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Abstract  

Forecasting automobile demand via 
Artificial Neural Networks and Neuro-Fuzzy Systems 

By Armin Niaki 
Master of Science in Industrial Engineering 

West Virginia University 
Majid Jaridi, Ph.D., Chair 

 

 

 

 
The objective of this research is to obtain an accurate forecasting model for the demand 
for automobiles in Iran’s domestic market. The model is constructed using production 
data for vehicles manufactured from 2006 to 2016, by Iranian car makers. The increasing 
demand for transportation and automobiles in Iran necessitated an accurate forecasting 
model for car manufacturing companies in Iran so that future demand is met. Demand is 
deduced as a function of the historical data. The monthly gold, rubber, and iron ore prices 
along with the monthly commodity metals price index and the Stock index of Iran are  
 
 

Artificial neural network (ANN) and artificial neuro-fuzzy system (ANFIS) have been 
utilized in many fields such as energy consumption and load forecasting fields. The 
performances of the methodologies are investigated towards obtaining the most accurate 
forecasting model in terms of the forecast Mean Absolute Percentage Error (MAPE). It 
was concluded that the feedforward multi-layer perceptron network with back-
propagation and the Levenberg-Marquardt learning algorithm provides forecasts with the 
lowest MAPE (5.85%) among the other models. Further development of the ANN 
network based on more data is recommended to enhance the model and obtain more 
accurate networks and subsequently improved forecasts. 
 

 

 

 

 

Keywords: Forecasting, Time Series, Artificial Intelligence, Artificial Neural Networks, 
Neuro-fuzzy systems, Adaptive Neuro-Fuzzy Inference System, Intelligent Algorithms, 
Box-Jenkins modeling.



 iii 

 

Acknowledgements 

I would first like to thank my parents for endlessly supporting me throughout the years, 
especially when I decided to make the transition from Architecture to Industrial 
Engineering. They continue to be my primary source of motivation and determination. It 
would be impossible to stand where I stand, without their support. 
  
I would also like to thank and acknowledge my advisor and mentor, Professor Jaridi for 
all his support and kindness throughout my time at West Virginia University. I would not 
have made it this far without his guidance and generosity.  
 
Also, I would like to thank Dr. Iskander and Dr. Creese for their support and guidance 
during the first year of my transition into Industrial Engineering. In addition, I would like 
to thank my thesis committee members, Dr. Currie and Dr. Yang for their helpful insight 
and being on my thesis committee.    



 iv 

Table of Contents 

Abstract .............................................................................................................................. ii 
Acknowledgements .......................................................................................................... iii 
List of Figures .................................................................................................................... v 
List of Tables .................................................................................................................... vi 
List of Abbreviations ....................................................................................................... vi 
CHAPTER 1 | Introduction ............................................................................................. 1 

1.1. Introduction .................................................................................................................. 1 
1.2. Problem Statement ....................................................................................................... 2 
1.3. Research Objective ....................................................................................................... 2 
1.4. Research Scope ............................................................................................................. 3 
1.5. Methodology .................................................................................................................. 3 
1.6. Software ......................................................................................................................... 4 
1.7. Assumptions & Conditions .......................................................................................... 5 

CHAPTER 2 | Literature Review .................................................................................... 6 
CHAPTER 3 | Data Description & Remedial Procedures .......................................... 14 

3.1. Data Description ............................................................................................................... 14 
3.2. Correlation Analysis ......................................................................................................... 19 
3.2. Cleanup & Diagnostic Procedures .................................................................................. 20 

CHAPTER 4 | Methodology ........................................................................................... 22 
4.1. Definition of Forecasting .................................................................................................. 22 
4.2. Necessity of Forecasting ................................................................................................... 22 
4.3. Forecasting Methods ........................................................................................................ 23 

4.2.1. Qualitative Methods .................................................................................................... 23 
4.2.2. Quantitative Methods .................................................................................................. 24 

4.3. Forecasting Accuracy ....................................................................................................... 49 
CHAPTER 5 | Results ..................................................................................................... 51 

5.1. Box-Jenkins model ............................................................................................................ 53 
5.2. Simple Linear Regression ................................................................................................ 60 
5.3. Exponential growth model ............................................................................................... 62 
5.4. Quadratic model ............................................................................................................... 64 
5.5. Artificial Neural Network (ANN) model ........................................................................ 66 
5.6. Adaptive Neuro-Fuzzy Inference System (ANFIS) model ............................................ 72 
5.7. Comparisons ..................................................................................................................... 77 

CHAPTER 6 | Conclusion & future work .................................................................... 79 

References ........................................................................................................................ 82 
Referenced Papers ................................................................................................................... 82 
Referenced Books (Manuals & Technical reports included) ............................................... 84 

Appendix .......................................................................................................................... 86 
Code .......................................................................................................................................... 86 

 



 v 

List of Figures 

Figure 3.1 – Monthly production quantity of sedan vehicles in Iran 
Figure 3.2 – Monthly gold price per ounce 
Figure 3.3 – commodity metals price index 
Figure 3.4 – Monthly rubber price   
Figure 3.5 – Stock Index  
Figure 3.6 – Monthly Iron ore price 
Figure 3.7 – Monthly production quantity of sedan vehicles in Iran (2006-2016) 
Figure 4.1 – Sketch of four connecting neurons  
Figure 4.2 – Schematic Representation of a Perceptron 
Figure 4.3 – The Scheme of Backpropagation algorithm  
Figure 4.4 – ANFIS Functional Blocks  
Figure 4.5 – ANFIS Structure  
Figure 4.6 – Straight Line Membership Functions  
Figure 4.7 – Gaussian and Bell membership functions  
Figure 4.8 – Sigmoidal Membership functions  
Figure 4.9 – Polynomial Membership functions  
Figure 5.1 – Production time series, first 116 months (2006-2016) 
Figure 5.2 – ACF of Residuals 
Figure 5.3 – PACF of Residuals 
Figure 5.4 – ARIMA (1,3,1) nonseasonal Model residual plots 
Figure 5.5 – Box-Cox transformation plot 
Figure 5.6 – Linear Model residual plots 
Figure 5.7 – Linear Model trend analysis plot 
Figure 5.8 – Exponential Growth Model residual plots 
Figure 5.9 – Exponential growth trend analysis plots 
Figure 5.10 – Quadratic Model residual plots 
Figure 5.11 – Quadratic Model trend analysis plot 
Figure 5.12 – Neural network illustration 
Figure 5.13 – Validation Performance 
Figure 5.14 – Regression plots 
Figure 5.15 – Error Autocorrelation 
Figure 5.16 – Error Histogram 
Figure 5.17 – Neural network performance 
Figure 5.18 – ANFIS highlights  
Figure 5.19 – ANFIS structure illustration 
Figure 5.20 – ANFIS toolbox  
Figure 5.21 – ANFIS structure illustration 
Figure 5.22 – Time-series graph with fitted models & forecasts 
Figure 6.11 – Forecasts 
 
 



 vi 

List of Tables  

Table 3.1 – First 108 Monthly production sedan vehicles in Iran (Raw data, 2006-2016) 
Table 3.2 – Correlation values 
Table 3.3 – Correlation P-Values 
Table 4.1 - Perceptron vs. RBF Network 
Table 4.2 – Learning algorithm features 
Table 5.1 – ARIMA (1,3,1) parameter estimates 
Table 5.2 – Modified Ljung-Box statistic 
Table 5.3 – ARIMA (1,3,1) nonseasonal Model Forecasts and MAPE 
Table 5.4 – ARIMA (robust) Model forecasts and MAPE 
Table 5.5 – Linear Model Forecasts and MAPE 
Table 5.6 – Exponential Growth Model Forecasts and MAPE 
Table 5.7 – Quadratic Model Forecasts and MAPE 
Table 5.8 – ANN Model Forecasts and MAPE 
Table 5.9 – ANFIS, sub-clustering Model Forecasts and MAPE 
Table 5.10 – ANFIS, grid partitioning model Forecasts and MAPE 
Table 5.11 – Model MAPEs 
 

List of Abbreviations 

ACF   Autocorrelation Function 
AI   Artificial Intelligence 
AR   Autoregressive 
ANFIS   Adaptive Neuro-Fuzzy Inference System 
ANN   Artificial Neural Networks 
ARIMA  Autoregressive integrated moving average model 
ARMA  Autoregressive moving average 
BS   Backward Shift 
FIS   Fuzzy Inference System 
GARCH  Generalized auto regressive conditional heteroscedasticity 
GDP   Gross Domestic Product 
LSE   Least Squared Error method 
MA   Moving Average 
MAPE   Mean Absolute Percentage Error 
MF   Membership Function 
MLP   Multi-layer Perceptron 
MPE   Mean Percentage Error 
MSE   Mean Squared Error 
OECD   Organization for Economic Co-operation and Development 
PACF   Partial-autocorrelation Function 
RBF   Radial Basis Function network 
SMP   System Marginal Price 
SD   Similar Days 
SAIPA   Société Anonyme Iranienne de Production Automobile  
Tan-Sig  Sigmoid and Tangent function 



 1 

 
CHAPTER 1 | Introduction 

1.1.Introduction 

To forecast is to predict or estimate a future event or trend. Manufacturing industries 

have been among ever-growing in most countries since the industrial revolution in the 

18th century. Transportation necessities have played an important role in the development 

of the automotive manufacturing industry. Automotive developments have an imminent 

role among manufacturing industries and consist of highly complex projects (Nagel and 

Singleton, 2011). The complex projects in the automotive manufacturing industries 

present numerous challenges in management throughout the time horizon of projects. 

Furthermore, these projects are driven by shortening life cycle strategies and the 

continuous diversification of the manufacturing industry (Nurmi, Marttin, Rossi, 2007).  
 

Automotive development projects are characterized as chronological, localized and 

objective work tasks using resources such as consumables and labor (Schwarze, 2010). 

An efficient process flow may be obtained through the management of project resources. 

Increasing customer requirements has led to intense competition in innovation between 

manufacturers, which has presented new challenges in the industry (Von Cube et al. 

2014). 
 

Forecasting methods are utilized by the automotive industries to foresee the market 

demand for their manufactured products. Production is the primary concern of 

manufacturing operations and is specified based on the forecast of the market demand, 

highlighting the necessity of forecasting (Haj-Shir Mohammadi, 2006). Forecasting 

offers valuable applications in inventory systems, production and product distribution 

(Fatemi-Ghomi, 2004). Moreover, forecasting presents applications in quality control, 

financial planning and investment analysis (Montgomery et al., 1990). 
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1.2.Problem Statement 

The automotive industry is driven by numerous factors, each capable of significantly 

influencing the operations of manufacturing plants. The market demand is among such 

influential factors, which is of crucial importance for manufacturing operations. 

Automotive industries vastly benefit from the ability to forecast the demand for their 

products as it provides opportunities to allocate resources and manage operations in 

advance efficiently.  

Given the increasing demand for transportation and automobiles in Iran throughout the 

past half century and no existing forecasting models for the demand, an accurate model 

would provide valuable information for manufacturing companies in the industry. 

Moreover, the lack of reliable forecasting models is mainly due to inaccessible data and 

secrecy among competing manufacturers. 

1.3.Research Objective 

The core objective of this research is to obtain an accurate forecasting model for the 

demand for automobiles in Iran’s domestic market. The models are constructed on 

inferences made from the production data of vehicles manufactured from 2006 to 2016, 

obtained from Iran’s Ministry of Industry, Mine & Trade’s yearly reports, alongside other 

further mentioned sources. The forecasting model will provide monthly forecasts for the 

automobile demand in the domestic market. The prior will provide manufacturing 

industries with valuable information regarding the market demand, which will 

significantly influence the operations of manufacturing companies. Furthermore, other 

variables of interest mentioned before are considered to enhance the forecasting model, 

alongside providing opportunities to draw further statistical conclusions. The variables, 

within the prior specified time horizon, are as follows:  

• The Monthly gold price (dollar per ounce). 

• The Monthly Commodity Metals price index. 
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• The Monthly rubber price (cents per pound). 

• The Monthly Stock index of Iran. 

• The Monthly Iron ore price (dollar per dry metric ton). 
 

Note that the five selected variables were chosen out of 9 variables according to the 

correlation value to the response. Variables with high significant correlation are selected, 

as demonstrated further in chapter 3. 

1.4.Research Scope 

This research focuses on the production data of automobiles produced from March 2006 

to October 2016 in Iran. The demand rate for automobiles is inferred from the production 

data (e.g. production is directly related to demand due to the specific market 

characteristics assumed). Moreover, statistical inferences are made about the specified 

variables of interest that potentially have a relationship to the market demand. Note that 

based on preliminary surveys, little to none research has been performed within this area.  

A significant amount of historical data is required to construct an accurate forecasting 

model. “Information is crucial for any decision making and development of planning 

decisions. Reliable and quality information facilitates and improves decision making 

processes. Any decision-making process requires analysis of the past and present states of 

a sector and a vision about its future (Bhattacharyya, 2011).” 

1.5.Methodology 

Forecasting processes pursue the objective of predicting future events or conditions based 

on historical data (Levenbach and Cleary, 2006). Forecasting methods are typically 

divided into the following methods: 

• Quantitative Methods 

• Qualitative Methods 

All quantitative forecasting methods use the same principle: historical data is analyzed to 

identify a pattern or trend that explains the process. After the pattern is determined, it is 

extrapolated into the future to obtain predictions. On the contrary, qualitative methods are 
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built to deal with long-term trends wherein the historical data and patterns are essential to 

apply statistical forecasting methods, only were not ready or did not apply (Wheelwright 

and Makridakis, 1985). 

In this research, quantitative methods are utilized to obtain forecasting models for 

automobile demand in Iran. As demonstrated further in chapter 4, quantitative methods 

are divided into four general groups: 

• Time Series 

• Causal 

• Neural networks 

• Neuro-fuzzy systems 

Artificial neural networks & neuro-fuzzy systems are the primary forecasting methods in 

this research, which will further be compared based on the specified performance 

measures. Also, Causal models are utilized in regards to the variables of interest. 

Furthermore, the Box-Jenkins methods also serve as a benchmark for comparison 

between the employed methods.  

1.6.Software 

The software used in this research is R, MATLAB, and Minitab. MATLAB can analyze 

data via Neural Networks. “MATLAB is a high-performance language for technical 

computing. It integrates computation, visualization, and programming in an easy to use 

environment (Mathworks’ INC., 2001).” R is a statistical software used for Time Series 

analysis in this research. “R provides a wide variety of statistical (linear and nonlinear 

modeling, classical statistical tests, time-series analysis, classification, clustering,) and 

graphical techniques, and is highly extensible (R Foundation, 2016).” 
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1.7.Assumptions & Conditions 

The following assumptions are necessary for this research: 
 

• The forecasts performed in this research are based on limited historical data of 

the automobile production rates. 

• The market demand for automobiles is inferred from the observed automobile 

production rate e.g. increase of production constitutes a prior increase in 

demand. 

• The database is available for all of the collected data. 

• The Neural Networks tool available in MATLAB is capable of forecasting 

based on the data. 

• The Box-Jenkins procedure in Minitab is capable of forecasting based on the 

data. 

• The process is assumed to be a stationary process. A stationary process is 

defined as a stochastic process that maintains the same joint probability 

distribution through time shifts. Note that differencing is applied to achieve 

stationarity for processes that are not stationary. 

• The process is assumed to be an ergodic process. An ergodic process is defined 

as a stochastic process that can be deduced from a single sufficient random 

sample of the process (Leipzig: J.A, Barth. 1898). 

• Expected value of the error is equal to zero; moreover, the variance is equal to 

!"
#. 
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CHAPTER 2 | Literature Review  
This chapter covers intelligent algorithms forecasting techniques, time series forecasting 

algorithms, and a comparative discussion of reviewed papers alongside their 

methodologies and findings. 
 

