic and the 

multiobjective algorithm NSGA-II. This model was tested in a real 

irrigation district achieving to explain 87 % of the variability 

observed with a standard error of 9.80 %. 

The general conclusions drawn from this thesis and the avenues 

for future research are included in Chapter 9. 

This thesis highlights the need for improving the management of 

the irrigation districts and presents several innovative strategies to 

optimize simultaneously water and energy use, while increasing 

farmer’s profits at the same time. 
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Resumen 

Factores tales como el cambio climático, el crecimiento de la 

población mundial o la competencia por los recursos hídricos 

hacen que la disponibilidad de agua se esté convirtiendo en un 

desafío global cada vez más grande y complejo. En este escenario 

de reducción de la disponibilidad de agua, aumento de la 

frecuencia de las sequías y de las incertidumbres asociadas a un 

cambio climático, el sector de la agricultura de regadío, en 

particular en la región mediterránea, tendrá que ser aún más 

eficiente en el uso de los recursos hídricos. En España, muchas 

comunidades de regantes se han modernizado en los últimos 

años, sustituyendo los obsoletos canales abiertos por redes de 

distribución de agua a presión con el objetivo de mejorar la 

eficiencia en el uso del agua. Gracias a esto, el uso del agua se ha 

reducido, pero la demanda de energía y los costos del agua se han 

incrementado drásticamente. Por lo tanto, se requieren 

estrategias para reducir simultáneamente el uso de agua y energía 

en las comunidades de regantes. 

Esta tesis consta de nueve capítulos que incluyen varios modelos 

para optimizar la gestión de las comunidades de regantes y 

aumentar la eficiencia en el uso del agua y la energía. El capítulo 
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1 proporciona el marco en el que se ha desarrollado la presente 

tesis doctoral y los objetivos se presentan en el capítulo 2. 

Los capítulos siguientes se han organizado en dos secciones, con 

tres capítulos cada una. La primera sección incluye los capítulos 

3, 4 y 5 y presenta metodologías para aumentar la eficiencia en el 

uso de la energía considerando tanto la red de distribución de 

agua como los sistemas de riego en parcela. 

El capítulo 3 muestra un nuevo enfoque de control de puntos 

críticos considerando la interacción entre la red de distribución 

de agua y el rendimiento del sistema de riego en la parcela crítica, 

aquella que se abastece por hidrantes con mayores necesidades 

energéticas. Así, se han analizado los impactos que los cambios en 

la regulación manométrica de la estación de bombeo tienen en el 

sistema de riego de la parcela crítica. La metodología se ha 

aplicado a una comunidad de regantes real, logrando un ahorro 

medio del coste energético del 15 % sin pérdidas significativas de 

producción. 

La simplicidad de la estimación del rendimiento de los cultivos 

en el Capítulo 3 ha llevado a desarrollar un procedimiento más 

robusto en el Capítulo 4. La nueva metodología evalúa los 

impactos de la heterogeneidad del riego sobre el rendimiento de 

los cultivos usando el análisis geoespacial y las técnicas de 

modelización de cultivos. Este capítulo se realizó en colaboración 
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con investigadores de la Universidad de Cranfield (Reino Unido) 

y la metodología desarrollada se aplicó a un estudio de casos en el 

Este de Inglaterra. 

El capítulo 5 describe una nueva metodología para la 

sectorización de redes de distribución de agua, pero considerando 

el balance hídrico del suelo y la programación del riego en cada 

parcela que compone la red de riego, utilizando el algoritmo 

genético multiobjetivo NSGA-II. El modelo desarrollado 

determina los umbrales óptimos de la humedad relativa del suelo 

en cada parcela de acuerdo a criterios energéticos y beneficio 

económico del agricultor. La metodología ha sido aplicada a una 

comunidad de regantes real logrando un ahorro medio del coste 

energético del 27 %. 

La Sección II se compone de los Capítulos 6 a 8 en los que se han 

desarrollado varios modelos para predecir la demanda de riego a 

diferentes escalas espaciales y temporales. En el capítulo 6 se ha 

desarrollado un modelo de predicción a corto plazo de la 

demanda diaria de agua de riego a nivel comunidad de regantes 

utilizando Redes Neuronales Artificiales y el algoritmo 

multiobjetivo NSGA-II. Este modelo predictivo se aplicó a una 

comunidad de regantes del sur de España. Los resultados 

muestran que el modelo explica el 93 % de la variabilidad de la 

demanda de agua observada con un error estándar del 12,63 %.  
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El Capítulo 7 tiene como objetivo modelar el comportamiento 

del agricultor y predecir cuándo el agricultor decide regar. Así, se 

desarrolla un nuevo modelo combinando Árboles de Decisión y 

Algoritmos Genéticos. El modelo desarrollado se aplicó en una 

comunidad de regantes real, logrando clasificar correctamente 

entre el 99.16 % y el 100 % de los eventos de riego testados. 

El Capítulo 8 presenta un modelo que predice la lámina de riego 

diaria aplicada por cada agricultor utilizando Redes Neuronales 

Artificiales, Lógica Difusa y el algoritmo multiobjetivo NSGA-II. 

Este modelo fue probado en una comunidad de regantes real 

logrando explicar el 87 % de la variabilidad observada con un 

error estándar del 9.80 %. 

Las conclusiones generales extraídas de esta tesis y las líneas 

futuras de investigación se incluyen en el capítulo 9. 

Esta tesis destaca la necesidad de mejorar la gestión integral de las 

comunidades de regantes y presenta varias estrategias innovadoras 

para optimizar simultáneamente el uso de agua y energía, al 

mismo tiempo que se incrementa el beneficio de los agricultores. 
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1. Introduction 

 

1.1. Background 

Water is a key natural resource in the economic, social and 

political development of any region or country. Climate change, 

farming or industrial processes are some of the factors that make 

freshwater availability becomes an increasingly large and complex 

global challenge (Hunt 2004).  

Furthermore, the Food and Agriculture Organization of the 

United Nations (FAO) expects that the world population will rise 

from the current 7 billions to 9 billions by 2050. Thus, an 

increase of the 70 % on food requirements is forecasted for the 

next thirty years (FAO 2011). Under this scenario and 

considering that there is not enough arable land to increase the 

food production in the estimated proportion, irrigated 

agriculture has a crucial role to play here. 

In recent decades, the irrigated agriculture area has increased 

considerably covering a total area of 244M ha in 1989-1991 up to 

287M ha in 2005-2007. Moreover, an additional increment of 32 
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M ha is predicted for 2050 to satisfy the growing food demand 

(Conforti 2011). 

Consequently, irrigated agriculture is the most water demanding 

sector with around 70 % of the freshwater withdrawals at global 

level (Conforti 2011). Hence, improving the water use efficiency 

in the irrigation sector is essential to ensure global food supply in 

the coming years. 

1.2. The Spanish irrigated agriculture 

Water resources availability is a limiting factor for economic 

development in many water-stressed countries. One good 

example is the Mediterranean region where, due to its scarce and 

irregular rainfall, is one of the most water-scarce regions in the 

world (Daccache et al. 2014b). This is the case of Spain, where 

the expansion of irrigated production, coupled with tourism and 

urbanization has created significant water supply challenges 

(García-Ruiz et al. 2011).  

Spain devotes 73 % of its national freshwater to irrigate 3.65M 

ha (INE 2016; MAGRAMA 2016) that represent one third of the 

irrigated land in the European Union (López-Gunn et al. 2012) . 

Since 2002, the Spanish government has developed a National 

Irrigation Plan and an Emergency Plan for Modernization of 

Irrigation with the aim of saving 3000 Mm3 of water per year 
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(MARM, 2002 and 2006). These plans involved an investment of 

some 7400M €, affecting about 2M ha of the 3.5M ha of the 

current irrigated area (Lecina et al., 2010). The National Strategy 

for Sustainable Irrigation Modernization, Horizon 2015 

continued with the improvement of the water management and 

promoted the sustainability of irrigation by pursuing energy 

efficiency (MARM, 2010).  

As a consequence of this national aim to improve water use 

efficiency, pressurize networks have replaced the obsolete open-

channel distribution systems (Plusquellec 2009) and many 

irrigated areas have migrated to more efficient irrigation systems 

such as drip and trickle (Playán and Mateos 2006). If in 1980, 

surface irrigation accounted for 80 % of the irrigated land, by 

2009 it represented only 31 %. Drip irrigation changed over the 

same period from 2% to 46 % while the use of sprinkler irrigation 

has increased slightly (Rodríguez Díaz et al., 2011). 

The upgrading of these water distribution systems allowed to 

reduce the water used by 21 % between 1950 and 2007 

(Corominas 2010). However, these new water distribution 

systems require energy for their operation and consequently, the 

energy consumption per unit area had risen by  657 % in the same 

period (1950-2007) (Corominas 2010). 
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Several studies have been developed to assess the impact of the 

irrigation modernization process in Spain. Results showed a 

reduction of 23 % in the volume of water applied. However, the 

water costs were incremented by 52 % (Fernández García et al. 

2014). Furthermore, after the liberalization of the electricity 

market in 2003 and the elimination of the electricity tariff for the 

irrigation sector in 2008, the electricity bill was increased by 120 

% from 2008 to 2010 (Rodríguez-Díaz et al. 2011) and it has 

steadily risen up to now. This increase in the cost of the electricity 

tariff coupled with the intensification of the energy requirements 

have caused a significant increment of the production costs 

creating doubts concerning the profitability of irrigated 

agriculture in many cases. 

Under this scenario of increasing energy demand, the European 

Union through the Directive 2006/32/CE on energy end-use 

efficiency and energy services tried to reduce the energy 

requirements by 9 %. With this aim, the Spanish government 

developed specific measures to improve the energy efficiency in 

the irrigation sector (IDAE 2005; IDAE 2007).  

Afterwards, the European Union through Directive 2012/27/UE 

committed to achieve an energy saving of 20 % in 2020. Within 

this framework of energy savings in the horizon 2020, Spain 

launched its Action Plan 2011-2020 (IDAE 2011) which included 
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energy saving measures such as the promotion and the 

dissemination of irrigation techniques leading to higher energy 

efficiency, the migration to less energy demanding irrigation 

systems, such as drip or low pressure sprinkler systems, and energy 

audits. In 2010, the Spanish government proposed the first plan 

of the use efficiency both water and energy in irrigated agriculture 

(MARM 2010). 

1.3. Reducing the energy dependence of the irrigation sector  

In light of this increasing energy demand and the great rising of 

the electric tariff cost, many works have been focused on the 

development of techniques to improve the water use efficiency 

and reduce the energy consumption in pressurized networks. 

Network sectoring, where hydrants with similar energy 

requirements are grouped (Rodríguez Díaz et al. 2009; Carrillo 

Cobo et al. 2011; Fernández García et al. 2013), energy audits 

(Abadia et al. 2008); optimization of operation of the pumping 

station (Moreno et al. 2007) or the detection and control of 

critical points (Rodríguez Díaz et al. 2012; Fernández García et al. 

2015), are some of the most effective techniques. Until now, all 

these techniques are applied at water distribution network level, 

without considering their impact on the on-farm irrigation 

systems.  
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Thus, the development of water and energy saving measures, that 

allow a comprehensive management of the irrigation networks 

including the on-farm irrigation systems, will provide a more 

accurate tool for irrigation districts managers. 

Because of the modernization processes of the hydraulic 

infrastructures, most of the new irrigation systems has been 

designed to operate on-demand where water is continuously 

available for farmers who are free to decide how and when 

irrigate. Although the increased operation flexibility is a positive 

aspect for farmers, the management of the whole system is a more 

complex task for managers because the hydraulic systems have to 

work under a wide range of operating conditions, in terms of flow 

and pressure. Thus, new tools to accurately predict the real daily 

water demand either at network distribution level or at farm level 

are absolutely necessary to achieve an optimal management of the 

pressurized irrigation networks. 

1.4. Artificial Intelligence in irrigation networks 

In recent years, the development of new sensors capable to collect 

automatically thousands of data of the whole water-soil-plant-

atmosphere system, offer new possibilities for the optimization of 

the water supply and irrigation processes.  Thanks to the 

application of techniques such as Artificial Neural Networks, 

Fuzzy Logic or Genetic Algorithms, it is possible to develop tools 
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for the prediction of the daily or even hourly water demand. The 

seamless integration of these methodologies forms the core of 

Artificial Intelligent. The synergism of these techniques allows 

soft computing to incorporate human knowledge effectively, deal 

with imprecision and uncertainty, and design adaptation 

strategies for better performance. 

Artificial Intelligent techniques have been applied to resolve 

many problems of water resources management and planning 

such as: modelling monthly, daily and hourly rainfall-runoff 

process (Anctil and Rat 2005; Agarwal et al. 2006), real-time river 

level and lake stage forecasting (Ondimu and Murase 2007) or the 

optimization of the multi-crop pattern plan using Fuzzy Logic and 

Genetic Algorithm (Rezaei et al. 2017). However, there are very 

little experiences about their application for irrigation water 

demand forecasting (Pulido-Calvo and Gutiérrez-Estrada, 2009). 

In essence, the integration of artificial intelligence methodologies 

(Artificial Neural Networks, Decision Trees, Fuzzy Logic and 

Genetic Algorithm) with tools to optimize the operation of 

irrigation water distribution networks (such as sectoring and 

critical points control) including the interactions within the 

systems at different scales (distribution network and on-farm 

systems) will provide a useful decision support system for 

managers. This advanced decision support system will entail 



Optimum management of pressurized irrigation networks at 
different scales using Artificial Intelligent techniques 

 

 
8 

 

better use of water and energy resources as well as greater 

economic benefits for farmers. 

1.5. References 

Abadia R, Rocamora C, Ruiz A, Puerto H (2008) Energy 

efficiency in irrigation distribution networks I: Theory. 

Biosyst Eng 101:21–27 

Agarwal A, Mishra SK, Ram S, Singh JK (2006) Simulation of 

Runoff and Sediment Yield using Artificial Neural 

Networks. Biosyst Eng 94:597–613 

Anctil F, Rat A (2005) Evaluation of neural network streamflow 

forecasting on 47 watersheds. J Hydrol Eng 10:85–88  

Carrillo Cobo MT., Rodríguez Díaz JA, Montesinos P, et al (2011) 

Low energy consumption seasonal calendar for sectoring 

operation in pressurized irrigation networks. Irrig Sci 

29:157–169 

Conforti P (Editor) (2011) Looking Ahead in World Food and 

Agriculture: Perspectives to 2050. Food and Agriculture 

Organization, Rome 

Corominas J (2010) Agua y energía en el riego en la época de la 

sostenibilidad. Ing del agua 17:219–233 



 

1. Introduction 
 

 
9 

 

Daccache A, Knox JW, Weatherhead EK, et al (2014) 

Implementing precision irrigation in a humid climate. 

Recent experiences and on-going challenges. Agric Water 

Manag 147:135–143 

FAO (2011) The state of the world’s land and water resources for 

food and agriculture (SOLAW). Managing systems at risk. 

Food and Agriculture Organization of the United 

Nations, Rome and Earthscan, London 

Fernández García I, Montesinos P, Camacho Poyato E, Rodríguez 

Díaz JA (2015) Energy cost optimization in pressurized 

irrigation networks  

Fernández García I, Rodríguez Díaz J a., Camacho Poyato E, 

Montesinos P (2013) Optimal Operation of Pressurized 

Irrigation Networks with Several Supply Sources. Water 

Resour Manag 27:2855–2869 

Fernández García I, Rodríguez Díaz JA, Camacho Poyato E, et al 

(2014) Effects of modernization and medium term 

perspectives on water and energy use in irrigation districts. 

Agric Syst 131:56–63 

García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, et al 

(2011) Mediterranean water resources in a global change 

scenario. Earth-Science Rev 105:121–139. 



Optimum management of pressurized irrigation networks at 
different scales using Artificial Intelligent techniques 

 

 
10 

 

Hunt CE (2004) Thristy Plant-Strategies for Sustainable Water 

Management. New York 

IDAE Spanish Institute for Energy Diversification and Savings 

(2005) Spanish Energy Efficiency Strategy. Action Plan 

2005-2007  

IDAE Spanish Institute for Energy Diversification and Savings 

(2007) Spanish Energy Efficiency Strategy. Action Plan 

2008-2012  

IDAE Spanish Institute for Energy Diversification and Savings 

(2011) Spanish Energy Efficiency Strategy. Action Plan 

2011-2020  

INE Instituto Nacional de Estadística (2016) Encuesta sobre el 

uso del agua en el sector agrario (año 2014). Madrid. 

Spain. 

http://www.ine.es/dyngs/INEbase/es/categoria.htm?c=

Estadistica_P&cid=1254735976602. Accessed 4 Jun 

2017 

Lopez-Gunn E, Zorrilla P, Prieto F, Llamas MR (2012) Lost in 

translation? Water efficiency in Spanish agriculture. Agric 

Water Manag 108:83–95 



 

1. Introduction 
 

 
11 

 

MAGRAMA Spanish Ministry of Agriculture Food and 

Environment (2016) Encuesta sobre superficies y 

rendimientos de cultivo 2016. 158 

MARM Ministry of Environment and Rural and Marine Affair 

(2010) National Strategy for Sustainable Modernization of 

Irrigation-Horizon 2015. Madrid, Spain 

Moreno MA, Carrión PA, Planells P, et al (2007) Measurement 

and improvement of the energy efficiency at pumping 

stations. Biosyst Eng. doi: 

10.1016/j.biosystemseng.2007.09.005 

Ondimu S, Murase H (2007) Reservoir Level Forecasting using 

Neural Networks: Lake Naivasha. Biosyst Eng 96:135–138  

Playán E, Mateos L (2006) Modernization and optimization of 

irrigation systems to increase water productivity. Agric 

Water Manag 80:100–116 

Plusquellec H (2009) Modernization of large-scale irrigation 

systems: is it an achievable objective or a lost cause. Irrig 

Drain 58: S104–S120 

Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation 

water demand forecasting using a soft-computing hybrid 

model. Biosyst Eng 102:202–218 



Optimum management of pressurized irrigation networks at 
different scales using Artificial Intelligent techniques 

 

 
12 

 

Rezaei F, Safavi HR, Zekri M (2017) A Hybrid Fuzzy-Based Multi-

Objective PSO Algorithm for Conjunctive Water Use and 

Optimal Multi-Crop Pattern Planning. Water Resour 

Manag. doi: 10.1007/s11269-016-1567-4 

Rodríguez-Díaz JA, Pérez L, Camacho E, Montesinos P (2011) 

The paradox of irrigation scheme modernization: more 

efficient water use linked to higher energy demand. 

Spanish J Agric Res 9:1000–1008 

Rodríguez Díaz JA, López Luque R, Carrillo Cobo MT., et al 

(2009) Exploring energy saving scenarios for on-demand 

pressurised irrigation networks. Biosyst Eng 104:552–561 

Rodríguez Díaz JA, Montesinos P, Camacho Poyato E (2012) 

Detecting Critical Points in On-Demand Irrigation 

Pressurized Networks - A New Methodology. Water 

Resour Manag 26:1693–1713



2. Objectives and thesis structure 
 

 
13 

 

 

2. Objectives and thesis structure 

 

2.1. Objectives 

The overall objective of this thesis is to develop strategies to 

optimize water and energy use in Irrigation Districts both at water 

distribution network and at farm levels, considering the 

uncertainty in the irrigation scheduling caused by farmer’s 

behavior. 

With this aim, the following specific objectives have been 

formulated: 

1. Development of a methodology to analyze the impacts of pump 

station’s management on the irrigation system at the critical farms 

(farms supplied by critical points or hydrants with the highest 

energy requirements). 

2. Development of a comprehensive model that integrates soil 

water balance and irrigation uniformity on-field scale to assess 

their impacts on crop yield. The model is developed within an 

innovative GIS framework to facilitate the evaluation of a wide 

range of impacts related to agricultural aspects and to water and 

energy use in irrigated agriculture. 
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3. Optimization of sectors operation in pressurized irrigation 

networks considering crop water requirements and soil water 

balance at farm level with the aim to maximize the farmer’s profit 

and minimize the energy cost at pumping stations. 

4. Development of a short-term forecasting model of daily 

irrigation water demand at irrigation district level using Artificial 

Neural Networks and Genetic Algorithms. 

5. Modelling the farmer´s behavior and irrigation events forecast, 

combining Decision Trees and Genetic Algorithms into a single 

hybrid model. 

6. Modelling the farmer´s behavior and daily water demand 

forecast at farm level, by a hybrid methodology, which combines 

Artificial Neural Networks, Fuzzy Logic and Genetic Algorithms. 

2.2. Thesis structure 

This thesis is organized in nine chapters. Following the 

introduction (chapter 1) and the objectives (chapter 2), the Thesis 

is organized in two thematic sections, with three chapters each of 

them.  The first section addresses the optimization of the water 

and energy efficiency in water distribution network and irrigation 

systems following a holistic approach. The second section focus 

on irrigation demand forecasting to improve the management of 
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water and energy resources. Finally, the conclusions are presented 

in chapter 9. 

Section I, titled “Energy efficiency in water distribution and on-farm 

irrigation systems”, includes Chapters 3, 4 and 5 and presents 

methodologies to increase the energy use efficiency in both water 

distribution systems and on-farm irrigation systems. Chapter 3 

approaches the interactions between on-demand water 

distribution networks and irrigation systems’ performance in 

critical points with the aim to enhance the overall efficiency of 

the irrigation infrastructure with minimal costs. This chapter has 

been published under the title “Critical points: interactions 

between on-farm irrigation systems and water distribution 

network” (2014) by González Perea R, Camacho Poyato E, 

Montesinos P and Rodríguez Díaz JA in Irrigation Science. 

The main limitation of the work carried out in Chapter 3 is the 

simplistic approach followed to estimate crop yields. The aim of 

Chapter 4 is to reduce this shortcoming thanks to a new 

methodology to assess in-field impacts of irrigation heterogeneity 

on crop yield using geospatial analysis and crop modeling 

techniques. This chapter was done in collaboration with 

researchers from Cranfield University (UK) and it has been 

published under the tittle “Modelling impacts of precision 

irrigation on crop yield and in-field water management” (2017) by 

González Perea R, Daccache A, Rodríguez Díaz JA, Camacho 
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Poyato E and Knox JW in Precision Agriculture. Chapter 5 presents 

a new methodology for water distribution networks sectoring 

which considers the soil water balance and irrigation scheduling 

in each farm, using the multiobjetive genetic algorithm NSGA-II 

as optimization tool. This chapter has been published in Water 

Resources Management as “Optimization of Irrigation Scheduling 

Using Soil Water Balance and Genetic Algorithms” (2016) by 

González Perea R, Camacho Poyato E, Montesinos P and 

Rodríguez Díaz JA. 

Section II, titled “Irrigation demand forecasting models at different 

scales”, consists of Chapters 6 to 8. In this section, several models 

are developed to predict the irrigation demand at different spatial 

and time scales: at irrigation district and farm level, and at daily 

and hourly scale. In Chapter 6 a short-term forecasting model of 

daily irrigation water demand at irrigation district level using 

Artificial Neuro-Genetic Networks is developed. This chapter has 

been published under the tittle “Irrigation Demand Forecasting 

Using Artificial Neuro-Genetic Networks” (2016) by González 

Perea R, Camacho Poyato E, Montesinos P and Rodríguez Díaz 

JA in Water Resources Management. 

Chapter 7 is aimed at modelling the farmer´s behavior and 

forecast when the farmer decides to irrigate. This research is 

included in the article “Prediction of irrigation event occurrence 
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at farm level using optimal decision trees” (2017) by González 

Perea R, Camacho Poyato E, Montesinos P and Rodríguez Díaz 

JA, published in Water Resources Management. Chapter 8 presents 

a model attempting to predict the hourly water demand at farm 

level using Artificial Neural Networks, Fuzzy Logic and Genetic 

Algorithms. This chapter corresponds to the article “Farmer’s 

behaviour modelling by the prediction of the applied irrigation 

depth using artificial intelligence” (2017) by González Perea R, 

Camacho Poyato E, Montesinos P and Rodríguez Díaz JA in 

Water Resources Research.  

Finally, Chapter 9 gather the main conclusions reached in this 

thesis as well as the avenues for future research in the field of 

water-energy nexus in irrigated agriculture. 
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Section I  

Energy efficiency in water distribution 
networks and on-farm irrigation systems 
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3. Critical Points: Interactions between On-
Farm Irrigation Systems and Water Distribution 

Network 

This chapter has been published entirely in the journal “Irrigation 
Science”, González Perea R, Camacho Poyato E, Montesinos P, Rodríguez 

Díaz JA (2014) 

 

Abstract. In this work, a new model useful to analyze interactions 

between the on-farm irrigation system supplied by critical points 

and the water supply network management was developed. The 

model evaluates the impacts of changes in the pressure head and 

demand simultaneity (number of open hydrants at a given time) 

on the irrigation system and evaluates emitter discharge and 

uniformity. It also estimates the potential reductions in crop yield 

due to decreased emission uniformity.  

The methodology is applied in the Bembézar Irrigation District 

(Southern Spain). Results show that the additional cost required 

for providing maximum pressure to the critical field does not 

offset the increase in crop yield. Hence, an increment from 91.7 

% to 92.1 % in yield in the critical field would represent increases 

in energy consumption from 0.15 to 0.17 kWh per m-3 of water. 

Also, the unit energy cost could be reduced by up to 0.11 kWh 
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per m3 without implying significant reductions in crop yield. The 

importance of a good selection of emitters in the critical fields 

(fields that are supplied by the critical hydrants) was also 

evaluated. 

Keywords. energy savings, pressurized irrigation, hydraulic 

modelling 

3.1. Introduction 

With the aim of increasing the irrigation efficiency and to give 

farmers maximum flexibility, many water distribution networks 

have been designed to supply pressurized water and arranged on 

demand. Thus, some of the obsolete open-channel hydraulic 

infrastructure has been replaced by new pressurized networks 

(Plusquellec 2009). This change increases the conveyance 

efficiency reducing water losses throughout the system. In 

addition, farmers get a much greater degree of flexibility, allowing 

the use of more efficient on-farm irrigation systems such as trickle 

or sprinkler, and therefore increasing uniformity and allowing 

more frequent irrigation (Lamaddalena et al. 2007; Rodríguez 

Díaz et al. 2007a; Pérez Urrestarazu et al. 2009). 

However, these pressurized networks have significantly increased 

the energy demand. For example, in Spain, where an ambitious 

modernization plan of irrigation schemes has been carried out 

(MAPA, 2001), Corominas (2010) reported than while water use 
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has been reduced by 21 % from 1950 to 2007, the energy demand 

was subsequently increased by 657 %. For this reason, several 

authors have highlighted the necessity of reducing the energy 

requirements, improving the performance of both the water 

distribution and on-farm irrigation systems (Pulido-Calvo et al. 

2003; ITRC 2005; Moreno et al. 2007; Rocamora et al. 2008; 

Vieira and Ramos 2009; Daccache et al. 2010). 

There are several strategies for energy optimization in pressurized 

irrigation networks. Network sectoring, where hydrants with 

similar energy requirements are grouped, is one of the most 

effective measures (Rodríguez Díaz et al. 2009; Carrillo Cobo et 

al. 2011; Navarro Navajas et al. 2012). Another energy saving 

measure is the control of critical points, which are hydrants with 

high energy requirements (i.e., relatively high elevation and or 

outlet pressure). 

Rodríguez Díaz et al. (2012) developed the WECP (Water and 

Energy optimization by Critical Point control) algorithm for 

detecting critical points in pressurized irrigation networks. It was 

applied in two pressurized irrigation networks in Southern Spain. 

The results showed that potential energy savings around 10–30 % 

were possible in each district when the theoretical irrigation 

requirements were modelled. However, the WECP offered energy 

saving measures at the distribution network level, not considering 

the possible on-farm irrigation implications in the fields supplied 
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by a critical hydrant. Reductions in the pressure head at the 

pumping station may drastically affect the distribution uniformity 

of the on-farm irrigation system and have significant negative 

impacts on crop yields (Smajstrla et al. 1990). 

