
Testing Two-phase Transition Signaling based Self-timed
Circuits in a Synthesis Environment

Prabhakar N. Kudva
D ept, of Computer Science, University of Utah

Venkatesh Akella
D ept, of EECS, University of California, Davis

UUCS-93-024 '

Department of Com puter Science
University of Utah

Salt Lake City, U T 84112, USA

September 28, 1993

A b s t r a c t
The problem of testing self-timed circuits generated by an automatic synthesis system is
studied. Two-phase transition signalling is assumed and the circuits are targetted for an
asynchronous m acromodule based implementation as in [?, ? , ? , ?]. The partitioning of the
circuits into control blocks, function blocks, and predicate (conditional) blocks, originally
conceived for synthesis purpose, is found to be very elegant and appropriate for test genera­
tion. The problem of data dependent control flow is solved by introducing a new m acrom od­
ule called S C A N S E L E C T (S E L E C T with scan). Algorithms for test generation are based
on the Petri-net like representation of the physical circuit. The techniques are illustrated on
the high-level synthesis system called SHILPA being developed by the authors.

T e s t in g T w o -p h a s e T ra n s it io n S ig n a lin g b a sed S e lf-t im e d C irc u its in a S yn th esis
E n v iro n m e n t

P R A B H A K A R K1IDVA

Dept, o f Computer Science
University of Utah
Salt Lake City, Utah 8411‘i

V EN K ATESH A K E L L A

Dept, o f Electrical Engineering and Computer Science
University of California
Davis, CA 95616

K e y w o rd s : testing, self-timed circuits, high-level synthesis, asynchronous systems

A b str a c t . The problem of testing self-tiined circuits generated by an automatic synthesis system is studied. Two-phase
transition signalling is assumed and the circuits are targetted for an asynchronous inacroinodule based implementation as
in [4, 11, 1, 6], The partitioning of the circuits into control blocks, function blocks, and predicate (conditional) blocks,
originally conceived for synthesis purpose, is found to be very elegant and appropriate for test generation. The problem
of data dependent control flow is solved by introducing a new inacroinodule called SC A N SE LE C T (SELECT with scan).
Algorithms for test generation are based on the Petri-net like representation of the physical circuit. The techniques are
illustrated on the high-level synthesis system called SHILPA being developed by the authors.

1 I n tr o d u c t io n

Async.hronous/Self-timed designs are beginning to attract renewed attention as promising means of
dealing with the complexity of modern VLSI designs. The advantages of self-timed systems include
(i) absence of global clocking and associated problems of reliable clock generation and distribution and
loss of valuable power in clock drivers, (ii) ability to lend themselves better for incremental modifications,
as there are no global control schedules, (iii) capable of exhibiting better average case performance,
as they do not have to wait for the next clock “tick” to arrive before a following operation can be
triggered [9, 12]. Absence of global clocking and adherence to local communication protocols based
on handshaking also renders self-timed circuits as ideal candidates for language-based (or behavioral)
synthesis.

Testing of self-timed circuits has received little attention in recent times as most researchers have
been focussing on specification, synthesis, and verification aspects self-timed design. In this paper we
investigate a scheme to incorporate testing in a language-based synthesis scheme for self-timed circuits.
In the process we rediscover the now-well-understood symbiosis between testing and synthesis. More
specifically, we find that a partitioning technique originally devised for synthesis of self-timed circuits
from behavioral descriptions actually lends itself very naturally to an elegant testing strategy. Also, we
find that one of the basic macro modules, namely, the SELECT module, which is used to implement
data-dependent control flow, can be modified slightly to yield a SCANSELECT module which makes
the circuit more observable and controllable. (Details of the design of SCANSELECT are presented
later in the paper).

The techniques presented in this paper are based on the high-level synthesis system for self-timed
circuits called SHILPA [2]. The input to SHILPA are high-level descriptions in a concurrent HDL
called hopCP. hopCP is a notation to describe asynchronous hardware behavior els a collection of

(pkuciva@cs.utafi.edu)

(akella@eecs. u cd&vis .edu)

mailto:pkuciva@cs.utafi.edu

concurrent processes communicating through synchronous channels via handshake a la CSP and/or
through restricted shared variables. The hopCP objects can be conveniently expressed as an annotated
Petri net, where the annotations capture the data manipulation aspects of the hardware behavior.