“Forecasting can be formed in many different ways. The method chosen for forecast 

depends on the purpose and importance of the intended forecasts (Pankratz, 1983).” As 

mentioned earlier in Chapter 1, uncertainty associated with the future of processes make 

forecasts entirely necessary. “Energy is indispensable to the function of every industry 

and the everyday life of individuals, and, therefore it is considered as a national security 

issue. The main areas of energy use are the residential, commercial, industrial and 

transportation sectors (Levenback and Cleary, 2006).” Based on the importance of 

energy, specifically in the industrial and manufacturing sectors, forecasting proves to be 

an imminent tool. “Analyses of energy problems have attracted interdisciplinary interests 

and researchers from various fields that have left their impressions on these studies. The 

influence of engineering, operations research and other decision support systems in the 

field of energy and economics has been profound (Bhattacharyya, 2011).” The reviewed 

journal papers for this research suggest a rapid and increasing growth in the usage of 

artificial intelligence in the forecasting field.  
 

A forecasting method which was performed by the exponential weighted moving average 

method was presented 57 years ago by Muth (1960). This study included simple and 

seasonal effects that provided a linear trend and utilized actual data to examine this 

modeling methodology. Furthermore, Trigg’s study of automatic monitoring of 

forecasting processes uses a first-order exponential model based on data containing 

jumps.  
 

Harrison (1962) performed a study for short term sales forecasting. Several short-term 

sales prediction methods are examined in this study. These methods include the Box-

Jenkins method and Brown’s method. This study demonstrates that the multi-parameter 

procedures for short-term forecasting of sales do not provide significantly better results 
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compared to the other methods. Harrison recommends the one parameter exponential 

procedure to forecast non-seasonal sales data.  
 

Crane & Eeatly (1967) introduce a two stage exponential model with exponential 

smoothing and multiple regression. The exponential process forecasts were applied along 

with other independent variables in constructing a multiple regression model. Economic 

data series related to bank deposits were modeled with the use of this combined 

forecasting method. Furthermore, Tsokos (1971) investigated forecasting models for 

short-term forecasting of economic data. Some of the processes such as the 

autoregressive, moving average and the mixture of the two were studied in short-term 

forecasting models for commodity contracts. These forecasts were evaluated based on the 

minimum residual variance performance measure. 
 

Fox (1972) investigates outliers in time series. Two general types of outliers are 

considered in this study. The first type is the gross error in the sample of observations. 

The second type of outlier affects not only present observations but also subsequent 

observations as well. A ratio performance measure was introduced to examine the 

problems caused by the outliers.  
 

Box & Jenkins (1994) developed the multiplicative ARIMA model based on airline data. 

The issue of seasonal variation, not addressed by the classical ARIMA model, is adopted 

in this model. Furthermore, once the period of a time series is identified, the 

multiplicative ARIMA model can be utilized to forecast this series with more precision 

compared to the classical ARIMA model. 
 

Forecasts are necessary given the fact that not only is the future uncertain for any realistic 

process, but making decisions based on accurate forecasts are far more efficient 

compared to a decision that is not based on forecasts. Lu et al. (1993) attempted to 

evaluate artificial neural networks as a technique for short-term load forecasting. This 

study presents the obtained results from investigating whether the artificial neural 

network model is system dependent, and case dependent based on the collected data from 

two utilities. Moreover, the effectiveness of a next 24 hour artificial neural networks 

(ANN) model for predicting a 24-hour load profile at one time is compared with the 
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traditional next one-hour artificial neural networks model. The artificial neural networks 

model in this study utilizes the feedforward and backpropagation network. The utilized 

artificial neural networks model in this study proved to be an extremely useful tool for 

short-term load forecasting. Artificial neural networks models have presented reliable and 

promising results in load forecasting. Also, the last study indicates that in general, the 

artificial neural network model is case independent except for cases that season changing 

periods or abrupt variations in the temperature and load conditions are present. 

Furthermore, based on this study, the initial testing of another 24 hour ANN model is 

recommended to be further investigated. 
 

Szkuta et al. (1999) presented a System Marginal Price (SMP) short-term forecasting 

implementation via the ANN computing technique. This approach utilizes a three-layered 

ANN paradigm with backpropagation. The retrospective SMP real world historical data, 

acquired from the deregulated Victorian power system was implemented for training and 

testing purposes. The results presented, confirm the importance of the ANN based 

approach in forecasting the SMP. 
 

Hippert et al. (2001) evaluated and reviewed many papers that demonstrated the 

application of artificial neural networks for short-time load forecasting. Some scholars 

have described and published successful experiments and tests in forecasting via artificial 

neural networks. Moshiri and Foroutan (2005) compared artificial neural networks with 

traditional statistical nonlinear (GARCH) and linear (ARIMA) models. The intent of their 

research was to obtain more accurate results in forecasting the daily oil price. The results 

indicate that the artificial neural network model provides more accurate results compared 

to the other models. 
 

Tarafdar and Kashtiban (2005) demonstrated artificial neural networks’ modeling 

capabilities in power systems. In their paper, the main advantages of applying neural 

networks modeling are described as follows: 
 

• Artificial neural networks models are more capable of dealing with stochastic 

variations of the scheduled operation point with increasing data, 
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• Artificial neural network models are very fast and provide online processing and 

classification, and 

• Artificial neural network models have the ability of implicit nonlinear modeling 

alongside filtering system data. 
 

Based on the results of this paper, several other types of research indicate that artificial 

neural networks’ modeling relies on conventional simulations to produce training vectors 

(especially if the historical data is noisy). However, significant challenges such as the 

training time, selection of training vector, upgrading trained neural nets and the 

integration of technologies remain to be tackled in the usage of artificial neural network 

models for power systems. 
 

Sinaie et al. (2005) investigated the Tehran stock index forecasting through the usage of 

artificial neural network modeling and compared its performance with the ARIMA 

model. The results indicate that artificial neural networks with the back propagation 

training algorithm had the ability to forecast more accurately than the linear ARIMA 

model. 
 

Ahmari Nejad et al. (2005) studied electricity price forecasting in the energy market. The 

underlying idea in this paper is to analyze the given problem regarding energy demand 

and the customers’ behavior throughout the energy market. Artificial neural networks 

modeling with a multi-layer perceptron architecture is utilized in this research. Out of the 

total 1,036 data points, 836 were designated for training and the remaining 200 data 

points were used to test the accuracy of the constructed model. Based on the results, the 

artificial neural network model provided satisfactory results in forecasting the electricity 

price. 
 

Sarafraz and Afsar (2005) attempted to predict the price of gold via regression and an 

ANFIS model. In this study, a total of 520 data points were taken into consideration. 260 

data points were used as training data, 130 data points as test data and the remaining 130 

points were designated as evaluation data. The results indicate that the regression model 

is capable of predicting gold price with 93% accuracy. However, the neuro-fuzzy system 

provides a 99.23% accuracy in forecasting the price of gold. 
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A hybrid neural network and fuzzy logic model based on theoretical arguments in 

Takagi-Sugeno model (ANFIS) were utilized by Azar and Afsar (2006) to forecast stock 

prices. In this paper, the proposed fuzzy neural network model was compared to the 

ARIMA model. Results indicate that the fuzzy neural network model provides more 

accurate forecasts than the ARIMA model. Also, the fuzzy neural network system 

presented a unique rapid convergence alongside high precision to predict stock prices, 

based on the daily stock price over a period of 5 years. The experimental results indicate 

that the use of an artificial neural network model and a fuzzy logic model is a successful 

combination that provides significant reductions in the forecast error. 
 

Catalao et al. (2007) demonstrated the necessity of short-term price forecasts for 

consumers and production units to derive appropriate bidding strategies within energy 

markets. Accurate forecasting tools are necessary for maximizing the customers’ 

satisfaction and the production unit’s profit. A three-layered feedforward artificial neural 

network, trained by the Levenberg-Marquardt algorithm is utilized in this research to 

forecast the next period’s (168 hour periods) electricity price. The neural network toolbox 

of MATLAB was chosen for this task due to its flexibility and simplicity. The primary 

input/training data for the artificial neural network was obtained from historical data in 

the year 2002 from Spain. The artificial neural network was examined against the 

ARIMA model. 
 

Farjam Nia et al. (2007) utilized ARIMA and artificial neural networks models in 2007 to 

forecast the daily price of crude oil between 1983 and 2005. Note that sensitivity analysis 

was used to select input parameters in forecasting oil price trends. Like previously 

reviewed studies, the artificial neural network model provided superior results compared 

to ARIMA’s results.  
 

Mandal et al. (2007) investigated an artificial neural network model based on the similar 

days (SD) method, to forecast the next day’s price in the competitive electricity market, 

where price forecasting provides estimates of the electricity price in the upcoming days. 

A multi-layer feedforward artificial neural network was introduced to forecast the 

electricity price in the next 24 hours. The neural network model consisted of an input 

layer, a hidden layer, and a single output layer. The model was trained using historical 
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data of the past 45 days (starting from a day before the forecast day ~ today), also, the 

historical data pertaining to 45 days before and after the forecast day, from the previous 

year. The utilized training algorithm for this model is the error back-propagation training 

algorithm. Results obtained by simulation indicate that the utilized algorithm in this 

research is efficient, accurate and robust and provide more accurate forecasts for the 

electricity prices for any given day of the week. 
 

A short-term forecasting model for crude oil prices based on a three layer, feedforward 

artificial neural networks model with back propagation algorithm was introduced by 

Haidar et al. (2008). The network structure was selected after systematic, rigorous tests 

involving a large number of experiments on the historical data. Moreover, two groups of 

inputs have been chosen and tested for the model. The first group selected is the crude oil 

futures data and the second group is the market data, which includes S&P 500, the price 

of gold, the dollar index, and heating oil prices. The results indicate that a feedforward 

neural network model, adequately designed with the appropriate selection of training 

inputs provide the capability to forecast noisy time series with precision. 
 

Yaghubi et al. (2008) utilized the Chen model for variable length and the Yu model to 

deal with the uncertainty associated with forecasting a currency market. The indicated 

two models run in c# 2.0, based on the available data (http://fx.sauder.ubc.ca/). The Yu 

model recommends the weighted fuzzy time series to reduce uncertainty, and the Chen 

model attempts to optimize the fuzzy time series using genetic algorithms. Results 

indicate that the combination of the two models provides more precise results for 

forecasting. 
 

Artificial neural networks model performance was compared to the ARIMA model’s 

performance by Esmaili and Oloomi in 2008. The utilized neural networks model with 

backpropagation training provided energy price forecasting in the first step and energy 

load and price forecasting once again, in the second step. The utilized time series 

consisted of hourly data points throughout a year. The observed results indicate that the 

artificial neural networks model maintained less error compared to the ARIMA model. 

However, the neural network model spent more time than the ARIMA model to predict 
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the energy prices. Furthermore, authors suggest the neural networks model for precision 

and accuracy and the ARIMA model for time efficiency.  
 

A fuzzy-based model for time series forecasting was developed by Zalloi (2009), which 

was comprised of the following 3 phases: 
 

1. Data Sampling: Historical data may be categorized into various time scales such 

as daily, weekly, monthly or yearly data. In daily historical data, inconsistencies 

and missing points for days which the market is closed, are present in the data. 

Thus, weekly and monthly data without such inconsistencies are utilized as an 

alternative. Note that the network’s performance depends upon the quality of the 

data used for training. This phase consists of the following 3 step process: Data 

Division, Data normalization and the determination of network architecture. 
 

2. Network Training: In this phase, the following three main tasks are carried out: 

Initialization, Sample training, and Sample validation. 
, 

3. Future Price Forecasting: Using the moving window technique in the MATLAB 

software, PourKazemi and Asadi (2009) selected the best neural network to 

predict the oil price and oil resources in the member countries of the Organization 

for Economic Co-operation and Development (OECD). Furthermore, the ARIMA 

technique was utilized to forecast alongside the developed neural network. 30 

observations demonstrate that the designed neural network (with the 

backpropagation training algorithm) provided more appropriate and accurate 

forecasts compared to the ARIMA forecasting technique. 
 

ZaraNejad and Hamid (2009) used neural networks in MATLAB to forecast Iran’s 

inflation rate. The research investigates the performance of three different training 

algorithms for the neural network. Conjugate Gradient, Quasi-Newton, and Levenberg-

Marquard are the three training algorithms. Time series data was gathered for the period 

between 1959 and 2007. The Levenberg-Marquard algorithm provided less error among 

the other algorithms and was subsequently chosen for the network.  
 

The Iranian GDP growth was investigated through estimation by Mirbagheri (2010). 

Mirbagheri compares the predictive results of fuzzy-logic and neural-fuzzy methods. The 
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Takagi-Sugeno fuzzy inference system (ANFIS) is utilized to design the fuzzy neural 

network for forecasting the GDP growth. Based on the provided comparing criteria 

specified in the research, the paper demonstrates that the neural-fuzzy method provides 

better results compared to the fuzzy-logic. Ultimately, neural-fuzzy methods are 

recommended in forecasting annual growth. 
 

Sadeghi et al. (2011) investigated the performance of the ARIMA model alongside neural 

networks in short-term forecasting of the Organization of the Petroleum Exporting 

Countries (OPEC) crude oil price. The results indicated that the neural networks model 

with backpropagation training was significantly better and more time efficient than the 

ARIMA technique.  
 

Artificial neural networks, which were previously applied to load forecasting problems 

with success, are now used for electricity price forecasting. This is mainly due to the 

well-known advantage of neural networks, which is being able to approximate nonlinear 

functions alongside solving problems with complex (not well defined/not easily 

computable) input-output relationships. Neural networks provide this advantage because 

they are data-driven processes. The numerical results presented in Sadeghi et al. 

confirmed the high value of artificial neural network models in forecasting short-term 

electricity prices.  
 

Akhavan Niaki and Hoseinzade (2013) utilized artificial neural networks to forecast the 

S&P500 index. The research implements Design of experiments and analysis of variances 

to identify and select its input variables and compares the forecasts to a regression model. 

Their results indicate that the ANN could significantly improve the trading profit 

compared to the other strategy. 
 

A forecasting model for energy price and consumption for Iranian Industrial sectors using 

ANN and ANFIS was developed in by Mirsoltani, Akhavan Niaki (2013). This study is 

based on the dataset containing the monthly price and consumption of gas, oil, petrol, and 

liquid petroleum gas throughout the study period. The ANFIS model is identified as the 

superior model in this research. 
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CHAPTER 3 | Data Description & Remedial Procedures  

This section demonstrates the utilized data in this research, also the performed remedial 

procedures. The monthly production quantity is selected as the response. Furthermore, 

The Monthly crude oil price, Monthly gold price, Monthly commodity metals Index, 

Monthly rubber price, Monthly aluminum price, Monthly steel price, Monthly copper 

price, Monthly lead price, Monthly stock index, and Monthly iron ore price are selected 

for the predictor variables. The variables with the highest significant correlation to the 

response are further identified and utilized for the ANN and ANFIS models. 

