General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MODELING AND ANALYSIS OF POWER PROCESSING SYSTEMS (MAPPS)

(Initial Phase II)

FINAL REPORT

by

Yuän Yu, Fred C. Lee, Herb Wangenheim, Dan Warren

December 22, 1977
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center on

Contract NAS3-19690

TRW DEFENSE AND SPACE SYSTEMS Power Conversion Electronics Department

```
(NASA-CR-135173) MODELING AND ANALYSIS OF


N78-29350

\title{
MODELING AND ANALYSIS OF POWER PROCESSING SYSTEMS (MAPPS)
}

\section*{(Initial Phase II)}

\section*{FINAL REPORT}
by

Yuan Yu, Fred C. Lee, Herb Wangenheim, Dan Warren

December 22, 1977
for

\title{
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION \\ Lewis Research Center \\ on \\ Contract NAS3-19690
}
to

TRW DEFENSE AND SPACE SYSTEMS Power Conversion Electronics Department

This program was sponsored under Contract NAS3-19690, from the National Aeronautics and Space Administration, for the support and technical interface, we would like to acknowledge Mr. J.E. Triner of the Lewis Research Center, the NASA Project Manager.

Out appreciation also goes to Messrs. P.A. Thollot and F.F. Terdan of Lewis Research Center, and Messrs. A.D. Schoenfeld and B.J. McComb of TRW Defense and Space Systems, who realized the need for such a program, and lent support for its initiation as well as its completion.
ERUCizulive
rage blank not FILMEDTABLE OF CONTENTS
Page No.
SUMMARY
1. DEFINITION OF COMMONLY-USED TERMS ..... 1
2. INTRODUCTION ..... 3
3. INTRODUCTION TO MAJOR MAPPS SUBPROGRAMS ..... 5
3.1 PEROFRMANCE ANALYSIS SUBPROGRAM ..... 5
3.2 CONTROL DESIGN SUBPROGRAM ..... 8
3.3 DESIGN OPTIMIZATION SUBPROGRAM ..... 9
3.4 SYSTEM ANALYSIS SUBPROGRAM ..... 10
3.5 COMPONENT LIBRARY SUBPROGRAM ..... 10
3.6 DATA MANAGEMENT PROGRAM ..... 11
3.7 CONCLUSIONS TO SECTION 3 ..... 12
4. PERFORMANCE ANALYSIS SUBPROGRAMS ..... 13
4.1 GENERAL DESCRIPTION ..... 13
4.2 NONLINEAR SWITCHING REGULATORS ..... 13
4.3 LINEARIZATION METHODOLOGY ..... 19
4.4 DISCRETE TIME DOMAIN ANALYSIS AND EXAMPLES ..... 37
4.5 IMPULSE-FUNCTION ANALYSIS AND EXAMPLES ..... 51
4.6 AVERAGE TIME-DOMAIN ANALYSIS AND EXAMPLES ..... 68
4.7 DISCRETE TIME-DOMAIN SIMULATION AND EXAMPLES ..... 78
4.8 SUMMARY, FUTURE EMPHASIS AND EXPECTATION ..... 89
5. CONTROL DESIGN SUBPROGRAM ..... 91
5.1 CONTROL DESIGN APPROACH ..... 92
5.2 A GENERALIZED CONTROL BLOCK DIAGRAM ..... 92
5.3 CONTROL DESIGN FOR A SINGLE-LOOP ANALOG SIGNAL PROCESSOR ..... 95
5.4 CONTROL DESIGN FOR A MULTIPLE-LOOP ANALOG SIGNAL PROCESSOR ..... 103
5.5 FUTURE EMPHASES ..... 109

\section*{TABLE OF CONTENTS (CON'T)}
Page No.
6. DESIGN OPTIMIZATION SUGPROGRAM ..... 110
6.1 STATE-OF-THE-ART DESIGiv APPROACH ..... 110
6.2 A GENERAL DESIGN OPTIMIZATION METHODOLOGY ..... 114
6.3 A PRACTICAL DESIGN OPTIMIZATION APPROACH ..... 115
6.4 IMPLEMENTATION OF DESIGN OPTIMIZATION ..... 118
6.5 APPLICATION EXAMPLES BASED ON THE METHOD OF LAGRANGE MULTIPLIERS ..... 120
6.6 APPLICATION EXAMPLES BASED ON NONLINEAR PROGRAMMING TECHNIQUES ..... 132
6.7 NEEDED IMPROVEMENTS ON DESIGN OPTIMIZATION ..... 147
6.8 CONCLUSIONS AND FUTURE EMPHASIS ..... 148
7. SYSTEM ANALYSIS SUBPROGRAM ..... 152
7.1 DESIGN OPTIMIZATION OF SOURCE-LINE-REGULATOR SYSTEM ..... 153
7.2 DYNAMIC PERFORMANCE ANALYSIS OF A I2TH ORDER REGULATOR SYSTEM ..... 156
7.3 CONCLUSION AND FUTURE EMPHASIS ..... 166
8. COMPONENT LIBRARY SUBPROGRAMS ..... 167
8.1 FUNCTIONAL RELATIONSHIP WITH OTHER SUBPROGRAMS ..... 167
8.2 TYPES AND CHARACTERISTICS OF COMPONENTS ..... 168
8.3 NEEDED COMPONENT CHARACTERISTICS STUDY ..... 170
8.4 COMPONENT LIBRARY STRUCTURES ..... 172
8.5 COMPONENT LIBRARIES COMPILED ..... 174
8.6 CONCLUSION TO SECTION 8 ..... 174
9. MAPPS DATA MANAGEMENT PROGRAM ..... 175
9.1 USE OF THE MAPPS SYSTEM ..... 177
9.2 DESIGN REQUIREMENTS ..... 178
9.3 DESIGN TECHNIQUES ..... 179
9.4 MAPPS SYSTEM MAJOR COMPONENTS ..... 183
9.5 SYSTEM COMMUNICATION ..... 189
9.6 THE DATA BASE MANAGER ..... 202
Page No.
9.7 MAPPS SYSTEM OPERATION ..... 209
9.8 MAPPS SYSTEM PERSONNEL ..... 211
9.9 ERROR PROCESSING ..... 213
10. CONCLUSIONS ON MAPPS, PAST, PRESENT, AND FUTURE ..... 216
10.1 MAPPS BACKGROUND ..... 216
10.2 MAPPS EMPHASES AND TWO DIVERSIFIED VIEWPOINTS ..... 217
10.3 MAPPS MODELING AND ANALYSIS EFFORT SUMMARY ..... 218
10.4 CONCLUSIONS ..... 223
11. APPENDICES ..... 225
12. REFERENCES ..... 413
Figure Page No.
1. A Switching Regulator Basic Functional Block Diagram ..... 14
2. Continuous and Discontinuous Conduction Operation ..... 16
3. Buck Boost Converter Topology During(A) \(T_{0 N}\), (B) \(T_{F 1}\), and (C) \(T_{F 2} \ldots . . . . . . . . .17\)17
State Trajectory for One Switching Period ..... 20
5. Perturbation of Duty Cycle ..... 26
6. Steady-State and Perturbated State Trajectories. ..... 26
7. Dual-Input Transfer Function for Three Basic Power Stages. ..... 32
8. A Multiple-Loop Buck Regulator. ..... 38
9. Buck Power Stage Topology During\(T_{O N}, T_{F 1}\), and \(T_{F 2}\)52
10. Duty-Cycle Signal and Voltage Applied To Output Filter. ..... 53
11. A Buck Regulator. ..... 61
12. Simplified Control Block Diagram. ..... 67
13. Implementation of the Digital Signal Processor ..... 62
14. Continuous Conduction Bode Plot ..... 65
15. Discontinuous Conduction Bode Plot. ..... 66
16. Canonical Circuit Models for Three Basic Power Stages. ..... 70
17. Canonical Model With Input Filter ..... 71
18. Single-Loop Controlled Buck Regulator with an Input Filter ..... 72
19. Dual-Input Describing Function Representation of the Regulator ..... 73
20. Dual-Input Transfer Functions For Discontinuous-Conduction Power Stages ..... 76
21. A Sample of Buck Regulator Simulation Run ..... 81
22. A Multiple-Loop Controlled Boost Regulator. ..... 82
23. Possible Modes of Boost Regulator Operation ..... 84
24. Simulated Output-Voltage Response For a Step Load Change ..... 8)
25. Simulated and Observed Regulator Starting Transients. ..... 88
26. Buck Regulator and Control Block Diagram. ..... 96
27. Asymptotic Plot for Control Design ..... 97
28. A Commonly-Used Lead-Lag Network ..... 101
29. A Sample Printout of Control
Design Subprogram. ..... 102
30. Small Signal Equivalent Circuit For a Multiple-Loop Buck Regulator ..... 103
31.32.33. Design Optimization of a completeBuck Regulator.135
34. Design Optimization for Buck Boost and Boost Power Converters. ..... 150
35. A Simplified i2th Order Regulator System. ..... 157
36.(A) Output Voltage (B) Inductor Current165

MAPPS System Modules184
MAPPS Command and Control Communication. ..... 191
39
MAPPS Executive Common Communication ..... 192
40 MAPPS Error Communication. ..... 194
41 MAPPS Data Communíatation ..... 195
42
MAPPS User Common Communication. ..... 1984344
MAPPS DBM Common Communication ..... 201
MAPPS Retrieval Data Flow Options. ..... 205
MAPPS Conditional Retrieval and Heration ..... 208
MAPPS Subprogram Communication ..... 212

The Phase-I MAPPS program started in 1973, amidst a growing concern on the need for and the lack of such a program. Being of a long-range nature, the MAPPS is currently at the conclusion of its initial Phase II.

The primary program effort focused on the formulation and implementation of various modeling, analysis, design, and optimization methodologies for power processing equipment and systems. The effort can be divided into four major categories:
- Control-dependent performance modeling and analysis.
- Control circuit design.
- Power circuit design and optimization.
- System configuration study and performance simulation.

The methodologies associated with each category were elaborated, so that a user with the proper background can proceed to follow the description and adapt the methodology to solve problems at hand. In addition to this tutorial fulfillment, those program efforts with general appeals to a multiple of perspective users were reduced into application-oriented subprograms, thus fulfilling as well the utility goal of the MAPPS program.

The program thus provided the engineering tools for conducting an analytically-based, cost-effective design of power processors, effecting ultimately the performance improvements and the cost savings for future NASA/military power processing development programs.

\section*{1. DEFINITION OF COMMONLY-USED TERMS}

Certain modeling and analysis terminologies are defined here to avoid later ambiguity, as they are frequently used throughout the report:

> Components: Electronic parts such as magnetics, capacitors, semiconductors, etc.

Circuit: A combination of electronic components to perform given functions. Examples are input filters, feedback amplifiers, etc.

Equipment: A collection of circuit functions to achieve certain specified input/output compatibilities. Examples are line regulators, dc-to-dc converters. A power processing equipment can be divided into the power circuit and the control circuit; the former processes the power flow from input to output, while the latter controls the power flow.

System: A combination of multiple equipment aimed to fulfill certain power processing requirements in a given application.

Performance: Steady state or transient behavior of an equipment or system. There are two general performance categories: the controldependent performance and the power-dependent performance.

The control-dependent performances are those closely related to the control-circuit design for a given power circuit. They include:
- Stability of control loop
- Attenuation of source sinusoidal disturbances (audiosusceptibility)
- Response to load sinusoidal disturbances (output impedance)
- Response to step line disturbances
- Response to step load disturbances

The power-dependent performances are those closely related to the power-circuit design foi a given control scheme. They include:
- Source EMI
- Output Ripple
- Input/output power and voltage levels
- Weight
- Loss

Design: Conceive a scheme for the equipment or system to meet a given set of performance requirements.

Modeling: Provide an adoptable representation of an equipment or system to facilitate performance evaluation or design implementation.

Simulation: To portray the time-domain performance of a given design. . Its utility becomes most significant when multiple nonlinearities render analysis impractical.

Design
Optimization: To design the equipment or system and concurrently minimizing a defined quantity such as weight, loss, or a performance criterion.

\section*{2. INTRODUCTION}

Electronic power processing is a complex field encompassing power and control electronics, magnetics, semiconductors, and nonlinear feedback control. However, due to the industry's preoccupation with hardware production, the technology development has been hampered by a lack of vigorous and cost-effective modeling, analysis, simulation, and design optimization techniques. Consequently, heavy rellance on empirical and intuitive methods as well as breadboard trial and error has been necessary in power processing development. Needless to say, such inadequacies inevitably lead to penalties in performance, reliability, weight/efficiency, and cost. In view of the following factors:
(1) The forthcoming use of considerably higher levels of power in future power processors,
(2) The prevailing trend of equipment standardization which must rely on analysis-based design and predictable performance,
(3) The ever-increasing sensitivity to equipment development cost,
the empirical and trial approaches will become increasingly impractical. The need for a power processing modeling and analysis program thus cannot be over-emphasized. The overall objective of such a program, then, is to provide the useful engineering tools to reduce the design, analysis/simulation, and design optimization time, and consequently the development time and cost, in achieving the required performances.for power processing equipment and systems.

To fulfill such an objective, a program entitled "Modeling and Analysis of Power Processing System (MAPPS)", was initiated in 1973. Phase I of the program addressed the formulation of a methodology for the MAPPS approaches [1]. Subsequently, the program entered Phase II in 1975. Since then, certain selected approaches have been implemented through computer-based design, analysis, and optimization subprograms. To provide the basic coordination of various subprograms, the framework of an expandable Data Management Program is also completed. Being of long range nature, the program is currently at the conclusion of the initial Phase II.

Since the inception of the MAPPS program, TRW Defense and Space Systems Group has been working in unison with Dr. R.D. Middlebrook of the California Institute of Technology in a joint industry-university program effort. Sponsored by a subcontract from TRW to CalTech and supported by Dr. Cuk of CalTech, Dr. Middlebrook's major contribution has been in the modeling of various nonlinear dc-to-dc converter power stages based on a unified state-space averaging technique. Details of the modeling and the significant results obtained by CalTech are published separately in a companion NASA Contractor Report, NASA CR-135174.

This report volume, NASA CR-135173, summarized the analytical/numerical details of modeling, analysis, simulation, and optimization techniques pertaining to the conception of all subprograms generated at TRW in the MAPPS program. The report also contains narrative of softwares constituting the basic Data Management Program. For conciseness and clarity, certain minute details in mathematical derivations and computer programming are reserved for presentation in the Appendices at the end of the report. Prior to the conclusion, the report also includes an overview of MAPPS' present capability and its future expectation, supplemented by a follow-on program outline for the immediate next phase.

\section*{3. INTRODUCTION TO MAJOR MAPPS SUBPROGRAMS}

Engineering tools on power processing design, analysis/simulation and optimization are provided in five major MAPPS subprograms, designated as the following:
- Performance Analysis Subprogram
- Control Design Subprogram
- Design Optimization Subprogram
- System Analysis Subprogram
- Component Library Subprogram

\subsection*{3.1 PERFORMANCE ANALYSIS SUBPROGRAM (PAS)}

The utility of the PAS is to allow one to predict, for a given equipment design, all control-dependent performance characteristics listed in Section 1. A major difficulty in such analytical predictions lies in the nonlinear operation inherent in the power stage of all switching regulators. Generally there may be as many as three time intervals within each cycle of switching operation: the power transistor on-time interval during which the output inductor MMF ascends, the off-time interval during which the MMF descends, and if the descending MMF diminishes to zero, the rsst of the off time interval when the MMF stays essentially at zero before the next cycle is initiated. Even though the power stage is linear for each time interval, the combination of all different linear circuits for the purpose of analyzing a complete cycle of swi-tching-regulator operation becomes a complicated piecewise-linear analysis problem.

As stated in Section 1, the performances closeley associated with the analysis and simulation are stability, audiosusceptibility, output impedance, and large-signal step transient responses. Except when dealing with the last performance category, the nature of all other disturbances is that the regulator can be regarded as a time-invarient system without a significant loss in analytical accuracy. In other words, the nonlinear system can be linearized about its equilibrium state to obtain a linear analytical model for small-signal performance evaluations. For the last category concerning transient response, the generally varying duty cycle subsequent to a step line and load change represents a time-varying nonlinear system. For a proactical, higher-arder system, its performance evaluation is invariably limited to tactics closely identified with simulation techniques.

Basic approaches for conducting performance analysis/simulation differ primarily in their methods of linearizing the nonlinear operation. They are classified as follows:
(1) Discrete Time Domain Anlaysis

Since a switching regulator inherently contains an anag-todiscrete time conversion, it is only natural that the regulator can be more accurately analyzed through the discrete time-domain equations in vector form. Newton's iteration is ther: used to reach the regulator equilibrium state. The system is then linearized about this equilibrium state to arrive at a linear, small-signal discrete time model. The entire closed-loop regulator is thus modeled as a single entity rather than separating it into different controi blocks. The stability is studied by examining the eigenvalues of the linearized system. The analysis can be extended, through z-transform, to determine frequency-related performance characteristics such as audiosusceptibility. The modeling and analysis approach makes extensive use of digital computers, thus making automation in regulator analysis possible. The application of this approach to switching regulator was performed at TRW. [2,3]
(2) Impulse Function Frequency Domain Analysis

The approach is capable of describing accurately a nonlinear system under periodical structural changes. It is based on the fact that when a regulator is subjected to a small disturbance, its duty cycle is perturbed. Such a perturbed duty cycle signal can be regarded as an impulse train when the perturbation is vanishingly small. Through mathematical manipulation, a linearized discrete impulse response function is then generated for the nonlinear power stage in closed form at the discrete sampling instant. By neglecting the minute details of the waveforms between samples and studying only the macroscopic performance, an equivalent continuous linear impulse response is then obtained for the power stage. This approach was originated from the University of Toulouse, France and the European Space Agency [4,5], and supplemented by TRW [6].

Average Time Domain Analysis
As far as the nonlinear power stage is concerned, the average time-domain approach also starts with the exact timedomain description. However, instead of treating the complete regulator as a single entity as the aforedescribed discrete timedomain approach, the average method divides the regulator into separate functional blocks and treats them as individual analytical entities. In general, these entities include the power stage, the analog signal processor for error detection and amplification, and the digital signal processor for converting the amplified analog error to discrete-time interval. Based on a practical assumption that the regulator-output switching ripple is small, the model then averages the exact state-space description of the respective power stages corresponding to distinct time intervals over a single period of operation. The culmination of the averaging process is an equivalent linear circuit power-stage representation about a quiescent operating point. The power stage model is then combined with the linear analog signal processor and the linearized digital signal processor (usually through describing function technique) to perform the small-signal analysis for a complete regulator. Infused by an earlier topological deduction [7], the evaluation of the averaging approach has been the contribution of CalTech \([8,9]\).
(4) Discrete Time Domain Simulation

The previously described methods are applicable only to small-signal analysis. The reason for such restrictions stems from the fact that the system modeling is linearized about the equilibrium state for a given operating duty cycle. When a large disturbance is introduced, the duty cycle varies during the entire transient until a new equilibrium is reached. The time-variant operation thus renders the aforedescribed small-signal analysis powerless. In addition, other nonlinearities, such as those provided by protection circuits and saturation effects of the amplifier or magnetics, often are significant during large-signal transients. For example, all these nonlinearities are present during the regulator start-up process. A separate simulation task is thus needed.

The simulation is based on the discrete time domain model previously described. The technique utilizes the recurrent discrete time-domain analytical expressions, and propagates the recurrence through Fortran computation of state transition matrices and predetermined threshold boundary conditions. This simulation approach has been practiced frequently at TRW [2].

Techniques for all four approaches were well established in the MAPPS program. Their respective utility for a given application depends on the analysis objective, the desired accuracy, the control circuit type, the nature of the disturbance, and perhaps more influential than most, the analyst's own modeling preferrence. Detailed discussion on each approach, supplemented by specific analysis examples, will be given in this report.
3.2. CONTROL DESIGN SUBPROGRAM (CDS)

As stated previously, a power processing equipment is composed of of a power eircuit handling the power flow and a control circuit regulating the power flow. A regulator's static and dynamic performances are effected, to a large extent, by the quality of its control circuit. The control design is thus instrumental in determining those external characteristics that are previously classified as control dependent.

For a given power circuit design, different control designs manifest themselves in various schemes of analog and digital signal processors. For most regulators, the design of the power stage and the digital signal processor is dictated by requirements other than control-dependent performances. For example, input/output isolation and source/load voltage compatibility frequently determine the power-stage selection, while the requirements of frequency constraint and the EMC consideration quite often impose the need for a constant-frequency digital signal processor. Consequently, the analog-signal processor generally holds the most leverage in determining the quality of the regulator control circuit.

The function of the Control Design Subprogram, therefore, is to utilize the power stage and the digital signal processor conceived elsewhere and to determine the design of the analog-signal processor in order to meet a set of specified control-dependent performance requirements. By necessity, the creation of such subprograms must rely on certain well-defined amplification and compensation configurations central to the
design of analog signal processors. In the MAPPS program, analog signal processors of the following two categories are considered:

\section*{- Conventional Single-Loop Control \\ - Advanced Multiple-Loop Control [10,11]}

Examples of control circuit design are demonstrated.

\subsection*{3.3 DESIGN OPTIMIZATION SUBPROGRAMS (DOS)}

Unlike the previous two control-circuit oriented sutprograms, the DOS concerns itself primarily with the power circuit. In a power converter, the number of variables to be designed invariably exceeds that of the constraints linking the variables to various performance requirements. Consequently, after the design constraints are defined, there exists virtually an infinite set of design solutions. The essence of the design optimization, therefore, is to pinpoint a set of design variables to meet all given constraints, and concurrently to achieve the optimization of a specific converter characteristic deemed particularly desirable. The characteristic can be the converter weight, loss, or any other physically-realizable entity. One of the unique features of the design optimization is that the converter switching frequency becomes a parameter to be designed through the optimization process, which is different from most other approaches in which the switching frequency is predetermined either intuitively or empirically.

Continued rapid growth by applied optimization as a scientific discipline has been fostered by the application of optimization theory and the high-speed computer developments. In converter design, it follows naturally that the key in implementing the optimization approach rests on the availability of suitable mathematical and computer techniques. A general optimization technique is the method of Lagrange Multipliers [12]. When applied to simple converter problems, the method usually yields closed-form optimized solutions. Several applications applied to the optimum inductor and transformer designs were demonstrated in this program.

Most larger problems arising from practical converter applications are sufficiently complicated to defy closed-form solutions. To identify an optimum design, one has to resort to nonlinear programming algorithms which provide fast convengence to optimum numerical solutions from an educated guess of an
initial set of input design parameters. The "nonlinear" programming, as opposed to the well-developed "linear" programming, arises from the fact that most converter applications involving energy storage are simply based on formulations of highly nonlinear design constraints and optimization criteria. The principles and practices to effect convengence vary with each nonlinear programming. Methods based on penalty function [13] and general gredient'[14] are among the more popular ones. In this program; the Sequential Unconstrained Minimization Technique (SUMT) based on the penalty-function approach was used, and optimization up to a complete step-down switching-regulator power circuit was demonstrated. \([15,16]\)

\subsection*{3.4 SYSTEM ANALYSIS SUBPROGRAM (ŚAS)}

The SAS*s represent extensions of the aforedescribed PAS's and DOS's from the equipment to the system level. The SAS's rely on DOS techniques as the basic tool for identifying the optimum system configuration, and on PAS techniques to address the dynamic system performances under large-signal disturbances. An obvious constraint in pursuing the SAS is the awesome analytical/numerical effort generally required to analyze or design a system of even only moderate complexity. The progresses of SAS thus must be geared to those already made in the more fundamental DOS's and PAS's.

In this report, two examples of reasonable complexity were successfully demonstrated: one dealing with the weight optimization of a source-converter system, the Other dealing with the dynamic response of a 12 th order switching-regulator-inverter system. However, one must not let such limited success obscure the proper perspective - a truly useful SAS capable of allowing a more "scientific" system configuration design/analysis by minimizing the need for subjective bias from the system and equipment designers is still in its infancy. Long-range effort of considerably more intensity will be needed before truly prevalent SAS's can be developed for practical system analysis and design.

\subsection*{3.5 COMPONENT LIBRARY SUBPROGRAM (CLS)}

The CLS, when completed, represents the arrays of useful data that are sufficient to completely characterize the rating and the behavior of various
types of components commonly used in equipment design. The data is to be stored according to the following basic categories:
- Resistors: Carbon, Film, Wire-Wound, Precision
- Capacitors: Foil and Solid Tantalum, Ceramic
- Cores: Linear, square-loop, ferrite
- Diodes: Power, Signal, HV, Schottky
- Transistors: Power Switching, General Purpose
- Conductors: Solid, Litz
- IC's: Digital, Analog

In this report, components in the first three categories are partially comprised and stored. The structure of the data set was also implemented to facilitate random inquiries and to assume efficient retrieval, updating, and delete.

\subsection*{3.6 DATA MANAGEMENT PROGRAMS (DMP)}

The DMP provides the needed.coordination between the various subprograms and the users. In the designing the DMP, three critical considerations were observed:
- Ease of use
- Ease of modification and internal flexibility
- Portability from one computer host system to another

By observing these considerations in the DMP design, the user's effort may be concentrated on the analysis/design/optimization problem at hand, rather than on the administrative details of invoking the MAPPS system capabilities.

The normal use of the MAPPS involves interactive conversation between the MAPPS System and the user. The user begins by signing on and requests the MAPPS system be loaded and executed. A conversation then begins between the user and an executive routine through which the user instructs the system to attach certain external files and to perform specific analytic functions. Upon completion of the input cycle, the DMP will proceed to execute and satisfy the user's requests.

The user will be able to invoke various subprograms of analysis, design, and optimization. If intermediate results require a decision by the user, interactive conversation will again take place. During the course of an interactive session, the user may display results, store results, or retrieve previously stored results from the component library or the data base: The coordinated data management system is accomplished through the development of appropriate control and communication routines.

\subsection*{3.7 CONCLUSION TO SECTION 3}

In this section, the major power processing subprograms and the data management program coordinating these subprograms were briefly discussed. From the foregoing descriptions, the MAPPS system present or future capabilities include the following major categories:
- Switching regulator control-dependent performance analysis through the Performance Analysis Subprogram.
- Basic control-circuit design to meet control-dependent performance requirements through the Control Design Subprogram.
- Detailed optimum power circuit design to meet given power-dependent performance requirements through the Design Optimization Subprogram.
- Identification of optimum systems configuration and large-signal system disturbance propagation through the System Analysis Subprogram.
- Retrieve best-fit components per user's instruction through the Component Library Subprogram.
- Coordinate between various subprograms and the user through a Data Management Program, aimed primarily for ease of use.

Each of these categories will be discussed in detail in the following sections.

\section*{4. PERFORMANCE ANALYSIS SUBPROGRAMS (PAS)}

\subsection*{4.1 GENERAL DESCRIPTION}

In this section, the approach and the scope of the analytical tasks are described. From the utility viewpoint, the PAS is regarded as both application and tutorial. The application aspect will be fulfilled by the creation of analysis and simulation subprograms based on certain preselected power/control circuit configurations. However, due to the large converter varieties of different power and control schemes, the function of the MAPPS program in terms of performance analysis/simulation must also be sufficiently tutorial so that a prospective beneficiary of the MAPPS program can follow the analytical methodology established in the PAS, and adapt the necessary analysis procedures to his specific applications.

The discussion starts with the nonlinear operation in switching regulators, to be followed by the description of different methodologies of linearization. Analysis methods including discrete time domain, impulse function frequency domain, and average time domain, are presented, and specific examples are given to illustrate each method. In addition, the discrete time domain analysis is extended to perform the discrete time domain simulation. Future PAS emphasis and expectation are also advanced.

\subsection*{4.2 NONLINEAR SWITCHING REGULATORS}

\subsection*{4.2.1 Switching Regulator Block-Diagram Representation}

To facilitate discussion, switching regulators can be characterized by the three basic functions shown in Figure 1: the power stage, the analog signal processor, and the digital signal processor. The power stage processes the power from input to output. The three basic power stages are shown here as buck, boost, and buck boost. They can operate either in continuous or discontinuous inductor current conduction modes. The analog-signal and digitalsignal processors combine to regulate the power flow from input to output. An analog signal is derived from the power stage output, which is processed to deliver a discrete-time interval at the digital-signal processor output to achieve the required on-off control of the power switch in the power stage. The discrete-time voltage or current pulses thus generated are averaged by a low pass filter in the power stage to restore an analog signal at the power stage output, thus completing the switching-regulator control loop.


Figure 1 A Switching Regulator Basic Functional Block Diagram

\subsection*{4.2.2 Nonlinearities in Switching Regulators}

\subsection*{4.2.2.1 Basic Nonlinearity in the Power Stage}

Continuous and discontinuous conductions are sketched in Figure 2, using the buck-boost power stage as an example. In Figure 2(A) for continuous conduction, the MMF ascends in the input winding during \(T_{o n}\) when the power switch is \(O N\) and the diode is OFF, and descends in the output winding when the power switch is OFF and the diode is ON. The MMF thus never vanishes in the output inductor. In Figure \(2(B)\) for discontinuous conduction, the MMF ascends during \(T_{O N}\) in the input winding starting from zero MMF at the beginning of \(T_{O N}\), and descends during \(T_{F 1}\) in the output winding, reaching zero MMF at the end of \(T_{F 1}\). An additional time \(T_{F 2}\) exists when both the power switch and the diode are OFF, during which the MMF remains zero in both input/output windings, and the load current is supplied by the output filter capacitor.

From the foregoing description, topologies of the buck-boost power stage correspond to \(T_{O N}, T_{F 1}\), and \(T_{F 2}\) are illustrated in Figure 3. The figures make it clear that, even though the power stage is linear for each time interval, the combination of all different linear circuits for the purpose of modeling a complete cycle of switching-regulator operation becomes a piecewise-linear nonlinear analysis problem.

\section*{4:2.2.2 Basic Nonlinearity in the Analog- and Digital-Signal Processors}

To characterize how a disturbance is propagated in the analog-signal-to-discrete-time-conversion, one is interested in how the duty-cycle variation \(d(t)\) of the power switch is being effected by a small sinusoidal disturbance derived from the processed error at the analog-signal processor output. Obviously, if one seeks the complete analytical transfer function of such a disturbance propagation, the function would have to include components not only of the disturbance frequency, but also its higher harmonics as well as the beat frequencies of the disturbance frequency and the regulator switching frequency. Thus a single frequency input results in an output of multiple frequencies - an inherent characteristic of nonlinear circuit operation.


Figure 2
(A) Continuous and (B) Discontinuous Conduction Operations

(B)


Figure 3 Buck Boost Converter Topology During:
(A) \(T_{O N}\)
(B) \(\mathrm{T}_{\mathrm{F} 7}\)
(C) \(T_{F 2}\)

\subsection*{4.2.2.3 Other Significant Nonlinearities and Analytical Compiiications}

In addition to the inherent nonlinearities previously described in the basic power stages and signal processors, other nonlinearities and complications include the following:
(1) The Effect of Input'Filter The complication provided by the input filter can be vividly demonstrated by Figure 3. Being an integral part of the power stage during \(T_{O N}\) in Figure \(3(A)\), its presence vanishes in either Figure \(3(B)\) or Figure \(3(C)\), causing complications in the modeling of a linearized power stage for analysis purpose.
(2) Nonlinearities during Dynamic Operations

Certain nonlinearities ignored in the analysis of small-signal disturbance propagation become highly significant when a largesignal disturbance is introduced. They include filter inductor nonlinear flux-MMF relations, error-amplifier saturation, and the control asserted by certain protection circuits (e.g., peak current limiting) that are functional only during severe transient operations. For example, these nonlinearities are all present during the regulator start-up.

Having identified all major nonlinearities, the different methodologies of treating these nonlinearities, which result in different analysis/simulation approaches, will be discussed next.

\subsection*{4.3 LINEARIZATION METHODOLOGY}

In this section, the analytical basis fundamental to all methodologies is presented. Methodologies resulting from different approximations made in the linearization process are then described. A concise comparison of all methodologies is provided.

\subsection*{4.3.1 Common Analytical Basis for All Methodologies}

A common starting point for switching-regulator analysis is the identification of a state vector \(\underline{X}\) and an input vector \(\underline{U}\). The ( \(n \times 1\) ) vector \(\underline{X}\) contains all the system state variables, while the ( \(m \times l\) ) vector \(\underline{U}\) is associated with regulator input voltage, the reference, the saturation drop of semiconductors, etc. For continuous conduction shown in Figure \(\%(A)\), the system representation is:
\[
\begin{array}{ll}
\underline{\dot{x}}=F 1 \underline{x}+G 1 \underline{U} & \text { during } T_{O N} \\
\underline{\dot{x}}=F 2 \underline{x}+G 2 \underline{U} & \text { during } T_{F 1} \tag{2}
\end{array}
\]

The ( \(n \times n\) ) matrices F1 and F2 and the (Nxm) matrices G1 and G2 are constant matrices composed of various circuit and input parameters. In discontinuousconduction operation an additional equation:
\[
\begin{equation*}
\underline{\dot{x}}=F 3 \underline{x}+G 3 \underline{U} \quad \text { during } T_{F 2} \tag{3}
\end{equation*}
\]
is added to complete the system representation. The state trajectory during one switching period of propagation is illustrated in Figure 4, where the time instants at which switching action occur in steady-state operation are:
\begin{tabular}{llll}
\(t_{k}\), & \(t_{k+1}, t_{k+2}\) & The initiation of \(T_{0 N}\) interval \\
\(t_{1}^{k}\), & \(t_{1}^{k+1}, t_{1}^{k+2}\) & : The initiation of \(T_{F 1}\) interval \\
\(t_{2}^{k}\), & \(t_{2}^{k+1}, t_{2}^{k+2}\) & \(: \quad\) The initiation of \(T_{F 2}\) interval
\end{tabular}

Each of the linear systems of equations (1) to (3) admits a closed form solution of the form:
\[
\begin{equation*}
\underline{x}\left(t_{1}^{k}\right)=\underline{x}\left(t_{k}+T_{O N}^{k}\right)=\phi 1\left(T_{O N}^{k}\right) \underline{x}\left(t_{k}\right)+D 1\left(T_{O N}^{k}\right) \underline{U} \tag{4}
\end{equation*}
\]


Figure 4 State Trajectory of One Switching Period of Operation
\[
\begin{align*}
& \underline{x}\left(t_{2}^{k}\right)=\underline{x}\left(t_{1}^{k}+T_{F 1}^{k}\right)=\phi 2\left(T_{F 1}^{k}\right) \underline{x}\left(T_{1}^{k}\right)+D 2\left(T_{F 1}^{k}\right) \underline{u}  \tag{5}\\
& \underline{x}\left(t_{k+1}\right)=\underline{x}\left(t_{2}^{k}+T_{F 2}^{k}\right)=\phi 3\left(T_{F 2}^{k}\right) \underline{x}_{2}\left(T_{2}^{k}\right)+D 3\left(T_{F 2}^{k}\right) \underline{u} \tag{6}
\end{align*}
\]
where
\[
\begin{gather*}
\phi i(T)=e^{F i T}, \quad i=1,2,3  \tag{7}\\
\operatorname{Di}(T)=e^{F i T}\left[\int_{0}^{T} e^{-F i S} d S\right] G i, \quad i=1,2,3 \tag{8}
\end{gather*}
\]

The discrete state transition equation for the converter in a complete switching cycle can be obtained by combining the state transition equation expressed by eqs. (4) to (6) as:
\[
\begin{equation*}
\underline{x}\left(t_{k+1}\right)=\phi \underline{x}\left(t_{k}\right)+\underline{D} \underline{U} \tag{9}
\end{equation*}
\]
where \(t_{k}\) and \(t_{k+1}\) correspond to time instants at the beginning of the \(k\) th and the \((k+1)\) th cycle respectively. Combining the state transition equations become:

For the discontinuous-conduction operation,
\[
\begin{align*}
\phi= & \phi 3\left(T_{F 2}^{k}\right) \phi 2\left(T_{F 1}^{k}\right) \phi 1\left(T_{O N}^{k}\right)  \tag{12}\\
D= & \phi 3\left(T_{F 2}^{k}\right) \phi 2\left(T_{F 1}^{k}\right) D 1\left(T_{O N}^{k}\right)+\phi 3\left(T_{F 2}^{k}\right) D 2\left(T_{F 1}^{k}\right) \\
& +D 3\left(T_{F 2}^{k}\right) \tag{13}
\end{align*}
\]

Time intervals \(T_{O N}^{k}, T_{F 1}^{k}\), and \(T_{F 2}^{k}\) are determined through threshold conditions. For continuous operation, the two threshold conditions needed to determine \(T_{O N}^{k}\) and \(T_{F 1}^{k}\) are the control-loop error and the implemented duty-cycle control method, which can be respectively expressed as:
\[
\begin{align*}
& \xi_{1}\left[\underline{x}\left(T_{k}\right), T_{O N}^{k}, T_{F 1}^{k}\right]=0  \tag{14}\\
& \xi_{2}\left[\underline{x}\left(t_{k}\right), T_{O N}^{k}, T_{F 1}^{k}\right]=0 \tag{15}
\end{align*}
\]

In discontinuous operation, a third condition is added which detects the time instant at which the inductor MMF is reduced to zero:
\[
\begin{align*}
& \xi_{1}\left[\underline{x}\left(T_{k}\right), T_{O N}^{k}, T_{F 1}^{k}, T_{F 2}^{k}\right]=0  \tag{16}\\
& \xi_{2}\left[\underline{x}\left(t_{k}\right), T_{O N}^{k}, T_{F 1}^{k}, T_{F 2}^{k}\right]=0  \tag{17}\\
& \xi_{3}\left[\underline{x}\left(t_{k}\right), T_{O N}^{k}, T_{F 1}^{k}, T_{F 2}^{k}\right]=0 \tag{18}
\end{align*}
\]

Equations (9) to (18) thus represent exactly the nonlinear switching regulator system. Starting with an initial state, the equations can be used to compute recursively the state vector \(\underline{X}\) for all succeeding time instants exactly without any approximation.

Notice that in this analysis method, the complete switching-regulator power and control circuits are treated as a single entity in the formulation of equations (1) to (3). There is no deliberate division among the power stage, the analog-and the digital-signal processors.

Direct application of this exact analytical basis for time-domain simulation is rather straight forward from a theoretical viewpoint. However, the numerical complexity involved and the need for a more readilydefined means of assessing the various control-dependent performances such as stability and audiosusceptibility have provided the impetus for many methods of linearization and approximation to branch out from this common basis. These methods are described next.

\subsection*{4.3.2 Discrete Time Domain Analysis Description}

The discrete time domain analysis starts essentially with the common analytical basis described in the previous section. The entire regulator is treated as a single entity. Subsequent to the formulation of equation (9) and all the attendant threshold conditions, the following steps are followed to facilitate the control-dependent performance evaluation:
(1) Numerically Seek the Equilibrium State:

In steady state, eq. (9) can be written as:
\[
\begin{equation*}
\underline{X}^{*}=\Phi \underline{X} \underline{*}^{*}+\underline{D} \tag{19}
\end{equation*}
\]

The \(\Phi\) and \(D\) matrices can be computed for a given \(T_{O N}, T_{F 1}\), and \(T_{F 2}\). Using the initial approximations for \(T_{O N}, T_{F 1}\), and \(T_{F 2}\) obtained from given system input/output conditions (19), and substituting them into eqs. (9) to (18) as appropriate, an approximate steady state \(\underline{X}^{\star}\) is obtained. Using \(\underline{X}^{\star}\) as an initial setting, Newton's iteration method is employed to solve for the equilibrium state, during which eqs. (9) to (18) are computed continuously in the iteration process until a certain specified state-matching condition is satisfied. For example, the condition can be defined such that:
\[
\begin{equation*}
\sqrt{\sum_{i=1}^{n}\left[x_{i}\left(t_{k+1}\right) \cdot-x_{i}\left(t_{k}\right)\right]^{2}}<\varepsilon \tag{20}
\end{equation*}
\]
when i is an arbitrarily small number.

\section*{(2) Linearize the Discrete Time System}

Equation (9) is nonlinear because the matrix \(\Phi\) is a function of the time intervals \(T_{O N}^{k}, T_{F 1}^{k}\), and \(T_{F 2}^{k}\), which are all functions of the system state \(\underline{X}\left(t_{k}\right)\) by virtue of the attendant threshold condition (14) to (18). The nonlinear equation is rewritten as:
\[
\begin{equation*}
\underline{x}\left(t_{k+1}\right)=f\left[\underline{x}\left(t_{k}\right), \underline{U}, T_{O N}, T_{F 1}, T_{F 2}\right] \tag{21}
\end{equation*}
\]

For a constant \(\underline{U}\), equation (21) is linearized about \(\underline{X}^{*}\) as:
\[
\begin{equation*}
\delta \underline{X}\left(t_{k+1}\right)=\left.\frac{\partial f}{\partial \underline{X}}\right|_{\underline{X}^{*}} \delta \underline{X}\left(t_{k}\right) \tag{22}
\end{equation*}
\]
where
\[
\begin{equation*}
\Psi=\frac{\partial f}{\partial \underline{X}} \underline{X}_{\underline{X}^{*}} \tag{23}
\end{equation*}
\]
is a ( \(n m n\) ) matrix. The partial differentiation \(\partial f / \partial \underline{X}\) can be performed analytically if the problem is simple. Otherwise, it must be computed numerically through the difference quotients.
(3) Stability Analysis

Once the matrix \(\Psi\) is conceived for the linearized system, its eigenvalues are evaluated. The linearized system, as represented by eq. (22), is stable if and only if all the eigenvalues of \(\Psi\) are absolutely less then unity,
\[
\begin{equation*}
\left|\lambda_{\mathbf{i}}\right|<1 \quad \mathbf{i}=1, \cdots \cdot n \tag{24}
\end{equation*}
\]

Changes of eigenvalues as a function of system parameters can be plotted in the complex Z-plane. Locations of eigenvalues in the Z-plane indicate not only the stability but also the system transient behavior, i.e., damping and rapidity of response.
(4) Audio Susceptibility Analysis

The audiosusceptibility analysis deals with how a small sinusoidal disturbance of the dc supply voltage \(E_{i}\) affects the regulated output voltage \(E_{0}\). The audiosusceptibility of the regulator is, in essence, the regulator's closed-loop input-to-output transfer function. If \(E_{i}\) becomes time-varying, but sufficiently slow so that the input voltage can be considered essentially constant over a switching period, then eq. (21) can be linearized about the previously-defined equilibrium state \(\underline{X}^{\star}\) and the nominal dc input voltage \(E_{I}\) as:
\[
\begin{equation*}
\delta \underline{X}\left(t_{k+1}\right)=\Psi \delta \underline{X}\left(t_{k}\right)+\Gamma \delta e_{i}\left(t_{k}\right) \tag{25}
\end{equation*}
\]
where
\[
\begin{equation*}
\Gamma=\left.\frac{\partial f}{\partial e_{i}}\right|_{X^{*}, E_{\bar{I}}} \tag{26}
\end{equation*}
\]
and
\[
\begin{equation*}
\delta e_{i}\left(t_{k}\right)=E_{i}\left(t_{k}\right)-E_{i} \tag{27}
\end{equation*}
\]
that is, the time varying \(E_{i}(t)\) now contains a dc component \(E_{I}\) plus a small ac component \(\delta e_{j}(t)\). The output voltage \(E_{o}\) can be expressed as
\[
\begin{equation*}
E_{0}\left(t_{k}\right)=c \underline{x}\left(t_{k}\right) \tag{28}
\end{equation*}
\]
where \(C\) is a constant (lxn) row matrix. Applying Z-transform to eq. (25), one has:
\[
\begin{equation*}
\delta \underline{X}(Z)=(I Z-\Psi)^{-1} \Gamma \delta e_{i}(Z) \tag{29}
\end{equation*}
\]

The frequency-domain audiosusceptibility transfer function can be derived after replacing \(Z\) by \(e^{j \omega T \rho}\) and combining eqs. (28) and (29),
\[
\begin{align*}
G(j v) & =\frac{\delta e_{0}(j w) / E_{0}}{\delta e_{i}(j w) / E_{I}}=\frac{E_{I}}{E_{0}} \frac{\delta e_{0}(j w)}{\delta \underline{x}(j w)} \frac{\delta \underline{x}(j w)}{\delta e_{i}} \\
& =\frac{E_{I}}{E_{0}} C\left(I e^{j \omega T_{p}}-\psi\right)^{-1} \Gamma \tag{30}
\end{align*}
\]

\subsection*{4.3.3 Impulse-Function Analysis Description}

In this analysis, the three general control blocks shown in Figure 1 are treated as three separate entities. During one cycle of switching operations as illustrated in Figure 2(B), the regulator power stage can be represented by equations (1) to (3) of the previous section, namely:
\[
\begin{array}{ll}
\underline{X}=F 1 \underline{X}+G 1 \underline{U} & \text { during } T_{F 1} \\
\underline{X}=F \underline{X}+G 2 \underline{U} & \text { during } T_{F 2} \\
\underline{X}=F 3 \underline{X}+G 3 \underline{U} & \text { during } T_{O N} \tag{33}
\end{array}
\]

The difference between equations (31) to (33) and equations (1) to (3) of the previous section is that the \(F^{\prime} s\), the \(G^{\prime} s\) and the \(X\) now only contain power stage parameters. When the regulator is subjected to a small disturbance, the duty-cycle signal \(d(t)\) is modified as \(d(t)+\Delta d(t)\), shown as Figure 5. Such a perturbed duty-cycle signal can be idealized as an impulse trains when the perturbation is vanishingly small.


Figure 5 Perturbation of Duty Cycle \(d(t)\)


Figure 6 State Trajectories for steady state and for small perturbation

A linearized discrete impulse response, which characterizes the small-signal behavior of the power stage about its equilibrium state, can be obtained if the output-voltage perturbation \(\Delta \nabla_{0}\left(t_{k+n}\right)\) due to a \(\Delta d\left(t_{k}\right)\) at the Kth cycle can be computed after \(n\) cycles of operation. The sampling rate is the switching frequency \(1 / T_{p}\). Analytically, one wishes to express the discrete impulse response \(g\left(n T_{p}\right)\) in a closed form as power-stage circuit parameters and operating conditions:
\[
\begin{equation*}
g\left(n T_{p}\right)=\frac{\Delta V_{0}\left(t_{k+n}\right)}{\Delta t_{k}} \tag{34}
\end{equation*}
\]

Let the state trajectories for steady state and perturbed state be illustrated in Figure 6 as solid and dotted curve respectively. The instants of switching are denoted by a superscript "0" for the steady state, and by a superscript "*" for perturbed state. For a small dutycycle perturbation at Kth cycle from \(t_{k}^{0}\) to \(t_{k}^{*}\), the perturbed state after one cycle of propagation is \(\underline{X}^{*}\left(t_{K+1}^{0}\right)\). Using the closed-form solution of equations (31) to (33) which are similarly in form to those expressed in equations (4) to (6) of the previous section, one can then express \(\underline{X}^{\star}\left(t_{k+1}^{0}\right)\) in terms of the \(t_{k}^{*}\). Since the output voltage \(V_{o}\) can be expressed as:
\[
\begin{equation*}
V_{0}=C \underline{x} \tag{35}
\end{equation*}
\]

When \(C\) is a constant row matrix, the \(g\left(n T_{p}\right)\) in equation (34) can be obtained through the following vector differentiation
\[
\begin{equation*}
g\left(n T_{p}\right)=\frac{c d x^{*}\left(t_{k+n)}^{0}\right.}{d t \stackrel{\rightharpoonup}{k}} \tag{36}
\end{equation*}
\]

Equation (36) can be shown to be the following:
\[
\begin{equation*}
g\left(n T_{p}\right)=C \Phi^{n}\left(T_{p}\right) B \tag{37}
\end{equation*}
\]
were
\[
\begin{equation*}
B=(F 3-F 1) \underline{x}^{0}\left(t_{k}^{0}\right)+(G 3-G 1) \underline{U} \tag{38}
\end{equation*}
\]

Equation (37) thus characterizes the small-signal behavior of the regulator power stage exactly at the sampling instants following a dutycycle psiturbation \(\Delta d(t)\).
fo forsake the details between samples, an equivalent continuous linear impulse response \(g(t)\) can be obtained simply by substituting \(t=n T_{p}\) in equation (34).

Such a transform is made plausible by the low-pass filter inherent in most regulator power stages. The continuous linear response \(g(t)\) thus characterizes the small-signal, low-frequency behavior of the regulator, up to one-half of the switching frequency. Once \(g(t)\) is obtained, the corresponding frequency-domain transfer function \(G(s)\) follows.

The key to this linearization method is therefore, equation (34), which linearizes the nonlinear system by considering a samll-signal disturbance about its equilibrium state, thus allowing the exact portrayal of the regulator's small-signal behavior at the discrete sampling instant. The simplification based on a much shorter switching period in relation to the output-filter time constant is then invoked to extend the response from discrete to continuous.

The foregoing presentation summarizes the essence of the impulseresponse frequency-domain analysis for the power-stage linearization. Details of mathematical manipulations and matrix formulations for both continuous and discontinuous conduction operations will be presented later.

The power-stage frequency-domain transfer function \(G(s)\) is then complemented by the linear transfer function of the analog signal processor and the describing function of the digital-signal processor. The entire regulator is represented in block-diagram form, from which the regulator's control-dependent performances can be analyzed.

\subsection*{4.3.4 Average Time Domain Analys is Description}

The objective of averaging is to make a continuous system model out of the piecewise-linear discrete system. There exists various averaging techniques combining the piece-wise linear switching intervals. One is the "circuit-averaging approach [7, 17], in which equivalent circuits of switched power stages operating in the continuous conduction mode are derived based on the effect of the duty cycte \(d(t)\) and \([1-d(t)]\) on the power stage parameters. Other methods consist in generating the perturbation of the average current injected into the outhut circuit. In conjunction with the output-circuit transfer function, the disturbance in the output voltage caused by a corresponding disturbance in the average current is then obtained \([18,19]\).

While the circuit-averaging method relies more on equivalence of circuit topology rather than analysis, it nevertheless provides not only the duty-cycle-to-output-voltage transfer function as does the current averaging method, but it also provides the converter input--to-outputvoltage transfer function, which is essential in evaluating the behavior of disturbance propagation involving the regulator input. Such important behaviors include the audiosusceptibility and the effect of input filter on the stability and other control-dependent performances.

To retain this advantage of enabling these dual transfer functions and to provide a unified analytical basis for both continuous and discontin-uous-conduction operations, the "state-space averaging" method was advanced by Caltech investigators, sponsored by a subcontract from TRW [8,9,20]. Details of this method are published in a companion report volume, NASA CR-135172.

Similar to the previous approach described in Section 4.3.3, the method treats the power stage as an entity by iteself, in addition to the analog and digital-equal processors. The analys is starts with the formulation of basic equations (31), (32), (33) and (35), which contains only power-stage parameters.

The objective of state-space averaging is to replace the state-space description of the piece-wise linear switched intervals of the switching cycle \(T_{p}\) by a single state-space description which represents approximately the behavior of the regulator across the entire period \(T_{p}\). Using the continuous conduction case for example, equations (31) and (33) are averaged by summing the equation for intervals \(T_{\text {on }}\) and \(T_{F 1}\) multiplied by \(d_{1}\) and \(d_{2}\) respectively, when the d's are identified in Figure 2 (A). The basic averaged state-space model over a single period \(T_{p}\) becomes:
\[
\begin{align*}
& \underline{X}=\left(d_{1} F_{1}+d_{2} F_{2}\right) \underline{x}+\left(d_{1} G_{1}+d_{2} G_{2}\right) \underline{U}  \tag{39}\\
& \underline{\Psi}=\left(d_{1} c_{1}+d_{2} c_{2}\right) \underline{x} \tag{40}
\end{align*}
\]

Justification of this approximation is provided in Referene [8], i.e., it corresponds to that of approximation of the fundamental matrix e \(A t_{=}=1+A t+\ldots\) by its first-order linear term. It also coincides with the fact that the output-filter resonant frequency is much lower than the switching frequency.

Once equations (39) and (40) are obtained, either analytical or circuit averaging can be carried out to realize the averaged nodel. The analytical realization starts by assuming \(d_{1}\) and \(d_{2}\) to be constant such that \(d_{1}=D\) and \(d_{2}=D^{\prime}=1-D\), then the following linear system holds:
\[
\begin{align*}
& \underline{X}=F \underline{X}+G \underline{U}  \tag{41}\\
& \underline{\Psi}=C \underline{X} \tag{42}
\end{align*}
\]
where
\[
\left.\begin{array}{l}
F=d_{1} F_{1}+d_{2} F_{2}  \tag{43}\\
G=d_{1} G_{1}+d_{2} G_{2} \\
C=d_{1} C_{1}+d_{2} C_{2}
\end{array}\right\}
\]

Perturbations \(u=U+\hat{u}\) is then introduced to the linear system represented by equations (41) and (42) to cause \(x=X+\hat{x}\) and \(Y=\Psi+\hat{y}\). Separation of the ac transfer function from the steady-state dc component gives:
\[
\begin{align*}
& \hat{x}=F \hat{x}+G \hat{u}  \tag{44}\\
& \hat{y}=C \hat{x} \tag{45}
\end{align*}
\]

The line voltage transfer function thus becomes:
\[
\begin{equation*}
\frac{\hat{y}(s)}{\hat{u}(s)}=C(s I-F)^{-1} G \tag{46}
\end{equation*}
\]

The time-varying duty-cycle is then expressed as \(d=0+\hat{d}\), with the corresponding perturbation \(x=x+\hat{x}, y=Y+\hat{y}\), and \(u=U+\hat{u}\). Substituting these variations into equations (39) and (40), and making the approximations that \(\hat{U} / U \ll 1, \hat{d} / D \ll 1, \hat{x} / X \ll 1\), one has the following models:
dc model:
\[
\begin{equation*}
\underline{X}=-F^{-1} G \underline{U}, \underline{\Psi}=-c A^{-1} G \underline{U} \tag{47}
\end{equation*}
\]
ac model:
\[
\begin{align*}
& \hat{x}=F \hat{x}+G \hat{U}+\left[\left(F_{1}-F_{2}\right) \underline{x}+\left(G_{1}-G_{2}\right) \underline{U}\right] \hat{d} \\
& \hat{y}=C \hat{x}+\left(C_{1}-C_{2}\right) \underline{x} \hat{d} \tag{48}
\end{align*}
\]

It is demonstrated \([8,9]\) that through Laplace transform, these equations can be used to arrive at a common Canonical Model for all switching regulators.

The model offers a powerful design tool, as the input filters or other linear circuits are easily incorporated with the model and various control-dependent performances of different converters are readily compared. Expressed slightly different than the original form [8,9], the canonical dual-input (line and control) transfer function model for the buck, boost, and the two-winding buck-boost power stages are given in Figure 7. With the dual input from line and control disturbance properly defined, it is rather straight forward to incorporate the source variation as well as the control signal perturbation from the output of the digital signal processor to conduct the control-dependent performance analysis.

With the power stage modelled and with the linear analog signal processor routinely analyzed, the digital signal processor remairis as the only non-linear block. Consistent with the low-pass nature of the output filter in relation to the switching frequency, the digital-signal processor is linearized through the describing-function technique. The technique is briefly discussed next.

Assuming the input to the digital signal processor is:
\[
\begin{equation*}
V_{A}(t)=A \sin \omega t \tag{49}
\end{equation*}
\]
and then output of the digital signal processor, \(d(t)\), can be expressed by its Fourier series:
\[
\begin{equation*}
d(t)=D+a_{1} \sin \omega t+b_{1} \cos \omega t+\ldots \tag{50}
\end{equation*}
\]

By definition, the describing function of the digital signal processor is:
\[
\begin{equation*}
F_{M}=\frac{\sqrt{a_{1}^{2}+b_{1}^{2}}}{A} \cdot e^{-j \tan ^{-1}\left(b_{1} / a_{1}\right)} \tag{51}
\end{equation*}
\]

Thus, by neglecting the higher harmonics of \(d(t)\) and seeking only its fundamental component, the non-linear digital signal processor is represented by a linear describing function, with gain \(\left(a_{1}{ }^{2}+b_{1}^{2}\right)^{0.5}\) and phase \(\tan ^{-1}\left(b_{1} / a_{1}\right)\).

The representation can be combined with the canonical power-stage model and the linear analog signal processor to characterize the behavior of a complete switching regulator.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & M(D) & E & \(\mathrm{f}_{1}(\mathrm{~S})\) & J & \(\mathrm{f}_{2}(\mathrm{~S})\) & \(L_{e}\) & \(\mathrm{R}_{\mathrm{e}}\) & Z & H \\
\hline BUCK & \(\frac{1}{D}\) & \(\frac{\mathrm{V}}{\mathrm{D}^{2}}\) & 1 & \(\frac{\mathrm{V}}{\mathrm{R}}\) & 1 & L & \(\mathrm{R}_{\mathrm{s}}\) & \(\mathrm{Z}_{\mathrm{F}}\) & \(\mathrm{H}_{\mathrm{F}}\) \\
\hline BOOST & 1-D & V & 1-S \(\frac{L}{\text { L }}\) & \[
\frac{V}{(1-D)^{2} R}
\] & 1 & \(\frac{L}{(1-D)^{2}}\) & \(\frac{\mathrm{RS}^{\text {s }}}{(1-\mathrm{D})^{2}}\) & \(\mathrm{Z}_{\mathrm{F}}\) & \(\mathrm{H}_{\mathrm{F}}\) \\
\hline  & \[
\frac{1-D}{D}
\] & \[
\frac{V}{D^{2}}
\] & \[
\mathrm{I}_{\mathrm{R}_{e}+\mathrm{SL}}^{\mathrm{D}}
\] & \[
\frac{V}{(1-D)^{2} R}
\] & 1 & \[
\frac{L}{(1-D)^{2}}
\] & \[
\frac{\mathrm{RS}_{S}}{(1-D)^{2}}
\] & \[
\left(\frac{N_{s}}{N_{p}}\right)^{2} Z_{F}
\] & \[
\frac{N_{S}}{N_{p}} H_{F}
\] \\
\hline
\end{tabular}

D = Duty Cycle
V \(=\) Output Voltage
L = Output Inductor
\(N_{p}=\) Primary Turns
\(\mathrm{N}_{\mathrm{S}}=\) Secondary Turns

R \(=\) Output Load Resi stance
\(\mathrm{R}_{\mathrm{s}}=\) Inductor Winding Resistance
\(Z_{F}=\) Output Impedance of Input Filter
\(H_{F}=\) Input Filter Forward Transfer Function

Figure 7 Dual input transfer function for three basic dower stages.

\subsection*{4.3.5 Discrete Time Domain Simulation Description}

Switching regulator linear models derived from the afore-described techniqeus are applicable to small-signal analysis only. The reason for such a restriction stems from the fact that both the power stage and the digital signal processor are linearized about the system equilibrium state for a given fixed duty cycle \(d(t)=D\). When a large-signal disturbance is introduced, either through a large step change in line or in load, the duty cycle varies during the entire transient until the new equilibrium state is reached. The time-variant duty cycle renders the small-signal models powerless.

Another restriction on the previously described techniques is that they cannot handle the transition between the continuous and discontinueus conduction in a given analytical effort. However, a large signal transient (e.g. a step load change) often can cause the pre- and post-transient states to be in different conduction modes. Such a transition again renders the small-signal model powerless.

In addition, other control input signals such as those provided by the peak current sensor, the saturation effect of the power stage inductors as well as the analog-signal-processor operational amplifier, may play important roles in large signal transients. Such non-linearifies, in a higher-order time-varying practical regulator system, can only be effectively taken into account through computer simulation.

There are many established simulation programs based on either topology input (ECAP, SCETPRE, SPICE) or block input (CSMP). Although it may not be necessarily evident from the user's viewpoint, these programs are based directly or the time-domain equations that are generated either from the input topology by the computer, or by the user. Consequently, the exact discrete time-domain system equations, presented previously in equations (1) to (18) prior to any linearization effort, serve conveniently as the natural basis for conducting the discrete timedomain simulation. An advantage of employing these formulated equations for simulation is its cost-effectiveness due to the following reasons:
1) The state transition is already formulated in matrices form thus saving computer compilation time.
2) For each switched interval within one operating cycle, the system is linear. Thus, a large fraction of the time period (including unity) can be specified as the step interval of calculation during steady-state or transient operations. Otherwise, because of the low system damping and the switching discontinuity, very small integration steps may be needed.
3) In certain simple cases, the constant state transition matrices and D can be evaluated in closed form, thus, allowing the steady-state to be converged to much more rapidly.

Consequently, based on equations (4), (5) and (6), the system state can be propagated by the state transition matrix \(\Phi 1(T)\) and the input matrix \(D 1(T)\) until the time period \(T_{O N}{ }^{k}\) has elapsed due to the threshold condition (14), where \(T<T_{O N}{ }^{k}\) is the time period used in each computation. Subsequently, a new state transition matrix \(\Phi 2(\mathrm{~T})\) and input matrix \(02(\mathrm{~T})\) are employed to propagate the system state. If the system operation dictates a zero-conduction interval, matrices \(\Phi 3(\mathrm{~T})\) and \(\mathrm{D} 3(\mathrm{~T})\) are invoked until the \(T_{\text {on }}{ }^{k}\) of the next cycle starts. If discontinuous conduction is not encountered, \(\Phi 3\) and D3 are by-passed, and from \(\Phi 2\) and D2 the system propagates back to \(\Phi 1\) and D1. It is through this propagation that longduration transient and steady-state operations are simulated.

\subsection*{4.3.6 Methodology Comparisons}

Having presented the major analysis/simulation methodologies, a summary comparison is in order. These methods all start with the piecewise linear state-space system formulation and their closed-form solution in terms of state transition and input matrices. They differ only by the means through which the linearization of the nonlinear system is achieved.

In the discrete time domain analysis, the system equilibrium state is numerically evaluated and linearization about the equilibrium is achieved by performing the partial differentiation \(\partial f / \partial \underline{X}\) numerically (or analytically for simple problems), where the function "f" relates \(\underline{X}\left(t_{k+1}\right)\) to \(\underline{X}\left(t_{k}\right)\) in the equilibrium state. The linearization treats the complete switching regulator as a single entity. For most practical applications, a digital computer is used to carry out the detailed numerical analysis.

In the impulse-response analysis, the nonlinear power stage is linearized about its equilibrium state by idealizing a perturbed dutycycle signal \(\Delta t_{k}\) as an impulse train, and by calculating the corresponding output-voltage perturbation \(\Delta V_{0}\left(t_{k+n}\right)\). The linearized power stage model, \(g\left(n t_{0}\right)\) characterizes the small-signal behavior of the regulator exactly at the discrete sampling instant at a sampling rate \(1 / T_{p}\). Assuming the system response is much slower than the sampling rate, the continuous time-domain is achieved simply by letting \(n T_{p}=t\), from which the frequency domain transfer function \(G(s)\) follows through \(s=j \omega t . \quad A\) closed-form \(d(t)-\) to \(\Delta V_{0}\) power-stage transfer function is thus obtained by invoking a simplifying assumption at the end of a complicated derivation. Additional frequency-domain transfer functions are needed for the analog and digital signal processors to facilitate the complete regulator controlloop analysis.

In the average time-domain analysis, the simplifying assumption for the power stage is made at the outset of the derivation. An averaged state-space representation for a complete switching period \(T_{p}\) is formulated by simply summing the state-space representation of the individual switched interval \(T_{\mathbf{i}}\) properly weighed by the corresponding time ratio \(T_{i} / T_{p}\). Linearization is accomplished through simple perturbation of the averaged representation. Small-sigral power-stage models can be obtained either in analytical form or in circuit form. Again, transfer functions for analog and digital-signal processors are needed to complete the control-100p modeling and analysis.

No linearization is needed in the discrete time domain simulation, as the disturbance in the nonlinear system is allowed to simply propagate through the state-transition matrices corresponding to one switched interval until a specific threshold condition for that interval is reached, upon which the disturbance propagates to the next switched interval of different state-transition matrices.

A concise comparison of the merits and limitations for each of these analytical approaches is given in Table 1. These approaches, along with analysis examples, will be presented next.

Table 1: Merits and Limitations of Analytical Approaches
\begin{tabular}{|c|c|c|}
\hline ANALYTICAL APPROACH & MERITS & LIMITATIONS \\
\hline DISCRETE TIME DOMAIN ANALYSIS & \begin{tabular}{l}
- Most accurate small-signal stability analysis \\
- Can treat both conductions in a single computer subprogram \\
- No need to separate a regulator into functional blocks. \\
- Leads directly to discrete time domain simulation.
\end{tabular} & \begin{tabular}{l}
- Basically a numerical approach. No closed-form insight can be gained. \\
- A circuit topology change would require new equation formulation. \\
- No convenient test verification (e.g., Bode Plot) for stability analysis.
\end{tabular} \\
\hline IMPULSE RESPONSE ANALYSIS & - Seem to provide a more accurate power-stage transfer function at high frequencies ( \(>10 \%\) of switching frequency) than the average time-domain analysis. & \begin{tabular}{l}
- Need to separate regulator into functional blocks. \\
- Closed-form power-stage representation does not incorporate input filter easily. \\
- No input line disturbance transfer function is available.
\end{tabular} \\
\hline AVERAGE TIME DOMAIN ANALYSIS & \begin{tabular}{l}
- Gain insight readily to enhance control loop design. \\
- Performance analysis skill resides in most designers. \\
- More cost-effective for complex system with multiple outputs. \\
- Provide both line and control transfer functions thus allowing the power stage model to be incorporated in a larger system.
\end{tabular} & \begin{tabular}{l}
- Analytical results lose accuracy beyond 15-20\% of switching frequency. May not be entirely satisfactory for multiple-loop regulators with high bandwidth. \\
- Need to separate a regulator into functional blocks, thus necessitating the derivation of describing function for digital-signal processors.
\end{tabular} \\
\hline \begin{tabular}{l}
DISCRETE \\
TIME DOMAIN SIMULATION
\end{tabular} & - The only approach that can handle large-signal disturbance such as regulator start-up and sudden line/load changes & - Simulation effort gains no insight when not supported by analysis. \\
\hline
\end{tabular}

\subsection*{4.4 DISCRETE TIME DOMAIN ANALYSIS AND EXAMPLES}

In this section, a step-by-step analytical procedure for performing the discrete time domain analysis is first outlined. Several examples are given as applications of this procedure. The examples are designed to demonstrate the merits and limitations of this particular analytical approach.

\subsection*{4.4.1 Step-by-Step Analytical Procedure}

The following five basic steps are involved with the discrete-time domain stability analysis:

Step 1: State space system representation
Step 2: Nonlinear discrete state transition representation
Step 3: Solution of equilibrium state
Step 4: Linearization about equilibrium
Step 5: Eigenvalue stability analysis.
Additionally, audiosusceptibility analysis can be performed by \(Z\)-transform, of the linearized time-varying system and by replacing \(Z\) with \(j w T_{p}\) where \(T_{p}\) is the time interval of one switching period.

\subsection*{4.4.2 Example \(\frac{\text { Stability Analysis of a Multiple-Loop Controlled Buck }}{\frac{\text { Regulator Operating in Continuous Conduction Mode with }}{\text { a Constant Ton Duty Cycle Control }}}\)}

A buck regulator with input \(E_{i}\) and output \(E_{0}\) is shown in Figure 8. The power circuit of the regulator consists of power transistor \(Q\), power diode \(D\), inductor \(L\) and its winding resistance \(R_{L}\), Capacitor \(C\) and its ESR \(R_{5}\), and load resistance R. The control circuit employs three feedback control loops. Loop I senses the converter output voltage and compares it with reference \(E_{R}\) to generate a dc error. Loop II sensing the ac voltage across the inductor [10,11] serves two functions. In addition to generating an ac error signal which combines with the dc error to serve as the composite small-signal amplifier input, it also produces a large-signal triangular ramp by integrating the steady state rectangular inductor voltage. This ramp, upon intersecting the threshold level \(E_{T}\), actuates the Digital Signal Processor (DSP), which in turn controls the on-off of power switch \(Q\). In this example, the control is such that the on time \(T_{O N}\) is fixed. Loop III containing câpacitor \(C 2\) is needed to improve the dynamic response of the regulator.


Figure 8 A Multiple-Loop Buç Regulator

\subsection*{4.4.2.1 State Space System Representation}

It is apparent from Figure 8 that the system has three states: the output voltage \(e_{0}\), the inductor current \(i\), and the output voltage \(e_{c}\) of the integrator amplifier.
\[
\begin{align*}
& \frac{d i}{d t}=\frac{1}{L_{0}}\left(e_{i}-e_{0}-R_{0} i\right)  \tag{52}\\
& e_{0}=R_{5}\left(i-\frac{e_{0}}{R_{L}}\right)+v_{c}  \tag{53}\\
& \frac{d V_{c}}{d t}=\frac{i}{C_{0}}-\frac{e_{0}}{R_{L} C_{0}} \tag{54}
\end{align*}
\]

Differentiating \(e_{0}\) in equation (53) and substituting (52) and (54) into (53) yields
\[
\begin{align*}
\frac{d e_{0}}{d t}= & e_{0}\left[-\frac{1}{C_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}\right]+i\left[\frac{R_{L}}{C_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{0} R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}\right] \\
& +e_{i}\left[\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}\right] \tag{55}
\end{align*}
\]

The input voltage \(\mathrm{e}_{\mathbf{i}}\) is defined as
\[
\begin{equation*}
e_{i}=\frac{E_{i} \text { during } T_{\text {on }}}{E_{0} \text { during } T_{\text {off }}} \tag{56}
\end{equation*}
\]

The integrator amplifier output voltage \(e_{c}\) is:
\[
e_{c}=K_{d} E_{R}+\int_{t_{0}}^{t}\left[\frac{K_{d}}{R_{3} c_{1}}\left(E_{R}-e_{0}\right)-\frac{n}{R_{4} C_{1}}\left(e_{i}-e_{0}\right)-\frac{C_{2}}{C_{1}} e_{0}\right] d t
\]

Thus,
\[
\begin{equation*}
\dot{e}_{c}=\left(\frac{n}{R_{4} C_{1}}-\frac{K_{d}}{R_{3} C_{1}}\right) e_{0}-\frac{C_{2}}{C_{1}} \dot{e}_{0}+\frac{K_{d}}{R_{3} C_{1}} E_{R}-\frac{n}{R_{4} C_{1}} e_{i} \tag{58}
\end{equation*}
\]

Substituting (55) into (58), and defining
\[
\begin{equation*}
x_{1}=e_{0}, \quad x_{2}=i, \quad x_{3}=e_{c} \tag{59}
\end{equation*}
\]

One has
\[
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{lll}
f_{11} & f_{12} & 0 \\
f_{21} & f_{22} & 0 \\
f_{31} & f_{32} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ll}
g_{11} & 0 \\
g_{21} & 0 \\
g_{31} & g_{32}
\end{array}\right]\left[\begin{array}{l}
e_{i} \\
E_{R}
\end{array}\right] } \\
& f_{11}=\frac{1}{C_{0}\left(R_{5}+R_{L}\right)}=\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)} \\
& f_{12}=\frac{R_{L}}{C_{0}\left(R_{5}+R_{L}\right)}=\frac{R_{0} R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)} \\
& f_{21}=-\frac{1}{L_{0}}, f_{22}=\frac{R_{0}}{L_{0}} \\
& f_{31} \\
& R_{4} C_{1}-\frac{K_{d}}{R_{3} C_{1}}+\frac{C_{2}}{C_{1} C_{0}\left(R_{5}+R_{L}\right)}+\frac{C_{2} R_{5} R_{L}}{C_{1} L_{0}\left(R_{5}+R_{L}\right)} \\
& f_{32}=\frac{C_{2} R_{0} R_{5} R_{L}}{C_{1} L_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{1} C_{2}}{C_{1}\left(R_{5}+R_{L}\right)} \\
& g_{11}=\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}, g_{21}=\frac{1}{L_{0}} \\
& g_{32}=\frac{K_{d}}{R_{3} C_{1}} \\
& g_{31}-\frac{n}{R_{4} C_{1}}-\frac{C_{2} R_{5} R_{L}}{C_{1} L_{0}\left(R_{5}+R_{L}\right)}
\end{aligned}
\]

Let
\[
\underline{u}=\left[\begin{array}{l}
e_{i}  \tag{63}\\
E_{R}
\end{array}\right]
\]

Equation (60) can now be written in compact form as:
\[
\begin{equation*}
\dot{X}=F \underline{X}+G \underline{u} \tag{64}
\end{equation*}
\]
where \(F\) and \(G\) are the respective matrices \(\mathrm{in}^{\prime}(60)\). This equation is the state-space system representation of the regulator shown in Figure 8.

\subsection*{4.4.2.2 Nonlinear Discrete State Transition Representation}

The solution to (64) is given by:
\[
\begin{equation*}
\underline{x}(t)=e^{\left(t-t_{0}\right) F} \underline{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{(t-\tau) F} G \underline{u}(\tau) d \tau \tag{65}
\end{equation*}
\]

Or, since \(\underline{u}\) is piecewise constant,
\[
\begin{equation*}
\underline{x}\left(t_{k}+T\right)=e^{F T} \underline{x}\left(t_{k}\right)+e^{F T}\left[\int_{0}^{T} e^{\left.\left.-F S_{d S}\right]_{G} G \underline{u}\left(t_{k}\right), ~\right) . ~}\right. \tag{66}
\end{equation*}
\]
where
\[
\begin{aligned}
0 & \leq T<t_{k+1}-t_{k} \\
\underline{u}(t) & =\underline{u}\left(t_{k}\right)=\text { constant }, t_{k} \leq t<t_{k+1}
\end{aligned}
\]

Define the following matrices:
\[
\left.\begin{array}{l}
\Phi(T)=e^{F T}  \tag{67}\\
D(T)=e^{F T} \int_{0}^{T} e^{-F S} d S \quad G
\end{array}\right\}
\]

Equation (66) becomes
\[
\begin{equation*}
\underline{x}\left(t_{k}+T\right)=\Phi(T) \underline{x}\left(t_{k}\right)+D(T) \underline{u}\left(t_{k}\right) \tag{68}
\end{equation*}
\]

The value of \(\underline{u}\left(t_{k}\right)\) depends on the state of the switch \(Q\) at time \(t_{k}^{+}\). Note that matrices \(\Phi\) and \(D\) are only functions of the time step \(T\) whose maximum permissible value is either \(T_{\text {on }}\) or \(T_{\text {off }}\), depending on the state of the switch at \(t_{k}^{+}\).

Defining
\[
\underline{u}_{0}=\left[\begin{array}{l}
0  \tag{69}\\
E_{R}
\end{array}\right] \text { and } \quad \underline{u}_{i}=\left[\begin{array}{l}
E_{i} \\
E_{R}
\end{array}\right]
\]

It follows from (68) that
\[
\begin{equation*}
x\left(t_{k+1}\right)=\Phi\left(T_{o n}\right) \Phi\left(T_{o f f}^{k}\right) \underline{x}\left(t_{k}\right)+\Phi\left(T_{o n}\right) D\left(T_{o f f}^{k}\right) \underline{u}_{0}+D\left(T_{o n}\right) \underline{u}_{1} \tag{70}
\end{equation*}
\]
where \(T_{\text {off }}^{k}\) is a function of \(\underline{x}\left(t_{k}\right)\) described implicitly by the threshold condition:
\[
E_{T}=\phi_{31}\left(T_{o f f}^{k}\right) x_{1}\left(t_{k}\right)+\phi_{32}\left(T_{o f f}^{k}\right) x_{2}\left(t_{k}\right)+x_{3}\left(t_{k}\right)+d_{32}\left(T_{o f f}^{k}\right) E_{R}(71)
\]

Note that given any initial state \(\underline{x}\left(t_{0}\right)\), equations (70) and (71) can be used to compute recursively the state vector \(\underline{x}\left(t_{k}\right)\) for all future time instances \(t_{k}\). Note that this discrete state transition representation is nonlinear, due to the dependence of \(r_{\text {off }}^{k}\) on the state \(\underline{x}\left(t_{k}\right)\) via (71).

\subsection*{4.4.2.3 Solution of Equilibrium State}

The approximate solution is employed as an initial set toward solving for the exact state through Newton's iteration method. The approxmate time intervals, \(T_{\text {on }}\) and \(T_{o f f}\), can be easily determined through regulator volt-second balance in the output inductor and the input/output energy equilibrium [21]. In the approximate steady state, equation (70) can be written as
\[
\begin{equation*}
\underline{\tilde{x}}^{*}=\Phi \underline{\tilde{x}}^{\star}+D(\underline{u}) \tag{72}
\end{equation*}
\]
where the \(\Phi\) and \(D\) matrices can be computed for a given set of \(T_{o n}\) and Toff. If the matrix ( \(I-\Phi\) ) is non-singular, equation (72) alone is sufficient to solve for:
\[
\begin{equation*}
\underline{\tilde{x}}^{*}=(I-\Phi)^{-1} \mathrm{D} \underline{u} \tag{73}
\end{equation*}
\]

However, (I - \(\Phi\) ) is singular in many cases, and eqs. (71) and (72) are required to solve for \(\underline{\underline{x}}^{*}\). With this \(\underline{\tilde{x}}^{*}\) as the initial setting, equations (71) and (72) are iterately computed until a certain specified matching condition is met. The condition can be defined as
\[
\begin{equation*}
\sqrt{\sum_{i=1}^{n}\left[x_{i}\left(t_{k+1}\right)-x_{j}\left(t_{k}\right)\right]^{2}}<\varepsilon \tag{74}
\end{equation*}
\]
or
\[
\begin{equation*}
\left|x_{i}\left(t_{k+1}\right)=x_{i}\left(t_{k}\right)\right|<\varepsilon \tag{75}
\end{equation*}
\]
where \(\varepsilon\) is an arbitrarily small positive number.

\subsection*{4.4.2.4 Linearization About Equilibrium}

Regarding stability of the discrete time nonlinear system, one may consider two approaches: (1) Determine stability-in-the-large, and (2) Determine stability of the equilibrium solution. Attempts of relating stability-in-the -large to the contraction mapping/fixed point theorem [22] to solving eqs. (70) and (71) were unsuccessful, so had attempts of using the second method of Liapunov [23, 24]. Establishing the stability-in-the-large is therefore reserved as an effort for digital simulation. Of more importance at the moment is to establish stability of the equilibrium solution, which will be accomplished by linearization about the equilibrium state \(\underline{x}^{*}\). Let
\[
\begin{equation*}
\delta \underline{x}\left(t_{k}\right)=\underline{x}\left(t_{k}\right)-\underline{x}^{*} \text { and } E_{i}=E_{i}^{*}=\text { constant } \tag{76}
\end{equation*}
\]
then,
\[
\begin{equation*}
\delta \underline{x}\left(t_{k+1}\right)=\Psi \delta \underline{x}\left(t_{k}\right) \tag{77}
\end{equation*}
\]
where
\[
\begin{equation*}
\Psi=\Phi\left(T_{o n}\right) \frac{\delta}{\delta \underline{x}}\left[\Phi\left(T_{\text {off }}^{k}\right) \underline{x}\left(t_{k}\right)+D\left(T_{\text {off }}^{k}\right) \underline{u}_{o}\right]_{\underline{x}^{*}} \tag{78}
\end{equation*}
\]

The above partial derivative is computed numerically by using different quotients. Let
\[
\begin{equation*}
\underline{f}=\Phi\left(T_{o f f}^{k}\right) \underline{x}\left(t_{k}\right)+D\left(T_{o f f}^{k}\right) \underline{u}_{0} \tag{79}
\end{equation*}
\]

Then,
\[
\left.\frac{\partial \underline{f}}{\partial \underline{x}}\right|_{\underline{x}^{\star}}=\left[\begin{array}{ccc}
\frac{f_{1}\left(x_{1}^{\star}+\Delta x_{1}\right)-f_{1}\left(x_{1}^{\star}\right)}{\Delta x_{1}} & \cdots & \frac{f_{1}\left(x_{3}^{\star}+\Delta x_{3}\right)-f_{1}\left(x_{3}^{\star}\right)}{\Delta x_{3}}  \tag{80}\\
\cdot & \cdot \\
\cdot & \cdot \\
\frac{f_{3}\left(x_{1}^{\star}+\Delta x_{1}\right)-f_{3}\left(x_{1}^{\star}\right)}{\Delta x_{3}} & \cdots & \frac{f_{3}\left(x_{3}^{\star}+\Delta x_{3}\right)-f_{3}\left(x_{3}^{\star}\right)}{\Delta x_{3}}
\end{array}\right]
\]

The increments \(\Delta x_{j}\) were taken as \(1 \%\) of the value of \(x_{j}\), i.e.,
\[
\begin{equation*}
\Delta x_{i}=0.01\left|x_{j}^{\star}\right| \tag{81}
\end{equation*}
\]

\subsection*{4.4.2.5 Eigenvalue Stability Analysis}

The system is stable if all eigenvalues \(\lambda_{i}\) of \(\psi\) in eq. (78) are absolutely less than unity. The eigenvalues are evaluated by a digital computer, and changes in the eigenvalues as a function of system parameters can be plotted in a complex plane. The eigenvalues correspond to the roots of the system. Existing relationships between root locations inside the unit circle and corresponding system response times and damping are well known from Z-transform analysis of linear discrete time system. [25,26]

For nominal regulator parameters as listed in Table 2, one expects to obtain three real and positive eigenvalues less than unity, since it is known from the actual regulator breadboard tests that the system was stable, and that the transient decay after a disturbance nonoscillatorily. Computer results ascertained the stability, where the three eigenvalues obtained are shown as follows:

Table 2 Nominal Regulator Parameters
\begin{tabular}{|l|l|c|c|}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & Units & Value \\
\hline\(E_{i}\) & Supply Voltage & volts & 30 \\
\(E_{R}\) & Reference (Desired Output) Voltage & volts & 20 \\
\(E_{T}\) & Integrator Threshold & volts & 8 \\
\(R_{0}\) & Inductor Series Resistance & ohms & 0.015 \\
\(R_{1}\) & Part of Output Voltage Divider & ohms & 28.7 K \\
\(R_{2}\) & Part of Output Voltage Divider & ohms & 13.5 K \\
\(R_{3}\) & Op-amp DC Input Resistor & ohms & 10 K \\
\(R_{4}\) & Op-amp AC Input Resistor & ohms & 100 K \\
\(R_{5}\) & Series-Equivalent Resistance of \(C_{0}\) & ohms & 0.077 \\
\(R_{1}\) & Lead & ohms & 10. \\
\(C_{0}\) & Output Filter Capacitor & \(\mu F\) & 300 \\
\(C_{1}\) & Op-amp Feedback Capacitor & pF. & 2200 \\
\(C_{2}\) & Lead Compensation Capacitor & \(\mu F\) & 0.022 \\
\(L_{0}\) & Output Filter Inductor/Transformer & \(\mu H\) & 250 \\
\(n\) & Transformer Turns Rate \(n_{2} / n_{1}\) & -- & 0.65 \\
\(T_{0 N}\) & On Time & \(\mu s\) & 30 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \lambda_{1}=4.1176 \mathrm{E}-01+\mathrm{j} 0 \\
& \lambda_{2}=9.5654 \mathrm{E}-01+\mathrm{j} 0 \\
& \lambda_{3}=1.9027 \mathrm{E}-15+\mathrm{j} 0
\end{aligned}
\]

Note that \(\lambda_{3}\) is for all practical purposes equal to zero. This is because the incremental voltage \(\delta e_{c}\) can be shown to be essentially a linear combination of \(\delta i\) and \(\delta e_{0}\). The zero eigenvalue should, therefore, cause no concern, as it is clearly less than unity.

Since the objective of this example is to demonstrate the basic analytical steps from state-space system formulation to eigenvalue stability analysis, other related analytical topics developed in the MAPPS program for the regulator shown in Figure 8 are not presented here. These topics include the following:
- The analytical determination of \(\Phi\) and \(D\) matrices in closedform.
- The root loci of the linearized system as a function of key system parameters.
- The calculation of audio susceptibility analysis through Z-transform.
- The transient behavior caused by supply-voltage step changes. Analytical presentation on these topics can be found in Appendix A [2], which becomes an integral part of this report.

In this example, the same analytical procedure illustrated in Example 1 is applied to a different power circuit (boost regulator) operating in a different conduction mode (discontinuous), thus helping to demonstrate the unified nature of the discrete time-domain analysis. The analysis and the significant results are elaborated in Appendix B, which becomes an integral part of this report.

An interesting note concerning the stability result is that one eigenvalue is equal to zero for discontinuous-conduction operation. The zero eigenvalue indicates that the order of the system is reduced by one, which confirms findings elsewhere \([5,6]\). The phenomenon can also be explained from a circuit viewpoint. The inductor current is always reduced to zero after a small perturbation; it therefore, can no longer constitute a state variable since its secondary condition is no longer free.

An audiosusceptibility analysis is also performed in this example. The performance is found to be a function of the regulator loading; it improves as the load becomes lighter. This phenomenon is quite different from the continuous-conduction operation, where the audio performance is essentially independent of the load.

\subsection*{4.4.4 Example 3-A Buck Regulator Discrete Time-Domain Analysis Subprogram Containing Both Continuous and Discontinuous Conduction Modes.}

Either through light-load operation or through design intent, the discontinuous-conduction is generally an inevitable mode of operation. It is thus desirable to have an analytical approach, through which a composite computer program can be developed to incorporate both continuous and discontinuous conductions. The objective can be achieved through the afore-described discrete time-domain analysis. The objective of this example is to demonstrate the practicality and the utility of such a program.

\subsection*{4.4.4.1 Continuous Conduction Mode Analysis}

Using the analytical procedure outlined previously, analysis of a con-stant-frequency buck regulator operating in continuous conduction is given in Appendix \(C\).

The regulator used for analysis is the sameone shown in Figure 8, except that for this example a constant-frequency instead of constant-T on duty cycle control is used. The nominal círcuit parameters are identical to those given in Table 2, with a constant period of 30 microseconds.

\subsection*{4.4.4.2 Discontinuous Conduction Mode Analysis}

Analysis of discontinuous conduction mode is presented in Appendix \(D\) for the same circuit operating at lighter load condition.

\subsection*{4.4.4.3 A Composite Computer Program}

A computer program, "MBUCK", combining the composite analysis presented in Appendices \(C\) and \(D\) is generated. The complete program listing is given in Appendix E.

For a given line and load condition, the main program first detects the inductor-current conduction mode. The appropriate subroutine for the operating mode is then entered for numerical computations. The following features of this program are noted:
- The program is able to handle automatically the transition between the two operating modes due to a large step load transients.
- The program numerically identifies the "jump" phenomenon frequently observed in regulator breadboard performance when an unstable constant-frequency continuous-conduction operation (when duty cycle is above 0.5 ) suddenly becomes stable when a line/load change results in a discontinuous conduction. Numerically, the phenomenon manifests itself by a sudden change of one eigenvalue from \(|\lambda|>1\) to \(\lambda=0\).
- The audio susceptibility and line transients can also be analyzed for both operating modes.

\subsection*{4.4.4.4 Define Users Interface Requirements}

The philosophy here is to make the program "easy to use" by minimizing the necessary knowledge a user needs to know to run the program, and at the same time, maintaining the programming flexibility. The user interface is therefore the conversational type presented in "Question and "Answer" form. A sample of the conversation types is presented here:
```