In water distribution systems that operate on demand, flows in 

pipes are subjected to fluctuations according to the simultaneity 

of the demand (Rodríguez Díaz et al. 2007a). However, when the 

water demand is high, the energy losses in pipes are increased and 

the pressure on hydrants is reduced. Related to this, several 

modelling approaches have been developed to assess the 

performance of on-demand systems. For example, the indexed 

characteristic curve approach (CTGREF Division Irrigation 1979; 

Bethery et al. 1981) evaluates the overall performance of the 

distribution system, while the AKLA model (Lamaddalena and 

Sagardoy 2000) provides more specific information about the 

percentage of hydrants with sub-optimal performance, their 

position and the magnitude of their pressure deficit. In the Apulia 

irrigation district (Italy), the critical hydrant showed a potential 

pressure variation ranging between 64 m and 24 m when the 

upstream system discharge fluctuates between 600 and 1,200 

L s−1. These fluctuations had important impacts on the on-farm 

irrigation system performance (Daccache et al. 2010). 

In this work, a useful methodology to analyze the impacts of a 

pump station’s management on the on-farm irrigation system is 
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developed and applied to a real irrigation network in Southern 

Spain. Thus, pressure head changes in the pump station affect the 

pressure at critical points and consequently the distribution 

uniformity of their on-farm irrigation systems. The impact of 

these pressure variations is evaluated in terms of crop yield. 

3.2. Methodology 

3.2.1. Study area 

The M. D. Bembézar Irrigation District (MDB) (Southern Spain) 

has a total irrigated area of 11,950 ha (Fig. 3.1). The climate is  

 
Fig. 3.1. Location of the BMD irrigation district, Spain. 

Mediterranean with an annual average rainfall of 604 mm and an 

average annual temperature of 17.7 °C, with July being the hottest 

month (36.2 °C mean temperature). Under these circumstances, 

the average annual reference evapotranspiration (ET0) is over 
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1,200 mm. The main crops in the irrigation district are: citrus, 

cotton, maize and fruit trees. 

The water is conveyed from three different reservoirs (Bembézar, 

342 Mm3; Retortillo, 61 Mm3; José Torán, 101 Mm3) through a 

main channel of 40 km length and 12 m3 s−1 of delivery capacity. 

Then, eleven pumping stations operate along the main channel 

to supply water to each sector. The network was designed to 

supply 1.2 L s−1 ha−1 on demand at a minimum operational 

pressure head at the hydrant level of 35 m of water. Drip 

irrigation is the most common irrigation method. Sector VII, 

which covers a total irrigated area of 935 ha (Fig. 3.2), was 

analyzed in this work. 

Critical field  

The most critical point was identified in sector VII. Maize was 

grown in the field that is supplied by the most critical hydrant 

(critical field), and it has an irrigated area of 4.7 ha. A pressure 

regulation valve is placed downstream of the hydrant (which 

reduces the pressure head to 35 m) as well as a filter battery, whose 

friction losses were estimated to be 7 m.  

The irrigation method is trickle, with an emitter spacing of a = 

0.5 m and b = 1.8 m (spacing between emitters x spacing between  



3. Critical Points: Interactions between On-Farm Irrigation 
Systems and Water Distribution Network 

 

 
27 

 

 
Fig. 3.2. Distribution network (sector VII, BMD) and location of the 

critical hydrant. 

laterals). The nominal emitters flow is 2.2 L h−1, and the pressure-

compensation range varies from 10 m to 40 m. The emitter flow 

pressure head equation is: 

𝑞 =  𝛼 ∙ ℎ𝑥 [3.1] 

where q is the flow rate (L h−1); h is the pressure head (m); α is the 

discharge coefficient (L h−1 m−x); and x is the pressure head 

exponent. In this work, x = 0.04 and α = 1.79 L h−1 m−0.04. 

3.2.2. Problem formulation 
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Initially, the critical point detection was carried out using the 

WECP algorithm (Rodríguez Díaz et al. 2012). This algorithm 

identifies the critical points (most energy demanding hydrants) 

through several thousand network operation simulations under 

randomly generated loading conditions (different patterns of 

open/closed hydrants). 

Then, a new model for analyzing the impacts of the network’s 

management on critical fields was developed (Fig. 3.3). 

Initial pressure head at the pump station (hps,1)

Set the pressure head at the pump station (hps,i) 

Random demand pattern open/close 
hydrant at time tj (RDP)

Probability of an open hydrant (pn)

Kj Set open hydrants at time tj

Hydraulic Simulation of the network: EPANET

Determination of the pressure in the critical 
hydrant for each demand pattern and pressure 

head (hi j)

Hydraulic Simulation of the critical field: 
EPANET

Emitters' flow in the critical field (He)

Average and standard deviation of the emitter 
flows in the critical field (He, σe)

Determination of the irrigation uniformity in the 
critical field (CVe= σe/ He )

Yield

Energy requirement in the 
pump station (Eif)

Flow demand at the pump 
station (QT i j)

N
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t 
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e 
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: j

=j
+1

hps,i +1 = hps,i – Δh

 
Fig. 3.3. Flowchart of the critical field evaluation model. 

The model simulated the network’s behavior during the peak 

water demand month for different pressure heads. Furthermore, 
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the model linked the simultaneity of the water demand and the 

pressure at hydrants, considering the probability of an open or 

closed hydrant as described in Carrillo Cobo et al. (2011). Thus, 

the theoretical daily average irrigation needs in the irrigation 

district per month, and hydrant (mm) was estimated as described 

in FAO 56 (Allen et al. 1998). This information was transformed 

into irrigation needs in the peak water demand period, IN (L ha−1 

day−1), and was used to estimate the daily irrigation time required 

in the peak month, tn (h day−1), per hydrant (n): 

𝑡𝑛 = 
1

3,600
 ∙  

𝐼𝑁

𝑞𝑚𝑎𝑥
 [3.2] 

being qmax was the maximum flow allowed per hydrant (L s−1 ha−1). 

Then, the open outlet probability, pn, in the month of maximum 

demand (Clément 1966) was calculated for each hydrant (n) as 

follows: 

𝑝𝑛 = 
𝑡𝑛
𝑡𝑎
  [3.3] 

where ta is the daily irrigation availability time (24 h in on demand 

systems). 

Finally, it analyzed the impacts of changes in pressure head on the 

on-farm irrigation system’s behavior. The model was 

implemented in MATLAB, using the hydraulic simulator 
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EPANET (integrated through its dynamic link library, DLL; 

Rossman 2000). 

Hydraulic behavior at different pressure heads at the pump station 

Initially, the model fixed the pressure head at the pump station, 

hps,i, then j random demand patterns, RDP, (set of open/closed 

hydrants) were generated. A random demand pattern was 

generated for every iteration, j. The open hydrant probability 

value, pn, smaller or equal than random numbers generated with 

random demand patterns, determine the kj sets of open hydrants; 

otherwise, hydrants are considered closed with no water demand. 

The flow demanded for every open hydrant, qn, was estimated as 

follow: 

𝑞𝑛 = 𝑞𝑚𝑎𝑥  ∙  𝑆𝑛 [3.4] 

where Sn was the irrigated area supplied by hydrant n. Then, the 

network behavior under each random demand pattern and 

pressure head value, hps,i, was analyzed using EPANET. 

All this process begins with a maximum pressure head (hpi,max) and 

decreases in each iteration (i) in Δh. Thus, the effects that the 

pressure head at the pumping station and the simultaneity of the 

demand have in the pressure of the critical hydrant were analyzed. 

Limits of i and Δh depend on the type of emitters installed in the 

field. 
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Power and energy requirements 

The demanded flow in the pumping station, QTij in (m3 s−1), was 

determined for each demand pattern. For each pair of demanded 

flow and pressure head (loading condition), the power 

requirements, Pij (kW), at the pumping station were calculated 

according to the following equation: 

𝑃𝑖𝑗 = 
𝛾𝑤  ∙  𝑄𝑇𝑖𝑗  ∙  ℎ𝑝ℎ,𝑖

𝜂
 [3.5] 

where γw is the specific weight of water (9.8 kN m−3) and η is the 

pump system efficiency (a pump efficiency of 0.8 was assumed). 

Then, the energy consumption in kWh per working day for each 

loading condition, Eij, was estimated as follows: 

𝐸𝑖𝑗 = 𝑃𝑖𝑗  ∙  𝑡𝑛 [3.6] 

Pumped flow, pressure head, power and energy for each loading 

condition were averaged for the peak month. 

Hydraulic behavior of the critical field 

Based on a known pressure at the critical hydrant (hc), the 

hydraulic behavior of the emitters in the critical field was analyzed 

and the possible reductions in yield due to variations in the 

distribution uniformity were estimated. Thus, the on-farm 

irrigation system was also modeled in EPANET. 
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Then, the pressure and irrigation depth distribution were 

calculated for all the emitters in the critical field. The descriptive 

statistics (mean, 𝐻𝑒̅̅̅̅ ; standard deviation, σe; and coefficient of 

variation, CVe) for the emitters were estimated. Considering that 

there are no runoff losses, the mean depth coincides with the total 

gross applied depth, Hg. The total number of emitters, e, in the 

critical field was calculated as the field area divided by the emitter 

spacing: 

𝑒 =  
𝑆𝑛
𝑎 ∙ 𝑏

 [3.7] 

On‑farm irrigation system evaluation 

The on-farm distribution uniformity was evaluated using the ratio 

(Hg/Hr). This relationship was calculated according to Alabanda 

(2001): 

𝐻𝑔

𝐻𝑟
= 
1 − 𝐶𝑑
𝐼𝐸

 [3.8] 

where IE is the irrigation efficiency. It is the ratio of the net 

irrigation requirements, (Hn) (mm) to the total gross applied 

depth, Hg (mm); Cd is the deficit coefficient, which is the ratio of 

the water deficit (Hr − Hn), and the theoretical irrigation 

requirements, (Hr). These coefficients were described by Losada 

(1996) and calculated according to Eqs. 3.9, 3.10 and 3.11. 
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𝐼𝐸 =  

𝐻𝑒̅̅̅̅ −  
1
2
 ∙  
(𝐻𝑒̅̅̅̅ +  √3𝜎𝑒)

2
− 𝐻𝑟

2

2√3𝜎𝑒
+ 𝑓 ∙  𝐻𝑟

𝐻𝑒̅̅̅̅
 

[3.9] 

where f is the fraction of the field without water deficit: 

𝑓 =  
𝐻𝑒̅̅̅̅ +  √3𝜎𝑒 − 𝐻𝑟

2√3𝜎𝑒
 [3.10] 

 

𝐶𝑑 = 

(1 − 𝑓) ∙  𝐻𝑟 − 𝐻𝑒̅̅̅̅ +  
1
2
 ∙  
(𝐻𝑒̅̅̅̅ +  √3𝜎𝑒)

2 − 𝐻𝑟
2

2√3𝜎𝑒
𝐻𝑟

 
[3.11] 

Additionally, the distribution uniformity of the flow is also 

evaluated, using Christiansen’s uniformity coefficient (CUc; 

Christiansen 1942): 

𝐶𝑈𝑐 =  100 ∙  [1 − 
∑ |𝐻𝑖 − 𝐻𝑒̅̅̅̅ |
𝑒
𝑖=1

𝑒 ∙  𝐻𝑔
] [3.12] 

where Hi was the applied irrigation depth for every emitter (mm), 

which is one of the EPANET outputs. 

Crop yield estimation 

The irrigation uniformity and crop yield reductions were linked 

using the following equation (Allen et al. 1998): 

1 − 
𝑌

𝑌𝑚𝑎𝑥
= 𝐾𝑦  ∙ (1 − 

𝐻𝑔

𝐻𝑟
) [3.13] 
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where Y is the actual crop yield of the crop (kg ha−1); Ymax is the 

maximum crop yield without water stress (kg ha−1); and Ky is the 

yield response factor. 

The farmer’s benefit, in € ha−1, was calculated according to Eq. 

3.14. The crop production costs are independent of the network’s 

management. Thus, the profit was calculated taking into account 

only water costs, which was calculated from the energy 

consumption per unit of irrigation water supplied, in kWh m−3 

and the energy cost, in € kWh−1. 

𝑃𝑟𝑜𝑓𝑖𝑡 = (𝑌𝑐  ∙  𝑃𝑐) − 𝐶𝑤 [3.14] 

where Yc is the crop yield (kg ha−1); Pc is the market price of the 

agricultural production (€ kg−1); and Cw is the water cost (€ ha−1). 

Alternative management scenarios 

The analysis of alternative emitters can be easily carried out by 

changing the parameters in the emitter equation (Eq. 3.1). The 

influence of the irrigation system in the critical field can be easily 

evaluated using different pressure–flow equation parameters. 

Thus, three alternative emitters according to Eqs. 3.15 (scenario 

a) and 16 (scenario B) were tested. 

𝑞 =  0.73 ∙ ℎ0.47 [3.15] 
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𝑞 =  0.64 ∙ ℎ0.53 [3.16] 

where q is in (L h−1) and h is pressure head in (m). 

3.3. Results and discussion 

The model simulated the behavior of the network during the peak 

month (June). hps,max was set to 55 m and Δh was 2 m. The i 

parameter ranged from 1 to 16. The number of iterations j was 

set to 2,250. 

3.3.1. Water demand and pressure in the pump station 

As the water distribution network is operated on demand, the 

supplied flows are subjected to fluctuations in the number of 

hydrants that are simultaneously open. Thus, flows ranged from 

350 L s−1 (when low simultaneity occurs) to 840 L s−1 when most 

of the hydrants were open. 

The influence of the simultaneity of the demand (set of open 

hydrants) in the pressure at hydrant level was very small. a linear 

relationship between the pressure head (hps,i) and the pressure at 

the critical hydrant (hc) was identified (hc = hps − 13.9; r2 = 1). Due 

to the design criteria of the network (100 % of simultaneity), the 

energy losses are not too high even when all hydrants are open 

because the pipes were sized for the maximum demand. Wider 

ranges of pressure variation at a hydrant can be expected for other 

irrigation networks where some pipes may be undersized. 
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3.3.2. Irrigation uniformity in the critical field 

The irrigation uniformity decreases when the pressure in the 

critical field drops below 35 m. Table 3.1 relates the average of 

the pressures for all the iterations at the critical hydrant (ℎ𝑐̅̅ ̅) and 

the pressure head at the pumping station with the CVe and the 

CUc in the critical field.  

When the pressure in the critical hydrant was above 35 m, the 

pressure regulator was active. Then the maximum value of CUc is 

99.8 %, and when the pressure head at the hydrant is less than 

35 m, the CUc is slightly reduced from 99.8 to 98.0 %. as the 

pressure-compensating range of the emitters is from 10 m to 40 

m, the CUc and yield do not vary significantly in this range. Below 

10 m of pressure, the emitters are outside their pressure-

compensating range and significant reductions in flows are 

expected. 

The spatial distribution of pressures and flows in the critical field 

is shown in Fig. 3.4 for three different pressure heads. When the 

pressure head at the pumping station is 53 m, the pressure in the 

critical hydrant is 39.2 m (Table 3.1) and the pressure regulator 
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Table 3.1. Relations of the pressure head at the pump station, average 
hydrant pressure, irrigation uniformity (σe, CVe, CUc) and crop yield 

in the critical field. 

Pressure 
head (m) 

𝐡𝐜̅̅ ̅ (m) σe 
CVe 
(%) 

CUc 
(%) 

Crop 
Yield 
(%) 

Energy 
consumption 

per unit of 
water 

supplied 
(kWh m-3) 

55 41.3 1.1 0.2 99.8 92.1 0.2 

53 39.2 1.1 0.2 99.8 92.1 0.2 

51 37.3 1.1 0.2 99.8 92.1 0.2 

49 35.3 1.1 0.2 99.8 92.1 0.2 

47 33.3 1.2 0.2 99.8 91.9 0.2 

45 31.3 1.2 0.2 99.8 91.7 0.2 

43 29.3 1.7 0.3 99.7 90.7 0.2 

41 27.3 1.8 0.4 99.7 90.3 0.1 

39 25.3 2.0 0.4 99.7 89.9 0.1 

37 23.2 2.2 0.4 99.7 89.4 0.1 

35 21.3 2.4 0.5 99.7 88.8 0.1 

33 19.3 2.7 0.6 99.6 88.3 0.1 

31 17.3 3.0 0.6 99.5 87.6 0.1 

29 15.3 4.7 1.0 99.2 86.1 0.1 

27 13.3 6.0 1.3 99.0 84.8 0.1 

25 11.3 11.3 2.5 98.0 82.3 0.1 

was active. As a consequence, all the emitters received adequate 

pressure, there are minimum variations in the pressure 

distribution due to the topography of the field, but all emitters 

operate within the pressure compensating range. In relation to 
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the flow distribution, all emitters supply the nominal flow (Fig. 

3.4a). 

 

Fig. 3.4. Spatial distribution of pressure and flow in the critical field 
for a 53 m, b 43 m and c 25 m of pressure head at the pump station. 

In Fig. 3.4b, the spatial pressure distribution for a pressure head 

at the pumping station of 43 m is shown. In this case, the pressure 

head at the critical hydrant was 29.3 m (Table 3.1), so the pressure 

regulator was inactive. However, all emitters operated within the 

auto-compensating range (10 m – 40 m) and the supplied flows 

are similar to those found in Fig. 3.4a (nominal flow). When the 

pressure head drops to 25 m, the pressure at the hydrant is 11.3 
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m and most of the emitters stop working properly, as they operate 

with less than 10 m of head. 

Fig. 3.5 shows the evolution of the coefficient based on emitter 

flow variations at different pressures in the critical hydrant. When 

the pressure is higher than 35 m, the CV remains constant thanks 

to the pressure regulator. When the pressure is less than 35 m, 

the pressure regulator does not work and CVe increases. Since the 

emitters are pressure compensating, the CVe did not change 

much, while pressure was within of the pressure-compensation 

range. Given that the emitters are pressure compensating, large 

changes in CVe are not expected (it changes from 0.2 % to 1.3 %). 

 

Fig. 3.5. Relation between pressure at a hydrant and the irrigation 
system’s CV. 
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3.3.3. Yield in the critical field 

The total number of emitters in the critical field is estimated from 

Eq. 3.7. In this case, the critical field had 20,175 emitters. Due to 

the large number of emitters, the calculation time required for 

the critical field was too high. Thus, the field was skeletonized, 

eliminating two out of three branches, and replaced by equivalent 

consumption points. Therefore, the skeletonized field had 6,725 

emitters. 

The irrigation time required in the peak month (tn) was calculated 

from Eq. 3.2, and it was a constant value of 14.6 h. 

Even when the pressure head at a hydrant is 35 m, the crop yield 

is 92.1 % of the potential yield (Table 3.1). According to the 

manufacturer, the emitter’s nominal flow was 2.2 L h−1 and the 

irrigation events are scheduled according to this value. But in the 

hydraulic simulations, this nominal flow was not reached at any 

time even when the pressure was adequate. Furthermore, the 

emitters were not fully compensating because the pressure 

exponent of the emitter was, of course, not zero. 

When the pressure at a hydrant drops to 11.3 m, the pressure of 

many emitters is lower than the minimum limit of admissible 

pressure and the yield is reduced to 82.3 % of the potential crop 

yield, because the discharge from those emitters is smaller. 



3. Critical Points: Interactions between On-Farm Irrigation 
Systems and Water Distribution Network 

 

 
41 

 

Therefore, the crop receives less water than the calculated 

requirements. The spatial distribution in this case is shown in Fig. 

3.4c. Fig. 3.6 shows the relationship between applied water and 

the theoretical irrigation requirements for each pressure at the 

hydrant level. When the pressure is reduced, the ratio (𝐻𝑔/𝐻𝑟̅̅̅̅ ) is 

reduced too, so less water is available to the crop. 

 

Fig. 3.6. Relationship between (𝐻𝑔/𝐻𝑟̅̅̅̅ ) and pressure at a hydrant. 

3.3.4. Energy use 

The relationship between energy consumption per cubic meter in 

the peak month and the pressure head at the pumping station is 

shown in Table 3.1. The current operation of the pumping 

station is 45 m which provides around 32 m of pressure at the 

critical hydrant. The average unit energy consumption in the 
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current management is 0.15 kWh m−3. In this case, the yield losses 

are a bit more than 8 %. However, if the pressure head was 

reduced to 33 m, the crop yield losses would be slightly smaller 

(12 %), but the unit energy consumption would be 0.1 kWh m−3 

for all the water supplied by the pumping station in June. The 

system can even operate below this pressure. 

The current water consumption in June was 972,486 m3 (data 

provided by the irrigation district’s staff) and, assuming a unit 

energy cost of 0.10 € kWh−1, the energy cost, in the current 

condition, is 14,587 € (assuming similar irrigation scheduling for 

the whole irrigation season). If the system operated under 33 m 

at the pump station, the energy costs would be 10,697 €, which 

represents a savings of 27 % for the irrigation district in the peak 

month. This operation option does not cause significant losses in 

yield in the critical field. This fact means that the yield losses that 

may occur in the critical field are much lower than the increase 

in energy costs needed to provide more pressure at the critical 

hydrant. Finally, if the pressure at the pumping station was 49 m, 

the critical hydrant would receive the adequate pressure (35 m) 

and the energy costs would be 16,532 €. In this case, the 

maximum yield is achieved (92.1 %). 

According to the annual statistics of the agriculture department 

of Andalucía (Spain; Agriculture department of Andalucía 2009), 
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maize had an average yield of 10,348 kg ha−1, with an average 

market price of 0.14 € kg−1. The cost of water for the critical field 

in June is shown in Table 3.2. Thus, profits of the critical field are 

1,035.81 € ha−1, for the current pressure at the pumping station. 

If the pressure head was 49 m, profits in the critical field decrease 

to 1,023.13 € ha−1; that is, the increase in agricultural production 

value is less than the increase in the water cost. On the other 

hand, if the network operated at 33 m at the pumping station, 

profits in the critical field would be 1,080.10 € ha−1, 25.90 € ha−1 

more than the current condition (Table 3.2). 

Table 3.2. Profit of the critical field. 

Pressure head 
(m) 

𝐡𝐜̅̅ ̅ 
(m) 

Yield 
(%) 

Yc 
(kg ha-1) 

Pc 
(€ ha-1) 

Cw 
(€ m3) 

Cw 
(€ ha-1) 

Profit 
(€ ha-1) 

49 35.3 92.1 9.5 0.1 0.017 311.2 1,023.1 

45 31.3 91.7 9.5 0.1 0.015 274.4 1,054.1 

33 19.3 88.3 9.1 0.1 0.011 199.1 1,080.1 

3.3.4. Sensitivity to other emitters 

The effects of different irrigation emitters were tested in the 

model. Thus, two scenarios A and B were analyzed, with flow–

pressure curves shown in Eqs. 3.15 and 3.16, respectively. 

Scenarios A and B 
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The emitters in the scenarios A and B are not pressure 

compensating, so greater changes in flow are expected due to 

variations in pressure. The nominal flow (2.2 L h−1) in the emitter 

is achieved when the pressure at the critical hydrant is 19.3 m and 

33 m, respectively at the pump station. 

The model was run for these two scenarios. The CVe in scenario 

B varied from 8.1 % for the maximum simulated pressure head 

(33 m) to 47.0 % for the minimum pressure head (23 m). For the 

same pressure range, the CVe in scenario B changes from 9.2 % 

to 46.9 % (Table 3.3). The CUc ranged from 93.5 % to 62.5 % in 

scenario A and from 92.7 % to 62.6 % in scenario B. The 

sensitivity to changes in pressure head is higher than for the 

current emitters (Eq. 3.1), so they do not represent the best option 

for the critical field. 

When yields are analyzed, both emitters achieve 100 % when the 

pressure head is 33 m, but it drops rapidly when the pressure is 

reduced (37.2 % and 34.6 %, respectively, when the pressure head 

drops to 23 m; Fig. 3.7). The closer relationship between flow and 

pressure lead to a poorer uniformity, so the higher spatial 

variability in the emitters’ discharge (Fig. 3.8). Also, contrary to 

what happened when the current emitters where modeled, the 

ratio of applied and theoretical irrigation depths is very sensitive 

to pressure changes (Fig. 3.9).  
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Fig. 3.7. Relationship between crop yield in the critical field and 
pressure head (m). 

 

Fig. 3.8. Spatial flow distribution in the critical field of the non-
compensating emitters in the critical field for scenarios A and B for 33 

(a), 27 (b) and 21 (c) m, respectively, of pressure head at the pump 
station. 
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Fig. 3.9. Relationship between (𝐻𝑔/𝐻𝑟̅̅̅̅ ) and hydrant pressure for 
scenarios A and B. 

3.4. Conclusions 

In this work, a new methodology to simulate the interactions 

between on-demand water distribution systems and irrigation 

performance in critical points was developed and applied in the 

BMD irrigation district. On-demand irrigation implies a 

significant expenditure in energy which is even higher when some 

critical points are responsible for a large percentage of the total 

pressure head. Thus, effective management of the critical points 

is necessary to enhance the overall efficiency of the irrigation 

infrastructure with minimal costs. However, detailed analysis at 

the water distribution and on-farm irrigation systems levels is 

needed before the adoption of improvement measures. 

91011121314151617181920
0.4

0.5

0.6

0.7

0.8

0.9

1

Hydrant pressure (m)

H
g/H

r

 

 

Scenario A

Scenario B



Optimum management of pressurized irrigation networks at 
different scales using Artificial Intelligent techniques 

 

 
48 

 

In this particular case, the results showed that the additional cost 

required for giving maximum pressure in the critical point does 

not offset the increase in yield. Here, an increment from 91.7 % 

to 92.1 % in yield in the critical field would represent increments 

in energy consumption from 0.15 kWh m−3 to 0.17 kWh m−3 and 

an increment of 8.5 % in the energy consumption in the peak 

demand month. This network management implies an increase 

in the cost of water in the critical field of 36.9 € ha−1 and a 

reduction in profits of 31.0 € ha−1. 

On the other hand, the unit energy cost could be reduced by up 

to 0.11 kWh m−3, without causing significant reductions in yield, 

by setting the pressure head to 33 m. Under these conditions, the 

profit in the critical field would be 1,080 € ha−1 or 26 € ha−1 more 

than the current condition. an appropriate selection of emitters 

in the critical fields is essential to ensure optimal performance of 

the irrigation system. 
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4. Modelling Impacts of Precision Irrigation on 
Crop Yield and in-field Water Management 

This chapter has been published entirely in the journal “Precision 
Agriculture”, González Perea R, Daccache A, Rodríguez Díaz JA, Camacho 

Poyato E, Knox JW (2014) 

 

Abstract. Precision irrigation technologies are being widely 

promoted to resolve challenges regarding improving crop 

productivity under conditions of increasing water scarcity. In this 

paper, we describe the development of an integrated modelling 

approach involving the coupling of a water application model 

with a biophysical crop simulation model (Aquacrop) to evaluate 

the in-field impacts of precision irrigation on crop yield and soil 

water management. The approach allows for a comparison 

between conventional irrigation management practices against a 

range of alternate so-called ‘precision irrigation’ strategies 

(including variable rate irrigation, VRI). It also provides a valuable 

framework to evaluate the agronomic (yield), water resource 

(irrigation use and water efficiency), energy (consumption, costs, 

footprint) and environmental (nitrate leaching, drainage) impacts 

under contrasting irrigation management scenarios. The 

approach offers scope for including feedback loops to help define 
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appropriate irrigation management zones and refine application 

depths accordingly for scheduling irrigation. The methodology 

was applied to a case study in eastern England to demonstrate the 

utility of the framework and the impacts of precision irrigation in 

a humid climate on a high-value field crop (onions). For the case 

study, the simulations showed how VRI is a potentially useful 

approach for irrigation management even in a humid 

environment to save water and reduce deep percolation losses 

(drainage). It also helped to increase crop yield due to improved 

control of soil water in the root zone, especially during a dry 

season. 