The paper is organized as follows: In Section 2 we will compare our approach with the existing work
in the area. In Section 3 we will introduce the high-level synthesis system SHILPA where this work
fits in and provide the necessary background to understand the rest of the paper. In Section 4 we
will discuss the details of the test generation algorithms and illustrate them on a simple example. In
Section 5 we will provide some preliminary results to evaluate the performance and feasibility of our
technique and finally we conclude in Section 6 by reviewing the major contributions of the work and
outlining the directions of future work.

2 C o m p a r is o n w ith R e la te d W o r k

Hazewindus [7] provides a scheme to test delay-insensitive circuits in the Martin synthesis framework.
They use a four-phase level-based signaling and gate-level circuits unlike our approach which uses two-
phase transition signaling and macromodule based implementation. Keutzer et. al. [8] and Berel et.
al. [3] explore testability of circuits generated from STGs. Keutzer et. al. require a full-scan circuit
for all state elements while Bereel et. al. discuss the relationship between semi-modularity and testing.
Both these works address testing of the control part only. In contrast, our approach handles both control
and data parts. Ginosar and David [5] discuss the advantage of dual-rail encoded circuits in making the
circuits self-diagnostic. This involves an overhead for implementing the complete data path in dual rail
logic while our approach using single-rail datapaths. Finally, in a recent paper Pagey et. al. [10] outline
an approach to test Sutherland’s micropipelines by a partitioning approach similar to that proposed
in our paper but they do not provide any detailed algorithms and unlike ours, it is not based on a
high-level synthesis system.

3 B a ck g ro u n d

In this section, we shall provide the necessary background to develop the algorithms and main concepts
of the paper. First we define transition signaling, then we provide a brief overview of the SHILPA system
which includes the input language hopCP, the intermediate format HFG (hopCP Flow Graph), the
compilation scheme called action refinement and the final circuit representation called NHFG (normal-
form HFG). We present an example of synthesis in SHILPA and define predicate blocks, function blocks,
and control blocks. Finally, we discuss fault-modeling in SHILPA.

3.1 Transition Signaling

In transition signaling also known as two-phase or event-based signaling, both the upgoing (rising)
and down-going (falling) transition of a signal have meaning in the sense that the circuits respond to
both the transitions. More specifically, all activity in a system is governed by the occurence of a signal
transition rather than the the actual value of a signal (1 or 0). Natural advantages of transition signaling
include higher performance and lower power consumption (since both the polarities of signal transition
perform “useful” work). Asynchronous circuits generated by SHILPA are organized around two-phase
transition signaling with the data-bundling assumption.[11, 4], Data-bundling assumption implies that
we guarantee that the data arrives at all the receivers before the corresponding control signal.

3 .2 O verview o f S H IL P A

2

MODULE Example

TYPE b y te : v ecto r 8 o f b it

SYNCPORT b ? ,c ! : byte

VARIABLE x ,y ,z : byte

FUNCTION

BEHAVIOR

P [x ,y] <= (x>y) -> c ! (x+y) -> P [x ,y]
1 (n o t (x>y)) -> b?x -> c !x -> P [x ,y] ,

END

Figure 1: hopCP description of a simple example

Figure 2: HFG for the specification in Figure 1

Consider the simple hopCP specification shown in Figure 1. In hopCP, hardware is specified as a
set of sequential processes communicating over a set of synchronous channels (a la CSP) or via shared
variables. In the module example in Figure 1, there is a single process P, which communicates with the
external environment using synchronous channels b ? , c ! (where? denotes input channel and ! denotes
an output channel), x and y denote the internal variable (datapath registers for example). <= denotes
definition of a process, -> denotes sequencing, and I denotes a conditional. Notice that there are no
clocks in the specification, only the causal ordering of the various actions is presented. The behavior
of the module is specified in the BEHAVIOR section and is read as follows: if the value of x is greater
than y then, the value denoted by (x+y) is output on channel c !, otherwise, a new value is read in
from channel b? and stored in the register x. The same value is output on channel c ! . After that, the
module repeats its behavior.