 [GET:MENEK.
 [RUN&:I=ME|lik
 [LGD
EMTER"STOF"TO IISEOHTINIE FHS,DTHEFINISE "NQ"
` H
IO \D| MANT TD EHARHE "FHFAM"? \&G DE H:
T 1
ID %OU WHFTT TO EHARGE "EDMF"T \& DF N
7%
IO MDU WHNT PGMELISTA \&G QF N
TH
IO YDU WHPTT STHEILITY AHMLYSIS% \&Y OF H
? H
HO %OU WINT FODT LDGHS HHAL'YSIST \&' DF N
OH

```

```

 TH
 TFRHEIENT AHALYSIST GY,N
    ```

Statement (1) enables the user to continuously perform the analysis of the "MBUCK" program. Statement (2) allows a user to input various circuit parameter values or change certain values used in the previous run. The user also has the option to change computational parameters in Statement (3), such as certain convergence error or maximum number of iterations to achieve a convergent solution. In Statement (4), a user can ask a list of all the parameter values entered into or stored in the Statements (2) and (3). Statements (5) through (8) allow a user to access various performance analyses such as stability, root-locus, audiosusceptibility and transient response. The user can respond to these questions simply by typing \(Y\) for Yes and \(N\) for No.

\subsection*{4.4.5 Summary Remarks on Discrete Time-Domain Analysis}

The foregoing examples have deomonstrated certain inherent merits and limitations concerning the discrete time-domain analysis:
- For a given design, it provides the most accurate smallsignal stability analysis through eigenvalue calculations.
- The root loci of eignevalues as a function of a certain control parameter give a vivid account of the dependence
- Of stability on that parameter, although the numerical parametric display can seldom match the insight gained through analyticall-6 derived closed-form relationships.
- By treating the complete regulator as a single entity, it is particularly applicable for high-bandwidth multipleloop controlled regulators in which the power stage, the analog signal processor, and the digital signal processor are intimately related without distinct functional divisions.
- It treats both inductor-current conduction modes readily in a single analysis program. However, a design change, particularly a change involving the addition or re-orientation of a state variable, would reqire the reform of the entire nonlinear system formulation. Consequently, it is perhaps best suited for regulators where the design has been standardized.
- It leads directly into a cost-effective discrete-time domain simulation, which can handle the stability-in-the-large.

\subsection*{4.5 IMPULSE-FUNCTION ANALYSIS AND EXAMPLES}

As described previously in Section 4.3.3, impulse-function techniques can be employed to derive accurate models for buck, boost, and buck-boost regulator power stages operating in continuous and discontinuous inductorcurrent conductions. In this section, a discontinuous-conduction buck regulator power stage is used to demonstrate the methodology of the impulsefunction analysis, from which the analysis is generalized to include all three power stages in both modes of operation. A numerical example is then given for a complete regulator including analog- and digital-signal processors as separate entities. Summary remarks are made to conclude the section.

\subsection*{4.5.1 Example 1 - Discontinuous-Conduction Buck Regulator Power Stage Modeling Based on Impulse-Function Analysis}

Three circuit topologies are presented in each operating cycle. Figure \(9(A)\) to \(g(C)\) correspond to the \(T_{O N}, T_{F 1}\) and \(T_{F 2}\) interval, respectively. A duty cycle control signal \(\mathrm{d}(\mathrm{t})\) and the corresponding input voltage \(V_{D(t)}\) to the output filter are shown in Figure \(10(A)\) and \(10(B)\). Each \(T_{O N}\) is initiated by a constant-frequency clock, and the signal \(d(t)\) only controls the time interval \(T_{O N}\). Note that \(V_{D}(t)\) during \(T_{F 2}\) is the time-dependent output voltage \(v_{0}\), which is not treated as a constant in the time-domain analysis.

The buck regulator power stage has two state variables, \(i_{L}\) and \(v_{C}\). During \(T_{F 1}^{k}\),
\[
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)} & \frac{R_{L}}{L_{0}\left(R_{5}+R_{L}\right)} \\
-\frac{R_{L}}{C_{0}\left(R_{5}+R_{L}\right)} & -\frac{1}{C_{0}\left(R_{5}+R_{L}\right)}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
& \triangleq\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \tag{82}
\end{align*}
\]


Figure 9 Power Stage Topology during (A) \(T_{O N}\), (B) \(T_{F 1}\), and (C) \(T_{F 2}\).

During \(T_{F 2}^{k}\)
\[
\left[\begin{array}{l}
\dot{x}_{1}  \tag{83}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{-1}{c_{0}\left(R_{S}+R_{L}\right)}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\]

During \(\mathrm{T}_{\mathrm{ON}}^{k}\)
\[
\left[\begin{array}{l}
\dot{x}_{1}  \tag{84}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{S} R_{L}}{L_{0}\left(R_{S}+R_{L}\right)} & -\frac{R_{L}}{L_{0}\left(R_{S}+R_{L}\right)} \\
\frac{R_{L}}{C_{0}\left(R_{S}+R_{L}\right)} & -\frac{1}{C_{0}\left(R_{S}+R_{L}\right)}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
\frac{1}{L_{0}} \\
0
\end{array}\right]
\]

Equations (82) to (84) are represented by (85) to (87), respectively for matrix representation.
\[
\begin{align*}
& \underline{\dot{x}}=F 1 \underline{x}  \tag{85}\\
& \underline{\dot{x}}=F 2 \underline{x}  \tag{86}\\
& \underline{\dot{x}}=F 3 \underline{X}+G 3 E_{I}  \tag{87}\\
& \\
& F 1=F 3 \underline{\underline{x}}
\end{align*}
\]
where


Figure 10 Duty Cycle Signal and Voltage Applied to Output Filter

Consider the small signal behavior of the converter about its equilibrium state is the same as a linear system. When the converter is subjected to a small disturbance, the duty cycle signal \(d(t)\) is modified as \(d(t)+\Delta d(t)\) shown in Figure 5. Such a perturbed duty cycle signal can be idealized as a impulse train when the perturbation is sufficiently small. Since the small signal behavior of the converter is considered linear, the discrete impulse response of the linear system is equivalent to that of the continuous system. The discrete-time-domain model for the power stage can be derived if the state of the system subjected to a small perturbation at the end of \(T_{\text {on }}^{k}\) can be computed after \(n\) cycles of propagation. This concept can be elaborated by the state trajectories, shown in Figure 6. The superscripts "o" and "*" represent the steady state and the perturbed state, respectively. For a small disturbance at \(t_{k}^{*}\), the perturbed state after one cycle of propagation is represented as \(\underline{x}\left(t_{k+1}\right)\).

The first step toward developing the discrete-time-domain model is to find:
\[
\begin{equation*}
\frac{d x\left(t_{k+1}^{0}\right)}{d t_{k}^{\star}} \triangleq g(\cdot) \tag{88}
\end{equation*}
\]

To do so, the solution of the piecewise-linear system equations (85) to (87) are given as the following:
\[
\begin{align*}
\underline{X}^{*}\left(t_{k 1}^{0}\right)= & \Phi 1\left(t_{k 1}^{0}-t_{k}^{*}\right) \underline{x}^{*}\left(t_{k}^{*}\right)  \tag{89}\\
\underline{X}^{*}\left(t_{k 2}^{0}\right)= & \Phi 2\left(t_{k 2}^{0}-t_{k 1}^{*}\right) x^{*}\left(t_{k}^{*}\right)  \tag{90}\\
\underline{X} x^{*}\left(t_{k+1}^{0}\right)= & \left.\Phi 3\left(t_{k+1}^{0}\right)-t_{k 2}^{*}\right) \underline{x}^{*}\left(t_{k 2}^{*}\right) \\
& +\Phi 3\left(t_{k+1}^{0}\right) \int_{+*}^{t_{k+1}^{0}} \Phi 3(-S) d S G 3 s_{i} \tag{91}
\end{align*}
\]
where \(\Phi\) i for \(\mathbf{i}=1,2,3\) are the state transition matrices. Applying the chain rule, equation (88) can be written as:
\[
\begin{equation*}
\frac{d X^{*}\left(t_{k+1}^{0}\right)}{d t_{k}^{\star}}=\frac{d X^{*}\left(t_{k+1}^{0}\right)}{d X *\left(t_{k 2}^{0}\right)} \frac{d X^{*}\left(t_{k 2}^{0}\right)}{d \underline{X} *\left(t_{k 1}^{0}\right)} \frac{d X^{*}\left(t_{k 1}^{0}\right)}{d t_{k}^{\star}} \tag{92}
\end{equation*}
\]

Equation (92) can be computed by performing each individual differentiation. The result is presented here.
\[
\begin{align*}
\frac{d X^{*}\left(t_{k+1}^{0}\right)}{d t_{k}^{*}}= & \Phi 3\left(T_{O N}^{0}\right) \Phi 2\left(T_{F 2}^{0}\right)\left[1+(F 1-F 2) \underline{X}\left(t_{k 1}^{0}\right) \frac{-C 1}{C 1 F 1 \underline{X}^{*}\left(t_{k 1}^{0}\right)}\right] \\
& \Phi 1\left(T_{F 1}^{0}\right) G_{3} E_{1} \tag{93}
\end{align*}
\]

The condition which determines the time instant \(t_{k 1}^{*}\) is when the inductor current \(X_{1}\) reduces to zero. i.e.,
\[
\mathrm{c} 1 \underline{x}\left(t_{k 1}^{*}\right)=0
\]
where
\[
C 1=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\]

The following expression can be simplified.
\[
\begin{align*}
& 1+(F 1-F 2) \times\left(t_{k 1}^{0}\right) \frac{-C 1}{C 1 F 1 \underline{X}^{\star}\left(t_{k 1}\right)}=1-(F 1-F 2)\left[\begin{array}{l}
0 \\
v_{0}
\end{array}\right] C 1 / C 1 F 1\left[\begin{array}{l}
0 \\
v_{0}
\end{array}\right] \\
& =\left[\begin{array}{lr}
0 & 0 \\
0 & 1
\end{array}\right] \tag{94}
\end{align*}
\]

Equation (93) then becomes
\[
\frac{d X *\left(t_{k+1}^{0}\right)}{d t_{k}^{ \pm}}=\Phi 3\left(T_{O N}^{0}\right) \Phi 2\left(T_{F 2}^{0}\right)\left[\begin{array}{ll}
0 & 0  \tag{95}\\
0 & 1
\end{array}\right] \Phi 1\left(T_{F l}\right) G 3 E_{I}
\]

The transition matrices \(\Phi 3\left(T_{O N}\right), \Phi 2\left(T_{F 2}\right)\) and \(\Phi 1\left(T_{F l}\right)\) are computed.
\[
\text { Let } \left.\begin{array}{rl}
\Phi\left(T_{P}\right) & \Delta \Phi 3\left(T_{O N}^{0}\right) \Phi 2\left(T_{F 2}^{0}\right)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =e^{f_{22} T_{F 2}^{0}-\alpha\left(T_{0 N}^{0}+T_{F 1}^{0}\right)}
\end{array}\right]\left[\begin{array}{ll}
\left.\phi_{F 1}\right) \\
11 & \phi_{12}^{0} \\
\phi_{21} & \phi_{22} \tag{96}
\end{array}\right]
\]
where
\[
\begin{aligned}
& \phi_{11}=\frac{f_{12} f_{21}}{\omega^{2}} \sin \omega T_{O N} \sin \omega T_{F 1} \\
& \phi_{12}=\frac{f_{12}}{\omega} \sin \omega T_{O N}^{0}\left(\frac{\alpha+f_{22}}{\omega} \sin \omega T_{F 1}^{0}+\cos \omega T_{F 1}^{0}\right) \\
& \phi_{21}=\left(\frac{\alpha+f_{22}}{\omega} \sin \omega T_{O N}^{0}+\cos \omega T_{O N}^{0}\right) \frac{f_{21}}{\omega} \sin \omega T_{F 1}^{0} \\
& \phi_{22}=\left(\frac{\alpha+f_{22}}{\omega} \sin \omega T_{O N}^{0}+\cos \omega T_{O N}^{0}\right)\left(\frac{\alpha+f_{22}}{\omega} \sin \omega T_{F 1}^{0}+\cos \omega T_{F 1}^{0}\right)
\end{aligned}
\]
and
\[
a=-f_{22} \frac{T_{F 2}^{0}}{T_{P}}+\alpha\left(T_{O N}^{0}+T_{F 1}^{0}\right) / T_{P}
\]

The eigenvalues of the matrix shown in (96) are computed
\[
\lambda_{1,2}=-\frac{\phi_{11^{+\phi}}^{22}}{2} \pm j \sqrt{\left.\phi_{11^{\phi} 22^{-\phi} 12^{\phi} 21^{-(\phi} 11^{+\phi}}^{22}\right)^{2} / 4}
\]

However, due to the nature of the problem
\[
\begin{equation*}
\phi_{11^{\phi}} 22^{-\phi} 12^{\phi} 1^{=}=0 \tag{97}
\end{equation*}
\]

Therefore,
\[
\lambda_{1,2}=0,-\left(\phi_{11}+\phi_{22}\right)
\]

This is a very interesting finding... It says that the power stage in discontinuous operation behaves as a first order system even though there exists two energy storage elements.

The perturbed state after \(n\) cycles of propagation can be expressed as
\[
\begin{equation*}
\frac{d x^{*}\left(t_{k+n}^{0}\right)}{d t_{k}^{*}}=\frac{d \underline{x} *\left(t_{k+n}^{0}\right)}{d x^{*}\left(t_{k+n-1}^{0}\right)} \cdot \cdot \frac{d \underline{*} *\left(t_{k+2}^{0}\right)}{d \underline{x} *\left(t_{k+1}^{0}\right)} \frac{d x^{*}\left(t_{k+1}^{0}\right)}{d t_{k}^{0}} \tag{98}
\end{equation*}
\]

Since:
\[
\frac{d X^{\star}\left(t_{k+n}^{0}\right)}{d X^{*}\left(t_{k+n-1}^{0}\right)}=\Phi 3\left(T_{0 N}^{0}\right) \Phi 2\left(T_{F 2}^{0}\right)\left[\begin{array}{ll}
0 & 0  \tag{99}\\
0 & 1
\end{array}\right] \Phi 1\left(T_{F 1}^{0}\right)
\]

Employing (95) and (99), equation (98) can be reduced to:
\[
\begin{equation*}
\frac{d x^{*}\left(t_{k+n}^{0}\right)}{d t_{k}^{\star}}=\Phi\left(T_{p}\right)^{n} G_{3} E_{I} \tag{100}
\end{equation*}
\]

It can be shown that:
\[
\phi\left(T_{p}\right)^{n}=e^{-a n T_{p}}\left(\Phi_{11}+\Phi_{22}\right)^{n-1}\left[\begin{array}{ll}
\phi_{11} & \phi_{12}  \tag{101}\\
\Phi_{21} & \Phi_{22}
\end{array}\right]
\]

Since
where
\[
\begin{align*}
& v_{0}=c \underline{x} \\
& c \&\left[C_{11} C_{12}\right]=\left[\begin{array}{ll}
\frac{R_{S} R_{L}}{R_{S}+R_{L}} & \frac{R_{L}}{R_{S}+R_{L}}
\end{array}\right] \tag{102}
\end{align*}
\]

The impulse response of the linearized discrete system can be represented by
\[
\begin{align*}
g\left(n T_{p}\right) & \Delta \frac{\Delta v_{0}\left(t_{k+n}^{0}\right)}{\Delta t_{k}^{*}}=C \Phi\left(T_{p}\right)^{n} G_{3} E_{I} \\
& =\frac{C_{11} \Phi_{11}+C_{1 \Phi^{\phi}} 21}{\Phi_{11}{ }^{+\Phi} 22} \frac{E_{I}}{L_{0}} e^{\left[-a+\frac{1}{T_{p}} \ln \left(\Phi_{1}+\Phi_{22}\right)\right] n T_{p}} \tag{103}
\end{align*}
\]

In order to approximate the above discrete linear system by a continuous linear system one can substitute \(t=n T\) into (103).
\[
\begin{align*}
g_{p}(t) & =\frac{C_{11} \Phi_{1} 11^{+C} 12^{\Phi_{21}}}{{ }^{\Phi} 11^{+\Phi_{\Phi}}} \frac{E_{I}}{L_{0}} e^{-\left[a-\frac{1}{T_{p}} \ln \left(\Phi_{1}+1_{22}\right)\right] t} \\
& \triangleq G e^{-a^{\prime} t} \tag{104}
\end{align*}
\]
where
\[
\begin{align*}
& \text { G }=\frac{R_{L}}{R_{S}+R_{L}} \frac{E_{I}}{L_{0}} \frac{-R_{S} \sin \omega T_{O N}^{0} \sin \omega T_{F 1}^{0}+\sqrt{L_{0}} C_{0} \cos \left(\omega T_{O N}^{0}-\theta\right) \sin \omega T_{F 1}^{0}}{-\sin T_{O N}^{0} \sin \omega T_{F 1}^{0}+\cos \left(\omega T_{O N}^{0}-\theta\right) \cos \left(\omega T_{F 1}^{0}-\theta\right)} \\
& a^{\prime}=\left[\frac{+1}{C_{0}}-\frac{1}{2}\left(\frac{1}{C_{0}}-\frac{R_{S} R_{L}}{L_{0}}\right) \frac{T_{O N}^{0}+T_{F 1}^{0}}{T_{P}}\right] \frac{1}{R_{S}+R_{L}}  \tag{105}\\
&-\frac{1}{T_{P}} \ln \frac{1}{\omega^{2}}\left(\frac{R_{L}}{R_{L}+R_{S}}\right)^{2} \frac{1}{L_{0} C_{0}}\left[-\sin \omega T_{O N}^{0} \sin \omega T_{F 1}^{0}+\cos \left(\omega T_{O N}^{0}-\theta\right) \cos \left(\omega T_{F 1}^{0}-\theta\right)\right]  \tag{106}\\
& \theta=\tan ^{-1} \frac{1}{2 \omega} \frac{1}{R_{S}+R_{L}}\left(-\frac{1}{C_{0}}+\frac{R_{S} R_{L}}{L_{0}}\right)  \tag{107}\\
& \omega=\frac{1}{R_{S}+R_{L}} \sqrt{\frac{R_{L}^{2}}{L_{0} C_{0}}}-\frac{1}{4}\left(\frac{R_{S} R_{L}}{L_{0}}-\frac{1}{C_{0}}\right)^{2} \tag{108}
\end{align*}
\]

Taking Laplace Transformation of the linear system (104), the fre-quency-domain transfer function becomes:
\[
\begin{equation*}
G_{p}(S)=\frac{\left(G / a^{\prime}\right)}{1+S\left(T / a^{\prime}\right)} \tag{109}
\end{equation*}
\]
where \(G\) and \(a^{\prime}\) functions of the switching frequency, the steady state \(T_{\text {on }}^{0}\) and \(T_{F 1}^{0}\), the input voltage, and practically all power-stage circuit parameters. Despite the physical presence of both \(L\) and \(C\), the power stage behaves as a single-order system, with varying gain and phase.

\subsection*{4.5.2 Impulse-Function Analysis Extended to Other Power Stages With Continuous and Discontinuous Conduction Modes}

The analysis outlined in the previous section is extended to include the three most-commonly used converter power stages: the buck, the boost, and the buck-boost, operating with either continuous or discontinuous conduction. The duty-cycle-to-output-voltage discrete time domain models are then transformed into frequency-domain transfer functions representing the small-signal low-frequency characteristics of the regulators. The analytical details of this effort is presented in Appendix F. Conclusions of the significant importance include the following:
- All three regulator power stages behave as first-order systems in discontinuous conduction, as contrary to second-order system in condinuous conduction. The transition between the two operating modes is abrupt.
- In discontinuous conduction, the gain and the corner frequency are both functions of the input voltage, the load, all power stage parameters, the switching frequency, and the on-off time intervals. In continuous conduction, however, the gain is only related to the input voltage and the duty cycle, and the corner frequency is dominated by the duty cycle and the output filter.
- The continuous-conduction boost and buck-boost regulators have only one conditional zero in the right half plane, which is a function of the switching period. This is different from results previously obtained through "circuit averaging" [7], where each of the two regulators has a positive zero that is independent of the switching period.
- The gain and phase of the power-stage transfer function differ significantly from those obtained through the "averaging" model. Experimental data are closer to the impulse-function analytical result than the "averaging" counterpart.

\subsection*{4.5.3 Example of a Complete Buck Regulator Analysis}

A buck regulator, shown in Figure 11, is designed to operate in the continuous conduction under normal-to-heavy load and in the discontinuous conduction under light load. The regulator output is compared with a reference voltage \(E_{R}\), the error signal is then sent through a lead-lag compensation network and an amplifier, both represented by \(G_{c}\). The frequency domain model of the converter is shown in Figure 12.

The transfer function \(G_{C}\) thus represents that of the analog signal processor, its characteristic is:
\[
\begin{equation*}
G_{c}=193.3 \frac{(1+j f / 20)(1+j f / 1225)}{(1+j f / 0.3)(1+j f / 3263)} \tag{110}
\end{equation*}
\]

The digital signal processor, as illustrated in Figure 13, compares the error signal \(v_{e}(t)\) with a fixed \(\operatorname{ramp} A(t)\), where
\[
\begin{equation*}
A(t)=A_{0}\left(t-n T_{s}\right), n T_{s} \leq t \leq(n+1) T_{s} \tag{111}
\end{equation*}
\]
where \(A_{0}=6.25 \times 10^{4}\) volts per second is the slope of the ramp. The output of the digital signal processor is a unity pulse train, with its pulse duration governed by
\[
\begin{aligned}
d(t) & =1 & \text { if } & A(t) \leq V_{e}(t) \\
& =0 & & \text { if }
\end{aligned}
\]

The digital signal processor has been characterized by the describing


Figure 11
A Buck Regulator


Figure 12 Simplified Control Block Diagram For Figure 11


Figure 13 Implementation of the Digital Signal Processor
function in Reference [7], and is found to be:
\[
\begin{equation*}
K_{M}=\frac{1}{V_{p}} \tag{112}
\end{equation*}
\]

Due to the circuit implementation, there is a delay \(\tau_{d}\) from the signal \(d(t)\) to the power switch. For convenience, this delay is included as part of the digital-signal-processor characteristic. The transfer function of the entire digital signal processor is therefore represented as
\[
\begin{equation*}
G_{M}=\frac{1}{V_{P}} e^{j \omega_{\tau}} \tag{113}
\end{equation*}
\]

The power stage transfer function for a continuous-conduction buck regulator has been derived in Appendix \(E\) as:
\[
\begin{equation*}
G_{p}(s)=E_{I} \frac{1+\tau_{a} s}{\frac{s^{2}}{\omega_{N}^{2}}+2 \xi \frac{s}{\omega_{N}}+1} \tag{114}
\end{equation*}
\]
where
\[
\begin{aligned}
\tau_{a} & =R_{S} C_{0} \\
\omega_{N} & =\sqrt{\frac{R_{L}}{R_{L}+R_{S}}} \\
\xi & =\frac{1}{2}\left(1+\frac{R_{S} R_{L} C_{0}}{C_{0}}\right) \sqrt{\frac{L_{0}}{C_{0} R_{L}\left(R_{S} R_{L}\right)}}
\end{aligned}
\]

The power stage transfer function for a discontinuous-conduction buck regulator has been derived previously in equation (109).