3.1. Data Description 

Historical data pertaining to the factors of interest in this research have been collected 

from Iran’s Ministry of Industry, Mine & Trade’s yearly reports in addition to other 

specified sources. The production of all sedan vehicles throughout 128 months of 

production (2006-2016) is obtained from the annual reports. Furthermore, as mentioned 

earlier, the demand is inferred based on the recorded production data due to the unique 

characteristic of the domestic market. Figure 3.1 shows the total number of automobiles 

produced per during this study’s time horizon.  
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Figure 3.1 – Monthly production quantity of sedan vehicles in Iran (2006-2016) 

Table 3.1 shows the data for automobile production in 2006-2016. Note that data for 

months 2, 32, 37, 61, 63, 66, 85, 86, 95, and 97 are missing. Also, there are no missing 

values for months 108-128.  
Table 3.1 – First 108 Monthly production quantity of sedan vehicles in Iran (Raw data, 2006-2016) 

Month # Production Month # Production Month # Production 
1 41,267 37   73 53,740 
2   38 99,592 74 86,356 
3 89,124 39 89,754 75 68,509 
4 75,562 40 92,790 76 69,857 
5 73,205 41 70,653 77 57,110 
6 61,880 42 101,321 78 45,550 
7 74,327 43 110,711 79 61,336 
8 74,004 44 109,774 80 60,470 
9 92,920 45 113,404 81 60,869 

10 83,024 46 114,524 82 64,984 
11 86,182 47 115,240 83 63,039 
12 85,552 48 110,978 84 71,028 
13 46,058 49 71,383 85   
14 87,629 50 116,550 86   
15 83,566 51 124,390 87 47,146 
16 86,467 52 112,847 88 51,280 
17 63,733 53 91,954 89 34,969 
18 66,817 54 116,615 90 54,519 
19 76,444 55 119,720 91 56,648 
20 85,974 56 127,690 92 50,689 
21 85,994 57 113,517 93 65,603 
22 71,584 58 132,723 94 62,508 
23 93,130 59 112,766 95   
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24 87,910 60 110,482 96 67,378 
25 40,604 61   97   
26 89,489 62 125,648 98 80,144 
27 83,729 63   99 72,651 
28 89,856 64 117,908 100 87,442 
29 68,434 65 95,406 101 65,497 
30 91,557 66   102 97,255 
31 88,883 67 131,090 103 87,666 
32   68 135,286 104 82,505 
33 97,069 69 125,020 105 89,806 
34 98,761 70 119,221 106 89,024 
35 104,089 71 99,498 107 90,035 
36 98,731 72 104,204 108 76,449 

 

As seen in the previous figure and table, the production volume trend is increasing in the 

first 68 months.  

 
 

The monthly gold price is another selected variable. The price of gold can be regarded as 

an important economic indicator. Figure 3.2 below shows the progression of gold price 

throughout the time horizon; also, notice that the price of an ounce of gold has increased 

by almost $1,400 between 2006 and 2016. 

 
Figure 3.2 – Monthly gold price per ounce (Source: http://data.okfn.org/data/core/gold-prices) 

 

Another utilized variable is the commodity metals price index. This index consists of 

copper, aluminum, iron ore, tin, nickel, zinc, lead, and Uranium Monthly price index. 

Figure 3.3 shows this index throughout the time horizon.  
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Figure 3.3 – commodity metals price index (Source: 
http://www.indexmundi.com/commodities/?commodity=metals-price-index) 

The monthly rubber price is another variable of interest, which is demonstrated in figure 

3.4 below. Rubber is a material required in various parts and components of vehicles and 

thus was selected as a variable of interest.  

 

 
Figure 3.4 – Monthly rubber price – cents per Ibs. (Source: 

http://www.indexmundi.com/commodities/?commodity=rubber&months=180/) 
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Iran’s stock index is also a selected variable for the study as demonstrated in figure 3.5 

below. The domestic stock index can be considered as an economic indicator for 

manufacturing companies.  

 

 
Figure 3.5 – Stock Index (Source: http://www.tse.ir/en/) 

Moreover, the Iron ore price (dollar per dry metric ton) is the last selected variable for the 

study as demonstrated in figure 3.6 below.  

 

 
Figure 3.6 – Monthly Iron ore price – dollars per dry metric ton (Source: http://www.tse.ir/en/) 
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3.2. Correlation Analysis 

Correlation analysis is performed to obtain a better understanding of the relationship 

between the identified variables of interest and the response. Note that these variables are 

selected as inputs due to potential predictive power over the response. Correlation among 

variables leads to multicollinearity problems in regression models, however, ANN and 

ANFIS models are not affected by collinear predictors. The following tables show the 

calculated correlation values and their corresponding P-Values. 
Table 3.2 – Correlation values 

   
production crude oil gold alum steel copper rubber stock lead iron ore 

production 1.00 -0.15 -0.19 0.09 0.18 0.02 0.33 -0.29 0.06 0.26 

crude oil -0.15 1.00 0.085 0.36 0.75 0.79 0.69 -0.08 0.50 0.65 

gold -0.12 0.08 1.00 -0.60 -0.18 -0.12 -0.15 0.91 0.03 0.27 

alum 0.09 0.36 -0.61 1.00 0.65 0.67 0.46 -0.62 0.37 -0.06 

steel  0.18 0.75 -0.18 0.65 1.00 0.94 0.89 -0.36 0.60 0.68 

copper 0.02 0.79 -0.12 0.67 0.94 1.00 0.81 -0.27 0.61 0.55 

rubber 0.33 0.69 -0.15 0.46 0.89 0.81 1.00 -0.33 0.45 0.79 

stock -0.29 -0.08 0.91 -0.62 -0.36 -0.27 -0.33 1.00 -0.05 0.05 

lead 0.06 0.51 0.03 0.37 0.60 0.61 0.45 -0.05 1.00 0.33 

iron ore 0.26 0.65 0.27 -0.06 0.68 0.55 0.79 0.05 0.33 1.00 

           Based on the correlation values and their significance, Monthly gold, steel, iron ore and 

rubber prices alongside the stock index variables are demonstrating significant 

association in regards to the response at a $ = 0.05 significance level. Note that the 

monthly rubber price and the monthly stock index are the most highly correlated 

variables in regards to the response. 

Table 3.3 – Correlation P-Values 

 
production crude oil gold alum steel copper rubber stock lead iron ore 

production 1.00 0.09 0.03 0.29 0.04 0.84 <0.001 <0.001 0.49 0.003 

crude oil 0.09 1.00 0.35 <0.001 <0.001 <0.001 <0.001 0.38 <0.001 <0.001 

gold 0.03 0.35 1.00 <0.001 0.04 0.16 0.09 <0.001 0.77 0.002 

alum 0.29 <0.001 <0.001 1.00 <0.001 <0.001 <0.001 <0.001 <0.001 0.52 

steel  0.04 <0.001 0.04 <0.001 1.00 <0.001 <0.001 <0.001 <0.001 <0.001 

copper 0.84 <0.001 0.16 <0.001 <0.001 1.00 <0.001 0.002 <0.001 <0.001 

rubber 0.0001 <0.001 0.09 <0.001 <0.001 <0.001 1.00 <0.001 <0.001 <0.001 
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stock 0.0009 0.38 <0.001 <0.001 <0.001 <0.001 <0.001 1.0000 0.57 0.54 

lead 0.49 <0.001 0.77 <0.001 <0.001 <0.001 <0.001 0.57 1.0000 <0.001 

iron ore 0.0034 <0.001 0.002 0.52 <0.001 <0.001 <0.001 0.54 <0.001 1.0000 

3.2. Cleanup & Diagnostic Procedures 

This section demonstrates the data cleanup procedures performed on the data. The 

procedures are carried out to identify and resolve abnormalities that exist within the data 

set. Furthermore, data enhancement techniques are carried out to fill the missing values 

within the data set. The following criteria are necessary to observe to obtain a high-

quality data set: 
 

• Validity/Accuracy – Degree of conformity of the data to the conditions set. 

• De-cleansing – Detecting and resolving abnormalities and errors. 

• Completeness – Obtaining a complete and accurate data set. 

• Uniformity – Utilizing sensible units of measures across different variables. 
 

Data cleansing procedures present some challenges such as the loss of information and 

error correction problems. Given the vast range of data set types and challenges, it is 

impossible to administer a general data-cleansing procedure for data sets beforehand. As 

seen earlier, the data about the monthly production include missing data points, and thus 

requires remedial procedures for the missing points. To resolve this problem via 

statistical methods, the following procedure is carried out: 
 

• Identifying missing values, and possible outliers. 

• Calculating an average for the months with missing/abnormal values. 

• Obtaining a weighted average for the missing/abnormal values. 
 

Based on the collected data, values are missing for months: 2, 32, 37, 61, 63, 66, 85, 86, 

95 and 97. Also, months 1, 13, 25 and 49 are considered as outliers after comparing with 

other data points and thus require remedial procedures alongside the months with missing 

values. A weighted average is calculated for each of the missing monthly production 

values to remedy the problematic data points. Furthermore, the following algorithm is 

carried out for each of the missing monthly values: 
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• Identify month with missing production value. 

• Calculate an average for the missing month based on the actual values of the same 

month of different years, denoted by )*. 

• Identify two prior and two ahead monthly production values of the missing month 

and average the four production quantities, denoted by +*. 

• Calculate the weighted average: , = 0.5 )* + (0.5)(+*) 
 

Figure 3.7 shows the final obtained graph of the total number of automobiles produced 

per period throughout the time horizon below. 

 
Figure 3.7 – Monthly production quantity of sedan vehicles in Iran (2006-2016) 
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CHAPTER 4 | Methodology  

Forecasting methods can be divided into quantitative and qualitative methods. In this 

chapter, several different quantitative methodologies are discussed and performance 

measures for the accuracy of forecasts are shown. 

4.1. Definition of Forecasting 

The most basic definition of forecasting is to predict or estimate a future event or trend. 

In other words, “Forecasting is a process that has an objective of predicting future events 

or conditions (Levenbach and Cleary, 2006).” As mentioned earlier, any decision-making 

problem may hugely benefit from an accurate and reliable forecast. 

4.2. Necessity of Forecasting 

Forecasts are quite necessary given that not only is the future uncertain for any given 

process but also that decisions made based on accurate forecasts are far more efficient 

compared to a decision that is not based on scientific forecasts. Economists and managers 

incorporate forecasts/predictions widely within their practice. It only makes sense that 

governments, industries, and financial institutions vastly benefit from the information 

provided by an accurate forecast. Predictions of the current state of the economy are thus 

a necessary input into the decision-making processes (Holden et al., 1990). 
 

The accuracy of the forecasting model plays an imminent role in the decision making 

process. Forecasting models should provide a measure of accuracy for the utilized 
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technique. Managers have high confidence in the precision of the report developed by 

forecasting techniques (Donovan, 1983). There amount of historical data required for an 

accurate model dictates that forecasts deal with average probabilities, as no other easy 

arrangement is possible or practicable (Wolfe, 1966). 
 

“Depending on the decision being made, forecasts may be needed for points in time that 

are the number of days, weeks, months, quarters or years in the future.” The forecast 

period time/time horizon or period is the time duration in which the forecast is considered 

valid (Donovan, 1983). 

4.3. Forecasting Methods 

Forecasting methods can be typically divided into the following categories: 
 

• Qualitative Methods 

• Quantitative Methods 

4.2.1. Qualitative Methods 

Qualitative forecasting methods gained much popularity during the 1960-70s. Some 

organizations in the early 1980s utilized methods such as the Delphi method and the 

cross-impact matrix method. These qualitative technological methods are capable of 

dealing with long-term trends wherein the historical data and patterns are essential to 

apply statistical forecasting methods, only were not ready or did not apply (Wheelwright 

and Makridakis, 1985). 
 

The main purpose of qualitative methods is to collect consistent, unbiased data in a 

systematic order, relating to the factors of interest. Qualitative methods use schemes 

alongside human judgment to transform qualitative data into numeric estimations. These 

methods are usually used in prediction processes that are based on limited or restricted 

historical data. Market research, surveys, visionary forecasts, the Delphi method and 

historical analogies are among these methods (Levenbach and Cleary, 2006). 
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4.2.2. Quantitative Methods 

All quantitative forecasting methods use the same principle: Historical data is analyzed to 

identify a pattern or trend that explains the process. After the pattern is determined, it is 

extrapolated into the future to obtain predictions. This principle heavily depends on the 

assumption that the identified pattern will not change its behavior and continues to 

behave in the same manner as it has in the past. Any quantitative forecasting method that 

does not encompass the latter assumption cannot provide accurate and reliable forecasts. 

Due to this assumption, qualitative forecasting methods are more precise within a short 

period, compared to long time frames. Quantitative forecasting methods can be divided 

into the following groups: 
 

• Time Series 

• Causal 

• Neural networks 

• Neuro-fuzzy systems 
 

In the causal models, all different variables related to the forecasting variable are 

identified to construct the model, which is later used to forecast the primary variable. The 

main types of causal models are: 

• Multiple Regression: The relationship between the dependent and independent 

variables are demonstrated through the regression equation. 

• Econometrics: This method utilizes a system of interrelated regression equations. 

Furthermore, regression analysis is performed to obtain estimates of variable 

coefficients. 

• Multivariate Box - Jenkins: Existing independent variables are the dependent 

variables to be forecasted in the Box-Jenkins model. This model attempts to relate 

the independent variables to the dependent variables via transfer functions 

(Donovan 1983). 
 

Box-Jenkins methodology, alongside Artificial Neural Networks and Neuro-Fuzzy 

system, are described in the following sections. 
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4.2.2.1. Time Series Forecasting 

4.2.2.1.1. Introduction 

A succession of data points in succeeding order, usually occurring in uniform intervals is 

referred to as a time series. In some time-series, the value of the studied variable can be 

estimated at any given moment of time. These time series are referred to as continuous 

time series, for example, temperature or profit rates. On the contrary, discrete time series 

consist of observations made at predetermined, equal interval time points to obtain 

hourly, monthly, quarterly or yearly observations (O'Donovan, 1983). Note that most 

time series models pertain to discrete time series models. 
 

Time series data are most useful in forecasting processes that change over time. The 

primary purpose of forecasting based on time series data is to predict the sequence of 

observations in the future. Time series forecasting utilizes information about the variable 

of interest only and does not discover influencing factors within the time series. The prior 

constitutes that the forecast model will extrapolate the identified trend while ignoring 

other factors that may affect the process.  
 

4.2.2.1.2. Time Series Characterization 

Any given time series is a sequence of observations obtained on the variable of interest. 

Furthermore, the variable of interest is observed at discrete time points, usually equally 

spaced. + 0  denotes the observation for period	0. 
 

4.2.2.1.3. Box-Jenkins Models 

In 1970, two statisticians named George Box and Gwilym Jenkins applied autoregressive 

moving average (ARMA –ARIMA) models to obtain the best-fitted model of a time 

series model based on the past value of a time series. The suggested model by Box & 

Jenkins used an iterative three-stage modeling approach as follows (Box Jenkins, 1970): 
 

1. Model Identification/Selection: The seasonality in the dependent series is 

identified assuming stationary variables. Further, plots of the autocorrelation and 

partial autocorrelation functions of the dependent time series are used to choose 

the autoregressive/moving average component. 
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2. Parameter Estimation: The parameters of the time series are estimated using 

computation algorithms to obtain the best-fitted coefficients in the selected 

ARIMA model. Methods include maximum likelihood estimation or non-linear 

least-squares estimation. 
 

3. Model Validation: Is performed by testing the conformity of the estimated model 

to the stationary univariate process. Moreover, residuals are assumed independent 

and constant in mean and variance throughout time. Misspecifications can be 

identified by plotting the mean/variance of the residuals over time and performing 

a Ljung-Box test or by plotting the autocorrelation and partial autocorrelation of 

the residuals. If the estimation is deemed to be inadequate, the algorithm returns 

to the first step to readjust the coefficients. 
 

In the development of the Box-Jenkins model, the first step is to determine whether the 

time series is stationary, also if there is any seasonality within the data which needs to be 

modeled. A run sequence plot is utilized to determine stationarity, which should 

demonstrate constant location and scale. Stationarity can also be detected from an 

autocorrelation plot. Non-stationarity is indicated by a plot with slow decay. Moreover, 

the seasonality can be detected from an autocorrelation plot. 
 

After identifying whether the time series is stationarity or whether it suggests indications 

of seasonality, the order of the autoregressive and moving average terms (i.e. 2 and	3) are 

identified. Next, the model parameters are estimated. The main approaches to Box-

Jenkins models fitting are maximum likelihood estimation and nonlinear least-squares. 

The likelihood equations for the full Box-Jenkins model were demonstrated by Brockwell 

and Davis (1991). 
 