This behavior is conveniently represented in the form of a annotated Petri net called HFG, where
the places denote the state of the system, the actions such as c ! (x+y), b?x, denote the transitions of
the Petri net. The variables and the functions which get modified by the execution of the system are
captured by the annotations.

Figure 2 shows the underlying HFG for the specification in Figure 1. The HFG is converted into
a self-timed circuit using a syntax-directed translation procedure called action refinement [l]. Action
refinement consists a set of Petri-net transformations to convert the HFG into an RTL description

3

(a) Function Action Block (FAB) (b) Predicate Action Block (PAB)

Figure 3: Models for FAB and PAB

denoted by a NHFG (normal-form HFG) and a set of resources.
Every circuit block is modeled as an action block, with optional bundled data. An action block

implements a hopCP action, and presents a self-timed interface, consisting of the initiate and completion
signals. If a transition is received on the initiate terminal, a transition is produced on the completion
terminal after an unspecified amount of time. If the action block being considered produces data output,
the completion signal is produced only after valid data is produced at its output. There are three types of
action blocks in SHILPA. Control Action Blocks (CABs) model the control flow, Function Action Blocks
(FABs) implement functions and Predicate Action Blocks (PABs) implement Boolean predicates. The
models for PAB and FAB are illustrated in Figure 3.

Figure 3(a) illustrates the architecture of a FAB which is based on the following assumption. The
control req signal will be asserted only after the arguments to the functions (denoted by cLval) are
available. The control signal ack will be asserted after the result (denoted by out_val) is produced.
The delay denotes the processing delay of the block. Figure 3(a) illustrates the architecture of a PAB
which implements a predicate (Boolean function) which has the following protocol. After the arguments
(cLval) are available, the control signal req is asserted and depending on whether the predicate evaluates
to true or false, the corresponding control signal (T_ack or F_ack) is asserted. As shown in the figure
a PAB can be thought of as a combination of a logic block and a SELECT element. The logic block
produces a transition on the se l input of SELECT module, which in turn produces a control signal
T_ack or F_ack at the output of the PAB.

It is important to note that this style of partitioning the whole circuit into PAB, FAB or CAB offers
the following advantage. The control and data only interact inside a PAB. The interaction is localized
to the se l signal of the SELECT modules. By making this signal controllable and observable one can
solve the problem of handling data dependent control flow during testing. That is exactly what is done
in our approach by modifying a SELECT module to a SCANSELECT (which is described later in this
section).

N H F G and Final Circuit

The NHFG and the circuit for the example in Figure 1 are shown in Figure 4 and Figure 5. In a
NHFG, M.a?? denotes wait for a signal transition on the input a of module M and F .b ! ! denotes
a transition produced on the pin b of the module F. Note that, the NHFG captures the netlist (or
connectivity) of the various circuit elements.

4

Figure 4: NHFG for the example

Figure 5: Circuit for the example

5

R e g sel

Sel

I Select

(a) SELECT
R

Reg n-1 i n>1

Reg sel

ii nr

CL Block

Reg n

Mode

Select

(b) SCAN SELECT APPROACH

Mode signal; Used to select operation
Operation:
1) Load shift registers ê9 n« Be9 n_1 ■■■■

i n-1 = i n
2) Run Test

i n-1 = Sel
For data path testing:
3) Latch Propagated Reg_sel to shift out

Reg_sel = i n
4) Shift out latched values

i n • 1 = in

Figure 6: Representation of the SCANSELECT module

3 .3 F au lt-M od elin g in S H IL P A

In order to test the circuits generated by SHILPA completely, two types of faults have to be considered:
(a) stuck at faults on the various nets and (b) delay faults which result in the violation of the data-
bundling assumption. In this paper, we only consider stuck-at faults. To test a node for a stuck-at
fault, we try to force a value opposite to what the node is stuck-at and propagate the effect of that
value to a primary output. This involves an elaborate process for justification and propagation. In
case of transition signalling, if a node is stuck-at 1 or 0, it blocks any events flowing through that path.
It is useful to visualize a transition-signaling based self-timed circuit as a set of computing elements
connected by hollow pipes with marbles (denoting events) flowing through them. A stuck-at fault blocks
or obstructs the marble. This property can be used to test the circuits more efficiently when compared
to standard level-based circuits.