The combination of equations (109), (110), and (113) thus protrays the entire regulator in discontinuous-conduction operation, while that of (114), (110), and (113) protrays the same regulator in continuous. conduction.

The circuit parameters for the power stage are: \(L_{0}=1 \mathrm{mH}\), \(C_{0}=455 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{C}}=0.034\) ohms, \(\mathrm{T}_{\mathrm{S}}=50 \mu \mathrm{~s}, \mathrm{E}_{\mathrm{I}}=40 \mathrm{~V}\). The time delay \({ }^{\tau}{ }_{d}\) is \(8 \mu s\). The load resistance \(R_{L}\) is taken as 6.7 ohms and 150 ohms for the continuous- and discontinuous-conduction, respectively.

Figure 14 shows the Bode plot of the regulator in continuousconduction. The second-order effect of the output filter is apparent. Excellent agreements exist between analytical and experimental results.

Figure 15 shows the Bode plot of the regulator in discontinuousconduction, from which the first-order effect of the output filter is verified. The first-order corner frequency is a function of all powerstage parameters, the load, and the \(T_{o n}\) and \(T_{F 1}\) intervals. The ESR of capacitor \(C_{0}\), is noted here for its significant effect on determining the low-frequency corner ( \(<10 \mathrm{~Hz}\) ) of the first-order system. This is in contrast to the second-order system in continuous-conduction operation, where the effect of ESR only becomes significant in high-frequency range ( \(>5 \mathrm{kHz}\) ).

Also observed in Figure 15 is the fact that the phase lag is at most \(90^{\circ}\) and the corner frequency is usually low. Therefore, only a gain compensation of the error amplifier is needed to improve the transient response for the inherently-stable system.

Furthermore, the analysis has predicted an abrupt reduction of system order when the inductor-current conduction emerges from continuous to discontinuous. This prediction was verified by measuring the open-loop crossover frequency of the regulator with a gradually diminishing load. As shown in Table 3, the crossover frequency remains essentially unchanged as long as continuous conduction is maintained. When the load is reduced to about 90 to 100 ohms, the regulator begins to operate in between the two conduction modes affected by the disturbance of the small signals injected for measurement purpose. A very significant reduction of the crossover frequency can be seen when the load is between 90 and 100 ohms. Further decrease in load only results in a gradual reduction of the crossover frequency.


Figure 14 Continuous Conduction Bode Plot


Figure 15 Discontinuous Conduction Bode Plot

Table 3
Open-Loop Crossover Frequency as a Function of Load Resistance
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Load Resistance \\
(Ohms)
\end{tabular} & \(10-70\) & 80 & 90 & 100 & 110 & 120 & 130 \\
\hline \begin{tabular}{c} 
Crossover \\
Frequency \\
\((\mathrm{Hz})\)
\end{tabular} & 1650 & 1600 & 1450 & 450 & 250 & 215 & 205 \\
\hline
\end{tabular}

\subsection*{4.5.4 Summary Remarks on Impulse Function Analysis}

The foregoing presentation and example have demonstrated the following points regarding the impulse-function analysis:
(1) The power-stage closed-form representations suitable for frequencydomain stability analysis are obtained from very complicated modeling; the simplifying assumption of a much slower system response in relation to the sampling rate is being applied only at the last step of derivation.
(2) Starting with a highly complex mathematical manipulation without approximation, the derivation does not include the input filter due to the formidable analytical task involved. Its utility to analyzing the stability of a practical regulator with input filter is therefore inhibited.
(3) The impulse-function formulation for duty-cycle perturbation cannot be followed for the small-signal perturbation in the input line. There is thus no input-to-output transfer function for the line disturbance.

\subsection*{4.6 AVERAGE TIME DOMAIN ANALYSIS AND EXAMPLES}

As stated in Section 4.3.4, the objective of averaging is to make a continuous model out of the piecewise-linear discrete system. Through the approximation of the matrix \(e^{A t}=I+A t+\cdots\) by its first-order linear term, linear system representation shown in equations (41) to (43) are obtained at the outset of the analysis. The basic feature of a switching regulator, that the output ripple is always negligibly small compared to the dc average output, is therefore properly utilized at the beginning for reducing the complexity in the power-stage analysis. Due to this simplification, the standard perturbation processes are applicable to both the duty-cycle control signal and the line input signal, thus enabling the derivation of the dual-input transfer function for the power stage. The culmination of this derivation is an equivalent linear circuit valid for small-signal line and control variations superimposed upon a dc operating point. The equivalent circuit is a canonical model containing the essential properties of any given switching regulator.

The average time-domain analysis is developed at CalTech, which represents the university part of the MAPPS joint industry-university team. Details of the analysis and the significant results are presented in NASA CR-135174, which is a separate but companion volume to this report, NASA CR-135173. No elaboration about the method itself is therefore needed here. Instead, certain application aspects of the average time domain analysis are addressed. Starting with the control-block formation of the dual-input transfer function, its application to a single-loop controlled buck regulator is given as an example.

\subsection*{4.6.1 Power Stage Dual-Input Transfer Function}

The power stage transfer function, including an input filter, will be analyzed by using a dual-input describing function based on the averaging technique presented previously. The dual inputs presented to the power stage are two external forcing functions: the source voltage \(v_{g}\) and the duty-cycle control signal \(d(t)\) derived from the digital signal processors.

The canonical power-stage model for the buck, the boost, and the buckboost regulators, as originally derived in Reference 8 for continuous conduction mode (See Appendix I), is reproduced in Figure 10 for convenience. Let
\(H_{F}=\) forward gain of the input filter from its input to output, \(Z_{F}=\) output impedance of the input filter.

The canonical model including the input filter can be developed through the self-explanatory sequence depicted in Figure 17(A) to (C). Notice the duty-cycle perturbation \(\hat{d}\) and the input-line perturbation \(\hat{\mathrm{v}}_{\mathrm{g}}\) are properly separated in Figure 17 (C), in which:
\[
\left.\begin{array}{l}
Z=Z_{F} \\
H=H_{F}
\end{array}\right\} \text { for buck and boost regulators }
\]
and
\[
\left.\begin{array}{l}
Z=\left(N_{s} / N_{p}\right)^{2} Z_{F} \\
H=\left(N_{s} / N_{p}\right) H_{V}
\end{array}\right\}
\]

For two-winding buck-boost regulator with primary winding \(N_{p}\) and secondary winding \(N_{S}\).

From Figure 17 (C), the canonical dual-input transfer function model for all three regulator power stages in continuous-conduction mode can be obtained, and was presented previously as Figure 7. In the following examples, this model is used for the stability analysis of a single-loop controlled buck regulator.

\subsection*{4.6.2 Single-Loop Controlled Buck Regulator Stability Analysis}

The buck regulator used previously in Section 4.5.3 to demonstrate the impulse function analysis is again used here, with the exception that a twostage input filter is added. The control blocks of the regulator is shown in Figure 18. The dual-input describing-function representation of the regulator is given in Figure 19(A). Based on this diagran, the open-loop transfer function of the regulator can be calculated as:
\[
\begin{equation*}
G(s)=F_{P} G_{A} G_{C} G_{D} \tag{115}
\end{equation*}
\]

The calculated result is given in Figure 19(B). The accuracy of the model is supported by measurement correlations, also shown in Figure 19(B).

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline type & \(\mu(D)\) & \(E\) & \(f_{1}(s)\) & \(J\) & \(f_{2}(s)\) & \(L_{e}\) \\
\hline buck & \(\frac{1}{D}\) & \(\frac{V}{D^{2}}\) & 1 & \(\frac{V}{R}\) & 1 & \(L\) \\
\hline boost & \(1-D\) & \(V\) & \(1-s \frac{L_{e}}{R}\) & \(\frac{V}{(1-D)^{2} R}\) & 1 & \(\frac{L}{(1-D)^{2}}\) \\
\hline \begin{tabular}{c} 
buck- \\
boost
\end{tabular} & \(\frac{1-D}{D}\) & \(\frac{-V}{D^{2}}\) & \(1-s \frac{D L_{e}}{R}\) & \(\frac{-V}{(1-D)^{2} R}\) & 1 & \(\frac{L}{(1-D)^{2}}\) \\
\hline
\end{tabular}


Figure 17 Canonical Model with Input Filter


Figure 18 Single-Loop Controlled Buck Regulator with an Input Filter


Figure 19(A) Dual-Input Describing Function Representation of the Regulator


Figure \(19(B) \quad\) Analytical and Measured Data

\subsection*{4.6.3 Discontinuous Conduction Operation}

The state-space and circuit averaging methods presented for the continuousconduction case can be modified to account for the discontinuous operation. The differences are not only that, now there are three different configurations within each switching period, but also that instantaneous inductor current is restricted in its behavior. As shown in Figure 2(B), it starts at zero at the beginning of the switching period, and falls to zero again sometime before the period has expired.

Like the continuous conduction, the culmination of the discontinuousconduction modeling is again a canonical circuit model for three basic power stages, whose fixed topology is of course different. Modeling details and significant results are provided by Reference [9], which is included in this report as Appendix J. As in the continuous conduction case, the work has been performed by CalTech.

Using a slightly-modified block-diagram format in relation to that given in Reference [9], the dual-input transfer functions for basic power stages operating in discontinuous conduction are given in Figure 20. In conjunction with its continuous-conduction counterpart shown previously in Figure 7, they provide powerful tools for conducting regulator analysis for most-commonly used power stages including line-disturbance propagations and input-filter effects on the regulator loop performances.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TYPE & \(\mathrm{j}_{1}\) & \({ }^{1}\) & \(\mathrm{g}_{1}\) & \(\mathrm{j}_{2}\) & \(\mathrm{r}_{2}\) & \(\mathrm{g}_{2}\) & Z & H \\
\hline Buck & \(\frac{2 V}{R} \sqrt{\frac{1-M}{K}}\) & \(\frac{1-M}{M^{2}}\) & \(\frac{M^{2}}{1-M} \frac{1}{M}\) & \[
\frac{2 V}{R M} \sqrt{\frac{1-M}{K}}
\] & (1-M)R & \(\frac{M(2-M)}{1-M} \frac{1}{R}\) & \(\mathrm{Z}_{\mathrm{F}}\) & \(\mathrm{H}_{\mathrm{F}}\) \\
\hline Boost & \[
\frac{2 v}{R} \sqrt{\frac{M}{K(M-1)}}
\] & \[
\frac{M-1}{M^{3}} R
\] & \[
\frac{M}{M-1} \frac{1}{R}
\] & \[
\frac{2 V}{\operatorname{Ra} \sqrt{K M(M-1)}}
\] & \[
\frac{M-1}{M} R
\] & \[
\frac{M(2 M-1)}{M-1} \frac{1}{R}
\] & \(Z_{F}\) & \(\mathrm{H}_{F}\) \\
\hline BuckBoost & \(\frac{2 \mathrm{~V}}{\mathrm{R} \sqrt{K}}\) & \(\frac{\mathrm{R}}{\mathrm{M}^{2}}\) & 0 & \[
\frac{2 V}{R \sqrt{K} M}
\] & R & \(\frac{2 M}{R}\) & \(Z_{F}\) & \(\mathrm{H}_{\mathrm{F}}\) \\
\hline Two -* Winding BuckBoost & \[
\frac{2 V}{R V K}
\] & \(\frac{\mathrm{R}}{M^{2}}\) & 0 & \[
\frac{2 V}{R \sqrt{K} M}
\] & R & \(\frac{2 M}{R}\) & \(\left(\frac{N_{S}}{N_{P}}\right)^{2} Z_{F}\) & \(\frac{N_{S}}{N_{P}} H_{F}\) \\
\hline
\end{tabular}

Figure 20
Dual Input Transfer Function for Discontinuous Conduction Operation

\subsection*{4.6.4 Summary Remarks on the Average Time-Domain Analysis}

Several observations can be made from this example:
(1) From Figure 19, the audiosusceptibility performance can be derived as:
\[
\begin{equation*}
\frac{\hat{V}_{v}}{\hat{V}_{g}}=\frac{F_{I} F_{P}}{1+F_{A} F_{D} F_{P}} \tag{116}
\end{equation*}
\]

Calculated audiosusceptibility based on equation (116) was found to be in very good agreement with the corresponding measurement.
(2) For the buck regulator, the block \(F_{D}\) in Figure 19 can be shown to be:
\[
\begin{equation*}
F_{D}=I_{0} D\left(-Z_{F}\right) \frac{V_{I}}{I_{0} D} \tag{117}
\end{equation*}
\]

A necessary condition to avoid system instability due to the input-filter interaction is to maintain \(F_{D}\) positive. In other words, the output impedance of the input filter, \(Z_{F}\), should always be smaller than the small-signal negative impedance, \(\left(V_{I} / I_{0} D\right)\), of the regulator.
(3) The duty-cycly \(D\) is present in blocks \(F_{P}, F_{D}\), and \(F_{I}\). Consequently, the corner frequency and the damping exhibited by the Bode plot should be affected the line input voltage that determines \(D\) for a regulated output voltage. This observation was verified both analytically as experimentally.
(4) Different input-and output-filter configurations, including multiple regulator outputs each with its own complex output filter, can be easily incorporated into the dual input block diagram of Figure 19. While the example deals with continuous-conduction only, the canonical dual-input transfer function model can be extended to the discontinuous-conduction as well. The model is therefore a powerful tool for conducting the control-dependent performance analysis of all switching-regulators.

\subsection*{4.7. DISCRETE TIME DOMAIN SIMULATION AND EXAMPLES}

Since the small-signal analytical techniques previously described are no longer applicable for large-signal analysis, and yet the large-signal performance is often a vital part of the hardware design requirement, the significance of the discrete time domain simulation becomes self-evident.

The most-often encountered simulation effort involves step lire transient, step load transient, and regulator/converter starting. Specifically, large-signal simulation applies when one of the following conditions arises:
- The large input-filter oscillation as a result of large step line or load change would cause a slowly-varying voltage at the input of the power stage. The consequent slow-varying duty cycle controlled by the loop to maintain output-voltage regulation requires the large signal analysis.
- Large step line/load changes may result in two differenct inductorcurrent conduction modes for the pre- and post-transient steady state.
- During converter starting and sudden output fault, the protection circuit becomes effective and the operation amplifier experiences saturation.

Two simulation examples, all based on the propagation through exact discrete time-domain system representations presented previously in equations (1) to (18), are given to illustrate the particular simulation approach undertaken in the MAPPS program. The first example simulate a buck-regulator transient response due to a step line change. The objective here is to show that for certain low-order regulator systems, the state transition matrix \(\Phi(T)\) and the input matrix \(D(T)\) may be derived in closed-form, thus greatly improving the cost-effectiveness of the computer simulation. The second example simulate the start-up of a boost regulator, during which power-transistor peak-current limiting and operational-amplifier saturation are inevitably encountered.

\subsection*{4.7.1. Example 1, Step line-change Response of a Buck Regulator}

The continuous-conduction buck regulator circuit to be simulated has been given in Figure 8. The duty-cycle control is assumed to be constant - \(T_{O N}\). The state vector \(\underline{X}\), the input vector \(\underline{U}\), the \(F\) and \(G\) matrices, and matrices \(\Phi(T)\) and the \(D(T)\), have all been identified previousily in Section 4.4 as Equations (59) to (68). The analytical determination of the \(\Phi\) and \(D\) matrices is achieved through the application of the Cayley-Hamilton theorem. [27]. Details of the derivation can be found at the end of Appendix \(A\).

Note that with \(T=\) Constant in \(\Phi(T)\) and \(D(T), \Phi(T)\) and \(D(T)\) become constant matrices which need be computed only once. This can be done for the regulator "on" period with \(T=T_{O N}\). (or integer submultiples of \(T_{O N}\) if data points in-between are desired). Defining
\[
\begin{align*}
& \Phi\left(T_{O N}\right)=\Phi_{N}=\text { Constant },  \tag{118}\\
& D\left(T_{O N}\right)=D_{N}=\text { Constant } \tag{119}
\end{align*}
\]
equation (68) becomes
\[
\begin{equation*}
\underline{x}\left(t_{k}+T_{O N}\right)=\Phi_{N} \underline{x}\left(t_{k}\right)+D_{N} \underline{U}\left(t_{k}\right) \tag{120}
\end{equation*}
\]

Off time \(T_{\text {OFF }}\) is generally not constant, being a variable determined by the control-signal error. Using the closed-form expressions for \(\Phi(T)\) and \(D(T), T_{\text {OFF }}\) can be solved for implicity or by linearization about a nominal value. If the nominal value of \(T_{0 F F}\) is denoted by
\[
T_{0 F F}^{*}=\text { nominal } T_{O F F}
\]
then, just as before, one can define and precompute the constant matrices
\[
\Phi\left(T_{O F F}^{*}\right)=\Phi_{F}=\text { constant, } D\left(T_{O F F}^{*}\right)=D_{F}=\text { constant }
\]
which may then be used in equation (68) for partial state propagation during the "off" period. The application of these observations will speed up digital computation considerably. The time step \(T\) can be specified as a fraction (including unity) of the constant \(T_{O N}\) and the nominal \(T_{O F F}^{*}\) periods.

Thus, using the closed-form solution of \(\Phi\) and \(D\), the three system states \(e_{0}\), \(i\), and \(e_{c}\), can be propagated by constant state transition matrices until either the fixed, known \(T_{O N}\) has elapsed, or, with the switch off, until the unknown \(T_{0 F F}\) has been transgressed. In the latter case, after exceeding the specified threshold, iterative linearization on the propagation time \(T\), which appears as a parameter in the expression for the closed-form solution, is used to determine the exact time when \(e_{c}\) has reached the threshold.

A flow chart of the simulation program is given in Appendix \(H\). The program, written in FORTRAN IV, was exercised with several runs, one of which is included here as Figure 21. The figure illustrates the output-voltage response to a step voltage change at the regulator input from 30 V to 40 V for a load resistance of 10 ohms. The simulated response was found in excellent agreement with laboratory test data. The simulated run time is 3.5 milliseconds, and the number of data points per each switched period is five (5). The central processor time used for this simulation is only 17.9 seconds, which vividly demonstrates the cost-effectiveness rendered by the use of closed-form solutions. For most runs, the cost of plotting exceeds the central processor cost of running the simulation. A rule of thumb is that most runs, inclusive ploting and time-share terminal usage, will cost about \(\$ 1.50\) per run.

\subsection*{4.7.2 Example 2 Start-up Transient of a Boost Regulator}

A boost regulator with input voltage \(E_{I}\) and load \(R_{L}\) is shown in Figure 22. Two switches, S1 and S2, represent the power transistor and power diode, respectively. The state variables of the system are:
\(v_{C}=\) voltage across output capacitor \(C_{0}\).
\(i=\) current through energy-storage inductor \(L_{0}\).
\(e_{R}=\) voltage at the junction of compensation network R5-C2
\({ }^{e} C\) the integrator-amplifier output voltage.

QRIGINAL: PAGE K
OF POOR QUALITY.


Figure 21 Sample of Buck Regulator Simulation Run


Figure 22 A Multiple-Loop olled Boost Regulator

Three possible modes of operation are illustrated in Figure 23. They are:
(1) The power transistor is \(O N\), and the diode is OFF. This interval has been designated previously as \(T_{O N}\).
(2) The power transistor is OFF, and the diode is ON. This interval has been designated as \(T_{F 1}\).
(3) Both the transistor and the diode are OFF. This interval has been designated as \(\mathrm{T}_{\mathrm{F} 2}\).

The continuous-conduction case includes only the first two operating modes, while the discontinuous-conduction includes all three modes. The system in this example is designed to operate in discontinuous conduction during steady state. However, during transients excursions into the continuous conduction are possible. Each of these intervals admits the following closed-form solutions:
\[
\begin{align*}
& \underline{x}\left(t_{1}^{k}\right)=\underline{x}\left(t_{k}+T_{1}^{k}\right)=\Phi_{1}\left(T_{1}^{k}\right) \underline{x}\left(t_{k}\right)+D_{1}\left(T_{1}^{k}\right) \underline{U}  \tag{121}\\
& \underline{x}\left(t_{2}^{k}\right)=\underline{x}\left(t_{1}^{k}+T_{2}^{k}\right)=\Phi_{2}\left(T_{2}^{k}\right) \underline{x}\left(t_{1}^{k}\right)+D_{2}\left(T_{2}^{k}\right) \underline{U}  \tag{122}\\
& \underline{x}\left(t_{k+1}\right)=\underline{x}\left(t_{2}^{k}+T_{3}^{k}\right)=\Phi_{3}\left(T_{3}^{k}\right) \underline{x}\left(t_{2}^{k}\right)+D_{3}\left(T_{3}^{k}\right) \underline{U} \tag{123}
\end{align*}
\]
where \(\Phi\) and \(D\) have been identified in equation (67), and the various time intervals and time instances are defined in Figure 23. The time interval \(T_{1}^{k}\) is a function of the system state \(\underline{X}\left(t_{k}\right)\), the threshold condition, or the peak current limiter. The time interval \(T_{2}^{\mathbf{k}^{k}}\) is a function of the system state \(\underline{X}\left(t_{1}^{k}\right)\), the inductor current, or the period \(T_{p}\) of regulator switching. The time interval \(T_{3}^{k}\) is the difference between \(T_{p}\) and \(\left(T_{1}^{k}+T_{2}^{k}\right)\). Details concerning the \(\Phi\) and \(D\) matrices in Equations (121) to (123) are presented in Appendix \(G\).

\[
\begin{array}{ll}
t_{K} \leq t<t_{1}^{K} & \begin{array}{l}
\text { Power transistor on } \\
\text { Diode OFF }
\end{array} \\
& \text { Continuous inductor current }
\end{array}
\]
\(t_{1}^{K} \leq t<t_{2}^{K}\)
Power transistor OFF
Diode ON
Continuous inductor current
\(t_{2}^{K} \leq t<t_{K+1}\)
Power transistor OFF
Diode OFF
Zero inductor current

Digital simulation of the regulator is based on equations (121) to (123). The step \(T\) in each computation is specified as a fraction of the steady-state values of the corresponding time intervals \(T_{i}, i=1,2,3\). Thus, using the closed-form solutions, the system state can be propagated by \(\Phi_{1}(T)\) and \(D_{j}(T)\) until the time period \(T_{1}^{k}\) has elapsed due to one of the aforementioned threshold boundries. Subsequently, \(\Phi_{2}(T)\) and \(D_{2}(T)\) are used to continue the propagation. If the inductor current vanishes prior to the end of one switching period, \(\Phi_{3}(T)\) and \(D_{3}(T)\) are invoked until the end of the clock period, and the system engages in discontinuous-conduction operation. However, if the switching period elapses before a zero inductor current is reached, continuous-conduction prevails, and \(\Phi_{3}(T)\) and \(D_{3}(T)\) will not be introduced.

The flow chart and the computer program are not included here for conciseness. The program was exercised with several runs. Two runs, one for step load transient response, the other for regulator command-on start up, are presented here.

Figure 24 illustrates the output-voltage transient during a step change of load from 50 ohms to 25 ohms. An undershoot of 0.25 V is observed, which recovers to its nominal output in about 3 milli-seconds. The response is found in good agreement with the test result.

Figure 25 shows the inductor-current transient during the regulator startup. Upon commanded on, the current rises to the pre-set peak current limit, followed by an off time interval which lasts the rest of the switching period. The peak-current limiting operation persists for two more cycles before entering a continuous conduction mode when the rising output voltage causes the inductor current to diminish more during \(T_{F 1}\) than to rise during \(T_{O N}\). The current eventually reaches the discontinuous conduction as dictated by the intended steady-state operation. Again, excellent agreement was obtained between the simulation and the actual hardware performance.

\subsection*{4.7.3 Summary Remarks on Time-Domain Simulation}

The utility of time-domain simulation lies in its unique capability to handle multiple nonlinearities arising from the propagation of large-signal disturbances. While there exist many different topological and/or blockoriented simulation approaches, the particular discrete time-doma in formulation used in the MAPPS program, as illustrated in the examples given, is inherently basic to all the seemingly-different simulation programs such as ECAP, SCEPTRE,

SPICE, CSMP, etc. Consequently, instead of making the simulation program so generalized as to conciliate with the convenience of a great many of perspective users, thus making the program inevitably cost ineffective, the particular approach used in the MAPPS program and embodied in these examples utilizes the inherent piecewise linearity and threshold boundry of a switching regulator, and conceives an approach specifically adapted to the cyclic nature of the switching regulators. Compared with other more generalized approach, the cost-effectiveness of the simulation is improved, often more than an order of magnitude. This cost-effectiveness is expected to enhance the utility of the simulation, particularly for more complicated, higher-order regulator systems.

Since different regulator circuits have different topologies, duty-cycle control laws, and operating constraints during transients, the simulation is best suited for, although not limited to, regulator circuits.for which the designs"have been fairly well standardized.




\subsection*{4.8 SUMMARY, FUTURE EMPHASIS AND EXPECTATION}

In Section 4, the nonlinearities in the switching regulators were identified, from which the various analytical methods based on different linearization techniques were advanced. The discussion centers on four major analysis/simulation categories:
- Discrete time domain analysis
- Impulse function analysis
- Average time domain analysis
- Discrete time domain simulation

Merits and limitations of these approaches were pointed out, and illustrated by analysis/simulation examples as practical.

Being the most accurate method for assessing the small-signal stability, emphasis on the discrete time-domain analysis will be continued in the future. The intent will be to create three subprograms, one for each of the three basic power stages (buck,boost, and buck-boost). Each subprogram will include both continuous- and discontinuous-conduction operations as well as the various duty-cycle control schemes including constant frequency. The multiple-loop control circuit described in certain previous examples will be used in the subprogram due to its standardization appeal. In conducting the analysis, special attention will be paid to describing clearly the formulation of analytical procedure and the details of achieving cost-effective computer iteration, so that any user with a proper background can follow the step-bystep description, and adapt the analysis to the circuit of his own choice.

Although minor differences do exist, the impulse-function analysis and the average time domain analysis both provide the basic power-stage duty-cycle-to-regulator-output transfer function. However, by retaining in the analysis the discrete nature of the regulator until essentially the very last analytical step, the impulse-function analysis, thus, does not concern itself with the small-signal line-to-output-voltage perturbation.

The average time-domain analysis, on the other hand, forsakes the discrete nature of the regulator almost at the outset of the analysis, and therefore manages to address both the duty-cycle-to-output and line-to-output perturbations.

Since the input-filter-regulator interaction and the audiosusceptibility performance are of great significance to regulator designers, future emphasis is inclined toward the averaging approach. Other incentives for the continued pursuit of the average approach include the following:
- Being essentially a linear circuit analysis, the approach is applicable to many designers whose background may not be sufficient to perform, or even to comprehend, the more mathematically sophisticated discrete approach.
- By treating the complete regulator as a single entity, the discrete approach is most suitable to perform an accurate analysis of a regulator with a standardized power- and control-circuit configuration. While standardization is a goal to be diligently pursued by government/industrial concerns, the degree to which designs will be standardized, and the ultimate standardized configuration, are not clear at the present time. For the time being, the average time domain analysis can accomodate more readily the numerous varieties of analog signal processors than its discrete counterpart.
- For higher-order regulators (e.g., those with multiple outputs, each having complex loadings), the average approach is more cost-effective in terms of the required computer time in conducting the controldependent performance analysis.

The discrete-time domain simulation is a natural product of discrete time domain analysis. The analytical involvement is straightforward, and the major effort is to implement the computer iteration routine for cost effectiveness. Performance simulation undoubtedly will continue for different regulators. However, advancements from modeling as the analysis viewpoint will probably be somewhat confined.

In the previous section, various methods of conducting performance analysis were discussed. However, one cannot help but to note that, before subjecting the design to the analysis, one must have a design first. Preferrably, the design should be based on certain well-conceived design guidelines, from which the ensuing design can more or less be expected to achieve a given level of control-dependent performances. After all, the primary function of a power-processing engineer is to design in accordance with a given set of performance requirement, and it will be far more effective if the designer can proceed with the design confidently, knowing what performances can be expected from the design rather than having to rely on the results of the performance analysis to guide major design iterations. Since a regu'ator's static and dynamic performances are effected primarily by the quality of its control circuit, the essence of the Control Design Subprogram is to perform an "analytically-based" design that will enable the regulator to meet the specified control-dependent performances.

As stated previously, a regulator control circuit is composed of an analog signal processor and a digital signal processor. The digital signal processor prescribes the scheme of duty-cycle control of the power switch. Different duty-cycle control schemes do provide different regulator performance characteristics. However, their impacts are generally not of a major proportion. Furthermore, the design of digital signal processors is often dictated by requirements such as frequency synchronization and EMC considerations, which are only remotely related to the feedback control. Consequently, the other half of a regulator control circuit, the analog signal processor, invariably holds the key in determining the quality of the regulator feedback loop, which is instrumental in determining the regulator external characteristics such as stability, audiosusceptibility, output impedance, and step 1 ine/load transient response. The specific function of the Control Design Subprogram, therefore, is to determine the design of the analog signal processor, based on a pre-s selected amplification and compensation configuration, in order to meet a given set of performance requirements.

\subsection*{5.1 CONTROL DESIGN APPROACH}

To gain more insight to enhance the initial parameter design, approximate design equations and circuit characterizations expressed in closed form are obviously preferred even though their accuracy may not match the precise numerical calculations performed by a digital computer. The average timedomain analysis previously discussed thus becomes the leading candidate on which the control design can be based.

The given power stage is characterized by a continuous small-signal average model, taking full advantage of the much lower ouput-filter resonant frequency in relation to the converter switching frequency. Describing function techniques are used to derive the gain/phase transfer function of the digital signal processors. The analog signal processor to be designed presents no particular difficulty for analysis, as only linear circuit small-signal analysis is involved.

It should be noted that essentially the same approach is being taken in another NASA-sponsored TRW program under Contract NAS3-20102: "Application Handbook for a Standardized Control Module for Dc-Dc Converters", in which the aforedescribed approach is used to analyze the multiple-loop controlled regulators and to conceive design guidelines which enable the user to design readily the control parameters in order to meet a given set of performance specifications. In fact, selected outputs of the Application Handbook will be integrated into the MAPPS structure as Control Design Subprograms during the next program phase.

\subsection*{5.2 A GENERALIZED CONTROL BLOCK DIAGRAM, SINGLE VS. MULTIPLE-LOOP CONTROLLED REGULATORS}

A generalized control block diagram was shown in Figure 1. The three basic power stages, the buck, the boost, and the buck boost, can operate in either continuous or discontinuous-conduction.

Depending on the digital-signal processor mechanization, different forms of duty-cycle control of the power switch are possible. These forms include constant frequency, constant on time, constant off time, bistable trigger, and variable frequency based on variable on time and off time. While the digital-signal-processor implementations proposed and in use today may appear numerous, they can always be reduced into two basic ingrediants: a threshold
level and a ramp function. The intersection of these two ingredients initiates the switching action of the duty-cycle control. In single-loop controlled switching regulators, the ramp or the threshold is derived from the output of the analog signal processor, which, in turn, derives its input from sensing the regulated quantity at the output of the power stage. However, in certain more recent multiple-loop control developments \([11,28]\), incentive in achieving a much-improved stability performance has resulted in an extra loop sensing an additional state variable associated with the power stage. In this implementation, the needed ramp is obtained from processing a steady-state switching waveform inherent within the output filter.

The analog-signal processor processes the amplification and compensation of the analog signal(s) sensed from the power stage. The processor presents no particular analytical difficulty, as only linear circuits are involved and merely small-signal analysis is intended. However, since it holds the most leverage in determining the control-dependent performances, it naturally becomes the target of the Control Design Subprogram using the average time domain approach. In the following discussion, both single- and multiple-loop analog signal processors will be addressed.

Due to the presence of a second-order low-frequency output filter, the utilization a high-gain and wide-bandwidth amplifier for good static and dynamic regulations usually results in an increasing risk of instability. While the stability can be enhanced through various second-order pole-zero cancellation techniques, the cancellation becomes grossly ineffective in the face of cumulative component changes due to tolerances, environments, and aging. More importantly, external reactive loading which is generally not fully defined in the regulator development stage, may completely destroy the elaborate pole-zero cancellation conceived for a resistive load which is often assumed during the regulator development.

With the existing pole-zero cancellation eneffective against component and loading changes, compensation of the second-order filter should ideally be achieved adaptively, i.e., any change is met with a corresponding change in the compensation such that an effective pole-zero cancellation is automatically maintained. Intuitively, such an achievement must involve the sensing and processing of inductor voltage or capacitor current associated with the output filter. No adaptive compensation of the second-order filter is conceivable without utilizing its state variables for control purposes.

This sensing, which is additional to the error sensed from the regulated quantity, is unique to the multiple-loop control.

Before presenting examples of single- and multiple-loop analog signal processor designs, two clarifications are needed:
(1) The Control Design Subprogram was not part of the original work plan for the MAPPS program. It was added during the course of the program amidst a growing inclination, on the part of both TRW and NASA, that the MAPPS objective could not be well served with oniy Performance Analysis Subprograms, and that the MAPPS utility would be diminished unless some control design subprograms could also be included. This inclusion was achieved at no attendent cost/schedule adjustment. Consequently, one would view the subprograms conceived here only as a prelude to a more intensive effort in the future.
(2) The Control Design Subprogram, for the time being, does not perform the optimum control-circuit synthesis. Rather, the intention here is to take a fixed analog-signal-processor circuit topology, and to perform the detailed design of circuit parameters to meet a given set of control-dependent performances.

Having made these clarifications, two control design examples are provided to illustrate the existing effort on the Control Design Subprogram.
5.3 CONTROL DESIGN FOR A SINGLE-LOOP ANALOG SIGNAL PROCESSOR

In the regulator shown in Figure \(26(A)\), the buck power stage, the digital-signal processor, and the switching frequency are assumed given. The objective here is to perform the design for the analog-signal-processor block, \(G_{C}\) to achieve the following regulator control-dependent performances.
(1) A crossover frequency at about one-tenth of the switching frequency
(2) A phase margin of \(\Phi_{C}\) deg. at the crossover
(3) A given dc gain

The control block diagram of the regulator is shown in Figure 26(B), from which the following steps of the analog-signal processor design procedures can be presented.

\subsection*{5.3.1. Step-by-Step Design Procedures}

Step 1: Provide Bode plot for the given power stage and digital signal processor
For the given example, the describing funtion \(K_{M}\) of the digital signal processor is a constant gain without phase delay, and the power stage \(K_{p} F_{p}\), is of second-order. As an example, \(20 \log K_{M} K_{P} F_{P}\) is shown asymptotically as curve (1) in Figure 27. The power-stage transfer function \(F_{p}(s)\) is expressed as:
\[
\begin{equation*}
F_{p}(s)=\left(1+S \tau_{c}\right) /\left[1+\xi\left(S / \omega_{N}\right)+\left(S / \omega_{N}\right)^{2}\right] \tag{124}
\end{equation*}
\]

Here \(\tau_{c}\) is generally associated with \(\Lambda\) output capacitors, while \(\xi\) and ( \(\omega_{N} / 2 \pi\) ) are the damping factor and the natural resonani frequency of the output filter. At the intended crossover, the phase margin of \(K_{M} K_{P} F_{P}\) is designated \(\Phi_{C}\).


Figure 26(A) Buck Regulator and (B) Control Block Diagram


Figure 27. Asymptotic Plot for Control Design

Step 2: Determine the need for a lead network
From curve (1), the crossover is about 1 KHz , with very poor phase margin. A lead netwrok is therefore needed to raise the crossover frequency from 1 KHz to \(0.1 \mathrm{f}_{\mathrm{s}}=2 \mathrm{KHz}\), with attenant phase-margin improvement. The lead compensation normally has the transfer function of the form:
\[
\begin{equation*}
F_{\text {lead }}=K_{1 \text { ead }} \frac{1+j f / f_{3}}{1+3 f / f_{4}} \tag{125}
\end{equation*}
\]

The maximum phase-lead occurs at:
\[
\begin{equation*}
f_{M}=\left(f_{3} f_{4}\right)^{0.5} \tag{126}
\end{equation*}
\]
and is equal to:
\[
\begin{equation*}
\Phi_{M}=90^{\circ}-2 \tan ^{-1}\left(\mathrm{f}_{3} / \mathrm{f}_{4}\right)^{0.5} \tag{127}
\end{equation*}
\]

Normally, one should design the maximum lead-phase at the crossover frequency. The three unknowns, namely, \(f_{3}, f_{4}\), and \(K_{1 \text { lead }}\) should then satisfy the following three equations in order to meet the specified phase-margin requirement, \(\Phi_{x}\), at \(f_{c}\).
\[
\begin{align*}
& \left(f_{3} f_{4}\right)^{0.5}=0.1 f_{s}  \tag{128}\\
& 90+\Phi_{c}-2 \tan ^{-1}\left(f_{3} / f_{4}\right)^{0.5} \geq \Phi_{X} \operatorname{deg} \tag{129}
\end{align*}
\]
where \(\Phi_{c}\) obtained from Step 1. The lead-network dc gain, K \({ }_{\text {lead }}\), has to satisfy the following equation in order to get the desireable crossover that has a maximum phase lead:
\[
\begin{equation*}
K_{\text {lead }}=\log ^{-1}\left[\frac{1}{100} \frac{f_{s}}{f_{3}}-\log \left|K_{M} K_{P} K_{P}\left(f_{3}\right)\right|\right] \tag{130}
\end{equation*}
\]

Step 3: Check dc gain
The dc gain of \(K_{M} K_{P} K_{\text {lead }}\) is compared with the given dc gain requirement, \(K_{d c}\) to see if \(K_{M} K_{P} K_{1 e a d} \geq K_{d c}\) is met.

Step 4 : Determine the need for a lag network
If the above inequality is not satisfied, a lag network is needed to increase the system dc gain. The lag-network transfer function normally has the form:
\[
\begin{equation*}
F_{1 a g}=\frac{f_{2}}{f_{1}} \frac{1+j f / f_{2}}{1+j f / f_{1}} \tag{131}
\end{equation*}
\]

The frequency \(f_{2}\) should be designed sufficiently low so as not to increase the system phase lag. A reasonable \(f_{2}\) would be one tenth of the filter natural frequency, \(f_{N}=\left(\omega_{N} / 2 \pi\right)\).

Once \(f_{2}\) is determined, the corner frequency \(f_{1}\) can be derived in conjunction of \(K_{d c}\). Let
\[
\begin{align*}
& f_{2}=0.1 f_{N}\left(1-2 \xi^{2}\right)^{0.5}  \tag{132}\\
& K_{M} K_{P} K_{1 \text { lead }}\left(f_{2} / f_{1}\right) \geq K_{d c} \tag{133}
\end{align*}
\]

From (132) and (133), \(f_{1}\) can be determined as:
\[
\begin{equation*}
f_{1} \leq f_{2} \frac{K_{M} K_{p} K_{1} \text { lead }}{K_{d c}} \tag{134}
\end{equation*}
\]

Step 5: Complete the design of lead-lag compensation network Here,
\[
\begin{equation*}
G_{C}=k \frac{1+j f / f_{2}}{1+j f / f_{1}} \cdot \frac{1+j f / f_{3}}{1+j f / f_{4}} \tag{135}
\end{equation*}
\]
where
\[
\begin{equation*}
f_{3}=0.1 f_{s} \tan \frac{90+\Phi_{c}-\Phi_{x}}{2} \tag{136}
\end{equation*}
\]
\[
\begin{align*}
& f_{4}=0.1 f_{s}\left(\tan \frac{90+\Phi_{C}-\Phi_{x}}{2}\right)^{-1}  \tag{137}\\
& K_{\text {lead }}=\log ^{-1}\left[\left(0.01 f_{s} / f_{3}\right)-\log \left|K_{M} K_{p} F_{p}\right|_{a t} f_{3}\right]  \tag{138}\\
& f_{2}=0.1 f_{N}\left(1-2 \xi^{2}\right)^{0.5}  \tag{139}\\
& \left.f_{1} \leq 0.1 f_{N}\left(K_{M} K_{p} K_{\text {lead }} / K_{d c}\right)(1-2 \xi)^{2}\right)^{0.5}  \tag{140}\\
& K=K_{\text {lead }}\left(f_{2} / f_{1}\right) \tag{141}
\end{align*}
\]

Step 6: Numerical design
From the known power stage, digital signal processor, and the switching frequency, the values for \(K\) and \(f_{1}\) to \(f_{4}\) in equation (135) can be numerically determined.

\section*{Step 7: Design of network parameters}

Once the transfer function \(G_{C}\) in equation (135) is numerically determined, the actual networks to implement the calculated \(\underline{G}_{C}\) can vary. - Figure 28 shows a fairly-universal lead-lag compensation network, where \(C 1\) and C2 serve as lead and lag capacitor, respectively. Since their corner frequencies are widely apart, a practical approximation can be made to simplify the network synthesis by assuming that the lead capacitor Cl is open in the low-frequency range, as that the lag capacitor \(C 2\) is short in the high frequency range. By so doing, it becomes rather straightforward to relate the design of transfer function \(G_{c}\) to the network parameters shown in Figure 28. The end result is demonstrated in the following subprogram.

\subsection*{5.3.2 Control Design Subprogram}

In this subprogram. The regulator shown in Figure 26 has the following parameters: \(L=1 \mathrm{mH}, \mathrm{E}_{\mathrm{i}}=25\) to \(50 \mathrm{~V}, \mathrm{C}=455 \mathrm{~F}, \mathrm{E}_{\mathrm{o}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0.068\) ohms, \(R_{L}=6.7\) ohms, and \(f_{S}=20 \mathrm{KHz}\). The design requirements are to have a crossover frequency of 2 KHz , a phase margin of 45 deg., and a room-temperature dc regulation of \(0.1 \%\).

The design equations and lead-lag synthesis discussed in the previous section have been programmed into the control design subprogram. Upon logging in, the user will be presented with a summary of all the parameter inputs. Upon user's instruction, the subprogram will proceed to perform the design analysis, from which the unknowns \(K_{1}, f_{1}, f_{2}, f_{3}\), and \(f_{4}\) in equation (135) are identified, and the RC networks in the analog-signal processor properly designed. To verify that the design indeed meets the specified requirements, the user has the option of requesting an analysis of the regulator open-loop frequency response based on the finished design. A computer printout illustrating these features is given in Figure 29.

Notice that the computer cost of all the design-synthesis-analysis performed for this example is only \(\$ .81\), a negligible amount when compared to hours and pernaps days of engineering time that otherwise may be required to accomplish the same.


Figure 28 A Commonly-Used Lead-Lag Network
KLITNO YOOd 30
SI GNY TVNIOIEO
 EHTER INITIAL YFUUESTHETFIO
70.
75.

ENTEF FIAFL YFLUESTHETAF
7180.


Figure 29 A Sample Printout of Control Design Subprogram.

\subsection*{5.4 CONTROL DESIGN FOR A MULTIPLE-LOOP ANALOG SIGNAL PROCESSOR}

In this example, a particular multiple-loop analog-signal processor feature concerning the adaptive compensation of the output-filter change is examined. The most often used frequency-domain representation is through Bode plot, of the open-loop transfer function. In a conventional single-loop system, the transfer function is the same regardless of the location at which an analyst chooses to mentally or physically open the loop. This freedom no longer holds for a multiple-loop controlled system. Opening the loop at different locations generally calls for different interpretation of analytical results. It is entirely possible for a multipleloop design to exhibit essentially a -6db/octave slope when the open-loop transfer function is analyzed at a certain location, while concurrently the transfer function viewing from another location would suggest a highlyoscillatory system. In a multiple-loop design, one must therefore be careful in the selection and the interpretation of the loop opening.

\subsection*{5.4.1 A Multiple-Loop Controlled Buck Regulator}

The buck regulator was shown in Figure 8. Input voltage \(E_{i}\), power switch 0 , diode \(D\), inductor \(L\) with winding resistance \(R_{L}\), capacitor \(C\) with an equivalent series resistance \(R_{C}\), and load \(R_{0}\), constitute the basic buck regulator. For clarity, no input filter is included in the power stage. The reason for choosing the buck regulator is also for clarity. Since the primary objective here is to identify the adaptive compensation of the analog-signal processor, the buck regulator serves the purpose with the least analytical complication, as its equivalent output filter is known to be independent of the operating duty cycle.

\subsection*{5.4.2 A Multiple-Loop Controlled Buck Regulator Block Diagram}

From the small-signal viewpoint, the power processor shown in Figure 8 can be separated into three parts shown in Figure \(30 \mathrm{~A}, \mathrm{~B}\), and C. Starting at point \(A\) of Figure \(8^{\prime}\) and tracing clockwise, the output filter and load is illustrated in Figure 30A. Voltages \(e_{1}\) and \(e_{2}\) represent the filter output voltage and the inductor voltage respectively, which are source signals for loop I and II. These two voltages are applied to the integrator amplifier as depicted in Figure 28 B , resulting in an integratoramplifier output voltage \(e_{B}\). A sinusoidal voltage perturbation of unity peak anplitude at point \(B\) will cause a corresponding pulse train at point \(A\), with identical pluse amplitude \(E_{i}\) and on-time \(T_{n}\), but with varying intervals for off-time \(T_{f}\). The pulse train contains a fundamental component with peak amplitude \(K_{p}\) and with a frequency identical to that of the sinusoidal perturbation. The factor \(K_{p}\) is defined as the gain from \(B\) to A clockwise. The graphical representation of the aforedescribed mechanism is shown in Figure 30C.

In Figure 30A, it can be shown that,
\[
\begin{align*}
& F_{1}(s)=\frac{e_{1}}{e_{A}}=\frac{\left(\frac{R}{R+R_{L}}\right)\left(1+S R_{c} C\right)}{1+S\left(\frac{R}{R+R_{L}}\right)\left[\left(R_{L}+R_{C}+\frac{R_{L} R_{c}}{R}\right) C+\frac{L}{R}\right]+S^{2} L C\left(\frac{R+R_{c}}{R+R_{L}}\right)}  \tag{142}\\
& F_{2}(s)=\frac{e_{2}}{e_{A}}=\frac{S N L\left[1+S C\left(R+R_{c}\right)\right]}{\left(R_{L}+R\right)\left\{1+\frac{S R}{R+R_{L}}\left[\left(R_{L}+R_{c}+\frac{R_{L} R_{C}}{R}\right) C+\frac{L}{R}\right]+S^{2} L C\left(\frac{R+R_{c}}{R+R_{L}}\right)\right\}} \tag{143}
\end{align*}
\]

In Figure \(30 B\), output \(e_{B}\) of the integrator is related to \(e_{1}\) and \(e_{2}\)
by:
\[
\begin{equation*}
\frac{g e_{1}-e_{g}-e_{r}}{R_{3}}+S C_{1}\left(e_{B^{-}} g^{-e_{r}}\right)+\frac{e_{1}-g^{-e} r}{R_{5}+\frac{1}{S C_{2}}}+\frac{e_{2}^{-e_{g}} g^{-e_{r}}}{R_{4}}=0 \tag{144}
\end{equation*}
\]

Also, \(e_{B}\) is related to \(e_{g}\) by amplifier gain \(K\),
\[
\begin{equation*}
-K e_{g}=e_{B} \tag{145}
\end{equation*}
\]


Combining (144) and (145) to eliminate \(e_{g}\), one has
\[
\begin{gather*}
e_{1}\left(\frac{S C_{2}}{1+S C_{2} R_{5}}+\frac{g}{R_{3}}\right)+\frac{e_{2}}{R_{4}}-e_{R}\left(\frac{1}{R_{3}}+S C_{1}+\frac{S C_{2}}{1+S C_{2} R_{5}}+\frac{1}{R_{4}}\right) \\
=-e_{B}\left[\frac{1}{K R_{3}}+S C_{1}+\frac{S C_{1}}{K}+\frac{S C_{2}}{K\left(1+S C_{2} R_{3}\right)}+\frac{1}{K R_{4}}\right] \tag{146}
\end{gather*}
\]

Let \(F_{B r}, F_{B 1}\), and \(F_{B 2}\) to represent \(\partial e_{B} / \partial e_{r}, \partial e_{B} / \partial e_{1}\), and \(\partial e_{B} / \partial e_{2}\) : respectively,
\[
\begin{align*}
& F_{B r}=\frac{\frac{1}{R_{3}}+S C_{1}+\frac{S C_{2}}{1+S C_{2} R_{5}}+\frac{1}{R_{4}}}{\frac{1}{K}\left(\frac{S C_{2}}{1+S C_{2} R_{5}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+S C_{1}\right)+S C_{1}}  \tag{147}\\
& F_{B 1}=-\frac{S C_{2}}{\frac{1}{K}\left(\frac{S C_{2}}{1+S C_{2} R_{5}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+S C_{1}\right)+S C_{1}}  \tag{148}\\
& F_{B 2}=-\frac{1}{\frac{1}{K}\left(\frac{S C_{2}}{1+S C_{2} R_{5}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+S C_{1}\right)+S C_{1}} \tag{149}
\end{align*}
\]

Having identified the contribution of \(e_{1}, e_{2}\), and \(e_{r}\) to \(e_{B}\), the power processor control can be represented by the block diagram shown in Figure 28D. The five frequency-dependent blocks \(F_{1}, F_{2}, F_{B 1}, F_{B 2}\), and \(F_{B r}\), are expressed in (142), (143), (147), (148), and (149). The block K \(K_{p}\) relates the integrator output to the voltage pulse train at the input of output filter, i.e., the pulses across free-wheeling diode \(D\) in Figure 30. The content of \(K_{p}\) will be analyzed in Appendix \(K\).

Reference [11] identified point (3) in Fig. 30D as the proper breaking point for stability study, then, upon making the following reasonable assumptions
\[
\begin{aligned}
& K \gg 1 \\
& (1+K) C_{1} \gg C_{2} \\
& R \gg R_{L} \\
& R \gg R_{C}
\end{aligned}
\]
and substituting (142), (143), (148), and (149) into (147), one obtains:
\[
\begin{equation*}
\frac{d e_{B}}{d e_{A}}=\frac{\binom{-K g R_{4}}{R_{3}+R_{4}}\left\{\left(1+S R_{c} C\right)\left[1+S C_{2}\left(R_{5}+\frac{R_{3}}{g}\right)\right]+S(1+S C R)\left(1+S C_{2} R_{5}\right) \frac{N R_{3} L}{g R_{4} R}\right\}}{\left\{1+S\left[\left(R_{L}+R_{C}\right) C+\frac{L}{R}\right]+S^{2} L C\right\}\left(1+S C_{2} R_{5}\right)\left(1+S \frac{K C_{1} R_{3} R_{4}}{R_{3}+R_{4}}\right)} \tag{150}
\end{equation*}
\]

Equation(150) can reveal the autocompensation of the LC parameters if for the time being one regards \(C_{2}\) as negligibly small. Then, equation (150) is reduced to:
\[
\begin{equation*}
\frac{d e_{B}}{d e_{A}}=\frac{-\frac{K g R_{4}}{R_{3}+R_{4}}\left\{1+S\left(R_{c} C+\frac{N R_{3} L}{g R_{4} R}\right)+S^{2} \frac{N R_{3} L C}{g R_{4}}\right\}}{\left\{1+S\left[\left(R_{C}+R_{L}\right) C+\frac{L}{R}\right]+S^{2} L C\right\}\left(1+S \frac{K C_{1} R_{3} R_{4}}{R_{3}+R_{4}}\right)} \tag{151}
\end{equation*}
\]

One can note from equation(151) that if the factor ( \(N R_{3} / g R_{4}\) ) is designed so that
\[
\begin{equation*}
\frac{N R_{3}}{g R_{4}}=1 \tag{152}
\end{equation*}
\]
then, equation (151) is further simplified to
\[
\begin{equation*}
\frac{d e_{B}}{d e_{A}}=\frac{-\frac{K_{g} R_{4}}{R_{3}+R_{4}}\left[1+S\left(R_{c} C+\frac{L}{R}\right)+s^{2} L C\right]}{\left(1+S \frac{K C_{1} R_{3} R_{4}}{R_{3}+R_{4}}\right)\left\{1+S\left[\left(R_{c}+R_{L}\right) C+\frac{L}{R}\right]+S^{2} L C\right\}} \tag{153}
\end{equation*}
\]

From equation (153), the adaptive compensation of LC becomes clear, as both the numerator and denominator contain the \(S^{2} L C\) term. Both \(L\) and \(C\) can therefore vary extensively without materially effecting the open-loop transfer function. Consequently, in most designs where a unity \(\left(\mathrm{NR}_{3} / G R_{4}\right)\) is observed, the \(\left(d e_{B} / \mathrm{de}_{A}\right)\) from \(A\) to \(B\) clockwise consists ideally a gain of \(K G R_{4} /\left(R_{3}+R_{4}\right)\) and a first-order corner frequency \(\left(R_{3}+R_{4}\right) / 2 \pi K C, R_{3} R_{4}\).

It is also noted that equation (153) only represents the transfer function from point \(A\) clockwise to point \(B\). To complete the loop, the characteristics \(K_{p}\) from \(B\) clockwise to \(A\) must be derived.

The discussion thus comples the stability aspect of the particular multiple-loop control with emphasis on the adaptive compensation of the output-filter parameters. The contribution of the additional ac loop is apparent from equation (151), if one diminishes its effect by letting \(N\) approach zero.

It is also noted that equation (153) is based on an assumption of a negligibly small \(C 2\) in equation (150). In reality, \(C 2\) is not negligibly small, and it tends to detract somewhat the control from achieving the intended adaptive compensation. For a more detailed discussion, the reader is referred to reference [11].

As previously stated, this multiple-loop concept and its design, analysis, and application are currently the subjects of another NASA program, NAS3-20102. This example, therefore, only attempts to show one particular aspect of its control-related design. Upon completing NAS3-20102, the results obtained therein will be incorporated into the MAPPS as Control Design Subprogram for the multiple-loop control.

\subsection*{5.5 FUTURE EMPHASES}

Future emphases on the Control Design Subprograms are expected to include the following:
- To treat all three basic power stages including the input filter, and to integrate the given power stage and digital signal processor with certain commonly-used single-loop analog-signal processor implementations, an example of which was given in Section 5.3.
- To include other small-signal control-dependent performance requirements such as sudiosusceptibility.
- To incorporate the work performed under NAS3-20102 for the aforementioned multiple-loop control into the MAPPS system.

\section*{6. DESIGN OPTIMIZATION SUBPROGRAMS}

The design of a regulator converter generally involves four ingredients, shown in Figure 31 (A). First, a set of performance requirements, \(r=\left(r_{1} \ldots r_{n}\right)\), is given to guide the design. Second, there are design constants, \(k=\left(k_{1} \ldots k_{h}\right)\), which are known to a designer either through manufacturer specifications, common sense, or designer's own experience. The objective of the design is to identify numerically all the design variables \(x=\left(x_{1} \ldots x_{n}\right)\), which are the unknowns prior to the initiation of the design. Performance requirements, design constants, and design variables, are related together through design constraints \(g_{j}(x, k, r)=0\). The constraints include analytical and/or empirical relations that must be satisfied compositely by the other three aforementioned ingredients.

A common characteristic of the regulator-converter design is that the number of design variables ( \(x_{1} \ldots x_{n}\) ) exceeds that of the constraints \(g_{j}(x, k, r)=0\). Consequently, there exists infinite sets of \(\left.x_{1} \ldots x_{n}\right)\) to satisfy \(g_{j}=0\), due to the inequality \(n>j\). The fact that there usually exists multiple regulator-converter design alternatives all satisfying the same set orformance requirements only serves to underscore the projection of such in inequality.