Consider a time series in which successive observations are represented by a linear 

combination of independent random variables. These variables have a distribution with a 

mean equal to zero and a variance equal to !"#. Note that if 45 has a normal distribution, it 

is defined as white noise. Furthermore, the linear combination of the error variable 45 is 

defined as demonstrated below in Equation 4.1. 

 +(0) = 6 + 784598
:
8;< 				=>0ℎ			7

0
= 1   4.1 
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Now the “backward shift” operator is introduced as B, such that: 

A845 = 4598                          4.2 

Equation 4.1 may be written as the following using the previous notation, which is called 

a “Linear Filter.” 

+(0) = 6 + (7<A
< + 7BA

# + ⋯)45             4.3 

Given the above, a time series is a function that transforms a white-noise process into a 

series. Models that are derived from Equation 4.3 are capable of representing both 

stationary and nonstationary time series. 
 

Assume that the time series generated from Equation 4.3 is stationary. This indicates that 

the statistical properties of the series are not affected by time shifts, i.e. the properties of 

D observations at origin 0:	+5, +5GB, +5GH9B are identical to those of D observations at 

origin	0 + I:	+5GJ, +5GJGB, +5GJGH9B. For a stationary time-series, we have: 
 

K(+(0)) = K 6 + 784598
:
8;< = 6                        4.4 

The variance for a stationary process is as follows, note that the variance exists only if 

78
#:

8;< 	convergers. 

L< = !"
# 78

#:
8;<         4.5 

The covariance between +5 and another observation separated by I units of time +5GJ is 

denoted as autocovariance at lag I: 
LJ = MNO +5, +5GJ        

						= K +5 − K(+5 ] +5GJ − K +5GJ  

LJ = !"
# 7878GJ

:
8;<       4.6 

In the context of Box-Jenkins modeling, the autocorrelation is a useful statistic to utilize. 

In general, the correlation between two random variables =	and R is defined as: 

STU =
VWX(T,U)

Y T Y(U)
      4.7 
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The autocorrelation at lag I refers to the correlation between any two observations in a 

time series that are I periods apart: 
 

SJ =
VWX(Z[,Z[\])

Y Z[ Y(Z[\])
=

^]

_̂
     4.8 

A graphical representation of SJ vs. I is called the autocorrelation function. Note that SJ 

is dimensionless, also	−1 ≤ SJ ≤ 1, &	SJ = S9J. Now consider three random variables 

=, ), R with a joint distribution	a	(=, ), R). Then the conditional distribution of =, ) and R 

are defined as: 

ℎ =, ) R =
b(T,c,U)

b T,c,U dTdc
e

fe

    4.9 

The correlation coefficient between = and ) in the conditional distribution ℎ =, ) R  is 

called the partial/conditional correlation coefficient. The partial correlation between = 

and ) is the simple correlation between = and ) with the effect of their correlation with R 

removed. In the notation of this research, the I5g partial auto correlated coefficient is 

referred to as	hJJ. Note that	h<< = S< = 1. 
 

An important special case of Equation 4.1, is the following model, which is called the 

autoregressive process of order	2, i.e. ij(k): 

+(0) = l + hB+59B + h#+59# + ⋯+ hm+59m + 45  4.10 

The ij(k) process can be written in terms of the backward-shift operator, A: 

+(0) = l + hBA
B + h#A

# + ⋯+ hmA
m +5 + 45  4.11 

Now if we let Φ B = 1 − hBA
B − h#A

# − ⋯− hmA
m then: 

Φm B +5 = l + 45       4.12 

Furthermore, it is helpful to correct for the mean in this process. Let +5 = +5 − 6 for all 0 

so the ij(k) process can be written as: 

Φm B +0 = l + 45       4.13 
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Box-Jenkins have proven that the ij(k) model is stationary if the roots of the 

polynomial Φm B = 0 lie outside the unit circle. In any case, 78
:
8;<  must converge for 

the process, +5 to be stationary. 
 

Another special case of Equation 4.1 occurs when the first 3 weights are non-zero, which 

represents a moving average process of order q, that is: 
 

+(0) = 6 + 45 − pB459B − p#459# − ⋯− −pq459q  4.14 

In terms of the backward-shift operator, the MA(q) process is defined as: 

+(0) = 6 + pq(A)45       4.15 

K[+(0)] = 6        4.16 

stu[+(0)] = L< = !"
# pv

#q
v;< 								=>0ℎ	p< = 1  4.17 

The autocovariance of lag I is as defined as follows: 

LJ =
!"
#(−pJ + pBpJGB + p#pJG# + ⋯+ pq9Jpq		aNu	I = 1,2, … , 3

0																																																																			aNu	I > 3
 4.19 

The autocorrelation function is defined as: 

SJ =

9z]Gz{z�\{Gz|z]\|G⋯Gz}f]z}

BGz{
|Gz|

|G⋯Gz}
| 					aNu	I = 1,2, … , 3

0																																																																aNu	I > 3

   4.20 

 

4.2.2.2. Artificial Intelligence and Neural Networks (ANN) 

Artificial Intelligence (AI) is referred to as the ability to acquire and apply 

knowledge/skills by machines or software. It is also referred to as the study and design of 

intelligent agents (Poole, Mackworth & Goebel, 1998). An intelligent agent is a system 

that perceives its environment and takes actions that maximize its chances of success 

(Luger & Stubblefield, 2004). The term was first introduced during the 1950’s by John 

McCarthy, defined as “The science and engineering of making intelligent machines 

(McCarthy, 2007).” 
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The expert system, which was derived after the physical symbol system hypothesis 

supplied new motivations by the 1970s, arguably had the most commercial impact among 

the numerous effective techniques developed for limited regions. “Traditional AI 

researchers have been slow to welcome the connectionists, being skeptical of their claims 

and the premises underlying neural networks” (Finlay & Dix, 1996). 
 

Artificial intelligence is a very broad idea that has applications in fields such as cognitive 

psychology, philosophy, mathematics, cybernetics and, computer science. Artificial 

Neural Networks (ANN) is an important branch of AI. The core objective of ANN is to 

construct a model similar to how the human brain functions. As a brief, neural network 

tasks in the human brain is defined as follows: 
 

Neural networks consist of a vast number of simple processing elements called neurons, 

units, cells or nodes. Each of these neurons is related to others by directing 

communications links with a specifc weight associated to the link. A neuron sends its 

activation as a signal to several other neurons during this process (Sandberg et al., 2001). 

“In fact, a neuron conducts its signals via its axon that projects from its cell body, and it 

receives signals from other neurons over the connections between their axons and its 

dendrites.” These links are called synapses, and the connection cells are separated by a 

small gap about 200 Nano millimeters wide (Nauck et al.,1997). Figure 4.1 provides a 

simplified illustration of connected neurons.  

 
Figure 4.1 - Sketch of four connecting neurons (Re: Nauck et al., 1997) 
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Artificial neural networks are constructed according to mathematical models of neurons. 

It is possible to model some of the brain’s task, such as making relations between patterns 

or the ability to save data in the memory, by setting the neurons into various 

configurations. Artificial neural networks have the capacity to learn complex tasks, which 

have proven difficult for rule-based systems (Picton, 2000). These networks are 

developed as generalizations of the mathematical models of human cognition or neural 

biology. The basic assumptions for this process are as follows: 
 

• Information is processed through many simple elements/neurons. 

• Signals pass between neurons over connections links. 

• Each connection link has its designated weight. The weight of the link multiplies 

the transmitted signal. 

• Each neuron applies an activity task to its net input (the sum of weighted inputs 

signals to the neuron) to determine its output signal. 
 

Furthermore, any neural network can be characterized by the following: 
 

• The architecture of the network: The pattern of connections between neurons. 

• The training/learning algorithm of the network: The method of choosing the 

weights on connections between neurons. 

• The activation function. 
 

Note that there are several other classifications of neural networks such as layer 

classification and learning process classification. 

4.2.2.2.1. Learning Process Classification 

In general, the learning process of neural networks may be classified into the following 

two classes: 
 

• Supervised Learning: For the supervised learning neural network, the teacher 

compares the output of the network with the target/expected value. The primary 

goal is to reduce the difference between the forecasted output and the real 

observed value. This classification consists of three main types: 
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§ Error Correction Learning in which the network attempts to 

minimize the error (Kartalopoulos, 1996). 
 

§ Reinforcement Learning in which the network only gives 

acceptable or non-acceptable outputs and is rewarded if the output 

is acceptable and punished if the output is not accepted (Nauck et 

al., 1997). 

§ Stochastic Learning in which the network randomly selects 

weights for its connections makes changes in the weight values. 

• Unsupervised Learning: In this classification, there are no target outputs. Neural 

networks with unsupervised learning do not receive information from the 

environment. This type of learning is mostly used for pattern recognition and 

clustering. The general types of unsupervised learning are as follows: 

§ Hebbian Learning, in which the synaptic contact strength between 

two nodes, is modified according to the correlated activity degree 

between input and output information. 
 

§ Competitive Learning, in which several neurons are located within 

the output layer, and each neuron competes with the others to 

generate the most accurate forecast output. As soon as the first 

neuron achieves the goal, all others subsequently fail. This type of 

unsupervised learning is suited for finding data clusters 

(Kartalopoulos, 1996). 

4.2.2.2.2. Layer Classification 

Artificial neural networks can be classified into two main types based on the neural 

network's layers: 

• Feed-forward networks: These types of networks consist of inputs, outputs, and 

hidden layers. The signal from the input feeds the next layer (output) in a single 

direction. This process continues until all signals have traveled to the output. 
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Feed-forward networks include the following types, further discussed in section 

5.2.4: 
 

§ Perceptron 

§ Radial Basis Function (RBF) 

• Feedback networks: In these types of networks, a portion of the output signals 

return to the input to modify its characteristics. These types of networks can be 

divided into the following types: 

§ Adaptive Resonance Networks, which is a two layered, feedback 

network type. The best feature of this type is its ability to switch 

from a plastic mode to a stable mode, where the internal 

parameters of the network are modified to the designated parts for 

them without losing any information learned in the past. There is a 

circuit between the input and output layers to compare the inputs to 

a threshold that indicates whether a new class pattern should be 

created for the input pattern or not. 
 

§ Hopfield Networks, which are weighted networks. In this type of 

network, each link connecting two neurons has the same weights in 

either direction. Hopfield networks have experienced limited 

commercial applications due to the relatively long time the process 

takes to be carried out. These types of networks have applications 

in the field of simulated annealing or improving the characteristics 

of crystals and metals. Feedback networks are often used in 

optimization and control systems (Picton, 2000). 

Artificial neural networks have proved useful in some applications; however, many have 

great origin necessities (Finlay and Dix, 1996). Furthermore, the primary function of the 

neural network plays the most important role in deciding the correct type of utilized 

network. 
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4.2.2.2.3. History & Development of Neural Networks 

Neural network resources go as far back as the 1940s when the first mathematical pattern 

of a biological neuron was published by McCulloch and Pitts (Picton, 2000). In 1949, 

Donald O. Hebb demonstrated the structure of neural networks’ learning process. It was 

during the 1950-60s that scientists were able to develop the first artificial neural network 

with the ability to learn based on Hebb’s rule. Research papers on neural networks during 

the 1970s were primarily concerned with associative memory and neurophysiological 

models (Nauck et al., 1997).  

Nowadays, researchers need to become familiar with a wider assortment of networks, all 

differing in network architecture, learning strategies and, weighting methods (Picton, 

2000). Modern research in the field of neural networks, also referred to as connectionism, 

includes the development of new network architectures and learning algorithms. The 

research also tests the applicability of these newer models to information processing tasks 

(Nauck et al., 1997). Artificial neural networks have been utilized in a vast range of 

applications such as pattern classification, identification, optimization, prediction and 

automatic control. Despite different structures and training paradigms, all neural network 

applications are special cases of vector mapping (Tarafdar and Kashtiban, 2005). They 

have also been widely touted as solving many forecasting problems (Marque et al., 1992). 

The well-known task approximator in predicting and system modeling has lately shown 

great applicability in time series analysis and forecasting (Kamruzzaman & Saker, 2003).  

4.2.2.2.4. Artificial Neural Network Types 

As mentioned earlier, there are several different types of networks with diverse 

applications. However, based on the research goal, a feed-forward network type is 

selected for this research. Feed-forward networks can be divided into Perceptron and 

Radial Basis Function (RBF) networks. 

Perceptrons are divided into single-layer and multi-layer perceptrons. The single-layer 

perceptron is used for simple linear problems whereas the multi-layer perceptron is 

utilized for complex and nonlinear problems. Note that the multi-layer perceptron has the 

advantage of solving problems, compared to the single-layer perceptron. In addition to 
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technical documents, in practical figures, the most important model that is used in over 

90% of all neural networks is the multi-layer perceptron trained by the backpropagation 

learning algorithms (Nauck et al., 1997). Researchers have indicated that the multi-layer 

perceptron may be utilized as a universal approximator. 

The multi-layer perceptron was first introduced in 1958 by Frank Rosenblatt. A multi-

layer perceptron has an input layer of source nodes and an output layer of neurons (i.e. 

computations nodes). The two layers link the network to the environment. In addition to 

these layers, the multi-layer perceptron usually has at least one layer of hidden neurons 

that are not directly accessible. The hidden neurons take important characteristics 

contained in the input information (Sandberg et al., 2001). Also note that multi-layer 

perceptron (MLP) networks are feed-forward networks with many layers that are 

typically trained with backpropagation (Aris & Mohammad, 2008). Figure 4.2 illustrates 

the schematic layers of a perceptron. 

 

Figure 4.2 - Schematic Representation of a Perceptron (Re: http://mines.humanoriented.com/) 

Multi-layer perceptron and backpropagation are often used for supervised learning to 

minimize the prediction error based on the training dataset. The backpropagation 

indicates a backward propagation of error through the network (Nauck et al., 1997). This 

process propagates errors through the network from the output layers towards the input 

layers during the training phase. This is necessary because hidden nodes have no training 

target value and these hidden nodes are trained based on error values from outer layers. 

The output layer is the only layer, which has a target value within this process.  
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By back propagating the errors through the network, original weights are adjusted. The 

training process is continued until the observed values for the errors in the weights are 

small enough to be accepted. The type of activation task used in neural network nodes 

can be a factor of the type of data being learned. The training algorithm may differ 

depending on the network architecture; however, the most common training algorithm 

used to design networks is the backpropagation algorithm (Lawrence, 1997). The 

backpropagation algorithm is schematically shown in figure 4.3. 

 

Figure 4.3 - The Scheme of Backpropagation algorithm (Re: http://www.cs.bham.ac.uk/) 

Backpropagation learning is performed in one of the following major modes: 

• Sequential Mode (Online or Pattern Mode): Adjustments are made to the free 

parameters of the network on an example-by-example basis in this mode. This 

mode is best suited to model classification. 
 

• Batch Mode: Similar to the Sequential Mode, adjustments are made to the free 

parameters of the network on an epoch by epoch basis, where each epoch consists 

of the entire set of training examples. This mode is best suited for nonlinear 

regression (Sandberg et al., 2001). 

Another important type of neural networks is the Radial Basis Function network. The 

RBF network is a multi-layer feed-forward neural network, which uses different transfer 

functions compared to the multi-layer perceptron type. The inspiring idea for RBF 

network creation is derived from traditional statistics. It is a linear combination of radial 
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basis functions consisting of an input layer, a hidden layer, and one output layer. Note 

that the connection between the input and hidden layers is not weighted. Its applications 

are generally in function approximation, time series forecasting and controlling (Nauck et 

al., 1997). Table 4.1 provides a comparison between the two discussed network types. 

