183,765 research outputs found

    Modeling and Analysis of Power Processing Systems (MAPPS), initial phase 2

    Get PDF
    The overall objective of the program is to provide the engineering tools to reduce the analysis, design, and development effort, and thus the cost, in achieving the required performances for switching regulators and dc-dc converter systems. The program was both tutorial and application oriented. Various analytical methods were described in detail and supplemented with examples, and those with standardization appeals were reduced into computer-based subprograms. Major program efforts included those concerning small and large signal control-dependent performance analysis and simulation, control circuit design, power circuit design and optimization, system configuration study, and system performance simulation. Techniques including discrete time domain, conventional frequency domain, Lagrange multiplier, nonlinear programming, and control design synthesis were employed in these efforts. To enhance interactive conversation between the modeling and analysis subprograms and the user, a working prototype of the Data Management Program was also developed to facilitate expansion as future subprogram capabilities increase

    Active shielding of magnetic field with circular space-time characteristic

    Get PDF
    Aim. The synthesis of two degree of freedom robust two circuit system of active shielding of magnetic field with circular spacetime characteristic, generated by overhead power lines with "triangle" type of phase conductors arrangements for reducing the magnetic flux density to the sanitary standards level and to reducing the sensitivity of the system to plant parameters uncertainty. Methodology. The synthesis is based on the multi-criteria game decision, in which the payoff vector is calculated on the basis of the Maxwell equations quasi-stationary approximation solutions. The game decision is based on the stochastic particles multiswarm optimization algorithms. The initial parameters for the synthesis by system of active shielding are the location of the overhead power lines with respect to the shielding space, geometry and number of shielding coils, operating currents, as well as the size of the shielding space and magnetic flux density normative value, which should be achieved as a result of shielding. The objective of the synthesis is to determine their number, configuration, spatial arrangementand and shielding coils currents, setting algorithm of the control systems as well as the resulting of the magnetic flux density value at the shielding space. Results. Computer simulation and field experimental research results of two degree of freedom robust two circuit system of active shielding of magnetic field, generated by overhead power lines with Β«triangleΒ» type of phase conductors arrangements are given. The possibility of initial magnetic flux density level reducing and system sensitivity reducing to the plant parameters uncertainty is shown. Originality. For the first time the synthesis, theoretical and experimental research of two degree of freedom robust two -circuit t system of active shielding of magnetic field generated by single-circuit overhead power line with phase conductors triangular arrangements carried out. Practical value. Practical recommendations from the point of view of the practical implementation on reasonable choice of the spatial arrangement of two shielding coils of robust two -circuit system of active shielding of the magnetic field with circular space-time characteristic generated by single-circuit overhead power line with phase conductors triangular arrangements are given.ЦСль. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ робастной Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля с ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ характСристикой, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² для сниТСния ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π΄ΠΎ уровня санитарных Π½ΠΎΡ€ΠΌ ΠΈ для сниТСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ систСмы ΠΊ нСопрСдСлСнности ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° управлСния. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ. Π‘ΠΈΠ½Ρ‚Π΅Π· основан Π½Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ стохастичСской ΠΈΠ³Ρ€Ρ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Π²Ρ‹ΠΈΠ³Ρ€Ρ‹Ρˆ вычисляСтся Π½Π° основании Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла Π² квазистационарном ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ. РСшСниС ΠΈΠ³Ρ€Ρ‹ находится Π½Π° основС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² стохастичСской ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ°Π³Π΅Π½Ρ‚Π½ΠΎΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ€ΠΎΠ΅ΠΌ частиц. Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ для синтСза систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΡΠ²Π»ΡΡŽΡ‚ΡΡ располоТСниС Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΉ элСктропСрСдачи ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ экранируСмому пространству, гСомСтричСскиС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, количСство ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² ΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ Ρ‚ΠΎΠΊΠΈ Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ экранируСмого пространства ΠΈ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ достигнуто Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ экранирования. Π—Π°Π΄Π°Ρ‡Π΅ΠΉ синтСза являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ количСства, ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ, пространствСнного располоТСния ΠΈ Ρ‚ΠΎΠΊΠΎΠ² ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы управлСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ значСния ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π² экранируСмом пространствС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСорСтичСских ΠΈ ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ робастной Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ². Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ сниТСния уровня ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ исходного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π²Π½ΡƒΡ‚Ρ€ΠΈ экранируСмого пространства ΠΈ сниТСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ систСмы ΠΊ нСопрСдСлСнностям ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° управлСния. ΠžΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ синтСз, тСорСтичСскиС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ робастной Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ². ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ практичСскиС Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ обоснованному Π²Ρ‹Π±ΠΎΡ€Ρƒ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния практичСской Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ пространствСнного располоТСния Π΄Π²ΡƒΡ… ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ робастной систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля с ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ характСристикой, создаваСмого ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ²