Design optimization is illustrated in Figure 31 (B). Comparing with Figure \(31(A)\), an optimization criterion as a function of design variable \(x^{\prime} s\) and design constants k 's is added to the entire design process. The essence of the design optimization, therefore, is to pinpoint a set of design variables to meet all constraints \(g_{j}=0\) and requirements \(r\), and concurrently, optimizes a certain converter characteristic, \(f(x, k)\), deemed particularly desirable. The characteristic can be the converter weight, loss, or any other physically realizable entity associated with a converter.

In this section, a general design optimization methodology is outlined, and a practical design optimization approach is adopted. The approach is implemented through techniques involving the Lagrange Multipliers and the Nonlinear Programming, each supplemented by practical optimization applications. Improvements needed to further the course of design optimization are also related.

\subsection*{6.1 STATE-OF-THE-ART DESIGN APPROACH}

Before venturing into more detailed design optimization aspects it is perhaps worthwhile to review the satate-of-the-art in power converter design. It contains the following major sequences:

\(\therefore \quad n>j\).
\(\therefore\) Infinite sets of \(\left(x_{1}, \ldots x_{n}\right)\) to satisfy \(g_{j}=0\)


Design Optimization Objective: To pinpoint the single set of ( \(x_{1} \ldots x_{n}\) ) that satisfies \(g_{j}=0\), and optimizes \(f(x, k)\) 。
1) The designer obtains all specified converter requirements prescribed by someone presumably knowledgeable. Based on the nature of these requirements, the the designer selects a basic power-circuit configuration.

Buck
Boost
Buck Boost
Serie, Inverter
Parallel Inverter, etc.
2) The designer's previous experience and occasionally a given specified performance requirement are called upon to elect from the contrulcircuit configurations that include:

Constant frequency, variable on/off time
Constant on time, variable off time
Constant off time, variable on time
Constant hysteresis, bang-bang control
Variable frequency, variable on/off time
3) The designer then starts the power-circuit design by empirically or intuitively picking a power-converter switching frequency. Along with the power-dependent performance requirements listed in Section 1, the designer proceeds to obtain semi-conductor choices, input/output filter parameters, and design details of transformer and inductors. Based on a designer's often-profusely-arbitrary subjective judgement, crude weight-loss analysis is made, with occasional feeble attempt for piecenieal weight on loss optimization. The same process is repeated for different switching frequencies befors completing a preliminary power circuit design. Despite the time-consuming iterations, optimization of the overall power circuit is seldom achieved.
4) Due to non-linearities in the power" stage and in the digital signal processor, the design of the control circuit for a given power circuit to meet the control-dependent performance requirements is presently beyond the capability of the majority of the converter designers. Compliance with requirements is usually achieved by "bench design" of breadboard-component parameters, and assured through elaborate testing. Against this background, one major thrust of this MAPPS program is in the area of control-related modeling, analysis and design, as has been presented in sections- 4 and 5 .

Undoubtedly, these efforts will be advanced in the future to form the basis of analytically-based design guidelines which, when complemented with standardization of control-dircuit configurations, will culminate in a complete control-circuit design meeting all performance requirements. For the time being, however, the preponderant regulator-converter designs are by no means analytically based.

\subsection*{6.2 A GENERAL DESIGN OPTIMIZATION METHODOLOGY}

Simply stated, the design optimization task is to minimize and objective function \(f(x, k)\), subjected to design constraints \(g_{j}(x, k, r)=0\).

Here, \(x=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{\top}\) is a \(n\)-dimensional vector representing power and control circuit parameters to be designed. Examples of \(x\) are values of R,L, and \(C\), the switching frequency, and the design details of magnetic components including core area, mean core length, permeability, wire size, number of turns, and turns ratio of multiple-winding magnetics.

The k's represent various constants related to component characteristics. Examples include winding and core densities, winding resistivity, window fill factor of the core, winding pitch factor (i.e., the ratio of the mean length of one-turn winding to the core circumference), transistor and diode conduction and switching characteristics, core-loss parameters, intended maximum operating flux density of given magnetics, and ESR as well as energy-storage characteristics of filter capacitors.

The \(r^{\prime}\) s are performance requirements to be met by the optimum design. Power-dependent requirements include input/output voltages, output power, maximum weight, minimum efficiency, source EMI, and maximum output ripple. Control-dependent requirements include regulator stability, minimum audiosusceptibility rejection, and maximum output impedance.

The function \(f(x, k)\) represents the converter optimization criterion. Examples include the total weight, the total loss, the figure of merit of a specific design, a particuiar control-oriented performance, or any selected design quantity such as reliability and cost. The criterion generally can be expressed as a function of the \(x\) 's and the k's.

Equations \(g_{j}(x, k, r)=0\) represent a total of " \(j\) " constraints. Examples of these equations include the relationship of an efficiency requirement to the sum of copper loss, core loss, semiconductor conduction and switching losses, and the loss in the capacitor ESR, the relationship of source EMI to the inputfilter design parameters, the switching frequency, and the input/output voltage and current levels.

Equations \(g_{j}=0\) allow all performance requirements " \(r\) " and all component constants " \(k\) " to be integrated into governing the design of all variables "x". Consequently, solutions acquired for equations \(g_{j}=0\) to minimize the objective function \(f(x, k)\) would represent a detailed optimum design, down to the component level, in accordance with the performance requirements and the optimization criterion specified.

Thus, a general design optimization methodology is to analytically portray \(g_{j}=0\) for all control-dependent and power-dependent performance requirements. In conjunction with the defined optimization criterion \(f(x, k)\), computer techniques are then applied to seek out the \(x\) 's that would satisfy \(g_{j}=0\) and concurrently minimize \(f(x, k)\).

Comparing this methodology to the present state-of-the-art design, the following notes can be made:
1) Both tasks start by obtaining requirements and selecting basic powerand control circuit configurations.
2) The switching frequency, which is fundamental to the power-circuit design, is selected in the general optimization methodology consistent with the optimization criterion. Unlike the state-of-the-art piecemeal design, the methodology acquires all design variables, including those prescribing detailed magnetics design, in an inclusive manner. Interdependences between various variables in different converter functions (e.g., input filter and output filter) are thus inherently preserved.
3) The methodology would eliminate the need for excessive "bench design" of control-circuit variables. It will also reduce the role of converter testing to that of verification only, rather than its current role of being the major vehicle through which compatibility between converter requirements and capabilities can be demonstrated.

\subsection*{6.3 A PRACTICAL DESIGN OPTIMIZATION APPROACH}

While the afcredescribed general methodology represents the ultimate in converter design, its actual implementation is presently not without major difficulties. To begin with, it is realized that the well-developed computer linear programming teciniques are inapplicable to converter optimization due to the nonlinear nature of the converter problems involved. As a result, the key to a successful design optimization of a complicated converter is to secure a nonlinear programming algorithm that enables optimum numerical solutions to be reached, with fast convergence, from an initial guess of the solutions.

Since the effectiveness of any nonlinear programming technique is invariably affected by the global and local properties of the multidimensional design problem, the unfortunate consequence is that there is no uniformly good method on which an algorithm can be based to handle optimization problems as complicated as those involved with the design of a complete regulator-converter. Naturally, the likelihood of securing an applicable nonlinear programming routine improves as the number, the nonlinearity, and the complexity of the nonlinear constraints diminish.

Some of the most nonlinear and complex constraints are those describing the control-dependent performance requirements. Stability, audiosusceptibility, and output-impedance characteristics involve all power- and control-circuit RLC parameters as well as the converter switching frequency. Furthemore, the characteristics themselves are frequency dependent via s-transform or ztransform, thus compounding the complexity of the control-dependent performance design constraints. Based on experiences gained to date on the application of various nonlinear programming routines, the chance for a successful inclusion of all control-dependent performance constraints in an overall power-converter design optimization is extremely slim in the foreseeable future.

To realize a practical approach within the demonstrated capability of nonlinear programming, one is, for the time being, forced to forsake the controlcircuits, and to concentrate instead on the design optimization of the converter power circuit. The scope of the optimization criteria is reduced to include only those related to power-dependent performance characteristics, such as weight and losses.

Admittedly, the practical approach is less meritorious in relation to the general methodology. However, its utility is still significant for the following reasons:
- The prevailing trend toward converters designed for higher power places increasing emphasis on loss and weight optimizations.
- Sensitivity to program cost and space/military equipment standardization encourages analysis-based designs to reduce weight, loss, and cost penalties resulting from suboptimum designs and developments.
- For a given power- and control-circuit configuration, converter design experience has indicated that, once the power-circuit parameters are properly designed, generally it is possible to design compatible converter control-circuit parameters to meet stability and other control-dependent performance requirements.

Thus, while the inclusion of control-dependent constraints in an overall converter design optimization represents an increase in the optimization effort, it is not likely to alter the weight-loss optimization results obtained from considering power-circuit related constraints alone. The results obtained from power-circuit optimization are, therefore, both practical and meaningful.
- Comparing to the number of control-circuit configurations proposed and in use to date, there are relatively few commonlyused power-circuit configurations. The utility of the power circuit design optimization is thus widespread and well-defined.
Consequently, given the limited nonlinear-programming capability currently demonstrable, a practical and useful design optimization approach can be formulated, which consists of the following two major steps:
1) Design the power-circuit parameters to achieve the weight-loss optimization of a given power circuit configuration that will meet all power-dependent performance requirements.
2) Based on the power circuit parameters thus obtained, guidelines to design detailed control-circuit parameters to meet specified control-dependent performance requirements are then used to fulfill the design of a complete power converter. This step does not involve the use of a nonlinear programming routine. Design guidelines for control-circuit parameters will be conceived analytically based on the Control Design Subprogram currently in progress, and should become practical in the near future,

At present, the generation of design guidelines mentioned in step (2) appears to be the likely major thrust of near-term power-converter modeling and analysis. Undoubtedly, many significant contributions are forthcoming from industry/university/government research effort, both here and abroad. The emphasis of the design optimization here is placed on step (1). It is hoped that the work reported here will provide the needed complement for results emerging from the step (2) effort. Together they are expected to shape the standardized power-converter design approach in the foreseeable future.

In the following sections, the methodology implementation of the step (1) design optimization is discussed.

\subsection*{6.4 IMPLEMENTATION OF DESIGN OPTIMIZATION}

Continued rapid growth by applied optimization as a scientific discipline has been fostered by the application of optimization theory and the high-speed computer developments. In power converter design, it follows naturally that the key in implementing the design optimization rests on the availability of suitable mathematical and computer techniques.

\subsection*{6.4.1 A General Mathematical Approach Based on Lagrange Multiples}

Quite amenable to generalization, optimization theory in terms of Lagrange Multipliers [12] provides a practical method in seeking an extremum for the objective function \(f(x, k)\), subjecting to a total of "j" constraints.
\[
\begin{equation*}
g_{j}(x, k, r) \quad 0, x=\left(x_{1}, x_{2} \cdots x_{n}\right)^{\top} \tag{154}
\end{equation*}
\]

The method forms a function \(F\), where
\[
\begin{equation*}
F=f+\sum h_{j} g_{j} \tag{155}
\end{equation*}
\]

Here, the \(h_{j}\) 's are Lagrange Multipliers independent of \(x\) 's. For " \(F\) " to have an extremum, the requirement.is
\[
\begin{equation*}
\frac{\partial F}{\partial X_{i}}=0, i=1,2,-\cdots n \tag{156}
\end{equation*}
\]

From \(g_{j}=0\) and \(\partial F / \partial X_{i}=0\), a total of \((j+n)\) equations are available to solve \(n\) variables and " \(j\) " Lagrange Multipliers. Applications of this method to simple converter optimization problems occasionally yield analytical optimum solutions [15]. However, when the problem transcends the simple component level, the method becomes impractical in yielding the optimum design in closed form.

\subsection*{6.4.2 Nonlinear Programming Techniques}

Most larger problems arising from practical power converter applications are sufficiently complicated to defy closed-form solutions. To identify numerically an optimum design, one has to resort to nonlinear programming algorithms to provide fast convergence to opimum solutions from a reasonable set of input parameters. From the numerous existing methods of nonlinear programming, two popular ones were selected to test their utilities in power converter optimization: the method of reduced gredient [14], and the method of penalty functions [13]. The particular codes used to implement these two approaches are, respectively, the Generalized Reduced Gredient (GRE) and the Sequential Unconstrained Minimization Technique (SUMT) [13,29]. The effectiveness of each code depends greatly on the global and local properties of the particular multi-dimensional problem to which the method is applied. The dependency makes it difficult to compare objectively the general merits of different algorithms. Based solely on our application experience to date, both codes handle simple-to-moderately-simple optimization problems equally well. However, the SUMT code seems to have been most effective in achieving convergence for complex and highly nonlinear converter optimization problems.

At this juncture, a note is in order to clarify the meaning of the penalty function. A penalty function is one, which, when added to the original objective function \(f(x, k)\) to form a penalized objective function \(f_{p}(x, k)\), will detract from achieving a minimum objective when an associated constraint within \(g_{j}(x, k, r)=0\) is not satisfied. The particular penalty function used in the SUMT code is the quadratic for of \(g_{j}\), which gives:
\[
\begin{equation*}
f_{p}=f+c \sum_{1}^{j}\left[g_{j}\right]^{2} \tag{157}
\end{equation*}
\]

Here, \(c\) is the weighting coefficient when a minimum of \(f_{p}\) is desired. It is apparent from this equation that the constrained minimum of \(f(x, k)\) subjected to constraints \(g_{j}=0\) is identical to the unconstrained minimum of \(f_{p}(x, k)\) when ' \(c\) 'approaches infinity. The SUMT code thus accomodates the initial " \(c\) ", the conditions under which " \(c\) " is to be increased, and the criterion of bypassing the increasing " \(c\) " when the intended minimization has run its course.

\subsection*{6.5 APPLICATION EXAMPLES BASED ON THE METHOD OF LAGRANGE MULTIPLIERS}

\subsection*{6.5.1 Inductor Design Optimization}

In this example, a simple inductor design optimization is used to illustrate the application of the Lagrange Multipliers. Quite often in actual inductor design, the designer wishes to identify a core to achieve a certain inductance and to accomodate all windings for which the conductor size of each turn has been predetermined empirically or intuitively.on a circular-mil-per ampere basis. In this case, one is not interested in an optimum design strictly from an overall weight-loss viewpoint. All that is wanted is the selection of a core that is just right; it is neither too small to accomodate physically all the windings nor is it too large to cause an excessive surplus in its electromagnetic capability in relation to that demanded by the specific inductor application.

In this example, the following design parameters are needed:

\section*{Known Constants "k"}
\(A_{c}\) : Predetermined cross-sectional area of one-turn conductor
\(B_{s}\) : Saturation flux density of the core
\(D_{C}\) : Conductor Density
\(D_{i}:\) Iron core density
\(F_{c}\) : Ratio of one-turn conductor average length to core circumference
\(F_{W}\) : The proportion of core window actually occupied by the conductor when the window is filled.

\section*{Given Requirements "r"}

L: Inductance needed
\(I_{p}\) : Peak current in the inductor winding

\section*{Unknown Variables " \(x\) "}

A: Core sectional area
\(N\) : Number of turns
Z: Mean length of core
\(\mu\) : Permeability of core

Constraint Equations " \(g_{j}\) "
Two constraints are used to formulate the design. First, all magnetic core flux capability is utilized:
\[
\begin{equation*}
B_{S} N A-L I_{P}=0 \tag{158}
\end{equation*}
\]

Next, all window area of the core is occupied:
\[
\begin{equation*}
\left(N A_{C} / \Pi F_{N}\right)^{1 / 2}-(Z / 2 \pi)+\left(A^{1 / 2} / 2\right)=0 \tag{159}
\end{equation*}
\]

In deriving (159), a core with a square sectional area \(A\) is assumed so that . the circumference of the core becomes \(4 A^{0.5}\).

\section*{Objective Function " \(f(x, k)\) "}

In this example, one wishes to minimize the inductor weight \(W\), which can be expressed as:
\[
\begin{align*}
W=f(x, k) & =\text { conductor weight }+ \text { core weight } \\
& =4 F_{c} D_{c} A_{c} N A^{0.5}+D_{i} A Z \tag{160}
\end{align*}
\]

Having formulated the problem,it is recalled that the task here is to find solutions for the \(x\) 's so that \(W\) of equation (160) is minimized, and concurrently equation (158) and (159) are satisfied.

Substituting \(x_{1}\) for \(A^{0.5}, x_{2}\) for \(N^{0.5}\), and \(x_{3}\) for \(Z\), equations (146) to (148) become, respectively,
\[
\begin{align*}
& g_{1}(x, k, r)=B_{s} x_{2}{ }^{2} x_{1}{ }^{2}-L I_{p}=0  \tag{161}\\
& g_{2}(x, k, r)=\left(A_{c} / \pi F_{w}\right)^{0.5} x_{2}-\left(x_{3} / 2 \pi\right)+\left(x_{1} / 2\right)=0  \tag{162}\\
& f(x, k)=4 F_{c} D_{c} A_{c} x_{2}{ }^{2} x_{1}+D_{i} x_{1}{ }^{2} x_{3} \tag{163}
\end{align*}
\]
\[
\begin{align*}
& c_{c} D_{c}^{A}{ }_{c} x_{2} x_{1}+D_{i} x_{1}{ }^{2} x_{3}-h_{1}\left(B_{s} x_{2}{ }^{2} x_{1}{ }^{2}-L I_{p}\right) \\
& -h_{2}\left[\left(A_{c} / \pi F_{W}\right)^{0.5} x_{2}-\left(x_{3} / 2 \pi\right)+x_{1} / 2\right]  \tag{164}\\
& \frac{\partial F}{\partial X_{1}}=4 F_{c} D_{c} A_{c} X_{2}^{2}+2 D_{i} X_{1} X_{3}-2 h_{1} B_{s} X_{2}{ }^{2} X_{1}-h_{2} / 2=0  \tag{165}\\
& \frac{\partial F}{\partial X_{2}}=8 F_{c} D_{c} A_{c} X_{1} X_{2}-2 h_{1} B_{s} X_{2} X_{1}^{2}-h_{2}\left(A_{c} / \pi F_{W}\right)^{05}=0  \tag{166}\\
& \frac{\partial F}{\partial X_{3}}=D_{i} X_{1}^{2}+h_{2} / 2 \pi=0 \tag{167}
\end{align*}
\]

From the five equations (161), (162), (165), (166), and (167), the five unknowns \(x_{1}\) to \(x_{3}\) and \(h_{1}\) to \(h_{2}\) can be solved. Solution of \(h_{1}\) and \(h_{2}\) are irrelevant to the inductor design. The relevant ones are:
\[
\begin{align*}
& A=X_{1}^{2}=\left(\frac{1}{3}\right)\left(\frac{L I_{P} A_{c}}{B_{S} \Pi F_{W}}\right)^{0.5} s  \tag{168}\\
& N=X_{2}^{2}=3\left(\frac{L I_{P} \Pi F_{W}}{A_{c} B_{S}}\right)^{0.5} S^{-1}  \tag{169}\\
& Z=x_{3}=(2 \sqrt{3} \pi)\left(\frac{L I_{p} A_{c}}{B_{S} \Pi F_{W}}\right)^{1 / 4}\left(S^{-1 / 2}+\frac{S^{1 / 2}}{6}\right) \tag{170}
\end{align*}
\]
where
\[
\begin{equation*}
S=\left(1+\frac{R F_{c} F_{W} D_{c}}{D_{i}}\right)^{1 / 2} \tag{171}
\end{equation*}
\]

From these equations, the permeability and the weight of the inductor can be derived as:
\[
\begin{align*}
& \left.\mu=(2 \pi / \sqrt{3})\left(\frac{B_{s}}{I_{P}}\right)^{-5 / 4}\left(\frac{A_{c}}{\pi F_{W}}\right)^{3 / 4} L-1 / 4{ }^{-1 / 2} S^{-1 / 2}+\frac{S^{1 / 2}}{6}\right)  \tag{172}\\
& W=\left(2 \pi D_{c} / \sqrt{3}\right)\left(\frac{L I_{p} A_{c}}{\Pi B_{S} F_{W}}\right)^{3 / 4-1 / 2} S \quad\left[6 F_{c} F_{W}+\frac{D_{i}}{D_{c}}\left(S+\frac{S^{2}}{6}\right)\right] \tag{173}
\end{align*}
\]

Equations (168) to (172) illustrate the particular set of \(A, N, Z\), and \(\mu\) that will produce a minimum-weight inductor with inductance \(L\), peak winding current \(I_{P}\), conductor cross-sectional area \(A_{c}\), saturation flux density \(B_{s}\), winding factor \(F_{W}\), pitch factor \(F_{C}\), and densities \(D_{C}\) and \(D_{i}\) for the conductor and the core, respectively. In these equations, \(A\) is in square meter, \(Z\) is in meter, \(W\) is in kilograms, and \(\mu\) is in Weber/Ampere-Turn-Meter. To converter the permeability into gauss/oersted, equation (172)
is divided by a factor \(4 \pi \times 10^{-7}\). Notice that if \(L I I_{p}\) is being replaced by VS, the volt-second content of the core, then the aforedescribed equations are perfectly applicable to designing transformers using rectangular-loop core materials. When used that way, naturally eq. (172) for permeability is neither applicable nor needed for rec-

To demonstrate the utility of these equations, the following constants are assumed for the molypermalloy-powder-core inductor:
\[
\begin{aligned}
F_{W} & =0.4 \\
F_{c} & =2.0 \\
B_{s} & =0.35 \text { Weber } / \text { meter }^{2} \\
D_{c} & =8900 \mathrm{~kg} / \mathrm{m}^{3} \\
D_{i} & =7800 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
\]

Using these constants and making the conversions to the more familiar engineering units, then, with \(L\) expressed in microhenries, \(I_{p}\) in Amperes, and \(A_{c}\) in circular mils, eqs. (168) to (173) become:
\[
\begin{array}{rll}
A & =2.8 \times 10^{-4}\left(L I_{p} A_{c}\right)^{1 / 2} & \mathrm{~cm}^{2} \\
N & =103\left(L I_{p} / A_{c}\right)^{1 / 2} & \text { turns } \\
Z=0.18\left(L I_{p} A_{c}\right)^{1 / 4} & \text { cm } \\
H=6.1 I_{p}^{-5 / 4} L^{-1 / 4} A_{c} & \text { Gauss/0ersted } \\
W=0.001\left(L I_{p} A_{c}\right)^{3 / 4} & \text { grams } \tag{177}
\end{array}
\]

Notice that once \(L, I_{p}\), and \(A_{c}\) are known from requirements specified, the inductor weight is determined from eq. (178) without the need for actually
designing the inductor.

\subsection*{6.5.2 Other Design Optimization Examples Using Lagrange Multipliers}

Following similar procedures outlined in Section 5.5.1, for an inductor, closed-form optimum solutions were obtained for the following designs:
- Optimum-weight inductor or transformer, with the loss in the magnetics given as a constraint.
- Optimum-loss inductor or transformer, with the weight of the magnetics given as a constraint.

\subsection*{6.5.2.1 Optimum Weight Design for a Given Loss}

This example deals with the design of an inductor to be used in an input filter carrying a direct current, and therefore incurring negligible iron losses. The allowed copper loss for the inductor is given as a constraint.

\section*{Known Constants " \(k\) "}
\(\mathrm{P}=\) Copper loss allowed
\(\rho=\) Conductor resistivity
\(B_{s}, D_{c}, D_{i}, F_{c}\), and \(F_{W}\) are the same as the previous example.
Given Requirements "V"
\(I_{p}=\) Maximum direct current in the inductor winding
\(L=\) Inductance needed at \(I_{p}\)
Unknown Variables "X"
\(A_{C}=\) The conductor size is now unknown
\(A, N, Z\), and \(\mu\) are identical to the previous example.
Constraint Equations " \(\mathrm{g}_{\mathrm{j}}\) "
The copper loss of the inductor is:
\[
\begin{equation*}
P-\left(4 I_{d c}^{2} \rho F_{c} N A^{0.5} / A_{c}\right)=0 \tag{179}
\end{equation*}
\]

The other two constrains are identical to eqs. (158) and (159).
Objective Function " \(f(x, k)\) "
To optimize the weight, the weight equation is identical to eq. (160).

Based on these formulations, mathematical manipulations produce the following closed-form solutions:
\[
\begin{align*}
& A=16\left(\frac{\rho D_{c} F_{c}^{4}}{B_{s}^{2} \Pi D_{i}}\right)^{2 / 5}\left(\frac{I_{p}^{4} L^{2}}{P}\right)^{2 / 5-4 / 5} \mathrm{~S}  \tag{180}\\
& N=(1 / 16)\left(\frac{\pi^{2} D_{i}{ }^{2}}{D_{c}{ }^{2} B_{s} P^{2} F_{c}^{8}}\right)^{1 / 5}\left(\frac{L_{p}{ }^{2}}{I_{p}{ }^{3}}\right)^{1 / 5} S^{4 / 5}  \tag{181}\\
& Z=T\left(\frac{I_{P}{ }^{4} L^{2}}{\rho}\right)^{1 / 5}  \tag{182}\\
& A_{c}=\left(\frac{{ }_{D}{ }_{i} F_{c^{\rho}}{ }^{4}}{D_{c} B_{s}{ }^{3}}\right)^{1 / 5}\left(\frac{{ }_{I_{p}}{ }^{11} L^{3}}{p^{4}}\right)^{1 / 5}  \tag{183}\\
& \mu=16\left(\frac{D_{c} B_{s}{ }^{3}{ }_{\rho F_{c}}{ }^{4}}{\pi D_{i}}\right)^{2 / 5}\left(\frac{I_{p}{ }^{2} L}{p^{3}}\right)^{1 / 5} S^{-4 / 5} T  \tag{184}\\
& W=\left[\left(\frac{\pi^{2} D_{i}{ }^{2} D_{c}{ }^{3}{ }^{3}{ }^{3} F_{c}{ }^{2}}{B_{s}{ }^{6}}\right)^{1 / 5} \mathrm{~S}+16\left(\frac{\rho_{c} F^{4} D_{c} D_{i}{ }^{1 / 5}}{B_{s}{ }^{2} \pi}\right)^{2 / 5}{ }^{-4 / 5} T\right] \\
& \left(\frac{L^{6} I_{p}^{12}}{P^{3}}\right) \tag{185}
\end{align*}
\]
where
\[
\begin{align*}
& S=\left(\frac{D_{i} F_{c}}{D_{c} F_{N}}\right)^{1 / 2}+\left(\frac{D_{i} F_{c}}{D_{c} F_{W}}+96 F_{c}{ }^{2}\right)^{1 / 2}  \tag{186}\\
& T=\frac{1}{2}\left(\frac{\pi^{8} D_{i}{ }^{3} \rho_{0}}{F_{W}{ }^{5} D_{c}{ }^{3} B_{s}{ }^{4} F_{c}{ }^{7}}\right)^{1 / 103 / 5} \mathrm{~S}+4\left(\frac{\rho \pi^{4} F_{c}{ }^{4} D_{c}}{B_{s}{ }^{2} D_{i}}\right)^{1 / 5} \mathrm{~S} \tag{187}
\end{align*}
\]

Several significant characteristics exposed by these equations are:
(1) For a given core material, the minimum weight expressed in eq. (185) can be directly calculated from the given \(L\), \(I_{P}\), and loss limit \(P\), without attending to the design details of the inductor. This feature should find great utility in parametric weight-loss tradeoff analysis.
(2) Equation (185) prescribes one, and only one, optimum weight design for a given loss. Varying the conductor-to-core proportion in an alternate design would only result in a heavier inductor.

Again using powder core as an example, for which the following parameters are assigned:
\[
\begin{array}{lll}
B_{S}=0.35 & W / \mathrm{m}^{2}, & D_{C}=8900 \mathrm{~kg} / \mathrm{m}^{3} \\
F_{W}=0.42 & , & \rho=1.724 \times 10^{-8} \text { ohm-meter } \\
F_{\mathrm{C}}=1.9 & , & D_{i}=7800 \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
\]

Substituting these parameters into (180) to (187), and making necessary engineering-unit conversions, one has:
\[
\begin{array}{ll}
A=0.00076\left(\frac{I_{p}^{4} L^{2}}{P}\right)^{2 / 5} & \mathrm{~cm}^{2} \\
N=37.6\left(\frac{L_{P}^{2}}{I_{P}^{3}}\right)^{1 / 5} & \text { turns } \\
Z=0.21\left(\frac{I_{P}^{4} L^{2}}{P}\right)^{1 / 5} & \text { cm } \\
A c=2.68\left(\frac{I_{P}^{11} L^{3}}{p^{4}}\right)^{1 / 5} & \text { cir. mils } \\
\mu=15.6\left(\frac{I_{P}^{2} L}{p^{3}}\right)^{1 / 5} & \text { gauss/oersted } \\
W=0.0022\left(\frac{I_{P}^{12} L^{2}}{P^{3}}\right)^{1 / 5} & \text { grams } \tag{193}
\end{array}
\]

In these equations, \(I_{P}\) is in amperes, \(L\) is in microhenries, and \(P\) is in Watts.

\subsection*{6.5.2.2 Optimum-Weight Design for a Given Weight}

In addition to the two constraints shown as eqs. (158) and (159) concerning the flux capability and the full window, a third constraint is the weight limit \(W\), where
\[
\begin{equation*}
W-4 F_{c} D_{c} N A_{c} A^{1 / 2}-D_{i} A Z=0 \tag{194}
\end{equation*}
\]

The objective function to be optimized is the loss \(P\),
\[
\begin{equation*}
P=4 I_{p}^{2} \rho F_{c} N A^{1 / 2} / A_{c} \tag{195}
\end{equation*}
\]

Performing similar manipulations as the last example, the following closedform solutions can be obtained:
\[
\begin{align*}
A & =W^{3 / 2} M^{-2}  \tag{196}\\
N & =\left(1 / B_{s}\right)\left(\frac{L I_{P}}{W^{2 / 3}}\right) M^{2}  \tag{197}\\
A_{c} & =\left(\frac{B_{s} F_{W}}{25 D_{i}{ }^{2}}\right)\left(2 M-5 \pi D_{i} M^{-2}\right)^{2}\left(\frac{W^{4 / 3}}{L I_{P}}\right)  \tag{198}\\
Z & =\left(1 / D_{i}\right)\left[M^{2}-(S / 40)\left(2 M-5 \pi D_{i} M^{-2}\right)^{2}\right] W^{1 / 3}  \tag{199}\\
H & =\left(\frac{B_{s}^{2}}{D_{i}}\right)\left[1-\left(\frac{S}{10}\right)\left(1-\frac{16 F_{c} D_{c} F_{W}}{D_{i} S}\right)^{2}\right] \frac{W}{I_{P}^{2} L}  \tag{200}\\
P & =\left(\frac{25 \rho \Pi F_{c} D_{i}^{2}}{B_{s}{ }^{2} F_{W} W^{2}}\right)\left(\frac{1}{1-\frac{16 F_{c} D_{c} F_{W}}{D_{i} S}}\right)^{2}\left(\frac{L^{2} I_{P}^{4}}{W^{5 / 3}}\right) \tag{2.01}
\end{align*}
\]
where
\[
\begin{align*}
& M=\left(\frac{5 \pi D_{i}{ }^{2} S}{32 F_{c}{ }_{c} F_{W}}\right)^{1 / 3}  \tag{202}\\
& S=1+\frac{16 F_{c} F_{W} D_{c}}{D_{i}} \pm\left(1+\frac{96 F_{c} D_{c} F_{W}}{D_{i}}\right)^{1 / 2} \tag{203}
\end{align*}
\]

Notice the " \(\pm\) " sign in eq. (203). Only that which produces positive \(\bar{Z}\), \(P\), and \(\mu\) will be chosen. Again using the powder core for example with identical numerical values for \(B_{s}, F_{W}, F_{C}, D_{C}, D_{i}\), and \(\rho\) specified for the previous example, one can obtain the following concise design equations:
\[
\begin{align*}
& A=0.045 \quad W^{2 / 3} \mathrm{~cm}^{2}  \tag{204}\\
& N=0.635\left(\frac{L_{P}}{W^{2 / 3}}\right) \quad \text { turns }  \tag{205}\\
& Z=1.617 \quad W^{1 / 3} \quad \mathrm{~cm}  \tag{206}\\
& H=7100\left(\frac{W}{I_{P}^{2} L}\right) \quad \text { gauss/oersted }  \tag{207}\\
& P=4.12 \times 10^{-5}\left(\frac{L^{2} I_{P}^{4}}{W^{5 / 3}}\right) \text { watts }  \tag{208}\\
& A C=8881\left(\frac{W^{4 / 3}}{L I_{P}}\right) \quad \text { cir. mils } \tag{209}
\end{align*}
\]

Here, \(L\) is in microhenries, \(I_{P}\) is in amperes, and \(W\) is in grams. Notice that from eqs. (204) and (206) with \(D_{i}=7.8\) grams \(/ \mathrm{cm}^{3}\),
\[
\begin{equation*}
D_{i} A Z=0.57 W \tag{210}
\end{equation*}
\]

Thus, for an optimum-loss inductor, the core weight ( \(D_{i} A Z\) ) should be about 57 percent of the total inductor weight.

\subsection*{6.5.3. Design Optimization Subprograms Based on Closed-Form Solutions}

While the examples given indeed provide the closed-form optimum desigr: calculations of core dimensions, conductor sizes, weight, etc. still are rather tiresome when different core and conductor materials are involved. Consequently, the three sets of general closed-form solutions for the three previous examples in terms of \(D_{c}, D_{i}, F_{c}, F_{W}, \rho, B_{S}, I_{p}, L, P\), and \(W\) are implemented respectively into three user-oriented computer subprograms, completed with user instruction, input request, input summary printout, and the optimum design results.

For example, upon executing the subprogram concerning optimum weight inductor design for a given loss, the computer will print out the following user instructions:
```

[Ruldw:I = IHOLSE,g
THE DEJECTIVE OF THIE FRGGRAM IS TI FERFGRM RAH
DFTIMWM WEIGHT ImINCTDR DESIGN FDR A EIVEN LDSS.
TO ISERS: FLEAEE FEGIN THE FOLLDWING STATEMENTS

```

```

 THE HEENEN INFUT FARAMETERS GRE THE FOLLDUING:
 DO : CDNLUCTOR DEMSITY IN GRAMENGUEIG DM.
 IF NOT GIVEN EY THE USER, IL IS SET
 HTB.F E'T DEFAILT.
 OI : CDFE IENSIT'Y IN GEAMSNCUEIC CH.
 IF MOT GIVEN EY THE LSEF: II IE SET
 AT P.8 E'r IEFALILT.
    ```

```

 GOFE CIFIGMFEFENGE.
 IF HOT GIVEN,FE IS SET AT E. EY IIEFFILLT.
    ```

```

 IF NDT SINEN: FW IS SET RT .4 EY DEFAGLT.
 FHLD: EOMINGTOF FESISTIVITY IN OHMINETEF. IF
 HOT GIVEI: EHD IS SET HT 1.PE4E-E BT DEFAGLT.
 F: IEEIEMEI FDWER LDSS IH WATTE.
 E: : MANIMUM FLUE DENSITY' IH KILDGRUSSE:.
    ```

```

 L : IEESNED IHINCTANCE IN MIGFOHEHRIES.
 FLEASE GIVE INFUT DATA FOF L,IF,ES,HNI F EELQIN.
 FLEASE FLED GIWE IHIIOIIMIAL IHFUIT DATA FDF IC.III,
 FE,F|!,AliI RHD IF RHH DF UEFHULTED SETTINGE IS
 HDT IESIFEI.
 H[y INFUTT IS HEEDEII IF IEFRULTEII SETTINIGS ARE USEL.
 FDE ANEUEFS AT THE END DF THE FINN:
 H I% glafe mFEE: z IE MEFM GOFE LEMGTH:
 H IS HIMEEF DF HLFNS, U IS PEPMEAEILITY,
 AE IS FFDIUIT OF A FMII Z,AC IS CDHIUICTOR AREA FEF:
 TUFHOLI IS OFTIMUM IMDNGTOR WEIGHT FOR A GIVEN F.
    ```

Subsequently, the computer requests input data from the user with regard to \(D_{c}, D_{i}, F_{c}, F_{w}, P, P, B_{s}, I_{p}\), and \(L\). For the first five parameters, the inherent values set by the subprogram are \(8.9 \mathrm{~g} / \mathrm{cm}^{3}, 7.8 \mathrm{~g} / \mathrm{cm}^{3}, 2.0,0.4\), and \(1.724 \times 10^{-8}\) ohm-meter, respectively, representing the commonly-used copper density, core density, pitch factor, fill factor, and copper resistivity. These values can be supplanted by a user's own design numbers. However, if no user inputs with regard to these parameters are received, the subprogram will acknowledge user's default by utilizing the inherently-set values. The power loss \(P\), peak current \(I_{p}\), and the inductance \(L\) at \(I_{p}\) are, of course, individually assigned by the user for specific applications.

In this example, the user needs a \(200-\mu \mathrm{H}\) inductor carrying a peak current \(I_{p}\) of 4.5 amperes and utilizing a flux density \(B_{s}\) of 3.5 kilogauss (e.g., a powder core). The loss allowed by the user is 0.699 watts. For \(D_{c}, D_{i}, F_{c}, F_{w}\), and \(\rho\), the user defaults the input; those set inherently by the subprogram will be used. The user thus responds to the computer input request by typing the following:
```

\$E
T L=200, IF=4.5,RS=3.5.F=0.69916

```

Upon completing the input data, the computer will print a summary of assigned input parameters including the defaulted ones:
\begin{tabular}{|c|c|}
\hline S & \\
\hline nc & = e. 5 , \\
\hline DI & \(=7.3\) \\
\hline FCO & =e.0. \\
\hline Flil & \(-4.0 \mathrm{E}-01\). \\
\hline FHO & - 1.7E4E-08. \\
\hline F & \(=\) E.991E-41. \\
\hline Es & = 3.5. \\
\hline IF & \(=4.5\), \\
\hline L & \(=2.0 E+0 \mathrm{E}\), \\
\hline
\end{tabular}

The optimum design values are then computed by the subprogram and delivered as outputs:
```

F= E.939E-01
z=6.391E+00
M=.3.6E1E+01
U = 1.034E+0E
FZZ=4.435E+00
AC= 2.41FE+0.3
u= E.0025E+01

```
sRLIARE CENTIMETERS CENTIMETERS TURIS GRUSE DERSTED CUBIC CENTIMF-ER circular mil. grams

Based on the calculated \(A, Z, \mu\), and \(A_{c}\), a compatible design using the commercially-available components is either core 55930 of Magnetics, Inc: or core A930157-2 of Arnold Engineering, with a wire size of \#17 AWG. Such a design guarantees a loss limt around 0.7 W as specified. From the printout, the total inductor core-and-winding weight is about 61 grams.

The cost for this design session is \(\$ 0.51\). This compares favorably to hours of laborious and suboptimum design iterations needed by an experienced designer using the long-hand approach.

Similar subprograms are conceived for the other two examples previously described. Details regarding these user-oriented subprograms are shown in Appendix L, in which the computer input program and a sample run are included for each of the following design optimization:

INDOS 1: Optimum-weight inductor with wire size predetermined.
INDOS 2: Optimum-weight inductor with a given loss constraint.
INDOS 3: Optimum-loss inductor with a given weight constraint.

ORIGINAC PAGE IS
OE POOR QUALITY

\subsection*{6.6 APPLICATION EXAMPLES BASED ON NONLINEAR PROGRAMMING TECHNIQUES}

\subsection*{6.6.1 Input Filter Design Optimization}

The optimum-weight designs for two different input-filter configurations are compared. A conventional LC filter is shown in Figure 32(A) where \(R\) is the winding resistance of \(L\). Another configuration, shown in Figure 32(B), is a two-stage filter [30], in which R1 and R2 are winding resistances of L1 and L2, R3 is the lumped sum of ESR of Cl and a much higher external resistance added in series with \(C 1\), and \(C 2\) is a high-quality capacitor (e.g., polycarbonate type) with a negligible ESR. The advantage of the two-stage filter from a performance viewpoint is that while a high efficiency can be maintained as C2 handles most of the switching current, the resonant peaking of the entire filter is being controlled by the external resistance R3 in the first stage. The resistance incurs negligible losses, as negligible. current flows in Cl during normal operations.

The known constraints, given requirements, unknown variables, constraint equations, and the objective function are formulated for both filters. Being a much more complicated problem, closed-form solutions for the two-stage filter are unattainable.

Parameters L1, L2, C1, R1, R2, and R3 along with the design of magnetics, are therefore numerically determined by invoking the SUMT nonlinear programming routine. Detailed formulations and significant numerical results can be found in Appendix M. One aspect worth noting here is the higher optimum weight of the two-stage filter in relation to its single-stage counterpart when they are designed to meet identical peaking, attenuation, and efficiency requirements. For given attenuation requirement, the weight difference will increase with a lower allowance on either the resonant peaking or the power loss.

(B)


Figure 32 Single and Two-STage Input Filters

\subsection*{6.6.2. Design Optimization of a Complete Converter Power Circuit}

This example deals with optimization on a vastly-expanded scale - an optimimum weight design for a complete buck converter power circuit shown in Figure 33, which includes a two-stage input filter. (See Appendix P).

Here, R1 to R3 are winding resistances of L 1 to L 3 , respectively. The input filter is composed of L1-C1-R4-L2-C2, with L3-C3 being the output filter, and RC being the ESR of C3. Counting in addition the area \(A\), turns \(N\), length \(Z\), and conductor area \(A C\) required to completely define each inductor, and including the switching frequency \(F\), a total of twenty-three variables are involved. These variables, along with design constraints that include efficiency, source current ripple, output voltage ripple, input filter resonance, full utilization of inductor window areas, and no inductor saturation, are presented in Table 4. Most constraints are complicated nonlinear functions of the aforementioned variables; the most complicated one being equation (1) of Table 4, which includes copper losses, semiconductor conduction losses, capacitor dissipations, and frequency-dependent core losses and semiconductor switching lesses. The objective of the optimum design is to solve for all variables, with the intent to satisfy each constraint, and concurrently minimize the optimization criterion - the total weight of copper, iron, and the capacitors. Notice in particular the switching frequency is not a pre-set value; its optimum selection is an integral part of the total converter design.

The known constants, given requirements, unknown variables, constraint equations, and the objective function for these problems are presented next.

\subsection*{6.6.2.1 Known Constants}

The following known constants are assumed:
\(F_{c i}:\) Pitch factor for \(L_{i}\), where \(i=1,2,3\)
\(F_{w i}:\) Winding factor for \(L_{i}\), where \(\left.i=\right\}, 2,3\)
\(\rho\) : Common resistivity for \(L_{i}\), where \(i=1,2,3\)
\(D_{i i}\) : Core density for \(L_{i}\), where \(i=1,2,3\)


Figure 33 A Buck Converter Power Stage with a Two-Stage Input Filter

Table 4. Design Optimization Summary

\(D_{c i}\) : Conductor density for \(L_{i}\), where \(i=1,2,3\)\(B_{s i}\) : Saturation flux density for \(L_{i}\), where \(i=1,2,3\)\(D_{\text {cpi }}:\) Weight per microfarad for \(C_{i}\), where \(i=1,2,3\)\(V_{s t}\) : Collector-emitter drop when \(Q\) conducts\(V_{b e}\) : Base-emitter forward drop of \(Q\)\(T_{s r}\) : Transistor switching rise time\(T_{s f}\) : Transistor switching fall time\(V_{d}\) : Forward diode drop\(T_{n d}:\) Diode turn-on time\(T_{f d}\) : Diode turn-off time\(T_{r e}\) : Diode recovery time\(0_{e}(F)\) : Frequency-dependent core-loss factor for inductor L3,which processes a larger ac flux.
6.6.2.2 Given Requirements
The given requirements are the following:
\(P E:\) Input filter resonant peaking limit
\(P_{0}\) : Output power
\(\mathrm{E}_{\mathrm{i}}\) : Input voltage
\(E_{0}\) : Output voltage
\(s(F)\) : Frequency-dependent source conducted interference
\(r_{i}\) : Output ripple
Suifficient core window
No magnetics saturation
6.6.2.3 Unknown Variables

The unknown variables \(x=\left(x_{1} \ldots x_{n}\right)^{\top}\) are the following:
\(R_{i}:\) dc resistance for \(L_{i}, i=1,2,3\)
L1,L2,C1,C2
R4,L3,C3: Input/output filter parameters
\(A_{i}\) : Cross-sectional areas of inductors \(L_{i}, i=1,2,3\)
\(Z_{i}\) : Mean length of inductors \(L_{i}, i=1,2,3\)
\(N_{i}\) : Number of turns for \(L_{i}, i=1,2,3\)
\(A_{c i}\) : Winding areas per turn for \(L_{i}, i=1,2,3\)
F: Switching frequency

\subsection*{6.6.2.4 Objective Function:}

The objective function \(f(x, k)\) in this example is the total iron, copper, capacitor, and semiconductor weight. Since the semiconductor weight can be considered as fixed, the function \(f(x, k)\) becomes:
\[
\begin{align*}
f(x, k) & =\text { core weight + winding weight }+ \text { capacitor weight } \\
& =\Sigma D_{i i} A_{i} Z_{i}+4 \Sigma D_{c i} A_{i}^{0.5} F_{c i} N_{i} A_{c i}+\Sigma D_{c p i} C_{i} \\
& i=1,2, \& 3 \tag{211}
\end{align*}
\]

\subsection*{6.6.2.5 Constraint Equations}

The constraints \(g_{j}(x, k, r)=0\) include the following expressions:

\section*{Loss Constraint \({ }^{-}\)}

In this constraint, the sum of all component losses should not exceed the total losses allowed by the minimum efficiency requirement, or,
\[
\begin{align*}
P_{i f}+P_{t} & +P_{d}=P_{o f i}+P_{d c} \leq P_{0}(1-e) / e  \tag{212}\\
P_{i f} & =\text { input filter copper loss } \\
& =4\left(\frac{P_{0}}{e E_{i}}\right)^{2} c\left(\frac{F_{c l} N_{1} A_{1}}{A_{c l}}+\frac{F_{c 2} N_{2} A_{2}}{A_{c 2}}\right) \tag{213}
\end{align*}
\]
\(P_{t}=\) Transistor conduction loss
\[
\text { + base drive loss based on a forced Bets of } 10
\]
+ turnon switching loss
+ turn-off switching loss
\(=\frac{P V_{s t}}{E_{i}}\)
\(+\frac{0.1 P_{0} V_{b e}}{E_{i}}\)
\(+\frac{E_{i} T_{s r} F}{6}\left[\frac{P_{0}}{E_{0}}-\frac{\left(E_{i}-E_{0}\right) E_{0}}{2 L_{3} E_{i} F}\right]\)
\(+\frac{E_{i} T_{s f} F}{6}\left[\frac{P_{0}}{E_{0}}-\frac{\left(E_{i}-E_{0}\right) E_{0}}{2 L_{3} E_{i} F}\right]\)
\[
\begin{aligned}
P_{d}= & \text { Diode conduction loss } \\
& + \text { turn-off and recovery loss } \\
& + \text { turn-on loss }
\end{aligned}
\]
\[
\begin{align*}
= & \frac{\left(E_{i}-E_{0}\right) P_{0} V_{d}}{E_{0} E_{i}} \\
& +\frac{E_{i} F\left(T_{f d}+3 T_{r e}\right)}{12}\left[\frac{P_{0}}{E_{0}}-\frac{\left(E_{i}-E_{0}\right) E_{0}}{2 L_{3} E_{i} F}\right] \\
& +\frac{E_{i} F T_{n d}}{12}\left[\frac{P_{0}}{E_{0}}+\frac{\left(E_{i}-E_{0}\right) E_{0}}{2 L_{3} E_{i} F}\right] \tag{215}
\end{align*}
\]
\(P_{\text {off }}=\) Output-filter inductor core loss + output-filter inductor copper loss
\[
=\frac{80 E_{0}\left(E_{i}-E_{0}\right) z_{3} o_{e}(F)}{N_{3} E_{i}}
\]
\[
\begin{equation*}
+\frac{4 \rho F_{c 3} N_{3} A_{3}^{0.5}}{A_{c 3}}\left[\frac{P_{0}}{E_{0}}+\frac{\left(E_{i}-E_{0}\right) E_{0}}{R L_{3} E_{i} F}\right]^{2} \tag{216}
\end{equation*}
\]

Notice the dependence of these losses on the switching frequency \(F\) in equations (214) to (217). This includes the core loss expressed in (216), where \(0_{e}(F)\) relates the width of the inductor flux-vs-ampere-turn loop to frequency \(F\).

\section*{Source EMI Constraint}

The frequency-dependent source EMI requirement has a constant peak-current allowance of " S " amperes when the frequency is below 2 kHz , and decreases logarithmically from 2 kHz on. The input filter must be designed so that:

Required attenuation at \(\leqq \frac{\text { EMI Requirement at } F}{\text { Fundamental switching current }}\)
switching frequency \(F\)

Analytically, this relation becomes:
\[
\begin{align*}
& \frac{1}{\frac{L_{2} C_{2}}{L_{1} C_{1}}\left(2 \pi F L_{1}{ }^{1 / 2} C_{1}{ }^{1 / 2}\right)^{3} \frac{1}{D}-\frac{C_{2}}{C_{1}}\left(2 \pi F L_{1}{ }^{1 / 2} C_{1}^{1 / 2}\right)^{2}} \\
& \leqq \frac{\frac{S}{\left[1+\left(\frac{F}{2000}\right)^{2}\right]^{1 / 2}}}{\left(A^{2}+B^{2}\right)^{1 / 2}} \tag{218}
\end{align*}
\]
where:
\[
\left.\begin{array}{l}
A=\frac{2 P_{0}}{\Pi E_{0}} \sin \frac{\pi E_{0}}{E_{i}} \\
B=\frac{\left(E_{i}-E_{0}\right) E_{0}}{L_{3} F \Pi E_{i}} \cos \left(\frac{\pi E_{0}}{E_{i}}-\frac{S_{i n}\left(\pi E_{0} / E_{i}\right)}{\Pi E_{0} / E_{i}}\right) \\
D \tag{221}
\end{array}\right)
\]

\section*{Other Input Filter Design Constraints}

In addition to source EMI, other critical design aspects of an input filter include its forward resonant peaking and its output impedance, as they are improtant in determining the audiosusceptibility performance and the control-loop stability of the regulator. While these filter characteristics normally are not included in the regulator specification sheet, the includsion of the self-imposed resonance and impedance characteristic becomes highly desirable in order to ensure that the optimum-weight power circuit design will be compatible with its companion control circuit. In this example, the requirement "PE" concerning the resonant peaking limit is imposed as a design constraint:

\[
\begin{equation*}
(P E)_{1}^{2} \leqq \frac{1+\frac{4}{L_{1}}}{\left(\frac{C_{2}}{C_{1}}\right)^{2}+\frac{R_{4}{ }^{2} C_{1}}{L_{1}}\left(1-\frac{C_{2}}{C_{1}}-\frac{L_{2} C_{2}}{L_{1} C_{1}}\right)^{2}} \tag{222}
\end{equation*}
\]

The output ripple should be smaller than the corresponding requirement specified:
\[
\begin{equation*}
r_{i} \geqq \frac{1}{8 L_{3} C_{3}}\left(1-\frac{E_{0}}{E_{i}}\right)\left[\left(\frac{1}{F}\right)^{2}+\frac{4 C_{3}^{2} R_{c}{ }^{2} E_{i}^{2}}{E_{0}\left(E_{i}-E_{0}\right)}\right] \tag{223}
\end{equation*}
\]

\section*{Window Area Constraints}

All inductor windings must be accommodated within the physical confine of the available core window, taking into account the proper winding factor \(F_{W}\). Thus, for inductors \(L_{1}\) to \(L_{3}\),
\[
\begin{equation*}
\left(\frac{N_{i} A_{c i}}{\Pi F_{W i}}\right)^{1 / 2}-\frac{z_{i}}{2 \pi}+\frac{A_{i}^{1 / 2}}{2}=0, i=1,2,3 \tag{224}
\end{equation*}
\]

\section*{Operating Flux Density Constraints}

The inductors must not be operated beyond the intended flux density levels. In this example, the intended levels are taken as the saturation level \(B_{s i}\). Since L1 and L2 only conduct direct current,
\[
\begin{equation*}
N_{i} A_{i}-\frac{L_{i} P_{0}}{e E_{i} B_{s i}}=0, \quad i=1,2 \tag{227}
\end{equation*}
\]

Inductor \(L 3\) processes both dc and ac components,
\[
\begin{equation*}
N_{3} A_{3}-\frac{L_{3}}{B_{s 3}}\left(\frac{P_{0}}{E_{0}}+\frac{\left(E_{i}-E_{0}\right) E_{0}}{Z L_{3} E_{i} F}\right)=0 \tag{229}
\end{equation*}
\]

Having defined all constants, requirements, variables, objective functions, and constraints, the goal of this design example is to solve all variables to satisfy each constraints specified in eqs. (212) to (229), and concurrently to minimize the quantity specified in eq. (211).

Obviously, a problem of this complexity is not amendable to closedform solutions. The SUMT code is used to seek optimum solutions numerically. The program listing, containing mostly constraints and their first and second derivatives with respect to variables within the constraints, is given in Appendix \(N\).

Numerically, the following numbers are set to represent a practical converter:
\[
\begin{aligned}
& P_{0}=\text { Output power } \simeq 100 \mathrm{w} \\
& e=0.92 \text { at highest } E_{i} \text { at room temperature } \\
& E_{i}=20 \mathrm{~V} \text { to } 40 \mathrm{~V} \\
& E_{0}=15 \mathrm{~V} \\
& F_{c i}=1.9 \\
& F_{w i}=0.4 \\
& \rho=1.724 \times 10^{-8} \text { ohmmeter } \\
& V_{S T}=0.25 \mathrm{~V} \text { at } 8 \mathrm{~A} \\
& V_{b e}=0.8 \mathrm{~V} \\
& T_{S r}=0.15 \times 10^{-6} \mathrm{sec} \\
& T_{\text {sf }}=0.2 \times 10^{-6} \mathrm{sec} \\
& V_{D}=0.9 \mathrm{~V} \text { at } 8 \mathrm{~A} \\
& T_{n d}=0.03 \times 10^{-6} \mathrm{sec} \\
&
\end{aligned}
\]
\[
\begin{aligned}
& T_{f d}=0.05 \times 10^{-6} \mathrm{sec} \\
& T_{r e}=0.03 \times 10^{-6} \mathrm{sec} \\
&(P E)_{1}=2.0 \\
&(P E)_{2}=0.333 \\
& B_{s i}=0.4 \text { Weber } / \mathrm{meter}^{2} \\
& 0_{e}(F)=0.7 \mathrm{~F}^{0.5} \\
& r_{i}=0.01 \\
& R_{C}=0.4 \mathrm{ohms}\left(T=-30^{\circ} \mathrm{C}\right) \\
& D_{i i}=7800 \mathrm{~kg} / \mathrm{m}^{3} \\
& D_{C i}=8900 \mathrm{~kg} / \mathrm{m}^{3} \\
& K_{C P 1}=210 \mathrm{~kg} / \text { farad } \\
& K_{C P 2}=1100 \mathrm{~kg} / \text { farad } \\
& K_{C 3}=72 \mathrm{~kg} / \mathrm{farad} \\
&
\end{aligned}
\]

Two sets of optimum design results are illustrated in Table 5. The difference between them is that design \#1 assumes a three-times higher ESR for the output-filter capacitor and a five-times more stringent source EMI requirement than those of design \#2. In each design, all RLC parameters, the switching frequency, the design details of all magnetics, and the minimum weight, are collectively achieved in a single computer run which yields a minimum component-weight design.