 

 

Table 4.1 - Perceptron vs. RBF Network 

Network Type Network Features 

 

 

Perceptron 

• At least one or more hidden layers 

• Based on the Sigmoid function 

• +90% Application in ANN functions 

• Popular in Network researches 

• Multi-layered feed forward progress 

• Weighted connections between layers 

• Learning algorithm: Backpropagation  

 

 

 

Radial Basis 

Function 

• Only one hidden layer 

• Based on the Gaussian function 

• Requires hidden neurons 

• Applications in forecasting, controlling & function 

approximation 

• Multi-layered feed forward 

• No weighted connections between input and hidden layers 

• Learning algorithm: Backpropagation 

 

Based on the prior presented information, also in line with the goals of this research, the 

Perceptron network is selected. The main concern in neural networks is to improve the 

performance of the network. To improve the perceptron learning algorithm with 
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backpropagation learning, faster learning algorithms are suggested. Learning algorithms 

such as Quasi-Newton, Conjugate Gradient and Levenberg-Marquardt are examples of 

fast learning algorithms. 

The back-propagation algorithm has many variations; however, the simple 

backpropagation and momentum are among the most important variations. Table 4.2 

shows the features of backpropagation learning algorithms alongside faster algorithms, 

derived from neural networks. 

Table 4.2 – Learning algorithm features 

Learning Algorithm Algorithm Features 

Simple 

backpropagation 

• Weights are adjusted in the steepest descent direction 

(negative of the gradient) 

Backpropagation  

with  

Momentum 

• Refined gradient step 

• Faster results compared to simple gradient descent 

• Slow progression for practical application 

Quasi-Newton • Often converges faster than conjugate gradient method 

• Not efficient for feed-forward neural networks 

Conjugate Gradient • Faster convergence than the steepest descent direction 

• Better learning rates than simple backpropagation 

 

Levenberg-

Marquardt 

• Fastest convergence rate among various algorithms 

• Most accurate method among algorithms 

• Presents lower squared errors among algorithms 

• Training algorithm for small and medium size networks 

 

Table 4.2 shows each of the different learning algorithm’s features. Based on the latter 

information, the Levenberg-Marquardt learning algorithm is chosen as the training 

algorithm for the network in this thesis.  
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Transfer functions play a significant role in network structures. This function determines 

the activation value, which is output to the rest of the networks; There are several types 

of transfer functions for neural networks. However, the Sigmoid and Tangent function 

(Tan-Sig) is widely utilized for hidden layers. Moreover, the linear transfer function is 

used for the output layer, employed in backpropagation networks. When linear output 

neurons are used, the network outputs can take on any value, because if the sigmoid 

transfer function is used for output neurons, the outputs are limited to a small range 

(Nauck et al., 1997). 

4.2.2.3. Neuro-Fuzzy Systems 

Fuzzy logic was introduced by Lotfi A. Zadeh in 1965. Fuzzy logic is primarily based on 

the idea of fuzzy sets, which could be utilized to model linguistic terms (i.e. human 

expressions such as small, large, etc.). “In fuzzy logic, it is possible to formulate fuzzy 

rules that incorporate linguistic expressions, and apply the rules to decision-making 

processes.” Similar to neural networks, fuzzy systems are utilized for a wide range of 

purposes from control functions to data analysis and decision making problems. 

Fuzzy systems can be used for the same purposes as neural networks. The difference 

between the two is that fuzzy systems are constructed on explicit information, which is 

ultimately expressed in the form of linguistic rules rather than being built by a learning 

algorithm. Due to this difference, applying learning algorithms to a fuzzy system presents 

its difficulties. However, because both neural networks and fuzzy systems became 

popular during the late 1980s, the two were combined to form neuro-fuzzy systems. 

Fuzzy systems and neural networks are both prevalent tools in the soft computing area. 

Lotfi A. Zadeh coined the soft computing term, which consists of approaches to human 

reasons that make use of human bearing for incompleteness, uncertainty, imprecision, 

and, fuzziness in decision-making processes. Soft computing is mainly concerned with 

combinations of fuzzy systems, neural networks, evolutionary computation, and, 

probabilistic reasoning. 
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Combining fuzzy systems with neural networks would constitute an interpretable model, 

which is capable of learning and, can use problem-specific prior information (Nauck et 

al., 1997). The different types of combinatory systems are as follows: 

• Fuzzy Neural Networks: In this type of combinatory system, fuzzy methods are 

employed to improve the learning capabilities or the performance of a neural 

network using fuzzy rules to change the learning rate or by the construction of 

networks that work with fuzzy inputs. 
 

• Concurrent Neural/Fuzzy Systems: For the concurrent neural/fuzzy systems, the 

neural network and fuzzy system both have the same task. Often the neural 

network preprocesses the inputs to the fuzzy system or post processes the outputs 

from the fuzzy system. 
 

• Cooperative Neuro-Fuzzy Models: In this type of system, a neural network is 

utilized to define the fuzzy system’s parameters. The fuzzy system will progress 

without the neural network after the learning phase. These systems are a simple 

sub-category of neuro-fuzzy systems which have applications in commercial 

fuzzy development tools 

• Hybrid Neuro-Fuzzy Models: This type of system utilizes a structure comprised 

of a neural network and a fuzzy system. Modern neuro-fuzzy tools are in fact 

hybrid neuro-fuzzy models. ANFIS is classified in this model (Nauck et al., 

1997). 

4.2.2.3.1. Adaptive Neuro-Fuzzy Inference System Model (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was introduced in the early 

1990s (Jang et. al, 1993). This model was initially developed by Sugeno and Kang and 

was developed further by Jang. The selection of a special neuro-fuzzy architecture is 

dependent on the reachable historical data. The ANFIS system used in this thesis consists 

of the following five function blocks: 
 

1. A rule base is fuzzy if-then rule is utilized. 

2. A dataset, which defines the membership function of the fuzzy sets employed in 

the defined fuzzy rules. 
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3. A decision-making unit, which is responsible for performing inference operations 

on the fuzzy rules. 

4. A fuzzification inference, which transforms the hard inputs into degrees of the 

match with linguistic values. 

5. A defuzzification inference, which, transforms the results into a hard output. 

Figure 4.4 shows the ANFIS functional blocks described above. 

Figure 4.4 - ANFIS Functional Blocks (Re: www.scielo.br.gif) � 
A fuzzy inference system, employing fuzzy if-then rules can model the qualitative 

features of human information and reasoning processes without employing precise 

quantitative analyses (Shing & Jang, 1993). Jang’s ANFIS model is among the first 

hybrid neuro-fuzzy systems that were utilized for function approximations. The model 

shows a Sugeno-type fuzzy system in a special five-layered feed-forward network 

architecture. A primary section of ANFIS models are the fuzzy if-then rule is as follows: 
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The ANFIS model adjusts the membership functions of previous and consequent factors. 

Note that the mentioned rule only utilizes a single output. Each output requires a specific 
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extra linear combination, by using an extra set of consequent factors for each rule. The 

following can be extended to ANFIS models with multiple output variables:  
 

• ANFIS network structures contain n units in the initial layer Ç< 

• Other layers (ÇB, Ç#, … , ÇÉ) present the following functions: 
 

§ Layer 1: Each unit in layer ÇB stores three parameters to define a 

bell-shaped membership function that represent the following 

linguistic term: 

   68
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Where �v is an input variable. Each unit is precisely 

related to only one input unit and computes the 

membership degree of the input value gained. 

§ Layer 2: Each rule is shown by one unit within	Ç#. Each unit is 

linked to the previous layer units that come from the antecedent of 

the rule. The inputs into a unit j~ ∈ Ç#, are degrees of 

membership that are multiplied to determine the fulfillment degree 

ä~  for the represented rule j~. 
 

§ Layer 3: The relative degree of completing is computed for each 

rule j~ within this layer by using the following equation:  

      ä~ =
ãå

ãÖçÖ∈é|

   4.23 

Note that each unit is connected to all the rule units in Ç#. 
 

§ Layer 4: The units of layer four Çè are connected to all input units 

and precisely one unit in layer three. Each unit computes the output 

of a rule j~using the following: 
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§ Layer 5: An output unit is responsible for computing the final 

output ) through summing all outputs coming out of layer 4. 
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Because ANFIS only employs differentiable functions, learning algorithms from the 

neural network theory are easily applied. The combination of backpropagation and least 

squares estimation (LSE) is used in ANFIS by default. To obtain the membership 

function (i.e. the antecedent parameters), backpropagation and LSE are utilized to 

determine the coefficient of the linear combinations in the rules consequents. The 

learning process is divided into two primary parts: 

• Part I: Input patterns are propagated, and the optimal consequent parameters are 

estimated by an iterative least mean squares method, while the antecedent 

parameters are theoretically assumed to be fixed for the current cycle according to 

the training set. 

• Part II: The patterns are propagated again, and the epoch backpropagation is 

utilized to modify antecedent parameters, while consequent parameters remain 

fixed. Moreover, this method is iterated for the learning process. 

Jang’s learning process is composed of the following four steps: 

1. All models from the training set are propagated, and consequent factors are 

determined by iterative LSE. Note that the antecedent parameters remain fixed. 

2. All models are propagated again, and antecedent factors are updated through 

backpropagation. 

3. If the calculated error decreases within four consecutive steps, this constitutes an 

increase in the learning rate (10% increase). If the calculated error is subject to 

consecutive combinations of increase and decrease in the error, then the learning 

rate will decrease by 10%. 

4. The learning process is terminated when the calculated error is negligible. 

Otherwise, the process will continue to progress. 

When the number of factors in a given situation is large, the choice of consequent factors 

may be costly. Moreover, to prevent high costs, backpropagation may be utilized for 

these factors. Although, for the demonstrated algorithm above, Jang’s “Hybrid learning 

rule” provides more accurate results compared to other algorithms. 
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The ANFIS framework ensures that each different linguistic term is illustrated by only 

one fuzzy set. However, this learning procedure will not provide the opportunity to apply 

constraints to the membership functions (constraints that limit modifications applied to 

the membership function). ANFIS is only able to realize Sugeno type fuzzy systems, thus 

making it difficult to interpret the learning procedure outcome. This constitutes that 

ANFIS is preferable for applications where performance is more important than 

description. Moreover, ANFIS is utilized best for problems wherein the space structure 

can be interpreted (i.e. Situations where specifying fuzzy states are acceptable). “These 

fuzzy states are used in the antecedents for the rules represented within ANFIS.” Note 

that the consequent factors may be initialized with random values and the learning 

procedure ultimately determines the final values for these factors. Also, ANFIS has the 

capability of constructing a neural network structure for a Sugeno fuzzy system, which 

may help in implementing the system within a neural network environment (note: this 

capability is not essential for the application). Figure 4.5 shows the ANFIS structure. 

 
Figure 4.5 - ANFIS Structure (Re: Nauck et al. 1997) 

An ANFIS system consists of n inputs, k rule units, and a single output unit. It is trained 

with a learning problem of p patterns. The computation of the output of such a system 

can be specified as:  
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Where ä~ = 68~
v �v

H
v;B  is the fulfillment degree of rule j~ and ä~ =

ãå
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 is the 

normalized fulfillment degree. Then linear expression for ) indicates that the consequent 

parameters tv
(~)are linear as well. Thus the parameters can be estimated by Least Squared 

error method (LSE). 

Let î be a matrix containing one row per each pattern of the training set. Each row 

consists of I repetitions of (1, äB
v
, … , äJ

v
), where ä8

~  is the normalized fulfillment 

degree of rule ï after the >5g pattern has been propagated. Moreover, let ä be the column 

vector of the target output values from the training set. Now let: 
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Constitute the column vector of all consequent parameters of all rules. The consequent 

parameters are determined by the following matrix equation: 

îi = ä     4.27 

  With I rule units, we have the following number of consequent 

parameters: 

ñ = I(D + 1)     4.28 

Note: ñ	constitutes the size of the column vector of all consequent 

parameters.  

Furthermore, î is a k×ñ matrix. The size of ä is equal to	A. Due to the general fact that 

we usually have more training patterns than parameters, i.e. k is greater than ñ, the 

problem is over-determined and usually obtains no certain solution. To solve this 

problem, the least squares estimate,	i∗, of i, is determined to minimize the squared error 

[îi − ä]#. The latter is done by: 

i∗ = (îãî)9B. îä    4.29 

Where îãis the transpose matrix of î and is equal to (îãî)9B. 
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Moreover, î is the pseudo-inverse of î if (îãî) is a non-singular matrix. However, due 

to the computation expenses and inefficiencies resulted from singular matrices, an 

iterative LSE method is used by Jang to train the ANFIS which is demonstrated further 

below: 

Let Dvãbe the >5g row vector of matrix î and let 0vã be the >5gelement of vector	ä. Then a 

solution for i can be computed iteratively by evaluating the following equations: 

ivGB = i + ΣvGBDvGB 0vGB
ã − DvGB

ã iv    4.30 

ΣvGB = Σv
öÖHÖ\{HÖf{

õúÖ

BGHÖ\{HÖ\{
õúÖ
						aNu				> = (0,1, … , 2 − 1)   4.31 

Where Σ	is the covariance matrix and, i∗, the least squares estimate is equal to im. 

The initial necessary conditions for this procedure are as follows: 

• i< = 0       4.32 

• Σ< = Lùû       4.33 

Where γ	a large positive is number, and ùûis the identity matrix (ñ×ñ). 

Note that if the ANFIS network has more than a single output, for example	†, then ä is 

going to be a (k×†) matrix and, 0vãis the row vector of	ä. Subsequently, matrix i 

transforms into a (ñ×†) matrix. 

Antecedent parameter modifications are determined by the backpropagation method. Let 

k be a parameter of the fuzzy set 68å
(v) based on the antecedent of an arbitrary rule	j~. The 

change in k for a single rule	j~ after a pattern has been propagated is realized, where 

rule	)∗ is defined as the target output value. The error measure,	K is the sum of squared 

differences between the target and actual output values. By the iterative application of the 

chain rule, the following equation is obtained as: 
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Where δ	is the learning rate. 

Note that the following is obtained for the three parameters of a fuzzy set	68å
(v), for the last 

factor of the equation: 
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        (Nauck et al., 1997) 

An essential component of the ANFIS structure is the shape of the membership function. 

A membership function (MF) is defined as a curve that indicates how the input space is 

mapped to a membership value between 0 and 1. The simplest MF’s are obtained through 

the usage of straight lines. The triangular membership function (function name: ‘trimf’) is 

the simplest of the membership functions. Another example of the simple membership 

functions is the trapezoidal membership function (function name: ‘trapmf’), which has a 

flat top. Figure 4.6 shows the mentioned membership functions below. 
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Figure 4.6 - Straight Line Membership Functions (Re: MATLAB help section) 

Moreover, two membership functions contain the Gaussian distribution curve. The simple 

Gaussian curve and a two-sided composite of two different Gaussian curves are among 

the types of Gaussian distributions (function names: ‘gaussmf’ & ‘gauss2mf’).  

Another function that has one more parameter than the Gaussian membership function is 

the generalized Bell membership function (function name: ‘gbellmf’) and thus providing 

the ability for this membership function to approach a non-fuzzy set, given the free 

parameter is tuned. 

The Gaussian and bell membership functions are among the most common membership 

functions utilized to determine fuzzy sets. Figure 4.7 shows the general scheme of the 

Gaussian and Bell membership functions. 

 
Figure 4.7 - Gaussian and Bell membership functions (Re: MATLAB help section) 

It is important to note that the Gaussian and bell membership functions are not able to 

specify asymmetric membership functions. The following membership functions address 

this problem. The Sigmoidal membership function is a function, which is either open to 

the left or right. Figure 4.8 shows the sigmoidal membership function. 
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Figure 4.8 - Sigmoidal Membership functions (Re: MATLAB help section) 

Another type of membership functions is the Polynomial based curves. The three 

different membership functions within this type are the Z, S, and P curves. The ‘zmf’ 

function is an asymmetrical polynomial curve open to left. The ‘smf’’ function is the 

mirror image function, open to the right and the ‘pimf’ function has a value of zero on 

both left and right extremes with a rise in between. The three different types of 

polynomial membership functions are presented in figure 4.9 below. 