    Model of the Positioning Pneumatic System

    Get PDF
    Tato prΓ‘ce se zabΓ½vΓ‘ Ε™Γ­dicΓ­m systΓ©mem pro pneumatickΓ½ obvod. ŘídicΓ­ jednotka je multifunkčnΓ­ I/O karta MF 634 od firmy Humusoft, kterΓ‘ je zaloΕΎena na 32 bitovΓ© architektuΕ™e. Je pΕ™ipojena k elektronickΓ© jednotce, kterΓ‘ spojuje prvky polohovacΓ­ho pneumatickΓ©ho systΓ©mu. Tato elektronickΓ‘ jednotka je navrΕΎena takΓ© pro pΕ™ipojenΓ­ PLC automatu Siemens Simatic S7 1500. HlavnΓ­m cΓ­lem tΓ©to prΓ‘ce je sestavit pneumatickΓ½ obvod, navrhnout polohovacΓ­ systΓ©m a ovΔ›Ε™it funkčnost celΓ©ho obvodu. DΓ‘le je cΓ­lem identifikovat regulovanou soustavu (pneumatickΓ½ vΓ‘lec) a provΓ©st syntΓ©zu regulačnΓ­ho obvodu. PotΓ© navrhnout Ε™Γ­dicΓ­ algoritmus a ovΔ›Ε™it jeho funkčnost.This thesis deal with the control system designed for controlling the pneumatic circuit. The control unit is represented by the I/O card MF 634, made by the company Humusoft, which is based on 32bit architecture. The control unit is connected to the electronic unit, which allows the control system to be connected with other parts of pneumatic circuit. This unit is designed with connector to connect other control system which is PLC controller Siemens Simatic S7 1500. The main goal of this thesis is to build the pneumatic circuit, to design the positioning system and to verify that the whole system is working properly. The next goal is to identify the regulated system and let the synthesis be done. In this thesis the pneumatic circuit was built and was verified that the whole circuit is working properly. The next goal is to design the control algorithm and to verify if it works properly.352 - Katedra automatizačnΓ­ techniky a Ε™Γ­zenΓ­vΓ½born

    Testing two-phase transition signaling based self-timed circuits in a synthesis environment

    Get PDF
    Journal ArticleThe problem of testing self-timed circuits generated by an automatic synthesis system is studied. Two-phase transition signalling is assumed and the circuits are targetted for an asynchronous macromodule based implementation as in [?, ?, ?, ?]. The partitioning of the circuits into control blocks, function blocks, and predicate (conditional) blocks, originally conceived for synthesis purpose, is found to be very elegant and appropriate for test generation. The problem of data dependent control flow is solved by introducing a new macromodule called SCANSELECT (SELECT with scan). Algorithms for test generation are based on the Petri-net like representation of the physical circuit. The techniques are illustrated on the high-level synthesis system called SHILPA being developed by the Author's

    Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter

    Get PDF
    A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons. To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system. Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter. Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.Розглянуто розв’язання Ρ‚Π΅Ρ€ΠΌΡ–Π½Π°Π»ΡŒΠ½ΠΎΡ— Π·Π°Π΄Π°Ρ‡Ρ– управління Ρ‚Π° синтСзований ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΉ Π·Π°ΠΊΠΎΠ½ управління Π² Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ вигляді, який Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Π·ΠΌΡ–Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π³Π»ΠΈΠ±ΠΈΠ½ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Ρƒ. ДослідТСно особливості Π²ΠΏΠ»ΠΈΠ²Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° управління Π½Π° Ρ‚ΠΎΡ‡Π½Ρ–ΡΡ‚ΡŒ досягнСння ΠΊΡ–Π½Ρ†Π΅Π²ΠΎΡ— Ρ‚ΠΎΡ‡ΠΊΠΈ, Π΄Π°Π½Ρ– Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†Ρ–Ρ— Π· Π²ΠΈΠ±ΠΎΡ€Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° для Π½Ρ–Π²Π΅Π»ΡŽΠ²Π°Π½Π½Ρ ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ Ρ–Π½Π΅Ρ€Ρ†Ρ–ΠΉΠ½ΠΈΡ… Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½ΡŒ. Π‘ΠΈΠ½Ρ‚Π΅Π· управління Π·Π΄Ρ–ΠΉΡΠ½ΡŽΡ”Ρ‚ΡŒΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ пСрСслідування Π²Π΅Π΄ΡƒΡ‡ΠΎΡ— Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π° Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ”ΡŽ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΡŽ інтСгруванням Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½ΡŒ Ρ„Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ прискорСння Ρ– ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ ΠΏΠΎΠΌΠΈΠ»ΠΊΡƒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρƒ для аксСлСромСтрів