Keywords. AquaCrop, variable rate irrigation, onion, sprinklers, 

water resources 

4.1. Introduction 

In order to meet future food demands from a rising global 

population whilst minimizing any environmental impact, a 

commensurate increase in agricultural productivity (yield) 

coupled with improvements in water and nutrient efficiency will 

be necessary (Monaghan et al. 2013; Kumar et al. 2016). In this 

context, irrigated agriculture will play a critical role supporting 

increased production in arid and semi-arid regions, and 

enhancing crop quality through supplemental irrigation in 

temperate or humid regions (Daccache et al. 2014b; De Paz et al. 
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2015). However, freshwater availability and abstraction to 

support an expanding agricultural sector will need to be balanced 

against competing demands for domestic (household) water 

supply, water for industrial processing and to support 

environmental flows and protect ecosystems. A changing climate 

with greater rainfall uncertainty will exacerbate the situation and 

create severe challenges in managing and allocating freshwater 

supplies (Falloon and Betts 2010). The reliability of water 

resources is also a limiting factor for economic development in 

many water-stressed countries (Daccache et al. 2014a). With 

agriculture accounting for nearly three quarters (70 %) of all 

freshwater withdrawals and over 90 % of total consumptive water 

use (Siebert et al. 2010) this will inevitably lead to ‘irrigation 

hotspots’ where agricultural water demand exceeds available 

supplies (Knox et al. 2012). Taking into account current pressures 

on water resources and projected future increases in irrigated 

area, the agricultural sector needs to do more with less, increasing 

water productivity (t ha-1) by improving water efficiency and 

producing more ‘crop per drop’ (Monaghan et al. 2013). 

Various researchers (Fereres et al. 2011; González Perea et al. 

2016) have developed decision support tools to help increase crop 

productivity and improve irrigation use efficiency. This 

intensification of agriculture will require growers to become more 

specialized and for many, investment in irrigation will likely be 
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justified on the basis of helping to increase productivity and 

profitability. Due to increasing demand from consumers for high 

quality fruit and vegetable products coupled to rising production 

(input) costs, farming businesses are starting to critically evaluate 

the impacts of irrigation non-uniformity on resource use, 

production and crop returns. In response, the research 

community have developed various definitions for ‘precision 

irrigation’ (PI). For example, Smith and Baillie (2009) defined PI 

to include the accurate and precise application of water to meet 

specific requirements of individual plants or management units 

to minimize adverse environmental impact or the application of 

water to a given site and timing to support optimum crop 

production, profitability or some other management objective. In 

this study, that definition by Smith and Baillie (2009) was 

similarly adopted with the PI concept representing a more holistic 

and adaptive approach to precision irrigation water management, 

rather than relating to only one method of application. Their 

definition also attempts to integrate the various factors 

influencing crop, soil and water management more closely with 

those that impact on irrigation engineering and hydraulic 

performance. 

From a precision agriculture perspective, a number of questions 

emerge regarding how PI might be modelled and integrated with 

biophysical crop simulation to evaluate options to save water, 



4. Modelling Impacts of Precision Irrigation on Crop 
Yield and in-field Water Management 

 

 
57 

 

improve yield and support sustainable intensification. Reducing 

both energy use and the environmental impacts of irrigation 

abstraction, particularly in river basins or regions where irrigation 

demand is concentrated and/or where water resources are scarce, 

are also important drivers for change. For farming businesses 

involved in high-value crop production, where quality assurance 

is a major determinant of profitability, PI also offers potential to 

reduce crop variability and improve post-harvest quality. 

However, a number of fundamental questions remain. These 

include the importance of PI definition within a modelling 

framework, how PI relates to modelling approaches used to assess 

precision agriculture, and whether irrigation water distribution 

can be modelled at a field scale that is then geospatially 

compatible with biophysical crop modelling approaches. 

In most studies, the spatial and temporal effects of irrigation 

heterogeneity on crop production are nearly always lumped 

together with management variables along with tillage, fertiliser 

management, seed rates and crop rotation. This is probably due 

to the spatial and temporal complexity that exists with irrigation, 

inherent spatial variability in soils and the lack of models capable 

of simulating the spatial distribution of irrigation without 

extensive model calibration. Thus, it is difficult to determine the 

in-field effects of irrigation management strategies including 

adoption of PI technologies on crop yield and other soil 
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management practices. In contrast, the use of crop simulation 

models in crop production, irrigation management, and climate 

change impacts has proven to be invaluable in improving our 

knowledge of the functioning of agricultural systems (Fraisse et al. 

2006; Thorp et al. 2008; Casadesús et al. 2012). In this context, 

the Food and Agriculture Organization (FAO) has developed 

AquaCrop (Steduto et al. 2012), a crop water productivity model 

focused on simulating water-limited attainable crop yield. 

Depending on the objective and spatial and temporal scale of 

analysis, AquaCrop may be applied in different ways. Most studies 

to date have focused on its application at the operational and 

tactical scales, running the AquaCrop model at field scale, 

facilitated by its user-friendly interface (Raes et al. 2009), albeit 

designed for single runs. For applications at a more strategic level, 

the AquaCrop model can be applied over larger areas or for 

longer time periods, requiring a much larger number of model 

runs, a feature that is not possible with the standard AquaCrop 

version. However, the development of an AquaCrop plug-in 

program (FAO 2012) has facilitated the option of multiple 

simulations, by running a pre-defined list of projects in the 

standard user interface of the AquaCrop program. 

Nevertheless, there is still the need to manually create project 

input files, requiring lengthy times to scale up AquaCrop 

applications from a few simulations to multiple runs. Thus, to 
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eliminate the time-consuming task of manually generating 

AquaCrop input and project files for multi-run simulation and to 

adapt it to be compatible with a GIS platform, Lorite et al. (2013) 

developed two independent tools (AquaData and AquaGIS). 

AquaData has been imbedded into AquaGIS generating a single 

package to facilitate file input to data visualization from the 

AquaCrop simulation. However, there is still a need to combine 

this improved functionality with an irrigation simulation model 

to take into account different irrigation strategies such as variable 

rate irrigation (VRI). 

In this paper, a novel integrated modelling approach has been 

developed to assess in-field impacts of irrigation heterogeneity on 

crop yield and soil water management practices providing an 

innovate framework for evaluating wider agronomic and energy 

impacts. The study specifically considers how application non-

uniformity typically observed under conventional overhead 

irrigation systems compares against so-called precision irrigation 

(PI) management, and from this, the consequent impacts on crop 

yield. The approach has been developed and applied to a case 

study field site in Eastern England representing an intensively 

managed farm production system involved in growing high value 

field scale vegetables for the premium retail (supermarket) sector. 

The research informs discussions regarding the justification of PI 

implementation in temperate environments where irrigation is 
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supplemental to rainfall. However, the approach developed is 

equally applicable to cropping systems in more arid or semi-arid 

agroclimatic environments. 

4.2. Methodology 

Various authors have recently investigated the potential for PI in 

outdoor agriculture based on field experimentation (García 

Morillo et al. 2015; Haghverdi et al. 2016; Mitchell et al. 2016). 

Here we develop an integrated modelling approach involving the 

coupling of a deterministic water/irrigation application model 

(WAM) with a biophysical crop model (AquaCrop) (Steduto et al. 

2012) to simulate the impacts of irrigation heterogeneity caused, 

for example, due to wind drift, irrigation system pressure 

variation and/or sprinkler overlapping on crop growth and yield 

at the field scale. This allows for comparison between 

conventional irrigation versus alternative PI management 

strategies, and provides an innovative framework for evaluating 

wider agronomic, water resource (irrigation use and water 

efficiency), energy (consumption, cost, footprint) and 

environmental (nitrate leaching, drainage) impacts under 

different management scenarios. It also provides the potential for 

including feedback loops to help define irrigation management 

zones (IMZ) corresponding to areas within a single field which 

could be delimited for variable water and nutrient and water 
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management strategies. The approach was developed to evaluate 

overhead irrigation under a mobile hose-reel fitted with a boom, 

a system which is widely used in NW Europe and other humid 

climates where irrigation is supplemental to summer rainfall, on 

potatoes and field vegetables. They are the preferred method for 

irrigation on many high-value crops where high water uniformity 

is an essential component of production used to minimise 

variability in crop development (product size, shape, weight, 

appearance). 

The modelling framework consisted of two components, a 

‘water/irrigation application’ and a ‘biophysical crop simulation’ 

module. Water application module refers to the combined 

engineering, hydraulic and management components that are 

necessary to apply water via an overhead irrigation system. This 

component is dealt with by an irrigation simulation model; the 

biophysical crop simulation, development and yield aspects 

including soil water simulation is undertaken within the 

AquaCrop plug-in program. A brief description of the two 

modelling components, their integration and application are 

outlined below. 

4.2.1. Water application model 

This component was developed in Microsoft VB.Net and was also 

designed as a MapWindow plug-in (Ames 2007) to incorporate 
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spatial variability and mapping functionality. MapWindow is an 

open-source GIS software product originally developed at Utah 

State University. The model was designed to simulate dynamically 

and in real-time the water application of a hose- reel fitted with 

boom or linear move irrigation system. The model simulates the 

irrigation boom operating under variable conditions of pressure, 

wind speed and wind direction. The model can also be used to 

evaluate boom design (sprinkler spacing, sprinkler height above 

crop, pipe sizing) to achieve better irrigation uniformity or by 

irrigators to assess the implications of changing sprinkler type, the 

wind-in or pulling speed of the hose-reel or pumping pressure on 

system performance in terms of uniformity and volume of water 

applied. The boom model can also be used to assess system 

performance when operated either conventionally (uniform rate 

of irrigation, URI) or in a precision irrigation mode (variable rate 

irrigation, VRI). The latter can either be obtained by changing the 

wind-in speed of the hose-reel or by individually controlling each 

sprinkler (on/off) on the boom to provide differential wetting 

patterns. A flowchart summarizing the main components of the 

boom model is given in Fig. 4.1. 
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4.2.2. AquaCrop yield model and plug-in program  

The AquaCrop model simulates potential yields for herbaceous 

crops as a function of water consumption under different rainfed 

and irrigated regimes (Steduto et al. 2012). It directly links crop 

yield to water use and estimates biomass production from actual 

crop transpiration through a normalized water productivity 

parameter, which is the core of the AquaCrop growth engine. A 

detailed description of the AquaCrop model is reported in 

Steduto et al. (2012). The AquaCrop input files contain the 

growth development characteristics of the crop, and the local 

environment (climate, management practices, soil characteristics) 

in which the crop is cultivated. The input files are grouped into a 

‘project’ with each project containing up to 11 input files. Input 

files can be created or modified using the user interface in 

AquaCrop (Raes et al. 2009). However, when multi-model 

simulations are planned, the generation of a large number of 

individual input files is a time-consuming and onerous task. The 

simulation results are recorded in output (text) files and can be 

aggregated into 10-day, monthly or annual summary data. The 

output consists of five files containing data regarding crop growth 

and production, the soil water balance, soil water content at 

different depths, and net irrigation requirements. 
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For a large number of model runs, the FAO has developed the 

AquaCrop plug-in program, which can perform identical 

calculation procedures to that in the AquaCrop standard 

program (Raes et al. 2012) but with the advantage that it facilitates 

inclusion of the AquaCrop modelling routines within external 

applications. However, due to an absence of a user interface, only 

simulation runs (single or multiple) previously defined within the 

AquaCrop model can be used in the plug-in program (Raes et al. 

2012). The plug-in program runs the successive projects in batch 

mode with the intermediate (daily, 10-daily or monthly) and final 

(seasonal) simulation results of each project then being saved in 

an output file. This contains information on the simulation, 

including climatic and soil water balance parameters, stresses, 

biomass production, crop yield and water productivity (Raes et al. 

2012). Further post processing is then required to analyse the 

individual output files for each simulation. 

4.2.3. Model integration 

The model developed in this study was implemented in Matlab 

(Pratap 2010) to facilitate its inclusion with other computation 

engines such as an optimization process using multi-objective 

genetic algorithms. The model consisted of three modules (i) 

setting (ii) computing and (iii) map building. Fig. 4.2 shows a 
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flowchart summarising the decision rules embedded within the 

model. 

The ‘setting’ module is responsible for loading or creating the files 

necessary for the correct operation of the boom irrigation model. 

This module consists of two sub-modules termed ‘project’ and 

‘field’. Project is responsible for loading or creating the AquaCrop 

files needed to run the AquaCrop plugin. This sub-module 

provides the option of both loading an AquaCrop project (*.PRO 

extension) previously created or building a new AquaCrop project 

within the Matlab environment. The AquaCrop plugin also 

requires a climate file (*.CLI) consisting of temperature (*.TMP), 

reference evapotranspiration (*.ETO), rainfall (*.PLU) and 

atmospheric CO2 (*.CO2) files. Finally, a crop (*.CRO) file is 

required by AquaCrop. In addition, there are four optional files: 

management conditions (*.MAN), groundwater (*.GWT), initial 

conditions (*.SW0) and off-season conditions (*.OFF). The user 

has the option to create or modify each of these files or choose 

default options within the AquaCrop model (Table 4.1). The 

model also requires information relating to irrigation method, 

the irrigation schedule, soil depth and electrical conductivity of 

the soil. Finally, the user defines the crop cycle period (in growing 

degree days (GDD) or calendar day) and the cropping and 

simulation period. The AquaCrop project, irrigation and soil file 

are then automatically saved. 
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Boom2Aqua
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No

Insert the cycle period (in Growing Degree 
Day (GDD) or calendar day), cropping and 

simulation period.

The name of irrigation, soil and project files 
are saved by default.
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provided by  BoomSim 

Choice of the Irrigation 
Management Zone Map 
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provided by 
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Management 
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(IMZ)

Construction 
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input file 
(*.SOL)

Construction 
of the 

Irrigation 
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(*.IRR)

AquaCrop (plug-in)
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Building each Output Map
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Getting each output variable 
by categories

(Yield, Runoff, Infiltration,...)

 

Fig. 4.2. Flowchart showing the decision rules for the boom irrigation 
simulation model. 
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Table 4.1. Default options of the management conditions, 
groundwater, initial conditions and off- season condition files. 

File Extension Default options 

Management 
conditions 

*.MAN In the absence of a field management file, no 
specific field management conditions are 
considered. It is assumed that soil fertility is 
unlimited, and that field surface practices do not 
affect soil evaporation or surface run-off. 

Groundwater *.GWT In the absence of a groundwater file, no shallow 
groundwater table is assumed when running a 
simulation. 

Initial 
conditions 

*.SW0 In the absence of a file with initial conditions, it 
is assumed that in the soil profile the soil water 
content is at field capacity and salts are absent at 
the start of the simulation. 

Off-Season 
conditions 

*.OFF In the absence of a file with off-season, no 
mulches and irrigation events are considered 
before and after growing cycle. 

The second sub-module within the ‘setting’ module is ’Field’. In 

this sub-module, the user is required to provide maps of water 

uniformity generated by the WAM and the irrigation 

management zone map (IMZ map). The water uniformity map 

determines the irrigation depths applied in each zone and the 

IMZ map provides information on soil type variability. Thus, it is 

possible to assess the impact of water distribution patterns for a 

crop grown in multiple fields across a farm. 

The computing module updates the irrigation and soil files with 

values provided by the water uniformity and IMZ maps, 

respectively. The AquaCrop plugin program is then launched and 
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output text files generated (*.OUT). The computing module is 

run for every pixel, with the pixel grid size determined by the 

resolution of the water uniformity and IMZ maps. With each 

iteration (each grid pixel), the output variables are read and stored 

by the software and then used to generate the output maps by the 

Map Building module. Once all the AquaCrop simulations (using 

the plugin program) have been completed, the Map Building 

module builds each output map. Output maps are saved as *.asc 

files ready for import and mapping in GIS software. The model 

provides nine output maps relating to: relative biomass (%), 

drainage (mm), harvest index (%), infiltration (mm), runoff (mm), 

transpiration (mm), relative transpiration (%), water productivity 

(kg m-3) and yield (t ha-1). 

4.2.4. Case study model application 

To demonstrate the application of the integrated WAM and 

AquaCrop modelling framework, a case study to assess the 

impacts of VRI on crop productivity was carried out for a field 

site in eastern England. Onion was chosen as the representative 

crop since it is considered to be one of the most important high 

value field vegetables grown in the UK, with c300,900 tonnes 

produced from 8,448 ha (DEFRA 2010). It is also highly sensitive 

to drought stress with irrigation needed to assure both crop yield 

and quality (Pérez-Ortolá et al. 2014). To calibrate the AquaCrop 
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model, the crop file (*.CRO) was parameterised using data from 

Pérez-Ortolá et al. (2014). A typical ‘dry’ (2010) and ‘wet’ (2011) 

year was chosen to assess the impacts of rainfall variability and 

VRI on crop yield. The annual reference evapotranspiration 

(ETo) and rainfall were 724 mm and 346 mm for the dry year, 

and 655 mm and 475 mm for the wet year, respectively. In eastern 

England, the onion crop is typically grown on light, low moisture 

retentive sandy loam soils. Most UK vegetable growers use hose-

reel irrigation systems fitted with booms. In this study, the boom 

system had the following design configuration: 7 sprinklers with 

a sprinkler spacing (2.35 m), individual sprinkler height above the 

ground (1.35 m), hose-reel length (300 m), pipe diameter (110 

mm), mini boom width (16.5 m) and a hose-reel wind-in speed 

which is a function of the scheduled irrigation depth. It should 

be noted that a boom with 7 sprinklers is not typical for field scale 

irrigation but rather a mini boom used in this study for irrigation 

evaluation and model development. However, the boom 

parameters were chosen to reflect typical operating settings found 

in field scale onion cropping in the UK (Perez Ortola 2013). 

With the objective of assessing how an intelligent precision 

irrigation management system could improve water efficiency and 

productivity (yield), several scenarios were defined and simulated 

(Table 4.2). The first was an uniform scenario where the entire 

farm had a sandy loam texture (Fig. 4.3a). Under this scenario, a 
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uniform rate of irrigation (URI) was defined and scheduled, as 

might typically be practiced under conventional farming practice.  

Table 4.2. Summary characteristics for each precision irrigation 
scenario. 

Scenario Soil type 
 (% field area) 

Irrigation scheduling 
approach 

Proportion of 
scheduled irrigation 

applied (%) 

1 
Sandy loam 

(100%) 
URI 100% 

2 
Sandy loam 

(65%) and clay 
loam (35%) 

URI 100% 

3 
Sandy loam 

(65%) and clay 
loam (35%) 

VRI- varying the wind 
in speed of the 

hosereel 

Sandy loam (100%) 
and clay loam (40%) 

4 
Sandy loam 

(65%) and clay 
loam (35%) 

VRI- individual 
control on each 

sprinkler 

Sandy loam (100%) 
and clay loam (40%) 

Notes: URI, uniform rate irrigation; VRI, variable rate irrigation 

 

Fig. 4.3. Irrigation management zone (IMZ) maps for a conceptualised 
uniform farm (a) and a typical farm (b). 

According to results from a farm business survey by Perez Ortola 

(2013), farmers typically irrigate at a soil water deficit (SWD) of 

(a) (b) 
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23 mm back to field capacity during canopy development and 

then allow a slightly larger SWD (29 mm) to accrue during bulb 

formation. This irrigation schedule was used in Scenario 1 and 

the resulting water uniformity map is shown in Fig. 4.4a.  

Fig. 4.4. Example water uniformity maps provided by the boom 
irrigation simulation model for URI (a) and VRI (b) and an average 
irrigation depth of 23 mm and a working pressure of 25 m (2.5 bar). 

Under the second scenario, a typical farm was assumed where the 

predominant soil was a sandy loam but there were also some zones 

or areas with clay loam (Fig. 4.3b). This Scenario 2 reflected the 

situation observed in the case study region. The same irrigation 

schedule as used in Scenario 1 was used. In Scenarios 3 and 4, a 

precision irrigation management approach assuming VRI was 

defined. The VRI was achieved in Scenario 3 and 4 by changing 

the wind-in speed of the hose-reel and controlling each individual 

sprinkler on the boom, respectively. 

The sprinklers used in the study were pressure compensating 

Nelson 3000 Rotator series which are widely used on both centre 

pivots and hose-reel boom systems in the UK and internationally. 

(a) (b) 
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For both scenarios, the boom was programmed to apply the full 

(100 %) irrigation need (23 mm and 29 mm) in the IMZs where 

there was sandy loam present and only 40 % of the scheduled 

irrigation in zones where clay loam was present; this was because 

a clay loam soil is typically able to store 60 % more water than a 

sandy loam soil. The derived water uniformity maps for each of 

these scenarios are shown in Fig. 4.4b. Pressure changes in the 

hose-reel can also have an effect on the depth of irrigation applied 

since the operating pressure will influence the droplet size, flow 

rate and hence discharge and wetted distribution pattern. In 

order to incorporate these pressure effects, the four scenarios were 

also modelled under three contrasting operating pressure 

conditions: ideal or perfect conditions (PC, 25 m [0.25 MPa]), 

high pressure (HP, 40 m [0.40 MPa]) and low pressure (LP, 10m 

[0.10 MPa]). These pressures were derived from previous 

experimental research by Knox et al. (2014) where the mini boom 

and sprinklers were evaluated to assess variations in sprinkler 

discharge, wetted areas and uniformity under ‘no wind’ and 

‘windy’ operating conditions, across a range (15 to 40 m) of 

pressure conditions. A grid pixel resolution of 3 m was used for 

all scenario simulations. 
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4.3. Results and Discussion 

4.3.1. Irrigation Management Scenarios 

Onion yield, infiltration and drainage of irrigation water under 

the four scenarios described above and for two contrasting 

agroclimatic cropping seasons (2010 and 2011) were assessed. Box 

and whisker plots for each are shown in Fig. 4.5, Fig. 4.6 and Fig. 

4.7. Each scenario is also evaluated under the three different 

working pressures (PC, LP and HP). It is also important to put 

modelled yields in context with typical farm yields. Pérez Ortolá 

and Knox (2014) reported that a yield of c10 t ha-1 dry matter 

(DM) corresponds to a green yield of c70 t ha-1. In an average year, 

farmers in East Anglia typically achieve green yields of 50-60 t ha-

1 (7 to 8.5 t ha-1 DM) but these can rise in dry years due to higher 

temperatures and increased radiation to 60 to 70 t ha-1 (8.5 to 10 

t ha-1 DM). As expected these reported farm yields are lower than 

modelled yields due to various agronomic (pests/disease), water 

and nutrient (fertiliser) management factors. 

Scenario 1: This scenario reflected uniform conditions on the farm 

in terms of soil texture and in-field variability. Thus, a URI was 

applied based on the irrigation schedule derived from the farmer 

survey (Perez Ortola 2013). The average onion yields in the wet 

season were 11.05, 11.07 and 11.03 t DM ha-1 for the three 
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working pressures, respectively, and 12.13, 12.14 and 12.13 t DM 

ha-1 for the dry season (Fig. 4.5).  

 
Fig. 4.5. Simulated onion yield (t ha-1) under each scenario and for the 

two contrasting agroclimate seasons (wet and dry year). 

In wet years, as expected, rainfall reduces the scheduled number 

of irrigation events, but increases the variability in soil moisture. 

In other words, the farmer has less control over one of the key 

variables that determines crop yield. In addition to rainfall, 

potential yield is also a function of other agoclimate conditions 

during the growing season, notably solar radiation and 

temperature. Indeed, inspection of the daily climate data and 

modelled output from the AquaCrop model confirmed that yield 

differences were also influenced by these parameters reducing the 

rate of crop development and growth. Excess water in the rooting 
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zone during wet years also delayed the timing and number of 

irrigation events and led to higher rates of deep percolation 

(drainage) which also contributed to increased nutrient (fertiliser) 

leaching. Thus, during a wet year, yield was reduced and 

variability increased even when the irrigation schedule and soil 

variability was optimal. 

Scenario 2: This scenario reflected the management of a typical 

onion crop on a farm in the study area, with an irrigation 

schedule defined for a sandy loam soil. However, on most farms 

the soil is not uniform but includes parts of fields with different 

textural characteristics. This creates challenges in defining 

irrigation schedules for the driest part of a field whilst trying to 

limit any drainage losses. This scenario was therefore focused on 

the importance of managing different soil types to reduce both 

yield variability and the volume of water applied; the objective was 

thus to reduce drainage losses and increase the effective use of 

rainfall in the higher water holding capacity soils. For the three 

operating pressures (PC, HP and LP), the infiltration amounts in 

this scenario are the highest (Fig. 4.6) with most of the infiltrated 

water being lost as drainage (Fig. 4.7). 
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Fig. 4.6. Simulated infiltration from irrigation (mm) under the four 
scenarios for two contrasting agroclimatic seasons (wet and dry year). 

 
Fig. 4.7. Simulated drainage of irrigation water (mm) under each 
scenario for the two contrasting agroclimate seasons (wet and dry 

year). 

The operating pressure affects both the volume of water 

discharged by the sprinkler as well as the droplet size distribution 
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pattern. Thus, larger water droplets created by a lower operating 

pressure would affect the sprinkler water distribution pattern and 

potentially damage the crop canopy and soil structure. Excess 

(high) operating pressure can be controlled through the use of 

pressure regulators fitted onto each sprinkler. However, if 

pressure regulators cannot be used then high pressure leads to a 

larger volume of water being concentrated around the sprinkler; 

this in turn leads to greater atomisation of small droplets which 

are more sensitive to wind drift. Hence any change in the 

operating (pumping) pressure of the system would affect not only 

the uniformity of the overlapping patterns but also the amount of 

water applied (scheduled depth) to the crop. For this reason, 

under Scenario 2, the infiltration and drainage is highest when 

the working pressure is high and lowest when working pressure is 

low (Fig. 4.6 and Fig. 4.7). A considerably lower onion yield 

compared to Scenario 1 is shown in Fig. 4.5. The average onion 

yield in the wet season was 7.86, 5.99 and 8.44 t DM ha-1 and 

10.89, 8.41 and 11.65 t DM ha-1 for the dry season, for the three 

working pressures (PC, LP and HP), respectively. Thus, under 

Scenario 2, the yield was -28.9 %, -45.9 % and -23.5 % compared 

to Scenario 1, for the three working pressures in a wet season. In 

contrast, yield during a dry season was -10.2 %, -30.7 % and -4.0 

% compared to Scenario 1. In wet years, rainfall reduces the 

scheduled number of irrigation events and buffers the irrigation 
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schedule for soils that are different to the scheduled sandy loam. 

Although the average yield is higher in a dry year compared to the 

wet year there is also much greater yield variability; this is largely 

due to the inappropriate irrigation schedule for field areas (35 %) 

that were assumed to be a clay loam in contrast to the 65 % area 

that was scheduled assuming a sandy loam soil. Under this 

scenario, yield variability is much higher compared to Scenario 1; 

in practice, this yield variability would also likely lead to greater 

variations in crop quality, which is an important determinant of 

crop price received by a farmer for quality assurance (Rey et al. 

2016) particularly in high value crops such as onions and 

potatoes. 

Scenarios 3 and 4: Under Scenario 3 and 4, the impacts of variable 

rate irrigation (VRI) implementation are modelled to take into 

account the spatial variability in soil type across the farm. This 

approach results in lower application depths being scheduled and 

applied in areas of the field where the soil has a higher available 

water holding capacity. The irrigation depth is thus lower to avoid 

runoff and drainage and increase efficiency of water use. In this 

study, the irrigation model was used to simulate VRI in two 

different ways. Firstly, VRI was achieved changing the wind-in 

speed of the hose-reel which varies the depth along the travel lane 

(Scenario 3) and secondly, by controlling each individual 

sprinkler along on the boom which varies the application depth 
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across the transect (Scenario 4). Since irrigation uniformity is 

achieved by overlapping the wetted patterns from adjacent 

sprinklers, the variable application with a boom system is 

constrained to a minimum spatial scale by the throw of the 

individual sprinklers. Under Scenario 4, the hose reel requires a 

controller to maintain a constant pull-in speed independently of 

the variable flow. Under current design, a minimum constant 

flow is needed to drive the hose-reel turbine needed to pull in the 

boom. 

Infiltration was reduced in both scenarios relative to Scenario 2 

(typical irrigation management) but drainage was also reduced 

(Fig. 4.6 and Fig. 4.7). Thus, the onion crop had a higher available 

water content in the root zone which contributed to the increase 

in final yield (Fig. 4.5). 