For example, it is easy to see that if one could successfully propagate a 0 —> 1 transition and a 1 —> 0
transition through a node, then the node is devoid of both stuck-at 0 and stuck-at 1 faults. Furthermore,
all the nodes in the path of this node, starting from a primary input to the primary output, are also
fault-free. That means we need not model faults on each and every node in the circuit. This result in a
considerable saving in the total number of tests required to test the circuit fully.

However, propagating a I —> 0 transition or 0 —> 1 transition through an arbitrary node, in presence
of data dependent control flow, could be tricky, i.e., one may not be able to always find a suitable
justification sequence. We solve this problem by modifying the design of the SELECT module in the
library of asynchronous modules suggested by Sutherland [11]. This is possible in SHILPA because the
only place control flow and data flow interact is within a SELECT module.

3 .4 S C A N S E L E C T

Figure 6(a) shows the normal SELECT module described in [11] and used in SHILPA. Reg_sel
denotes the output of the datapath (logic) block which gets connected to the se l input of the SELECT
module. The behavior of the SELECT module is as follows. A transition on the request input (denoted
by R) after the value on the se l input is stable, yields a transition on the T or F output, depending on
whether the value on the se l input is a logic “ 1” or “0” . In general, se l signal is not fully observable
or controllable and lies buried in the PABs. To make the se l signal fully observable and controllable
we make the following modification to evolve a SCANSELECT module which is shown in Figure 6(b).

6

The SCANSELECT module has four modes of operation which are controlled by the mode, the req
and ack signals of the shift register FIFO. First the values that are required during testing in registers,
regi . . .r e g n, are shifted in by connecting terminals i„_ i and in. This is achieved by setting the mode
signal. The values are shifted into the FIFO serially, using a sequence of request acknowledge pairs.
After the registers are loaded, the mode signal is changed such that the output of regn- 1 is connected to
the s e l signal of S E L E C T n-\. This renders the s e l signal fully controllable and effectively decouples
the datapath from the control part. This is sufficient for testing the control part (CAB). While testing
the datapath of a circuit one finds that the Reg_sel (an output of the data path) value needs to be
observed. For this, the mode signal is set such that Reg_sel is connected to terminal in which allows
the latching of the value on Reg_sel in regn. This can then be shifted out by setting the mode signal
such that in_! to in are connected.

The SCANSELECT needs five additional pins, namely, mode, sh ift-reqU est, sh ift-a ck ,sh iftd a ta
and sh if tdataout to achieve the functionality described above. The overhead in terms of logic for each
SCANSELECT is 1 C element, 1 transition latch and two multiplexers to implement the control logic
(denoted by CL block in the figure).

4 A lg o r ith m fo r T est G e n e ra t io n

In this section, we present the details of the algorithms to test for stuck-at faults in a self-timed circuit
based on its NHFG representation. First, the circuit is partitioned into control part consisting of only
the CABs and the data part consisting of FABs and PABs. Then the nodes in each part are modeled
separately in the NHFG and the test vectors are generated by traversing the corresponding paths in the
NHFG. Initially, we present the top level algorithm which invokes procedures testCab and testDatapath
to test the control and data parts separately. The pseudo-code of the algorithms is presented first and
then it is illustrated on the circuit for the example in Figure 1

4 .1 T op -L evel A lg o rith m

G L O B A L :

tested-hfg-nodes, choices-made
I N P U T :

NHFG, netlist, reslist
O U T P U T :

P / * set of physical test vectors for the datapath * /

T / * set of traces * /

C / * choices-made for the scan-path * /

M E T H O D :

(N c, Rc) = extract-control(NHFG, netlist, reslist);
(N t{, Rr{) = extract-datapath(l\IHFG, netlist, reslist);

Ti = testCab(NHFG ,N C,R C)

(P, T-i) = testDatapath(NHFG,/Vd, Rj)

return (Tu (F, T2), C)

The input for the top level algorithm is the output of the SHILPA system, namely, the NHFG, the set
of resources (hardware modules), and the physical netlist. te s ted -h fg -n od es and choices-m ade are
two global variables used by all the routines. The output of the algorithm are (i) physical test-vectors

7

for all the stuck-at faults in the datapath (denoted by P), (ii) sequence of traces or control sequences
(denoted by T) to test the control part of the circuit and to set up conditions to test the datapath with
P, and (iii) the choices made at points of data-dependent control (denoted by C) to be used in setting
up the scan chain appropriately during testing.