\section*{Table 5, Optimum Converter Component Weight}


Notice the impact of ESR and source EMI on the two data columns of Table 5. For the same loss constraints every parameter of Design \#2 is smaller than its counterpart of Design \#1. The only exception is the ana-lytically-determined optimum switching frequency, where the 43.9 kHz for Design \#2 is almost twice that of the Design \#1. As a result, the combined magnetics and capacitor weight of Design \#2 is barely one-third of that for Design \#1.

Prior to concluding this example, the following SUMT application experiences are stated.
- Being primarily a research tool not specifically designed for power converter optimizations, a user generally needs to experiment with SUMT to realize its capabilities as well as its limitations.
- To save computation time, the number of variables should be reduced to a minimum by combining all interdependent ones.
- Numerically, the \(g_{j}\) 's vary over a very wide range. To avoid conditions where certain \(g_{j} ' s\) in the equation for \(f_{p}(x, k)\) may be so large as to obscure the effects of the rest of the \(g_{j}{ }^{\prime} s\), each \(g_{j}\) must be properly scaled to insure that the effect of violating a given constraint is of the same order of magnitude as that of violating any other constraint.
- Depending on the problem involved, the initial set of guesses for optimum solutions can be very important in determining the rate of convergence. The SUMT used in various converter-optimization applications tended to perform well in the presence of good starting guesses of variables for constraints whose global and local properties are "well behaved". On the other hand, the guarantee that is "almost always converges" is not inherent in SUMT, nor is it expected from other algorithms in the forseeable future. This difficulty is the single most critical area when design optimizations via nonlinear programming techniques are attempted.

\subsection*{6.7 NEEDED IMPROVEMENTS ON DESIGN OPTIMIZATION}

While a practical design optimization approach has been successfully demonstrated to solve specific complex problems, it is not the intention of this report to paint an over-simplified picture concerning power converter design optimization in general.

To start with, one must realize that an optimization is generally associated with physical phenomena. Thus, the design optimization is of practical value only when there exists an accurate understanding of the physical principles and mathematical models upon which the design constraints and the design constants all depend. Since weight and loss generally are used as power-converter optimization criteria, knowledge of power-device weight-loss characteristics is thus a prerequisite to a successful optimization. Of these characteristics, the more important ones are:
- The accurate core-loss data as a function of the switching frequency and the asymmetrical rectangular-waveform excitation.
- The "effective resistance" of magnetic windings in high-frequency, high-current applications.
- An acceptable semiconductor switching-loss profile for power trans... istors and diodes in a given magnetics-semiconductor power-circuit configuration, and the likely impacts exerted by the commonly-used means of energy recovery of switching losses.

These characteristics, at the present time, are insufficiently defined. Considering that they are needed in the day-to-day design effort without any excursion into the realm of optimization, better understanding of component behavior must be regarded as a necessity that is long overdue. Without further knowledge of these characteristics, the selection of the optimum switching frequency, which is the most important parameter in power converter design and weight-loss tradeoff, will continue to be determined empirically. Since the optimization results are as accurate as the participating design constants and constraints, the design optimization approach thus brings into sharp focus the pressing need for knowledge of these characteristics.

Furthermore, since most practical power converter optimization problems are sufficiently complicated to defy closed-form solutions, the availability of powerful and fast-convergent nonlinear programming algorithms is indispensable. However, no general-purpose algorithms can be expected to cope with specialized nonlinear power converter problems. Consequently, the development of dedicated computer optimization routines for a given class of power converters will likely become a highly specialized yet essential research area.

\subsection*{6.8 CONCLUSIONS AND FUTURE EMPHASIS}

A practical power converter design optimization approach is proposed, and its implementation is discussed. Through practical engineering design examples, the approach is demonstrated to greatly facilitate several'endeavors heretofore regarded as difficult or unattainable:
(1) It allows a cost-effective optimum design for a power component or a complete power converter, down to the component level. The design includes the identification of the optimum switching frequency and detailed magnetics design parameters. Not only meeting all powerdependent performance requirements, the optimization of either the weight, the loss, or any other realizable entity of a power converter can be achieved.
(2) The design takes into account the interdependent nature of the various functions within a power converter (e.g., the impact of outputfilter parameters on the input-filter design). The total computer cost for a complete power circuit design is within the \(\$ 20\)-to- \(\$ 40\) range, which compares favorably with days of suboptimum, piecemeal, hand-iterated design effort. Savings in both design and development cost are thus achieved.
(3) It provides a fast and accurate weight-loss trade-off as well as a means for ready assessment of the impact of a given requirement or a particular component characteristic on an optimum design.
(4) It can assist the power system designer to conceive the optimum system configuration and the proper converter specifications to achieve an overall optimum system, thus setting the stage for a more "scientific" design approach without relying heavily on subjective judgements.

Proper fostering for power-converter design optimization takes the form of accurate device characterizations and dedicated programming developments. These needed improvements are briefly outlined.

The importance of identifying an optimum design among all designs is underscored by the fact that, all other performances being equal, the design that is best in a specified sense is the one that usually prevails. However, being extremely hardware oriented and forever engrossed with necessary evils such as "schedule" and "cost", a converter designer often considers the design tasks successfully fulfilled even though the design itself may be, knowingly ur unwittingly, quite "suboptimum". With the advent of high-speed computers and improved algorithms, applied optimization has become increasingly popular in all engineering disciplines. It is for the promotion of this trend in the field of power converter design that the optimization effort reported here is
dedicated.

> efforts:
(1) To find a means to "normalize" the various constraints such that each constraint is properly weighted and evenly penalized. In this way, placing particularly-severe penalties to certain constraints can be avoided, and convergences of all constraints become attainable.
(2) Based on improved normalization, design optimization will be performed (B). Design equations relating variables to requirements will be generated in a manner similar to those used in this report for the buck converter.

Having gained valuable experiences, the confidence level of successfully fulfilling these emphases is high. It is expected that the resulting subprograms will be widely utilized in the design of the three must commonly used power converter configurations.


R1, R2, R3P, R3S, R4
L1, L2, L3P, L3S
C1, C2, C3
N1, Zl, Al, ACl (For Ll)
N2, Z2, A2, AC2 (For L2)
N3P, N3S, Z3, A3, AC3P, AC3S (For L3)
Switching Frequency \(F\)
\(N\) : turns,
Z: core length,
A: core area,
AC : winding size
Minimize the Sum of:
- Core Weight
- Winding Weight
- Capacitor Weight
- Heat Sink Weight


Figure 34(B) Design Optimization for Boost Power Converter

\section*{7. SYSTEM ANALYSIS SUBPROGRAM (SAS)}

The system Analysis Subprogram is intended to extend the design optimization and performance analysis from the equipment level to the system level, thus providing power processing engineer with design and tradeoff tools. The subprogram categories thus include system configuration design and system performance (dynamic intra-system interactions), which represent, respectively, the extension of DOS and PAS.

A complete system configuration study is, by nature, quite complex. It involves at least the following considerations.

Optimum criterion: Cost, weight, reliability
Design considerations: Payload, environment, operating cycle, \& life requirements
Special load equipment
Power source and energy storage
Power distribution

A system engineer is responsible for the definition and information collection regarding the first three items. The last two items, in conjunction with the power processing equipment, are the basic constituents of the systems analysis subprogram.

As stated previously, an overriding constraint in conducting the system analysis is the prohibitive complexity and therefore, the attendent modeling and analysis cost including that of the computation time. By necessity, then, the SAS effort must follow closely those involved in DOS and PAS so that merely an extension of the established techniques instead of the generation of new dedicated techniques is needed.

For this reason, the system analysis conducted in this MAPPS phase is composed of the following two efforts:
(1) The extension of design optimization subprogram to the configuration design of a source-line regulator system.
(2) The extension of performance analysis subprogram to the costeffective simulation of a 12th order power processing system.

\subsection*{7.1 DESIGN OPTIMIZATION OF SOURCE-LINE-REGULATOR SYSTEM}

In this example, the buck power converter shown in Figure 33 is integrated with a solar-array battery source of a known power density (kilogram/ watt). The converter mechanical packaging weight is also included in the overall design optimization. Since the converter loss is supplied from the power source, and since the converter packaging weight (heat sink included) increases with the converter losses, for a given output power it follows that the combined source-and-mechanical-package weight becomes heavier if more converter loss is allowed. On the other hand, experience also indicates that the total converter component weight (magnetics and capacitors) tends to diminish with more allowable losses. Consequently, for a given output power as well as a given source density and packaging density, there must exist an optimum converter efficiency at which the combined system weight including power source, converter packaging, and converter component, is at its minimum. The objective is to identify numerically such an optimum efficiency. The minimum efficiency requirem?nt "e" used previously in Section 6 for component weight optimization only thus is no longer a design constraint. Instead, the efficiency becomes an unknown variable in this design.

Comparing this example to that of Section 6, the difference formation of design variables, design constants, performance requirements, and the objective function are as follows:
- Efficiency "e" becomes a variable in addition to the twenty-three variables listed in Section 6.
- Two more design constants, KS and KH, for source and packaging densities respectively (in kilograms per watt), are added to the twenty-eight constants.
- Efficiency "e" is no longer a performance requirement. All other requirements in Section 6, however, remain applicable to this example.
- The loss constraint used in Section 6 is eliminated. The sum of all losses, i.e., the quantity
\[
\Sigma P=P_{i f}+P_{t}+P_{d}+P_{o f i}+P_{o c}
\]
is being used in this example as part of the new objective function. All other constraints remain effective in this example.
- The new objective function for this example is:
\[
\begin{align*}
W & =\text { Core Weight }+ \text { Winding Weight } \\
& + \text { Capacitor Weight }+ \text { Source Weight } \\
& + \text { Packaging Weight } \\
& =\Sigma D_{i j} A_{i} Z_{i}+4 \Sigma D_{c i} A_{i}^{0.5} F_{c i} N_{i} A_{c i} \\
& +\Sigma D_{c p i} C_{i}+\left(P_{0}+\Sigma P\right)\left(K_{s}\right) \\
& +(\Sigma P)\left(k_{h}\right) \quad, i=1,2,3 \tag{230}
\end{align*}
\]

Since \(\Sigma P\) has been shown previously in Section 6 to be a function of multiple factors:
\[
\begin{equation*}
\Sigma P=f\left(N_{i}, A_{i}, A_{c i}, L_{3}, Z_{3}, F, R_{c}\right), i=1,2,3 \tag{231}
\end{equation*}
\]
it can be seen that, after all variables are numerically identified by the SUMT processing, the term ( \(\Sigma P\) ) can be calculated to reveal the particular converter efficiency that will produce a minimum combined source-converter weight.

The SUMT program listing is given as Appendix 0. Numerical values for constants, requirements, and formulation of constraints are identical to those used in Design \#1 of Section 6. Two sets of optimum design results for minimum system weight are illustrated. in Table 7. The difference between them is the different source density " \(k_{s}\) " and packaging density " \(k_{h}\) " assumed. Several impacts exerted by different \(K_{s}\) ' \(s\) and \(k_{h}\) 's are noted:
- As expected, a decrease in \(\mathrm{kg} / \mathrm{w}\) of source and package densities allows more loss in Design \#2 to achieve an optimum-weight system. The system

Table 7. Optimum Source-Converter System
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{VARIABLES} & DESIGN \#1 & DESIGN \#2 \\
\hline & & \(\left(k_{s}=65 \mathrm{~g} / \mathrm{w}, \mathrm{k}_{\mathrm{h}}\right.\) & \(.3 \mathrm{~g} / \mathrm{w}, \mathrm{k}_{\mathrm{h}}\) \\
\hline Z1 & (cm) & 4.98 & 4.63 \\
\hline A1 & ( \(\mathrm{cm}^{2}\) ) & 0.413 & 0.360 \\
\hline N1 & (turns) & 25 & 35 \\
\hline ACI & \(\left(\mathrm{mm}^{2}\right)\) & 1.13 & 0.70 \\
\hline 22 & (cm) & 3.79 & 3.53 \\
\hline A2 & ( \(\mathrm{cm}^{2}\) ) & 0.238 & 0.207 \\
\hline N2 & (turns) & 14 & 20 \\
\hline AC2 & \(\left(\mathrm{mm}^{2}\right)\) & 1.133 & 0.701 \\
\hline Z3 & (cm) & 7.87 & 6.87 \\
\hline A3 & ( \(\mathrm{cm}^{2}\) ) & 0.395 & 0.53 \\
\hline N3 & (turns) & 43 & 40 \\
\hline AC3 & ( \(\mathrm{mm}^{2}\) ) & 2.6 & 1.68 \\
\hline L1 & ( \(\mu \mathrm{H}\) ) & 154 & 188 \\
\hline L2 & ( \(\mu \mathrm{H}\) ) & 51 & 62.7 \\
\hline L3 & ( \(\mu \mathrm{H}\) ) & 101 & 126 \\
\hline C1 & \((\mu \mathrm{H})\) & 133 & 108 \\
\hline C2 & ( \(\mu \mathrm{H}\) ) & 19 & 15 \\
\hline C3 & ( \(\mu \mathrm{H}\) ) & 1346 & 1075 \\
\hline R1 & (m8) & 18.3 & 39 \\
\hline R2 & (ms) & 8.1 & 17 \\
\hline R3 & (m及) & 13.5 & 22.5 \\
\hline R4 & ( \(\Omega\) ) & 0.81 & 0.99 \\
\hline F & (kHz) & 22.1 & 22.2 \\
\hline W & (kg) & 7.56 & 2.17 \\
\hline EFF & (\%) & 94.12 & 93.60 \\
\hline
\end{tabular}
efficiency is reduced from \(94.1 \%\) of Design \#1 to \(93.6 \%\) of Design \#2. The \(94.1 \%\), incidentally, represents nearly the maximum possible efficiency consistent with the various design constants specified.
- For a four-to-one reduction in source density, the optimum efficiency only decreases from the approximate maximum limit by \(0.5 \%\). Since the realistic source density (including source and source conditioning) currently available is in the proximity of that used in Design \#1, it is not surprising that the system designer has currently placed the highest emphasis on maximizing the converter efficiency.
7.2 DYNAMIC PERFORMANCE ANALYSIS OF A 12TH ORDER REGULATOR SYSTEM

The emphasis of this example is to address the dynamic aspect of the system performances, particularly those involving hard nonlinearities. Obviously, the most effective tool is system simulation based on propagation of the recurrent time domain state equations described in Section 4. A boost regulator-inverter system used in the NASA HEAO program, containing an equivalent of twelve state variables, is used for this effort. The objective here is to demonstrate the feasibility of simulating a large nonlinear system employing state-space techniques.

The system contains a fourth-order input filter, a fourth-order power stage including a second-stage LC filter, a second-order load simulating the outputs of a square-wave parallel inverter, and a control circuit containing two energy-storage elements. The simplified schematic of such a system is show in Figure 35.

Differential equations of the power-stage configuration are represented by equations (232) to (241). Two dummy variables, \(\mathbf{e}_{\mathbf{i}}\) and \(i_{D}\), are introduced to represent the nonlinear characteristics of the system. The differential equations for the control loop are described by equations (242) to (244).


Figure 35 A Simplified 12-th Order System

Input Filter
\(\frac{d i_{L 1}}{d t}=\frac{1}{L_{1}}\left[E=-R_{L 1} i_{L 1}-R_{A}\left(i_{L 1}-i_{L 2}\right)-v_{C 1}\right]\)
\(\frac{d V_{C 1}}{d t}=\frac{1}{C_{1}}\left(i_{L 1}-i_{L 2}\right)\)
\(\frac{d i_{L 2}}{d t}=\frac{1}{L_{2}}\left[V_{C 1}+R_{A}\left(i_{L 1}-i_{L 2}\right)-R_{L 2} i_{L 2}-V_{C 2}\right]\)
\(\frac{d V_{C 2}}{d t}=\frac{1}{C_{2}}\left(i_{L 2}-i_{L 3}\right)\)

Energy Storage Inductor
\(\frac{d i_{L 3}}{d t}=\frac{1}{L 3}\left(V_{C 2}-\dot{R}_{L 3} i_{L 3}-e_{i}\right)\)

Output Filter
\[
\begin{equation*}
\frac{d V_{C S}}{d t}=\frac{1}{C_{S}}\left(i_{D}-i_{L 4}\right) \tag{237}
\end{equation*}
\]
\[
\begin{align*}
\frac{d i_{L}}{d t} & =\frac{1}{L 4} R_{X}\left(i_{D}-i_{L 4}\right)+v_{C S}-R_{L 4} i_{L 4}-R_{C 5} C_{5} v_{C 5} \\
& =\frac{R_{S}}{L_{4}} i_{D}-\frac{R_{S}+R_{L 4}}{L_{4}} i_{L 4}+\frac{V_{C S}}{L_{4}}-\frac{R_{C 5}}{L_{4}}\left(i_{L 4}-i_{L 0}\right)-\frac{1}{L_{4}} v_{C 5} \\
& =\frac{R_{S}}{L_{4}} i_{D}-\frac{1}{L_{4}}\left(R_{S}+R_{L 4}+R_{C 5}\right) i_{L 4}+\frac{v_{C S}}{L_{4}}-\frac{1}{L_{4}} v_{C 5}+\frac{R_{C 5}}{L_{4}} i_{L 0} \tag{238}
\end{align*}
\]
\[
\begin{equation*}
\frac{d v_{C 5}}{d t}=\frac{1}{C_{5}}\left(i_{L 4}-i_{L 0}\right) \tag{239}
\end{equation*}
\]

Simulated Converter Load
\[
\begin{align*}
& \frac{d i_{L O}}{d t}=\frac{1}{L_{0}} v_{C 5}+\frac{R_{C 5}}{L_{0}}\left(i_{L A}-i_{L O}\right)-\frac{R_{0}}{L_{0}} i_{L O}-\frac{v_{C O}}{L_{0}}  \tag{240}\\
& \frac{d v_{C 0}}{d t}=\frac{1}{C_{0}}\left(i_{L O}-\frac{1}{R_{L}} v_{C O}\right) \tag{241}
\end{align*}
\]

In deriving the differential equation for the control loop, Figure the following assumptions are made:
1. The integrator is operating in its linear region.
2. The control circuit has an insignificant load effect.

The first assumption is always true even during the transient step change of tie input voltage or the step change of the load. The second assumption holds true in normal-load operation. For open-load operation, the result deviates slightly but still within reasonable accuracy. The differential equations for the control loop are:
\[
\begin{align*}
\frac{d e_{c}}{d t}= & -\frac{n}{C_{3} R_{X}} v_{C 2}-\frac{n R_{L 3}}{C_{3} R_{X}} i L_{L 3} \\
& -\frac{R_{C 5}}{C_{3}}\left(\frac{R_{2}}{R_{1}}+\frac{R_{2}}{R_{X}}+\frac{1}{R_{5}}\right)\left(i_{L 4}-i_{L 0}\right) \\
& -\left(\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{R_{X}}+\frac{1}{R_{5}}\right) \frac{1}{C_{3}} v_{C 5}+\frac{1}{C_{3} R_{5}} e_{R} \\
& +\frac{n}{C_{3} R_{X}} e_{i}+\frac{E_{R}}{C_{3} R_{X}} \tag{242}
\end{align*}
\]
where \(R_{X} \triangleq\left(R_{1} R_{2}+R_{1} R_{4}+R_{2} R_{4}\right) /\left(R_{1}+R_{2}\right)\)
\[
\begin{equation*}
\frac{d e_{R}}{d t}=\frac{R_{C 5}}{C_{4} R_{5}} i_{L 4}-\frac{R_{C 5}}{C_{4} R_{5}} i_{L 0}+\frac{1}{C_{4} R_{5}} v_{C 5}-\frac{1}{C_{4} R_{5}} e_{R} \tag{243}
\end{equation*}
\]

The output voltage is:
\[
\begin{equation*}
\mathbf{e}_{0}=R_{C 5}\left(i_{L 4}-i_{L 0}\right)+v_{C 5} \tag{244}
\end{equation*}
\]

For the three distinct operation intervals: \(T_{O N}, T_{F 1}\), and \(T_{F 2}\), the dummy variables \(e_{i}\) and \(i_{D}\) are assigned different variables. For detailed information, please refer to [3]. The differential equations (232) through (243) can be written into differential-difference equations each corresponding to a specified time interval, i.e., \(t_{O N}\) or \(t_{O F F}\). The differential-difference equations are shown in the following pages. The state variables are defined below:
\[
\begin{aligned}
& { }_{1} \mathrm{LI}^{\stackrel{\Delta}{=} \mathrm{X}_{1}} \\
& i_{L 4} \triangleq x_{7} \\
& v_{\mathrm{Cl}} \stackrel{\Delta}{=} \mathrm{x}_{2} \\
& \mathrm{v}_{\mathrm{C} 5} \stackrel{\Delta}{=} \mathrm{x}_{8} \\
& i_{L 2} \stackrel{\Delta}{=} x_{3} \\
& \mathfrak{i}_{\mathrm{L} 0} \stackrel{\Delta}{=} \mathrm{x}_{9} \\
& v_{C 2} \stackrel{\Delta}{=} x_{4} \\
& v_{\mathrm{CO}} \triangleq \mathrm{x}_{10} \\
& i_{L 3} \triangleq x_{5} \\
& e_{R} \triangleq x_{11} \\
& v_{C_{S}} \stackrel{\Delta}{=} x_{6} \\
& \mathrm{e}_{\mathrm{C}} \stackrel{\Delta}{ } \mathrm{x}_{12}
\end{aligned}
\]
(1) During \(T_{O N}\),
\[
\begin{aligned}
& i_{D}=0 \\
& e_{i}=E_{Q} \\
& \dot{x}_{1}=-\left(R_{L 1}+R_{A}\right) x_{1} / L_{1}-x_{2} / L_{2}+R_{A} x_{3} / L_{1}+E_{I} / L_{1} \\
& \dot{x}_{2}=x_{1} / C_{1}-x_{3} / C_{1} \\
& \dot{x}_{3}=R_{A} x_{1} / L_{2}=x_{2} / L_{2}-\left(R_{A}+R_{L 2}\right) x_{3} / L_{2}-x_{4} / L_{2} \\
& \dot{x}_{4}=x_{3} / C_{2}-x_{5} / C_{1} \\
& \dot{x}_{5}=x_{4} / L_{3}-R_{L 3} x_{5} / L_{3}-E_{Q} / L_{3} \\
& \dot{x}_{6}=-x_{7} / C_{5} \\
& \dot{x}_{7}=x_{6} / L_{4}-\left(R_{S}+R_{C 5}+R_{L 4}\right) x_{7} / L_{4}-x_{8} / L_{4}+R_{C 5} x_{9} / L_{4} \\
& \dot{x}_{8}=x_{7} / C_{5}-x_{9} / C_{5} \\
& \dot{x}_{5} \\
& x_{9}=R_{C 5} x_{7} / L_{0}+x_{8} / L_{0}-\left(R_{C 5}+R_{0}\right) x_{9} / L_{0}-x_{10} / L_{0} \\
& \bullet \\
& x_{10}=x_{9} / C_{0}-x_{10} /\left(c_{0} R_{L}\right) \\
& \bullet \\
& x_{11}=R_{C 5} x_{7} /\left(C_{4} R_{5}\right)+x_{8} /\left(C_{4} R_{5}\right)-R_{c 5} x_{9} /\left(C_{4} R_{5}\right)-x_{11} /\left(C_{4} R_{5}\right) \\
& \dot{x}_{12}=-n x_{4} /\left(C_{3} R_{x}\right)-n R_{L 3} x_{5} /\left(C_{3} R_{x}\right)-R_{C 5} x_{7}\left(\frac{R_{2} R_{x}}{R_{1}+R_{2}}+\frac{1}{R_{5}}\right) / C_{3} \\
& x_{1}
\end{aligned}
\]
(2) During \(T_{F 2}\),
\[
\begin{aligned}
& i_{D}=i_{L 3} \\
& e_{i}=\left(R_{s}+R_{D}\right) i_{L 3}-R_{s} i_{L 4}=v_{C s}+E_{D} \\
& \dot{x}_{1}=-\left(R_{4}+R_{A}\right) x_{1} / L_{1}-x_{2} / L_{2}+R_{A} x_{3} / L_{1}+E_{2} / L_{1} \\
& \dot{x}_{2}=x_{1} / C_{1}-x_{3} / C_{1} \\
& \dot{x}_{3}=R_{A} x_{1} / L_{2}+x_{2} / L_{2}-\left(R_{A}+R_{L 2}\right) x_{3} / L_{2}-x_{4} / L_{2} \\
& \dot{x}_{4}=x_{3} / C_{2}-x_{5} / C_{2} \\
& \dot{x}_{5}=x_{4} / L_{3}-\left(R_{L 3}+R_{s}+R_{D}\right) x_{5} / L_{3}-x_{6} / L_{3}+R_{s} x_{7} / L_{3}-E_{D} / L_{3} \\
& \dot{x}_{6}=x_{5} / C_{s}-x_{7} / C_{s} \\
& \dot{x}_{7}=R_{x} x_{5} / L_{4}+x_{6} / L_{4}-\left(R_{s}+R_{L 4}+R_{C 5}\right) x_{7} / L_{4}-x_{8} / L_{4}+R_{C 5} x_{9} / L_{4} \\
& \dot{x}_{8}=x_{7} / C_{5}-x_{9} / C_{5} \\
& \dot{x}_{9}=R_{C 5} x_{7} / L_{0}+x_{8} / L_{0}-\left(R_{C 5}+R_{0}\right) x_{9} / L_{0}-x_{10} / L_{0} \\
& \dot{x}_{10}=x_{9} / C_{0}-x_{10} /\left(C_{0} R_{L}\right) \\
& \dot{x}_{11}= \\
& =R_{C 5} x_{7} /\left(C_{4} R_{5}\right)+x_{8} /\left(C_{4} R_{5}\right)-R_{C 5} x_{9} /\left(C_{4} R_{5}\right)-x_{11} /\left(C_{4} R_{5}\right) \\
& \dot{x}_{12}=-
\end{aligned}
\]
(3) During \(T_{F 2}\),
\[
\begin{aligned}
& i_{L 3}=i_{D}=0 \\
& e_{D}=x_{4} \\
& \dot{x}_{1}=-\left(R_{L 1}+R_{A}\right) x_{1} / L_{1}-x_{2} / L_{1}+R_{A} x_{3} / L_{1}+E_{2} / L_{1} \\
& \dot{x}_{2}=x_{1} / C_{1}-x_{3} / C_{1} \\
& \dot{x}_{3}=R_{A} x_{1} / L_{2}+x_{2} / L_{2}-\left(R_{L 2}+R_{A}\right) x_{3} / L_{2}-x_{4} / L_{2} \\
& \dot{x}_{4}=x_{3} / C_{2} \\
& \dot{x}_{5}=0 \\
& \dot{x}_{6}=-x_{7} / C_{s} \\
& \dot{x}_{7}=x_{6} / L_{4}-\left(R_{s}+R_{L 4}+R_{C 5}\right) x_{7} / L_{4}-x_{8} / L_{4}-R_{C 5} x_{9} / L_{4} \\
& \dot{x}_{8}=x_{7} / C_{5}-x_{9} / C_{5} \\
& \dot{x}_{9}=R_{C 5} x_{7} / L_{0}+x_{8} / L_{0}-\left(R_{C 5}+R_{0}\right) x_{9} / L_{0}-x_{10} / L_{0} \\
& \dot{x}_{10}=x_{9} / C_{0}-x_{10} /\left(C_{0} R_{L}\right) \\
& \dot{x}_{11}=R_{C 5} x_{7} /\left(C_{4} R_{5}\right)+x_{8} /\left(C_{4} R_{5}\right)-R_{C 5} x_{9} /\left(C_{4} R_{5}\right)-x_{11} /\left(C_{4} R_{5}\right) \\
& \dot{x}_{12}=R_{C 5}\left(\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{R_{x}}+\frac{1}{R_{5}}\right) x_{7} / C_{3}-\left(\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{R_{x}}+\frac{1}{R_{5}}\right) x_{9} / C_{3} \\
& +R_{C 5}\left(\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{R_{x}}+\frac{1}{R_{5}}\right) x_{9} / C_{3}+x_{11} /\left(C_{3} R_{5}\right) \\
& E_{R} /\left(C_{3} R_{x}\right) \\
& \hline
\end{aligned}
\]

The differential-difference equations presented above can be written in the compact form
\[
\begin{array}{ll}
\underline{\dot{x}}=F 1 \underline{X}+G 1 \underline{U} & \text { during } T_{O N} \\
\underline{\dot{X}}=F 2 \underline{X}+G 2 \underline{U} & \text { during } T_{F 1} \\
\underline{\underline{X}}=F 3 \underline{X}+G 3 \underline{U} & \text { during } T_{F 2} \tag{247}
\end{array}
\]

Equations (245), (246), and (247) admit closed-form solutions given as equation (121), (122), and (123) in Section 4.7. Digital simulation of the 12 th order sysem based on equations (121) to (123) is then achieved in the same manner described previously in Section 4.7. For clarity, the detailed computer program is not included here.

Two sample simulation runs are shown in Figure \(36(A)\) and (B), illustrating the converter output voltage and energy-storage inductor current, respectively, following a regulator command-on. Of particular interest is the discharge of inductor current in ( \(B\) ) due to nonlinearity in the operational amplifier. The phenomenon was also observed in the regulator breadboard tests, thus lending credibility to the accuracy of the discrete time-domain simulation approach. The total cost for both runs is less than \(\$ 10.00\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & \\
\hline m & & & & & & & & & & & & \\
\hline －1 & & & & & & & & & ＋ & & & \\
\hline ＋ & & & ＋1－1 & & & & & －+ & \(\square\) & & & \\
\hline & & & & ＋ & & & & & & \(1+1\) & & \\
\hline 吕 & & I & & & & ， & & T＋ & & & & \\
\hline \(\bigcirc\) & & － & & & & ＋t＋ & & & & & \(+\) & \\
\hline 品 & & & & & ＋ & & & & & & & \\
\hline ＋ & & IT & & & & & & & TH， & 9 & \(1+1\) & \\
\hline & & ＋1＋ & & － & & & ＋＋ & 1 & \(\square\) & & \(\cdots\) & \\
\hline & & \(+1\) & － & & & & & & 1－1 & ［1！ & 1 & \\
\hline 吕 & & \(\underline{1+}\) & 1 & & & & & T & & & T & \\
\hline \(\cdots\) & & ＋ & & 1 & & \(1+\) & \(1+1\) & \(\underline{1}\) & & & & \\
\hline 믈 & & & & & & & & & & ， & \(\div\) & \\
\hline \(\pm\) & & & & － & \(1+\) & ＋ & & & & & & \\
\hline \(\square\) & 1 & & & ＋1－1 & F & －1 & & & ＋ & \(\underline{\square}+\) & － & \\
\hline & & \(\square\) & 1 & －1 & & 1 & & IL & & T， & & \\
\hline & & & & & & & ＋1＋ & It & & & & \\
\hline 吕 & & & & － & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
（A）Conyerter Output Voltage

（B）Inductor Current

Figure 36．Simulation Runs for Regulator Start－up
（A）Output Voltage，（B）Inductor Current

\subsection*{7.3 CONCLUSION AND FUTURE EMPHASES}

The effort documented in this section has demonstrated the feasibility of extending the performance analysis and design optimization for the equipment to the system level.

The following aspects of system analysis will be emphasized in the future:
- Configuration study of source-battery-charger-discharger system and power distribution units.
- Configuration study and anlysis of:

Centralized vs. decentralized system
dc vs. ac distribution system
dedicated system (e.g., electric propulsion)

The basic tools for conducting these studies have been partially established. To what extent these studies can be realized depends on the intensity of the support, which would likely rely heavily on NASA's planned missions in the future.

\section*{8. COMPONENT LIBRARY SUBPROGRAMS}

The component Library Subprograms (CLS) consist of the arrays of useful data for commonly-used components. The following CLS aspects are included in the discussion here:
- Functional relationship with other subprograms
- Types and characteristics of components to be stored
- Needed component characteristics study
- Component library structures
- Component libraries implemented.

\subsection*{8.1 FUNCTIONAL RELATIONSHIP WITH OTHER SUBPROGRAMS.}

For CLS to be useful, it has to be organized and structured as to make all the data relating to any given component readily available to all other subprograms. When interrogated as to the existence of a single or a collection of data for a given component, it will produce the required information readily and in a format compatible with the requirement of the individual subprogram.

Specifically, the CLS relates to the other subprograms through the following functional requirements:
(1) The CLS shall provide the DOS, through prescribed search criteria, a list of best fit components, each with the closest match of ratings and characteristics in relation to those identified by the DOS as the optimum design. Since the equipment specifications processed by the DOS generally include both input-current ripple and output-voltage ripple, and since these performances vary greatly with the component initial tolerance and environmental temperature (primarily due to changes in C and ESR), the optimum design generated by the DOS using such equipment specifications as design constraints must therefore consult the CLS for the worst-case component characteristics to ensure design integrity under all conditions.
(2) The CLS shall provide the PAS with both nominal and worst-case component characteristics to allow the PAS to obtain the following:
- Nominal performance characteristics that are easily substantiated through hardware testing under nominal, room-temperature conditions.
- Worst-case performance characteristics to ensure compatibility between equipment requirements and capabilities.

\subsection*{8.2. TYPES AND CHARACTERISTICS OF COMPONENTS}

\subsection*{8.2.1 Component Types}

Component types include the following basic categories:
\begin{tabular}{ll} 
- Resistors: & Carbon, Film Wire-Wound, Precision \\
- Capacitors: & Tantalum (Foil and Solid), Film, Ceramic, High Voltage \\
- Diodes: & General Purpose, High Currents, High Voltage, Low \\
& Voltage Schottky. \\
- Transistors: & General Purpose, Power Switching \\
- Cores: & Square Loop, Linear, Ferrite. \\
- Conductors: & Solid, Litz \\
- IC's & Digital, Analog, HTL, TTL, MOS
\end{tabular}

\subsection*{8.2.2 Component Characteristics}

For each component category, the groups of data residing in a component data bank are comprised of sets. Each set defines a given component. Each set in turn is made up of subsets, the elements of each subset describing some pertinent property of the component in that set. For example, the diode group in the component data bank may consist of 40 sets, representing 40 difference diodes. A given diode set would be comprised of a generic number subset, failure rate subset, voltage rating subset, etc. The subsets are 1 isted as the following four major component categories:
Resistors
Available resistance
Tolerance
Temperature coefficient
Power rating
Unit weight as a function of power level
Failure rate
Cost
- Capacitors
Available capacitance
Tolerance
DC voltage rating
RMS current rating
Nominal and worst-case ESR with temperature
Case size
Unit weight
Failure rate
Cost
- Transistors
Generic number
\(V_{C E}\) with a \(10: 1\) base drive (nominal and min/max).
Switching time and storage time
Safe peak dissipation
Voltage rating
Current rating
Power rating and derating with temperature
Unit weight
Failure rate
Cost

\section*{- Magnetics}
```

Loss
Eross-sectional area
Mean length of magnetic path
Permeability
Core configuration
Window area
Saturation flux density
Weight
Cost

```

\subsection*{8.3 NEEDED COMPONENT CHARACTERISTICS STUDY}

The major component characteristics needed to be addresses to those of magnetics, semiconductors, and capacitors.

\section*{Magnetics}

The overriding preoccupation in most magnetics design aiming for a given set of performance specifications is to achieve either a minimum loss for a given weight, or a minimum weight for a given loss. Immediately, the following concerns can be raised:
(1) Is there an accurate model for core loss under asymmetrical squarewave excitation, as a function of frequency and flux-density excursion for different core materials?
(2) Is there a thorough understanding on the eddy current loss in the copper wire caused by flux linkage in the wire, particularly in high frequency, high current operations? Under what conditions is the use of Litz wire mandatory to effect loss reduction?
(3) Can one determine the adequate amount of "fly-back energy" of a square-loop core that is indispensible in sustaining oscillation in so many timing and drive applications, and yet has so frequently been glossed over in terms of "circuit descriptions".

Since power magnetics represent a major portion of the total equipment weight and significant percentage of the total equipment loss, and since there are still vast unknowns concerning their design and operation (particularly acute in view of the future high power, high frequency equipment), it is recommended that a major effort dedicated to magnetics be expanded to include the following items of interest:
- To collect, either through analysis, or more effectively through experiment, the pertinent core and copper loss data. The variables should include core materials, core and coil configurations, including Litz wire, and excitation waveforms, frequencies, and flux excursions.
- To develop an analytical model for high-frequency transformers and inductors to gain better understanding in all switching and incidental transient phenomena.
- To address certain commonly-encountered power processing phenomena closely related to the magnetics design, such as the use of "flyback energy" to sustain oscillation, the excessive voltage spike in mag-netic-semi-conductor hybrid circuits, and the "effective inductance" which is smaller than the designed value due to the manifestation of small ac core losses as a resistance shunting the inductor.

\section*{Semiconductors}

From strictly the component viewpoint, the single semiconductor modeling and analysis concern is the future trend of high power. Accompanied by the adequate protection and derating requirement, the high power demand could conceivably exceed the voltage and/or current capabilities of transistors. Silicon-controlled rectifiers are presently available with single chip (wafer) at ratings of 1000 V 110 A rms, and \(5 \mu \mathrm{~s}\) turn-off. They undoubtedly can, with the help of the proper power circuit design, be utilized to their advantages in a great many future high power, high frequency applications. The tools for the weight, reliability, performance and cost tradeoffs between
the equipment using these two types of power switches shall be developed.

\section*{Capacitors}

Capacitors are important in the analysis and modeling effort due to their impact on: (1) the output ripple caused mostly by the equivalent series resistance (ESR) within the capacitor, (2) the stability of the PPE control system through the capacitance or the ESR change with the ambient temperature, and (3) the damping effect contributed by the ESR to an LC filter, which may have unwittingly prevented many detrimental oscillations in past or existing equipment. These effects needed to be reflected.

\subsection*{8.4 COMPONENT LIBRARY STRUCTURES}

Library data structures are expected to be stored upon on-line random access devices such as disc and drum files, (without random access devices, only sequential files such as those recorded on magnetic tape would need to be considered). The three basic forms of library structure are considered:
(1) Sequential Structures. Members of such a structure can only be read in order and thus to read the tenth element in sequence, it is necessary to read over the intervening nine members. This is a simple structure to implement and very conservative in the amount of space needed to contain the structure. Non-sequential retrieval and updating of isolated members tend to be slow operations and copying of the entire structure is often needed. A variation of a structure having a single sequence is introduced by having a (usually) brief index of pointers to members within the sequence. These index pointers can then be used to directly locate points within the structure from which sequential operation can then proceed.
(2) Indexed Structures. Members of this type of structure are located through the use of a key (e.g., a component part number) which is associated, in an index, with the location in the structure of the member(s) having that key value. This index, directory, or records, augment the data itself and permit immediate retrieval of items for
which index keys have been estabished. Such structures are very attractive where rapid resonses to random inquiries are needed. While the construction of the structure and selection of index parameters represent a certain amount of effort, it is considered worthwhile in view of the potential advantages particularly suited for power processing component library applications. A great many variations of this class of structure have been developed, and some will warrant consideration.
(3) Calculated Structures. Members of this form of structure are retrieved through the calculation of pointer values which are used to directly locate the member. (Hashing is frequently used to describe this procedure). No auxiliary directories are needed but a problem does exist since calculated values cannot normally be guaranteed to be unique. Thus, the calculated location of two different component parts might be identical with the result that some form of overflow chaining must be provided.

This discussion is brief, but should serve to emphasize the factors to be considered in the important process of future file design. It is noted that data structures are often of a hybrid form and that those features best suited for each library will be used.

At present, when a designer sets out to identify a component suitable for his application, he normally does so by first identifying a few most criticial component characteristics. For example, the voltage rating, the current rating, and the saturation drop are generaliy major concerns in the selections of power transistors to be used in efficient switching regulators. Candidates preselected to fulfill these requirements are then evaluated for other secondary characteristics such as switching speed (although the preferential role of saturation drop and switching speed is often interchangeable), unit weight, case configuration, or cost, from which the final component is made.

The computer search routine, being a replica of the designer's methodology, should follow essentially the same pattern to avoid being detracted from the numerous minor component characteristics. Consequently, a rapid
search and retrieval must be accomplished by indexing those few characteristics in which the designer is keenly interested. This indexing will be referred to as the major index. Only after the identification of those components exhibiting the needed key characteristics can further evaluation of details become practical. This evaluation can be achieved through a second set of indexing (minor index) of the remaining secondary characteristics, or, perhaps more efficiently, for an on-line user, by simply printing out the key and secondary characteristics of all components stored under the particular major index. In the later cases, the user then makes his on-line decision of his final selection of component(s).

\subsection*{8.5 COMPONENT LIBRARIES COMPILED}

Data bases for the following component categories have been compiled:
- Foil tantalum capacitors
- Polycarbonate capacitor
- Wire-wound power resistors
- Conductor Sizes
- Powder Cores

Samples of the compilations are given in Appendix \(Q\). The user's retrieval for these component libraries is discussed in Section 9, concerning the Data Management Program.

\subsection*{8.6 CONCLUSION TO SECTION 8}

In this section, the component's functional relationship with other subprograms, their types and characteristics, the needed component study areas, the library structures and the libraries compiled, are discussed. To no one's surprise, complete component characterization and fully-automated component retrieval for various modeling and analysis subprograms are costly endeavors beyond the means of the current MAPPS program. In the future, a limited component-library implementation and component retrieval based on user's on-line decision making, rather than automatic processing, may be a more practical initial step.

The objective of this document is to present the design of a computer based system for the Modeling and Analysis of Power Processing Systems (MAPPS). The MAPPS System is designed for use by the Designer/Analyst of Power Processing Systems. The purpose of the system is to provide efficient analytic tools to facilitate the design, modeling, and analysis of Power Processing Systems and their components. The procedure is to collect and/or build these tools in the form of computer programs and to integrate them into a coordinated data processing system.

The various analytic functions (MAPPS Major System Functions) incorporated now and in the future into the MAPPS System will be maintained as distinct modules with distinct responsibilities. MAPPS major system functions are exemplified by such major modules as Design Optimization (DOS), Performance Analysis (PAS), Systems Analysis (SAS), Component Library Subprogram (CLS) and the Data Base Manager (DBM). (Please note the trailing "S" in all the above acronymis stands for "Subprogram".) The integration of the various modules into a coordinated processing system will be accomplished by developing appropriate control and communication routines. An Executive User Interface (EUI) routine will provide the user the means for selecting specific processes for execution, An Executive module will carry out subprogram load requests and memory space allocation as well as input/ output file linkage requests. Subprogram User Interface (SUI) routines will provide the means for user interaction with the system. One SUI will exist for each analytic subprogram integrated into the MAPPS System. Each SUI is capable of handling all of the communications relative to its respective subprogram.

In addition to several analytic subprograms there will be a Data Base Manager subprogram under control of the MAPPS Executive. The Data Base Manager (DBM) will respond to, and perform all, Data Base access requests generated during any and all execution of MAPPS System analytic routines. The basic operations performed by the DBM on the MAPPS System Data Base include STORE, MODIFY and RETRIEVE.

The Executive, Subprogram User Interface routines, the DBM and the Analytic Subprograms comprise the MAPPS System. The MAPPS System operates in the environment of a host computer operating system in either a timesharing or a batch mode. The host system is expected to provide a number of general purpose functions needed for enhancing the operation of the MAPPS System which will not be duplicated within the MAPPS System initially implemented. Such general purpose functions not included in earlier MAPPS configurations include external file management, text editing, program compilation/assembly and the numerous other functions normally available in a reasonably comprehensive computer operating system.

The normal use of the MAPPS System is projected to involve interactive communication between the system and the Designer/Analyst; however, batch use of the MAPPS system will also be available. The design of the MAPPS System takes into account the desire to utilize it on many different host computer systems. The design also seeks to make the interaction with the Designer/Analyst (User) as easy as possible. Ideally the user's effort may be concentrated on the probien at hand rather than on the administrative details of invoking the MAPPS System capabilities.

\subsection*{9.1 USE OF THE MAFPS SFSTEM}

The MAPPS System will operate in one of two operating modes: interactive (timesharing) or batch. The ability to use either mode is predominanty dependent upon the capabilities of the host computer. At TRN Systems both medes will be available to the user.

In the interactive mode the use of the MAPPS System begins by signing on to the computer timesharing system. The Designer/Analyst (user) requests that the MAPPS System be loaded and executed in the conventional program load and execute manner. A conversation then begins between the user and an executive routine through which the user instructs the system to attach certain external files and to perform specific analytic and/or data base manipulation functions. Upon completion of the input cycle, the MAPPS System will proceed to execute and satisfy the user's requests. If intermediate results require a decision by the user, interactive conversation will again take place. During the course of a interactive session the user may display results, permanently or temporarily store results, or retrieve previously stored results from the data base. Interactive performance of several MAPPS System functions is expected to become connon practice.

Batch mode use of the system is expected to take place generally whenev the host computer operating system does not support timesharing terminals. Also, on those occasions when execution of a particular function is expected to take a long time or generate extensive output; the user may wish to select batch mode operation. On such occasions it will be essential to thoroughly analyze the situation in order to insure the completeriess and soundness of the input parameters and decisions. During execution in the batch mode there is not an opportunity for the user to alter the course of the process from the inputs originally submitted.

\subsection*{9.2 DESIGN REQUIREMENTS}

Of all the requirements imposed on the MAPPS System design, five general categories stand out as the most imposing or critical requirements. The success of the MAPPS System development effort is greatly dependent upon the system's ease of use, flexibility and ease of modification, portability, interactive/batch operation, and fault protection features.

\subsection*{9.2.1 Ease of Use}

The MAPPS System must be easy for the Designer/Analyst to use and should not require extensive knowledge of computer systems or programming. The operations which suppori the computerized functions performed for the user should be as transparent to him as is reasible within cost-effectiveness constraints. The system should allow for the user's depth of knowledge of the system by extending aid to the inexperienced user while permitting the knowledgeable user to take procedural shortcuts. The MAPPS System should also be relatively easy to maintain from the system programmer's point of view so that minimal effort in that area is needed.

\subsection*{9.2.2 Flexibility and Ease of Modification}

The MAPPS System must be easily modified or expanded without excessive impact on the entire system. It is foreseen that a number of additional MAPPS System functions will be added to the system after the initial operational capability is provided. These additions should be taken into account early in the design process to allow their smooth integration into the system at later dates.

\subsection*{9.2.3 Portability}

It is a requirement that the MAPPS System produced in the Phase II effort be "portable". This means the system will be designed so that a minimum conversion effort is required to move it from one computer hardware operating environment to another. It should be understood that a completely portable program in this sense is not totally realizable. While total portability is not attainable, the adjustments required to tailor the system to a new operating environment should be minimal.

\subsection*{9.2.4 Intaractive/Batch Operation}

Normal use of the MAPPS System is expected to be interactive between the Designer/Analyst and the system via timesharing terminals. At the user's option, the MAPPS System may also be used in a batch mode.

\subsection*{9.2.5 Fault Protection}

The MAPPS System must have a reasonable ability to protect itself against failures which could be catastrophic to system data bases and other system generated output. When unable to completely recover, it will become important for the system to issue messages to aid in diagnosing the problem.

\subsection*{9.3 DESIGN TECHNIQUES}

A high-quality software product (as the MAPPS System is intended to be) is readable, reliable, easy to extend functionally, and easy to maintain. The use of modularization, hierarchical program design, closed logic structures, and the sound principles of structured programming will contribute to these ends.

\subsection*{9.3.1 Modularization}

Related functions (clerical, analytic, etc.) are collected into groups or modules with suitable interface logic to insure the integration of these modules into a coordinated processing system. Modularization facilitates design and maintenance activities by isolating dissimilar activities from one another. Often times it becomes necessary to implement program overlay loading techniques in order to fit software into the physical constraints of the host computer hardware system. The appropriate use of the modular design greatly facilitates implementing overlay loading.

\subsection*{9.3.2 Hierarchical Program Design}

This technique is a part of the curiently fashionable top-down design approach which begins at the highest system level, defines major functions, and then works downward until the lowest level of functions have been defined. We use a "top-down bias" approach which generally proceeds in a top-down manner with the addition of periodic assessments of potential problems at lower levels in the hierarchy. This can take the form of evaluating high-risk components, establishing common or reusable components. and minimizing machine dependence.

\subsection*{9.3.3 Closed Logic Structure}

This technique uses subroutines and programs that have one entry and one exit point in a hierarchical manner. These structures are utilized in a calling-called relationship that resolves ultimately to one module at the highest level coordinating and controlling the actions of all those subordinate to it. This ties in well with the hierarchy mentioned above and with the concept of system modularization. This too tends to make both design and maintenance easier due to increased understandability of the resulting code.

\subsection*{9.3.4 Structured Programming}

Structured programming is a set of principles established to assist software developers in producing programs that are readable, reliable, easy to expand and easy to maintain. Since these are also prime considerations in the development of the MAPPS System, it seems natural to make use of these principles in its development. Two qualifications are necessary, however. There is not general agreement in the industry as to the individual application of these principles and so an interpretation of these guidelines will be made. Also, significant portions of the MAPPS System are in the form of existing programs which may or may not be structured. It is not anticipated that restructuring such programs is a part of this effort. Newly created modules on the other hand will have structured programming principles applied to them.

\subsection*{9.3.5 Use of a High-Level Programming Language}

Using a high-level programming language to code the MAPPS System is a requirement if portability is to be reasonably achieved. In selecting the programming language to be used in coding the MAPPS System, the following factors were considered:
- The language shouid be a standardized, high-level programming language.
- Compilers should be available on as wide a range of computer systems as possible.
- Differences in the language from one computer system environment to another should be small and well defined.
- The language should support extensive mathematical operations such as will be required by the MAPPS Subprograms.
- The language should be in widespread use.
- If possible, a body of programming and debugging aids should be available and operational.

The language that most closely fits these requirements is FORTRAN.

FORTRAN has a Standards Committee and a standard form of the language implemented on many different computer systems. Conversions from one environment to another have been accomplished and the potential problem areas are fairly well known.

FORTRAN (FORmula TRANslation) lends itself particularly to mathematical programming. The language is in use in a vast number of installations and a great number of known and operational programming/debugging aids exist for it.

One possible "soft" area of FORTRAN is in the handling of command and control data which is better handled by assembly language code. Efficiency may indicate the use of assembly language in certain routines of the MAPPS System. However, it is our intention to strive to use FORTRAN exclusively.

\subsection*{9.4 MAPPS SYSTEM MAJOR COMPONENTS}

The MAPPS System consists of a number of computer programs and subprograms organized into modules. These modules each have a position in the operations hierarchy of MAPPS in accordance with certain communication requirements. The advantage of a modular organization will become apparent whenever additions or modifications to the MAPPS System are required. It will also ease if not actually make possible, the implementation of the MAPPS System on some computer configurations where it may become necessary to use program overlay techniques because of size limitation. Figure 37 illustrates the modular architecture of the MAPPS System. Dotted lines show separation of the major functions into modules. Level numbers are included to illustrate the potential computer loading overlay hierarchy of the various modules. Modules with like numbers cannot execute simultaneously if the use of overlays becomes necessary. Modules with like numbers roll in and out of the execution area on demand by the MAPPS Executive program. A discussion of the basic functions and features of each module follows below.

\subsection*{9.4.1 Host Computer Operating System}

Level 0 is the host computer operating system. At TRW this system is commonly referred to as TRW/TSS. This system is supported on a complex of CDC 6000 and Cyber series computers. "MACE" is the basic operation system and "EDITOR" is an interactive text editing system. Both provide unique and powerful capabilities expected to support the resident portion of the MAPPS System.

Because attributes of timesharing systems are generalized, users going from one timesharing system to another find a number of

capabilities to be fairly uriform, although specific details and interactions may differ considerably. The following features are generally available to most timesharing computer systems:
- Security (restricted user access)
- System Use Accounting
- Checkpoint/Restart (system backup)
- On-Line and Batch User Access Modes
- Local and Permanent File Handling
- Editing Capability
- Higher Levei Language Compilers (FORTRAN)
- Assemblers (host machine native language)
- Subroutine Library
- System Utility Library

The design of the MAPPS System will utilize these features as resident in the host computer system and not attempt to incorporate them in the MAPPS System itself. This prevents expenditures due to "reinventing the wheel" accumulating during the initial stages of the MAPPS Systems development. Some adjustments for the differences in host system capabilities may be necessary for implementation of the MAPPS System on a particular timesharing system, but the adjustment effort will be far less than if such features were actually part of the MAPPS Software.

\subsection*{9.4.2 MAPPS Executive Level}

Level 1 is the primary level of the MAPPS System. Two distinct modules having separate functions reside at the primary level. One module consists of the Executive User Interface, the MAPPS System Executive, the Error Processor and the Data Base Manager Retrieve subroutine, and is oriented toward the execution of the analytic processes. The other module, Data Base Definition, is strictly concerned with initializing the system data base descriptions.

\subsection*{9.4.2.1 Executive User Interface}

The Executive User Interface (EUI) provides the interactive and batch user with the means of invoking MAPPS analytic processes. The EUI provides for the communication to the system of essential administrative facts which activate the analytic processes. The EUI is the first point of contact the user has with the system.

\subsection*{9.4.2.2 MAPPS System Executive}

The MAPPS System Executive controls subordinate module execution sequencing and maintains process integrity between successive execution of lower level (Level 2) analytic modules and/or the Data Base Manager. The Executive handles administration of operations for the rest of the various MAPPS System levels and invokes the Error Processor when appropriate.

\subsection*{9.4.2.3 Error Processor}

If invoked, it is the primary function of the Error Processor (EP) to salvage wherever possible portions of the current effort. The EP is concerned with providing the interactive and batch MAPPS System user with suitable means to recover from input, output, and execution errors. In no way is the EP concerned with recovery from failures of the host computer.

\subsection*{9.4.2.4 Data Base Manager Retrieve}

A copy of the Data Base Manager (DBM) Retrieve routine is shown residing at the Executive level in order to emphasize its availability to all execution levels of the MAPPS System. This feature is of particular importance whenever module overlaying becomes necessary to execute the system. The DBM Retrieve routine provides the means for acquiring information from the data bases.
9.4.2.5 Data Base Definition The Data Base Definition (DBD) module exists solely for the purpose of defining data base files. It accepts user descriptions of file content and format, translates such information into data base language, and creates the internal mechanisms for storing information in the data base. The DBD program is maintained and executed independently of the MAPPS analytic system. The DBD program's use on Power Processing Master files will be limited to personnel with specific aushority.

\subsection*{9.4.3 Operating Level}

The secondary level (Level 2) of the MAPPS System is the actual. operations level of the systell. This is the working level where all of the analytic and the bulk of the data management activities are performed. The secondary level is comprised of Subprogram User Interfaces, analytic subprograms, and the Data Base Manager, Since it is probable that overlay loading of the analytic modules will be required in order to execute the MAPPS System, particular care must be exercised in the assignment of functions to the various modules at the secondary level.