The average onion yields in the wet season under Scenario 3 were 

11.03, 8.80 and 11.03 t DM ha-1 for the three working pressures, 

and 12.07, 11.01 and 12.04 t DM ha-1 for the dry season, 

respectively (Fig. 4.5). These values are very close to those for 

Scenario 1 (uniform management) although the variability was 

markedly increased. A reduction in crop quality and hence price 

in the final product results when the yield variability increases. 

The average onion yield in the wet season under Scenario 4 was 

marginally higher than under Scenario 3, corresponding to 11.03, 
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9.84 and 11.03 t DM ha-1 for the three working pressures (wet 

season) and 12.07, 11.80 and 12.04 t DM ha-1 (dry season), 

respectively (Fig. 4.5). As in Scenario 1, during the dry season, 

Scenarios 3 and 4 achieved better yields than the wet season. 

When irrigation scheduling is close to optimal, the dry seasons 

achieved a higher onion yield due to improved control over the 

water content in the root zone. The results under these two 

scenarios show that onion yield values were similar but the 

variabilities in yield as well as infiltration and drainage were 

slightly higher under Scenario 3. Therefore, the most suitable way 

to implement VRI appears to be through individual control on 

each sprinkler along the boom, but this introduces a set of new 

hydraulic challenges. Not only it is more expensive because it is 

necessary to use individual remote control solenoid valves on each 

sprinkler, but the independent switching on/off sprinklers 

introduces a confounding problem with uniformity – sprinklers 

on a boom are designed to be operated simultaneously in order 

to generate the required overlapped pattern to maximise 

uniformity; however, by switching individual sprinklers on/off, 

the overlapping pattern is disturbed with consequent impacts on 

uniformity. 
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4.3.2. Methodological limitations 

The approach developed has a number of methodological 

limitations which need to be recognised. These challenges include 

issues such as the availability of relevant geodata, developing a 

graphical user interface (GUI), facilitating its use for farmers and 

integrating these approaches with current modelling 

developments in precision agriculture and decision support 

systems. There is also a need to simulate each scenario under 

windy conditions. For all scenarios modelled here, there were ‘no-

wind’ conditions, and hence no distortions in wetted pattern due 

to wind drift. For end users, there is also a need for careful 

documentation of modelling approaches and particularly how 

datasets are pre-processed prior to model input, and then how 

derived datasets are passed between individual models. Great care 

has to be taken when linking models, as errors in one are often 

propagated and may become exacerbated or attenuated through 

model integration. There is hence a risk of introducing additional 

modelling uncertainty, particularly where datasets of different 

provenance, scale and integrity are integrated. An uncertainty 

matrix could be used to identify sources of uncertainty both 

within the irrigation ballistics and crop modelling components, 

and then used to inform the interpretation of the crop modelling 

outputs. 
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4.4. Conclusions 

The integrated modelling approach developed allows assessment 

of the spatial and temporal impacts of irrigation heterogeneity 

under conventional and precision irrigation management 

strategies on crop yield and soil water management at field scale. 

The development of this model for the automated multi-model 

operation of AquaCrop significantly improves its utility to 

simulate yield for numerous locations and conditions or for other 

applications that require this tool to be embedded into other 

computation engines. The case study results showed that VRI has 

potential to be a useful way in achieving water savings at the farm-

scale due to reductions in infiltration and drainage. As a 

consequence, the final yield increased in the variable field because 

of higher water content in the root zone. Conversely, the results 

showed that the use of VRI in a dry season could improve crop 

yield due to improved control of water content in the root zone. 

Finally, the results also showed that the best way to apply VRI is 

by individually controlling each sprinkler on the boom although 

it is also more expensive due to the need for individually actuated 

(solenoid valves) on each sprinkler. It should be recognised that 

implementation of PI technologies and management approaches 

needs to be site and crop specific. PI approaches cannot be 

generalised across different farming systems and crop mixes, 
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highlighting the need for an integrated tool to assess potential 

benefits and trade-offs. 

The approach described here provides a basis for evaluating the 

agronomic and economic impacts of PI implementation in other 

cop sectors to understand the impacts of irrigation heterogeneity 

on yield, but also more importantly on crop quality, and to 

identify strategies that can be used to reduce ‘non-beneficial’ 

water losses, to improve water and energy efficiency, and to 

reduce the environmental impacts associated with supplemental 

irrigation. Integrating biophysical and engineering models to 

advance our knowledge of these interactions will go some way to 

addressing these knowledge gaps. 
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5. Optimization of Irrigation Scheduling 
Using Soil Water Balance and 

Genetic Algorithms 

This chapter has been published entirely in the journal “Water 
Resources Management”, González Perea R, Camacho 

Poyato E, Montesinos P, Rodríguez Díaz JA (2016) 

 

Abstract. In arid and semi-arid countries, the use of irrigation is 

essential to ensure agricultural production. Irrigation water use is 

expected to increase in the near future due to several factors such 

as the growing demand of food and biofuel under a probable 

climate change scenario. For this reason, the improvement of 

irrigation water use efficiency has been one of the main drivers of 

the upgrading process of irrigation systems in countries like 

Spain, where irrigation water use is around 70 % of its total water 

use. Pressurized networks have replaced the obsolete open-

channel distribution systems and on farm irrigation systems have 

been also upgraded incorporating more efficient water emitters 

like drippers or sprinklers. Although pressurized networks have 

significant energy requirements, increasing operational costs. In 

these circumstances farmers may be unable to afford such expense 

if their production is devoted to low value crops. Thus, in this 
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work, a new approach of sustainable management of pressurized 

irrigation networks has been developed using multiobjective 

genetic algorithms. The model establishes the optimal sectoring 

operation during the irrigation season that maximize farmer’s 

profit and minimize energy cost at the pumping station whilst 

satisfying water demand of crops at hydrant level taking into 

account the soil water balance at farm scale. This methodology 

has been applied to a real irrigation network in Southern Spain. 

The results show that it is possible to reduce energy cost and 

improve water use efficiency simultaneously by a comprehensive 

irrigation management leading, in the studied case, to energy cost 

savings close to 15 % without significant reduction of crop yield. 

Keywords. Pressurized irrigation network, irrigation district 

management, soil water balance, genetic algorithm 

5.1. Introduction 

In arid and semi-arid countries, the use of irrigation water is 

essential to ensure agricultural production. Globally, irrigated 

agriculture is the primary user of freshwater, accounting for nearly 

85 % of the total water consumption (Jury and Vaux 2007), and 

provides about 40 % of total food production (Fereres and 

Soriano 2007). Irrigation water demand is expected to increase in 

the near future due to foreseen alterations of rainfall regime 

caused by climate change (Rodríguez Díaz et al. 2007), and 
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increased food and biofuel demands. Irrigation schedule is part 

of the complex problem of optimal water resources management 

(English et al. 2002). 

On farm irrigation systems have been upgraded with the aim of 

increasing irrigation efficiency incorporating more efficient water 

emitters like drippers or sprinklers (Playán and Mateos 2006). 

Consequently, pressurized networks have replaced the obsolete 

open-channel distribution systems (Plusquellec 2009). These 

changes increase the conveyance efficiency reducing water losses 

throughout the system. However, these pressurized networks have 

significant energy requirements, which may lead to additional 

costs for farmers that may be unable to afford such expense if 

their production is devoted to low-value crops. For this reason, 

several management strategies have been developed to reduce 

energy consumption in pressurized irrigation networks (Abadia et 

al. 2008; Daccache et al. 2010; Lamaddalena and Khila 2012). 

One of the most efficiency measures is network’s sectoring, where 

farmers are organized in irrigation turns according to their energy 

demand. Previous works have shown that network sectoring can 

achieve potential energy savings between 20 % and 30 % 

(Rodríguez Díaz et al. 2009; Carrillo Cobo et al. 2011; Navarro 

Navajas et al. 2012). Another energy saving measure is the control 

of critical points, which are hydrants with high energy 

requirements. Rodríguez Díaz et al. (2012) developed the WECP 
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(Water and Energy optimization by Critical Point control) 

algorithm for detecting critical points in pressurized irrigation 

networks. It was applied in two pressurized irrigation networks in 

Southern Spain. The results showed that potential energy savings 

around 10 % and 30 % were possible in each network whilst 

satisfying the theoretical irrigation requirements. However most 

of these energy saving measures focus on reducing the energy 

demand without considering the irrigation scheduling at farm 

level. 

When several objectives are considered in the operation of water 

networks, a more realistic approach of the problem is achieved 

and the decision-making process is significantly improved, as a 

wide range of alternatives are available. Heuristic approaches are 

useful when solving this sort of problems. Among heuristic 

techniques, the NSGA-II algorithm (Non dominated Sorting 

Genetic Algorithm) (Deb et al. 2002) has been successfully used 

to solve multiobjective problems related to design or management 

of water distribution networks (e.g. Siew and Tanyimboh 2012; 

Fernández García et al. 2013). Hence, this algorithm has been 

selected as optimization tool in this work. 

There are several works in which irrigation scheduling was 

optimized using genetic algorithms with the aim of reducing 

drainage losses (Wardlaw and Bhaktikul 2004), or maximizing the 
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total farm income according to the operation rule of a reservoir 

(Sadati et al. 2014). We have no knowledge by far of any study 

focused on the simultaneous optimizations of irrigation 

scheduling at farm scale, water demand at hydrant level and 

energy consumption at the pumping station. 

In this paper, a new approach of sustainable management of 

pressurized irrigation networks using a customized version of 

NSGA-II (Deb et al. 2002) has been developed. The model 

establishes the optimal sectoring operation during the irrigation 

season that maximize farmer’s profit and minimize energy cost at 

the pumping station whilst satisfying water demand of crops at 

hydrant level taking into account the soil water balance at farm 

scale. This methodology has been applied to a real irrigation 

network in Southern Spain. 

5.2. Methodology 

5.2.1. Study area 

TheM. D. Bembézar Irrigation District (MDB) is located in 

Andalusía (Southern Spain) with a total irrigated area of 11,950 

ha. The climate is typically Mediterranean, with annual average 

rainfall of 604 mm concentrated in autumn and spring, and dry 

spells in summer. The average temperature in the area is 17.7 °C, 

being July the hottest month (mean temperature 36.2 °C). Under 
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these circumstances the average reference evapotranspiration is 

over 1,200 mm. 

MDB was established in 1967. Initially the conveyance system was 

an open channel network that covered over 11,900 ha. In 2007, 

the hydraulic infrastructures were upgraded and the old network 

was replaced by a pressurized system arranged on-demand, so 

water is continuously available to farmers. The water is conveyed 

from three reservoirs (Bembézar, 342 Mm3; Retortillo, 61 Mm3 

and José Torán, 101 Mm3) through a main channel of 40 km 

length and 12 m3 s−1 of delivery capacity. Then, eleven pumping 

stations operate along the main channel to supply water to each 

irrigation sector. The network was designed to supply 1.2 L s−1 

ha−1 on-demand with a service pressure at hydrants of 35 m. Drip 

irrigation is the most common irrigation system. The 

methodology described in this paper is applied to one of the 

eleven irrigation sectors, Sector VII, that irrigates 935 ha by 161 

hydrants operate on demand. Its crop pattern is representative of 

the whole irrigation district: maize (38.00 %), Citrus trees (34.00 

%), cotton (11.79 %), wheat (9.71 %), fruit trees (3.74 %), 

watermelon (1.46 %) and sunflower (1.30 %). 

5.2.2. Problem Approach 

This work was aimed at determining the optimal operation of the 

whole irrigation district from source to crop during the irrigation 
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season. The crop is watered using trickle systems. The network 

operation depends both on soil water content that determines the 

beginning of the irrigation (sirrigation) at plot level and the network 

sectoring. The number of sectors is fixed according to the 

minimum number of sectors that allow every hydrant to satisfy 

the irrigation needs during the peak demand day of the season. 

These irrigation needs were calculated according to FAO (2009). 

A sector number was randomly assigned to each hydrant and was 

subsequently optimized during the optimization process. To 

achieve this aim two conflicting objectives were considered: the 

maximum farmers’ profit and the minimal energy cost at the 

pumping station and minimal percolation losses. 

The first objective function (F1) maximizes the total value of 

agricultural production value: 

𝐹1 = [∑
𝑌𝑟,ℎ  ∙  𝑌𝑚𝑎𝑥,ℎ  ∙  𝐴ℎ  ∙  𝑃𝑟ℎ

𝐴𝑇

ℎ𝑇

ℎ=1

]

𝑛𝑜𝑟𝑚

 [5.1] 

where hT, is the number of hydrants, Yr,h is the relation between 

yield under actual water stress conditions for the crop in the plot 

supplied by hydrant h and its maximal potential yield; Ymax,h (kg 

ha−1) is maximum potential yield for the crop irrigated by hydrant 

h when there are not limitations of water; Ah (ha) is the irrigated 

area supplied by hydrant h; Prh (€ kg−1) is the average market price 

of the crop irrigated by h during the crop season and AT (ha) the 
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total irrigated area by all hydrants (hT). In order to compare the 

two objective functions, F1 was normalizes using a cumulative 

distribution function for the continuous uniform distribution on 

the interval [0, 2]. 

Yr,h was estimated with the following production curve included 

in the FAO 33 report (Doorenbos and Kassam 1979): 

(1 − 𝑌𝑟,ℎ) =  𝑘𝑦  ∙  (1 − 
𝐸𝑇ℎ

𝐸𝑇𝑚𝑎𝑥,ℎ
) [5.2] 

where ky is the yield response factor, ETh (mm day−1) the actual 

evapotranspiration for the crop irrigated by hydrant h and ETmax,h 

(mm day−1) the evapotranspiration without water stress 

conditions for the crop irrigated by hydrant h. The ETmax,h was 

obtained by: 

ETmax,h = ∑ETmax  d,h

dT

d=1

 =  ∑Kc d,h  ∙  ET0,d

dT

d=1

 [5.3] 

where ETmax d,h (mm day−1) is the evapotranspiration without water 

stress conditions for the crop supplied by hydrant h in each of 

day, d, of crop growing season; Kc d,h is the crop coefficient of the 

crop associated to hydrant h for day d of the crop development 

and ET0,d (mm day−1) reference crop evapotranspiration of day d 

(Allen et al. 1998). 

According to Laio et al. (2001), ETh was calculated as follows: 
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ETh =∑

{
 
 

 
 ETw ∙

sd,h − shg

sw − shg
                                       , shg < sd,h ≤ sw

ETw + (ETmax  d,h − ETw) ∙
sd,h − sw
s∗ − sw

, sw < sd,h ≤ s
∗

ETmax  d,h                                               , s
∗ < sd,h ≤  1

dT

d=1

 [5.4] 

where ETw (mm day−1) is the evapotranspiration in so-called 

wilting point; sd,h relative soil moisture at the plot associated to the 

hydrant h on the day d; shg relative soil moisture in so-called 

hygroscopic point; sw relative soil moisture in the wilting point; s* 

relative soil moisture from which the crops start to reduce 

transpiration. 

The second objective function (F2) minimizes simultaneously the 

seasonal energy cost and the water losses by deep infiltration. 

𝐹2 = ∑ [(𝐸𝑇,ℎ)𝑛𝑜𝑟𝑚 + 
(𝐷𝐼ℎ)𝑛𝑜𝑟𝑚]

ℎ𝑇

ℎ=1

 [5.5] 

where (ET,h)norm (€) is the normalized seasonal energy cost in the 

pumping station corresponding to hydrant h and (DIh)norm (mm) 

is the normalized deep percolation losses corresponding to the 

plot irrigation system associated to hydrant h. Both ET,h and DIh 

were normalized using a cumulative distribution function for a 

continuous uniform distribution on the interval [0, 1] to allow 

their summation. Therefore, F2 varies between 0 and 2. 

ET,h were estimated as follows: 
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ET,h = ∑
γ𝑤  ∙  Fd,h  ∙ Hd,h  ∙  td,h

η 
 ∙  UCe

dT

d=1

 [5.6] 

where γw (9.8 kN m−3) is the water specific weight; Fd,h (m3 s−1) the 

demanded flow in the pumping station corresponding to the 

hydrant h on day d; Hd,h (m) the pressure head required at the 

pumping station to operate the irrigation sector of the hydrant h 

on day d; td,h (hours) irrigation time of hydrant h on day d; η is the 

pumping system efficiency (in this work a pumping efficiency of 

0.75 was assumed); dT is the operation days of hydrant h and UCe 

is the Unit energy cost (€ kWh−1). Finally, td,h was calculated by 

dividing the irrigation needs during the peak demand day by the 

design flow of the hydrant. 

Daily Hd,h values were obtained for each day of the irrigation 

season to satisfy a minimum service pressure in all hydrants in 

every sector using the hydraulic simulator EPANET (Rossman 

2000). Fd,h was also determined by EPANET according to hydrants 

that make up each irrigation sector. 

According to (Laio et al. 2001), the percolation losses, DIh were 

calculated as follows: 

DIh =∑[
Ksat

eβ ∙(1−sfc)
∙ [eβ ∙(sd,h−sfc) − 1]] , sfc < sd,h ≤  1

dT

d=1

 [5.7] 
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where Ksat (mm day−1) is the average saturated hydraulic 

conductivity of the soil in the study area; β is coefficient which is 

used to fit the above expression to the power law and sfc relative 

soil moisture at field capacity. 

Energy cost depends on three factors: the unit energy cost, the 

amount of water applied and the pressure head at the pumping 

station. The amount of water applied is related to the soil 

moisture at the beginning of the irrigation period. Initial low soil 

water contents entail larger amounts of irrigation volume that 

may impact negatively on farmer’s profits although entails lower 

deep percolation leakages and the reduction of pollutant entering 

into groundwater. Additionally, pressure head at the pumping 

stations is linked to the irrigation network sectoring. Then, 

factors will be considered to find optimum balance between the 

two objective functions. 

5.2.3. Soil Water Balance 

The daily value of soil water content affects ETh in Eqs. 5.4 and 

5.2. For that reason, the daily soil water balance for each hydrant 

in the irrigation network was calculated. Assuming negligible 

lateral soil moisture fluxes, the relative soil moisture in the plot 

associated to hydrant h on the day d was calculated by the 

following equation, sd,h, assuming average climatic and soil values 

for the whole irrigated area: 
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sd,h = sd−1,h + 
ERd + Id,h − ETd,h − DId,h

ns ∙  Zr d,h
 [5.8] 

where sd-1,h is the relative soil moisture in the plot associated to 

hydrant h on the day d-1; ERd (mm) is the effective rainfall of the 

day d calculated by the USDA (Allan 1998); Id,h (mm) is the fixed 

applied irrigation depth to the crop associated to hydrant h on the 

day d; ns is soil porosity and Zr d,h (mm) the active soil depth (where 

most of crop roots associated to hydrant h on the day d are 

located). 

According to Laio et al. (2001) sd-1,h was estimated as follows: 

sd−1,h = 
θd−1,h − θw

ns
 [5.9] 

where θd-1,h (cm3 cm−3) is the volumetric soil moisture 

corresponding to the plot associated to hydrant h on the day d 

and θw (cm3 cm−3) is the volumetric soil moisture at wilting point. 

5.2.4. Optimization Method. NSGA-II 

The multi-objective algorithm NSGA-II (Deb et al. 2002) was 

implemented in MATLAB (Pratap 2010) to obtain the set of 

sirrigation value in each hydrant and the optimal network’s sectoring 

according to their accomplishment of the objective functions 

stated above (Eqs. 5.1 and 5.5). The original NSGA-II algorithm 

was adapted to this problem (Fig. 5.1). Initially, a starting 
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population of nPop chromosomes (sirrigation values (soil Water 

Content Pattern, WCP) and network’s sectoring, NS) was 

randomly generated. Each chromosome consisted of genes that 

represented the decision variables (nDec) of the problem: ht values 

of sirrigation for each plot and ht sector indexes linked to each hydrant. 

Therefore, nDec was 2 · ht. The sirrigation value determines the 

beginning of irrigation at each plot. The soil moisture ranged 

from 10 % above wilting point to 90 % of the relative soil 

moisture in field capacity. The sector index pointed out the 

operating sector of each hydrant, which varies between 1 and the 

number of sectors in the network. The most energy-demanding 

hydrant in each sector determines the energy consumption of the 

pumping station. Real-coding was the coding procedure used to 

represent the decision variables (Elferchichi et al. 2009). 

Hereafter chromosomes were modified using crossover and 

mutation operators to obtain successive generations of nPop 

improved chromosomes according to their objective function 

values. After several generations (nGEN) a set of nPop optimal 

chromosomes are obtained. These chromosomes define as the 

Pareto Front. 
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GEN = 0

Population size (nPop); Number of generations (nGEN); Number of decision variables (nDec); Total number of 
hydrants (ht); Last day of the crop production period of the hydrant h (Ldh); Season day (d); 

Assignment the threshold value of soil moisture that determines the soil water content of each hydrant
i =1

C
hr

 i

Assignment of the irrigation sector of each hydrant

Water balance in the soil corresponding to each and every hydrants on the day d

d = Ldh
Nod 

= 
d 

+ 
1

Yes

d = 1

Obtaining of the Objetive Functions F1 and F2

I = nPop

i =
i+

1

No

Evaluation of Objetive Functions F1 and F2

Sort the initialized population (non-domination-sort)

Comparison and Selection (N/2 Chromosomes)

Evolution Process (Crossover and Mutation)

Comparison and Selection (N Chromosomes)

Pareto Front

Optima soil water content patterns and network s sectoring 

GEN=nGEN

G
EN

=G
EN

+1

No

Yes

Obtaining of the Fd,h and Hd,h by hydraulic simulation with EPANET

Sd-1,h = sirrigation

td,h= 8 hours; Id,h=34.56 m3 ha-1 day-1

td,h= 0 hours; No irrigation

Yes

No

hT

Initial Population (nPop random Chromosomes)

Chr1 Chr2 Chr3 ... ChrnPop

WCP1 WCP2 ... ...   NS hT+1

Chromosome (Chr)
Soil Water Content Patterns (WCP) and Network s Sectoring (NS) 

   NS 2 WCP hT

Yes

 

Fig. 5.1. Optimization process using NSGA-II. 

5.3. Results and Discussion 

The irrigation time required to satisfy average crop water needs 

on the peak water demand day was 7.84 h in Sector VII of BMD. 

Therefore, hydrants should be irrigated during 8 h turns. Thus, 
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hydrants were grouped in three irrigation sectors and the sector 

index associated to the genes responsible for the network’s 

sectoring could only take integer values between 1 and 3. As the 

irrigation network was designed to supply 1.2 L s−1 ha−1 per 

hydrant, the applied irrigation depth (Id,h) per hydrant was 34.56 

m3 ha−1 day−1. 

The methodology described above has been applied to find the 

optimal operation of Sector VII during 2009, year in which all 

the required data were available. The daily values of precipitation 

and reference evapotranspiration were obtained from the closest 

public weather station for this season. In this work, the 

evapotranspiration at wilting point (ETw) was considered zero. 

The crop coefficients Kc and the active soil depth Zr d,h values for 

each stage of the crop production cycle published in FAO 56 

(Allen et al. 1998) were considered in this work. The average soil 

texture of the irrigation district was clay loam. Its hydraulic 

parameters, estimated according to the ROSETTA model (Schaap 

et al. 2001) and (Laio et al. 2001), are shown in Table 5.1. 

Potential yields (Ymax) and average market price (Pr) of crops 

cultivated in the irrigation district were obtained from the annual 

statistics of the Agriculture Department of Andalucía (Spain) 

(Consejería de Agricultura 2009) (Table 5.1). 
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Table 5.1. Values of yield, Ymax, crop price Pr, the number of hydrants 
associated with each crop, cropped area for the main crops and soil 

properties in the study area in BMD (Sector VII) for the 2009 season. 

 Maize 
Citrus 
trees 

Cotton Wheat 
Fruit 
trees 

Watermelon Sunflower 

Ymax (kg ha-1) 10,348 19,894 1,320 4,923 19,915 48,750 2,159 

Pr (€ ha-1) 0.148 0.241 0.239 0.157 0.737 0.150 0.273 

Number of 
hydrants 

55 64 18 13 8 2 1 

Cropped 
area (ha) 

355.3 317.9 110.2 90.8 35.0 13.7 12.1 

Ksat 
(mm day-1) 

shg sw sfc s* 
θw 

(cm3 
cm−3) 

n β 
Soil 

textural 
class 

150 0.35 0.38 0.83 0.68 0.20 0.48 20.8 Clay loam 

5.3.1. Evolution of the objective functions in the optimization 
process 

The model based on NSGA-II described in Fig. 5.1 was applied 

to MDB (Sector VII). The objective functions, F1 and F2, were 

optimized simultaneously. The total number of hydrants in the 

irrigation network (Sector VII, BMD) was 161. In Table 5.1 are 

shown the number of hydrants associated to each crop and their 

cropped area. 

The random initial population consisted of 50 chromosomes 

comprised of 161 genes with sirrigation values and 161 genes with the 

sector index associated to each hydrant. The initial population 

evolved for 3,800 generations with probabilities for crossover and 

mutation of 90 % and 10 %, respectively. 
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Fig. 5.2 shows the Pareto front obtained in the optimization 

process (generation 3,800). This graph shows that both objectives 

(F1 and F2) are conflicting because improvements in one of them 

imply worsening the other (high F1 and low F2 values are 

desirable). 

 
Fig. 5.2. Pareto Front in generation 3,800. 

The total agricultural production value, total energy cost and total 

losses due to deep percolation for Sector VII, were obtained from 

F1 and F2 for every chromosome. The target values of these terms 

were: 1,878.60 € ha−1 for the value of the total production when 

there were not water availability restrictions so crops could reach 

their maximum potential yield (Yh = Ymax, h) and zero for energy 
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cost and deep percolation losses (although these values were not 

realistic because they only could occur in rainfed conditions). Fig. 

5.3a shows the evolution of the maximum values of production 

in Sector VII-MDB during 3,800 generations. The production 

value increased in the first 1,200 generations and slightly 

improved until generation number 2,914 when F1 was stabilized. 

Finally, after 3,800 generations, the production of Sector VII-

MDB increased up to 1,375.14 € ha−1. However, this solution may 

not be the best for the Irrigation District as entails increases of 

the total energy cost and deep percolation losses. 

The minimum values of total energy cost and deep percolation 

losses in each generation are shown in Fig. 5.3b and 5.3c, 

respectively. After 3,289 generations, the total energy cost at the 

pumping station was stabilized. The total energy cost in this 

generation was 53,928 €. Although, this solution may not be the 

best, as it would imply lower crop yields. Thus, comparing the 

extreme values obtained in generations 1 and 3,800 and assuming 

an UCe of 0.10 € kWh−1, the energy cost in the first generation 

(GEN1) was 62,632 € (Fig. 5.3b).  

After the optimization process a maximum reduction of energy 

consumption of 13.90 % was achieved in the last generation  
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Fig. 5.3. F1 and F2 evaluation during the optimization process (3,800 
generations). Maximization of the agricultural production value (a), 
minimization of total energy cost (b) and minimization of total deep 

percolation loses (c). 

(GEN 3,800) with an associated cost of 53,928 €. This solution 

leads to a reduction in the total deep percolation losses and 
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production value of 3.79 % and 0.47 %, respectively (Fig. 5.3c 

and 5.3a). The total increase in the production value between the 

first and the last generation was 1.00 %, from 1,361.54 € ha−1 to 

1,375.14 € ha−1 (Fig. 5.3a). This solution increased the energy cost 

and deep percolation in 1.26 % and 3.00 %, respectively. Thus, 

there is a wide range of intermediate solutions with different 

values for the key variables. 

5.3.2. Optimal individuals 

In order to facilitate the interpretation of the results, 5 individuals 

were selected from the 50 chromosomes in the Pareto front 

achieved last generation (3,800) and their values are shown in 

Table 5.2. Individual 1 was selected because it showed the best 

value of F1. For the same reason, Individual 5 achieved the best 

values for the terms of function F2 and therefore it was also 

selected. Individuals 2, 3 and 4 were randomly selected to 

represent the range of intermediate scenarios in the Pareto Front 

defined by combinations of the three key variables (production 

values, energy cost and deep percolation losses). The irrigation 

network was divided into three operating sectors which size 

(number of hydrants) varies in each individual Thus, if the 

irrigation network operates under conditions corresponding to 

Individual 1, the number of hydrants for the three sectors would 

be 58, 52 and 51, respectively. Under this scenario, the maximum 

production of Sector VII was achieved (1,375.14 € ha−1) and the  
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Table 5.2. Production value, energy cost, energy consumption, water 
losses, hydrants per sector, hydrant elevation respect to pumping 

station for the 5 individuals selected from the Pareto Front. 