The first step of the algorithm is to partition the circuit into control part and data part (accomplished
by appealing to functions extract-con trol and extract-datapath). The control parts consists of all
the CABs (of SHILPA) and forms a meaningful circuit if the request and acknowledge pins are
connected together. The data part consists of pure logic blocks (PABs and FABs of SHILPA) with
hooks to the control part for the corresponding request and acknowledge signals. This partitioning
is merely to simplify the test generation procedure, since, different algorithms will be used for each of
part.

4 .2 Testing C on trol C ircuitry

The procedure for testing the control part of the circuitry, called testCab is shown below.

procedure testCab (nhfg,netlist,reslist)
traces = nil

begin

For each node in netlist
hnode = Extract-Node (nhfg)

if hnode £ tested-hfg-nodes skip
else

new-trace = Derive-Trace(nhfg,netlist,hnode)
tested-hfg-nodes = insert(tested-hfg-nodes, new-trace)
traces = cons(new-trace,traces)

end

return(traces)

The function extract-node finds the transition in the NHFG corresponding to a given name from
the netlist. If the node has already been tested (by virtue of lying in the path of a different tested node)
then we do nothing, otherwise, the function Derive-Trace is invoked to generate a test sequence for
the node. The rest of the functions are for book-keeping.

procedure Derive-Trace (nhfg,netlist,hnode)
initial-node = get-initial-node(nhfg)
trace = Visit(initial-node,hnode,nhfg)
return(trace)

p roced u re Visit(init-node,hnode,nhfg)
begin

path\ — find-shortest-path(init-node,hnode)
patli-2 = find-shortest-path(hnode, hnode)

/ * here were are coriiputmg the sequence of tmnsitions

from hnode to the occurence of hnode again * /

if (patli2 = null) then

begin

path; 3 = find-shortest-path-to-primary-output(hnode)
test-path = concatenate(pa£/ii,patli^)

result = concatenate(test-path, test-path)
end

else

begin

paths = find-shortest-path-to-primary-output(hnode)
result = concatenate(pathi ,patli2 ,paths)

choice = getChoicenodes (result) ,
/ * extracts all the choice nodes in the result * /

choices-made = cons(choices-made,choice)
/ * Note that choices-made is a global variable which records all data

dependent choices to be used later to set up the scan paths * /

end

/ * list-of-preconditions is generated during the find-shortest-path routines when

transitions with more than one input P L A C E are encountered.

Note that N H F G is a Petri net * /

while (list-of-preconditions-to-be-satisfied != nil)

begin

new-trace = Visit(init-node, head(list-of-preconditions-to-be-satisfied).nhfg)
result = append(result, new-trace)

end
return(result)

end

The algorithm testCab works as follows: First a physical node is selected from the netlist and the
corresponding transition is marked on the NHFG, if the node has not been tested previously as a
consequence of some other test. Let n be the node being tested and t be the corresponding transition
in the NHFG. Then a path (sequence of “enabled” transitions in the NHFG) is selected from the initial
state (state of the system on global reset) to the state in which t is enabled (in the Petri net sense).
Call this path-i. Another path is selected such that we begin in a state in which t is enabled and then t
is revisited. These are analogous to the justification sequences in synchronous testing. The significance
of path2 is the requirement that the node n being tested be subjected to an 1 —>• 0 transition and a
0 —y 1 transition. If path -2 is empty, then path\ :: paths is traversed twice to get the same effect (where
:: denotes concatenation of sequences), paths is chosen which corresponds to the sequence of transitions
from t to a primary output. The final test sequence then is path\ :: path2 :: paths- In generating the
paths (or sequences) one should remember that NHFGs are not simple graphs but Petri nets, which
means that some transitions could have more than one input place (for example, nodes involving C
elements). This results in the additional requirement to find all possible paths to enable the given
transition. Note, that this is accomplished by recursively invoking procedure visit.