    Pressure Pump Power Control in the Primary Circuit of the Heat Exchange System

    Get PDF
    In this paper we consider the problem of speed in hot water systems where highly efficient plate heat exchanger is used. Especially marked the problem which is connected with long transition drive of constant speed exceeding the time of the heat exchanger accumulative tank emptying more than twice. As a regulating element in the heat exchange system there was proposed to use asynchronous electric drive of pressure pump in the primary circuit of the heat exchanger. For correct use of such electric drive we solved the problem of control object mathematical model synthesis, which has non-linear properties, in particular, the transfer coefficient of the circuit can vary in more than 6 times. At the same time there was revealed the dependence of the transfer coefficient on the motor speed, which must be considered in the controller synthesis. In conclusion we suggested the solutions of regulators synthesis tasks with customizable settings for speed and switchable structure between relay [lambda] and PI regulators

    Pressure Pump Power Control in the Primary Circuit of the Heat Exchange System

    Get PDF
    In this paper we consider the problem of speed in hot water systems where highly efficient plate heat exchanger is used. Especially marked the problem which is connected with long transition drive of constant speed exceeding the time of the heat exchanger accumulative tank emptying more than twice. As a regulating element in the heat exchange system there was proposed to use asynchronous electric drive of pressure pump in the primary circuit of the heat exchanger. For correct use of such electric drive we solved the problem of control object mathematical model synthesis, which has non-linear properties, in particular, the transfer coefficient of the circuit can vary in more than 6 times. At the same time there was revealed the dependence of the transfer coefficient on the motor speed, which must be considered in the controller synthesis. In conclusion we suggested the solutions of regulators synthesis tasks with customizable settings for speed and switchable structure between relay [lambda] and PI regulators

    Synthesis for Testability by Two-Clock Control

    Get PDF
    In previous studies clock control has been inserted after design to improve the testability of a sequential circuit. In this paper we propose a two-clock control scheme that is included as a part of the logic synthesis of a finite state machine (fsm). The scheme has low area overhead and competes well with scan methods in its ability to initialize and observe circuit states. The states of the machine are assigned a pair of binary values using a novel split coding system. The purpose of the encoding is to ease navigation between any pair of states using a combination of normal and test-mode transitions. We require a Hamiltonian cycle to exist in the state transition graph. Our investigation of the fsm benchmark shows that either such a cycle already exists or can be created with the insertion of a small number of transition edges. We also present synthesis results to show that the area penalty is small

    Mapping the optimal route between two quantum states

    Get PDF
    A central feature of quantum mechanics is that a measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance to chemical synthesis. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories of a superconducting circuit that evolves in competition between continuous weak measurement and driven unitary evolution. By tracking individual trajectories that evolve between an arbitrary choice of initial and final states we can deduce the most probable path through quantum state space. These pre- and post-selected quantum trajectories also reveal the optimal detector signal in the form of a smooth time-continuous function that connects the desired boundary conditions. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wave function collapse, and unitary evolution of the quantum state as described by the Schrodinger equation. These results and the underlying theory, based on a principle of least action, reveal the optimal route from initial to final states, and may enable new quantum control methods for state steering and information processing.Comment: 12 pages, 9 figure

    Model Based Synthesis of Control Software from System Level Formal Specifications

    Full text link
    Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.Comment: Accepted for publication by ACM Transactions on Software Engineering and Methodology (TOSEM
    • …
    corecore