 
Individuals 

1 2 3 4 5 
Production value (€ ha-1) 1,375.14 1,368.56 1,362.00 1,353.53 1,343.57 
Total Energy cost (€) 69,000 63,826 60,881 57,738 53,928 
Total Losses due to Deep 
Percolation (mm) x104 

1.38 1.34 1.30 1.27 1.27 

Number of 
hydrants 

Sector I 58 55 55 52 47 
Sector II 52 58 58 54 54 
Sector III 51 48 48 55 60 

total energy cost in this scenario would be 69,000 €. The minor 

energy consumer was individual 5. Under this scenario, the total 

energy cost was 21.84 % lower than individual 1, that represents 

energy cost savings of 15,072 € while the production value was 

reduced by 2.30 % compared to individual 1 (which involves 

31.57 € less incomes per hectare). The number of hydrants per 

sector, in this scenario, is more heterogeneous than in the other 

individuals (47, 54 and 60 for each sector respectively). 

Individuals 3 and 4 have similar values of the key variables. 

Production value was 0.96 % (individual 3) and 1.57 % 

(individual 4) lower than individual 1. Under these scenarios, the 

total energy cost was 11.77 % (individual 3) and 16.32 % 

(individual 4) less than the first individual. In individual 2, the 

production value is slightly reduced (0.48 % or 6.58 € ha−1 less 

than individual 1) and it has the same hydrant number per sector 
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than individual 3. However, the total energy cost is 7.50 % lower 

than the first individual with energy cost savings of 5,174 €. 

 
Fig. 5.4. Irrigation network sectoring and spatial distribution of crops 

and sirrigation values of each hydrant in the five individuals selected. 

Fig. 5.4 shows spatial distribution of crops and sirrigation values for 

each hydrant as well as irrigation network sectoring for the five 
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individuals selected. This figure shows as individuals with higher 

crop production and therefore higher energy consumption have 

highest sirrigation values (darker areas). In all individuals, sectoring of 

the irrigation network does not show a clear relation to terrain 

elevation. So, the irrigation network was not sectored considering 

the topography. However, topography shows a slight correlation 

with sirrigation values. Overall, the highest areas have higher sirrigation 

values as it is not allowed that the soil moisture to drop too low 

to avoid a higher energy consumption. The sirrigation values are 

highly related to spatial distribution of crops in the irrigation 

network. Thus, hydrants which crops have high water needs or 

are more sensitive to water stress like maize or citrus trees, their 

sirrigation values are higher than less sensitive crops or with lower 

economic value. 

Fig. 5.5 shows, variability of sirrigation values for each irrigation sector 

in the five individuals selected, respectively. The upper and lower 

bounds were 0.747 and 0.418, respectively, in all irrigation sectors 

for the 5 individuals. A lower sirrigation value means lower amount of 

water applied and lower total energy cost. Fig. 5.5 shows clearly 

that the variability of the sirrigation values are close to the upper limit 

in individual 1 and decreases to the lower boundary in individual 

5 where energy cost and crop yield are minimal. The variability of 

these sirrigation values are also reduced from individual 1 to 

individual 5. Thus, in individual 1 most of the hydrants have an  
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Fig. 5.5. Boxplot of variability of sirrigation values for each irrigation 

sector of the 5 individuals from Pareto Front. 

associated high sirrigation value with median values for sector 1 of 

0.622, 0.582 for sector 2 and 0.592 for sector 3, respectively. 

Consequently, under this scenario the total energy cost and the 

agricultural production reached the maximum value (69,000 € 

and 1,375.14 € ha−1 respectively). Individual 5 has the minimum 

value of the total energy cost (53,928 €) and its hydrants have the 

lowest sirrigation values (medians of 0.453, 0.435, 0.790 for sectors 1, 

2 and 3, respectively). Intermediate sirrigation values are those 

obtained for Individuals 2, 3 and 4. Thus, under these scenarios, 

0,4

0,5

0,6

0,7 In
dividual 1

R
el

at
iv

e 
so

il 
m

oi
st

ur
e

0,4

0,5
0,6

0,7

In
dividual 2

0,4

0,5

0,6

0,7

In
dividual 3

0,4

0,5
0,6

0,7

In
dividual 4

Sector 1 Sector 2 Sector 3

0,4

0,5
0,6

0,7

In
dividual 5

Median
75th Percentile

Upper Bound

25th Percentile
Lower Bound

Lower Whisker

Upper
Whisker



5. Optimization of Irrigation Scheduling Using Soil Water 
Balance and Genetic Algorithms 

 

 
115 

 

the total energy cost was 63,826 € for individual 2, 60,881 € for 

individual 3 and 57,738 € for individual 4. 

Fig. 5.6 shows cumulative deep infiltration losses, effective 

rainfall and the applied irrigation depth at each hydrant during 

the whole year.  

 

  

 
Fig. 5.6. Cumulative deep percolation losses, applied irrigation depth 
and effective rainfall at plot scale in the 2009 season for individuals 1, 

3 and 5. 

This figure shows that water losses by deep percolation are caused 

by rainfall and not by over-irrigation. During the irrigation 

season, in the three individuals, the curve of accumulated deep 
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percolation losses remains constant. During the months with 

maximum irrigation needs (half of the irrigation season) all 

hydrants applied water. 

Under the scenario corresponding to individual 1, the total 

energy cost and production of Sector VII, was 69,000 € and 

1,375.14 € ha−1, respectively. Knowing that the total irrigation 

area of Sector VII is 935 ha, the total income due to crop 

production was 1,285,756 €. Likewise, the energy costs and the 

total income due to crop production for individual 2, 3, 4 and 5 

were 63,826 € and 1,279,604 €; 60,881 € and 1,273,470 €; 

57,738 € and 1,265,551 €; 53,928 € and 1,256,238 €, 

respectively. Thus, considering only the crop production value 

and the energy cost, individual 1 had the highest profit out of the 

five individuals studied. Consequently, it can be considered the 

best individual and therefore the best management strategy for 

the studied area. According to the real data recorded in Sector 

VII of MDB Irrigation District, the total energy cost was 80,660 

€. Thus, if the irrigation network had been operated under the 

conditions of the Individual 1, this irrigation sector would have 

obtained energy savings of 14.5 %. 

5.4. Conclusions 

The evolution of water distribution systems to pressurized 

networks has improved water use efficiency, but has increased 
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dramatically energy cost. To overcome this problem, we have 

presented a methodological approach to improve simultaneously 

energy and water use efficiency in irrigation networks. 

The proposed methodology provides the optimal hydrant 

grouping in irrigation sectors and the optimal soil water content 

at the beginning of the season in each irrigated plot that, through 

a daily soil water balance, maximize the total economic value of 

crops production at irrigation district scale whilst minimize both 

the energy cost at the pumping station and the percolation losses 

for the whole irrigation district. A multi-objective optimization 

problem was stated with two objective functions and was solved 

using a customized version of the multi-objective genetic 

algorithm NSGA-II. 

The methodology proposed has been applied to the BMD 

Irrigation District (Sector VII). The obtained results showed that 

integrated irrigation management would lead to energy cost 

savings close to 15 % in BMD Irrigation District without 

significant reduction of crop yield. This work shows that it is 

possible to reduce energy cost and improve water use efficiency. 

However, in order to achieve a global optimum use of water and 

energy, the operation of both the main water supply network and 

the irrigation network at farm level must be carried out jointly. 
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6. Irrigation Demand Forecasting Using 
Artificial Neuro-Genetic Networks 

This chapter has been published entirely in the journal “Water 
Resources Management”, González Perea R, Camacho Poyato E, Montesinos 

P, Rodríguez Díaz JA (2015) 

 

Abstract. In recent years, a significant evolution of forecasting 

methods has been possible due to advances in artificial 

computational intelligence. The achievement of the optimal 

architecture of an ANN is a complex process. Thus, in this work, 

an Evolutionary Robotic (study of the evolution of an ANN using 

Genetic Algorithm) approach has been used to obtain an 

Artificial Neuro-Genetic Networks (ANGN) to the short-term 

forecasting of daily irrigation water demand that maximizes the 

accuracy of the predictions. The methodology is applied in the 

Bembézar Irrigation District (Southern Spain). An optimal 

ANGN architecture (ANGN (7, 29, 16, 1)) has achieved obtaining 

a Standard Error Prediction (SEP) value of the daily water 

demand of 12.63 % and explaining 93 % of the total variance 

observed during validation process. The developed model proved 

to be a powerful tool that, without long dataset and time 

requirements, can be very useful for the development of 

management strategies. 
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Keywords. Optimal forecasting models, Artificial intelligence, 

Seasonal model update, Evolutionary robotics 

6.1. Introduction 

As a result of the increasing competition for water resources, 

water is considered a scarce and valuable resource that requires a 

rigorous management and extreme caution to prevent its 

depletion. In countries like Spain, where 73 % of the National 

freshwater is devoted to irrigation sector (MAGRAMA 2013; INE 

2014), many irrigated areas have been subjected to modernization 

processes with the aim of increasing the water use efficiency, 

through more efficient irrigation systems such as drip and trickle 

(Playán and Mateos 2006). Consequently, most of the new 

irrigation systems are operated on-demand where water is always 

available for farmers and they decide when to irrigate and the 

duration of each irrigation event. However, the increased 

operation flexibility hinders the prediction of water demand in 

irrigation districts. This circumstance causes problems for 

managers who would need this information for the day to day 

management tasks such as contracting the electric energy supply. 

Since the liberalization of the Spanish Electricity Market, on 1st 

January 2008, the special tariffs for irrigation disappeared and 

now, irrigation districts are subject to the general industrial tariffs. 

During the months of June and July, the peak of the irrigation 
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season, most of the irrigation time occurs in periods of expensive 

tariffs. Recently, in order to minimize energy cost, irrigation 

district managers have the possibility to hire electric energy 

through different modalities for adjusting the electrical power 

contracted to the real power absorbed at the irrigation network. 

One of these modalities is known as the electricity tariff indexed 

to pool (pass through), where the electrical energy is paid at a 

variable price based on the wholesale market. Another modality 

is known as superindexed electricity tariff where a central 

purchasing body has its own strategy of purchasing power (buying 

futures market, pass through and intraday Markets) and the users 

have to pay in advance their estimated electricity consumption. 

Thus, to achieve an optimal management, irrigation district 

managers need tools to estimate accurately the real daily water 

demand of the entire irrigation network. 

Modelling techniques have been used to estimate the crops daily 

water requirements, from empirical or functional (Doorenbos 

and Pruitt 1977; Doorenbos and Kassam 1979; Allen et al. 1998) 

to mechanistic approaches (Van Aelst et al. 1988). However, 

water requirements calculated are not always suitable for 

predicting actual use (i.e., consumer demand) due to changes in 

the weather conditions and local farmer practices that affect the 

actual amounts of water applied. 
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In recent years, a significant evolution of forecasting methods has 

been possible due to advances in artificial computational 

intelligence, in particular the Artificial or Computational Neural 

Networks (ANNs or CNNS). A neural network is a system that 

allows for linear or nonlinear relationship between outputs and 

inputs. Its main features are inspired in the nervous system which 

gives them several advantages such as to have adaptive learning 

ability, to be self-organizing, to be able to operate in parallel in 

real time and to provide fault tolerance by redundant information 

coding. 

Several specific applications of ANN to water resource 

management and planning include the modeling of monthly, 

daily and hourly rainfall–runoff processes (Hsu et al. 1995; Lorrai 

and Sechi 1995; Mason et al. 1996; Abrahart et al. 1999; Tokar 

and Johnson 1999; Thirumalaiah and Deo 2000; Tokar and 

Markus 2000; Chiang et al. 2004; Moradkhani et al. 2004; Anctil 

and Rat 2005; Agarwal et al. 2006), real- time river and lake stage 

forecasting (Thirumalaiah and Deo 1998; Abrahart and See 2000; 

See and Openshaw 2000; Thirumalaiah and Deo 2000; Abrahart 

and See 2002; Cameron et al. 2002; Nayebi et al. 2006; Ondimu 

and Murase 2007), rainfall forecasting (French et al. 1992; Zhang 

et al. 1997; Kuligowski and Barros 1998), groundwater modeling 

(Rogers and Dowla 1994; Yang et al. 1997), assessment of stream’s 

hydrologic and ecological response to climate change (Poff et al. 
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1996), drought analysis (Shin and Salas 2000), etc. However, 

Pulido-Calvo and Gutiérrez-Estrada (2009) is the only application 

of ANN related with water demand forecasting in pressurized 

systems at irrigation district level. In that study, the performance 

of a hybrid methodology combining feed forward CNN, fuzzy 

logic and genetic algorithms to forecast one-day ahead daily water 

demands at irrigation districts were analyzed. The developed 

methodology was applied to a real irrigation district located in 

southern Spain. The forecast of the individual models was 

corrected via a fuzzy logic approach whose parameters were 

adjusted using a genetic algorithm in order to improve the 

forecasting accuracy. A major limitation in this model was the 

determination of the ANN architecture by trial and error. 

The ANN and genetic algorithms are soft-computing technologies 

that can be very effective when used on their own. However, when 

combined together, the individual strengths of each approach can 

be exploited in a synergistic manner for the construction of 

powerful, hybrid and intelligent systems (See and Openshaw 

2000). The discipline that studies the evolution of an ANN using 

Genetic Algorithm is known as Evolutionary Robotic (ER). The 

achievement of the optimal architecture of an ANN (minimum 

computational speed and maximum forecast accuracy) is a 

complex process. Thus, in this work, an ER approach has been 

used to obtain an ANN to the short-term forecasting of daily 
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irrigation water demand that maximizes the accuracy of the 

predictions. The developed model is tested with actual data 

recorded in the water distribution network of a real irrigation 

district. 

6.2. Methodology 

6.2.1. Study area and Data Source 

The developed model was applied to Bembézar M.D. Irrigation 

District (BMD), located in Andalusía (Southern Spain). The 

BMD water distribution network irrigates 11,950 ha within the 

Bembézar River basin (Fig. 6.1). The climate in the area is 

Mediterranean with annual average rainfall and temperature of 

604 mm and 17.7 °C, respectively. The mean annual potential 

evapotranspiration is over 1,200 mm. 

BMD is made up of eleven working independently. All of them 

were designed to supply 1.2 L s−1 ha−1 on-demand (water is always 

available for farmers) with a service pressure of 35 m at hydrant 

level. Drip irrigation is the most common irrigation system. 

Among the eleven sector networks, Sector VII was selected for 

this study. It covers a total irrigated area of 935 ha (Fig. 6.2) and 

includes the most representative crops in the region: maize, 

citruses, cotton, wheat, fruit trees, watermelon and sunflower. 
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Fig. 6.1. Location of Bembézar M.D. irrigation district, Spain. 

 

Fig. 6.2. Layout of the Sector VII irrigation scheme (BMD). 

At the pumping station pressure heads and pumped flows every 

minute are recorded by a telemetry system. Water demand data 

Pumping Station 

Hydrants 
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were aggregated at daily level for the 2010, 2012 and 2013 

irrigation seasons. Due to errors in the recording process of the 

water demand values, the data series was not complete in any of 

the irrigation seasons studied. Further, then all water demand 

values were removed to facilitate the training process of ANN. 

The daily climatic data were obtained from the agroclimatic 

station placed in the irrigation district. 

6.2.2. Optimal Artificial Neuro-Genetic Networks 

The both the architecture and the training and validation 

processes of ANNs are critical to obtain accurate predictions from 

a set of input variables. A multiobjective genetic algorithm has 

been implemented to identify the best sets of architecture 

parameters as well as the best training and validation alternatives 

that characterized optimal ANNs, called Artificial Neuro-Genetic 

Networks, ANGNs. To facilitate the understanding of the 

procedure, a description of the decision variables required to 

create optimal ANGN and their position (gene) in the artificial 

chromosome required to apply the genetic algorithm are given 

next. 

6.2.2.1. Architecture Parameter of ANNs 

The most widely used ANN is the Multilayer Perceptron Network 

(MLP) (Rumelhart et al. 1986), whose structure is presented in 
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Fig. 6.3. A typical four-layer feed forward ANN (g, n, m, ss), has g, 

n, m and ss nodes or neurons in the input, first hidden, second 

hidden and output layers, respectively. Each layer consists of a 

number of neurons, which are connected to the next layer’s 

neurons by synaptic weights (w). All the connections are feed 

forward, thus they are only allowed to transfer information from 

a previous layer to the next one. The number of neurons in the

 

Fig. 6.3. Multi-layer perceptron neural network.  
*t is total number of input variables of the neural network. 

input and output layers are the number of input and output 

variables respectively. The numbers of neurons of the first, n, and 

second hidden layer, m, are two of the decision variables 

(structure variables) included the chromosome or set of variables 
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to be optimized by the genetic algorithm, in the genes located in 

positions 1 and 2. The transfer functions between layers (input, 

hidden and output layer) are the three transfer function variables 

located in genes 3, 4 and 5 respectively. The transfer functions 

used are shown in Table 6.1. 

Table 6.1. Decision variables of each chromosome of the genetic 
algorithm (NSGA-II). 

 Gene 
Number 

Variable name Value rate 

A
N

N
 a

rc
hi

te
ct

ur
e 

1 Neuron number of the 
first hidden layer 

Integer value between 1 and 50. 

2 Neuron number of the 
second hidden layer 

Integer value between 1 and 50. 

3 Transfer function of the 
input layer 

Integer value between 1 and 3: 
(1) Log-Sigmoid Transfer Function 
(LogST); (2) Tan-Sigmoid Transfer 
Function (TanST); (3) Linear 
Transfer Function (LinT). 

4 Transfer function of the 
hidden layers 

Integer value between 1 and 3: 
(1) Log-Sigmoid Transfer Function 
(LogST); (2) Tan-Sigmoid Transfer 
Function (TanST); (3) Linear 
Transfer Function (LinT). 

5 Transfer function of the 
output layer 

Integer value between 1 and 3: 
(1) Log-Sigmoid Transfer Function 
(LogST); (2) Tan-Sigmoid Transfer 
Function (TanST); (3) Linear 
Transfer Function (LinT). 
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Table 6.1. Continuation. 

 Gene 
Number 

Variable name Value rate 

T
ra

in
in

g 
pr

oc
es

s 
of

 A
N

N
 

6 Training 
function, TNF 

Integer value between 1 and 12: 
(1) Batch Gradient Descent (BGD) (Rumelhart 
et al. 1986); (2) Gradient Descent with 
Momentum (GDM) (Rumelhart et al. 1986); 
(3) Variable Learning Rate with momentum 
(VLRM) (Hagan et al. 1996); (4) Resilient 
Backpropagation (RB) (Riedmiller and 
Braun 1993); (5) Fletcher-Reeves Update (FRU) 
(Fletcher and Reeves 1964); (6) Polak-Ribiére 
Update (PRU) (Fletcher and Reeves 1964);(7) 
Powell-Beale Restarts (PBR) (Powell, 1977); (8) 
Scaled Conjugated Gradient (SCG) (Møller 
1993); (9) BFGS Algorithm (Dennis and 
Schnabel, 1983); (10) One Step Secant 
Algorithm (OSS) (Battiti 1992); (11) 
Levenberg-Marquardt algorithm (LM) 
(Hagan and Menhaj 1994); (12) Variable 
Learning Rate (VLR) (Hagan et al. 1996). 

7 Momentum 
constant (mc) 

When TNF is 2 or 12 mc gets a decimal 
value between 0 and 1. For the rest of TNF 
mc is 0. 

8 Line search 
algorithm, LSA 

When TNF takes the values of 1, 2, 3, 4, 8, 
11 or 12; LSA gets a values of 0, however 
when TNF is 5, 6, 7, 9 or 10; LSA gets an 
integer value between 1 and 5: 
(1) Golden Section Search (GS) (Hagan et al. 
1996); (2) Brent’s Search (BS) (Brent 1973); 
(3) Hybrid Bisection-Cubic Search (HBC) 
(Scales 1985); (4) Charalambous’ Search 
(CS) (Charalambous 1992); (5) Backtracking 
(BT) (Dennis and Schnabel 1983). 

9 Learning 
function 

Integer value 1 or 2: 
 (1) Gradient Descent; (2) Gradient Descent 
with Momentum. 
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Table 6.1. Continuation. 

 Gene 
Number 

Variable name Value rate 

Im
pr

ov
in

g 
ge

ne
ra

liz
at

io
n

 

10 Data division 
function 

Integer value between 1 and 4: 
(1) Index Data Division (IDD); (2) Random 
Data Division (RDD); (3) Block Data Division 
(BDD); (4) Interleaved Data Division 
(InterDD). 

11 Value of 
training set 

Integer value between 75% and 82%. 

12 Perform 
function, PF 

Integer value between 1 and 2: 
(1) mean sum of squares (mse); (2) msereg. 

13 Performance 
ratio (γ) 

When PF is 1, γ gets a value of 0 and when 
PF is 2, γ gets a decimal value between 0 and 
1. 

6.2.2.2. Training of an ANN 

To determine the set of weights, a corrective-repetitive process 

called learning or training of the ANN is performed. Training 

aims to define the interconnections between neurons (weights) 

adjusting the weights through training patterns (known set of 

inputs and outputs). These interconnections are adjusted using 

an error convergence technique. 

Twelve different training functions can be chosen by the GA for 

ANGN training. The training function is located in gene 6. The 

standard backpropagation learning algorithm is the most widely 

used supervised algorithm in ANNs. The simplest 

implementation of backpropagation learning updates the 

network weights in the direction in which the performance 
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function decreases most rapidly, the negative of the gradient. 

There are two different ways in which this gradient descent 

algorithm can be implemented: incremental mode and batch 

mode. In this work, the batch mode has been used. In this batch 

mode, all the inputs are applied to the network before the weights 

are updated. There are many variations of the back propagation 

algorithm. In this work, several of these training methods have 

been used to optimize the accuracy of the prediction model. 

In Table 6.1 the 12 training algorithms used in this work are 

shown (field number 6). Batch Gradient Descent (BGD) is the 

simplest training method in which the weights are updated in the 

direction of the negative gradient of the performance function. A 

variant of the BGD was Gradient Descent with Momentum (GDM). 

GDM allows the network to respond not only to the local 

gradient, but also to recent trends in the error surface. GDM 

depends on two training parameters: learning rate that is similar to 

the simple gradient descendent momentum constant (mc) that 

defines the amount of momentum (Hagan et al. 1996). With 

momentum, a network can slide through such a minimum and 

avoid getting stuck in a shallow local minimum (Demuth et al. 

2009). In this work, learning rate had a constant value of 0.05 and 

mc was a decision variable in the genetic algorithm (field number 

7). These two (BGD and GDM) training methods are often too 

slow for practical problems but with the right combination of 
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the rest of parameters that form the ANGN it can be achieved 

acceptable performance. The rest of the training functions are 

aimed at improving the learning time and thus the performance 

of the ANGN. Some of these training algorithms can use different 

search algorithm (line searches routines) of the negative gradient 

of the performance function. It is often difficult to predict which 

of these line search routines provides the best results for any given 

problem. For this reason, line search routine was a decision 

variable in the genetic algorithm. In Table 6.1, field number 8 

shows the search routines used in this work. 

The learning process of the weights was another decision variable 

in the genetic algorithm (field number 9). To the backpropagation 

training algorithms described above, the main learning functions 

were: Gradient Descent and Gradient Descent with Momentum. 

6.2.2.3. ANN generalization 

During the neural network training, the error on the training set 

is driven to a very small value, but when new data is presented to 

the network the error is usually higher. This phenomenon is 

known as overfitting. The network has memorized the training 

example, but it did not learn to generalize to new situations. Two 

methods have been used to improve the network generalization: 

Early Stopping and Regulation (Demuth et al. 2009). In the first 

method, the available data is divided into two subsets. The first 
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subset is the training set, which is used for computing the gradient 

and updating the network weights. The second subset is the 

validation set. The validation error normally decreases during the 

initial phase of training, as the training set error does. However, 

when the network starts to overfit the data, the error on the 

validation set rises. When the validation error increases for a 

specified number of iterations, the training is stopped, and the 

network training is finalized. In this work, the function for 

dividing data into training and validation sets was a decision 

variable in the genetic algorithm. Four functions have been used 

for splitting data into the two subsets (Hagan et al. 1996) and are 

shown in Table 6.1 (field number 10). The first function (Index 

Data Division, IDD) divide the data according to its position in 

the data serial so that the registers of the data serial are assigned 

to the training set, and the validation set alternatively. The second 

function (Random Data Division, RDD) divide the input data 

randomly so that a percentage of the data are assigned to the 

training set and another percentage for the validation set. The 

third function (Block Data Division, BDD) divide the input data 

randomly so the first X % of the data are assigned to the training 

set, and (100-X) % to the validation set. Another way to divide 

the input data is to cycle samples between the training set and 

validation set according to percentages. The last function 

(Interleaved Data Division, InterDD) divide the input data in this 
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way. Gene located in position 11 represents the X % of data set 

that constitute the training set and (100-X) % represents the 

validation data set. The most authors take a fixed value of X of 80 

%. In this work X ranges from 75 % to 82 % to the genetic 

algorithm optimize the data numbers of the training and 

validation sets. 

The typical performance function used for training feed forward 

neural networks is the mean sum of squares (mse) of the network 

errors: 

𝑚𝑠𝑒 =  
1

𝑂𝐵
 ∙  ∑ (𝑄𝑡 − 𝑄𝑡̂)

2
𝑂𝐵

𝑡=1
 [6.1] 

where OB is the total number of observations used for neural 

network training; Qt is the observed water demand at the time 

step t (L s−1) and 𝑄𝑡̂ is the estimated water demand at the same 

time step t (L s−1). 

Adding the mean of the sum of squares of the network weights to 

Eq. 6.1, it is possible to improve the neural network 

generalization. Thus, a new performance function is shown in Eq. 

6.2. 

𝑚𝑠𝑒𝑟𝑒𝑔 =  γ ∙ mse + (1 −  γ) ∙ 𝑚𝑠𝑤 [6.2] 

where γ is the performance ratio that forces the network response 

to be smoother and less likely to overfit. msw is defined by: 
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𝑚𝑠𝑤 = 
1

𝑛𝑚
 ∙  ∑ 𝑤𝑗

2
𝑛𝑚

𝑗=1
 [6.3] 

where nm is the total number of the neural network weights. 

Both, the performance function and the performance ratio, are 

decision variables located in 12 and 13 gene of the chromosome, 

respectively. 

6.2.3. Optimizing the ANGN Model with a Multiobjective 

Genetic Algorithm 

6.2.3.1. Problem Approach 

A multiobjetive optimization problem with two objective 

functions was stated for the prediction of the daily water demand. 

The aim of the first objective function (F1) was to maximize the 

sum of the coefficients of determination (R2) of training and 

validation sets. This coefficient describes the proportion of the 

total variance in the observed data that can be explained by the 

model. 

𝐹1 =  [𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 + 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

2 ] [6.4] 

R2 was calculated according to the following equation: 

𝑅2 = 

(

 
∑ (𝑄𝑡̂ − 𝑄̅̂)
𝑂𝐵1
𝑡=1  ∙ (𝑄𝑡 − 𝑄̅)

√∑ (𝑄𝑡̂ − 𝑄̅̂)
2𝑂𝐵1

𝑡=1  ∙ ∑ (𝑄𝑡 − 𝑄̅)
2𝑁1

𝑡=1 )

  [6.5] 
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where OB1 is the total number of observations used for neural 

network training or validation sets; 𝑄̅̂ is the average of estimated 

water demand of training or validation sets (L s−1) and 𝑄̅ is the 

average of observed water demand of training or validation sets (L 

s−1). 

The aim of the second objective function (F2) was to minimize 

the average normalized root mean square error (RMSE) of the 

validation sets. 