Finally, in the computation of the paths, one can encounter choice nodes (which are implemented as
part of a PAR in SHILPA). The nodes are recorded in the global variable to derive the possible scan

9

Consider the testing of the one of the outputs of the CALL module in the circuit shown in Figure 5.
First the corresponding transition CALL-2\.aout2?? is selected in the NHFG shown in Figure 7. pathi
(sequence of states from the initial state to the state in which the given transition is fired), path2 (the
sequence of states from the state in which the given transition is fired to itself), and path3 (the sequence
of states from the state in which the given transition is fired to a primary output) are generated by
the procedure Derive-trace. They are shown as Trace\.path\, Trace\.path-i, and Trace\.patii2 in
Figure 7. For Trace\, we find the following.

path\ = P —> S 3 2 Sq —> S 50 —> —> S52 —> S 5 —> S 4Q

path2 = S - 46 —> P —> 5.32 Se S$o > S 5 2 ~ $ S$ —> 546
paths = em pty

We find that during the course of this trace, nodes corresponding to transitions

P A B \?,.F ou tV ., C^o-owi??, Reg^.ldW, Reg^.ldackV., Call2\.T2W

also get tested. Next, let us test the other output of the CALL module. The corresponding transition
is C a ll2 \.aout?? and T ra ce 2 is generated in a similar fashion (as shown in Figure 7). This tests nodes
corresponding to P A B \ 3 .T ou t??, F /IB 5.4.!!, F A B ^ .+ a c k ?? , C a //2i .r l !!. The nodes that remain to be
tested are start?? and P A B 1 3 .). No path traversing these nodes twice can be derived. So, instead we
derive a path that traverses these nodes once (going up to the primary output) and execute it twice.

Figure 7: N H FG for the example with paths

vectors.

4.2.1 Illustration of testCab

P (possibly primary Inputs)

Justify

(possibly primary outputs)

Propagate

Figure 8 : Illustration of data path

This corresponds to Trace3 in the Figure 7. The final test sequence is (Trace 1, reset, Trace2, reset,
Tracey). This way we have tested the complete control part of the circuit.

We notice that in generating Trace1 and Trace-2 , we have gone through the state S 3 2 which is a data
dependent choice, controlled by the input of the corresponding SELECT module. In order to subject
the system through these traces, one has to set the input of the SELECT module appropriately (and
independent of the data values) and this is achieved by remembering the values of the SELECT input
for a given trace and setting up the corresponding scan path from the external world during testing.
This is the reason why a SCANSELECT (discussed in Section 3) in our synthesis instead of a simple
SELECT module.

4.3 Testing D ata Part

Figure 8 depicts the organization of the datapath in our synthesis scheme. The data path can be
viewed to consist of PABs and FABs with control signals acting as the interface to the CABs (in the
control part). The only point at which, the data has effect on control is at the SELECT element inside
PABs. The top level algorithm for testing the data part is given below.

procedure testDatapath(nhfg,netlist,reslist)

begin

datapath = GetDatapathFroml\letlist(netlist,reslist)
for each FAB/PAB F in datapath
begin

(1 ,0) — AdaptedDalgorithm(F, Fault)
J = set of FAB/PAB affected in justifying /
P = set of FAB/PAB affected in propagating O

11

control-points = FindAffectedControlPoints(F)
markedHfg = MarkHfg(nhfg, control-point)
Primary-input = justify-data(J,I,markedHfg)
Primary-output = propagate-data(P,0,markedHfg)

listOfTraces = findCover(markedHfg)
/ * Find a path(s) covering all the marked nodes in the nhfg

starting from the initial node * /

choices-made = getChoicenodes (listOfTraces)
/ * extracts all the choice nodes from the listOfTraces * /

test = (list Fault, ListofTraces, choices-made,Primary-input, Primary-.output)
test-list = (cons test test-list)
end