Figure 4.9 -Polynomial Membership functions (Re: MATLAB help section) 

 

Furthermore, there is a broad range of membership functions available to utilize for 

ANFIS, as demonstrated before. Based on the discussion provided earlier also the 

experimental results provided in chapter 5, the trapezoidal membership function (function 

name: ‘trapmf’) is selected and implemented in the ANFIS structure for this research. 

4.3. Forecasting Accuracy 

In forecasting, accuracy refers to the model’s ability to reproduce results similar to the 

observed historical data. There are several performance measures of the accuracy of 

forecasting models such as: 
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• Mean Absolute Percentage Error (MAPE): This performance measure is 

calculated based on the absolute error for each period within the time series and is 

defined in formula 4.38 as: 

  ñikK = 	 (B<<) ®ÆÖ
ì
Öë{

H
            4.38 

Where	kKv = (t´0Øt† − aNuÅ´tÄ0) t´0Øt†. 

• Mean Squared Error (MSE): The mean squared error is obtained by squaring the 

value of each time interval error and computing the mean of those values. Note 

that SSE - Sum of Squared Errors is the sum of the squared difference between 

each real data point and its predicted point, defined in Equation 4.39 as: 

ñ∞K = 	
ööÆ

H
= 	

±Ö
|ì

Öë{

H
    4.39 

• Mean Percentage Error (MPE): Another measure of accuracy for forecasting 

models is the MPE, defined in Equation 4.40 as: 

ñkK = 	
®ÆÖ

ì
Öë{

H
     4.40     

In this research, MAPE is used as the primary accuracy measure for a comparative 

description of the real and predicted data for both utilized models.  
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CHAPTER 5 | Results 

This chapter includes the forecasting models constructed and demonstrates the 

performance of each of them. The Box-Jenkins models, along with the linear, exponential 

growth and quadratic models is discussed first. Then the ANN model and the neuro-fuzzy 

ANFIS models are developed. The methodology for the development of each model is 

stated in the following sections.  
 

As noted before, the core objective of this research is to obtain an accurate forecasting 

model for the demand for automobiles in Iran’s domestic market. The monthly 

production data for vehicles manufactured in Iran from 2006 to 2016 was obtained for the 

main response and were used in the modeling exercises. Figure 5.1 shows the time series 

(first 116 months) of the production. Also, nine additional predictor variables, the 

monthly crude oil, gold, aluminum, steel, copper, rubber, lead, and iron ore prices along 

with the domestic stock index were also selected as possible inputs for the ANN and 

ANFIS models.  
 

In order to be consistent with the developed forecasting methodologies, the 128 available 

data points are divided into the first 116 and the last 12 months. All investigated 

methodologies use the first set of data for model development. This decision was made 

based on the non-stationary nature of the time series data of the problem at hand, which 

could not be remedied without modifying the data set. Dividing the time horizon into two 

periods was also investigated, however, models provided poor results due to the small 
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number of data points (72 and 56 months/points). The ANN and ANFIS models use 87 

months for model development, 14 months for model testing, and 15 months for model 

validation purposes. The best identified ANN and ANFIS are then used to generate 

forecasts for the last 12 months.  

 
 

 
Figure 5.1 – Production time series, first 116 months (2006-2016) 

 

Correlation analysis was carried out to detect any significant correlation among input 

variables to the ANN and ANFIS models. Based on the significance of the calculated 

correlations, five of the original predictor variables were identified as the inputs for the 

ANFIS models. They are monthly prices of gold, steel, rubber, iron ore, and the stock 

index while all nine variables were used in the ANN model.  
 

Minitab was utilized to develop the Box-Jenkins, linear, exponential growth and 

quadratic models. MATLAB was used for the development of the ANN and ANFIS 

models. The performance metric selected for this research is the MAPE. The MAPE of 

the developed forecasting models is calculated and compared to identify the most 

accurate model for forecasting the demand for automobiles.  The investigated models and 

results are provided in sections 5.1 through 5.7. 
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5.1. Box-Jenkins model 

The Box-Jenkins methodology applies autoregressive moving average (ARMA, ARIMA) 

models to obtain the best-fitted model of the response based on historical data. The 

iterative three-stage modeling approach is carried out to identify the best performing 

model. The first 116 data points were set aside to construct the model, and the last 12 

data points were designated to validate the model and calculate the MAPE. As previously 

mentioned, a large portion of the data points was allocated for model development 

purposes due to the non-stationary nature of the dataset. Furthermore, two general 

methodologies were carried out as follows: 

- First, a Box-Jenkins model was fitted using the first 116 data points and 

was used to generate 12 monthly forecasts. 

- Then the following process was carried out in order to establish a better 

comparison to the ANN and ANFIS models. A Box-Jenkins model was 

fitted to the first 116 data points and was used to generate a single time 

period forecast. Then, the generated forecast was used alongside the 

original 116 data points to fit a new Box-Jenkins model. This process was 

carried out to construct 12 models, each providing a single time period 

forecast for a total of 12 monthly forecasts.   
 

The first step in the development of Box-Jenkins model is to determine whether the time 

series is stationary. To investigate the stationarity of the time series, the Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF) plots are utilized. Figures 

5.2 and 5.3, which demonstrate the Autocorrelation function and Partial Autocorrelation 

function plots, indicate that the time series is non-stationary. The ACF plot of residuals 

shows deviance from the confidence bands at lag 2. Also, the PACF plot is deviating 

from the confidence band at lag 2 indicating that differencing by d=2 or 3 would remedy 

this problem. Note that a data point is lost each time the series is differenced.  



 54 

 

Figure 5.2 – Autocorrelation Function of Residuals 
 

The second step in the Box-Jenkins methodology is parameter estimation. The parameters 

are estimated using computation algorithms to obtain the best-fitted coefficients in the 

selected ARIMA-ARMA model. This is done via maximum likelihood estimation or non-

linear least-squares estimation. Several ARIMA-ARMA(p,d,q) models were developed 

and compared using Minitab. The ARMA (1,1,0) seasonal model, alongside the ARMA 

(1,3,1) nonseasonal model provided the lowest MAPE values among all the ARIMA 

models investigated.  
 

 

Figure 5.3– Partial Autocorrelation Function of Residuals 
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Moreover, the ARIMA (1,3,1) non-seasonal model is identified as the better performing 

model with MAPE=18.9963. Table 5.1 provides parameter estimates for the ARIMA 

(1,3,1) model and Table 5.2 show the modified Ljung-Box statistic. Note the significance 

of both model parameters.  
 

Table 5.1 – ARIMA (1,3,1) parameter estimates 

Type Coef. SE Coef. T P-value 

AR 1 -0.74 0.0646 -11.452 <0.00 

MA 1 0.99 0.0077 128.54 <0.00 

Constant 34.60 33.57 1.03 0.305 
 

 

As previously discussed, the AR(p) model can be written as: 

,5 = ´ + ≤v,59v
m
v;B + 45     5.1     

Where ≤v′Ä are model parameters, ´ is a constant, and 45 are white noise. The MA(q) 

model can be written as: 

,5 = 6 + pv459v
q
v;B + 45     5.2     

Where pv′Ä are model parameters, 6 is the expectation of +(0), and 45 are white noise. As 

previously discussed in chapter 4, the ARIMA (p, d, q) model has three parameters of 

interest. p represents the Autoregressive component order, d represents the order of 

differencing of the response to achieve a stationary process and q is the Moving Average 

component order. Note that the models are all fitted using Minitab. The P-value for the 

AR and MA term both validate the significance of the model components. In order to 

check the normality assumption, the normal probability plot of the residuals vs. fitted 

value plots and the residual histogram were constructed. As seen in Figure 5.4, the 

normality assumption is fairly met, and the residuals seem to be scattered randomly. The 

general model equation is obtained using the software output as: 
 

 	,5 = 34.60 + −0.74 ,59B + (0.99)Å59B + 459B  5.3     
 

The Ljung-Box test aims to identify whether any group of Autocorrelations of a time 

series are different from zero and tests the overall randomness based on a number of lags 

(h). The null hypothesis of the Ljung-Box test is that the data is independently distributed 
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(correlation in the sample population is zero) and the test statistic follows a Chi-square 

distribution with h degrees of freedom (Ljung, 1978). The Ljung-Box P-Values indicate 

that the correlation in the sample population is not zero at any lag. The transformation of 

the response is investigated next.  
Table 5.2 – Modified Ljung-Box statistic 

Lag 12 24 36 48 

Chi-Square 76.8 107.4 145.9 200.4 
DF 9 21 33 45 

P-Value <0.00 <0.00 <0.00 <0.00 
 

 
 

 
Figure 5.4 – ARIMA (1,3,1) nonseasonal model residual plots 

 
 

Based on the plots shown in Figure 5.4, specifically, the residual vs. fitted value plot, the 

transformation of the response was investigated in order to improve the model. 

Appropriate transformations of the data often result in improvements in model 

performance.  “The Box-Cox transformation is a useful transformation, defined as: 
 

ä(π) = (π∫ − 1)/º        5.4     
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Where the response is denoted as Y and º is the transformation parameter. For	º = 0, the 

natural log of the data is taken instead of using the above formula. Given a particular 

transformation such as the Box-Cox transformation, it is helpful to define a measure of 

the normality of the resulting transformation. One measure is to compute the correlation 

coefficient of a normal probability plot. The correlation is computed between the vertical 

and horizontal axis variables of the probability plot and is a convenient measure of the 

linearity of the probability plot. The Box-Cox normality plot is a plot of these correlation 

coefficients for various values of the º parameter. The value of º corresponding to the 

maximum correlation on the plot is then the optimal choice of º (NIST/SEMATECH e-

handbook of Statistical Methods, 2012).” 
 

Figure 5.5 shows the Log-Likelihood vs. Lambda, which denotes the optimal 

transformation parameter.  
 

 

Figure 5.5 – Box-Cox transformation plot 
 

As seen above, the 95% confidence interval for lambda includes the value of 1, indicating 

that transformations on the response will not enhance nor improve model performance. 

Finally, Table 5.3 provides the ARIMA (1,3,1) forecasts for the last 12 months, the actual 

values, and the MAPE=18.99 as follows: 
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Table 5.3 – ARIMA (1,3,1) nonseasonal model Forecasts and MAPE 

Actual Forecast APE 
78,642 69,614 11.48 
90,378 73,072 19.15 
86,508 75,823 12.35 
84,847 81,189 04.31 
82,481 86,749 05.17 
93,739 94,326 0.63 
98,568 102,608 4.10 
95,314 112,599 18.13 

108,489 123,591 13.92 
85,880 136,143 58.53 

104,052 149,876 44.04 
121,272 165,104 36.14 

   MAPE = 18.99 
 

 

Furthermore, as stated before, 12 different Box-Jenkins models were fitted as to establish 

a fair comparison to the ANN and ANFIS models. Note that each model was used to 

generate a single forecast. Table 5.4 provides the 12 forecasted values obtained using this 

methodology. Note the decrease in the calculated MAPE=9.68 compared to the general 

Box-Jenkins model MAPE (9.31% difference).  
 

Table 5.4 – Box-Jenkins model(s) Forecasts and MAPE 

Actual Forecast APE 

78,642 69,614 11.48 
90,378 73,355 18.84 
86,508 74,926 13.39 
84,847 80,265 5.4 
82,481 82,805 0.39 
93,739 89,038 5.01 
98,568 92,481 6.18 
95,314 99,562 4.46 

108,489 103,919 4.21 
85,880 111,867 30.26 

104,052 117,157 12.59 
121,272 125,996 3.90 

   MAPE = 9.68 



 59 

The differential between the two methodologies is due to the robustness of the latter 

methodology as it only forecasted a time step ahead compared to 12 steps ahead of the 

former methodology. Furthermore, equations 5.4 through 5.15 provide each model’s 

equation as follows: 
 

	,5 = 34.60 + −0.74 ,59B + (0.99)Å59B + 459B  5.4 

 	,5 = 35.52 + −0.74 ,59B + (0.99)Å59B + 459B  5.5     

 	,5 = 16.76 + −0.73 ,59B + (1.02)Å59B + 459B  5.6 

	,5 = 30.58 + −0.73 ,59B + (0.99)Å59B + 459B  5.7 

	,5 = 14.97 + −0.74 ,59B + (1.02)Å59B + 459B  5.8 

	,5 = 24.95 + −0.74 ,59B + (0.99)Å59B + 459B  5.9 

	,5 = 05.33 + −0.74 ,59B + (0.99)Å59B + 459B  5.10 

	,5 = 24.06 + −0.73 ,59B + (0.99)Å59B + 459B  5.11 

	,5 = 06.69 + −0.73 ,59B + (0.99)Å59B + 459B  5.12 

	,5 = 23.60 + −0.73 ,59B + (0.99)Å59B + 459B  5.13 

	,5 = 06.91 + −0.73 ,59B + (0.99)Å59B + 459B  5.14 

	,5 = 23.21 + −0.73 ,59B + (0.99)Å59B + 459B  5.15 
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5.2. Simple Linear Regression 

A simple linear model for the production data was fitted using Minitab. The first 116 data 

points were used to fit the line, and the last 12 data points were used to calculate the 

MAPE of this model. Equation 5.16 shows the equation of the fitted line.  
 

π 0 = 	93,799 − 123.66 0 + 45     5.16     

Figure 5.6 shows the normal probability plot, residual vs. fitted value plots and the 

residual histogram for the model. Note the visible trend in the residual vs. fitted values 

plot, an indication of non-constant variance of the residuals. Transformations of the 

response, as previously suggested, do not improve the performance of the model. 
 

 

Figure 5.6 – Simple Linear model residual plots 
 

As seen above, the normality assumption is met according to the normal probability plot, 

however, as mentioned before, the residuals vs. fitted value plot shows a noticeable trend. 

This is due to the irregular monthly production values of the industry in Iran. 

Furthermore, previously mentioned remedial measures were carried out to remedy this 

problem as much as possible, without significantly altering the original data. Figure 5.7 

shows the trend analysis plot for the linear model. 
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Figure 5.7 – Simple Linear model trend analysis plot 

As seen in Figure 5.7, the linear model includes a negative trend that has resulted from 

the significant decrease in production after time index 68. Furthermore, the linear model 

provides the following forecasts for the last 12 months, shown along with the actual 

values and the calculated MAPE for this model in Table 5.5. The calculated j# for this 

model is equal to 3.7%. 

Table 5.5 – Simple Linear Model Forecasts and MAPE 

Actual Forecast APE 
78,642 79,330 0.87 
90,378 79,206 12.36 
86,508 79,083 8.58 
84,847 78,959 6.94 
82,481 78,835 4.42 
93,739 78,712 16.03 
98,568 78,588 20.27 
95,314 78,464 17.68 

108,489 78,341 27.79 
85,880 78,217 8.93 

104,052 78,093 24.95 
121,272 77970 35.71 

   MAPE = 15.38 
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5.3. Exponential growth model 

The exponential growth model for the production data is fitted using Minitab. Similar to 

the Box-Jenkins and linear models, the first 116 data points are utilized to fit the model, 

and the last 12 data points are set aside to calculate the MAPE of this model. Equation 

5.17 shows the equation of the fitted line based on the general model π 0 = 	t ∗ ≠5 + 45. 

Note how the value ≠ = 0.998 is close to 1 – an indication of insignificance in this case. 
 

π 0 = 	92626 ∗ 0.9985 + 45     5.17     

Figure 5.8 shows the normal probability plot, residuals vs. fitted value plots and the 

residual histogram. Note the obvious trend in the residual vs. fitted values plot, an 

indication of non-constant variance of residuals. Although transforming the response, as 

seen before, improves the performance of the model, the improvement was not sufficient 

as to compete with the ANN or ANFIS models.  
 