𝐹2 = 𝑅𝑀𝑆𝐸𝑛𝑜𝑟𝑚 = [√
1

𝑂𝐵𝑣𝑎𝑙
 ∙  ∑ (𝑄𝑡̂ − 𝑄𝑡)

2
𝑂𝐵

𝑡=1
]

𝑛𝑜𝑟𝑚

 [6.6] 

where OBval is the total number of observations used for neural 

network validation. 

In order to compare the two objective functions, F2 was 

normalized using a cumulative distribution function for the 

continuous uniform distribution on the interval [0, 2]. Thus, the 

minimum value of both objective functions was 0 and the 

maximum value 2. 

With a view to be able to make comparisons between different 

models other measure of variance applied was the percent 

standard error of prediction (SEP) (Ventura et al. 1995). The SEP 

is defined by 
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𝑆𝐸𝑃 = 
100

𝑄𝑣̅̅̅̅
 ∙ 𝑅𝑀𝑆𝐸 [6.7] 

where 𝑄𝑣̅̅̅̅  is the average of the observed water demand of the 

validation set (L s−1). 

6.2.3.2. Optimization Method. NSGA-II 

The multiobjetive algorithm NSGA (Deb et al. 2002) was 

implemented in MATLAB (Pratap 2010) to obtain an optimal 

prediction model of water demand in an irrigation network. The 

standard NSGA-II algorithm was adapted to solve the problem 

stated in section 6.2.3.1 (Fig. 6.4). In the first step, the initial 

population of nPop chromosomes, composed by 13 genes defined 

in sections 6.2.2.1, 6.2.2.2 and 6.2.2.3 was randomly generated. 

Every chromosome represents one model of ANGN. 

Then, the objective functions, F1 and F2, were calculated for each 

chromosome. In the remaining stages, the chromosomes were 

modified (crossover and mutation) and the top nPop were selected 

based on their objective function values. The process was repeated 

several generations (nGEN). Finally, the set of nPop optimal 

chromosomes obtained in the last generation define the Pareto 

Front. 
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GEN=O
Initial Population

(nPop Random chromosomes (nPop models of ANNs)) 

Population size (nPop); Number of generations (nGEN); Number of decision variables (nDec)

CN-1 10 CN-1 11 CN-1 12 CN-1 13CN-1 9CN-1 8CN-1 7CN-1 6CN-1 5CN-1 4CN-1 3CN-1 2CN-1 1

CN 10 CN 11 CN 12 CN 13CN 9CN 8CN 7CN 6CN 5CN 4CN 3CN 2CN 1

... ... ... ..............................
C2 10 C2 11 C2 12 C2 13C2 9C2 8C2 7C2 6C2 5C2 4C2 3C2 2C2 1

C1 10 C1 11 C1 12 C1 13C1 9C1 8C1 7C1 6C1 5C1 4C1 3C1 2C1 1

Chromosome(Chr) =1
C Chr 1

C Chr 2

C Chr 3

C Chr 4

C Chr 5

Initiation of random synaptic weights (w)

Assignment of the transfer functions to 
each ANN layer

Building of the ANN Architecture

Selection of training function, 
momentum constant, learn function, 

perform function, perform ratio and line 
search algorithm

C Chr 6

C Chr 7

C Chr 8

C Chr 9

C Chr 10

C Chr 13

Selection of tranining and validation sets
C Chr 11

C Chr 12

Inputs  of training set

First hidden layer

Second hidden layer

Output layer

ANN Outputs (training)
ANN Targets of the 

training set

Error of the training set

Inputs of validation set

First hidden layer

Second hidden layer

Output layer

ANN Outputs 
(validation)

ANN Targets of 
the validation set

Error of the validation set (Ev,  epoch)

Update the synaptic weights 
of the whole network

Epoch = Epoch+1

Ev,  epoch < Ev,  epoch-1

Yes

No
ANN training finished

Epoch = 1

No

Chr =Chr+1

Yes

Evaluation of 
Objetive Functions

F1 and F2

Sort the initialized 
population

(non-domination-sort)

Comparison and 
Selection

(N/2 Chromosomes)

Evolution Process
(Crossover and 

Mutation)

Comparison and 
Selection

(N Chromosomes)

Pareto Front

Optimal 
Chromosome

(Model of ANGN)

Yes
No

G
EN

=G
EN

+1

GEN=nGEN

Chr =nPop

Refined ANGNs

ANGN selected
According to their 
achievement of the 
problem objetives

Obtaining of the Objetive Functions F1 and F2

tr=Total 
training 
numbers

Training(tr)=1

No

tr=tr+1

Yes

 

Fig. 6.4. Optimization process using NSGA-II. 

A time constraint (maximum 60 s runtime) controlled the 

number of epoch in the training process. Therefore, there is no a 

fixed number of epochs in the training process. If the convergence 
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of the training algorithm is slow, the number of epochs in a 

period of 60 s is lower than if the convergence of the training 

algorithm is faster. Thus, an indirect way, the multiobjetive 

genetic algorithm kept those ANGN settings faster. To predict 

water demand in real time, speed training is a key factor to 

implement these models in real irrigation districts. 

6.2.3.3. Refining Optimal ANGNs 

After obtaining the Pareto front, some of the ANGN models were 

selected according to their achievement of the problem objectives. 

These ANGN models were trained with a random initial 

configuration of synaptic weights. In order to remove this random 

effect that can make the solutions of the perform function are 

positioned in an unwanted location of the error function, these 

ANGNs were trained again without time constraint. Thus, the 

accuracy of the predictions of water demand is lightly improved. 

6.3. Results and Discussion 

Twenty-one potential variables were evaluated in order to choose 

the most representatives for the prediction model. These 

potential variables are composed by weather variables provided by 

the nearest weather station to the study area and the values of 

registered water demand, all of them for the day to predict, the 

previous day and two previous days to predict. After performing 
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a correlation analysis for 21 potential variables, 7 input variables 

in the prediction model were selected: Water demand in the 

previous day (Demand_1) (L s−1);Water demand in the two 

previous days (Demand_2) (L s−1); Average temperature for the day 

to predict (Tave) (°C); Solar radiation for the day to predict (Rad) 

(MJ m−2); Solar radiation in the previous day (Rad_1) (MJ m−2); 

Reference evapotranspiration for the day to predict (ET0) (mm 

day−1); Reference evapotranspiration in the previous day (ET0_1) 

(mm day−1). Therefore, the neuron numbers of the input layer 

were 7 (g=7) and the neuron number of the output layer was 1 

(water demand) (s=1). Thus, the ANGN architecture in all 

predictive models will be ANGN (7, n, m, 1). 

6.3.1. The Pareto Front of nPop Artificial Neuro Genetic 

Networks 

The developed model was applied to BMD (Sector VII) and both 

objective, F1 and F2, were optimized. The random initial 

population consisted of 70 individuals (chromosomes) which 

were composed of 13 genes (Table 6.1). Every gene represents a 

different characteristic of the ANGN. The initial population was 

evolved for 130 generations and the probabilities for crossover 

and mutation were set to 90 % and 10 %, respectively. 

The Pareto front (Fig. 6.5) was obtained in generation 130. This 

graph clearly shows that both objectives (F1 and F2) are not 
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conflicting because most individuals are concentrated in the 

lower right corner of the graph, i.e., the zone of the graph where 

F1 reached the maximum value and F2 obtained the minimum 

value. A detailed view of this region of the Pareto front shows the 

three best individuals which are also highlighted (Fig. 6.5). The 

lowest RMSE value is represented by individual I1. The highest 

value of R2 in the validation period is represented by individual 

I3 and individual I2 is in between the other two individuals. 

This individual I1 was the one the lowest associated error when 

predicting the daily water demand, so I1 represents the most 

accurate predictive model. However, I1 was unable to explain the 

maximum variability of the observed water demand. On the other 

hand, I3 was the best predictive model when explaining the 

variability of the observed data but it was the less accurate 

predictive model. Depending on the objectives of the irrigation 

district manager, such as the procurement of daily electric energy, 

it might not be advisable to have a predictive model that explains 

the maximum variability but with a high prediction error or a 

predictive model that even with a low prediction error was not 

able to represent the variability observed. In that case, individual 

I2 might be the best predictive model. 
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Fig. 6.5. Pareto front for generation 130. 

6.3.2. Refined Optimal ANGN Models 

The three best individuals were trained again (200 training each 

of them) to improve their accuracy of their predictions, as the 

initial values of weights were randomly generated. The three 

ANGN models are shown in Table 6.2. The R2 and RMSE values 

in the validation period were 0.93, 0.90 and 0.92; 55.18 L s−1, 

58.10 L s− 1 and 53.42 L s−1 for I1, I2 and I3, respectively. The 

model I2 reached the lowest R2 value (0.90) and the highest RMSE 

value (58.10 L s−1). Therefore, this network is not the best option 

to predict the daily water demand.  
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Table 6.2. The three best ANGN models. 

Model 1 2 3 

Neuron number of the first hidden 
layer 

22 3 29 

Neuron number of the second 
hidden layer 

14 23 16 

Transfer function of the input layer LogST TanST LogST 

Transfer function of the hidden layers LogST LogST TanST 

Transfer function of the output layer TanST LinT TanST 

Training function RB PRU PRU 

Momentum constant (mc) - - 0.87 

Line search algorithm CS BS CS 

Learn function 
Gradient 
Descent 

Gradient 
Descent 

Gradient 
Descent with 
Momentum 

Data division function InterDD InterDD RDD 

Value of training set (%) 81 75 80 

Perform function mse mse mse 

Performance ratio (γ) - - - 

Validation period 
R2 0.92 0.90 0.93 

RMSE (L s-1) 53.42 58.10 55.18 

SEP 12.72 13.48 12.63 

(-) Parameter not used in this ANGN configuration 

The model I3 was trained with the 80 % of all available data. This 

ANGN model was trained with PRU algorithm (Polak-Ribiére 

Update Algorithm), achieved the highest R2 value (0.93) in the 

validation period. The numbers of neurons in the two hidden 

layers were 29 and 16, respectively. Thus, the neural network 

configuration is represented as [ANGN3 (7, 29 16, 1)]. However, 

this increase of the explained variance level was not linked to the 
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error (RMSE) reduction. Model I1 achieved the lowest RMSE 

value (53.42 L s−1), which was trained with the RB algorithm 

(Resilient Back propagation Algorithm) and it is the most accurate to 

predict irrigation water daily demand according to RMSE value. 

The network configuration was [ANGN1 (7, 22, 14, 1)]. The SEP 

values of the three ANGN models were 12.72 %, 13.48 % and 

12.63 %, respectively. The optimal characteristics of individuals 

I1, I2 and I3 are shown in Table 6.2. 

Scatterplots for models I1 and I3 are presented in Fig. 6.6 which 

also includes the diagrams of the observed and forecasted water 

demands from the validation period. This figure shows that the 

model I3 [ANGN3 (7, 29, 16, 1)] obtained the closest match 

between forecasted and observed water demands over the whole 

daily water demand range. The higher differences in both graphs 

occurred in some peak demand days where the model was not 

been able to predict accurately. There are some reasons why these 

models can not accurately predict some peak values, such as the 

variability of the training set. Thus, it is possible that the models 

I1 and I3 have not been properly trained to reproduce extreme 

values due to the lack of patterns of extreme events in the training 

set. This is the main reason for the difference between the 

predicted and observed values in some peak days. If new training 

patterns were added and the ANGN was trained again, the 
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predictive model would be probably able to predict the daily water 

demand in a wider range of values (Fig. 6.6). 

 

Fig. 6.6. Water demand prediction versus observed values (validation 
period). 

In model I1, the highest difference between the predicted and 

observed values occurred in the days 14 and 44. In the first point 

(day 14), the observed value of water demand on that day was 

751.54 L s−1 while the predicted value was 680.56 L s−1. Thus, the 

difference between both values is slightly higher than 9 %. In the 

day 44, the difference between observed and predicted values was 

22.5 % (the observed and predicted values were 694.42 L s−1 and 

537.72 L s−1, respectively). In model I3, the days 19, 33 and 43 

had the largest difference between the observed and predicted 
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values. The values observed in those three days were 755.60 L s−1, 

133.18 L s−1 and 782.53 L s−1, respectively and the values 

predicted were 646.53 L s−1, 258.10 L s−1 and 634.43 L s−1, 

respectively. These differences represent a 14.4 %, 48.4 % and 

18.9 % for data numbers 19, 33 and 43, respectively. The 

observed values at day 33 is very unusual in the data set used, 

hence the great difference between the observed values and 

predicted values in this point. But even knowing these possible 

differences in the prediction of extreme values, which occurs in a 

very limited number of cases, this tool may help managers in the 

day to day network operation. 

According to the R2 and SEP values the most adequate neural 

network model to predict daily water demand in the Bembézar 

M.D. Irrigation District was the model I3. These values (R2=0.93 

and SEP=12.63 %) improves those obtained by Pulido-Calvo and 

Gutiérrez-Estrada (2009) where R2 was 0.89 and SEP was 20.27 % 

in their hybrid model for daily water demand forecast. 

Consequently, the model developed in this paper explains better 

the variability of observed daily water demand and with smaller 

prediction error in the daily forecasts. There are two main factors 

for this improvement. On the one hand, the number of neurons 

in the first and second hidden layers were optimized by the 

genetic algorithm (NSGA-II) and it influences the accuracy and 

generalization of the predictive model. Thus, a small number of 
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neurons increases the computation speed of the ANGN but also 

increases the prediction error while more neurons increase 

accuracy and computation time of the ANGN and also increases 

the risk to overfitting the observed patterns. Therefore, to obtain 

an optimal generalization of the ANGN is necessary to determine 

the optimum number of neurons that provides the optimal 

ANGN architecture. On the other hand, the relationship 

between training time and accuracy of the obtained model 

determines the performance of the ANGN. There are training 

functions that can converge from ten to one hundred times faster 

than others. It is difficult to predict which training function will 

perform best on a given problem. Thus, the inclusion of the 

training function as a decision variable of the genetic algorithm 

has been decisive to obtain a good generalization of the predictive 

model. 

This predictive model is fed by some climatic variables that are 

estimated by agroclimatic station. Consequently, uncertainty 

caused by the estimation of these climatic variables may influence 

the accuracy of the predictive model. This limitation should be 

taken into account in decision-making of the Irrigation District 

manager. However, the main limitation of the model developed 

in this work is the accuracy in peak water demand days. The 

incorporation of the predictive model in an irrigation district 

should be a dynamic process. Thus, every irrigation season the 
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ANGN should be updated with new data and trained again with 

a longer dataset. Then, the predictive model will probably explain 

better the observed variability and will obtain more accurate 

results even in peak days. 

6.4. Conclusions 

A forecasting model of the daily water demand of an irrigated that 

combines ANNs and genetic algorithm features has been 

developed. The model has been calibrated and validated using 

real data of pumped water. A genetic algorithm was used to find 

the optimal neural network settings to explain the maximum 

water demand variance with minimal estimation error. 

The developed model was applied to predict water demand one-

day ahead in the BMD Irrigation District, Southern Spain. The 

model has predicted 93 % of the variability of the observed water 

demand with a standard error of 12.63 %. Thus, the results show 

that this hybrid methodology improves the accuracy of the 

predictions of previous models with smaller errors. The addition 

of data from new irrigation seasons will improve the accuracy even 

in peak demand days. 

This model can be useful for irrigation districts managers for 

different objectives. If the irrigation district has an electricity tariff 

indexed to pool where the energy price varies each day and each 



 6. Irrigation Demand Forecasting Using Artificial  
Neuro-Genetic Networks 

 

 
155 

 

hourly scheduling period, the developed model will allow 

managers to design strategies to distribute the water consumption 

throughout the day and therefore minimize energy costs. On the 

other hand, if the irrigation district has a superindexed electric 

tariff where energy consumption is paid in advance, the 

developed model can be used to establish a daily irrigation 

schedule that approaches the estimated electricity consumption. 

Thus, the developed model proved to be a powerful tool that, 

without long dataset and time requirements, can be very useful 

for the development of management strategies. 
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7. Prediction of Irrigation Event Occurrence at Farm 
Level using Optimal Decision Trees 

This chapter is currently under review in the journal “Water 
Resources Management”, González Perea R, Camacho Poyato E, Montesinos 

P, Rodríguez Díaz JA (2017) 

  

Abstract. Irrigation water demand is highly variable and depends 

on farmers’ decision about when to irrigate. Their decision affects 

the performance of the irrigation networks. An accurate daily 

prediction of irrigation events occurrence at farm scale is a key 

factor to improve the management of the irrigation districts and 

consequently the sustainability of the irrigated agriculture. In this 

work, a hybrid heuristic methodology that combines Decision 

Trees and Genetic Algorithm has been developed to find the 

optimal decision tree to model farmer’s behaviour, predicting the 

occurrence of irrigation events. The methodology has been tested 

in a real irrigation district and results showed that the optimal 

models developed have been able to predict between 68 % and 

100 % of the positive irrigation events and between 93 % and 100 

% of the negative irrigation events. 

Keywords. Artificial Intelligence, Multiobjective genetic 

algorithm, Irrigation scheduling 
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7.1. Introduction 

Factors such as climate change, world population growth or the 

competition for water resources make freshwater availability a 

large and complex global challenge, mainly in those regions where 

rainfall is scarce and irregular. This is the case of Spain which 

nowadays devotes 73 % of its national freshwater to irrigate 

3.65M ha (INE 2016). The expansion of irrigated land coupled 

with tourism and urbanization has created significant water 

supply pitfalls (García-Ruiz et al. 2011). 

Therefore, improving water use efficiency is a key to maintaining 

the sustainability of the irrigated agriculture. Related to this, 

water demand forecasting could be one of the main tools to 

improve the management of the irrigation districts and help 

managers in the decision-making processes. Previous research 

works focused on the prediction of water demand at irrigation 

district level, using neuro-genetic algorithms (Pulido-Calvo and 

Gutiérrez-Estrada 2009; González Perea et al. 2015). However, 

forecasting water demand at individual farmer level is an 

extremely complex task. 

Apparently, and mainly in on-demand irrigation networks where 

water is continuously available to farmers, water demand is highly 

variable and apparently follows a pure random process. However, 

it depends on climatic factors such as evapotranspiration, climate 
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and on other social and economic factors like local farmers’ 

practices, crops value or energy prices. Due to the high number 

of factors that intervene in the irrigation scheduling, the 

prediction of water demand is complex and the water demand 

forecasting models must consider several variables at the same 

time. As irrigation scheduling is the process of deciding when and 

how much to irrigate, the prediction of the occurrence of 

irrigation events should be the first step to build a robust water 

demand-forecasting model. 

Nowadays, the new telemetry and data acquisition systems 

provide new possibilities that were not available in the past. 

Usually the irrigation districts continuously collect lots of 

information aimed at billing and rarely for improving the 

decision-making processes. However, big-data and artificial 

intelligence techniques are the right tools to integrate all these 

datasets, and extract useful information for managers and give an 

additional value and usefulness to systems installed in the field. 

Decision Tree methods, DT, have been widely used in machine 

learning, expert systems, and multivariate analysis. These 

methods are probably the most highly developed techniques for 

partitioning sample data into a collection of decision rules (Jang 

et al. 1997). However, these DT procedures have been applied to 

several fields of agriculture (Loureiro et al. 2016; Zhang et al. 
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2017), operating rules for reservoirs (Kumar et al. 2013) or urban 

water distribution systems (Loureiro et al. 2016) but no previous 

works have been developed in the field of irrigation forecasting. 

The main limitation of DTs is the determination of either the 

best algorithm to find the best split of the predictive model and 

the best decision tree architecture or the cross-validation process. 

In most works, these variables are determined by trial and error 

so the achievement of an optimal solution is not warrantied. 

Aiming at overcoming this limitation, in this work a Genetic 

Algorithm (GA) has been used to optimize the different 

parameters that make up the Decision Tree. Therefore, a new 

methodology combining Decision Tress and Genetic Algorithm 

has been developed to model farmer’s behaviour and forecast the 

occurrence of irrigation events. The non-sorting multi-objective 

genetic algorithm, NSGA-II (Deb et al. 2002) has been used as 

GA and the predictive model has been implemented in MATLAB 

(Pratap 2010). This methodology has been applied to a real 

irrigation district in Spain. 

7.2. Methodology 

7.2.1. Study area and data source 

The predictive model was developed and tested in Canal del Zujar 

Irrigation District (CZID), located in southwest of Spain. CZID is 
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made up of ten independent hydraulic sectors and convers a total 

irrigated area of 21,141 ha. Among the ten sectorial networks, 

Sector II was selected for this study. This sector covers an irrigated 

area of 2,691 ha being the main crops tomato, maize and rice (90 

% of the total irrigated area). Drip irrigation is the irrigation 

method used in tomato and maize crops while rice is flood 

irrigated. 

A telemetry system operates in Sector II of the CZID to record 

hourly water consumption by means of flowmeters installed at 

hydrant level. This information is transmitted to the central 

offices using mobile communication technology. The water 

consumption records were aggregated at daily level in each 

hydrant for the 2015 irrigation season. In addition, at each 

hydrant, information about the crop type and the farm size were 

also recorded. The daily climatic data of maximum and average 

temperature (°C), average relative humidity (%), precipitation 

event (this input takes a value of 1 when occurs an event of 

precipitation), were obtained from the agroclimatic station placed 

in the irrigation sector. Thus, daily irrigation and daily climatic 

date from 1st January 2015 until 31st December 2015 were used 

in this work. Julian day, weekday and bank holidays were 

additional input recorded for the same period. 
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7.2.2. Problem approach  

The development of a farmer’s behaviour model that predicts the 

daily occurrence of irrigation events, the first step in the irrigation 

scheduling process, is addressed in this work by decision trees and 

genetic algorithms. The occurrence of irrigation events is a binary 

decision and so the prediction model is converted into a binary 

classification problem (irrigation or non irrigation events). On the 

other hand, the main parameters that make up the architecture 

and the training process of a decision trees which are generally 

fixed by trial and error, in this work, they are optimized by the 

multiobjective genetic algorithm NSGA-II. 

7.2.2.1. Decision Trees 

A decision tree is a tree structure composed of internal and 

external nodes connected by branches, which divides the input 

set into mutually exclusive regions (i.e. the Julian day may divide 

the decision trees into several branches). Each of these regions is 

assigned a label, a value, or an action that characterizes its data 

points. The internal nodes, known as decision-making unit, assess 

a decision function to determine which child node to visit next. 

The nodes, which are associated with the labels (e.g. irrigation or 

non irrigation events) that characterize the given data, are known 

as leaves or terminal nodes (external nodes) and they have no 
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child. The classical structure of a typical decision tree is shown in 

Fig. 7.1. 

x<a

y<b y<c

J1 J2 J3 J4

Yes No

Yes Yes NoNo

J1, J2, J3 and J4   Labels
Leaf or terminal node or 

external node

Regions divided by the 
input x

Internal node: the leaf 
J4 is a child node of this 

internal node

Root node

  

Fig. 7.1. Classical structure of a decision tree. 

There are two main types of decision trees: regression and 

classification. The terminal node labels in regression trees are 

constants or equations that specify the forecasted output value of 

a given input vector. However, the leaf nodes of the decision trees 

in classification trees contain a label that indicates the group or 

class (J) (e.g. irrigation or non irrigation events) to which a given 

feature vector belongs. The farmer’s decision about to irrigate or 

not is a classification problem with two classes (J=2), so a 

classification tree is used in this work. Thus, initially the vector 

composed of several attributes (the inputs set such as daily average 

temperature, Julian day or precipitation occurrence) is presented 

to the first node (root node) of the classification tree. Then, the 

branching pattern is defined according to the decision function 
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used. The offshoot continues until a leaf node is reached and a 

label (irrigation or non irrigation) is assigned to the given input 

data. 

The split algorithm of the classification tree determines the 

ramification process. There are several algorithms with different 

search procedures to find the best split on a categorical prediction 

(classification) during the training process. In this work, the four 

most widely used split algorithms have been considered. The first 

one, known as Exact (Breiman et al. 1993), considers all 2CatLevel-1 

– 1 combinations of tree splitting, being CatLevel the number of 

categories or levels of a classification tree. The second algorithm 

used is named Pull Left By Purity (‘PLbyPurity’) (Breiman et al. 

1993). It starts with all CatLevel on the right branch. Then, the 

algorithm moves each category to the left branch to achieve the 

minimum measure of error for the J-classes among the remaining 

levels. Finally, from this sequence, the algorithm chooses the data 

division that has the lowest measure of error. Principal Component-

Based Partitioning (PCA) (Coppersmith et al. 1999) is the third 

algorithm. This algorithm finds a close-to-optimal binary partition 

of the CatLevel levels by searching for a separating hyperplane that 

is perpendicular to the first principal component of the weighted 

covariance matrix of the centred class probability matrix. The last 

split algorithm considered is One Versus All By Class (OVAC) 

(Breiman et al. 15993). It starts with all CatLevel levels on the right 
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branch and for each of the J-classes, the algorithm orders the 

categories based on the probability of each class. 

An optimization procedure, in this case a genetic algorithm, is 

required to choose the best split algorithm for each data set. The 

selected split algorithm will affect the accuracy of the classification 

tree that will be tested with new data set (test set) in the testing 

process. 

7.2.2.2. Error measurement and Decision Tree improvement 

An error measure, E(t), that computes the performance of a node 

t in separating data from different classes is necessary to grow the 

classification tree. The error function is generally referred as the 

impurity function. This function tends to zero when all data 

belong to the same class. By contrast, the impurity function takes 

the maximum value when the data are uniformly distributed 

through all classes. 

In this work, the Gini diversity index, ∅g, (Breiman et al. 1984) has 

been used as impurity function and it is defined for J-classes as 

follow: 

∅𝑔(𝑝1, … , 𝑝𝐽) =  ∑ 𝑝𝑖𝑝𝑗
𝑖≠𝑗

= 1 − ∑ 𝑝𝑗
2

𝐽

𝑗=1
 [7.1] 

where p1, …, pJ are the probability that a case or data in a node 

belongs to class j. 
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The accuracy of the classification tree can be improved using cross 

validation. Cross validation randomly divides the training data 

into k parts. Then, k new trees are trained and the accuracy of the 

forecasting process is validated with the k-1 data set not included 

in each k training. Finally, the last training (kth) gives the trained 

classification tree. However, this optimization technique is quite 

time consuming.  Therefore, a balance between training time and 

model accuracy should be reached. Thus, in this work, the use or 

not of cross validation is one of the variables included in the 

optimization process. 

7.2.2.3. Control of the Classification Tree depth 

A balance between simplicity and forecasting power must be 

considered during the development of a classification tree. A 

classification tree with many leaves is often highly accurate during 

the training process. However, a deep tree tends to overfit in the 

training process and the model accuracy decreases significantly, 

when new data are presented (testing process). In contrast, 

shadow trees do not achieve the highest accuracy during the 

training process, which can be achieved in the testing process. To 

avoid overfitting during de training process, the depth of the 

classification trees must be controlled. There are four 

classification tree characteristics to control the classification tree 

depth. The first one is to fix the maximum number of branch 
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node splits per tree (MaxBranch), which is high in deep trees. 

Another characteristic is the minimum number of observations 

(e.g. days in the cropping season) per leaf (MinObsLeaf). Thus, the 

lower MinObsLeaf value, the deeper tree. The third characteristic 

is the minimum number of observations per branch node 

(MinObsBranch). This number is inversely proportional to the 

depth of the classification tree. The last classification tree 

characteristic to control the tree depth is the maximum categories 

or levels of the classification tree (MaxCatLevel). A large value of 

MaxCatLevel may increase the computation time and memory 

overload. However, a small value can cause a poor model 

accuracy. All these characteristics are often set up by default by 

the computer model used or they are stablished by trial and error. 

However, these values could compromise the accuracy and 

robustness of the predictive model. In this work, these four 

characteristics are variables considered in the optimization 

process. 

7.2.2.4. Classification Tree Optimization with GA 

Classification trees can stablish the different regions that the 

input space may be classified according to the assigned labels. 