\subsection*{9.4.3.1 Subprogram User Interface}

The purpose of the Subprogram User Interface (SUI) is to provide the communication linkage between the user, the analysis programs, and the Data Base Manager. There will be at least one SUI for each Level 2 module of the MAPPS Systell. The extent of the functions performed by the SUI's will depend upon the purpose and activities of the respective module they service. Generally speaking, each sut will have the task of assembling command, control and input parameters required for subprogram execution initiating subprogram execution, and validating successrul completion of subprogram reiteration and for STORE, MODIFY, RETRIEVE functions of the Data Base Manager. Each SUI will invoke execution of the Error Processor as required.

\subsection*{9.4.3.2 Subprogram}

The subprogram is the "work horse" of the MAPPS Systell. There are two basic categories of subprograms. One category includes all of the power processing related subprograms. The other category consists exclusively of data management related subprograms. The data management functions are discussed in separate paragraphs of this document. The power processing subprograms include those currently identified such as the following:

Design Optimization Subprogram, Performance Analysis Subprogram,
Component Library Subprogram,
System Analysis Subprogram,
and those not identified, but which will undoubtedly warrant integration into the systell as they are developed.
9.4.3.3 Data Base Manager User Interface

The Data Base Manager User Interface (DBMUI) performs the functions for the DBM that an SUI performs for a subprogram. It is this module that allows a user of the MAPPS system to interact directly with the Data Base Management Function, and hence the data base files, without invoking action from an analysis subprogram.
9.4.3.4 Data Base Manager Executive

The DBM Executive is tasked with the selection and execution of the subordinate data base functions such as Store, Modify, and Retrieve. It performs a security check for the function based on the origin of the request and the user identification. Failure to pass the check will cause a rejection of the request. If the check is positive, the Executive resolves the request into
individual data base functions and sets those events in motion. Successful completion of requests results in the return of control as well as relevant information back to the module originating the request.

\subsection*{9.5 SYSTEM COMMUNICATION}

The procedure proposed herein for communicating information within the MAPPS System supports the goal to maintain ease of modification and internal flexibility. It greatly facilitates error recovery procedures. It represents one of the built-in forces to promote programming convention standards and easily fits into the MAPPS concept of modularity.

There are two levels of communication each of which requires individual treatment. The first involves communication of command/control information and the second involves communication of data. Command/control information is used in the proper execution and internal sequencing of MAPPS System modules. Data is taken to be any information not used in command/control communication and which has computational implications in some áspect of a MAPPS System function (i.e., a MAPPS Subprogram).

The bulk of the communication between the various MAPPS System modules during execution will be through common memory areas. Since the programming language is to be FORTRAN, all reference to common areas is in the context of FORTRAN COMMON blocks.

Two kinds of common areas are each associated with Command/Control communication and Data communication. Command/control information passes primarily through Executive Common and Error Common, while Data communication deals with User Storage Common and DBM Common. Each of these common areas will be described in terms of its architecture, implementation, and its use.

\subsection*{9.5.1 Command/Control Communication}

Figure 38 illustrates the command/control communication path for the entire MAPPS System. The basic media for communication of command/control information is expected to be FORTRAN Labelled Common blocks. The information expected to be transmitted through these Common blocks pertains to
- invoking execution of the various programs and subprograms
- relaying data storage area pointers
- maintaining error recovery and backtrace logic maps
and in general performing any other administrative and housekeeping chores required to insure system integrity during execution.

\subsection*{9.5.1.1 Executive Common Architecture}

Executive Common (EXCOM) in a FORTRAN Labelled Common Block of memory cells having the principal function of providing a controlled and centralized vehicle for communicating command/control information. It is intended that EXCOM will be used to retain all information pertinent to \(\mathrm{I} / 0\) unit assignments, program and subprogram execution sequencing, error flags, common storage pointers and other information critical to proper execution of MAPPS.

Executive Common will be declared and initialized in the MAPPS Executive and will be available to all programs and subprograms in the system (Figure 39). During execution EXCOM will remain resident in memory and with the exception of certain cells will remain unchanged.

The MAPPS Executive will be responsible for monitoring the contents of EXCOM to insure its continual integrity and to invoke correct responses to suhprogram requests and error conditions. It will be the responsibility of the subprogram programmer to use the executive common area; the content of which will evolve as MAPPS evolves.


Figure 38 MAPPS Command and Control Communication


Figure 39 MAPPS Executive Common Communication

\subsection*{9.5.1.2 Error Common Architecture}

The Error Processor (EP) uses areas in EXCOM to analyze the nature of a linkage error. However, it seems probable that in the course of dealing with errors, the EP will require some as yet undetermined additional data area to keep intermediate results before either resuming the session or terminating it.

The error common area requirements cannot be defined at this time but will develop as the detailed design of the EP unfolds. Initial reference to the Error Common will be in the DP, limiting its use to times when the EP itself is executing. It should be recognized that the EP will also use areas from EXCOM and User Storage Common to determine proper action and/or report the contents of data areas.

The Error Common Data Area will be used by the EP (Figure 40) for intermediate data access requirements in the course of analyzing and attempting to correct linkage errors within the MAPPS System. It is not anticipated that these items will have value beyond an individual execution of the Error Processor.

\subsection*{9.5.2 Data Communication}

Figure 41 is an illustration of the data flow paths between the data bases, the DBM, and the subprograms. In the illustration the "Intermediate Storage" refers to magnetic tape, disc and/or memory. Particular attention should be given to the types of data access available at each execution level. The limitation to retrieval only at the lower program levels is The limitation to the potential use of an overlay structure User Interface and the MAPPS Executive in the movement of data. \(\quad\) do not participate directly


Figure 40 MAPPS Error Communication


Figure 41 MAPPS Data Communication
9.5.2.1 User Storage Common Architecture

The User Storage Common area is designed to provide for the communication of analytic data throughout the MAPPS System. Two interdependent memory buffers constitute User Storage Common. One buffer is a directory of descriptive information about the second buffer which contains data values. The directory buffer will contain the data elements stored in strict accordance with the directory descriptors. Data elements may be single value or multivalue arrays and they may be in any legal FORTRAN format (integer, floating point, Hollerith, etc.).

Initial reference to User Storage Common will be in the MAPPS Executive. This insures its integrity and availability during all levels of MAPPS System execution. Of special importance is its availability during execution of error recovery procedures.
It will be the responsibility of the subprogram programmer to define the contents of User Storage Common. He must provide symbolic names, data element formats, space allocations (arrays) and the intended method of accessing the common area in the subprogram. It will also be his responsibility to code the subprogram with its own mechanism for accesses to the common area. Each Subprogram User Interface will be correspondingly modified to the subprogram programmer specifications. Actual definition of the directory buffer will occur in the respective Subprogram User Interfaces.
It is currently intended that a single User Storage Common Block be designated for use by all subprograms of the MAPPS System. Therefore, it will become essential to coordinate the element definitions with each and every subprogram accessing User Storage Common.

Since the User Storage Common is initially referenced in the MAPPS Executive and since it resides in memory, input/output access to it is available to all MAPPS System programs (Figure 42). It should be noted that only one User Storage Cormon area is contemplated and therefore coordination between subprogram requirements is mandatory. This approach is taken in order to facilitate communication between subprograms and to facilitate error recovery, as well as to minimize the demand for execution memory.

There are two methods available for accessing the common areas. Data accessing with directory reference is termed Variable Location. Data accessing without directory reference is termed Fixed Location. For reasons which will become apparent, the directory will exist and be maintained in either case.

Variable Location access requires scanning the directory, performing an element name match, and where a match occurs computing the location (i.e., subscript) of the corresponding data element in the data buffer. Fixed location access involves direct access to the data buffer with precoded subscripts. Use of the variable location scheme enhances flexibility while fractionally increasing execution time. Use of the fixed location scheme narrows flexibility, fractionally reduces execution time, and increases program modification effort.

User Storage Common may be filled with information in a variety of ways. In the subprograms it will be up to the respective programmer to determine the hest approach. In the Subprogram User Interface three options will be available to the interactive user. The interactive user may request it be filled from a Data Base record which


Figure 42 MAPPS User Common Communication
had been previously stored in a data base. He may also fill User Storage Common element by element through the terminal. He may also load a Data Base record and then modify specific elements.

The batch user will have two options for filling User Storage Common. He may load a Data Base Record or load an input record. In either case the information must be complete before execution of the subprogram or an involuntary termination could occur.
9.5.2.2 Data Base Management Common Architecture Communication between other MAPPS System modules and the DBM takes place through the Data Base Management Common Data Area (DBMCOM). This area contains the various parameters needed for the RETRIEVE, MODIFY and STORE functions of the DBM as well as the data resulting from whatever DBM function was performed.

A number of parameters are required to gain full use of the DBM. These include items describing the data base file involved, its dictionary or schema descriptors and a number of other parameters which are shown in Appendix \(S\).

DBMCOM is defined in all modules of the MAPPS System to afford all of them the ability to communicate with the MAPPS data base via the DBM module.

The MAPPS DBM module performs three basic functions: STORE, MODIFY and RETRIEVE. Such functions are available to other MAPPS System modules through a Data Base Action Request (DBAR).

The Executive handles the transfer to the DBM which validates the parameters in the DBMCOM. The DBM performs the DBM function, puts whatever output is generated in the

DBMCOM, and sets the Data Base Function Completion Code. Control then passes back through the Executive to the module which generated the request. (Figure 43)

The module then establishes where to begin processing and checks the Data Base Function Completion Code. Assuming a successful completion, the module now continues processing with the output generated by the DBM. (If an error does exist, the DP is invoked.)

It should be noted that the STORE and MODIFY functions result in the overhead of rolling out the requesting module, rolling in and out the DBM, and then rolling the requesting module back in. The RETRIEVE function (in a specific retrieval) is available to a requesting module without such overlay overhead as the RETRIEVE module is present at the Executive level and therefore does not require rolling in and out to satisfy the RETRIEVE function.

The above does not preclude storing or modification from any subprogram; it simply requires more overhead to perform these functions indirectly.


Figure 43 WAPPS DBM Common Commuication

\subsection*{9.6 THE DATA BASE MANAGER}

It is the primary function of the Data Base Manager (DBM) to provide the mechanism for the retention, maintenance, and retrieval of information pertinent to the MAPPS System. The DBM resides in the MAPPS System as a subprogram at the secondary level (Figure 37). Entrance of the DBM into the execution stream is accomplished directly by the MAPPS Executive and indirectly (through the executive) by the other subprograms of the system.

There are three activities performed on the MAPPS System Data Base by the Data Base Manager. These activities are performed by the three subroutines STORE, MODIFY, and RETRIEVE. STORE is a write function. Through the STORE routine, the DBM transports new data to existing data base files.' MODIFY operations involve reading and writing. All DBM requests to change or delete information already contained in the data base are handled by the MODIFY routine. RETRIEVE is a read only operation. Requests for information contained in the data base are interpreted by the DBM executive, translated into retrieval language, and subsequently processed by the RETRIEVE routine.

\subsection*{9.6.1 Origins of DBM Request '}

Figure 41 illustrates the relationship between the MAPPS Subprogram levels and the DBM functions directly operable from those levels. The DBM can receive STORE, MODIFY, and RETRIEVE requests (direct or indirect) from the DBM User Interface, a Subprogram User Interface, a Subprogram, and the Error Processor. The MAPPS Executive and the Executive User Interface are not expected to issue DBM requests of any kind even though they could. A Subprogram and a Subprogram User Interface can make RETRIEVE requests directly without losing primary process control. They cannot, however, issue STORE or MODIFY requests directly. There are further limitations on RETRIEVES from lower levels which will become evident in a discussion on the forms of data retrieval. Of course the full powers of the DEM are at the disposal of the DBM User Interface and DBM Executive.

\subsection*{9.6.2 Information Storage}

The actual process of storing information is the sole responsibility of the DBM/STORE routine. In order to invoke the store function, the DBM Subprogram must be loaded by the MAPPS System Executive for execution.

Although it will be possible to originate a store request in a Subprogram User Interface, it will only happen after the requesting program has relinquished control to the MAPPS System Executive. The procedure will be as follows:
- Move data to be stored to intermediate storage (i.e., DBM Common),
- Set the DBM/STORE request flag "ON",
- Save the data locator, and
- Relinquish control to the System Executive.

In all probability this procedure will be invokable with a single coded FORTRAN statement thereby relieving the analytic programmer of any administrative responsibilities.

It should be noted that a single request to store data may not produce a store function. Once the DBM Executive has been given control it will perform certain validity checks designed to protect data base integrity. Validity checks that are expected include, but are not limited to, identifying the user, identifying the data base and quality checking the data to be stored as to format and quantity. All errors will abort the STORE function and invoke the Error Processor for further evaluation.

\subsection*{9.6.3 Information Modification}

The MODIFY process embodies the activities of the RETRIEVE process and the STORE process. Two MODIFY operations are provided to the user within the realm of the MAPPS System. These two options are Delete and Replace. Such other functions as text editing are to present the responsibility of the host computer operating systen.

Since modification presumes existence of specific information requiring changes, the DBM response to a Delete or Replace request begins with a search of the data base to locate existing data. Under a Delete request, the resident information and all pointers to it are removed from the target data base. Under a Replace request, a substitution of the resident data by the new data is made. In either a Delete or Replace operation a full accounting is made to the user.

As with all data base write requests, the DBM executive will be extremely critical of MODIFY requests. Validity checks will be performed in order to prevent non-permitted users from altering a data base or to prevent erroneously formatted data from being written on the data base. All errors will abort the MODIFY operation and invoke the appropriate error, process.

\subsection*{9.6.4 Information Retrieval}

During execution of the DBM, information retrieval is expected to constitute the majority of DBM activities once the system becomes operational. The specific information retrieval function of the DBM is unique with respect to the other DBM functions in that it may be invoked at virtually every level of the system. This feature is made available because each subprogram is assumed to have need for retrieval access to the Data Base in order to perform effectively and is accomplished by attaching a DBM/RETRIEVE Subprogram to the MAPPS Executive program.

From the user viewpoint there are three ways to receive retrieval information as follows:
- External Display
- Memory Storage
- Mini-Data Base

Although each option is illustrated (Figure 44) separately, it does not preclude the possibility of simultancous occurrence of two or all three options with a particular retrieve operation. The forms in which


Figure 44 MAPPS Retrieval Data Flow Options
retrieved data may be received are illustrated and discussed separately because their respective use requires differing techniques.

Retrieval to external display requires user evaluation of the display and subsequently user action to cause employment of the retrieved data. The external display device could be a CRT, terminal printer, or line printer. Information displayed could be data, quantitative or qualitative messages, or both data and messages. The choice will be the user's and subject to the hardware capabilities of the host computer.

Retrieval to memory storage is special in that a predetermined scheme must exist for using the stored information. Predetermined implies programmed knowledge of the whereabouts of the data. There are two possible ways of handling memory storage of data; they are FIXED format and VARIABLE format., Discussions and comparison of these formats is in the Section for User Storage Common Arcitecture.

Retrieval to a Mini-Data Base involves creation of a condensed version of the original data base. The objective is to reduce the volume of information for immediate access through conditional retrieval operations. The Mini-Data Base is identical in format to the master from which it is derived and therefore requires no special access methods beyond DBM Retrieve.

Retrieve requests are classified as Specific or Conditional according to their form and the results they produce. Specific Retrieve requests are made to obtain restricted quantities, usually single values of particular data elements required for the immediate analytic operation. Use of the specific fom requires explicit knowledge of the format and quantities of values returned. Specific requests will find their greatest use at the subprogram level. Conditional Retrieve requests generally produce a variety of values and require specific treatment before use in an analytic process. Conditionally retrieved data will normally be to intermediate storage and to display for further scrutiny. Conditional Retrieves will be used most often in the Subprogram User Interface and not in Subprograms.

During execution of the MAPPS System, combinations of the Conditional Retrieve and the Specific Retrieve may be employed in the process of obtaining information from the data bases. Figure 45 illustrates one example of interaction between the user and the MAPPS System using Conditional Retrieves to reduce the quantity of information retrieved prior to execution of a subprogram. The Conditional Retrieve will cause a copy of the information satisfying the requestors range of conditions to be transferred to DBM Common or similar intermediate'storage. The user at his option could request that the retrieved data be displayed for observation or if the quantity of data retrieved was excessive, he could further restrict the conditions and execute another Retrieve. The form of the statement (program coded or English language) for requesting conditional retrieve will provide the user with the ability to conduct. searches of the data base looking for items satisfying such conditions as "less than," "greater than," "equal," "not equal," and other conditions deemed useful to users of the system.

The purpose of the Specific Retrieve is to give the Analysis programmer the facility for coding data base access into his analysis program. The form of the Specific Retrieve statement will allow the user to code data base requests using element names with confidence in the fact that specific quantities of only named elements will be retrieved. Generally, all Specific Retrieve request communication will be through arguments of a FORTRAN Call statement.


Figure 45 MAPPS Conditional Retrieval and Iteration

\subsection*{9.7 MAPPS SYSTEM OPERATION}

The opectional MAPPS System consists of three physical divisions:
1) the load modules (or compiled programs) that comprise the MAPPS Executive, DBM Subprograms and other MAPPS processors
2) the basic data base files required by all users, and
3) the individual data base files created and accessed by the user.

The MAPPS program/subprogram modules will reside in a library in the timesharing computer system. The MAPPS System data base files will reside on external input/output devices (disk or magnetic tape).

Both batch and interactive operation of the system is contemplated. It is anticipated that the interactive mode will be in greatest use. User Interface modules have been judiciously placed throughout the MAPPS System to insure effective interactive communication between the user and the system. The network of User Interface Modules includes the Executive User Interface (EUI), the Data Base Manager User Interface (DBMUI), and the Subprogram User Interfaces (SUI). Each User Interface module has its special purpose to satisfy.

The EUI is the point of initialization. It is through the EUI that the user has the first opportunity to communicate commands and requests to the system. Directives are issued which enable specific execution sequencing, connecting of data base files, establishing execution options, and determining error procedures.

The DBMUI gives the user the capability to work directly with the DBM exclusive of the other subprograms. The prime responsibility of the DBMUI will be to receive English language (external) statements, translate the statements to internal program commands and instruct the DBMI accordingly.

Each SUI will interact with the user on matters concerning its respective subprogram. Through it the user will be able to input control and analytic data, specify execution options, establish input data file pointers and generally control events within the subprogram.
To converse with the MAPPS System (Appendix \(T\) ), the user signs on the timesharing system and then executes the MAPPS program. This is accomplished by retrieving the MAPPS modules from the library, attaching the data base files, and then loading and executing the MAPPS program modules. Activation of MAPPS leads to a conversation between the system and the user, first about which function of the system is wanted, and then the dialogue with the part of the system that actually performs that function. Varieties of exchanges of parameters and results take place with the user ultimately ending the session and storing either intermediate or final results of a design. The results are stored in the User Data Base File which can be recalled from the user's account files and accessed for reference at another time.
In the course of a terminal session, or "conversation," the system may recognize that a particular function will be excessively time consuming. It notifies the user and gives him the option of either continuing to process on-line or of setting up a remete batch job to accomplish the function while the user does something else. User requests may also generate listings of various data base files.

The MAPPS System will be sufficiently flexible to allow a sophisticated user to shortcut steps that are not needed because of the user's in-depth knowledge of the system. The new user will be presented with informative messages as processing goes forward and will also be able to retrieve some instructional text to clarify options at decision points.

Even though a Subprogram User Interface is planned for each subprogram installed in the system, it is not currently planned to have this interface supplant any of the already existing activities of the subprogram itself. The intention is for the SUI to merely supplement existing subprogram functions at the administrative level. This especially applies where the subprograms already exist as "stand alone" programs. Figure 46 illustrates the division of responsibility for inputing analytic data to a subprogram.

In the TRW/TSS, individual user-created data base files would reside on the individual user's account and be accessable only by that user unless the user gave specific permission via commands to TSS for another person to either read or write that file (or perhaps read and write). This is protection at the file level and external to the MAPPS System. Internal checks are also available in MAPPS for the protection of user files. When the DBM is directed to perform any data base function on a data base, it looks at the user's unique identification and determines if the requested function should be performed. If not, a diagnostic message will be issued to the user and the data base function not performed.

\subsection*{9.8 MAPPS SYSTEM PERSONNEL}

Besides the Designer-Analyst user of the MAPPS System, there are two other categories of support personnel involved with the system. They are the Data Base Administrator and the Computer System Support personnel.

The Data Base Administrator is a person who is knowledgeable of the requirements and functions of the MAPPS System, This person maintains the MAPPS basic data base files such as the Component Library and the System/Equipnient files and assures that the MAPPS


Figure 46 MAPPS Subprogram Communication Scheme
modules are available for use. This person may also be responsible for maintenance of parameterized security permissions internal to MAPPS.

The Computer System Support personnel are responsible for the maintenance and operation of the computer operating system under which the MAPPS System runs. They perform programming, operation and data base administrative tasks for the timesharing system as a wiole.

Designers who wish to trade results back and forth may do so on the individual level or possibly by incorporating their results in the MAPPS General System/Equipment Data Base File. This last would be done through the Data Base Administrator in accordance with established regulations.

\subsection*{9.9 ERROR PROCESSING}

An important aspect of the design of the MAPPS System is \(i\) ts handling of errors that occur in the course of a session with the user. Errors may result from abnormal conditions in either hardware or software.

Hardware errors concern themselves with the mechanical and electronic equipment of the host computer system, including the computer mainframe, the various peripheral devices attached to it, and the terminal utilized by the user. Hardware malfunctions will not be the responsibility of the MAPPS System Error Processor. Errors occurring in the host computer operating system are also outside the realm of the MAPPS System Error Processor.

Software errors result from the incorrect processing of data which may be due to the program accepting invalid input data or incorrectly operating upon valid input data. In a complex system like MAPPS, software errors may occur at several levels:

\section*{User/System Interfaces}
- Subprogram
- Subprogram User Interface
- Executive User Interface

Inter-MAPPS Interfaces
- Between any two modules that have an interface (common memory area, file)

Errors at the User/System Interfaces will be dealt with in most cases by the Interfaces themselves. The programs accepting data from the user in the form of parameters, indications of decisions, etc. are responsible for making checks of validity and producing diagnostic messages to the user when the input is incorrect. A considerable effort will be spent in ensuring the sufficiency and correctness of the validity checks at the user interfaces.

Most errors in the interfaces between MAPPS modules will be removed in the debugging process. An Error Processor will be available to respond to certain types of errors and to provide a programmed means of attempting recovery. If recovery is not possible, the Error Processor will attempt to save whatever information it can for the user and for iater error diagnosis before shutting down MAPPS Systeni execution.

In the case of a sophisticated timesharing system such as TRW's TSS, the resident error processing routines and administration procedures provide an excellent degree of confidence by the user in being able to run his problem when he wants to. Hardware errors also fall within the boundaries of the resident system error processing routines. These usually require the re-execution of a problem using the data saved in the checkpoint procedure most recently performed to get a full backup of the system at that time. These checkpoints are normally taken at hourly intervals or every two hours. Thus, in the event of a catastrophic system failure, the user would lose what information was in memory and have to back up to the previous checkpoint.

If intermediate results had been stored in the MAPPS permanent data base files since the beginning of the session the user would most likely be able to retrieve them and start from that point as the permanent files are not very often disturbed in hardware malfunction situations.

The Error Processing (EP) module is provided for the purpose of evaluating MAPPS System execution errors and conducting a conversation with the user regarding potential solutions to the problem, providing that the problem is not catastrophic. In catastrophic situations the EP will take its own action in the most expeditious manner possible.

The Error Processing module is invoked by the Executive when it determines that an error in. the control flow has occurred. This would most likely be an anomalous condition existing after a nested return of control or other condition affecting the manner in which the Executive normally handles control flow. The Error Processor will attempt to salvage the operation, but if not able to will attempt to maintain the conversation with the user. In the event that even this is not feasible, it will attempt to allow the user to save whatever intermediate results were obtained prior to the EP ending the terminal session.
10. CONCLUSIONS ON MAPPS, PAST, PRESENT, AND FUTURE

\subsection*{10.1 MAPPS BACKGROUND}

Being a long range program, the MAPPS is currently at the conclusion of its initial Phase-II effort. The Phase-I program started in 1973 amidst a growing concern from both the government, the industry, and the university regarding the need for and the lack of such a program. The prevailing feeling at that time was that although there already had been numerous circuit developments, too much reliance had been placed on design experience, trial and error, and occasional brute force, that too much emphases had been focused on "it works" rather than "how and why it works", and that these semi-intuitive and design-by-the-bench approaches often placed cost/schedule in peril. The MAPPS objective, therefore, was to provide the needed modeling, and analysis tools to reduce the design, analysis, and development time, and thus the cost, in achieving confidently the required performances for power processing equipment and systems. Since then, the significance of this objective has been enhanced by the evolving trend of power processing. First, the trend of higher power has diminished the readiness of the "bench design". Next, growing sensitivity to cost and the consequent standardization effort has placed more and more emphasis on an analysis-based design.

Power processing, by nature, is harware-oriented. Transient-prone semiconductors, insidious magnetics, evasive noises, and ever-changing equipment requirements, all seem to overshadow the subtle need for, say, control-loop analysis or power-circuit design optimization. Understandably, a designer in real life is too occupied to have that much time to dwell in modeling and analysis. After a few years in the industry, a designer becomes too valuable in producing the required hardware within the specified cost/schedule, with the consequence that usually one (or a few) analyst in a given organization ends up performing advanced analysis for all other engineers.

This distinct division between hardware and software can be costly for the following reasons:
- Due to their casted role, the analysts only analyze the design already generated by the designer, which may happen to be quite
marginal to start with. Modifications recommended by the analysts may have surfaced too far down stream in the hardware unit development and testing; they often are tacitly disregarded, only to find that the marginal design to manifest itself later, causing even greater anguish in the final system integration testing.
- The analysts, working toward the improvement of certain specific circuit performances, may recommend changes that are experimentally revealed later to be detrimental to other performance characteristics, thus motivating further changes. Such long-period, costly vicious cycles of design iterations are not uncommon in the hardware development. How much it will be better, then, if one can combine analysis and design into one task, and do it right by the designer/analyst the first time.

\subsection*{10.2. MAPPS EMPHASES AND TWO DIVERSIFIED VIEWPOINTS}

Accepting the premise that the designers are the backbone of the industry, and on whom the major benefits of the MAPPS program should fall, what remains to be seen is how should a program like MAPPS proceed in order to reach this intended goal. To this end there have been different schools of thoughts:
(1) The first school of thought rightfully asserts that a designer has to base the design on certain information gained from modeling and analysis, preferrably in the closed-form equations or insight-producing equivalent circuit models. The primary thrust of the MAPPS program should therefore be tutorial in generating, assembiing, and disseminating the analytically-based, design-oriented information. A designer can then utilize this information to his advantage, and apply it to the specific applications as required.
(2) The second school of thought regards the primary thrust of the MAPPS program as the generation of analysis-based, design-oriented, computerized subprograms, which the users can readily adopt for solving the specific problems at hand. The designers look to these subprograms as ever-helpful and trustworthy working partners; it matters little to the designer that they really do not quite understand their powerful partners as long as the partners consistently deomonstrate the abilities to perform the needed design and analysis functions.

The validity of the first school of thought is beyond any dispute. An analytically-based design, well understood by the designer, is the ultimate design. The only attendent asumption is that the designers, confronted by all their semiconductor-, magretics-, noise-, and specification-related hardware concerns and occasionally their own modest modeling, analysis, and computational backgrounds, are still sufficiently energetic and resourceful to comprehend and to skillfully apply the analysis and the analyticallybased design information. This assumption becomes particularly vulnerable when applied to a more complicated problem in which closed-form representations and high-order equivalent circuits are generally inapplicable.

The strength of the second school of thought is derived from the fact that it can be very practical, particularly for complicated designs of highlynonlinear origins. User's confidence toward the "subprogram partners" can be readily enhanced with a few applications, and the subprograms become ultimate engineering tools. However, there is a serious weakness inherent in this relationship. The subprograms, being numerical by nature, must be centered on a given circuit configuration based on which computerized subprogram analytical routines are generated and executed. Consequently, the circuit configurations or the problems implemented in the subprograms must be well standardized and suited for a multitude of users. Otherwise, individual subprograms will have to be custom-made for individual users to handle specific design/analysis applications.

\subsection*{10.3 MAPPS MODELING AND ANALYSIS EFFORT SUMMARY}

Recognizing the merits and limitations of the two diversified thoughts, and realizing that the MAPPS program should not regard one with favor over the other, the modeling and analysis efforts conducted so far have been encompassing these diversifications. These efforts are summarized in the four major categories shown below. Notice the component library effort is not included here, as its nature is by no means related to the modeling and analysis of power processing systems.
- Control Performance Analysis
- Control Circuit Design
- Power Circuit Design Optimization
- System Analysis

To make MAPPS easy for a designer to use and to release the user's need for an extensive knowledge of computer systems and programming, an expandable Data Management Program is also implemented to coordinate all subprograms and their respective user interfaces.

\subsection*{10.3.1 Control Performance Analysis}

The control performance analysis includes the discrete time-domain analysis, the impulse function analysis, the average time-domain analysis, and the discrete time-domain simulation.

The discrete time-domain approach provides the most accurate smallsignal analysis. A step-by-step analysis procedure is clearly described to fulfill the tutorial objective of the MAPPS program. From this procedure, a user with the proper background can hopefully adapt the analytical approach to a specific problem at hand. As for subprogram generation, a multiple-loop control circuit configuration, developed in another NASA program and intended for future regulator control-circuit standardization, is used. The subprograms cover both the buck and boost power stages. In the buck regulator, both continuous and discontinuous conduction are handled in a single subprogram. Consequently, the two previously-described diversified schools of thought are all practiced in the MAPPS program in the area of the discrete time-domain analysis. In the immediate follow-on phase, three different subprograms will be completed, one for each of the buck, boost, and buck-boost power stages. Each subprogram will incorporate continuous and discontinuous inductorcurrent conduction modes, and will contain the aforementioned standardized multiple-loop configuration using various duty-cycle control methods.

The principle of the impulse-function approach is described, which provides as an end result the transfer function between the input dutycycle signal and the output of the power stage. For both continuous and discontinuous conductions, conventional frequency domain transfer functions are generated for all three basic power stages, and can be easily adapted
for regulator small-signal analysis. However, the lack of a complementary line-input-to-power-stage-output transfer function has hampered its utility. Further work in this area is not planned in the immediate followon phase.

The average time-domain analysis is the subject of another report, prepared by CalTech under a subcontract to TRW. The powerful canonical models generated by this approach for all three basic power stages are slightly modified into a dual-input (line and duty-cycle) power stage transfer functions in the conventional frequency dollain, which can be readily adapted by a user. In conjunction with the linear analog signal processor and the linearized digital signal processor (via describing function), the control-dependent performances of a complete single-loop controlled regulator can be analyzed, almost routinely. Since there is a lack of the so called "standardized" single-loop analog and digital signal processors, no subprogram based on the averaqe timedomain analysis is generated for the single-loop control. The application of the average time-domain analysis to multiple-loop control is currently the subject of another NASA program, NAS3-20102. There, the intimacy existed among the power stage, the digital-, and the analog-signal processor requiring a slightly different dual-input transfer block diagram for the complete regulator. In the next MAPPS followon program, results obtained from NAS3-20102 will be implemented in subprogram form for the standardized multiple-loop control. Again, the two aforementioned schools of thought are thus practiced in the MAPPS program in the area of average time-domain analysis.

The discrete time-domain simulation is a straight forward extension of the discrete analysis. Details of switched-interval propagation through the state transition matrices are outlined, and the computer iterations clearly described through examples of flow charts. Subprograms based on the aforementioned standardized multiple-loop control are generated to demonstrate the large-signal performance simulation such as the regulator stability-in-the large (startup) and the regulator responses to severe line/load step changes, thus fulfilling the tutorial as well as the application goals originally intended. With the simulation methodology and its cost-effectiveness vividly demonstrated, no definite simulation project is planned for the MAPPS immediate follow-on phase.

\subsection*{10.3.2 Control Circuit Design}

Instead of analyzing the control-dependent performances, the essence of the control circuit design goes one step further, i.e., it allows one to perform a control-circuit design based on a given set of control-dependent performance specifications. Through an example on the single-loop basic buck regulator design, the essential design procedure in order to meet a given stability-related requirement is tutorially demonstrated and reduced to practice through a control design subprogram, which not only identifies asymptotically the needed lead/lag compensation, but also performs desion synthesis of a given compensation network configuration to numerically determine the related control-circuit parameters. In the next MAPPS program phase, the control design will be extended to show how other performances such as audiosusceptibility and output impedance can be included in the control design procedure. Furthermore, control design based on results obtained from the aforementioned program of standardized multiple-loop control will be incorporated as control design subprograms, thus again satisfying the intended tutorial and application roles prescribed for the MAPPS program.

\subsection*{10.3.3 Power-Circuit Design Optimization}

The design optimization pursued in the MAPPS program represents the first serious attempt by which an act of optimization is introduced into the power converter design. While the pioneering effort has been somewhat agonizing, its return is certainly gratifying. First, a design optimization methodology relating power-converter design requirements, design variables, and design constraints is tutorially developed. Based on this methodology, various mathematical and computational techniques are selectively applied to several practical power-converter design-optimization problems. The Lagrange-multiplier method is applied to magnetics design optimization, from which novel design equations are derived for optimumweight and optimum-loss inductors and transformers. These design equations are assembled into separate design optimization subprograms to free a designer from tedious computations, thus again adhereing to a balanced tutorial and application program objective. For more complicated problems for which closed-form solutions are impractical, nonlinear programming optimization routines are used to seek out the optimum design numerically. In these endeavors, detailed design equations are given, and the specific nonlinear programing codes and program listings are provided. The most
elaborate design optimization undertaken in the MAPPS program has been a complete buck converter including an input filter and containing twentythree design variables, which has been reduced into a practical design optimization subprogram. In the immediate follow-on phase, the design optimization will be extended to include the complete boost and the buck boost power converters. This is perfectly suitable for subprogram generations, for the three basic power stages are universally-standardized circuit configurations.

\subsection*{10.3.4 System Analysis}

In terms of system analysis, the numerically-oriented subprogram approach is more sensible, as even the least complicated system is likely to defy a purely analytically-based design. Since a power processing system is comprised of a multiple of interconnected power processing equipment, the system analysis is naturally related to the subprograms generated for equipment performance analysis and/or design optimization. In the MAPPS program, a 12 th order regulator system is simulated for its startup characteristic thus demonstraing the feasibility of applying the cost-effective discrete time-domain simulation to large-scale power systems. A source-converter system is also successfully investigated for total system weight optimization, which identifies the optimum converter switching frequency as well as the optimum converter efficiency that will give an optimum system weight for a given source density (watt per grams). How much system analysis effort will be expended in the next follow-on depends primarily on the level of support; the best chance for engaging in extensive system analysis is for one of the NASA dedicated future missions such as the electric propulsion system and/or the directbroadcast communication power system, for which the payoff of conducting system analysis can be well justified.

Thus, the present and immediate future MAPPS efforts have been briefly summarized. One aspect of MAPPS subprograms that repeatedly reinforcing itself is the need for "standardization." Aside from being obviously costeffective from the viewpoint of hardware development and production, the standardization also enables the utilization of the most effective analytical approach for conducting performance analysis, control-circuit design, power-circuit design optimization, and, to a certain degree, system analysis. Purely from an analytical viewpoint, the validity of the current trend for standardization is thus enhanced.

\subsection*{10.4 CONCLUSIONS}

To anyone working with switching regulators, converters, and systems comprised of these equipment, certain design and analysis intricacies inevitably make themselves felt throughout the equipment and system design and development stage. Empirical and intuitive reliances often intercede with the designer's desire to be "more scientific" and his commitment of being "on schedule". Handicapped by a general lack of established modeling, analysis, design, and optimization tools, it has not been uncommon for a power processing designer to face the perplexing situation of not being able to fulfill any of the desire or the commitment.

The cost/schedule plights that most equipment and system designers find themselves in, have to do with at least one of the following entities: weight/efficiency, performance requirement, and trial-and-error design iterations. While power processing as a technology has reached the level of sophistication where the modeling, analysis, design, and optimization of these entities should have been well established, a survey of literatures conducted at the initiation of the MAPPS program had proved the contrary. Needless to say, such inadequacies inevitably lead to weight/efficiency, performance, and cost penalties. In addition, the recent evolving trend of higher power and equipment standardization has further heightened the need for analytically-based design and optimization.

It is therefore the expressed objective of the MAPPS program to provide analytical engineering tools to enable conceptual design and tradeoff studies and to reduce the design, analysis, and development time, and thus the cost, in achieving the required performances for power processing equipment and systems. As is evident from the contents of this report, both tutorial- and application-oriented modeling/analysis/design/optimization efforts are emphasized, which have resulted in the following general achievements:
- The methodologies of power processing modeling, analysis, design, and optimization, are all well established.
- Application-oriented analysis, design, and optimization subprograms are becoming available for designer.
- Cost-effective system configuration study and system disturbance propagation are now feasible.
- With full support in the future, the MAPPS should become compatible "partners" to all designers.
- An expandable data management program intended for user's convenience in using the various MAPPS subprograms is also demonstrated

Based on progress made thus far, continued MAPPS effort undoubtedly will lead to the following:
- Analyze all performances for commonly-used power processing equipment and selected systems.
- Detailed power circuit design optimization to meet given powerdependent performance requirements.
- Standardized control-circuit design to meet all control-dependent performance requirements.
- Identification of optimum system configurations and system failure mode effects.

Power processing technology has been, by necessity, an evolving one. It is perhaps not an understatement that, in terms of modeling and analysis, the level of sophistication has been much below that of circuit developments. The industry, however, has reached the stage where such a gap can no longer be tolerated without incurring severe penalties. It is therefore to the advancement of power processing, modeling, analysis, design, and simulation that this program effort is dedicated. (Appendix \(U\) )

\section*{11. APPENDICES}

The appendices supplement the presentations give- in the main text. They consist of papers presented in the various conferences as well as other unpublished work under the sponsorship of Contract NAS3-19690. .Often containing details of analytical/computational effort, the appendices dealing with the following topics are hereby regarded as an inseparable entity to the main text:
Appendix Page No.
A Time Domain Modeling and Stability Analysis of and Integral Pulse Frequency Modulated Dc to Dc Power Converter. ..... 227
B Generalized Computer-Aided Discrete Time Domain Modeling and Analysis of Dc-D.c Converter ..... 238
C Derivation of Equations for Constant Frequency Buck Regulator Continuous Conduction ..... 250
D Buck Regulator Discontinuous Conduction Operations ..... 262
E Computer Listing for a Buck Regulator Discrete TimeDomain Analysis Handling Both Continuous andDiscontinuous Conduction Operations284
Modeling of Switching Regulator Power Stanges Withand Without Zero-Inductor-Current Dwell Time291
G
Derivation of I and D Matrices, for example 2 ofSection 4.7.2.302
H Flow Chart of the Simulation Program ..... 308
I A General Unified Approach to Modelling Switching Converter Power Stages ..... 312
J\(K \quad\) Derivation of Describing Function of the DigitalSignal Processor in a Multiple-Loop ControlledSystem351
Appendix Page No.
L. User-Oriented Magnetics Design Optimization Subprograms ..... 353
M Formulation of a Methodology for Power Circuit Design Optimization ..... 356
\(N \quad\) Program Listing of SUMT Processing for ConvorterDesign Optimization366
\(0 \quad\) Program Listing of SUMT Processing for Source Converter System Design Optimization ..... 374
P Power Converter Design Optimization ..... 382
Q Samples of Component Data Dompilations ..... 391
R MAPPS System Execution Flow ..... 396
S Data Base Management Common Data Area ..... 399
\(T\) MAPPS Power Processing System Design Process ..... 400
U Modeling and Analusis of Power Processing Systems ..... 403

\author{
R. P. Ivens and Y. Yu \\ TRW Systems \\ Redondo Beach, California \\ J. E. Triner \\ HASA Lewis Research Center Cleveland, Ohio
}

\section*{ABSTRACT}

Using state variable representation a nonlinear, discrete-time system is derived that models the converter exactly, This system is linearized about its steady state solution, and converter stability, transient response and audio susceptibility are studied. The steady state solution of the converter is stable if and only if all the roots of the linearized system are absolutely legs than unity. Excellent agreement with laboratory test data has been observed.

\section*{I. INTRODUCTION}

DC to DC power converters play an important role in satellite power distribution systems, and standardization and optimization of converter design and performance are of considerable interest to the aerospace power processing industry. In order to optimize converter design and performance a thorough understanding of the converter as a system is required and one must be able to analytically predict such important converter behavior as stability, transient response and audlo susceptibility (closed loop frequency response). Power converters, also called regulators, of the class considered here, employ pulse modulation for controlling the dutycycle with which a primary power source is switched to a load so that a prescribed constant load voltage is maintained. The pulse modulation process presents considerable difficulties in analyzing the behavior of these regulators by conventional frequency domain analysis techniques and many approximations in system modelling are usually required. These difficulties are apparent from recently published frequencydomain analytical results, which either limit the analytical applicability to a specific dutycycle control mode (e.g., constant frequency, constant ontime, etc., ) or assume the validity of applying linear Feedback theory to nonlinear control loops \([1,2]\).

This paper presents a new approach to the problem of converter modelling based on time domain description and analysis of pulse modulation systems [3,4]. An equivalent, nonlinear discrete time system is derived that describes the pulse modulation process and the converter behavior exactly. After linearization about the discrete time equilibrium solution (steady state), stability is readily established as a function of any arbitrary converter
parameter with the information being graphically displayed in terms of the locations of the system roots in the complex plane. Besides obtaining converter stability criteria this analysis technique also provides information on transfent behavior and audlo susceptibility (closed loop frequency response).

An important feature of the present approach is that it makes extensive use of a digital conputer as an analysis tool, replacing many difficult and tedious analytical computations by numerical solutions and making thereby a certain degree of automation of power converter modelling and analysis possible. The developed technique promises to be a valuable tool in converter modelling and analysis. It is applied in this paper to analyze a series switched regulator (buck), but it is also applicable to other regulator configurations such as the boost and buck-boost, for example, and even to converters operating with a discontinuous inductor current. This will be described in a future paper.

\section*{II. TIME DOMAIN MODELLING}

Consider the series switched regulator shown in Figure 1. The critical element of the regulator is the pulse modulator that controls the power switch Q (actually a tranststor) by periodically opening and closing it in such a manner, that the output voltage \(e_{0}\) is maintained at some specified reference voltage \(E_{R}\). By comparing the output voltage \(e_{o}\) with the voltage \(E_{R}\) an error signal is formed which is then integrated together with a voltage proportional to the derivative of \(e_{0}\) and an \(A C\) signal obtalned from a secondary winding of the power stage inductor. Whenever the output \(e_{c}\) of the integrator exceeds a specified threshold \(E_{T}\), the power switch closes for a predetermined fixed time \(T\), here 20 usec . If upon reopening \(e_{c}<E_{T}\), the switch remains open for an unknown period \(T_{\text {off }}\) until once more the condition \(e_{c} \geq E_{T}\) is satisfied and the switch closes again for \(T_{o n}\) seconds; if \(e_{c}-\mathrm{E}_{\mathrm{T}}\) upon reopening, the switch will remain open for a minimum, fixed off-time Toffmin This technique of
error signal encoding is ganerally known as integral pulse Erequancy modulation (IPFN) and it presents considerable difficulties in analyzing the behavior of the regulator circuit of Figure 1 by conventional frequency domain analysis techniques.

\[
k_{d}=R_{2} /\left(R_{1}+R_{2}\right)
\]
\[
\text { ' } 1 \text { = TUNNS RATIO }
\]

\section*{Figure 1. Series Switched Regulator}

\section*{Formulation of State Equations}

From Figure 1 it is apparent that the system has three states which are defined as Eollous: the output voltage \(a_{o}\), the cursent if flowing through the Inductor \(L_{o}\), and the output \(e_{c}\) of the integrator (operacional amplifier). By Inspection of Figure 1 one obtains the following equations, assuming that the input impedance of the control network inside the dashed box is nearly infinite relatilve to \(R_{t}\), as
is the case.
\[
\begin{align*}
& \frac{d 1}{d t}=\frac{1}{L_{0}}\left(e_{1}-e_{0}-R_{0} i\right)  \tag{1}\\
& e_{0}=R_{5}\left(1-\frac{e_{0}}{R_{L}}\right)+v_{c}  \tag{2}\\
& \frac{d v_{c}}{d t}=\frac{1}{C_{0}}-\frac{c_{0}}{R_{L} C_{0}} \tag{3}
\end{align*}
\]

Dtfferentiating \(e_{0}\) in Equation (2) with respect to time, and substituting for \(\mathrm{d} 1 / \mathrm{dt}\) and \(\mathrm{dv}_{\mathrm{c}} / \mathrm{dt}\) from (1) and (3) ypelds
\[
\begin{align*}
& \frac{d e_{0}}{d t}=e_{0}\left(-\frac{1}{G_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}\right)  \tag{4}\\
& \quad+1\left(\frac{1}{C_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{0} R_{5} R_{1}}{L_{0}\left(R_{5}+R_{L}\right)}\right)+e_{1}\left(\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}\right)
\end{align*}
\]

Equations (1) and (4) are the state equations of the pover circuit. Assuming a continuous Laductor current, the Input voltage \(e_{1}\) is defined by
\[
e_{i}=\left\{\begin{array}{l}
E_{i} \text { when switch } Q \text { is closed }  \tag{5}\\
0 \text { when switch } Q \text { is open }
\end{array}\right.
\]

The operational amplifior is comected as an integrator with the nonfuverting luput serving as the reference. Thus, the voltage \(e_{e}\) with respect to ground is given by
\[
\begin{array}{r}
e_{c}-K_{d} E_{R}+\int_{t_{0}}^{t}\left\{\frac{K_{d}}{R_{3} C_{1}}\left(E_{R}-e_{0}\right)-\frac{n}{R_{4} C_{1}}\left(e_{1}-1 R_{0}-c_{0}\right)\right.  \tag{6}\\
\left.-\frac{c_{2}}{C_{1}} e_{0}\right\} d t
\end{array}
\]
where the dot denotes differentiation with respect to time \((d / d t)\).

Differentating (6) Yields
\[
\begin{gather*}
e_{c}-\left(\frac{n}{R_{4} C_{1}}-\frac{k_{d}}{R_{3} C_{1}}\right) e_{0}-\frac{C_{2}}{C_{1}} \dot{c}_{0}+\frac{k_{d}}{R_{3} C_{1}} E_{1}-\frac{n}{R_{4} C_{1}}{ }_{i} \\
+\frac{n R_{0}}{R_{4} C_{1}} i \tag{7}
\end{gather*}
\]

The quantlty e \({ }^{2}\) an be substatuted from (4), and definding the stage vector \(\bar{x}\) as
\[
\begin{equation*}
\bar{x}=\left[e_{p}, i, e_{c}\right]^{T} \tag{8}
\end{equation*}
\]
and the input vector \(\overline{\mathrm{u}}\) as
\[
\begin{equation*}
\bar{u}=\left[a_{1}, E_{R}\right]^{T} \tag{9}
\end{equation*}
\]

Equations (1), (4) and (7) may be written in compact form as
\[
\begin{equation*}
\dot{\bar{x}}=\mathrm{F} \overline{\mathrm{x}}+\mathrm{Gu} \tag{10}
\end{equation*}
\]

Where the entries of the 3 by 3 matrix \(F\) and the 3 by 2 matrix 6 are defined in terms of efreuit parnmeters in Appendix A, Equation (10) is the state equation of the converter describing it regardless of whether the switch \(Q\) is open or closed. Merely the tuput 4 changes in aecordance with (5) when the switch opens and closes.

Equivalent Nonlincar Discrece Time System
The solution to (10) is given by
\[
\begin{equation*}
\bar{x}(t)-a^{\left(t-t_{0}\right) F} \bar{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{(t-t) p} G u(t) d t \tag{11}
\end{equation*}
\]
or, since \(\bar{u}\) is plecewise constrat,
\[
\begin{equation*}
\bar{x}\left(c_{k}+\lambda\right)=e^{F I} \bar{x}\left(t_{k}\right)+e^{F T}\left[\int_{0}^{T} e^{-F s} d s\right] G u\left(t_{k}\right) \tag{1.2}
\end{equation*}
\]
where \(\bar{u}(t)-\bar{u}\left(t_{k}\right)=\) constant for \(t_{k}, t \leq t_{k}+T\).
istind the lallowing matricod:
\[
\begin{equation*}
A(T)=e^{F T} \tag{1,3}
\end{equation*}
\]
and
\[
\begin{equation*}
n(x)=a^{F x}\left[\int_{3}^{T} b^{-N r} d a\right. \tag{10}
\end{equation*}
\]
 matrin of tho spotem. Fithtoton (la) hatamest now
\[
\begin{equation*}
x\left(t_{k}+1\right) \times N(T) \times\left(r_{k}\right)+n(T)-4\left(t_{k}\right) \tag{15}
\end{equation*}
\]

Fha valua of the fmput vactop \(u\left(t_{k}\right.\) ) depands on the stata of tha griteh Q at the \(\mathrm{t}^{*}{ }^{*}\) Note chat the mam twos : and \(n\) are only a fometion of the the stren P whieh need now ba congtant and whose manjmua per=
 the state of the sutreh at \(\mathrm{E}_{\mathrm{k}}{ }^{*}\)

For stopha, low erdoy systema the matroces s and \(p\) (t) edn of ten bo amafytetomly evaluared as ALsebrate functions of \(T\), As is the come for the proswat conventery syatem (sen Appendfs B). Rut for * sethemal antyas applicable ko a variecy of comverter contgugactons (game of poastbly hagh afder),
 by s dightal computer, The matets exponentedt of Equation (13) ls eviluncod from lts gentos reprom
gentaton. l.e.,
\[
\begin{equation*}
e^{M T}+x+E L^{+}+\frac{E^{2} q^{2}}{2 l}+\frac{F^{3} q^{3}}{3!}+\cdots \tag{16}
\end{equation*}
\]

Wth the number of carms to be mded botng determined by an amor critexkon Romputation of D(T) is then stratght Forwhed ustag tripezaldal or Rungemxucta lufequation bver the taterval \([0, T]\), The computation of *(T) amd \(D(x)\) a proprammed as a funcrion sub-
 and \(0(x)\) can ba araluated fop any spectilet T.

If bue eammot, op exen if ane does not wiah to. evaluate : and \(n\) In closed adgebrate faym, it is set11 useful to equabitah the strueture of the mastrioes. Thtm an bo done quite eadily by nottng che strueture of the macxices \(p\) and \(t\) and then applylug the method of Interpolintion Append \(x\) ( A) for ermput tus *(P) fer whthout netualy performang the comm purathons. lt Lohlows chat
\[
\left[\begin{array}{ccc}
11 & 42 & 0  \tag{17}\\
41 & 12 & 0 \\
1 & 13 & 1
\end{array}\right] \quad \text { ma } \quad n=\left[\begin{array}{ll}
d_{11} & 0 \\
0_{2} & 0 \\
d_{31} & 1
\end{array}\right]
\]

The sexo antries in the thed colum of * fndsate that beween swlech thmes the atate \(x_{3}\) of the inm tegratox does not arfaet the power stage partableg. and the outey tas I tdentrites with the Integtators This ts alog clear from phystead reaboulng ha uxaminw Inf: the elecut Itgestm of Figure 1. The meroes ln
 Whth rempect to the affaet of the wafarate voltagn F \(n\)th the pover strige of chet ragulator.

The rquivaleat diecrete the syatem at the amo verter whll now be dorlvod. Flater ghows th da a fimetion af tha and meroly setver the puppose or
 \(E_{k}\). Note that \(t_{k+1}=t_{k}\) Poss mos \(k\), fs not beatituted to be constant.


Sigure 2. Input foltage et ast Fumethon of tame
The equivalant disorete the syotem to be buven
 the time avolution of its stata ractaf \(x\) at the desm
 the Anputs ofy and \(u_{1}\) as
\[
u_{0}=\left[\begin{array}{l}
0  \tag{18}\\
F_{N}
\end{array}\right] \quad \text { and } \quad H_{1}=\left[\begin{array}{l}
F_{1} \\
F_{R}
\end{array}\right]
\]

It follows frow Rquat ion (15) that

Where \(\mathrm{T}_{\text {be }}^{k}\) la a functhon of ses \(\mathrm{C}_{\mathrm{k}}\) ) degorthed im-
\[
(10)
\] blietrly by the medutatox threshold condtion

Note that styen any Inttial atato \(x\left(t_{0}\right.\), Fquat fonse (10) and \((20)\) sisn be heed fo pompure recuratyoly the
 Thorefore thase equathons represeme the equlualent desereto the system for the eanverter describine Ite state at the the inatanees \(t_{k}\) esactly without may approxtmattone Note alsa that kquatom (tus) deavilhen a monltheat dasorete the syatem begause of the drpendenco of \(f^{k}\) of on the seate \(n\) (t, vat
Equation
 to the staht hand olde of ( -0 ), the modulator thetw hold condtcton may be cxprearied th standard fon an:
\[
\begin{equation*}
\sin _{k}, h_{\mathrm{bg}} \mathrm{~m}^{k} * t \tag{*1}
\end{equation*}
\]

\section*{EqutLhrtum Solution}

\[
\begin{aligned}
& \text { (2) }
\end{aligned}
\]
solution of the system (19) is of prime interest and il is defined by the condition
\[
\begin{align*}
& \bar{x}\left(t_{k+1}\right)=\bar{x}\left(t_{k}\right)=\bar{x}^{*}=\text { constant for all } k  \tag{22}\\
& T_{\text {off }}^{k+1}=T_{\text {off }}^{k}=T_{o f f}^{*}=\text { constant for all } k
\end{align*}
\]

Fitst the approximate steady state solution is computed. From dutycycle and flux conservation considecations it follows that
\[
\begin{equation*}
T_{\text {OFF }}^{*} \approx T_{\text {On }}\left(E_{i}-E_{R}\right) / E_{R} \tag{23}
\end{equation*}
\]
where \(E_{R}\) is numerically equivalent to the regulated DC output voltage. Denoting
\[
\begin{equation*}
T_{p}^{*}=T_{o f f}^{*}+T_{o n} \tag{24}
\end{equation*}
\]
and applying (17) and (22) when expanding (19) yields Fok the first two rows (the third row of (19) yields no information on \(x_{3}^{*}\) ),
\[
\left[\begin{array}{l}
x_{1}^{*}  \tag{25}\\
x_{2}^{*}
\end{array}\right]=\left[\left.\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right|_{T_{P}^{*}}\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*}
\end{array}\right]+\left[\begin{array}{l}
d_{11}\left(T_{\text {on }}\right) \\
d_{21}\left(T_{o n}\right)
\end{array}\right] \mathrm{E}_{1}\right.
\]
which can be solved for \(x_{1}^{*}\) and \(x_{2}^{*}\) since \(T_{p}^{*}\) is approximately known. Thus,
\[
\left[\begin{array}{c}
x_{1}^{*}  \tag{26}\\
x_{2}^{*}
\end{array}\right]=E_{i}\left[\left.\begin{array}{cc}
1-\phi_{11} & -\phi_{12} \\
-\phi_{21} & 1-\phi_{22}
\end{array}\right|_{T_{p}^{*}} ^{-1}\left[\begin{array}{l}
d_{11}\left(T_{\text {on }}\right) \\
d_{21}\left(T_{o n}\right)
\end{array}\right]\right.
\]

The third state \(x_{3}^{*}\) is determined from the threshold condition (20) as:
\[
\begin{equation*}
x_{3}^{\star}=E_{T}-\phi_{31}\left(T_{o f f}^{\star}\right) x_{1}^{\star}-\phi_{32}\left(T_{o f f}^{*}\right) x_{2}^{*}-d_{32}\left(T_{o f f}^{\star}\right) E_{R} \tag{27}
\end{equation*}
\]

The steady state solution \(\vec{x}^{*}\) determined by this method is not exact because the power circuit is not completely lossless so that the dutycycle relationship of (23) is only an approximation, but a very good one. How well this \(\vec{x}\) approximates the true equilibrium solution can be determined by cliecking how closely \(\bar{x}_{k}\) and \(\bar{x}_{k+1}\) match when using (19) for propagating the state through one cycle starting with \(\bar{x}_{k}=\bar{x}^{*}\). The best method for determining the with \(x_{k}=x\). The best method for detemining
exact steady state is to determine the exact \(T_{\text {off }}\) by Iterative Inearization (Newton's method) on the cycle to cycle matching condition for the third state (which is the integrator output and directly controls the chreshold condition). The iterative process is started with the above computed approximate steady state values and thus converges usually very fast. More details of this procedure are described next.