 
Figure 5.8 – Exponential growth model residual plots 

As shown before, the transformation of the response does not improve the performance of 

the model. Figure 5.9 shows the trend analysis plot for the exponential growth model. As 

seen in the figure, the exponential growth model also includes a negative trend has 

resulted from the significant decrease in production.  
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Figure 5.9 – Exponential growth trend analysis plots 
 

Furthermore, the exponential growth model provides the following forecasts for the last 

12 months, provided alongside the actual values and the calculated MAPE for this model 

in Table 5.6.     

Table 5.6 – Exponential Growth Model Forecasts and MAPE 

Actual Forecast APE 

78,642 75,764 3.66 
90,378 75,634 16.31 
86,508 75,504 12.72 
84,847 75,374 11.16 
82,481 75,245 08.77 
93,739 75,516 19.44 
98,568 74,987 23.92 
95,314 74,858 21.46 

108,489 74,730 31.12 
85,880 74,602 13.13 

104,052 74,474 28.43 
121,272 74,345 38.70 

   MAPE  =  19.07 
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5.4. Quadratic model 

The quadratic model for the production data is fitted using Minitab. Similar to the Box-

Jenkins, linear, and exponential growth model, the first 116 data points are utilized to fit 

the model, and the last 12 data points are set aside to calculate the MAPE of this model. 

The general equation of the quadratic model can be expressed as π 0 = 	t+# + ≠+ +

´ + 45.  Equation 5.18 shows the equation of the fitted line. 
 

π(0) = 	−9.05 0# + 935 0 + 72973 + 45.     5.18     

Figure 5.10 shows the normal probability plot, residuals vs. fitted value plots and the 

residual histogram. Note the visible trend in the residual vs. fitted values plot, an 

indication of non-constant variance of residuals.  
 

 

Figure 5.10 – Quadratic Model residual plots 
 

Figure 5.11 shows the trend analysis plot for the quadratic model. As seen in the figure, 

this model is also forecasting a negative trend that has resulted from the significant 

decrease in production similar to the linear and exponential growth models.  



 65 

 

Figure 5.11 – Quadratic Model trend analysis plot 
 

As seen above, the forecasted trend for the quadratic model is very inaccurate. 

Furthermore, the following forecasts for the last 12 months, are shown along with the 

actual values and the calculated MAPE for this model in Table 5.7, below. The calculated 

j# for this model is equal to 21.3%. 

Table 5.7 – Quadratic model Forecasts and MAPE 

Actual Forecast APE 
78,642 58,504 25.61 
90,378 57,312 36.59 
86,508 56,103 35.15 
84,847 54,875 35.33 
82,481 53,629 34.98 
93,739 52,365 44.14 
98,568 51,082 48.18 
95,314 49,782 47.77 

108,489 48,464 55.33 
85,880 47,127 45.13 

104,052 45,773 56.01 
121,272 44,340 63.44 

   MAPE  = 43.97 
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5.5. Artificial Neural Network (ANN) model 

As discussed earlier, the following steps are necessary to construct an effective neural 

network: 
 

• Determining the purpose of the network. 

• Gathering data based on the specified network purpose. 

• Selecting the appropriate neural network based on the prior specified purpose and 

data. 

• Selecting the most suitable learning algorithm based on the network type and 

data. 

• Selecting the appropriate transfer function according to the network type and 

learning algorithm. 

• Adjusting network parameters such as the number of layers and nodes, or test 

numbers and training epochs. 
 

Based on the research objective, the feed-forward multi-layer perceptron network with 

back-propagation and the Levenberg-Marquardt learning algorithm is selected. Moreover, 

the Tan-Sig transfer function is utilized for the hidden layers, while the linear transfer 

function is used in the output layer. Figure 5.12 provides a graphical illustration of the 

constructed network. 
 

 
Figure 5.12 – Neural network illustration 

 

Most researchers employ only one hidden layer for forecasting purposes (Nack et al., 

1997). Thus, one hidden layer is utilized in this research as well. Furthermore, as one 

node is used for output layers empirically (Zhang et al., 1998), only one node is utilized 

in the constructed neural network model in this research. To obtain the best performing 

neural network (i.e. to optimize the number of hidden layer nodes and differencing 
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period), a MATLAB script was written and utilized, which identifies the best performing 

neural network according to the set performance metric (MAPE & MSE) based on: 

• Differencing: i=1,2, or 3 to achieve stationarity, 

• Number of nodes in the hidden layer: j=10:15, and 

• Testing time steps: k=12. 

The MATLAB code is included in the Appendix. The best performing neural network is 

identified as a multi-layer perceptron network consisting of two input nodes, one on the 

nine prior selected predictors and the other to the target response. Moreover, this network 

has 13 nodes with one hidden layer and one node in its output layer. As seen in Figure 

5.13, the best validation performance of 118,185,035.38	is obtained at epoch seven. This 

indicates that the network reached a minimum value of MSE after seven iterations. Note 

that the training continued for more than 5 iterations before stopping. Moreover, there are 

no indications of over-fitting in the plot as the validation and test trends are similar.  

 
Figure 5.13 – Validation Performance 
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Next, to validate the network, regression plots are utilized, which show the relationship 

between network outputs and the target values. The network is trained based on 75% of 

the data, tested against 15%, and validated against the remaining 15% prior to the model 

MAPE calculation. Figure 5.14 shows the training, validation, and test regression plots. 

Note the satisfactory values of 0.96, 0.91, and 0.84 for the training, validation and test R-

values respectively, alongside a total value of 0.921 for the model. The perfect result (i.e. 

perfect output value) is shown with the dashed line in each plot, and the solid line shows 

the best fit linear regression between target and output values. All the calculated R values 

suggest satisfactory fits, respectively. 

 
Figure 5.14 – Regression plots 
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Figures 5.15-16 show the error Autocorrelation plot and the error histogram for the neural 

network model. As seen below, the error Autocorrelations are within the confidence limit 

for almost all lags. 

 
Figure 5.15 – Error Autocorrelation 

Figure 5.16 shows that the neural network model errors are normally distributed. 

 
Figure 5.16 – Error Histogram 
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During model development, the last 12 monthly values were withheld from the network 

to test its performance. Based on the neural network’s forecasted values for the last 12 

months, the MAPE of this neural network is calculated as 5.85, suggesting significant 

superiority over the previously developed models. Figure 5.17 shows the network’s 

performance on the training data and shows actual data alongside the predicted values. 
 
 

 
Figure 5.17 – Neural network performance 

 

Moreover, the exact network weights, biases and analytic solution for the selected 

network is provided from the software solution as: 
 

• Input layer weight matrix (IW): 
 

 
 

• Input bias weight (AB): 
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• Output layer weight matrix (LW): 

 

• Output bias weight (A#): 
 

 
• Analytical solution: 

π 0 = A# + æø ∗ tanh	(AB + ùø ∗ , 0 ) 
     where Y(t) is the response and X(t) is the input matrix  
 

Finally, note that the MATLAB script used, generally takes significant run time to 

identify and construct the best performing model (code available in Appendix). Table 5.8 

provides the ANN forecasts and calculated MAPE. 
Table 5.8 – ANN model Forecasts and MAPE 

Actual Forecast APE 
78,642 76,238 3.06 
90,378 87,921 2.72 
86,508 82,314 4.85 
84,847 71,698 15.50 
82,481 77,342 6.23 
93,739 89,634 4.38 
98,568 95,341 3.27 
95,314 106,487 11.72 

108,489 114,540  5.58 
85,880 85,796 0.10 

104,052 93,872 9.78 
121,272 117,649 2.98 

   MAPE  = 5.84 
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5.6. Adaptive Neuro-Fuzzy Inference System (ANFIS) model 

Based on the previously discussed material in chapter 4, a series of different ANFIS 

models are developed in this research. The main features of ANFIS models are 

summarized in Figure 5.18 below: 

 
Figure 5.18 – ANFIS highlights 

To obtain the best performing model based on the research data, two types of Fuzzy 

Interface Systems (FIS) are utilized based on grid partitioning and sub-clustering. Note 

that each of the previously mentioned FIS’s is constructed based on their requirements as 

follows: 
 

• Sub-clustering: The parameters associated with sub-clustering include the range 

of influence, the squash factor, the accept and reject ratios. 

• Grid partitioning: The number of input MF’s, the MF type along with the output 

MF type. 
 

Furthermore, according to the above-mentioned general types of FIS, numerous models 

of each methodology were developed and tested to find the best performing model. Note 

that the input variables of the constructed models are the five previously identified 

variables with the highest and most significant correlation values with the response 

(Gold, Steel, Rubber, Stock Index, and Iron ore monthly prices/index). The training and 

testing data proportions are similar to those of the ANN model. The relevant formulas 

have been presented in chapter 4. The two identified best performing ANFIS models are 

as follows: 
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• Sub-clustering model: 

As mentioned earlier, the parameters to be estimated in this model are: 
 

1. The range of influence, 

2. The squash factor, and 

3. The accept and reject ratios. 
 

Furthermore, the utilized MATLAB code constructs and tests different models 

based on the above-mentioned parameters starting with an initial analysis of each 

of these parameters. The initial analysis concluded that the optimum range for the 

radius is between the values of 0.5 and 0.6. Also, the optimum value for the epoch 

and squash factor were determined as 1000-2000 and 1.25 respectively. Figure 

5.19 shows a schematic of this ANFIS model. 
 

 
Figure 5.19 – ANFIS structure illustration 
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Table 5.9, provides the ANFIS model forecasts and the calculated MAPE=21.91 

for the model. The MATLAB code written to obtain the result is provided in the 

Appendix. 

 
Table 5.9 – ANFIS, sub-clustering Model Forecasts and MAPE 

Actual Forecast APE 

78,642 68,234 13.24 

90,378 74,215 17.88 

86,508 76,984 11.01 

84,847 71,689 15.51 

82,481 68,412 17.06 

93,739 76,891 17.98 

98,568 84,213 14.56 

95,314 61,324 35.66 

108,489 80,214 26.06 

85,880 72,154 15.98 

104,052 64,231 38.27 

121,272 73,152 39.68 

   MAPE  = 21.91 

 

• Grid partitioning model: 

For the model constructed using grid partitioning, the parameters of interest are as 

follows: 

1. Input MF type and number, and 

2. Output MF type. 

MATLAB provides many different MFs, as described in chapter 4. The ‘trapmf’ 

function is identified as the optimum MF based on the research data. This model 

has five inputs and one output using the weighted average detonated as ‘wtaver’ 

in MATLAB as the defuzzification method. The general interface of the 

‘anfisedit’ toolbox in MATLAB is demonstrated in Figure 5.20, below. 
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Figure 5.20 – ANFIS toolbox (MATLAB) 

 

 A schematic of the model is further illustrated in Figure 5.21. 

 
Figure 5.21 – ANFIS structure illustration 
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Moreover, as seen above, the model has 32 rules. Forecasts generated by this 

model are shown in Table 5.10 along with the calculated MAPE (MAPE=13.27). 
 

Table 5.10 – ANFIS, grid partitioning model Forecasts, and MAPE 

Actual Forecast APE 

78,642 82,505 4.91 
90,378 89,806 0.63 
86,508 89,024 2.91 
84,847 90,035 6.11 
82,481 76,449 7.31 
93,739 71,844 23.36 
98,568 95,466 3.15 
95,314 92,512 2.94 

108,489 84,667 21.96 
85,880 76,643 0.75 

104,052 71,642 31.15 
121,272 67,853 44.05 

   MAPE= 13.27 
 

 

Based on the results shown above for the two identified models, the FIS generated based 

on grid partitioning is providing forecasts with smaller MAPE values as compared to 

those of the sub-clustering method. Thus, this model is selected as the best performing 

ANFIS model and is further compared against the previously constructed models i.e. the 

simple linear and ANN models. 
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5.7. Comparisons 

This section summarizes the results obtained from the proposed models and compares 

them based on the specified performance measure, the MAPE. Models investigated in 

this research include the Simple Linear, Exponential growth, Quadratic, ARMA (1,3,1), 

Robust ARMA, Multi-layer perceptron neural network, and the ANFIS models. Table 

5.11 shows the MAPEs associated with the models and ranks them according to the 

MAPE value. 
 
 

Table 5.11 – MAPE for developed models 

Model MAPE Rank 

Linear 15.38 4 
Exponential growth 19.07 6 

Quadratic 43.97 8 
ARIMA (1,3,1) 19.00 5 

ARIMA (Robust) 9.68 2 
ANN (multi-layer perceptron) 5.85 1 

ANFIS.subclustering 21.91 7 

ANFIS.gridpartitioning 13.27 3 
 

 

 

As can be seen in Table 5.11, the ANN provided the lowest MAPE value among the 

investigated models. The Robust ARIMA model is the second best performing model 

based on the calculated MAPE. Note the significant difference between the two ARIMA 

methodologies, which is due to the difference between generating 1 time step ahead 

forecast vs. 12 time step ahead forecasts. The ANFIS model and Linear Regression 

model are ranked 3 and 4 respectively. Furthermore, according to the previously stated 

research objective, it is clear that the ANN model provides the most accurate forecast 

among the investigated models. Figure 5.22 illustrates the time-series alongside the fitted 

models and their forecasts. 
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Figure 5.22 – Time-series graph with fitted models &forecasts 

 
It can be seen from Figure 5.22 that the ANN model outperformed other utilized models. 

Suggestions towards improving the feedforward multi-layer perceptron neural network 

are discussed in Chapter 6. 
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CHAPTER 6 | Conclusion & future work 

Automotive industries vastly benefit from the ability to accurately forecast the demand 

for their products. The increasing demand for transportation and automobiles in Iran in 

the past half century and the fact that there are no available forecasting models for the 

demand has made it necessary to provide an accurate forecasting model that can be used 

reliably to plan for sufficient production to meet the customers’ demand. It is clear that 

domestic automobile manufacturers will benefit significantly from having accurate 

forecasts for the demand of their products. 
 

Based on the literature survey, the ANN and ANFIS methodologies were expected to 

outperform preceding methodologies. The obtained results confirm the initial expectation 

as the ANN model provides the most accurate forecasts compared to the other developed 

models. Aside from the monthly domestic production values of cars in Iran, a number of 

other variables such as monthly gold, steel, rubber, and iron ore prices were used as 

inputs for the ANN and ANFIS models. Note that the utilized time series presented 

significant variation throughout the 128 monthly data points. Both AI models were less 

affected by this compared to the other investigated models. Note that the remedial 

procedures attempted to address this issue. However, further tampering with the data 

would result in significant deviation from the actual data.  
 

After developing and testing several forecasting models, namely the simple linear and the 

Box-Jenkins models, the feedforward multi-layer perceptron artificial neural network 

model with back-propagation and the Levenberg-Marquardt learning algorithm was 

identified as the best performing forecasting model with regards to MAPE. The hidden 

layers of this network utilize the Tan-Sig transfer function, while the output layer uses the 

linear transfer function.  
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Figure 6.1 shows the forecasts from all utilized models. Based on this graph, it is clear 

that the ANN methodology is superior compared to other investigated methodologies. 
  

 

 

Figure 6.1 – Forecasts    
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Moreover, the following summarizes recommendations for future work: 

•  Expanding the data set: This research was based on 128 data points of the nine 

input/predictor variables and the response. Adding more data points will only help 

the developed ANN model generate more accurate forecasts. Also, other 

input/predictor variables should be investigated for possible inclusion in the 

model. 

•    Refining/tuning input variables: Due to the scarcity of reliable data in Iran, a 

limited number of predictors with relations to the response were identified and 

utilized. However, as the country is progressing, more data will be available, 

which could be used for the ANN forecasting model. The proposed ANN model – 

the feedforward multi-layer perceptron network with two input nodes (one for the 

nine predictors and another for the response), with 13 nodes in one hidden layer 

can be further tuned to improve the forecasting accuracy. 