However, there are several tree’s characteristics that are often 

chosen by trial and error causing a loss of efficiency, robustness 

or precision of the predictive model. Here, these tree’s 
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characteristics are automatically determined and optimized by the 

multiobjetive GA, NSGA-II (Deb et al. 2002). Thus, the 

optimization of the classification tree has been raised as a two-

objective optimization problem. The first objective function, F1 

maximizes the farmer’s decisions properly classified according to 

the Eq. 7.2: 

𝐹1 = 1 −
∑ 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑡𝑒𝑠𝑡,𝑖
𝑁𝑢𝑚𝑙𝑎𝑠𝑠𝑡𝑒𝑠𝑡
𝑖=1

𝑁𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑡𝑒𝑠𝑡
 [7.2] 

where Misclasstest,i equals 1 when the farmer’s decision i is 

misclassified with respect to the observed farmer’s decision within 

the test set and Numclasstest is the total number of observations of 

the test set, i.e., the total number of farmer’s decisions included 

in the test set. 

The second objective function, F2 (Eq. 7.3), minimizes the 

number of nodes that make up the classification tree. Thus, both 

computing time and the depth of the tree are minimized to 

maximize the efficiency and accuracy of the predictive model. 

𝐹2 = 𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 [7.3] 

where numNodes is the total number of nodes of the classification 

tree. 

NSGA-II algorithm starts the optimization process by the random  



7. Prediction of Irrigation Event Occurrence at Farm Level using 
Optimal Decision Trees 

 

 
175 

 

Initial Population (nPop random Chromosomes)

Testing the Classification treeChr i 

Classification Tree Training for Chri

O
pt

im
iz

at
io

n 
pr

oc
es

s

Population size (nPop); Number of Generations (nGEN); Number of Decision Variables (nDec)

GEN=0

i=1

Obtaining of the Objetive Funtion F1 and F2 

i=nPop No

i = i + 1

Yes

GEN=nGEN

Evaluation of the Objetive Functions F1 and F2

Sorting initial population and selection of nPop/2 chromosomes

Evolution process (Crossover and Mutation)

Selection of nPop chromosomes

Yes

No

GEN=GEN+1

Pareto Front

Optimal Classification tree

nDec1 Assignement of the split algorithm of the 
Classification Tree
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nDec6

Depth control of the classification tree

Chromosome (Chr)

SplitAlgorithm CrossVal MaxBranch MinObsLeaf MinObsBranch MaxCatLevel 

ChrnPopChr1 Chr2 Chr3 ...

  

Fig. 7.2. Flow chart of the optimization process of the classification 
tree. 

generation of an initial population of nPop size. Each 

chromosome of the initial population is composed of 6 genes or 



Optimum management of pressurized irrigation networks at 
different scales using Artificial Intelligent techniques 

 

 
176 

 

decision variables (the split algorithm of the classification tree, the 

use or not of Cross Validation and the four parameters needed to 

control the tree depth). Once the initial population is created, a 

classification tree (Classification treeChr i) is generated and trained 

from each chromosome. After this, every Classification treeChr i is 

tested by the test set and the objective functions F1 and F2 are 

calculated. 

Then, the chromosomes are modified (crossover and mutation) 

and the fittest nPop decision trees are selected based on their 

objective function values. The process is repeated several 

generations (nGEN). Finally, the set of nPop optimal 

chromosomes obtained in the last generation define the Pareto 

Front. Table 7.1 shows the decision variables and its position 

(Gene) within the chromosome (Chr) as well as the ranges of 

values associated to each decision variables. A brief description of 

each decision variable is also shown in Table 7.1. Frequently, 

MaxBranch equals 5 but this parameter depends on the input data 

and so it is difficult to fix it in advance. Thus, in this work, 

MaxBranch varies within a wider range, from 5 to 20. Similarly, 

MinObsLeaf, MinObsBranch and MaxCatLevel ranged from 20 to 

100. 
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Table 7.1. Decision variables of the NSGA-II GA. 

*Integer values between the Range of values 

7.3. Results and Discussion 

The total number of hydrants of CZID Sector II is 649. After data 

processing, 627 hydrants were selected to develop the model of 

the daily farmer’s behaviour model (those hydrants without 

relevant information were removed from the analysis). 

Information about daily hydrant operation (whether farmer 

irrigates (1) o not (0)) each day of 2015 (365 days) was stored. 

Decision 
Variable 

Gene 
Range of 
values* 

Description 

SplitAlgorithm 1 1 to 4 

These genes determine the split 
algorithm of the classification model: 
1: Exact Algorithm (Exact). 
2: Pull Left By Purity Algorithm 
(PLbyPurity). 
3: Principal Component-Based 
Partitioning Algorithm (PCA). 
4: One Versus All By Class Algorithm 
(OVAC). 

CrossVal 2 0 to 1 

Decision about the use of Cross 
Validation: 
0: No Cross Validation. 
1: Cross validation. 

MaxBranch 3 5 to 20 
Maximum number of branch node 
splits per tree. 

MinObsLeaf 4 20 to 100 
Minimum number of observations per 
leaf. 

MinObsBranch 5 20 to 100 
Minimum number of observations per 
branch node. 

MaxCatLevel 6 20 to 100 
Maximum categorical levels of the 
tree. 
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Thus, a total number of 228,855 observations (irrigation events) 

were used in the analysis. From this data set, 183,084 

observations were randomly selected for the training process (80 

% of the total observations) and the remaining 20 % (45,771 

observations) were considered as test set. 

7.3.1. Model inputs 

8 input variables (Table 7.2) have been considered to define 

farmers’ behaviour within the predictive model. These variables 

are related to the irrigation process in the study area. The farmer’s  

Table 7.2. Input variables of the classification tree. 

 

decision about when it is necessary to apply water is related to the 

crop type (I1) and the Julian day (I2) that determines the 

phenological state of the plant and therefore its sensibility to the 

water stress. Bank holidays (I3) and the weekday (I4) are factors 

linked to social aspects of the study region. Daily maximum 

Input Description 

I1 Crop. 

I2 Julian day. 

I3 Bank holiday (false or true). 

I4 Weekday. 

I5 Daily maximum temperature (°C). 

I6 Daily average temperature (°C). 

I7 Daily average relative humidity (%). 

I8 Precipitation event (false or true). 
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temperature (I5), daily average temperature (I6) and daily average 

relative humidity (I7) are variables related to the farmer’s warming 

sensation that also condition his/her decision. Finally, 

precipitation events (I8) has also been taken into, taking a false 

value when the precipitation in a day is null and vice versa. 

7.3.2. The Pareto Front of the optimization process 

Initially the trees’ structure was optimized using the multiobjetive 

NSGA-II. 100 individuals (chromosomes) made up the random 

initial population that evolved for 500 generations evaluating F1 

and F2. 90 % and 10 % were the probabilities considered for 

crossover and mutation. 

The Pareto front (generation 500) obtained in the optimization 

process and the computing time requirements in the training 

process are shown in Fig. 7.3a and 7.3b. The Pareto font shows 

that objectives F1 and F2 are clearly conflicting. Thus, the higher 

depth of the classification trees (higher number of nodes), the 

higher the accuracy of the predictive model but the higher 

computing time requirements (Fig. 7.3b). The fastest 

classification tree (CT3), the most accurate classification tree 

(CT1) and one with intermediate results (CT2) were selected to 

analyse the results. The (CT1) correctly predicted 100 % of the 

irrigation events in the test set requiring 13 % more of computing 

time than (CT3) that could correctly forecast 99.16 % of the 
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irrigation events in the test set. The results obtained by CT2 

ranged between CT1 and CT3. 

 
Fig. 7.3. a) Pareto front for generation 500; b) computing time 

requirements in training process. 

All individuals of the Pareto front were trained with cross 

validation. Thus, the optimization process confirms that cross 

validation is essential to achieve the best results. 

7.3.3. Optimal Classification Trees 

The setting parameters (genes) and objective function values of 

the three selected configurations are shown in Table 7.3. PCA 

algorithm was used by CT1 as split algorithm in the training 

process while OVAC and PLbyPurity were the split algorithms for 
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CT2 and CT3, respectively. The Exact algorithm, which was 

commonly used by other authors in this sort of analysis, was not 

selected in any classification tree.  The configurations obtained in 

the Pareto front highlights that the optimum number of 

categorical levels of the classification tree is small. The variation 

range for MaxCatLevel was from 5 to 20 and the optimal 

MaxCatLevel for CT1 and CT2 was 5 and CT3 had 9 maximum 

categorical levels. MaxBranch was similar for CT1 (36) and CT2 

(35) and slightly lower for CT3(21). The results obtained for both 

MinObsLeaf and MinObsBranch parameters show that a minimum 

number of observations are necessary either by leaf or by branch. 

When the minimum number of observations per leaf is low, the 

minimum number of observation per branch is high. Thus, the 

values of MinObsLeaf and MinObsBranch were 20 and 78, 

respectively, for CT1 while these parameters were 82 and 20, 

respectively, for CT2 and for CT3 they were 31 and 41, 

respectively. 

Table 7.3. Setting parameters (genes) and objective function values of 
CT1, CT2 and CT3. 

Group CT1 CT2 CT3 
SplitAlgorithm PCA OVAC PLbyPurity 
CrossVal yes yes yes 
MaxBranch 36 35 21 
MinObsLeaf 20 82 31 
MinObsBranch 78 20 41 
MaxCatLevel 5 5 9 
F1 1 0.9961 0.9916 
F2 49 37 23 
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With the aim to visualize the performance of each classification 

tree, Table 7.4a, 7.4b and 7.4c shows the confusion matrix for 

CT1, CT2 and CT3, respectively. Confusion matrix is a specific 

table layout where each column of the matrix represents the 

instances in a predicted class while each row represents the 

instances in an actual class. Thus, CT1 was the most accurate 

model with the 100 % of the successful irrigation events. 

Therefore, the number of false positive and false negative were 0. 

The global precision of CT2 was 99.61 %. However, this index is 

sometime misleading and the dimensions of the classes should be 

analysed. The test set contained 9,250 positive irrigation events, 

in other words, the farmer decided 9,250 times to apply irrigation 

water. CT2 classified as no irrigation 2,544 positive irrigation 

events (false negative) and 2,689 negative irrigation events as 

positive irrigation events (false positive). Hence, although the 

global accuracy of the classification model was 99.61 %, CT2 

rightly classified the 73 % of the positive irrigation events and the 

93 % of the total negative irrigation events. Similarly, CT3 

classified the 32 % of the positive irrigation events as false 

negative and only the 7 % was classified as false positive. 80 % of 

the total irrigation events were negative irrigation events in both 

training and test data sets, consequently, CT2 and CT3 learnt 

better to forecast negative than positive irrigation events.  
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Table 7.4. Confusion matrix for CT1 (a), CT2 (b) and CT3(c). 

a)  Predicted values Accuracy 

  Irrigation 
No 

Irrigation 
Positive 

(Irrigation) 
Negative (No 

Irrigation) 

O
bs

er
ve

d 
va

lu
es

 Irrigation 9,250 0 
100 % 100 % 

No 
Irrigation 

0 36,521 

 

b)  Predicted values Accuracy 

  Irrigation 
No 

Irrigation 
Positive 

(Irrigation) 
Negative (No 

Irrigation) 

O
bs

er
ve

d 
va

lu
es

 Irrigation 6,706 2,544 

73 % 93 % 

No 
Irrigation 

2,689 33,823 

 

c)  Predicted values Accuracy 

  Irrigation 
No 

Irrigation 
Positive 

(Irrigation) 
Negative (No 

Irrigation) 

O
bs

er
ve

d 
va

lu
es

 Irrigation 6,329 2,921 

68 % 93 % 

No 
Irrigation 

2,537 33,984 

This limitation of the classification tree could be overcome 

adding more observations to the training set or limiting the 

training set to the days of the effective irrigation season (set days 

with positive irrigation events), avoiding days without irrigation. 
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A scheme of the classification trees of CT1, CT2 and CT3 are 

shown in Fig. 7.4a, 7.4b and 7.4c, respectively. The highest tree 

depth was CT1 with the highest number of nodes. The three 

figures show that the input variables I3 (Bank holiday), I7 (daily 

average humidity) and I8 (Precipitation occurrence) were not 

included in the classification trees. Therefore, despite of the input 

variables selected in this work were previously discussed with 

farmers, the predictive model shows that these three variables are 

not significant to forecast the occurrence of daily irrigation 

events. Probably, the input variables I2 (Julian day) and the 

weekday (I4) implicitly include the input variable I3 (Bank 

holiday). Similarly, the maximum and average temperature are 

connected to the relative humidity and the classification tree 

found this relationship. Finally, although I8 should be important 

in irrigation scheduling, the classification tree did not link it with 

the irrigation decision. It may be explained by the lack of rainfall 

in the central months of the year (typical in the Mediterranean 

climate), when most of the irrigation events occur so this variable 

becomes irrelevant. 
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7.4. Conclusions 

Irrigated agriculture needs new strategies and tools to improve 

water use efficiency. Modelling farmers’ behaviour would help 

irrigation district managers to achieve an integrated management 

of the irrigation district based on the prediction of the occurrence 

of irrigation events, that will aid to set the optimum operational 

point of the pumping station as well as to hire the most 

convenient electrical tariff on futures markets.  

In this work, decision trees were successfully used as classification 

models to forecast when farmers irrigate. The use of optimal 

decision trees obtained from a multi-objective genetic algorithm 

provides successful predictions of when farmers irrigate when 

they are applied to a real case study. 

In the case study, the optimal classification models predicted 

properly between 99.16 % and 100 % of the given data test set. 

This global index of model accuracy can sometime be misleading 

and an assessment of the accuracy of each class should be 

analysed. The classification models predicted between 68 % and 

100 % of the positive irrigation events and between 93 % and 100 

% of the negative irrigation events.  

This work represents the first step in the prediction of the 

irrigation scheduling at farm level, defined by when, how much 
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and for how long to irrigate. So, it focuses on the prediction of 

when irrigation events occur. Future research should be devoted 

to the development of models to fully predict the irrigation 

scheduling at farm level, including irrigation depths and timing. 
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8. Farmer’s Behaviour Modelling by the Prediction of 
the Applied Irrigation Depth using Artificial 

Intelligence 

This chapter is currently under review in the journal “Water 
Resources Research”, González Perea R, Camacho Poyato E, Montesinos P, 

Rodríguez Díaz JA (2017) 

 

Abstract. Irrigation water demands are highly variable and 

depends on the behaviour of each farmer affecting the 

performance of the irrigation networks. The farmer’s behaviour 

is influenced by precise variables and uncertain or imprecise 

variables that conditions the applied irrigation depth. The 

prediction of this farmer´s behaviour is essential for a right 

management of the irrigation districts and the design of the news 

irrigation networks. Hence, in this work a hybrid methodology 

combining Artificial Neural Networks, Fuzzy Logic and Genetic 

Algorithm has been developed with aim to modelling the farmer’s 

behaviour and forecast the daily irrigation depth used by each 

farmer. The developed models have been tested in a real 

Irrigation District, located in Southwest of Spain. Three optimal 

models for the main crops that makes up the irrigation district 

have been achieved. The representability (R2) and the accuracy of 

the predictions (Standard Error Prediction, SEP) were 0.72, 0.87 
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and 0.72; and 22.20 %, 9.80 % and 23.42 %, for the rice, maize 

and tomato crop models, respectively. 

Keywords. Irrigation scheduling, Prediction, ANFIS, Genetic 

Algorithm  

8.1. Introduction 

Climate change and the growing water demand of some economic 

sectors such as industry or agriculture are reducing freshwater 

availability. Irrigated agriculture is the main water user, 

accounting for nearly 85 % of the total water consumption in the 

world (Jury and Vaux, 2007). The sustainability of the irrigated 

agriculture is strongly linked to the improvement of water use 

efficiency. Water demand forecasting could be one of the main 

tools to design accurately new irrigation systems and improve the 

management of older pressurized irrigation networks. Irrigation 

water demands are highly variable. They depend on the behaviour 

of each farmer that is affected by both measurable variables (e.g. 

agroclimatic variables or the size of irrigated area) and non-

measurable variables (e.g. local traditional practices or the days of 

leave during the irrigation season). 

Fuzzy Logic (FL) is an Artificial Intelligence (AI) technique 

initially developed by (Zadeh 1965) to explain the human 

thinking and decision system. FL can be applied as a Fuzzy 
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Inference System (FIS) designed to transform linguistic concepts 

into mathematical and computational structures for daily water 

demand forecasting. FIS is a rule-based system that consists of a 

rule base, a database with membership functions (MFs) which 

determine the membership grades of each input variable to each 

fuzzy set and the combination of fuzzy rules produces the system 

results (inference system). However, the FIS have two major 

limitations. The first restriction is to set the type of membership 

functions and their optimal number. In most works, these 

variables are determined by trial and error so finding an optimal 

solution is not guaranteed. Thus, one of the most popular 

approaches to overcome this constraint is the use of genetic fuzzy 

systems (GFSs), a hybrid combination of FL and Genetic 

Algorithms (GAs). GFSs have been already used for water 

demand forecasting at irrigation districts level (Pulido-Calvo and 

Gutiérrez-Estrada, 2009) but there is no previous work that uses 

GFSs to predict the farmer’s behaviour. The second restriction is 

the inability of FIS to select automatically the MF parameters and 

design the fuzzy rules. However, the combination of Artificial 

Neural Networks (ANNs) and FL, known as Adaptive Neuro 

Fuzzy Inference System (ANFIS), overcomes this drawback. Thus, 

an ANFIS uses the learning ability of the ANN to define fuzzy 

rules. ANFIS has been used for several applications such as the 

intelligent allocation of water resources (Chang et al., 2016) or 
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the optimization of the reservoir operation (Safavi et al., 2013). 

Although this technique has not been applied yet to characterize 

farmer’s behaviour. Therefore, in this work a hybrid methodology 

that combines GFSs and ANFIS has been developed to forecast 

the daily amount of water applied by each farmer. The non-

sorting genetic algorithm, NSGA-II (Deb et al., 2002), is the multi-

objective GA included in the GFS developed in this work.  This 

methodology has been applied to a real irrigation district in Spain 

to predict farmers’ behaviour during 2015 irrigation season. 

8.2. Methodology 

8.2.1. Study area and data source 

The data recorded in Canal del Zujar Irrigation District (CZID) (in 

southwest of Spain) have been the base to develop and test the 

predictive model built in this work.  CZID is made up of ten 

independent hydraulic sectors and covers a total irrigated area of 

21,141 ha. Sector II was selected for this study. This sector covers 

an irrigated area of 2,691 ha where the main crops are tomato, 

maize, grapevine and rice. 

The Sector II of the CZID has a telemetry system with flowmeters 

that records hourly flowrates at hydrants level. For 2015 irrigation 

season, hourly records were aggregated at daily level. In addition, 

information about crop types and sizes of the farms watered from 
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each hydrant was also available. The daily climatic data were 

obtained from the weather station placed in the irrigation sector. 

8.2.2. Problem approach  

Irrigation scheduling process consists of two main steps: 

occurrence of the irrigation event and the amount of water 

applied. In this work, a farmer’s behaviour model that forecast 

the daily irrigation depth applied by each farmer is developed 

using GFS and ANFIS. Thus, the first phase of the model 

building process has been the identification of the main input 

variables. Then, a FIS is designed using an ANFIS model which 

is optimized by the NSGA-II GA. 

8.2.3. Model Inputs Identification  

Although the construction of forecasting methods requires huge 

amount of data, the first step in this process is reducing the 

dimension of the input space to identify the relevant input 

variables within the whole dataset. There are several techniques 

to do this, such as principal components analysis or partial least 

square cardinal components. However, when the selected 

variables are used in nonlinear models, model predictions are 

usually quite poor (Lin et al., 1996). Therefore, in this work, fuzzy 

curves and fuzzy surfaces have been used to easily select the 

independent significant inputs for the hybrid model according to 
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the methodology developed by Lin et al. (1996). Thus, they 

automatically identify the independent significant inputs for 

applying them in the model. Initially, for each potential input 

variable, a plot is created relating every potential input variable to 

target variable to be predicted (DaW, daily amount of water 

applied by each farmer). Then, for each point represented in each 

plot a fuzzy membership function is created according to the 

following expression: 

𝜇𝑣,𝑘(𝑃𝐼𝑣) = exp (−(
𝑃𝐼𝑣,𝑘 − 𝑃𝐼𝑣

𝑏𝑏
)2) [8.1] 

where 𝜇𝑣,𝑘 represents the fuzzy membership function of the point 

k in the plot which relates the potential input variable v and the 

daily amount of water applied by each farmer; 𝑃𝐼𝑣 is the potential 

input variable v; 𝑃𝐼𝑣,𝑘 is the value of the 𝑃𝐼𝑣 in the point k and 

bb takes a value close to two (Lin et al., 1996). 

Hereafter, each fuzzy membership function is defuzzied 

producing a fuzzy curve cv for each potential input 𝑃𝐼𝑣 using: 

𝑐𝑣(𝑃𝐼𝑣) =  
∑ DaW𝑘  ∙ 𝜇𝑣,𝑘(𝑃𝐼𝑣)
𝑀
𝑘=1

∑ 𝜇𝑣,𝑘(𝑃𝐼𝑣)
𝑀
𝑘=1

 [8.2] 

where M is the total number of points in the space 𝑃𝐼𝑣 – DaW 

and 𝐷𝑎𝑊𝑘 is the daily amount of water applied by each farmer in 

the point k of the space 𝑃𝐼𝑣 – DaW. 
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Then, the Mean Square Error (MSE) is computed for each space 

𝑃𝐼𝑣 − 𝑐𝑣: 

𝑀𝑆𝐸𝑐𝑣 = 
1

𝑀
 ∑(𝑐𝑣  ∙ (𝑃𝐼𝑣,𝑘)  − DaW𝑘)

2 

𝑀

𝑘=1

 [8.3] 

where  𝑀𝑆𝐸𝑐𝑣  is the mean square error for the fuzzy curve 𝑐𝑣. 

MSE values of each 𝑐𝑣 are sorted in ascending order. If there is a 

completely random relationship between the PI and the daily 

amount of water applied by each farmer, the fuzzy curve is flat and 

MSEc is large. On the contrary, if MSEc value is small the 

relationship between PI and the daily amount of water applied by 

each farmer is more significant. 

A fuzzy surface is a space with two-dimensional fuzzy curve. 

According to Lin et al. (1996) a fuzzy surface (𝑓𝑠𝑣,𝑗) is defined as 

Eq. 8.4. 

𝑓𝑠𝑣,𝑗(𝑃𝐼𝑣, 𝑃𝐼𝑗) =  
∑ DaW𝑘  ∙ 𝜇𝑣,𝑘(𝑃𝐼𝑣)  ∙  𝜇𝑗,𝑘(𝑃𝐼𝑗) 
𝑀
𝑘=1

∑ 𝜇𝑣,𝑘(𝑃𝐼𝑣)  ∙  𝜇𝑗,𝑘(𝑃𝐼𝑗) 
𝑀
𝑘=1

 [8.4] 

where 𝑃𝐼𝑣 and 𝑃𝐼𝑗 are two potential input variables. 

Then, similarly to Eq. 8.3 the MSE is computed for the fuzzy 

surfaces: 
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𝑀𝑆𝐸𝑓𝑠𝑣,𝑗 = 
1

𝑀
 ∑(𝑓𝑠𝑣,𝑗(𝑃𝐼𝑣, 𝑃𝐼𝑗) − DaW𝑘)

2

𝑀

𝑘=1

 [8.5] 

Fuzzy curves are initially used to rank all the potential input 

variables in ascending order. The potential input variable with the 

smallest MSEc is the most important input variable. According to 

Lin et al. (1996), 20 % of the potential input variables with largest 

MSEc are eliminated. Then, fuzzy surfaces are used to find the 

independent input variables and to eliminate the related input at 

each step. Thus, in each step new fuzzy surfaces are computed and 

20 % of the potential input variable with largest MSEfs are 

eliminated. 

8.2.4. Fuzzy Inference System (FIS)  

Due to their unique features in forecasting complex phenomena, 

FIS is one of the best tools for modelling human thinking (e.g. 

farmers’ decisions). A fuzzy system is a nonlinear relationship 

between inputs and outputs based on a set of “IF-THEN” rules. 

While the antecedent of a rule defines a fuzzy region in the input 

space (e.g. crop, maximum daily temperature, weekday, ...), the 

consequent specifies the output in a fuzzy region.  Fig. 8.1 shows 

a flow chart of a typical three step - FIS. The aim of the first step 

(Fuzzification) is to transfer the input vector into fuzzy If-Then 

rules through the MFs and linguistic variables, i.e. a vector with 

input variables (crisp values) is turned into linguistic variables (e.g. 
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the value of the variable temperature is 25 °C (crisp value) 

becomes to linguistic variable ‘the temperature is HIGH’). The 

rule base and the MFs form the knowledge base (Fig. 8.1). Then, 

the optimal design of the knowledge base is established by an 

ANN (Section 8.2.5). 

Fuzzification

Inference

Defuzzification

MFs Database Rulebase

Input Output

 

Fig. 8.1. Structure of a Fuzzy Inference System (FIS). 

There are two types of FISs, Sugeno-Takagi (TS) FIS and 

Mamdani FIS, which main differences are the way that the 

outputs (Fig. 8.1) that are determined. TS FIS, due to its more 

compact and computationally efficient representation than 

Mamdani FIS, is selected for modelling the farmer’s behaviour. 

The rule’s consequent in TS FIS can be either a linear equation, 

called ‘first -order TS FIS’ or a constant coefficient, called ‘zero-

order TS FIS’. Due to the complex modelling of the farmer’s 

behaviour, first-order TS FIS has been selected. Two examples of 

typical TS FIS rules are: 

Rule 1: If x is A1 and y is B1 Then f1 = p1 · x + q1 · y + r1, 
Rule 2: If x is A2 and x is B2 Then f2 = p2 · x + q2 · y + r2, 
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where x and y are inputs; A, B are linguistic variables; f is the 

consequence of each rule, and p, q and r, are parameters which 

will be determined by a ANN in the following section. 

The inference step (step 2) uses these fuzzy If-Then rules to assign 

a map from fuzzy inputs to fuzzy outputs based on fuzzy 

composition rules (Li, 2006) (e.g. for maize, when temperature is 

HIGH (fuzzy input) the amount of water applied is HIGH (fuzzy 

output). The last step (Defuzzification) transfers fuzzy sets into 

crisp values (e.g. for maize, if temperature is HIGH then the 

amount of water applied is HIGH, fuzzy value, and so the applied 

irrigation depth is 15 mm, crisp value). 

8.2.5. ANFIS  

The main drawback to build up a FIS is the lack of systematic 

procedures to define both MFs parameters and the rule base. 

Nevertheless, the ANNs can learn its structure from the input-

output sets. Thus, in this work, an Adaptive Neuro Fuzzy 

Inference System, ANFIS, resulting from the combination of an 

ANN and a FIS has been created to determine the MFs 

parameters and to find the rule base through the ANN learning 

ability to set the relationship between input and output. Then, 

resulting fuzzy rules depend on the input structure. The 

mathematical background about the ANFIS learning process is 

detailed in Jang et al. (1997). The typical structure of an ANFIS 
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is composed by five layers (Fig. 8.2) where the adaptive nodes 

represents different values depending on the input variables and 

the fixed nodes develop the same function independently of the 

input variables (e.g. product function) (in Fig. 8.2 squares are 

adaptive nodes and circles are fixed nodes). The number of nodes 

in the different layers depends on the number of rules considered. 

Fig. 8.2 is a simple example of a 5 layer-ANFIS with two inputs.  

Its operation is described next. 

µA1

f1 (x,y)x
w1 (x,y)

Layer 1

µA2

Π N

f2 (x,y)N
w2 (x,y)

f (x,y)

Layer 2 Layer 3 Layer 4 Layer 5

µB1

y

µB2

Π 

 

Fig. 8.2. Structure of an Adaptive Neural-Fuzzy Inference System 
(ANFIS). 