return test-list;
end

We have the option of modeling the whole circuit as a single (giant) combinational block, by setting
up the control signals appropriately. (Sutherland points this out in discussing micropipelines [11]).
One could then use standard combinational test generation algorithms to detect the stuck-at faults.
However, we find that it is more efficient if the standard test generation algorithms are modifed to only
test for the FAB’s and PAB’s that are affected by the fault. Unlike a synchronous circuit, in a self-timed
circuit there is no global clock signal and hence most parts of the circuits are not activated in a given
operation. In fact, that’s where the many of the advantages of an asynchronous circuit come from. We
want to use this advantage in testing too. Hence we unlike [10] modify the standard combinational test
generation procedure to process only those FABs and PABs that are active for a given stimulus. This
is done by the procedure AdaptedDalgorithm,

We will use datapath representation in Figure 8 and the example in Figure 9 to illustrate the algorithm.
The top level algorithm takes as inputs, the netlist, the resource list and the NHFG of the circuit. The
output is a list of Fault, Choices-made, ListofTraces, Primary-input, Primary-output The outputs of
the algorithm are. used as follows. For each Fault, we first set up the scan chain as identified by Choices-
made thus decoupling the data and the control. We then apply the irtput vector on the input data pins
Primary-input. The control sequences in the ListofTraces are applied. This moves the data from thje
primary inputs, through the fault to the primary outputs. The Primary-outputs are then observed. In
addition to the primary outputs, the outputs of the scan chain are observed to look for particular sel
signals of Select modules (data path outputs).

The algorithm works a.s follows. We begin by first identifying the fault in a given F A B /P A B , and
then applying the D algorithm on the datapath of the FAB (F in example). The result represented, by
{ 1 , 0) represent the input needed and the outputs respectively to test sensitize and test the fault. This
is shown in Figure 8 The inputs I are either primary inputs or the outputs of some other FABs (set
J). In which case, the wires values in I need to be justified through this set of FABs. This needs to
be recursively performed until primary inputs are encountered and the values at these primary outputs
are noted. This recursive part is implemented by the function justify-data (given later in the paper).
It recursively justifies backwards through the FAB’s generating new sets of affected FABs (J') and
justifying the outputs at these FAB’s (/ ') to their respective inputs. Propagation is similarly done by
the function propagate-data till primary outputs are encountered. It is important to note here that a
s e l input to a select element encountered during propagation is considered a primary output due to

control
control
actions

that need to be performed in order to move the data from the primary inputs, through the fault to
the primary outputs. At this stage, we use graph based algorithms to obtain traces that cover all the
marked points on the NHFG. While obtaining the paths, we also find that we traverse choice nodes,
that need to be decided independent of the data values (since we are testing the data path). We note
the choices that need to be made for each path. In the example in Figure 9, we find that the two traces
to cover all the points are pathl and path2. Pathl has choices-made as (S_32, True) and path2 has
choices-made as (S-32, False).

p roced u re justify-data(J,l,markedHfg)
for each FAB/PAB f in J
begin

V = AdaptedDalgorithm(f,l)
control-points = FindAffectedControlPoints(f)
markedHfg = markHfg(markedHfg,control-points)
J' = set of FAB/PAB affected in justifying / '
if null J' return I’
else justify-data(J ',I’ .markedHfg)

end
p roced u re propagate-data(P,0, marked Hfg)

Figure 9: Illustration of marking HFG

the existence of the scan chain. During both justification and propagation, we have to note the
points that need to be activated to move the data from input to the output in each FAB. These
points are marked on the NHFG. The markings on the NHFG indicate a sequence of control

Table 1: Table of experimental results
Circuit
Name

Num
gates

Control
test paths

data path test
vectors/paths

Percent Faults
testable

GTADD8 233 3 338/3 100
PMIJLT8 377 4 602/6 100

QR42 64 2 0/0 100
fact8 379 4 626/6 100

SALI.J8 348 6 640/6 100

for each FAB/PAB f in P
begin

O' = AdaptedDalgorithm(f,0)
control-points = FindAffectedControlPoints(f)
markedHfg = markHfg(markedHfg, control-points)
P' — set of FAB/PAB affected in propagating O'

if null P' return
else propagate-data(/:,/,O',markedHfg)