• Investigating other emerging methodologies: The Water Wave Optimization 

metaheuristic, which presents aspects of water waves such as propagation, 

refraction, and breaking can be used to derive effective models to search for 

feasible solutions in high-dimensional solution spaces. This methodology can be 

adapted to time series forecasting problems towards obtaining more accurate 

forecasts. 
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Appendix  

Code 

ANN-script: 

flag = 0;% a flag to stop the calculation when the criteria on line 17 met. 
[mm,nn]=size(X1);% get the size of the input 
for i=1:3 % the delay interval that you want to test 
    for j=10:15 % the hidden layer interval that you wana test 
        for k=24:24% the number of the time stps for the test 
            for tR=0.7:0.05:0.8 % the interval for training ratio 
                for vR=0.1:0.05:0.15% the interval for validation ratio 
                    for teR=0.1:0.05:0.2% the interval for testing ratio 
    [mape,rmse,pred1,actual1,sim,real,Network]=NNrun(i,j,k,X1,Y1,tR,vR,teR);% run the neural net and get 
the data 
         if mape<0.06&&rmse<7000 % this is the condition line based on RMSE error. change it as you wish 
             flag = 1;% if line 17 met, the flag would be on  
             rmse1=rmse; 
             pred=pred1;%line 17 met, get the predicted data 
             actual=actual1;%line 17 met, get the actual data 
             sim1=sim;%line 17 met, get the simulated data 
             real1=real;%line 17 met, get the real data 
             mape_min=mape; 
             Final_net=Network; 
             Input_Weight=Final_net.IW;% input weights 
             Output_Weight=Final_net.LW;%output weights 
             Bias=Final_net.b;%% bias 
         end 
          
    close all;% it closes all the windows to avoid lack of memory 
        end 
        end 
        end 
        end 
    end 
     
     
    if flag == 1% %line 17 met, plot the results!! 
        knownOutputTimesteps = 1:(nn-k);%% the elements in (1: (114-PP)) 
predictOutputTimesteps = (nn-i-(k-1)):nn-i;%%(105:114) 
S=predictOutputTimesteps(1,1):predictOutputTimesteps(1,k);% interval of  
%timesteps for graphing purpose 
        figure 
subplot(2,1,1)       
 plot(S,actual1,'b',S,pred1,'r');    
 legend('Real production','Prediction') 
title('Prediction vs. Real Production') 
xlabel ('timestep to be predicted'); 
ylabel ('production') 
subplot(2,1,2) 
[tt,dd]=size(actual1); 
plot(1:nn-i,real1,'b',1:nn-i,sim1,'r')        
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title('Simulation vs. Real Production') 
legend('Real production','Prediction') 
xlabel ('timestep to be predicted'); 
ylabel ('production') 
weights=getwb(Final_net); 
break; 
end 
end 
 

ANFIS – sub-clustering model code: 

Inputs = IN; 
Targets = OUT; 
nData = size(Inputs,1); 
pTrain=0.85; 
nTrainData=round(pTrain*nData); 
TrainInd=PERM(1:nTrainData); 
TrainInputs=Inputs(TrainInd,:); 
TrainTargets=Targets(TrainInd,:); 
pTest=1-pTrain; 
nTestData=nData-nTrainData; 
TestInd=PERM(nTrainData+1:end); 
TestInputs=Inputs(TestInd,:); 
TestTargets=Targets(TestInd,:); 
        PARAMS=inputdlg(Prompt,Title,1,DefaultValues); 
        pause(0.01); 
        nCluster=str2num(PARAMS{1});        %#ok 
        Exponent=str2num(PARAMS{2});        %#ok 
        MaxIt=str2num(PARAMS{3});           %#ok 
        MinImprovment=str2num(PARAMS{4});   %#ok 
        DisplayInfo=1; 
        FCMOptions=[Exponent MaxIt MinImprovment DisplayInfo]; 
fis=genfis3(TrainInputs,TrainTargets,'sugeno',nCluster,FCMOptions); 
end 
MaxEpoch=str2num(PARAMS{1});                %#ok 
ErrorGoal=str2num(PARAMS{2});               %#ok 
InitialStepSize=str2num(PARAMS{3});         %#ok 
StepSizeDecreaseRate=str2num(PARAMS{4});    %#ok 
StepSizeIncreaseRate=str2num(PARAMS{5});    %#ok 
TrainOptions=[MaxEpoch ... 
              ErrorGoal ... 
              InitialStepSize ... 
              StepSizeDecreaseRate ... 
              StepSizeIncreaseRate]; 
DisplayInfo=true; 
DisplayError=true; 
DisplayStepSize=true; 
DisplayFinalResult=true; 
DisplayOptions=[DisplayInfo ... 
                DisplayError ... 
                DisplayStepSize ... 
                DisplayFinalResult]; 
OptimizationMethod=0; 
fis=anfis([TrainInputs TrainTargets],fis,TrainOptions,DisplayOptions,[],OptimizationMethod); 
Outputs=evalfis(Inputs,fis); 
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TrainOutputs=Outputs(TrainInd,:); 
TestOutputs=Outputs(TestInd,:); 
TrainErrors=TrainTargets-TrainOutputs; 
TrainMSE=mean(TrainErrors.^2); 
TrainRMSE=sqrt(TrainMSE); 
TrainErrorMean=mean(TrainErrors); 
TrainErrorSTD=std(TrainErrors); 
TestErrors=TestTargets-TestOutputs; 
TestMSE=mean(TestErrors.^2); 
TestRMSE=sqrt(TestMSE); 
TestErrorMean=mean(TestErrors); 
TestErrorSTD=std(TestErrors); 
End 
flag = 0; 
n=0; 
for i=0.5:0.02:0.6  
    for j=1000:3250 
[MAPE,R_Corr,PR_Test,AC_Test,PR_Train,AC_Train,PR,AC]=AnfisRun2(i,j,IN,OUT);%%% "i" is the 
Radius; "j" is the epoches 
         if MAPE<0.3&&R_Corr>0.4 
             flag = 1; 
             R_CorrMin=R_Corr; 
             mape_min=MAPE; 
         end  
    close all;% it closes all the windows to avoid lack of memory 
    n=n+1; 
    if flag == 1    
    TrainTargets=AC_Train; 
    TrainOutputs=PR_Train; 
    TestTargets=AC_Test; 
    TestOutputs=PR_Test; 
    Targets=AC; 
    Outputs=PR; 
if ~isempty(which('plotregression')) 
    figure; 
    plotregression(TrainTargets, TrainOutputs, 'Train Data', ... 
                   TestTargets, TestOutputs, 'Test Data', ... 
                   Targets, Outputs, 'All Data'); 
    set(gcf,'Toolbar','figure'); 
end 
 

ANFIS – grid partitioning model using ‘anfisedit’ MATLAB toolbox: 

[System] 
Name='anfistrampf1500backprop' 
Type='sugeno' 
Version=2.0 
NumInputs=5 
NumOutputs=1 
NumRules=32 
AndMethod='prod' 
OrMethod='probor' 
ImpMethod='prod' 
AggMethod='sum' 
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DefuzzMethod='wtaver' 
[Input1] 
Name='input1' 
Range=[328.208 1780.648] 
NumMFs=2 
MF1='in1mf1':'trapmf',[-673.6964 -101.1796 757.000687605796 1330.32649586363] 
MF2='in1mf2':'trapmf',[755.308389970476 1329.51787044754 2188.8876 2761.4044] 
[Input2] 
Name='input2' 
Range=[105.54 256.24] 
NumMFs=2 
MF1='in2mf1':'trapmf',[0.0500000000000256 60.33 150.57028695941 212.801911527114] 
MF2='in2mf2':'trapmf',[150.581369780447 210.848268606412 301.45 361.73] 
[Input3] 
Name='input3' 
Range=[56.7 280.79] 
NumMFs=2 
MF1='in3mf1':'trapmf',[-100.163 -10.527 123.969442458127 213.096987192184] 
MF2='in3mf2':'trapmf',[123.390423212143 213.604988350438 348.017 437.653] 
[Input4] 
Name='input4' 
Range=[8131.3529 87389.368] 
NumMFs=2 
MF1='in4mf1':'trapmf',[-47349.25767 -15646.05163 31908.7569485313 63611.9611325557] 
MF2='in4mf2':'trapmf',[31908.7551765164 63611.9629885316 111166.77253 142869.97857] 
[Input5] 
Name='input5' 
Range=[33.45 187.18] 
NumMFs=2 
MF1='in5mf1':'trapmf',[-74.161 -12.669 79.4294633853845 140.604803231249] 
MF2='in5mf2':'trapmf',[79.5963737954478 140.921444658791 233.299 294.791] 
[Output1] 
Name='output' 
Range=[34969 135286] 
NumMFs=32 
MF1='out1mf1':'linear',[1.87889077528655 0.356581017341143 0.254465695399984 9.21533753418034 
0.372773520685096 0.00331311373255687] 
MF2='out1mf2':'linear',[0.609868412728055 0.267916308944556 0.202915531794686 4.06069905793337 
0.18691177982171 0.00144986995907038] 
MF3='out1mf3':'linear',[0.02609096144391 0.00365014033449522 0.0031401080839359 
0.705959663083553 0.00237259958483968 2.05831794216821e-05] 
MF4='out1mf4':'linear',[0.0459706819078436 0.00855543254907792 0.00787410708210968 -
0.531884794173012 0.00535655730237302 4.32171783500657e-05] 
MF5='out1mf5':'linear',[0.0726401858247748 0.0369368688612498 0.0285937273648867 
1.08210798481671 0.0147210670735954 0.000205324102899381] 
MF6='out1mf6':'linear',[0.182882261204246 0.0793423692518182 0.0646329376585627 
2.64792078379504 0.0627989491384392 0.000430946231190982] 
MF7='out1mf7':'linear',[0.00540188262462596 0.00077647980151837 0.000575884348433063 
0.239882314721165 0.000568644610528341 4.33816163579668e-06] 
MF8='out1mf8':'linear',[0.0222394112251025 0.00346315855426982 0.00255433019485421 
0.943242285519479 0.00245396187423429 1.89833033832824e-05] 
MF9='out1mf9':'linear',[0.67294617921145 0.339330602044415 0.229826571867217 7.28433569550985 
0.131961153365894 0.0016992685436473] 
MF10='out1mf10':'linear',[0.932817778767536 0.433839921731919 0.319721455183053 
6.64562736221915 0.322278243018496 0.00226846144574714] 
MF11='out1mf11':'linear',[0.0252095377838107 0.00384480862444992 0.00306937731480442 
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0.705343991638128 0.0026232020826902 2.07692979076366e-05] 
MF12='out1mf12':'linear',[0.105723414119836 0.0180393454531394 0.0142201412605527 
2.49052398472865 0.012364739788174 9.49770338176192e-05] 
MF13='out1mf13':'linear',[0.0803030297153549 0.03858849725462 0.0296856389018248 
1.34819214567703 0.0163988748361885 0.000210998744142789] 
MF14='out1mf14':'linear',[0.711100043116565 0.330046575713355 0.341377557217355 
6.37408981949445 0.250827871436821 0.00137921789474814] 
MF15='out1mf15':'linear',[0.00549199987119919 0.000832797758790593 0.000610727344819736 
0.22173834840905 0.000601779266005722 4.5171815010598e-06] 
MF16='out1mf16':'linear',[0.0271357781308941 0.00434020051023818 0.00320606549602599 
1.06776223629671 0.00305025186976674 2.33789525914383e-05] 
MF17='out1mf17':'linear',[-0.311491997821817 -0.0618806342391351 -0.046359727353277 -
9.40101895625598 -0.036532400913594 -0.000359503099170684] 
MF18='out1mf18':'linear',[-0.0879244396745382 -0.0339456051513988 -0.0288220239432695 
0.638210276241297 -0.0201533219933131 -0.000198511528749006] 
MF19='out1mf19':'linear',[0.0989006441648279 0.0113225266090018 0.0104109847673351 
1.23019622015188 0.00953873862539293 6.29963002711936e-05] 
MF20='out1mf20':'linear',[0.280299420125255 0.0347792553166455 0.0258632615523657 
0.509617862984191 0.0228719030985239 0.000194386636591565] 
MF21='out1mf21':'linear',[-0.0194934151627975 -0.00432319497802231 -0.00343449693889254 -
0.551254476580396 -0.00243519341861299 -2.47217326947794e-05] 
MF22='out1mf22':'linear',[-0.0781176083705839 -0.0200053477329905 -0.0174495615875844 -
1.76265733050441 -0.0140471859934594 -0.000101589872147396] 
MF23='out1mf23':'linear',[0.0207163176272092 0.00303034176034442 0.00228301103838122 
0.931954745857679 0.00210449411711783 1.71674791207252e-05] 
MF24='out1mf24':'linear',[0.0609762854628143 0.00933180665162924 0.00694736006129105 
2.67646055419617 0.0065609137661387 5.17595867272627e-05] 
MF25='out1mf25':'linear',[-0.130751186829373 -0.0292802010915555 -0.0226061570564588 -
3.68154002855208 -0.0161795232185144 -0.000175293988840275] 
MF26='out1mf26':'linear',[-0.192012983410237 -0.0739230090159948 -0.0693807520752825 -
1.16977573853289 -0.0512446072460368 -0.00036757057063081] 
MF27='out1mf27':'linear',[0.083957105988095 0.0112321437451025 0.00905877903855718 
1.59322524118396 0.00845108788347234 6.17863629395432e-05] 
MF28='out1mf28':'linear',[0.260081698043151 0.0375830810427272 0.028190726879148 
0.845496383260956 0.0251406322237267 0.0002037687938213] 
MF29='out1mf29':'linear',[-0.00734939727859272 -0.00237488460641481 -0.00211597562652736 -
0.137520046201311 -0.0012469563513409 -1.40976144710461e-05] 
MF30='out1mf30':'linear',[-0.0522325731283927 0.00369321247519974 0.0355605849978808 -
2.24159679756522 0.00135678160839719 -0.000112885483752768] 
MF31='out1mf31':'linear',[0.0172425856057266 0.00262658956297608 0.00196146220557136 
0.722297014281121 0.00182088621507756 1.45220622665507e-05] 
MF32='out1mf32':'linear',[0.0656995883878234 0.0104099815119225 0.00771747845932173 
2.68455627500577 0.00730593613708159 5.64901460072267e-05] 
[Rules] 
1 1 1 1 1, 1 (1) : 1 
1 1 1 1 2, 2 (1) : 1 
1 1 1 2 1, 3 (1) : 1 
1 1 1 2 2, 4 (1) : 1 
1 1 2 1 1, 5 (1) : 1 
1 1 2 1 2, 6 (1) : 1 
1 1 2 2 1, 7 (1) : 1 
1 1 2 2 2, 8 (1) : 1 
1 2 1 1 1, 9 (1) : 1 
1 2 1 1 2, 10 (1) : 1 
1 2 1 2 1, 11 (1) : 1 
1 2 1 2 2, 12 (1) : 1 
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1 2 2 1 1, 13 (1) : 1 
1 2 2 1 2, 14 (1) : 1 
1 2 2 2 1, 15 (1) : 1 
1 2 2 2 2, 16 (1) : 1 
2 1 1 1 1, 17 (1) : 1 
2 1 1 1 2, 18 (1) : 1 
2 1 1 2 1, 19 (1) : 1 
2 1 1 2 2, 20 (1) : 1 
2 1 2 1 1, 21 (1) : 1 
2 1 2 1 2, 22 (1) : 1 
2 1 2 2 1, 23 (1) : 1 
2 1 2 2 2, 24 (1) : 1 
2 2 1 1 1, 25 (1) : 1 
2 2 1 1 2, 26 (1) : 1 
2 2 1 2 1, 27 (1) : 1 
2 2 1 2 2, 28 (1) : 1 
2 2 2 1 1, 29 (1) : 1 
2 2 2 1 2, 30 (1) : 1 
2 2 2 2 1, 31 (1) : 1 
2 2 2 2 2, 32 (1) : 1 
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