Define the system state when the power switch
turns on as:
\[
\begin{equation*}
\bar{z}_{k} \triangleq \bar{x}\left(t_{k}+I_{o f f}^{k}\right) \tag{28}
\end{equation*}
\]
and clearly
\[
\begin{equation*}
z_{3}\left(t_{k}\right)=E_{T} \quad \text { for all } k=0,1,2, \ldots( \tag{29}
\end{equation*}
\]

In the steady state one has:

clearly, if \(\mathrm{T}^{*}\) nod \(\mathrm{T}_{\mathrm{of}}^{*}\) nie him homit stuady state values, then one must satisfy the state matching condition:
\[
\begin{gather*}
S_{\text {match }}{ }^{m} x_{3}^{\star}-\left[\phi_{31}\left(T_{\text {on }}\right) z_{1}^{*}+\phi_{32}\left(T_{\text {on }}\right) z_{2}^{\star}+E_{r T}+d_{31}\left(R_{\text {on }}\right) E_{1}\right. \\
\left.+d_{32}\left(T_{o n}\right) E_{R}\right]=0 \tag{31}
\end{gather*}
\]
since the square bracketed term should equal \(x_{3}^{*}\), Note now that via Equations (26), (27) and (30), the function \(S_{\text {match }}\) is really only a function of \(T_{\text {off }}^{*}\), and one wishes to determine \(T_{\text {off }}^{*}\) such that
\[
\begin{equation*}
S_{\text {match }}\left(T_{\text {off }}^{*}\right)=0 \tag{32}
\end{equation*}
\]

Iterative linearization (Newton's method [11]) may now be applied to (32) to determine the exact value for \(T_{\text {*ff. }}{ }^{*}\) The entire procedure is performed by the computer with the required partial derivative \(\partial S_{m a t c h} / \partial T_{\text {off }}\) being evaluated numerically. Convergence from the approximate steady state to the exact steady state is usually within l-3 iterations.

Note that the difference between \(\vec{x}^{*}\) and \(\vec{z}^{k}\) denotes the peak-to-peak steady state ripple, provided the inductor current 1 and output voltage \(e_{0}\) are in phase. This is usually the case, unless the series equivalent resistance \(\mathrm{R}_{5}\) of the capcitor \(C_{0}\) is equal to zero. Note that \(x_{1}\) denotes the maximum value, and \(z_{1}^{*}\) the minimum value, of the limit cycle of the regulated output \(e_{0}\).

\section*{III. STABILITY ANALYSIS}

Regarding stability of the discrete time notInear system (19)-(20) one may now consider two approaches: (1) Determine stability-1n-the-1arge*, and (2) determine stability of the equilibrium solution.

WGven any Indtial state \(\bar{x}\left(t_{0}\right)\), show that It wil converge to the equilibrium solution.

The task of analytically determining stability-in-the-large appears to be a difficult one. Inftial attempts of relating stability-in-the-large to the contraction mapping/Eixed point theorem [7] approach to solving Equations (19) and (20) have failed. So have attempts of using the second method of Liapunov [ 3,8\(]\). But hope for success at some future time has not been entirely dispelled so that further research in this area appears to be indicated. Establishing stability-in-the-large is basically equivalent to solving the converter start-up problem. This can, however, be studied using a digital sinulation based on Equations (19) and (20), since usually a fixed start-up procedure is followed, \(1 . e .\), convergence co the equilibrium solution from only a well defined set of initial states need be considered and not from any state in the entire state space.

Of more importance at the moment is to establish stability of the equilibrium solution, which will be accomplished by Ifnearization. The Ifnearized system can also be used to study small signal audio susceptibility and transient behavior of the converter. It should be kept in mind, however, that the results thus obtained will not be valid for arbitiarily large displacements of the system from its equilibrium, and that when certain system parameters are varied such that instability of the equilibrium is approached, the region to which the linearized system applies may become small.

\section*{The Linearized System}

The nonlinear, discrete time system described by Equations (19) and (20) will now be Innearized about lts steady state equilibrium solution \(\bar{x}^{*}\), and the nominal DC supply voltage \(E_{1}^{*}\). Denoting
\(\delta \bar{x}\left(t_{k}\right)=\bar{x}\left(t_{k}\right)-\bar{x}^{*}\) and \(\delta E_{i}\left(t_{k}+T_{\text {off }}^{*}\right)=E_{i}\left(t_{k}+T_{\text {off }}^{*}\right)-E_{1}^{*}\)
it follows that
\[
\begin{aligned}
& \varepsilon \bar{x}\left(t_{k+1}\right)=\left\{t\left(T_{o n}\right) \frac{\partial}{\partial \bar{x}}\left[t\left(T_{\text {off }}^{k}\right) \bar{x}\left(t_{k}\right)+D\left(T_{o f f}^{k}\right) \bar{u}_{o}\right] \int_{\vec{x}} \int_{x} \bar{x}_{\left(t_{k}\right.}\right) \\
& +\left\{\frac{\partial}{\partial E_{i}}\left[D\left(T_{o n}\right) \bar{u}_{1}\right]\right\} s E_{i}\left(t_{k}+T_{o f f}^{*}\right)
\end{aligned}
\]
where it is important to note that \(\mathrm{T}_{\text {off }}^{k}\) is a function of \(\bar{x}_{k}\) via the threshold condition (20), i.e., \(L_{\mathrm{L}}\left(\bar{x}\left(t_{k}\right), T_{\text {off }}^{k}\right)=0\).

In the previous developments it had been tacitily assumed that \(E_{1}=E_{1}^{*}=\) constant for all time. This is not necessarily so and the nonlinear discirete time system (19)-(20) is also an exact description of the converter if \(E_{i}\) is time-varying, provided \(E_{i}\) remains conscant over any \(T_{\text {on }}\) period. To assume a timevarying \(E_{1}\) composed of the nominal DC value \(E_{1}^{*}\) plus a small superimposed \(A C\) component \(\delta E_{i}\), is a useful
concept when investigating audio suscoptibility of the converter and is the main roason why it is included here in the derfvation of the linearized system.

Denoting the first curly bracketed term in (34) by \(\Psi\), a constant \(3 \times 3\) matrix, and the second curly bracketed cerm by \(\Gamma\), a constant 3-dimensional column vector, Equation (34) can now be written as
\[
\begin{equation*}
\left.\overline{\delta x}\left(t_{k+1}\right)=y \overline{x x}^{\left(t_{k}\right.}\right)+M E E_{i}\left(\tau_{k}+T \quad{ }_{o f f}^{*}\right) \tag{35}
\end{equation*}
\]
and it represents the sought linearized systen. The matrix 4 and the colum vector \("\) renain to be evaluated, however.

By definition,
\[
\begin{equation*}
y_{t}=\frac{\dot{x}}{}\left(T_{\text {on }}\right) \frac{3}{\rightarrow \bar{x}}\left[\dot{x}\left(T_{\text {off }}^{k}\right) \vec{x}\left(t_{k}\right)+D\left(T_{o f f}^{k}\right) \bar{u}_{0}\right] \tag{36}
\end{equation*}
\]

To evaluate the partial derivatives of the square bracketed term analytically turns out to be possible but a very tedious task and it is much easier evaluated numerically by using difference quotients.
Denote the continuous function \(\vec{E}(\overline{\mathrm{x}}) \mathrm{ly}\)
\[
\begin{equation*}
\bar{E}(\bar{x})=t\left(T_{\text {off }}^{k}\right) \bar{x}\left(t_{k}\right)+D\left(T_{\text {off }}^{k}\right) \bar{u}_{o} \tag{37}
\end{equation*}
\]
and for sufficiently small \(\left\langle\mathrm{X}_{1}, 1=1,2,3\right.\), one has that


In order to evaluate (38) one must first determine by how much \(T_{\text {off }}\) changes due to a change \(\Delta x_{j}\), \(j=1,2,3\), and then use the new \(T_{o f f}\) to compute the \(F_{1}\left(x_{j}+i x_{j}\right), i, j=1,2,3\). The threshold condition
\[
\begin{equation*}
\leftarrow\left(\bar{x}, T_{\text {OLf }}\right)=0 \tag{39}
\end{equation*}
\]
is used to determine the change in \(T_{\text {off }}\) due to a change in \(x\). Iterative IInearization (Newton's methad) is used to determine the new T off that satisfies \(i=0\) after \(\bar{x}\) has been perturbed by \(s x_{j}\), \(j=1,2,3\). The only problem with numerical differentiation is to select the appropriate increments \(\Delta x_{j}\). At the present the increments are taken as 1\% of the value of the indepenlent variable, l.e.,
\[
\begin{equation*}
d x_{j}=0.01,\left|x_{j}^{*}\right| \tag{40}
\end{equation*}
\]

\section*{DRTGINaL page
Qris
ROOR QuALTY}

Some experimentation with the fncrement alze is advilable, stnce the accuracy of the pareial derivatives depends on it. For instance, if the function varies rapidly, a very small increment is claarly required. On the other hand, if the Increment is chosen needlessly too small, then the accuracy degrades because of numerical problems, since in tha limit a difference quotient assumes numerically the value \(0 / 0\). Studies on the inerement size and 1 ts affect on the results have also physteally sidguificant implications. If the linearized system shows high sensitivity to increment size, then this points out that the nonilnear system changes its behavior tather rapidly as it moves away from its equilibrium point, and the results obtained for the linearized system are only valdd for very small perturbations about the equilibrium. A computationally sifghely mote complex, but perhaps also more aceurate way of computing a derivative numerically is to use the following approximation,
\[
\begin{equation*}
\left.\frac{\partial f}{\partial x}\right|_{x}=\frac{E\left(x^{*}+d x\right)-E\left(x^{*}-A x\right)}{2 \Delta x} \tag{41}
\end{equation*}
\]
which can also detect discontinutties,
The \(3 \times 1\) matrix I can be evaluated analycieally, and by taspection of (34) it follows that:
\[
\cdots=\left[\begin{array}{l}
d_{1.1}\left(T_{0 n}\right)  \tag{42}\\
d_{21}\left(T_{0 n}\right) \\
d_{31}\left(T_{0 n}\right)
\end{array}\right]
\]
since \(E_{i}\) enters linearly Into the system.

\section*{Stabllity of the Linearized System}

To assess stabyilty of the steady state solution one now axamines the stablilty of the linearized system (35), restated here for convenience:
\[
\begin{equation*}
s \bar{x}\left(t_{k+1}\right)=4 \delta \bar{x}\left(t_{k}\right)+r s E_{ \pm}\left(t_{k}+\mathrm{T}_{o f t}^{*}\right) \tag{43}
\end{equation*}
\]

This systam ts stable \(1 F\) and only \(3 F\) all the efgenyalues \(A_{1}\) of 4 are absclutely less than inlty, that 15 ,
\[
\begin{equation*}
\left|\lambda_{1}(4)\right|<1, \quad i=1,2,3 \tag{44}
\end{equation*}
\]

The edgenvalues of 4 are evaluated by a digital computer and changes in the efgenvalues as a function of system parameters can be plotted in the comples phane. The locations of the elgenvalues, which are the roots of the system, do not only indicatestabillty, but also govern the translent behavior of the converter after a disturbance has displaced it from les equilibrium. The existing relationships hetween root locations instide the unit adrate and correspending system response times and damping are well known results from z-tranteota andymis of llneax dascrete time syscems \([9,10]\).

\section*{Stabilley Results}

A digital compucex program has been fritten that computes the equillbrium soluthon \(x^{*}\), evaluates the
matrix 4 , and computes the eigenvalues \(\lambda_{1}, 1=1,2,3\). For nominal converter paramaters as Ifsted in \(\begin{aligned} \text { noblu }\end{aligned}\) 1 one expects to obtain three real and positise efgenvalues less than undty, since it la known from actual converter breadboard tests that this system Is atable and that after a disturbance the resulting transfent decnys in a nonosctilatory manner. This was the cuse as can be nscertained from the computer result, shown in Table 2. Note that one root (elgenvalue) \(1 s\) for all practical purposes equal to zero. This is because the incremental fintegrator output voltage \(\mathrm{Sa}_{\mathrm{c}}\) can be shom to be a linear combination of the incremental Inductor current 81 and the incremental output voltage de, provided the inductor series resistance \(R_{0}\) equals mero, which is almost the case here. The zoro elgenvalue should, therefore, vause no coneem: it does not affeet stability, buing clearly less than undty, and results Will focus hare mainly on the two other, nonzeto elgenvalues.

Table 1. Nominal Clrait Parameter Values
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Parametar & Units & Value \\
\hline \(\mathrm{s}_{1}\) & Supply Vodtaga & vole* & 30 \\
\hline & Raferance (Dewlred Dutput) Voltaga & volte & 20 \\
\hline & & volts & 8 \\
\hline \(E_{T}\) & Futagrator Threnhold & & \\
\hline & Inductor Serlem Randutinec & ohme & 0.015 \\
\hline & Part of Ducpuc Volcaga Dividar & ohtax & \(28.7 \mathrm{k}^{2}\) \\
\hline & part of Uusput Voltage Dividut & ohme & 1.3.5N \\
\hline & Op-mpp DC Input keniutor & ohnis & 10k \\
\hline \({ }_{3}\) & Op-xap dC & ohnus & 1001 \\
\hline \(R_{4}\) & Op-amp AC Inpuc fasiocpr & ohma & \\
\hline \(\mathrm{H}_{5}\) & Sarina-aquivalent kasifennca of \(C_{0}\) & ohms & 0.077 \\
\hline & Lo3d & alumas & 10. \\
\hline & Output Filter Capacitar & 1 E & 300 \\
\hline \(\mathrm{C}_{0}\) & Output Filcer Capacitos. & & 2200 \\
\hline \(c_{1}\) & Opmap Feedback dapactitot & pt & \\
\hline \(\mathrm{C}_{2}\) & Lead Compunamelon Gapmeitor & \(\mu \mathrm{F}\) & 0.022 \\
\hline 40 & Output Pilter Inductor/Trans Formar & ull & 250 \\
\hline n & Traniformer turna kate \(\mathrm{n}_{2} / \mathrm{H}_{2}\) & -- & 0,65 \\
\hline Ton & On-TIme & 114 & 20 \\
\hline Poffmin & Nutimum of c-rime & us & \(\rfloor\) \\
\hline
\end{tabular}

Table 2 . Computer Stablitty Resules




PSIF
\(9.7104 E-01 \quad 6.0039 E-08 \quad 9.3612 E-0\)
\(-1.45136-01 \quad 7.9768 \mathrm{E}-01 \quad 5.9196 \mathrm{~L}-01\)
\(-3.9488 E-01-5.3217 E-01-4.0041 E-01\)

Lambitas:


The developed computer program is now ned to compute the roots of the Ifneardzed system as a function of important system parameters, thareby ylalding raluable design faformation on system stablifty and transient behavior. Crftheal paramaters are the AC loop gain embodied in \(R_{4}\) or \(n_{2}\), the DC loop gain eum bodied in \(\mathrm{R}_{3}\), and the lead eapaedtor \(\mathrm{C}_{2}\), The motion of the roots can be plotted in the comples phane, and as long as they reman inside the unit circle, the system is stable. The system is at the verge of instability for those parameter values for which the roots are just crossing the unit circle, and it is unstable when the roots are outside the undt circle. Figures 3 through 5 show some of the root locus plots that ware obtalnad. Figure 4, for example, predicts that without the A5 loep, the converter will become unstable as t , is decreased belon 600 pF . It also shows that without the AG loop no complex xuots are obtained which considerably restricts the ability to shape response time and dataping of the converter transients. This clearly dewonstrates that the maln advantage of the \(A C\) loop is to provide an additional degree of destgn fredom for adjusting the transtent behsvitor of the converter independent of the output fillter parameters. Note chat the present root locus plots are not exactly equivalenc to chose usually encountered in control systems design, shace here no "zeros" extat because the system has not been characterized by a trausfer function. From the results of the stability analysis the following conclusions could be dram:
- The apacitor \(\mathrm{C}_{2}\) provides load information and is eritical for stability.
- The Ac loop also acts as a stabiltang lead, but is less critiond in the presence of \(C_{2}\)
compensation. Its advantage is that it can adjust the trinsient response independent of the output flleer parameters \(\mathrm{C}_{0}-\mathrm{C}_{0}\) and the load \(R_{L}\).
- With \(\mathrm{O}_{2}=0\), the systom cin be stablifzed by the AC loop alone, but it will be oscillam tory and only margthatly stable.
- Whthout the AG loon, the system can be stabilized by \(\mathrm{C}_{2}\) alone very well. The AC loop plays therefore a less tmportant rale in stabllizing the systen.
- The present operating polit of the convertes ts good, hut its transient response can be tmproved (speeded up) by lavering \(\mathrm{C}_{2}\) from \(\mathrm{C}_{2}=22,000 \mathrm{pF}\) to \(\mathrm{C}_{2}=5,000 \mathrm{pF}\). As can be seen in Figure 3, this creates a paix of complex roots with a 0.707 damping ratio and a higher natural frequency as before.
- Near Instability the system is extromely sensitive to the sertes equivalent reststance \(\mathrm{R}_{5}\) of the capacitor \(\mathrm{C}_{0}\).


Figure 3. Root Loci for Linenrized System: Effect of Lead Capactor \(\mathrm{C}_{2}\) wich Nominal de Loop


Figure 4. Root Loed for linearized System: Effeet of Lead Capacitor \(C_{2}\) with AC Loop open


Figure 5. Root loci of henearized System: Fifert of ac loop when \(c_{2}=5000 \mathrm{pF}\)

The malytically predteted results on stability and transtent behavion were then compared with laboratory results ohtained from an actual breadboard model of the converter and good agrement was observed. Reducing the capacitor \(\mathrm{C}_{2}\) from \(22,000 \mathrm{pF}\) to 5000 pF resulted, to predicted, in a Eastor
transient response exhibiting an oscillatory overshoot of \(5 \%\) that is characteristic for a damping ratio of \(\zeta_{\mathrm{d}}=0.707\). When \(\mathrm{C}_{2}\) was reduced further to \(C_{2}=0\), the system remained stable, but its transient response became now quite oscililatory with very little damping, fust as expected in accordance with the corresponding root locations at \(C_{2}=0\) as shown
in Figure 3. When \(C_{2}\) was reduced from \(22,000 \mathrm{pF}\) toward zero with the AC loop open, the behavior of the converter could be directly correlated with the corresponding root locations in Figure 4. The only observed discrepancy was that the breadboard model became unstable for values of \(\mathrm{C}_{2} \leq 1000 \mathrm{pF}\) while the analysis predicted instability to occur only at \(C_{2} \leq 600 \mathrm{pF}\), a relatively minor inconsistency. Near instability the region about the steady state to which the linearized system applies may be quite small and any otherwise insignificant disturbance may cause the system to leave this region and become unstable. Variations in the \(A C\) loop gain when \(C_{2}\) was held constant at 5000 pF resulted in a converter behavior that also correlated well with the corresponding root locations in Figure 5.

\section*{IV. AUDIO SUSCEPTIBILITY}

It is of interest to examine how sinusoidal oscillations of the supply voltage \(E_{i}\) about its nominal \(D C\) value affect the regulated output voltage \(e_{o}\) in the steady state. The z-transform method can be applled to derive a frequency domain transfer function since in the steady state the cycle pertod \(T_{p}^{*}=T_{\text {on }}+T_{\text {off }}^{*}\) is constant. Furthermore, the amplitude of the supply voltage oscillations is constrained to be small and therefore the Innearized system model of Equation (43) applies. Taking the z-transform of the vector difference equation (43) and noting that by definition \(e_{0}=x_{1}\), one obtains
\[
\begin{equation*}
\delta E_{0}(z)=H(z I-\psi)^{-1} \Gamma e^{s T^{\star} \text { off } \delta E_{i}(z)} \tag{45}
\end{equation*}
\]
where
\[
H=[1,0,0]
\]
\(e^{j \omega T^{*}} \mathrm{p}\), the frequency domain trans-
After setting \(z=e \quad E_{0}\), the frequen
fer function \(G=\delta E_{1}\) is
\(G(j \omega)=H\left(I e^{j \omega T^{*}} P_{-\Psi}^{*}\right)^{-I_{r}} e^{j \omega T^{*}} 0 f f, \quad 0 \leq \omega T_{p}^{*} \leq \pi\)
which by virtue of the sampling theorem applies up to one-half the sampling Erequency, t.e., up to \(\omega T_{p}^{*}=\pi\). For the present converter this means up to 16.6 kHz which comprises the entire frequency band of interest. Note that the purely multiplicative factor \(j \omega T^{*}\) off contributes only to the phase information of \(G(j \omega)\) and can be ignored for amplitude computations.

This is also clear from physical reasoning since the term merely reflects the time shift of the sinusotdal input \(\delta E_{f}(t)\) by \(T\) felative to the discrete roference times \(t_{k}\), see Figure 2.

The transfer function \(G(j \omega)\) of (47) can be easily evaluated at any desired \(\omega\) by a digital computer. The results are shown in Figure 6 in comparison with laboratory test data obtained from a breadboard model of the converter and agreement is quite good. Between 50 Hz and 1.2 kHz the measured audio susceptibility differs from the computed values by only \(1-2 \mathrm{db}\) out of a total attenuation of about -42 db , while at higher frequencies a maximum deviation of up to 3.4 db can be observed, amounting to a maximum error of \(8 \%\). As can be seen, the computed frequency response predicts less attenuation than actually measured. This is most likely caused by the fact that the mathematical system model cannot be a perfect description of the actual phystral system which apparently is slightly more lossy than predicted. The mathematical description modelled the power transistor and the diode as ideal switches, while in reality some losses are incurred in these devices; also, due to transistor storage time, the switch is not perfect. It should also be remembered that at higher frequencies the assumption that \(\mathrm{E}_{1}\) is constant over the fixed time period \(T_{\text {on }}=20 \mathrm{ssec}\) becomes a poorer approximation; this is however expected to contribute only a minor ertor since the effect tends to average out.


Figure 6. Audio Susceptibility of Converter
The measured frequency response data was obtained hy feeding the regilatuk vutpui voltage into an harmonic wave analyzer. This can also contribute to the discrepancy observed. For it w 111 lead to slighty different results than obtained from computing the amplitude of the envelope of \(e_{o}\), whenever the upper and lower envelopes of \(e_{o}\) are not exactly in-phase, as was observed here over several frequency ranges.
V. TRANSIENTS CAUSED BY SUPPLY VOLTAGE STEP CHANGES

Of great interest is the transient behavior of the converter after a step change in the supply voltage \(E\). The linearized system remains valid for transient analysis, since the converter continues transient analysis, since the converter contins
to operate about its steady state equilibrium. The transient resulting from a step change of \(E_{1}\) from,
say 30 to 40 volts, should be looked at as a translent of the \(E_{1}=40\) volt system when displaced from
Its equillbrium. The closed loop root locations in the complex plane govern the decay of the transient with respect to damping and rapidity of response [9], but the peak overshoot observed after supply voltage switching depends on the "initial state", which is the state of the converter when the supply voltage step change first becomes affective. For the present converter note that the peak of the first cycle after switching \(E_{1}\) is completely independent of the controller (dashed box of Figure 1) and only depends on the output filter and load. This first peak can be readily computed by judiciously applying Equation (19) as follows. Using the old equilibrium \(\pi^{*}\), Eirst compute the corresponding state \(\frac{2}{2}^{*}\) at \(t_{k-1}+T_{\text {ofF }}^{\star}(\) see Figure 2):

Assuming that the supply voltage switeh and corresponding change in \(T\) on occurred at some time \(t\) between \(t_{k-1}\) and \(t_{k-1}+T_{0 F F}^{*}\), It follows that the peak of the first cycle at \(t_{k}\) is given by
\[
\left[\begin{array}{l}
x_{1}^{o}\left(c_{k}\right) \\
x_{2}^{o}\left(t_{k}\right) \\
x_{3}^{0}\left(c_{k}\right)
\end{array}\right]=\phi\left(T_{o n}^{n e w}\right)\left[\begin{array}{c}
z_{1}^{*} \\
z_{2}^{*} \\
E_{N}
\end{array}\right]+\left.\left[\begin{array}{c}
d_{11} \\
d_{21} \\
d_{31}
\end{array}\right]\right|_{1} E_{1}^{\text {new }}+\left[\begin{array}{c}
0 \\
0 \\
d_{32}\left(T_{\text {new }}^{\text {new }}\right)
\end{array}\right] E_{R}
\]

This Elrst peak \(\overline{X_{k}^{0}}\), after switching now forms the initial state for the new system and the convergence from \(\bar{x}_{k}\) to the new steady state equilibrtum su governed by the Inearized system (35), with the Himarization having been performed about the new equilibrium, of course. Thus, defining the incremental Initial state by
\[
\begin{equation*}
\delta \bar{x}\left(t_{0}\right) \triangleq \bar{x}^{\infty}\left(t_{k}\right)-\bar{x}_{\text {new }}^{*} \tag{50}
\end{equation*}
\]
the time history of the translent is defined by the discrete time response of the linear system
\[
\begin{equation*}
\delta \bar{x}\left(t_{k+1}\right)=\psi \delta \bar{x}\left(t_{k}\right) \tag{51}
\end{equation*}
\]
starting with the initial state \(\delta \bar{x}\left(t_{0}\right)\) given \(\ln (50)\).
Investigating the vehavior of the transient is now done best by propagating Equation (51) over a Few cycles until the actual peak response has been observed. From then on the decay of the transient

Is salaly determined by the roots. Propagation of (51) is done best by a digital conputer, although the low order of the present system makes it possible to perform the required computations with a pocket size electronic calculacor. Obtained results were compared with laboratory data from a breadboard model, and good agreement was observed.

\section*{VI. CONCLUSIONS}

A time domain approach based on scate space techniques has been applied to modelling and analysis of an incegral pulse frequency modulated dC to DC power converter. An equivalent, nonlinear discrete time system was derlved that describes the converter without approximations. This system was linearized about its equilibrium solution, which is the steady state of the converter, and from the obtained Innear disciute cime system, converter stability, transient response and audio susceptibility could readily be established. A key feature of chis approach is that it makes extensive use of a digital computer as an analysis tool, theraby facilitating a certain degree of automation in power converter modelling and analysis. The analytically predicted results were compared with laboratory test data obtained from an actual breadboard modal of the converter and very good agreement was observed.

The approach to converter modelling and analysis presented here has with very good results also been applied to a pulse vidth modulated buck regulator (the converter of Figure l with a djfferent dutycycle contral mode). Furthermore, the coneept of system modeling by a state transition matrix was used in digital simulation of converters, resulting in significantly faster program execution times, Currently the appronch is being successfully applled to other power converter configurations, such as boost and buck boost for justance, and to converters operating with a discontinuous inductor current. The results of this research will be presented in a future paper.

The analysis approach developed in this paper can be generalized and applied to a large variety of converters and it should prove to be a very valuable tool in power converter modelifng mad analysis in the future.

APPENDIX A
Entries of Matrices \(F\) and \(G\)

In expanded form Equation (10) can be written
as
\(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{lll}E_{11} & f_{12} & 0 \\ f_{21} & f_{22} & 0 \\ E_{31} & f_{32} & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{ll}s_{11} & 0 \\ \varepsilon_{21} & 0 \\ s_{31} & s_{32}\end{array}\right]\left[\begin{array}{l}e_{1} \\ E_{R}\end{array}\right](A-1)\)
where
\[
\begin{aligned}
& \text { ORIGINAL PAGE II } \\
& \text { OE POOR OUAWTV }
\end{aligned}
\]
\[
\begin{align*}
& f_{11}=-\frac{1}{C_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)} \\
& f_{12}=\frac{R_{L}}{C_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{0} R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}  \tag{A-2}\\
& f_{21}-\frac{1}{L_{0}}, \quad f_{22}=-\frac{R_{0}}{L_{0}} \\
& f_{31}=\frac{n}{R_{4} C_{1}}-\frac{K_{d}}{R_{3} C_{1}}+\frac{C_{2}}{C_{1} C_{0}\left(R_{5}+R_{L}\right)}+\frac{C_{2} R_{5} R_{L}}{C_{1} L_{0}\left(R_{5}+R_{L}\right)} \\
& f_{32}=\frac{C_{2} R_{0} R_{5} R_{L}}{C_{1} L_{0}\left(R_{5}+R_{L}\right)}-\frac{R_{L} C_{2}}{C_{1} C_{0}\left(R_{5}+R_{L}\right)}+\frac{R_{0} n}{R_{4} C_{1}} \\
& g_{11}=\frac{R_{5} R_{L}}{L_{0}\left(R_{5}+R_{L}\right)}, \quad g_{21}=\frac{1}{L_{0}}  \tag{A-3}\\
& g_{31}=-\frac{n}{R_{4} C_{1}}-\frac{C_{2} R_{5} R_{L}}{C_{1} L_{0}\left(R_{5}+R_{L}\right)} \\
& g_{32}=\frac{K_{d}}{R_{3} C_{1}}
\end{align*}
\]

\section*{APPENDIX B}

Analytic Determination of the State Transition Matrix \(\Phi(T)\)

The Cayley-Hamilton theorem [5] is applied to determine \(\Phi(T)=e^{F T}\); this technique is also known as the method of interpolation [6]. Thus, simee \(F\) is a \(3 \times 3\) matrix,
\[
\begin{equation*}
\phi(T) \Delta e^{E T}=\gamma_{0} I+\gamma_{1} F+\gamma_{2} F^{2} \tag{B-1}
\end{equation*}
\]
where the \(\gamma_{1}\) are scalar functions of \(T\) which must be determined. To do this the eigenvalues \(\lambda\) of \(F\) are needed, which are the roots of det \((F-\lambda I)=0\). Hence,
\[
\lambda\left[\lambda^{2}-\left(f_{11}+f_{22}\right) \lambda-f_{12} f_{21}+f_{11} f_{22}\right]=0
\]
yields
\[
\begin{gather*}
\lambda_{1,2}=\frac{f_{11}+f_{22}}{2} \pm f \sqrt{f_{11} f_{22^{-f}}{ }_{12} f_{21}-\left(f_{11}+f_{22}\right)^{2} / 4} \\
\lambda_{3}=0 \tag{B-2}
\end{gather*}
\]
which is rewritten as
\[
\begin{equation*}
\lambda_{1}=-\alpha+j \beta, \quad \lambda_{2}=-\alpha-j \beta, \quad \lambda_{3}=0 \tag{B-3}
\end{equation*}
\]

Substituting \(\lambda^{\prime} s\) for \(F\) in ( \(B-1\) ) yields
\[
\begin{align*}
e^{(-\alpha+j \beta) T} & =\dot{\gamma}_{0}+\gamma_{1}(-\alpha+j \beta)+\gamma_{2}(-\alpha+j \beta)^{2} \\
e^{(-\alpha-j \beta) T} & =\gamma_{0}+\gamma_{1}(-\alpha-j \beta)+\gamma_{2}(-\alpha-j \beta)^{2}  \tag{i-4}\\
1 & =\gamma_{0}
\end{align*}
\]

Thus, ( \(B-1\) ) represents a closed form expression of \(\Phi(\mathrm{T})\).

\section*{Determination of the Matrix \(D(T)\)}

The only nontrivial computation required is the
uation of the matrix integral, see Equation (14).
The only nontrivial computation required is the
evaluation of the matrix integral, see Equation (14). evaluation of the matrix in
Froin ( \(\mathrm{B}-1\) ) it follows that
\(\int_{0}^{T} e^{-s F} d s=T I+F \int_{0}^{T} \gamma_{1}(-s) d s+F^{2} \int_{0}^{T} \gamma_{2}(-s) d s\)
\[
\begin{equation*}
=T I+F E_{1}(T)+F^{2} \xi_{2}(T) \tag{B-8}
\end{equation*}
\]
and
\(y_{2}=\frac{1}{\alpha^{2}+\beta^{2}}\left\{1-e^{-\alpha T}\left[\frac{\alpha}{\beta} \sin P T+\cos \beta T\right]\right\}\)

By direct evaluation
\[
\begin{align*}
\xi_{1}(T)= & \frac{2 \alpha}{\alpha^{2}+\beta^{2}}\left\{T-\frac{1}{\alpha^{2}+\beta^{2}}\left[e^{\alpha T}(\alpha \cos \beta T+\beta \sin \beta T)-\alpha\right]\right. \\
& \left.+\frac{\alpha^{2}-\beta^{2}}{2 \alpha \beta\left(\alpha^{2}+\beta^{2}\right)}\left[e^{\alpha T}(\alpha \sin \beta T-\beta \cos \beta T)+\beta\right]\right\}  \tag{B-9}\\
\xi_{2}(T)= & \frac{1}{\alpha^{2}+\beta^{2}}\left\{T-\frac{1}{\alpha^{2}+\beta^{2}}\left[e^{\alpha T}(\alpha \cos \beta T+\beta \sin \beta T)-\alpha\right]\right. \\
& \left.+\frac{\alpha}{\beta\left(\alpha^{2}+\beta^{2}\right)}\left[e^{\alpha T}(\alpha \sin \beta T-\beta \cos \beta T)+\beta\right]\right\} \tag{B-10}
\end{align*}
\]

Then,
\[
\begin{equation*}
D(T)=\phi(T)\left[T I+F \xi_{1}(T)+F^{2} \xi_{2}(T)\right] G \tag{B-11}
\end{equation*}
\]

\section*{REFERENCES}
(1) G. W. Wester, "Stability Analysis and Compensation of a Boost Regulator with Two-Loop Control," LEEE Power Electronics Specialists Conference Record, 1974.
(2) A. Capel, J. T. Ferrante, and R. Prajoux, "Stability Analysis of a PIM Controlled DC/DC Regulator with DC and AC Feedback Loops," IEEE Power Electronics Specialists Conference Record, 1974.
(3) R, L. Farrenkopf, A. E. Sabroff and P. C. Wheeler, "Integral Pulse Frequency OnOff Control," AIAA Guidance and Control Conference, Cambridge, Mass., August 12-14, 1963, Paper Number 63-328.
(4) E. I. Jury and J. G. Blanchard, "A Nonlinear Discrete System Equivalence of Integral Pulse Frequency Modulation Systems," IEEE Transactions on Automatic Control, Volume AC-12, Number 4, pages 415-422, August 1967.
(5) Bernard Eriedman, "Principles and Techniques of Applied Mathematics," John Wiley and Sons, New York, 1962.
(6) L. A. Zadeh and C. A. Desoer, "Linear System Theory, The State Space Approach," pages 607612, McGraw-Hill, New York, 1963.
(7) A. N. Kolmogorov and S. V. Fomin, "Elements of the Theory of Functions and Functional Analysis Volume 1," pages 43 et seq., Graylock Press, Rochester, New York, 1961.
(8) J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method with Applications," Academic Press, New York, 1961.
(9) Benjamin Kuo, "Analysis and Synthesis of Sampled Data Control Systems," Chapter 6, Prentice Hall, Englewood Cliffs, New Jersey, 1963.
(10) E. I. Jury, "Theory and Application of the \(Z-\) Transform Method," John Wiley and Sons, New York, 1964.
(11) I. S. Sokolnikoff and R. M. Redheffer. "Mathematics of Physics and Modern Engineering," pages 684-686, McGraw-Hill, New York, 1958.

\section*{}

\title{
QRAGNAL Page is \\ QUality
}

\section*{AMALYSIS OF DC-OC CONVERTERS}
F. C. Lee, R. Iwens, Y. Yu

TRU Defense and Space Systems
Redondo Beach, California
and
J. E. Triner

MASA Lewis Research Center
Cleveland. Ohio

\section*{SUMMARY}

\section*{A generalized discrete time domalin modeling and} analysis technique is presented for all types of switch Ting regulators using any type of duty-cycle controller ductoperating in both continuous and discontinuous inderive an equivalent nonlinear discres are employed to lescribes the converter exactly ifscete time model that ized about its equilibriuactly. The system is lineardiscrete about tis equilibrium state to obtain a linear tons, such as stability small signal performance evaluasiant response. The analysis masceptibility and tranthe digital computer as an analytical extensive use of universal, exact and easy to use.

\section*{I. INTRODUCTION}

Switched dc-de converters can be characterized, in figure 1, by the three basic functional blocks: power stage, analog signal processor, and digital signal processor or duty cycle controller. The power stage, as illustrated in Figure 1 by the three basic configurations: buck, boost, and buck/boost, can oper ate either ina continuous inductor current mode or in a discontinuous inductor current mode. The analog signal processor usually contains an error , mimplifier, a comDonsation network and a single-feedback-control loop or multiple-feedback-control loops [1]. The digital signal processor includes a ramp generator, a threshold level. and a timing circuit in order to achieve one of the following means of duty cycle control of the power switch, namely, fixed ON-time variable OFF-time control, ifixed off-time variable ON-time control, a fixed frequency control or a hysteres is controi, etc. artially due to the nonlinear discrete nature of such system and partially due to the rapidly-evolving new circuit technology, modeling and analysis of power processing systems has been constantly lagging behind the circuit development. To date analyses presented [2-7] constraints: from at least one of the following
- Iimited to certain types of power stage operating mostly in the continuous inductor-current mode - Iimited to certain types of duty-cycle controlle's - good accuracy limited to low modulation frequencies
- complexity of mathematical derivations which often timpedes practical usefulness
- limited to conventional single-loop systems, since the multiple-loop system has a rather unique way of pulse modulation implementation and therefore

Recently, a time domain modeling and analysis of - constant ON-time controlled buck converter operating -1th a continuous inductor current has been presented [8]. An equivalent nonlinear discrete time model was derived that describes the converter behavior exactly. The system was linearized about its equilibrium state

\section*{by TRM Defense and Space Systems for NASA}

\title{
DRiginal page is
}
obtained. The input-output transfer function is employed to analyze the propagation of a small signal disturbance from the converter input to its regulated output, normally known as the audiosusceptibility of the converter.

\section*{Step 1: State Space System Representation}

The state variables of the system \(\underline{x}\), a nxl column vector, normally are selected as voltages across the capacitors and currents through the inductors. However, for the convenience of each individual problem, state variables can be chosen differently. System equations are written to characterize exactly the converter for the continuous current operation and the discontinuous current operation. The following definitions are used to simplify frequert references in this paper.

Mode 1 Operation: The current through the inductor is always greater than zero as shown in fig. 2(a). The period of each switching cycle can be clearly divided into two time intervals, \(T_{O N}\) and \(T_{F 1}\). During \(T_{O N}\), the \(O N\) power transistor is "ON" and the diode is "OFF", and during \(T_{F I}\), the power transistor is "OFF" and the diode is "ON".

Mode 2 Operation; The current through the inductor reduces to zero and resides at zero for a \(T_{F 2}\) time interval as shown in Fig. 2(b). In this \(T_{F 2}\) time interval,
both the transistor and the diode are "OFF". The time intervals \(T_{O N}\) and \(T_{F 1}\) defined in the Mode 1 operation also are valid in the Mode 2 operation.

The system representation for the Mode 1 operation is:
\[
\begin{align*}
& \underline{\dot{x}}=F 1 \underline{x}+G 1 \underline{u} \text { during } T_{O N}  \tag{1}\\
& \underline{\dot{x}}=F 2 \underline{x}+G 2 \underline{u} \text { during } T_{F 1} \tag{2}
\end{align*}
\]

The column vecter \(u\) is a ( \(m x]\) ) input vector, containing the input voltage \(E_{i}\), the reference \(E_{B}\), the saturation voltage drop across the power transistor \(E_{Q}\), and the forward voltage drop across the diode ED, Qetc. The nxn matrices F1 and F2 and the nxm matrices G1 and G2 are constant matrices represented by the various circuit parameters.

In Mode 2 operation, in addition to (1) and (2), equation (3) is added to complete the system representation.
\[
\begin{equation*}
\underline{\dot{x}}=F 3 \underline{x}+F_{3} \underline{1} \cdots \text { during } T_{F 2} \tag{3}
\end{equation*}
\]

The dimensions of \(F 3\) and \(G 3\) are the same as those of F1 and G1, respectively.

The converters, which are basically nonlinear switching circuits, are accurately described by the differential equations represented by (1) to (3).
(A)


Fig. 2 (a) Continuous inductor current operation, (b) Discontinuous inductor current operation.


Fig.3. Propagation of state variaie during one switching cycle.

The solution of the linear differential equations can be expressed by the following state transition equations.
where
\[
\begin{align*}
\underline{x}(t+T) & =\underline{i}(T) \underline{x}(t)+D i(T) \underline{u}  \tag{4}\\
\phi i(T) & =e^{F i T} \quad i=1,2,3 \\
D i(T) & =e^{F i T}\left[f_{0}^{T} e^{\left.-F i S_{d s}\right] G i \quad i=1,2,3}\right.
\end{align*}
\]
\(\Phi i(T)\) and \(D i(T)\) for any aiven \(T\) can be computed either analytically or numerically. If they are computed numerically, the following Taylor series expansion is used.
\[
e^{F i T}=1+F_{i} T+\frac{(F i T)^{2}}{2!}+\frac{(F i T)^{3}}{3!}+
\]

Step 2: Nonlinear Discrete State Transition Representation
The state trajectory during one cycle of oropagation is illustrated as Fig. 3. The discrete state transition equation for the converter in a complete switching cycle can be obtained by combining the two/ three state transition equations expressed by (4). each corresponding to a specific switching time interval \(T_{O N}^{k}, T_{F 1}^{k}\) and/or \(T_{F 2}^{k}\). The nonlinear discrete state transition representation for the converter is expressed by (5)
\[
\begin{equation*}
\underline{x}\left(t_{k+1}\right)=\stackrel{L}{=}\left(t_{k}\right)+v \underline{u} \tag{5}
\end{equation*}
\]
where \(t_{k}\) and \(t_{k+1}\) corresponding to the time instances at the Geginning of the \(k\) th cycle and the \((k+1)\) th cycle respectively. Equation (5) is nonlinear because \({ }_{k}\) the matrix is a function of the time intervals \(T_{O N}\), \(T_{F 1}{ }^{k}\) and \(T_{F 2}{ }^{k}\) which are all functions of the system
state \(\underline{X}\left(t_{k}\right)\) by virtue of the threshold conditions shown in the following;

Mode 1 Operation:
\[
\begin{align*}
& \Delta \pm \$ 2\left(T_{F 1}^{k}\right) \Delta 1\left(T_{O N}^{k}\right)  \tag{6}\\
& V \pm \Delta 2\left(T_{F 1}^{k}\right) D 1\left(T_{O N}^{k}\right)+D 2\left(T_{F 1}^{k}\right) \tag{7}
\end{align*}
\]
where \(T_{O N}^{k}\) and \(T_{F 1}^{k}\) representing the \(T_{O N}\) and \(T_{F T_{k}}\) intervals during the kth cycle. The time intervals \(T_{O N}^{k}\) and \(T_{F}{ }^{k}\) can be determined through the following two threshold conditions:

Ihreshold Condition 1: A threshold condition determinesthe duty cycle ratio of the power switch which is normally implemented by comparing the analog error signal with a fixed threshold level to determine the duty cycle pulse width.
\[
\begin{equation*}
\xi_{1}\left(\underline{x}\left(t_{k}\right), T_{n N}^{k}, T_{F}\right)=0 \tag{8}
\end{equation*}
\]

Threshold Condition 2: A condition which specifies whether the converter is operating at a constant frequency, or a constant ON time, or a constant OFF time, or a constant voltage-second, or hysterests control, etc
\[
\begin{equation*}
\varepsilon_{2}\left(\underline{x}\left(t_{k}\right), T_{O N}^{k}, T_{F l}^{k}\right)=0 \tag{9}
\end{equation*}
\]

Mode 2 Operation:
\[
\begin{align*}
& \$ 1 \Delta 3\left(T_{F 2}^{k}\right) \$ 2\left(T_{F 1}^{k}\right) \Delta\left(T_{O N}^{k}\right)  \tag{10}\\
& V_{Q} \$ 3\left(T_{F 2}^{k}\right)+2\left(T_{F 1}^{k}\right) \quad D T\left(T_{O N}^{k}\right) \\
& +\$ 3\left(T_{F 2}^{k}\right) D 2\left(T_{F 1}^{k}\right)+D 3\left(T_{F 2}^{k}\right) \tag{11}
\end{align*}
\]

In order to determine the three time intervals \(T_{O N}{ }^{k}, T_{F 1}{ }^{k}\) and \(T_{F 2}{ }^{k}\), a third condition, in addition to (8) and (9), should be included to detect the time instant when the inductor current is reduced to zero.

Threshold Condition 3:
\[
\begin{equation*}
\xi_{3}\left(\underline{x}\left(t_{k}\right), T_{0 N}^{k}, T_{F l}^{k}, T_{F 2}^{k}\right)=0 \tag{12}
\end{equation*}
\]
of course, in Mode 2 operation, the thme interval \(T_{F 2}^{k}\) should be a parameter in a function corresponding to (8) and (9),
Equations ( \(5-12\) ), are the exact representation of the nonlinear switching nature of the converters.

\section*{Step 3: Equilibrium State}

In order to solve for the equilibrium state of the system \(\underline{x}^{*}\), the approximate steady state \(\vec{x}^{*}\) is calculated first based on the given input and output conditions. The approximate solution is employed as an initial guess toward solving the exact steady state through Newton's iteration method. In the steady state, equation (5) can be written as
\[
\begin{equation*}
\underline{x}^{*}=0 \underline{x}^{*}+V \underline{u} \tag{13}
\end{equation*}
\]

The o matrix and \(V\) matrix can be computed for the given \(T_{O N}, T_{F 1}\) and \(T_{F 2}\). For given input-output requirements of the converter, the approximate time intervals, \(\vec{T}_{O N}\), \(T_{F 1}\) and \(\bar{T}_{F 2}\) can be determined. [9] These approximate
steady-state time intervals are substytuted into equation (5) and the threshold condition to compute an approximate steady state \(x^{\star}\). With \(\underline{x}^{*}\) as an initial
guess, the Newton's iteration method is employed to solve the steady-state solution. Equations (5) through (12) are computed continuously in the iteration process unt a certain specified state-natching condition is s+びsfed, The state-matching condition can be defined in many differpont wavs, for oyample:
\[
\begin{equation*}
\sqrt{\sum_{i=1}^{n}\left[x_{i}\left(t_{k+1}\right)-x_{i}\left(t_{k}\right)\right]^{2}} \tag{14}
\end{equation*}
\]
for an arbitrarily sitall posin a number

\section*{Step 4: Linearized Discrete Time - 3main Model}

The nonlinear discrete-tine-dome in equation (5) is linearized about the equilibrium stat. \(x^{*}\). This linearized system is used to study the sman signal related properties of the converter.

Equation (5) is rewritten as
\[
\begin{equation*}
\underline{x}\left(t_{k+1}\right)=f\left(\underline{x}\left(t_{k}\right), \underline{u}, r_{O N}, T_{F 1}, T_{F 2}\right) \tag{15}
\end{equation*}
\]

For a constant forcing function \(\underline{u}\). equation (15) is linearized about \(\underline{x}^{*}\).
\[
\begin{array}{r}
\delta \underline{x}\left(t_{k+1}\right)=\left.\frac{\partial f}{\partial \underline{x}}\right|_{\underline{x}^{\star}} s \underline{x}\left(t_{k}\right)  \tag{16}\\
A
\end{array}
\]
where \(\Psi\) is a ( \(n \times n\) ) matrix. The differentiation \(a f / a x\) can be performed analytically, if the problem is simple. 0therwise, it can be computed numerically by the difference quotients.

\section*{Step 5: Eigemalue Stability Analysis}

The eigenvalues of the matrix \(q\) are evaiuated by the computer, The linearized system (16) is stable if and only if all the eigenvalues of \(\psi\) are absolutely less than unity, i.e.,
\[
\begin{equation*}
\left|A_{i}\right|=1 \quad i=1, \ldots, n \tag{17}
\end{equation*}
\]

Changes of eigenvalues as a function of system parameters can be plotted in the complex \(Z\)-plane. The locations of the eigenvalues in the 2 -plane indicate not only the stability but also the transient behavior of the system, i.e., damping and rapidity of response.

\section*{Step 6: Susceptibility to Audio Frequencies In The Supply Voltane}

In space/nilitary adolications, it is a reauirement to spectfy how a small sinusoidal disturbance of the dc supply voltage \(\mathrm{E}_{\mathrm{i}}\) affects the regulated output voltage \(E\) in the steady state operation. The audiosusceptibiIfty of the converter is defined as the closed-loop input-to-output transfer function. In the previous developinent of the linearized discrete mode, a constant input voltage \(E_{i}\) is assumed. If \(E_{i}\) is time varying, but sufficiently slow so that the input voltage remains essentially constant over a switching Deriod, the nonlinear discrete time varying system (15) can be linearized about the previously defined equiHbrium state \(x^{*}\) and the nominal de supply voltage \(E_{f}\).
\[
\begin{equation*}
s \underline{x}\left(t_{k+1}\right)=s \underline{x}\left(t_{k}\right)+r s e_{j}\left(t_{k}\right) \tag{18}
\end{equation*}
\]
where

and
\[
Q_{i}\left(t_{K}\right)=t_{i}\left(t_{K}\right)=F_{I}
\]
chat is, the tome wryiny fif (i) contains a de component Ef plus a small ae commenent \(\mathrm{E}_{\mathrm{f}}(\mathrm{t})\).
The autput valtaye \(E_{a}\) ath he axpressed as
\[
\begin{equation*}
E_{a}\left(t_{k}\right) \neq \mathrm{E}_{\mathrm{a}}\left(t_{k}\right) \tag{12}
\end{equation*}
\]
where is a censtant (lxn) row matrit.
Applying the trancomation to(18) it wolds
\[
\begin{equation*}
s x(x)=(1 *=w)^{-1}, 8 a_{1}(x) \tag{nO}
\end{equation*}
\]

Tha fraquencyedemitin transrer runcton ean ba derived after replatho * by miwl and eambining (10) and (10).
\[
\begin{align*}
& { }_{E_{0}}^{E_{0}} 6\left(1 a^{\operatorname{dNr}} \beta-\psi\right)^{21} \tag{31}
\end{align*}
\]

Whare Ey and are the de avorage of the input voltage and the oucput voltage respectively, Tha inputerow
 in (m) an be used ta sudy the suscenthtity of the converter to the small zudio signal disturbance in the supply valtane.

\section*{}

Twe spectere dang les are given to demonetrats anplicathon of the genematized procednes phsented in the praviuns setion. The phat is a muitiplo-100p
 Guemes, Hads a curment mode. The detalled analysis is pratented on this paper bo show how the stepaby step procedures of the generalised method aro carmed due in thts spectfic examele. The secomd oxampla is a twombete thek eonterecer operating at comstant from fuensy, dude 1 ats well as hode curvont dependimy on Tha and load eondtctons, Eemposite computer prow gram is developed, such that chabges of the converter pervormancit during the trimsttom from Mede 1 to Nade 2 op vea berse dan be wadtly studied by simply vary. ing the line and lead condetons.

\subsection*{3.1. Fxamele 1:}

A de-dr voltaye stepath (boest) comverter in Fia. A omplays twa featback-control laops: The de loon and the the lame, The de lean sonses tha enverter output whlcage and compares tc wtel a perarence poltage to gongma a de ermo stond stal lar to the comvent on* © wiy, The de loop sarees two punetrons: the fune: tou is co sense the small stmat at voltage teross Die cheroy stambe Inductor to menerate an as drear shonal wht sh sonbthad with the de exror stonal to serve As the input to the ampleriet, the ather fonetion is to geneqate a larue stumal ram fumetion by integmating


Fig. 4. A bocst converter using twew loop eontral.


Fig. 5. The voltage arrass the power switch \(\mathrm{E}_{\mathrm{x}}\) as a function tif time.
the steady state ac switchting volcage appearing across the induetore it is cemmenty known that the ram func. tion and a chmeshold detecter are the necessary ingredients in urder to convert an analog sfonal into a digital signat, In cunventional singlayloce systems. the ramp function is genemated afther by an extamal rand generator or by converting the orror output of the de ampliflar, for detarled deseriptions of the twomap syutem, alease retar to references [1, 10]

The boost sonverter is shown in fla, t was employed In the power precessing sytem of the dith bnergy Asthoname abservatary Satellite (HEAO) which opentes at comstant switrhing frequence, discontinous mductor cureant node exilusfoly under all line and lade conditlons . It aerves as an appopriate example tu defunstrate the diserote time domin amalysis stmee the continunus burrent operatom is tons bered as the spe. chal case of the discontmunds carvent operdtion in this analysis apponch.

The wavefom of \(E_{y}\), as shown in \(f\) in, by is usad ta serve the purgose de estahlishing some natation regriming the cime instant \(t\) when eow eycle starts and ench shitchins action aremp.

In stade state nperation, the dryital stanal pros casser is haplemented by the following duty eyele eontrol laws:

At \(t_{f}^{\prime} t_{k+1} t_{k}+\cdots\) the threshold condition tums off the pewer sutteh
at ta, thal trat othe tera inductor eurrent tuadition turis off the powne drade.