end

5 E x p e r im e n ta l R e su lts

Although we do find that for each Select module in the circuit, we need two additional multiplexers,
a C element and a transition latch in order to use our technique, the number of Select modules in a
circuit are very small compared to the size of the circuit. Therefore the overall circuit overhead as a
percentage of the size of the whole circuit is very small. The pin overhead if we were to assign a different
pin for each extra signal to the chip would be 5 pins. Since some of the signals will not be used at the
same time, we feel that the number of pins can be reduced. The number of gates for each circuit is
given in Table 1. In the same table, we find that the control sequences to test the control part is very
small for even large circuits. This is a very important saving in our method. Since the paths cover all
the control nodes,we are able to use very few sequences before we are sure that the whole control path
has been tested. The number of gates shown in the table correspond to the total number of two input
A N D /O R gates. We also note that for purely control circuits, such as the qr42, the tests are extremely
simple involving only a few control sequences.

6 C o n c lu s io n s

There are two major contributions to this work. The first is a set of a algorithms to completely
test self-timed circuits based on two-phase transition signaling and macromodules and the second is
the idea of a scannable SELECT mdoule which makes the circuits fully controllable and observable.
Our algorithms are based on a Petri-net like model of the physical circuit and are general in the sense
that they are compatible with other asynchronous behavioral synthesis approaches like Brunvand [4],
Ebergen [6] and any circuit which yields an NHFG. Our approach also reveals an intersting relationship
between testability and self-timed synthesis via partitioning the hardware into control, function and

14

predicate action blocks.

Our future work in this area will include studying the relationship between data-bundling constraint
and path-delay fault testing and investigating techniques for on-line testing of self-timed circuits pro­
duced by the SHILF’A system.

R e fe r e n ce s

1. A k e l l a , V . An Integrated Framework for the Automatic Synthesis of Efficient Self-timed Circuits
from Behavioral Specifications. PhD thesis, Department of Computer Science, University of Utah,
1992.

2. A k e l l a , V . , a n d G o p a l a k r i s h n a n , G . SHILPA: A High-Level Synthesis System for Self-Timed
Circuits. In In International Conference on Computer-aided Design, IC C A D 92 (Nov. 1992),
pp. 587-591.

3. B e e r e l , P. A ., AND M e n g , T . H .-Y . Semi-modularity and self-diagnostic, asynchronous control
circuits. In Advanced Research in VLSI, Proceedings of the 1991 University of California/Santa
Cruz Conference (1991), The M IT Press.

4. B r u n v a n d , E. Translating Concurrent Communicating Programs into Asynchronous Circuits.
PhD thesis, Carnegie Mellon University, Nov. 1991.

5. D a v i d , I., G i n o s a r , R ., a n d Y o e l i , M . Self-timed is self-diagnostic, 1990.

6 . E b e r g e n , J. C . Translating Programs into Delay Insensitive Circuits. Center for Mathematics
and Computer Science, Amsterdam, 1989.

7. H a z e w i n d u s , P . J. Testing Delay-Insensitive Circuits. PhD thesis, California Institute of Tech­
nology, 1992.

8. K e u t z e r , K . , L a v a g n o , L . , a n d S a n g i o v a n n i - V i n c e n t e l l i , A . Synthesis for testability tech­
niques for asynchronous circuits. In International Conference on Computer-Aided Design (Nov.
1991), pp. 326-329.

9. M e a d , C . A . , a n d C o n w a y , L. An Introduction to VLSI Systems. Addison Wesley, 1980. Chapter
7, entitled “System Timing

10. P a g e y , S . , V e n k a t e s h , G ., a n d S h e r l e k a r , G . Issues in fault modeling and testing of mi­
cropipelines. In In First Asian Test Symposium, Hiroshima, Japan (Nov. 1992), pp. 107-111.

11. S u t h e r l a n d , I. E. Micropipelines. Communications of the A C M (June 1989). The 1988 A C M
Turing Award Lecture.

12. W i l l i a m s , T . E ., a n d H o r o w i t z , M . A zero-overhead self-timed 160ns 54bit cmos divider. IEEE
Journal of Solid State Circuits 26, 11 (Nov. 1991), 1651-1661.

15