The nodes of the first layer (fuzzification layer) use the MFs to get 

outputs (𝑂𝑖
𝑗) (i and j are the node and layer indexes respectively) 

which are calculated according to Eqs. 8.6 and 8.7. 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥) 𝑓𝑜𝑟 𝑖 = 1, 2 [8.6] 

𝑂𝑖
1 = 𝜇𝐵𝑖(𝑦) 𝑓𝑜𝑟 𝑖 = 3, 4 [8.7] 
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where 𝜇𝐴𝑖 and 𝜇𝐵𝑖 are the membership functions whose optimal 

typology will be determined by a GA. 

The layer 2 is composed of rule nodes that calculate the firing 

strength of each rule, wi, as follows: 

𝑂𝑖
2 = 𝑤𝑖  =  𝜇𝐴𝑖(𝑥) ∙ 𝜇𝐵𝑖(𝑦)   𝑓𝑜𝑟 𝑖 = 1, 2 [8.8] 

The average nodes constitute the third layer 3 aimed at the 

calculation of the ratio of the ith node firing strength to the sum 

of all firing strengths. This ration is computed according to the 

following equation: 

𝑂𝑖
3 = 𝑤̅𝑖 = 

𝑤𝑖
𝑤1 + 𝑤2

   𝑓𝑜𝑟 𝑖 = 1, 2 [8.9] 

The following layer (layer 4) is the defuzzification layer that consist 

of the consequent nodes. The output of each node represents the 

contribution of ith rule to the output model and is computed as 

follow: 

𝑂𝑖
4 = 𝑤̅𝑖 ∙ 𝑓𝑖 = 𝑤̅𝑖 ∙ (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)   𝑓𝑜𝑟 𝑖 = 1, 2 [8.10] 

In this work, the optimal values of p, q and r are obtained using 

two possible learning algorithms. Thus, the learning method is a 

decision variable of the GA, that can choose either the 

backpropagation method (Hagan et al., 1996) which is used for 

all parameters of the MFs or the hybrid method (backpropagation 

method + least squares method) where backpropagation method 
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is used for the parameters associated with the input MFs, and least 

squares method is used for the parameters associated with the 

output MFs Backpropagation method is a steepest descent 

method which the parameters of the MFs are moved along the 

negative of the gradient of the performance function while least 

squares method uses the classical least squares problems 

resolution. 

The final layer (layer 5) consists of a single fixed node, the output 

node. This layer computes the overall output as the summation 

of all incoming signals from the previous layer by the following 

equation: 

𝑂𝑖
5 =  𝑓(𝑥, 𝑦) =  ∑𝑤̅𝑖 ∙ 𝑓𝑖

𝑖

=
∑ 𝑤𝑖 ∙ 𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
    𝑓𝑜𝑟 𝑖 = 1, 2 [8.11] 

8.2.6. Optimal ANFIS  

ANFIS can determine the rule base and the MF parameters which 

build the knowledge base of a FIS. However, the number of MFs 

which divides the universe of discourse of every input, the type of 

MFs that characterizes every linguistic label and the learning 

method must be previously defined. In most works, these 

variables are determined by trial and error. On the contrary, in 

this work, the optimal values of these variables are automatically 

determined by the multiobjetive GA NSGA-II (Deb et al., 2002). 

Thus, two objective functions, F1 and F2, are defined to search 
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the values of the ANFIS parameters that better forecast the 

farmer’s behaviour. While F1 maximizes the determination 

coefficient of the testing process (R2
test), F2 minimizes the average 

normalized root mean square error in the same testing process 

(RMSEtest). The Standard Error Prediction (SEP) is also computed 

to compare different behavioural models. According to Ventura 

et al. (1995) SEP is calculated as follow: 

𝑆𝐸𝑃 = 
100

𝑉̅
 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 [8.12] 

where RMSEtest is the RMSE in the test process (mm) and 𝑉̅ is the 

average of observed daily water demand of the test set. 

Fig. 8.3 shows the flow chart of the optimization process of the 

ANFIS model. Firstly, an initial population of nPop size is 

randomly generated by NSGA-II algorithm. Each chromosome of 

the initial population represents an ANFIS model and consists of 

nInput genes which divides the discourse universe of every input 

variable, nInput genes which define the number and type of MFs 

of every input variable and an additional gen for the learning 

method. Therefore, the size of each chromosome is 2·nInput+1. 

After the initial population is created, for each chromosome an 

ANFIS model is generated (FISchr i) and the knowledge base is 

obtained according to the Eqs. 8.6 to 8.11. Every FISchr i is trained 

with a data subset (training set) which were randomly obtained of   
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Input number of FIS model (nInput); Population size (nPop); Number of Generations (nGEN); Number of 
Decision Variables (nDec)
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Fig. 8.3. Flow chart of the optimization process of the FIS model. 
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the total data set. Hereafter, with the aim to assess the reliability 

of the training process every FISchr i is tested by the test set and the 

objective functions F1 and F2 are calculated. 

Then, according to their objective function values the 

chromosomes are selected and modified (crossover and mutation) 

to generate a new set of nPop chromosomes. The process is 

repeated several generations (nGEN). Finally, the set of nPop 

optimal chromosomes obtained in the last generation defines the 

Pareto Front.  

Table 8.1. Decision variables of the NSGA-II GA. 

Decision 
Variable 

Gene position 
Range 

values** 
Description 

Number 
of MFs 

From 1 to 
nInput* 

1 to 10 
These genes determine the discourse 
universe division of each input variable. 

Type of 
MFs 

From nInput +1 
to 2 nInput 

1 to 8 

These genes determine the shape of the 
MFs of each input variable: 
1: Triangular MF (trimf). 
2: Trapezoidal MF (trapmf). 
3: Gaussian MF (gaussmf). 
4: Asymmetric Gaussian MF (gauss2mf). 
5: Generalized bell MF (gbellmf). 
6: Difference between two sigmoidal MF 
(dsigmf). 
7: Product of two sigmoidal MF (psigmf). 
8: Polynomial MF (pimf). 

Learning 
method 

2 nInput +1 0 to 1 

This gene determines the learning 
method of the ANFIS: 
0: Backpropagation method. 
1: Backpropagation method + least 
squares method. 

*nInput: number of the input variables of the predictive model. 
**Integer values between the Range of values. 
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Table 8.1 shows the decision variables and their positions (Gene) 

in the chromosome (Chr) of the GA as well as the value ranges 

that every decision variables can take for the nInput input 

variables of the predictive model. A brief description of each 

decision variable is also shown in Table 8.1. 

8.3. Results and Discussion 

8.3.1. Model inputs 

The methodology developed above has been applied to CZID 

described in Section 8.2.1, during the 2015 irrigation season with 

the aim to predict the daily irrigation depth applied by each 

farmer from the following 18 potential inputs (PI) selected 

according to the methodology developed by Lin et al. (1996) 

which are shown in Table 8.2. As these authors suggest, 20 % of 

the input variables are reduced in each step of the identification 

process. Thus, a summary of the identification process of the 

model input variables is shown in Table 8.3. Finally, the following 

5 inputs variables were identified: Applied irrigation depth in the 

previous day, mm (PI17); Applied irrigation depth in the two 

previous days, mm (PI18); Julian day (PI13); Daily maximum 

relative humidity, % (PI6); Daily average temperature, °C (PI4).  
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Table 8.2. Potential model inputs. 

Potential 
Input 

Description 

PI1 Farm area (ha). 
PI2 Crop. 
PI3 Daily maximum temperature (°C). 
PI4 Daily average temperature (°C). 
PI5 Daily minimum temperature (°C). 
PI6 Daily maximum relative humidity (%). 
PI7 Daily minimum relative humidity (%). 
PI8 Daily average relative humidity (%). 
PI9 Daily maximum wind speed (m s-1). 
PI10 Daily average wind speed (m s-1). 
PI11 Daily rainfall (mm). 

PI12 
Daily rainfall boolean (mm). This variable equals 0 when the 
daily precipitation is null. Otherwise, this variable is 1. 

PI13 Julian day. 
PI14 Weekday. 
PI15 Month. 

PI16 
Boolean Holidays. This variable equals 1 for bank holidays and 
vacation days. Otherwise, this variable is 0. 

PI17 Applied irrigation depth in the previous day, mm. 
PI18 Applied irrigation depth in the two previous days, mm. 

The volume of water that each farmer applies every day depends 

on, essentially, the applied irrigation depth in the previous and 

two previous days, which is considered by the variables PI17 and 

PI18, respectively. There is direct relationship between the applied 

irrigation depth, crop type and its phenological stage (that varies 

along the irrigation season) which is considered by the variable 

PI13. In addition, the farmer’s decision about the amount of water 

to apply is frequently conditioned by the farmer’s warming 

sensation and it is considered by variables PI6 and PI4. Thus, the 

identified variables defined farmers’ behaviour. 
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Table 8.3. Potential model inputs. 

Steps Remaining inputs 
Significance ranked by 

ascending MSE 
Identified 

input 
Eliminated 

inputs 

1 
All inputs, PI1 to 
PI18 

PI17, PI18, PI1, PI13, PI15, 
PI7, PI3, PI8, PI6, PI14, 
PI9, PI4, PI10, PI11, PI5, 
I12, PI2 

PI17 PI5, PI12, PI2 

2 

PI18, PI1, PI13, PI15, 
PI7, PI3, PI8, PI6, 
PI14, PI9, PI4, PI10, 
PI11 

PI18, PI13, PI8, PI14, PI6, 
PI7, PI3, PI4, PI9, PI15, 
PI1, PI10, PI11 

PI18 PI1, PI10, PI11 

3 
PI13, PI8, PI14, PI6, 
PI7, PI3, PI4, PI9, 
PI15, PI1 

PI13, PI14, PI4, PI8, PI7, 
PI6, PI3, PI9, PI15 

PI13 PI9, PI15, PI3 

4 
PI14, PI4, PI8, PI7, 
PI6 

PI6, PI4, PI7, PI8, PI14 PI6 PI8, PI14 

5 PI4, PI7 PI4, PI7 PI4 PI7 

8.3.2. ANFIS optimization 

The NSGA-II optimized the objective functions F1 and F2. The 

random initial population consisted of 100 individuals 

(chromosomes) that evolved 40 generations. In this case study, 

each chromosome was composed by 11 (2·nInput+1) genes 

because of 5 input variables were considered. 

Fig. 8.4 shows the Pareto front obtained in the 40th generation of 

the optimization process. This figure shows two groups of 

solutions which are clearly distinct from one another. This 

difference is related to the last gene of the chromosome (learning 

method). The first group was trained with the backpropagation 

method obtaining a single value, 96.13 mm, for RMSE (F2). 
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Fig. 8.4. Pareto front for generation 40. 

Alternatively, the second group, trained by the backpropagation 

and least squares hybrid method, reached F2 values between 2.41 

mm and 3.84 mm. Furthermore, the F1 values (R2
test) ranged from 

0.35 to 0.42 for the first group while the F1 values for the second 

group ranged from 0.22 to 0.64. Therefore, the Pareto front 

highlights that the hybrid method is the best learning method for 

this case study. 

The Pareto front shown in Fig. 8.4 was obtained by the GA (40th 

generation) using the training and testing sets which contain 

information about all hydrants independently of the crop 

associated with each hydrant. However, the irrigation method 

and the daily water demand for each crop is related with the 
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farmer’s behaviour (Fig. 8.5). Fig. 8.5 shows that the irrigation 

depths applied and the temporal distribution of irrigation events 

for rice were fairly distinct from those applied to maize and 

tomato as well as the temporal distribution of irrigation events 

due to the use different irrigation methods. This fact hinders the 

forecasting process. Therefore, the accuracy of the model 

prediction can be improved grouping the training and testing sets 

according to the irrigation method, i.e., rice (surface irrigation) 

and maize and tomato (drip irrigation) and optimizing again the 

ANFIS models, considering the same number of chromosomes in 

the initial population and generations than for the previous 

ANFIS optimization. 

 
Fig. 8.5. Daily irrigation depth (mm) for each crop during the 

irrigation season. 
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Fig. 8.6a and 8.6b show the Pareto fronts for rice and for maize 

and tomato, respectively, for generation 40. Optimal F1 and F2 

values were considerably improved with the new training and  

 

Fig. 8.6. Pareto fronts for generation 40: a) rice; b) maize and tomato. 

testing sets.  The Pareto front for rice (Fig. 8.6a) shows that there 

were more individuals with backpropagation learning method 

than the first optimization process where all crops were trained 

together. This increment of individuals which were trained with 

backpropagation learning method is an effect of the change in the 

size of the training and testing sets. In this case, the GA algorithm 

did not have enough irrigation records to get better results with 
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with backpropagation learning method, and for the alternative 

method F1 and F2 values varied from 0.49 to 0.72 and from 2.85 

mm to 3.88 mm, respectively. 

The Pareto front for maize and tomato (Fig. 8.6b) shows that all 

individuals were trained with hybrid learning method. 

Consequently, although the representativeness of the predictive 

model (F1) did not improve significantly compared to the first 

model (Fig. 8.4), the accuracy of the predictions was considerably 

increased. Thus, the F1 and F2 values for maize-tomato model 

ranged from 0.44 to 0.64 and 2.25 mm to 2.82 mm, respectively. 

Therefore, the accuracy of the maize-tomato model obtained in 

the 40th generation was 41.40 % better than the model 

considering the three crops together in a later generation (40). 

Fig. 8.5 and Fig. 8.6a and 8.6b highlight that the irrigation 

method is affects the architecture and the results of the predictive 

model. Although the irrigation system was similar for maize and 

tomato, both the cultural practices for each crop and the farmer’s 

behaviour were completely different what would probably have 

affected the model forecasts. Thus, to overcome this limitation 

new training, validation and testing sets were created separating 

maize and tomato, and a new optimization process was carried 

out considering the same GA parameters (generation number, 
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size of the initial population, etc.) than the previous optimization 

processes. 

Fig. 8.7a and 8.7b show the Pareto front of maize and tomato, 

respectively. Like the rice forecast model, the size of the training, 

validation and testing sets of the maize model (Fig. 8.7a) allowed 

some individuals trained by backpropagation learning method in 

the Pareto front. The values of the objective functions evaluated 

by the GA, F1 and F2, were clearly conditioned by the learning 

method. If during the random generation of the initial 

population, individuals were located far away from the optimal 

regions of the solution space, the GA was not able to shift 

solutions towards the optimum’s surrounding region. This 

limitation in the generation of the initial population linked to the 

short size of the training, validation and testing sets resulted in a 

Pareto front with two clusters. For these reasons, the size of the 

initial population should be large enough to distribute evenly 

individuals throughout of solution space. Thus, for the maize 

model, the F1 values ranged from 0.27 to 0.38 for 

backpropagation learning method and from 0.54 to 0.87 for 

hybrid learning method. The F2 values ranged from 1.30 mm to 

2.44 mm for the hybrid learning method and for backpropagation 

learning method was 13.68 mm. 
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Fig. 8.7. Pareto fronts for generation 40: a) maize; b) tomato. 

Fig. 8.7b shows that, for tomato, all individuals were trained with 
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requirements and the maximum and minimum SEP and R2 

values of each Pareto front. The 80 % - 10 % - 10 % proportion 

for training, validation and testing set was always kept in each 

optimization process. While the maximum and minimum SEP 

values in the Pareto front of the first optimization process (Rice + 

Maize + Tomato) were 110 % and 27.52%, respectively, for rice 

were 108.16 % and 22.20 %, respectively and for maize-tomato 

models were 32.85 % and 26.19 %, respectively. The 

optimization time requirements are mainly related to the number 

of observations and so the time requirements for rice only were 

95.3 % lower than for the first optimization process. The 

segregation of the training, validation and testing sets of the 

maize-tomato model into independent sets (maize and tomato) 

improved highly the SEP values. The minimum SEP value for 

each crop was 9.80 % (maize) and 23.42 % (tomato). However, 

the optimization time requirements were similar or higher than 

the maize + tomato and rice + maize + tomato models. 

The maximum and minimum values of R2 were also improved 

when each crop is independently trained, ranging from 0.062 to 

0.72 in the rice model, from 0.27 to 0.87 in the maize model and 

from 0.45 to 0.72 for the tomato model. 
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8.3.3. Optimal ANFIS models 

The best individuals (ANFIS models) in each optimization 

process have been selected. Table 8.5 shows the values of the 

genes that make up every ANFIS model as well as their RMSE, R2 

and SEP values. The number of membership functions of the five 

input variables are quite small taking into account that the 

maximum value was fixed by the GA in 10 and neither of them 

were higher than 4. This fact shows that the limits of the first five 

genes of the chromosome were rightly set and the universe of 

discourse of each input variables were rightly portioned. Table 8.6 

shows the linguistic variables of each fuzzy set which partitioned 

each input variable for the best ANFIS models selected. The 

number of partitions of each universe of discourse depends on 

the degree of precision required for that variable. The higher 

number of partitions of an input variable, the higher actions 

based on this variable that can be carried out in the predictive 

process, i.e., the predicted variable is more conditioned by 

changes of this input variable. The irrigation system, the cultural 

practices and the growth phases of each crop that made up the 

ANFIS model 1 were completely different. Therefore, the input 

variable that relates these crop’s characteristics (Julian day) is not 

a conditioning variable and hence it had only a single fuzzy set 

(the partition of the universe of discourse universe was 1). 

However, in the ANFIS models 2, 4 and 5 devoted to single crops,  
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the crop phenological state was determining to predict the 

amount of irrigation applied. Consequently, this input variable 

was divided into four fuzzy sets: Very Low, Low, High and Very 

High. These partitions match entirely the different phenological 

states of a crop. Except for the Julian day, the fuzzy sets for the 

variables of the ANFIS model 2 (rice) were completely different 

from those of ANFIS models 4 and 5 (maize and tomato, 

respectively). This highlights that the farmer’s behaviour with 

these crops was completely different. While the daily maximum 

relative humidity and the daily average temperature take High, 

Medium or Low values for ANFIS model 2, these variables only 

take High or Low values in ANFIS models 4 and 5. ANFIS models 

4 and 5 had similar fuzzy sets in each input variable. Only the first 

input variable (applied irrigation depth in the previous day) took 

High or Low values for ANFIS model 4 and Very Low, Low, High 

or Very High for ANFIS model 5. Taking into account the five 

ANFIS models, the input variable which had more influence on 

farmer’s behaviour was the daily maximum relative humidity 

because of the universe of discourse was always divided into two 

or three fuzzy sets. 

The most frequent membership functions of the input variables 

were trapezoidal and Gaussian due to the adaptability of their 

parameters. Because to its shape stiffness, Triangular is just used 

by the third input variables of ANFIS model 3. The five models 
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selected were trained under the hybrid learning method 

(Backpropagation method + least squares method) showing a 

better efficiency than backpropagation method. 

The management of each crop was different even with the same 

irrigation method. Thus, when two or more crops were used 

together to train ANFIS models, its representativeness is much 

lower than if a single crop were used. ANFIS model 1 and ANFIS 

model 3 were trained with rice+maize+tomato and maize+tomato, 

respectively and their R2 values were 0.64 in both models, while 

when a single crop was used like in ANFIS model 2 (rice), ANFIS 

model 4 (maize) and ANFIS model 5 (tomato) the R2 values were 

0.72, 0.87 and 0.72, respectively. The accuracy of the prediction 

was also strongly affected by the crop. Thus, when several crops 

were considered in the training process the RMSE values ranged 

from 2.25 mm (SEP value of 26.19 %) for ANFIS model 3 to 2.41 

mm (SEP value of 27.52 %) in ANFIS model 1. However, as it is 

shown in the scatterplots in Fig. 8.8a, 8.8b and 8.8c, when the 

crops were trained independently the RMSE and SEP values were 

improved, being 2.85 mm and 22.20 % for ANFIS model 2 (Fig. 

8.8a), 1.30 mm and 9.80 % for ANFIS model 4 (Fig. 8.8b) and 

1.97 mm and 23.42 % for ANFIS model 5 (Fig. 8.8c). 
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Fig. 8.8. Scatterplots between observed and estimated irrigation 
depths (testing period) for ANFIS models: a) rice, model 2; b) maize, 

model 4; (c) tomato, model 5. 

Fig. 8.9 shows an example of the architecture of the best ANFIS 

model (ANFIS model 4), the MFs and the linguistic labels of the 

five input variables and three examples of the Sugeno-Takagi rules 

that make up the rule base of the FIS. The ANFIS model 4 was 

composed of 96 rules like R3, R27 and R48. The other ANFIS 

models, 2 and 5, had a similar architecture with 36 and 192 rules, 

respectively and the MFs and linguistic labels shown in the Table 

8.5 and 8.6. 
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Fig. 8.9. Architecture of the ANFIS model 4, MF of each input 

variable and three examples of Sugeno-Takagi rules. 
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8.4. Conclusions 

A model of farmer’s behaviour to forecast the daily irrigation 

water used by each farmer has been developed combining 

Artificial Neural Networks, Fuzzy Logic and Genetic Algorithms. 

The predictive model was trained, validated and tested with the 

irrigation depths recorded for the three main crops (rice, maize 

and tomato) cultivated at the Canal del Zújar Irrigation District 

(southwestern Spain). 

Results shown that the farmer’s behaviour and the cultural 

practices are different for each crop even though the irrigation 

system was the same. Thus, when several crops are trained 

together, the representativeness of the model and the accuracy of 

the predictions were considerably worse than when each crop was 

trained independently. Hence, the R2 values for rice, maize and 

tomato model were 0.72, 0.87 and 0.72, respectively and the SEP 

values were 22.20 %, 9.80 % and 23.42 % for these models, 

respectively. The irrigation systems and the size of the training, 

validation and testing sets conditioned the quality of the results. 

Thus, the rice model was lightly worse than maize and tomato 

models. 

Both input variables selected in this work and the linguistic 

variables that portioned the universe of discourse of each of them 

give a great information about the farmer’s management with 
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each crop. This information together with the developed models 

is a powerful tool for irrigation district managers to stablish 

strategies to save energy and water in the irrigation districts as well 

as is a useful tool to design of new irrigation systems, 

synchronizing the design flow rate and pressure rate on hydrant 

and pumping station with the real farmer´s behaviour and their 

real water consumption. Finally, combining these models with 

new models to predict the hourly distribution of the irrigation 

depth, new strategies of electrical energy hiring could be 

formulated. 
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9. Conclusions 

9.1. General conclusions 

▪ Irrigation districts are complex systems where there is a close 

relationship between the water distribution network and the 

on-farm irrigation systems. Thus, a holistic approach 

considering both systems simultaneously is essential to 

achieve an optimal use of water and energy resources.  

▪ Traditional energy saving measures have been reformulated 

including the on-farm irrigation system in the optimization 

process. Consequently, energy cost savings between 15 % and 

27 % were achieved. 

▪ The joint use of crop modelling and precision irrigation offers 

new possibilities to irrigation managers to improve efficiency 

in the use of water and energy resources. In this context, a 

new integrated modelling approach that considers the spatial 

and temporal variability in the field and the uniformity of the 

irrigation system has been developed.  

▪ Artificial Intelligence techniques are powerful tools for 

developing new water and energy saving strategies as well as 

for assisting irrigation district managers in their decision-
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making process. In this research, a predictive model of daily 

water demand at distribution network level have been 

developed with an error in the estimation of the water 

demand of 12.6 %. 

▪ A deeper knowledge of farmers’ behavior in irrigation 

scheduling and water use is important to reduce the 

uncertainty that on-demand management causes on irrigation 

districts managers. In this context, two new models based on 

Decision Trees and fuzzy logic techniques have been 

developed and applied to a real case study. Thanks to this, the 

100 % of the irrigation events in a real irrigation district has 

been properly classified and the daily water demand at farm 

level in a real case study has been predicted with an estimation 

error of 9.80 %. 

9.2. Avenues for future research 

A few future research lines derived from the outputs of this thesis 

are listed below: 

▪ Integration of the electrical tariffs in the farmer’s behavior 

model in order to estimate the energy costs and provide 

incentives to farmers to reduce their water use in peak energy 

price hours. 
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▪ Development of a “Universal Parent Model” which will able 

to classify any irrigation district and build automatically its 

own predictive model of daily water demand.  

▪ Development of a decision support system, DSS, that would 

integrate all the models presented in this thesis.  This DSS 

would be able to carry out a wide range of tasks from making 

water demand predictions, giving recommendations about 

networks sectoring, establishing the optimal operation of the 

pumping station and the optimum irrigation scheduling as 

well as searching for the best strategy to buy electricity based 

on previous experience and futures projections.  

▪ Development of models to optimize the operation of the 

whole irrigation system that combines conventional and on-

site renewable energy sources to reduce the energy supply 

dependence while ensuring the full satisfaction of crop 

irrigation requirements.  

▪ Integration of all these methodologies in tools based on ICTs 

to provide optimal solutions within a user-friendly interface 

to be useful for farmers and managers.  
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9. Conclusiones 

9.1. Conclusiones generales 

▪ Las comunidades de regantes son sistemas complejos donde 

existe una estrecha relación entre la red de distribución de 

agua y los sistemas de riego en parcela. Así, para conseguir un 

uso óptimo de los recursos agua y energía es esencial aplicar 

un enfoque probabilístico que tenga en cuenta ambos 

sistemas conjuntamente. 

▪ Las tradicionales medidas de ahorro energético han sido 

reformuladas incluyendo el sistema de riego en parcela en el 

proceso de optimización. Mediante la reformulación de estas 

medidas se ha conseguido un ahorro de energía entre el 25 % 

y el 27 %. 

▪ El uso conjunto de la modelización de cultivos y el riego de 

precisión ofrece nuevas posibilidades a los gestores de riego 

para mejorar su actual eficiencia en el uso de agua y energía. 

En este contexto, se ha desarrollado un nuevo enfoque de 

modelo integral que considera la variabilidad espacial y 

temporal en la parcela y la uniformidad del sistema de riego. 
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▪ La Inteligencia Artificial es una herramienta potente para el 

desarrollo de nuevas estrategias de ahorro de agua y energía y 

proporciona una útil herramienta de decisión para los 

gestores de las comunidades de regantes. En esta tesis, se ha 

desarrollado un modelo predictivo de demanda diaria de agua 

a escala de red de distribución con error en la estimación del 

12.63 %. 

▪ Conocer en profundidad el comportamiento del agricultor 

sobre el uso que hace del agua y la programación del riego es 

esencial para reducir la incertidumbre que los sistemas de 

riego organizados a la demanda ocasionan a los gestores de las 

comunidades de regantes. En este contexto, se han 

desarrollado dos nuevos modelos basados en Árboles de 

Decisión y técnicas de lógica difusa y han sido aplicados a un 

caso de estudio real. Gracias a la aplicación de estos modelos 

en un caso de estudio real, se ha podido clasificar 

correctamente el 100 % de los eventos de riego y se ha podido 

predecir la demanda de agua de riego de forma horaria con 

un error del 9.80 %. 

9.2. Nuevas líneas de investigación derivadas de esta tesis 

A continuación se enumeran algunas líneas de investigación 

futuras derivadas de los resultados de esta tesis: 
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▪ La integración de las tarifas eléctricas en el modelo del 

comportamiento del agricultor que estime los costes 

energéticos y proporcione incentivos al agricultor para reducir 

su uso de agua durante las horas donde el precio de la energía 

es mayor. 

▪ El desarrollo de un “Modelo Universal Padre” que sea capaz 

de clasificar cualquier comunidad de regantes y construir de 

forma automática su propio modelo predictivo de demanda 

diaria de agua. 

▪ Desarrollar un sistema de apoyo a la decisión que integre 

todos los modelos presentados en esta tesis y sea capaz no sólo 

de hacer predicciones sino de dar recomendaciones sobre la 

sectorización de las redes, el punto óptimo de funcionamiento 

de la estación de bombeo o la mejor estrategia de compra de 

energía basándose en experiencias previas y estableciendo 

proyecciones futuras. 

▪ Desarrollar modelos de optimización que combinen la fuente 

de energía convencional con fuentes de energía renovables 

para reducir la dependencia energética y que asegure la total 

satisfacción de las necesidades de riego de los cultivos. 

▪ Integración de todas estas metodologías en herramientas 

basadas en las nuevas Tecnologías de la Comunicación y de la 

Información (TICs) proporcionando soluciones óptimas bajo 
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una interface intuitiva y de fácil uso para los agricultores y 

gestores. 



 

 
 
 

 