The time intervals \(t_{k}^{1}-t_{k}, t_{k}^{t_{k}}-t_{k}^{1}\), and \(t_{k+1}-t_{k}^{2}\) are defined as \(T_{O N}^{K}\), \(T_{F 1}^{k}\) and \(T_{F 2}^{k}{ }_{F}\), respectively. These time intervals may vary from cycle to cycle. However, the time interval between \(t_{k}\) and \(t_{k+1}\) is a constant equal to the period of oscillation, i.e.,
\[
\begin{equation*}
t_{k+1}-t_{k}=T_{p} \quad \text { for all } k \tag{22}
\end{equation*}
\]

\section*{Step 1: State Space System Representation}

System equations of Fig. 4 are represented by:
\[
\begin{array}{ll}
\underline{X}=F I \underline{X}+G I \underline{U} & t_{k} \leq t<t_{k}^{1} \\
\underline{X}=F 2 \underline{X}+G 2 \underline{U} & t_{k}^{1} \leq t<t_{k}^{2} \\
\underline{\dot{x}}=F 3 \underline{X}+G 3 \underline{U} & t_{\underline{k}}^{2} \leq t<t_{k+1} \tag{25}
\end{array}
\]

The explicit representation for \(\mathrm{F}^{\prime} \mathrm{s}\) and G 's are given in the appendix. The vectors \(\underline{X}\) and \(\underline{U}\) are state variables and forcing function, respectively. They are defined as:
\[
\begin{array}{ll}
\underline{x} & {\left[\begin{array}{lll}
v_{C} & i_{L} & v_{R} \\
v_{T}
\end{array}\right]^{T}} \\
\underline{v} \triangleq & {\left[\begin{array}{lll}
E_{I} & E_{R} & E_{Q} \\
E_{D}
\end{array}\right]^{T}}
\end{array}
\]

Each of the linear systems of equations (23-25) admits a closed form solution of the form
\[
\begin{align*}
& x\left(t_{k}^{1}\right)=\underline{X}\left(t_{k}+T_{O N}^{k}\right)=\Delta 1\left(T_{O N}^{k}\right) \underline{x}\left(t_{k}\right)+D 1\left(T_{O N}^{k}\right) \underline{U}  \tag{26}\\
& \underline{x}\left(t_{k}^{2}\right)=\underline{x}\left(t_{k}^{1}+T_{F 1}^{k}\right)=\nabla 2\left(T_{F 1}^{k}\right) \underline{x}\left(t_{k}^{1}\right)+D 2\left(T_{F 1}^{k}\right) \underline{U}  \tag{27}\\
& \underline{x}\left(t_{k+1}\right)=\underline{x}\left(t_{k}^{2}+t_{F 2}^{k}\right)=w 3\left(T_{F 2}^{k}\right) \underline{X}\left(t_{k}^{2}\right)+D 3\left(T_{F 2}^{k}\right) \underline{U}  \tag{28}\\
& \text { where } i(T)=e^{F i T} \quad i=1,2,3  \tag{29}\\
& D i(T)=e^{F i t_{[ }} \int_{0}^{T} e^{\left.-F i S_{d S}\right] G i \quad i=1,2,3} \tag{30}
\end{align*}
\]

The elements of matrices of and Di are defined by:
\[
\begin{array}{lr}
\Delta i \triangleq\left(\phi i_{j k}\right) & 1=1,2,3 \\
\text { Di } \stackrel{\left(d i_{j k}\right)}{j, k}=1,2,3,4
\end{array}
\]

The constraints of the systell, as represented by (26) through (28), are governed by the threshold condition at \(t=t_{k}^{1}, t_{k+i}^{l}\).
\[
\begin{equation*}
\xi_{1}(\cdot)=x_{4}\left(t_{k}^{l}\right)=E_{Y} . \tag{31}
\end{equation*}
\]
the zero inductor current condition at \(t=t_{k}^{2}, t_{k+1}^{2} \ldots\)
\[
\begin{equation*}
\varepsilon_{2}(\cdot)=x_{2}\left(t_{k}^{2}\right)=0 \tag{32}
\end{equation*}
\]
and the constant frequency condition
\[
\begin{equation*}
\varepsilon_{3}(\cdot)=T_{O N}^{k}+T_{F 1}^{k}+T_{F 2}^{k}=T_{p} \text { for all } k . \tag{33}
\end{equation*}
\]

\section*{Step 2: Nonlinear Discrete State Transition \\ Representation}

The discrete state transition representation for the boost converter is given by:
\[
\begin{align*}
& x\left(t_{k+7}\right)=\$ 3\left(T_{F 2}^{k}\right) \$ 2\left(T_{F 1}^{k}\right) \$ 1\left(T_{O N}^{k}\right) \underline{X}\left(t_{k}\right) \\
& +\left[43\left(T_{F Q}^{k}\right) 92\left(T_{F 1}^{k}\right) 01\left(T_{O N}^{k}\right)\right. \\
& \left.+* 3\left(T_{F 2}^{k}\right) 02\left(T_{F 1}^{k}\right)+D 3\left(T_{F 2}^{k}\right)\right]  \tag{34}\\
& =\underline{x}\left(t_{k}\right)+v \underline{u}
\end{align*}
\]
together with the threshold condition derived from (31)
\[
\begin{align*}
& \$ 1_{41}\left(T_{O N}^{k}\right) x_{1}\left(t_{k}\right)+\phi 1_{42}\left(T_{O N}^{k}\right) x_{2}\left(t_{k}\right)+\phi 1_{43}\left(T_{O N}^{k}\right) x_{3}\left(t_{k}\right) \\
& +\$ 1_{44}\left(T_{O N}^{k}\right) x_{4}\left(t_{k}\right)+d 1_{41}\left(T_{O N}^{k}\right) U_{1}+d l_{42}\left(T_{O N}^{k}\right) U_{2} \\
& +d 1_{43}\left(T_{O N}^{k}\right) U_{3}+d 1_{44}\left(T_{O N}^{k}\right) U_{4}=E_{T} . \tag{35}
\end{align*}
\]
and the zero inductor current condition, derived from (32)
\[
\begin{align*}
& \phi 2_{21}\left(T_{F 1}^{k}\right) x_{1}\left(t_{k}^{l}\right)+\phi 2_{22}\left(T_{F 1}^{k}\right) x_{2}\left(t_{k}^{1}\right) \\
& +\phi 2_{23}\left(T_{F 1}^{k}\right) x_{3}\left(t_{k}^{1}\right)+\phi 2_{24}\left(T_{F 1}^{k}\right) x_{4}\left(t_{k}^{1}\right) \\
& +d 2_{21}\left(T_{F 1}^{k}\right) U_{1}+d 2_{22}\left(T_{F 1}^{k}\right) U_{2}+d 2_{23}\left(T_{F 1}^{k}\right) U_{3} \\
& +d 2_{24}\left(T_{F 1}^{k}\right) U_{4}=0 . \tag{36}
\end{align*}
\]
and the constant frequency condition
\[
\begin{equation*}
T_{F 2}^{k}=T_{P}-T_{O N}^{k}-T_{F 1}^{k} \tag{37}
\end{equation*}
\]

Step 3: Equilibrium State
In the steady state the following condition is satisfied:
\[
\begin{equation*}
\underline{x}\left(t_{k+1}\right)=\underline{x}\left(t_{k}\right)=\underline{x} *=\text { constant } \tag{38}
\end{equation*}
\]

The steadv state switching time intervals are denoted as \(T_{O N}^{*}{ }^{*}\), \(T_{F 1}^{*}\) and \(T_{F 2}^{*}\).

The approximate steady state. Switching time intervals, denoted by Ton, TF1 apg \({ }^{T}\) TF2, can be computed using the following formula a ?
\[
\begin{align*}
& T_{O N}^{*}=\sqrt{\frac{2 L T_{0} P_{0}\left(E_{0}+E_{D}-E_{I}\right)}{n E_{I}\left(E_{0}+E_{D}-E_{I}\right)\left(E_{0}+E_{D}-E_{Q}\right)}}  \tag{39}\\
& T_{F}^{C}=\sqrt{\frac{2 L T_{D} P_{0}\left(E_{I}-E_{Q}\right)}{\eta E_{I}\left(E_{0}+E_{D}-E_{I}\right)\left(E_{0}+E_{D}-E_{Q}\right)}}  \tag{40}\\
& T_{F 2}^{*}=T_{P}-\widetilde{T}_{O N}^{*}-T_{F}^{*} 1 \tag{41}
\end{align*}
\]
where \(P_{0}\) is the output power and \(n\) is the efficiency of the Converter.

Substituting (38-41) into (34) and (35), the approximate steady state \(\widetilde{\underline{x}}^{\star}\) can be computed
\[
\begin{align*}
& \tilde{x}_{1}^{*}=411 \tilde{x}_{1}^{*}+12 \tilde{x}_{2}^{*}+1{ }_{13} \tilde{x}_{3}^{*}+V 1 U_{1}+ \\
& V_{12} U_{2}+v_{13} U_{3}+v_{14} U_{4}  \tag{42}\\
& \widetilde{x}_{2}^{*}=\psi_{21} \widetilde{x}_{1} *+1_{22} \widetilde{x}_{2}^{*}+4_{23} \widetilde{x}_{3}^{*}+v_{21} 1_{1}{ }^{(42)} \\
& V_{22} U_{2}+V_{23} U_{3}+V_{24} U_{4} \tag{43}
\end{align*}
\]

\section*{DE ROOR OWALTX}
\[
\begin{align*}
& \tilde{x}_{3}^{*} \cdots 31 \tilde{x}_{1}^{*}+{ }_{32} \tilde{x}_{2}^{*}+\phi_{33} \tilde{x}_{3}+V_{31} U_{1}+ \\
& V_{32} \mathrm{U}_{2}+V_{33} \mathrm{U}_{3}+V_{34} \mathrm{U}_{4}  \tag{44}\\
& \text { and } \tilde{x}_{4}^{*}=\frac{1}{4} \frac{1}{44}\left[E_{T}-41_{4} \widetilde{x}_{1}^{*}-41_{42} \tilde{x}_{2}^{*}-+1 l_{43} \tilde{x}_{3}^{*}-\right. \\
& \left.\mathrm{d} l_{41} \mathrm{U}_{1}-\mathrm{dl} \mathrm{~m}_{2} \mathrm{U}_{2}-\mathrm{d} \mathrm{I}_{43} \mathrm{U}_{3}-\mathrm{d} l_{44} \mathrm{U}_{4}\right] \tag{45}
\end{align*}
\]
where \(\phi_{1, j}\) and \(V_{i f}\) for \(i, j, 1, \ldots\), are the entries of the matrix o and \(v\) of the linearized system.
Notice that equations (42-44) are indenendent of \(\tilde{x}_{4}{ }^{*}\) \(\left(\$ 41^{*}=42^{*}=0\right.\) ), and can be solvad for \(\tilde{x}_{1}{ }^{*}, \tilde{x}_{2}^{*}\) and \(\tilde{x}_{3}^{*}\). Equation (45) which is the same as the threshold condition (35) is used to compute \(\vec{x}_{4}{ }^{*}\). 35 ) In this approximation, the threshold condition (35) is automatically satisfied, however, the threshold condition ( 36 ) where the indurtor current equals zero may not be satisfied. This approximation is marely employed as a starting polut in order to search for the exact 5 teady state.

The exact sicady state, 0efine the system state when the pover swituh turns off as
\[
Y\left(t_{h}\right) \otimes \times\left(t_{k}+T_{O N}^{k}\right)
\]
and when the inductor current vantshes as
\[
z\left(t_{k}\right)=x\left(t_{k}+T_{O N}^{k}+r_{F)}^{k}\right)
\]

In the steady state operation
\[
\begin{align*}
& Y^{*} * 41\left(T_{O N}^{*}\right) X^{*}+D 1\left(T_{O N}^{*}\right) U  \tag{40}\\
& \underline{2}^{*} * \operatorname{ven}_{2}\left(T_{F}^{*}\right) Y^{*}+D 2\left(T_{F}^{*}\right) \underline{U} \tag{47}
\end{align*}
\]
and
\[
\begin{equation*}
\underline{X}^{*} * \quad 3\left(T_{F 2}\right) 2^{*}+03\left(T_{F 2}^{*}\right) \underline{U} \tag{48}
\end{equation*}
\]

If T* \({ }^{*}\) and \(T_{1}\) are the exact steady state values, the stead \({ }^{\mathrm{N}}\) state of calculated from (42-45) has to satysfy the following two matching conditions:
(1) The zerominductor-current condition
\[
0_{\text {match }} * \operatorname{nex}^{*} * 0
\]
(2) The state matefing condition can be defined as (50) by matching the state varlable \(x_{4}\) after one cycle of propagation.

\[
\begin{align*}
& +43_{43}\left(T_{F 2}\right) z_{3}+d 3_{44}\left(T_{F 2}\right) z_{4}^{4}+d 3_{41}\left(T_{F 2}\right) u_{1} \\
& +d 3_{42}\left(T_{F 2}\right) U_{2}+d 3_{43}\left(T_{F 2}\right) u_{3}+d 3_{44}\left(T_{F 2}\right) u_{4} \\
& -x_{4}\left(t_{k}\right)=0 \tag{50}
\end{align*}
\]

Itaration linearization. (Newton's method) is emiployed to find Tow and Tit which satisfles the matching conditions \(O N(49)\) and 50 ). The step-by-step procedures are described as follows:

Step (a) Compute the approximate state X. from \((42-45)\).

Step (b) Find a new Tfi by ferative lineariantion.


Fig. \(6(a)\) Flow diagran for datermining the steady state
(b) Flow diagram for determining the state matChing condition \(S_{\text {match. }}\)
\[
\widetilde{T}_{F 1}=T_{F 1}^{*}-\frac{\bar{T}_{\text {match }}\left(X_{t} \widetilde{F}_{O N} \cdot \bar{T}_{F 1}\right)}{\left.\left[3 B_{\text {match }} / 2 T_{F 1}\right]\right|_{T_{F 1}^{*}}}
\]
such that for the given \(X^{*}\) and \({ }^{T}{ }^{*} N\) together with the new \(\vec{T}_{F}\), the zero current condition B match will be satisfied.

Step (a) Check if \(S_{\text {mateh }}{ }^{\approx} 0\) is satisfled?
Step (d) If \(\mathrm{S}_{\text {mateh }} \approx 0\) is not satisfled, modify Tôn according to
\[
Y_{O N}^{*}=T_{0 N} \frac{\left.\operatorname{match}^{\left(X^{*}, ~ T\right.} T_{o N}^{*} T_{F}^{*}\right)}{\left(S_{\text {match }} h^{2} T_{O N} l_{T_{*}^{*}}\right.}
\]

Step (e) Use the new \(\vec{T}_{0}\) and \(\tilde{T}_{F}\) calculated In Step (b) and step (a) and go back to step ( to derive a new approximate state X*. Then to go to Step ( t ) ( \((\mathrm{c})\) and (d) and repea the process until the state imatching condition \(5_{\text {maten }} \approx 0\) is satisfied.

A llow diagram for determining the steady state is presented in Fig. \(G(a)\) and (b). A subroutine \(B_{\text {mate }}\) is developed in order to search for a proper \(T_{F l}\) to satisfy the zero-inductor condition as shown in (49). This subroutine is embodied into the other subroutine \(S_{\text {match }}\) which ult imately computes the state matching condition as given in (50).

\section*{Step 4: Linearized Discrete Time Doma in Model}

The nonlinear discrete time system equation (34) is rewritten as:
\[
\begin{equation*}
\underline{x}\left(t_{k+1}\right)=\underline{f}\left(\underline{x}\left(t_{k}\right), \underline{u}\right) \tag{51}
\end{equation*}
\]

This system is linearized about its equilibrium state \(\underline{x}^{\star}\) 。
\[
\begin{equation*}
\delta \underline{x}\left(t_{k+1}\right)=\underline{\psi} \underline{x}\left(t_{k}\right) \tag{52}
\end{equation*}
\]

The matrix is ( \(4 \times 4\) ). The partial derivatives, approximated by difference quatients, are evaluated numerically, for sufficiently small \(\Delta x_{j} ; j=1, \ldots, 4\). where
\[
\begin{equation*}
\psi=\left.\frac{\hat{f}}{\partial \underline{x}}\right|_{x^{\star}}=\left\{\frac{f i\left(x_{j}^{\star}+\Delta x_{j}\right)-f i\left(x_{j}^{\star}\right)}{\Delta x_{j}}\right\}_{i j} \tag{53}
\end{equation*}
\]

Since \(x\) does not appear explicitly in \(f\). in order to evaluate \((53)\), the change of \(T_{O N}, T_{F 1}\), and \(T_{F 2}\) due to a change of \(\Delta x_{j}, i=1, \ldots, 4\), must be determined first. The new \(T_{O N}\) and \(T_{F 1}\) are computed according to the threshold conditions (35) and (36) in the iteration process described earlier.

It is important to select the appropriate increments \(\Delta x_{j}\). Some experimentation with the increment size is advisable, since the accuracy of the partial derivatives depends on it. If the function varies rapidly, a very small increment is clearly required. On the other hand, if the increment is chosen needlessly small, then the accuracy decreases because of a numerical computation error, i.e., a difference quotient assumes numerically the value close to \(0 / 0\). Study on the increment size and its effect on the results also has physically significant implications. If the linearized system shows high sensitivity to incremental size, then this points out that the nonlinear system changes its behavior rather rapidly as it moves away from its equilibrium, and the result obtained for the linearized system are only valid for very small perturbations about the equilibrium.

\section*{Step 5: Eigenvalue Stabflity Analysis}

A digital computer program has been developed that computes the equilibrium solution \(x^{\star}\), the matrix \(\psi\), and the eigenvalues \(, 1, i=1,2,3, \overline{4}\) of \(\Psi\). The perturbation \(\Delta x\) used to conpute the linearized 4 matrix is taken as \(1 \%\) of the absolute value of the steady state. i.e.,
\[
\begin{equation*}
\Delta x_{i}=0.01\left|x_{i} *\right| \quad i=1,2,3,4 \tag{54}
\end{equation*}
\]

Employing a set of nominal circuit parameters given in Table I, the system steady state, the \(\psi\) matrix and its eigenvalues are computed, and the results are presented in Table II. Stnce the eigenvalues of the system are positive, real, and less than unity, the system is stable; and the transient response after a disturbance decays in a non-oscillatory manner. It is interesting to note that one eigenvalue, \(\lambda_{4}\), is equal to zero. This indicates that the order of the system is reduced by one, which confirms the earlier findings \([3,5]\). It is also apparent from the circuit point of view that the inductor current \(x_{2}\) is always reduced to zero after any small perturbation. The inductor current can no longer constitute a state variable since it loses the free boundary condition. The eigenvalue, \(\lambda_{1}\), close to unity indicates the system has a long-time constant. In fact, the output voltage of the converter when subjected to a step change in load, will reach its new steady-state after a six-millisecond transient as observed in the laboratory.

Table I. Circuit parameter values for the boost converter.


Table II, Steady state, y matrix and eiqenvalues.
steady state


Fig. 7. Mapping from the \(s-p\) lane to the \(z\)-plane.
The method of root locus plot on the \(z\)-plane [11], is employed to study loci of eigenvalues as a function of circuit parameters. To facilitate our discussion, a brief review is presented to show how the \(z\)-plane is related to the conventional \(s-p\) lane by the mapping \(z=e^{2}\). On Figure 7, an infinite strip in the 5 plane limited by one-half of the switching frequency \(+j \omega / 2\) is mapped into the entire \(z\)-plane. The semiinfintte strip of the left half s-plane embodied by the numbered contour is mapped into the \(z\)-plane inside the unit circle while the semi-infinite strip of the right half \(s-p l a n e\) is mapped into the \(z-p l a n e ~ o u t s i d e\) the unit cycle. The stability of the discrete system is thus defined if all eigenvalues are located inside the unit circle of the \(z\)-plane, If an eigenvalue is located on the circumference of the unit circle of the z-plane, corresponding to a pole on the imaginary axis of the \(s\)-plane, the system is on the verge of instability. An eigenvalue located along the positive real axis inside the unit circle of the \(z\)-plane corresponds to a pole on the negative real axis of the \(s\)-plane. An eigenvalue located along the negative real axis inside the unit circle corresponds to a pair of complex conjugate roots in the \(s\)-plane with natural frequency equal to one-half of the switching frequency, An eigenvalue at the origin of the \(z-p l a n e\), corresponds to a pole at - to in the s -plane. Additional information concerning the mapping from the \(s\)-plane to the z-plane, can be found in [11].


Fig. 8. Eigenvalues as a function of the dc-loop resistor \(R_{3}\).


Fig. 9. Eigenvalues as a function of the ac-loop resistor \(R_{4}\).

Several root-locus analyses are presented which plot the eigenvalue loci as a function of dc-loop gain, ac-loop gain and the R-C compensation network. The effect of the dc-loop gain on stability is shown in Fig, 8 by varying the resistor \(R_{3}\). When the dc-loop ga in is increased by means of reducing the value of \(R_{3}\), the eigenvalue moves aray from the unity and merges with 2 to form a pair of complex-conjugate roats. Furthef reducing \(\mathrm{R}_{3}\) beyond 400 can cause the eigenvalue 3 to move outside the unit circle and therefore to resuit in an unstable system. The eigenvalue 4 . always stays at the origin as a result of the discontinwous current operation. The systen transient response can be improved by reducing \(R_{3}\) from 40 K to 3 K to bring the eigenvalues closer to the constant damping ratio locus of 0.707 for opt imum transient response.

Fiqure 9 shows by reducing the ac loap gain or increasing the ac loop resistor \(\mathrm{R}_{4}\) from \(10 \mathrm{k}^{14}\) to 140 kis, eigenvalues \(\lambda_{1}\) and \({ }^{4} \lambda_{2}\) move away from unity and the pigenvale \(A_{3} \mathcal{I}_{\text {moves }}{ }^{2}\) from the positive real axis to the negative real axis. The transient response changes from overdamp to underdamp with a natural resomant frequency equal to half of the switching frequency. It is interesting to note that when \(R_{f}\) is equal to \(85 \mathrm{k}^{2}\), the eigenvalue \(\mathrm{\lambda}_{\mathrm{g}}\) moves into the origin of the complex plane. In sampled data system,
double roots at the origin means the transient response will die down in two sampling cycles. Therefore,


Fig. 10. Eigenvalues as a function of the compensation loop resistor \(R_{5}\).


Fig. 11. Eigenvalues as a function of the compensation capacitor \(\mathrm{C}_{2}\).
the ac loop resistor equal to 85 kis will nrowide the optimum transient response.

The effect of the compensation loop, with a series \(\mathrm{R}_{5} C^{2}\) network, on the stability and the transient response of the system is shown in Fig. 10 and Fig.11, when \(R_{5}\) is increased from its nominal value toward infinite. as shown in Fiq. 10 , all three eigenvalues approach unity as ynototically. The system becomes very marginally stable. Figure 11 shows by reducing \(C_{2}\) beyond 1.3uf the eigenvalues \(\lambda_{1}\) and \(\lambda_{2}\) move toward outside the unit circle shown as the \({ }^{\lambda}\) dotted \({ }^{2}\) innes. On the other hand, by increasing \(C_{2}\), one eigenvalue approaches unity asymptotically and the other two eigenvalues form a complex conjugate pair and approach point \(E\) in the complex plane asymptotically. Therefore, a judicious design of the R-C compensation network is important to stabilize the system and to provide good transient response.

Each of the three feedback loops, ac loop, dc loop, and \(\mathrm{R}-\mathrm{C}\) compensation loop, is shown to play certain important roles of stabilizing the system and providing fast transient response, The analysis shows that a larger stability margin and a faster transient response can be obtained by properly designina the above discussed three feedback loops. The same technique also can be used to optimize the power stage parameters. such as the output filter \(t\) and \(C\).

\section*{ORTOINAL PAGE IS OR ROOR QUALITX}


Fig. 12, audiosuscetibility for the boost converter.

\section*{Step 6: Susceptibility to Audio Frequencies in the Supply Voltage}

The closed loop input-to-output transfer function is expressed by
\[
\begin{equation*}
G(j \omega)=\frac{E_{T}}{E_{0}} \frac{R_{L}}{R_{c}+R_{L}} H\left(I e^{\left.j \omega T_{p-\psi}\right)^{-1}} r\right. \tag{55}
\end{equation*}
\]

\section*{where \(H=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]\)}

By virtue of sampling theorem, the frequency domain transfer function is only valid for the frequency less than one half of the sampling frequency, i.e., \(\omega T_{p}=\pi\). For the HEAO converter this means the transfer function holds true for the audio frequency up to 16.5 KHz which comprises the entire frequency band of interest for the audiosusceptibility performance of the converter.

Figure 12 shows the closed loop freauency response of the converter with the supply voltage \(E_{i}=28 \mathrm{~V}\). The general shape of the closed loop frequency response agrees very well with the experimental data, except that a difference of approximately 4 db is shown through out the entire frequency range. It is interesting to note that the audiosusceptitility for the discontinuous current operation is a function of the converter loading, the lighter the load, the better the audiosusceptibility. This phenomenon is quite different from that of the continuous current operation where the audio perfomance is almost independent of the load.

\subsection*{3.2. Example 2:}

The two loop buck converter as shown in Figure 13 has been selected as the second example to demonstrate the application of the generalized discrete time approach. The converter is designed to operate in the continuous current mode on heavy loads and discontinuous current node on light loads. Employing the previously described analytical approach, a composite computer program is developed to incorporate both the continuous current operation and the discontinuous current operation. For a given line and load condition, the main program first detects the inductor current operating mode, mode 1 or mode 2 , then enters into the appropriate subroutine for numerical computations. This composite computer program serves as a very powerfut analytical tool to investigate certain often observed anomalous changes of the converter performance such as the stability and the transient response during the transition between the continuous current mode and the discontinuous current mode. Such anomalous changes are rather unlikely to be exposed through
other means of analysis.


Fig. 15. Eigenvalues as a function of the converter load.


Fig. 16. Buck converter wayeforms (a) voltage across the commation diode, (b) inductor current for an unstable operation
the switching Frequency, when the duty cycle ratio is approximately equal to 0.5 or greater. This instability cannot be resolved by changing either control circuit parameters or the power stage parameters. The above conclusions apply to all power srameters. The above buck, boost, and huck boost; nevertheless, it is only fimited to continuous current operation using a const frequency duty cycle controller. The detaing constant of this instability problem is beyond the scooe of the present paper. For detailed information, slease of the to [10]. . For detailed infomation, please refer

The changes of the stability nature and the transient response ti the converter were also studied by reducing the load in a manner that the converter first operated in the continuous current mode, then in the of eigenvalues arrent mode. Figure 15 shows the change was relativeiy heavy, function of the load. When the load input voltage \(E=30\) volts \(=10\) ohms to 52 ohms, and the a continuous current than 50\%. The system was unstable duty cycle ratio greater stabilized by increasing unstable. The system was that the converter began to upera or above 53 ohms such current mode. It should be noted that during the tinuous variation, from 52 ohms to 53 noted that during the load was observed. The change of chms, a fump phenomenon 2.59 to 0 was due to ange of the eigenvalue \(\lambda_{3}\) from tinuous motion which could rather than a fast conate value of \(R_{L}\).

Figure \(16(a)\) and (b) shows the waveforms of the voltage \(E_{x}\) across the cormutation diode Dl and the cur


Fig. 17. Audiosusceptibility for the buck converter with continuous current and discontinuous
current.
rent \(i_{L}\) through the energy storage inductor, respectively for an unstable operation when \(E_{i}=40\) volts and \(R_{L}=22\) of instability, ins having a growing amplitude as a result of instability, the inductor current waveform is asymoperated alternately in the cont because the converter the discontinuous current mode continuous current mode and cycle. In fact, when the load resistance was sting increased above 22 ohms, the converter was stab slightly and operated entirely in the converter was stabilized This is a verification of the earlier sous current mode converter can be stabilized by changing statement that the mode from mode 1 to mode 2.

The susceptibility of the converter to an audio frequency disturbance in the supply voltage was also examined for both the mode 1 operation and the mode 2 the load for mode \(1\left(R_{1}<29 n\right)\), curve is independent of varies with the load ( \(R_{L}<29\) ), curve "a" of Fig. 17, and the lighter the load the better \(2\left(R_{L}>29 n\right)\) such that curve " \(c^{\text {" }}\) and curve " \(c\) ". Comparing dudiosusceptibility, also shows a significant difference these three curves audiosusceptibility betiveen merence in the magnitude of When the frequency of the audio noise is ape 2 , especially one-half of the switching aunio noise is approaching resonance-like rise in the frequency. The sharp, of the switching frequency frequency response at half current operation. This is only exists with continuous reflects the closed his is expected since it
1 , see Fig. 14 and at the eigenvalues at -0.95 for mode value located at -1.0 means origin for mode 2. An eigenhalf the switching frequency; undamped resonance at into the circle, drequency; as the eigenvalue moves the circle, exponential build-up and it moves out of results.

\section*{IV. CONCLUSION}

A computer-aided discrete time domain modeling and analysis technique has been presented which is applicable to all types of switching regulators using any continuous as welle controllers and operating with State space techniaus discontinuous inductor current converters exactly by the nomployed to characterize domain equations in vecrer fonlinear discrete time method is employed to solve forms. Newton's iteration state of the converter. Solve for the exact equilibrium about its equilibrium state sys tem is then linearized crete time model. The stability arrive at a line and dis-
responses are studied by examining the eigenvalues of the linear system, Changes in eigenvalues due to system parameter changes can be plotted in the complex z-plane yielding an excellent design tool very similar to conventional root-locus plots. The analysis is also extended to determining the frequency related performance characteristics sush as the closed loop input-tooutput transfer function used to determine the audiosusceptibility of the converter. The modeling and analysis approach makes extensive use of the digital computer as an analytical tool, replacing highly complex and tedious analyses by numerical method and making automation in power converter design and analys is possible.

Followed by a generalized analys is procedure, two specific examples are presented to demonstrate the application of such an analysis scheme, one for a boost converter operatiny witn constant frequency and discontinuous current, the other for a constant frequency buck converter operating with both continuous current and discontinuous current. A composite computer program is developed for the buck converter to include both current modes of operations. During the transition between the continuous current operation and the discontinuous current operation, an interesting jump phenomenon is observed by plotting the system eigenvalues on the \(z-p l a n e\). The jump of the system eigenvalues not only causes abrupt changes of the performance characteristics of the converter but also, under certain operating condition, the stability nature, from an unstable system to a stable one, or vice verse. The analysis reveals certain high frequency oscillation phenomena at the subharmonic of the switching frequency, an. unstable operation normally associated with constant frequency, continuous current mode with a duty cycle ratio greater than fifty percent. Such a high frequency instability phenomenon may not likely be exposed through other means of analysis.

In addition to its particular utility at analyzing high-frequency control-loop related phenomena, the analysis also serves as a useful design tool which provides design guidelines for such important control parameters as the do loop gain, the ac loop ga in and the R-C compensation network of a two loop converter to optimize its transient response and to stablize the system.

\section*{APPENDIX: ENTRIES FOR MATRICES Fi AND Gi}

The matrices \(F i\) and \(G i\) for \(j=1,2,3,4\) are \(4 \times 4\). Darine \(F i=\left\{f i_{j k}\right\}\) and \(F i=\left\{g j_{j k}\right\}\) The following entries of the respective matrices were derived assuming negligible loading of the feedback loops to the converter power stage.
\[
\begin{aligned}
& f 1_{11}=-\frac{1}{C} \frac{1}{R_{C}+R_{L}} \quad f f_{22}=-\frac{R_{0}}{L} \\
& f 1_{31}=\frac{1}{C_{2} R_{5}} \frac{R_{L}}{R_{C}+R_{L}} \quad f 1_{33}=-\frac{1}{C_{2} R_{5}} \\
& f 1_{41}=\frac{R_{L}}{R_{C}+R_{L}}\left(-\frac{1}{C_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}-\frac{1}{C_{1} R_{5}}\right) \\
& f f_{42}=\frac{n R_{0}}{C_{1} R_{4}} \text { where }{ }_{n}{ }^{\prime} N_{1} / N_{2}
\end{aligned}
\]
\[
\begin{aligned}
& f 1_{43}=\frac{1}{C_{1} R_{5}} \quad g l_{21}=\frac{1}{L} \quad g 1_{23}=-\frac{1}{L} \\
& \mathrm{~g}_{41}=-\frac{n}{C_{1} R_{4}^{2}} \\
& g I_{42}=\frac{1}{C_{1} R_{3}} \\
& g_{43}=\frac{n}{C l^{R}} \\
& f 2_{11}=f 1_{11} \quad f 2_{12}=\frac{1}{C} \frac{R_{L}}{R_{C}+R_{L}} \quad f 2_{21}=-\frac{R_{L}}{\left[\left(R_{C}+R_{L}\right)\right.} \\
& f 2_{22}=-\left(R_{0}+\frac{R_{C} R_{L}}{R_{C}+R_{L}}\right) \frac{1}{L} \quad f 2_{31}=f 1_{31} \\
& f 2_{32}=R_{C} f 1_{31} \quad f 2_{33}=f 1_{33} \\
& f 2_{41}=f 1_{41}+\frac{R_{L}}{R_{C}+R_{L}} i_{1}^{n} R_{4} \quad \quad f 2_{42}-f 1_{42}+R_{C} f 2_{41} \\
& f 2_{43}=4 l_{43} \quad 32_{21}=9 l_{21} \quad g 2_{24}=g l_{23} \\
& g 2_{41}=g 1_{41} \quad g 2_{42}=g 1_{42} \quad g 2_{44}=g 1_{43} \\
& f 3_{11}=f 11 \\
& f_{31}=f 1_{31} \\
& f 3_{43}=f 1_{43} \\
& f 3_{41}={ }^{f} 1_{41} \\
& f 3_{33}=f 1_{33} \\
& 93_{42}=91_{42}
\end{aligned}
\]
[1] Y. Yu, J. J. Biess, A. D. Schoenfeld, V. R. Lalli, "The Application of Standardized Control and Interface Circuits to Three DC to DC Power Converters," IEEE Power Electronics Specialists Conference, Record, June 1973, pp. 237-248.
[2] G. W. Wester, R. D. Middlebrook, "Low-Frequency Characterization of Switched DC-DC Converters," IEEE Trans. Aerospace and Electronic Systems, Vol. AES-9, May 1973, pp. 376-385.
[3] A. Capel, J. G. Ferrante, and R. Prajoux, "State Variable Stability Analysis of Multi-loop PWM Controlled DC/DC Regulators in Light and Heavy Mode," IEEE Power Electronic Specialists Conference, Record, June 1975, pp. 9ो-103.
[4] I. M. H. Babaa, T. G. Wilson and Y. Yu, "Analytic Solutions of Limit Cycles in a Feedback Regulated Converter System with Hysteresis," IEEE Trans. on Automatic Control. Vo1. AC-13, October 1968 pp. 524-531.
[5] F. C. Lee, Y. Yu and J. E. Triner, "Modeling of Switching Regulator Power Stages With and Without Zero Inductor-Current Owell Time," IEEE Power Electronics Specialists Conference, Record, June 1976, pp. 62-72.
[6] H. A. Owen, A. Capel, and J. G. Ferrante, "Simulation and Analysis Methods for Sampled Power Electronic Systems," IEEE Power Electronics Specialists Conference, Record, June 1976, pp. 45-55.
[7] R. D. Middlebrook, and S. Cuk, "A General Unified Approach to Modeling Switching-Converter Power States," LEEE Power Electronics Specialists Conference, Record, June 1976, pp. 18-34.
[8] R. P. Iwens, Y. Yu, and J. E. Triner, "Time Domain Modeling and Stability Analysis of an Integral Pulse Frequency Nodulated DC to DC Power Converter," IEEE Power Electronics Specialists Conference, Record, June 1975, pp, 80-90.
[9] D. Y. Chen, H. A. Owen, Jr, , T. G. Wilson, "Computer-Aided Design and Graphics Applied to the Study of Inductor-Energy-Storage DC-to-DC Electronic Power Converters," IEEE Trans. On Aerospace and Electronic Systems, Vol. AES-9, No. 4, July 1973, pp. 585-597.
[10] "Development of a Standard Control Madule for DCDC Converters" NASA Contract Report. NAS3-18918. to be published in July, 1977, Preparad by TRW Systems for NASA Lewis Research Center.
[11] B. C. Kuo, "Analysis and Synthesis of SampledData Control Systems," Book, Prentice-Kall Inc., N.Y., Chapter 4.
[12] R. P. Iwens, F. C. Lee, and J. E. Triner, "Discrete Time Doma in Modeling and Analys is of DC-DC Converters with Continuous and Discontinuous Inductor Current," Second IFAC Symposium of Control in Power Electronics and Electrical Orives. Proceeding, Oct. 1977, Dusseldorf, West Germany.
[13] P. Burger, "Analysis of a Class of Pulse Modulated \(D C-\) to-DC Power Converters," IEEE Trans. on Ind. Elect. and Contr. Instr., vol. IECI-22, pp. 104-116, May, 1975.

\section*{APPENDIX C \\ DERIVATION OF EQUATIONS FOR CONSTANT FREQUENCY \\ BUCK REGULATOR CONTINUOUS CONDUCTION OPERATION}

\section*{C. 1 EQUIVALENT DISCRETE TIME SYSTEM}

Figure \(C-1\) shows \(e_{i}\) as a function of time and mainly serves the purpose of establishing notation regarding the time instances \(t_{k}\).


Figure \(C-1\). Input Voltage \(e_{j}\) as a Function of Time Note that the instances \(t_{k}\) differ from the previous definition used for the control in constant \(-T\) on mode, see Section \(4.4,2\). That is, the time instances \(t_{k}\) denote here the times when the clock turns the power switch was turned off. The reason for this is that in both cases the instances \(t_{k}\) must be selected such that they are at the beginning of that portion of the dutycycle that is controlled by the threshold condition. Note that for constant frequency operation.
\[
\begin{equation*}
t_{k+1}-t_{k}=T_{p}=\text { constant } \quad \text { for a } 11 k=0,1,2 \ldots \tag{C-1}
\end{equation*}
\]

The equivalent discrete time system for the constant-frequency control is given by
\[
\begin{equation*}
\bar{x}\left(t_{k!1}\right)=\Phi\left(T_{o f f}^{k}\right)\left[\Phi\left(T_{o n}^{k}\right) \bar{x}\left(t_{k}\right)+D\left(T_{o n}^{k}\right) \bar{u}_{1}\right]+D\left(T_{o f f}^{k}\right) \bar{u}_{o} \tag{C-2}
\end{equation*}
\]
with the threshold condition
\[
\begin{align*}
E_{T}=\phi_{31}\left(T_{o n}^{k}\right) x_{1}\left(t_{k}\right)+\phi_{32}\left(T_{o n}^{k}\right) x_{2}\left(t_{k}\right) & +x_{3}\left(t_{k}\right)+d_{31}\left(T_{o n}^{k}\right) E_{i} \\
& +d_{32}\left(T_{o n}^{k}\right) E_{R} \tag{C-3}
\end{align*}
\]

Where as in earlier investigations the input vectors \(\bar{u}\) are defined by
\[
\bar{u}_{0}=\left[\begin{array}{l}
0  \tag{c-4}\\
E_{R}
\end{array}\right] \quad \text { and } \quad \bar{u}_{1}=\left[\begin{array}{l}
E_{i} \\
E_{R}
\end{array}\right]
\]

The threshold condition \((C-3)\) defines \(T_{O N}^{k}\) imp lictly as a function of the systein state \(\bar{x}\left(t_{k}\right)\), and because of the constant frequency operation,
\[
\begin{equation*}
T_{o f f}^{k}=T_{p}-T_{o n}^{k} \tag{C-5}
\end{equation*}
\]

> ORIGINAL PAGE IS OE POOR QUALITY

For the steady state one demands that
\[
\begin{equation*}
\bar{x}\left(t_{k+1}\right)=\bar{x}\left(t_{k}\right)=\bar{x}^{*}=\text { constant } \quad \text { for all } k=0,1,2 \ldots \tag{C-6}
\end{equation*}
\]
which by the threshold condition implies that in the steady state also
\[
\begin{equation*}
T_{o n}^{k+1}=T_{o n}^{k}=T_{o n}^{x}=\text { constant } \tag{C-7}
\end{equation*}
\]

First the approximate steady state solution is computed by using the dutycycle formula
\[
\begin{align*}
& T_{\text {on }}^{*}=\left(E_{R} / E_{i}\right) T_{p}  \tag{C-8}\\
& T_{\text {off }}^{*}=T_{p}-T_{o n}^{*}
\end{align*}
\]
where \(E_{n}\) is numerically equivalent to the controlled dc output voltage. Using ( \(C-6\) ) and ( \(C-7\) ) when expanding ( \(C-2\) ) one obtains
\[
\begin{array}{r}
{\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
x_{3}^{*}
\end{array}\right]=\Phi\left(T_{p}\right)\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
x_{3}^{*}
\end{array}\right]+\left[\begin{array}{lll}
\phi_{11} & \phi_{12} & 0 \\
\phi_{21} & \phi_{22} & 0 \\
\phi_{31} & \phi_{32} & 1
\end{array}\right]_{T_{\text {off }}^{*}} \cdot\left[\begin{array}{ll}
d_{11} & 0 \\
d_{21} & 0 \\
d_{31} & d_{32}
\end{array}\right]_{T_{o n}^{*}}^{\left[\begin{array}{l}
E_{i} \\
E_{R}
\end{array}\right]}}  \tag{C-9}\\
+\left[\begin{array}{ll}
d_{11} & 0 \\
d_{21} & 0 \\
d_{31} & d_{32}
\end{array}\right]_{T_{\text {off }}^{*}}^{\left[\begin{array}{l}
0 \\
E_{R}
\end{array}\right]}
\end{array}
\]

Since \(T_{\text {on }}^{*}\) and \(T_{\text {off }}^{*}\) are approximately known from ( \(C-8\) ), the first two scalar. equations of \((C-9)\) can be used to solve for \(\vec{x}_{1}^{*}\) and \(\vec{x}_{2}^{*}\).
\[
\left[\begin{array}{c}
x_{1}^{*} \\
x_{2}^{*}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
\phi_{11}\left(T_{p}\right) & \phi_{12}\left(T_{p}\right) \\
\phi_{21}\left(T_{p}\right) & \phi_{22}\left(T_{p}\right)
\end{array}\right]}_{0^{\circ}\left(T_{p}\right)}\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
\phi_{21}\left(T_{o f f}^{*}\right) d_{11}\left(T_{o n}^{*}\right)+\phi_{22}\left(T_{o f f}^{*}\right) d_{21}\left(T_{o n}^{*}\right)
\end{array}\right] d_{11}\left(T_{o n}^{*}\right)+\phi_{12}\left(T_{o f f}^{*}\right) d_{21}\left(T_{o n}^{*}\right)}_{\bar{v}} E_{(C-10)}^{E_{i}}
\]

Hence
\[
\left[\begin{array}{r}
x_{1}^{*}  \tag{C-11}\\
x_{2}^{*}
\end{array}\right]=\left[I-\phi^{0}\left(T_{p}\right)\right]^{-1} \bar{v}
\]

The third state \(x_{3}^{*}\) is determired from the threshold condition (C-3)
\[
\begin{equation*}
x_{3}^{*}=E_{T}-\phi_{31}\left(T_{o n}^{*}\right) x_{1}^{*}-\psi_{32}\left(T_{o n}^{*}\right) x_{2}^{*}-d_{31}\left(T_{o n}^{*}\right) E_{i}-d_{32}\left(T_{o n}^{*}\right) E_{R} \tag{C-12}
\end{equation*}
\]

The steady state solution \(\vec{x}^{*}\) determined by this method is not exact because the power circuit is not completely lossless so that the dutycycle relationship of (C-8) is only an approximation, but a very good, one. How well this \(\bar{x}^{*}\) approximates the true equilibrium solution can be determined by checking how closely \(\bar{x}_{k}\) and \(\bar{x}_{k+1}\) match when using ( \(C-2\) ) for propagating the state through one cycle starting with \(\bar{x}_{k}=\bar{x}^{*}\). The best method for determining the exact steady state, is to determine the exaci \(T_{o n}^{*}\) by iterative linearization (Newton's method) on the cycle to cycle matching condition for the third state (which is the integrator output and directly controls the threshold condition). The iterative process is started with approximate steady state values and thus converges usually very fast. The details of this procedure are described next.

Define the system state when the power switch turns off as
\[
\begin{equation*}
\bar{z}_{k} \triangleq \bar{x}\left(t_{k}+T_{o n}^{k}\right) \tag{C-13}
\end{equation*}
\]
and clearly
\[
\begin{equation*}
z_{3}\left(t_{k}\right)=E_{T} \tag{C-14}
\end{equation*}
\]


In the steady state one has
\[
\left[\begin{array}{l}
z_{1}^{*}  \tag{C-15}\\
z_{2}^{*} \\
z_{3}^{*}
\end{array}\right]=\left[\begin{array}{lll}
\phi_{11} & \phi_{12} & 0 \\
\phi_{21} & \phi_{22} & 0 \\
\phi_{31} & \phi_{32} & 1
\end{array}\right]_{T_{\text {on }}^{*}} \cdot\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
x_{3}^{*}
\end{array}\right]+\left[\begin{array}{ll}
d_{11} & 0 \\
d_{21} & 0 \\
d_{31} & d_{32}
\end{array}\right]_{T_{\text {on }}^{*}} \underset{E_{i}}{\left[\begin{array}{l}
E_{R}
\end{array}\right]}
\]

Clearly, if \(\bar{X}^{*}\) and \(T_{\text {on }}^{*}\) are the exact steady state values, then ont must satisfy the state matching condition
\(S_{\text {match }}=x_{3}^{*}-\left[\phi_{31}\left(T_{o f f}^{*}\right) z_{1}^{*}+\phi_{32}\left(T_{o f f}^{*}\right) z_{2}^{*}+E_{T}+d_{32}\left(T_{o f f}^{*}\right) E_{R}\right]=0\)
since the square-bracketed term should equal \(x_{3}^{*}\). Note now that via Equa.
- tons \((C-11),(C-12)\) and \((C-15)\), the function \(S_{*}\) match is really only a funcdion of \(T_{o n}^{*}\left(T_{o f f}^{*}=T_{p}-T_{o n}^{*}\right)\), and one wishes to determine \(T_{o n}^{*}\) such that
\[
\begin{equation*}
S_{\text {match }}\left(T_{o n}^{*}\right)=0 \tag{C-17}
\end{equation*}
\]

Iterative linearization (Newton's method) can now be applied to (C-17) to find \(T_{o n}^{*}\), by expanding \(S_{\text {match }}\) about the approximate steady state solution in a Taylor series and retaining only the linear term, i.e.,
\[
\begin{equation*}
S_{\text {match }}\left(T_{o n}^{*}\right)=S_{\text {match }}\left(T_{o n}^{*}\right)+\left.\frac{\partial S_{\text {match }}}{\partial T_{\text {on }}}\right|_{\mathcal{T}_{o n}^{*}}\left(T_{o n^{-}}^{*} \mathcal{T}_{\text {on }}^{*}\right) \tag{C-18}
\end{equation*}
\]

Where \(\mathcal{T}_{\text {on }}^{*}\) is the approximate steady state value from (C-8). Since \(S_{\text {match }}\left(T_{\text {on }}^{*}\right)=0\), it follows that
\[
\begin{equation*}
\mathrm{T}_{\text {on }}^{*}=\tau_{\text {on }}^{*}-\frac{\mathrm{S}_{\text {match }}\left(\mathcal{T}_{\text {on }}^{*}\right)}{\left[\partial \mathrm{S}_{\text {match }}{ }^{2 T}{ }_{\text {on }}\right]_{\gamma_{\text {on }}^{*}}} \tag{C-19}
\end{equation*}
\]

If this \(T_{\text {on }}^{*}\) satisfies \(\left|S_{\text {match }}\right|<\varepsilon\), \(\varepsilon\) some very small number, the exact steady state has been found; if not, set \({T_{\text {on }}^{*}}_{*}=T_{\text {on }}^{*}\) and repeat the process until \(s_{\text {match }}\) converges to zero. Convergence is usually very fast and within 1-3 iterations. Describing the process sounds much more complicated than it actually is, and for completeness a computer flow diagram for determining the steady state solution is incluced. Note that the partial derivative \(\partial S_{\text {match }} / \partial T_{\text {on }}\) is taken numerically by approximation by a difference quotient. Note that the difference between \(\vec{x}^{*}\) and \(\bar{z}^{*}\) denotes the peak-to-peak steady state ripple, provided the inductor current \(i\) and output voltage \(e_{0}\) are in phase. This is ustally the case, unless the series equivalent resistance \(R_{5}\) of the capacitor \(G_{n}\) is equal to zero.

\section*{C.3. LINEARIZED SYSTEM}

The nonlinear, discrete time systell described by Equaticris ( \(C-2\) ) and (C-3) will now be linearized about its steady-state equilibrium state \(\bar{x}^{*}\). Denoting
\[
\begin{equation*}
\delta \bar{x}\left(t_{k}\right),=\bar{x}\left(t_{k}\right)-\bar{x}^{*} \quad \text { and } \quad \delta E_{i}\left(t_{k}\right)=E_{i}\left(t_{k}\right)-E_{i}^{*} \tag{C-20}
\end{equation*}
\]
it follows that
\[
\begin{align*}
\delta \bar{x}\left(t_{k+1}\right)=\left\{\phi\left(T_{p}\right)\right. & \left.+\frac{\partial}{\partial \bar{x}}\left[\phi\left(T_{o f f}^{k}\right) D\left(T_{o n}^{k}\right) \bar{u}_{1}+D\left(T_{o f f}^{k}\right) \bar{u}_{o}\right]_{\bar{x}^{*}}\right\}_{E_{i}^{*}} \delta \bar{x}\left(t_{k}\right)  \tag{C-21}\\
& +\frac{\partial}{\partial E_{i}}\left[\phi\left(T_{o f f}^{k}\right) D\left(T_{o n}^{k}\right) \bar{u}_{1}+D\left(T_{o f f}^{k}\right) \bar{u}_{o}\right]_{\bar{x}^{*}, E_{i}^{*}} \delta E_{i}\left(t_{k}\right)
\end{align*}
\]
where it is important to note that \(T_{\text {on }}^{k}\) and \(T_{\text {off }}^{k}\) are functions of \(\bar{x}\) and \(E_{i}\) via the threshold condition ( \(C-3\) ) which is here rewritten as \(r\left(\bar{x}, E_{i}, T_{o n}\right)=0\), i.e.,

> ORUGNAL PAGE LS OF POOR QUALUTX
\[
\begin{align*}
\varepsilon\left(\bar{x}, E_{i}, T_{o n}\right)=-E_{T}+\phi_{31}\left(T_{o n}\right) x_{1}+\phi_{32}\left(T_{o n}\right) & x_{2}+x_{3}+d_{31}\left(T_{o n}\right) E_{i}  \tag{C-22}\\
& +d_{32}\left(T_{o n}\right) E_{R}=0
\end{align*}
\]

In the previous developluents above it has been tacitly assumed that \(E_{i}=E_{i}^{*}=\) constant for all time. This is not necessarily so and the nonlinear discrete time system (C-2) - ( \(C-3\) ) is also an exact description of the converter if \(E_{i}\) is timewarying, provided \(E_{i}\) remains constant over any Ton period. To assume a time-varying \(E_{i}\) composed of the nominal de value
 investigating audio susceptibility of the converter and is the main reason why it is included here in the derivation of the linearized system. Note that a significant difference between the constant \(T_{\text {on }}\) control and the present, constant frequency mode of operation, is that \(T_{\text {on }}\) is directly dependent on \(E_{i}\) in the threshold condition ( \(C-22\) ).

Denoting the first curly bracketed term in ( \(\mathrm{C}-21\) ) by F , a constant \(3 \times 3\) matrix, and the second curly bracketed term by 1 , a constant 3 -dimensional colum vector, Equation ( \(\mathrm{C}-21\) ) can now be written as
\[
\begin{equation*}
\delta \bar{x}\left(t_{k+1}\right)=\psi \delta \bar{x}\left(t_{k}\right)+I \delta E_{i}\left(t_{k}\right) \tag{C-23}
\end{equation*}
\]
and represents the sought linearized system. The matrix \(\Psi\) and the column vector r remain to be evaluated, however.

By definition,
\[
\begin{equation*}
\psi=\phi\left(T_{p}\right)+\frac{\partial}{\partial \bar{x}}\left[\Phi\left(T_{o f f}^{k}\right) D\left(T_{o n}^{k}\right) \bar{u}_{1}+D\left(T_{o f f}^{k}\right) \bar{u}_{o}\right]_{\vec{x}, E_{i}^{*}} \tag{C-24}
\end{equation*}
\]

To evaluate the partial derivatives of the square-bracketed term analytically, turns out to be a very difficult and tedious task, much more so, than for the constant \(T_{\text {on }}\) control. This is mainly because the matrices \(D\left(T_{o n}^{k}\right)\) and
\(D\left(T_{\text {off }}^{k}\right)\) are now involved, and compact analytical expressions are not available for them. The partial derivatives are therefore evaluated numerically by approxinating them by difference quotients. Denote
\[
\begin{equation*}
\bar{f}\left(\bar{x}, E_{i}\right)=\left[\Phi\left(T_{o f f}^{k}\right) D\left(T_{o n}^{k}\right) \bar{u}_{1}+D\left(T_{o f f}^{k}\right) \bar{u}_{o}\right] \tag{C-25}
\end{equation*}
\]
and for sufficiently small \(\Delta x_{i}, i=1,2,3\),
\[
\left.\frac{\partial \bar{f}}{\bar{x}}\right|_{\bar{x}} ^{*}, E_{i}^{*}\left[\begin{array}{ccc}
\frac{f_{1}\left(x_{1}^{*}+\Delta x_{1}\right)-f_{1}\left(x_{1}^{*}\right)}{\Delta x_{1}} & \cdot & \cdot  \tag{C-26}\\
\cdot & \frac{f_{1}\left(x_{3}^{*}+\Delta x_{3}\right)-f_{1}\left(x_{3}^{*}\right)}{\Delta x_{3}} \\
\cdot \\
\cdot & \cdot \\
\frac{f_{3}\left(x_{1}^{*}+\Delta x_{1}\right)-f_{3}\left(x_{1}^{*}\right)}{\Delta x_{1}} & \cdot & \cdot \\
\frac{f_{3}\left(x_{3}^{*}+\Delta x_{3}\right)-f_{3}\left(x_{3}^{*}\right)}{\Delta x_{3}}
\end{array}\right]
\]

Since \(\bar{x}\) does not appear explicitly in \(\bar{f}\), in order to evaluate ( \(C-26\) ) one must first determine by how much \(T_{\text {off }}\) and \(T_{\text {on }}\) change due to a change \(\Delta x_{j}\), \(i=1,2,3\), and then use the new \(T_{\text {off }}\) and \(T_{\text {on }}\) to compute the \(f_{j}\left(x_{j}+\Delta x_{j}\right)\), \(\mathbf{i}, \mathbf{j}=1,2,3\). The threshold condition
\[
\begin{equation*}
\zeta\left(\bar{x}, E_{i}, T_{o n}\right)=0 \tag{C-27}
\end{equation*}
\]
(see A-22) is used to determine the change in \(T_{\text {on }}\) due to a change in \(\bar{x}\) or \(E_{i}\). Iterative linearization (Newton's method) is used to determine the new \(T_{\text {on }}\) that satisfies \(\zeta=0\) after \(\bar{x}\) has been perturbed by \(\Delta x_{i}, i=1,2,3\).

The procedure for computing \(\Gamma\) of ( \((-23)\), which by definition is given by
\[
\begin{equation*}
\Gamma=\left.\frac{\partial \bar{f}}{\partial E_{i}}\right|_{\vec{x}^{*}, E_{\mathbf{i}}^{*}} \tag{C-28}
\end{equation*}
\]
is exactly the same as outlined above. The only problem with numerical differentiation is to select the appropriate increments \(\Delta x_{j}\). At the present the increments are taken as \(1 \%\) of the value of the independent variable, i.e.,
\[
\begin{equation*}
\Delta x_{j}=0.01\left|x_{j}^{*}\right| \tag{C-29}
\end{equation*}
\]

Some experimentation with the increment size is advisable, since the accuracy of the partial derivatives depends on it. For instance, if the function varies rapidly, a very small increment is clearly required. On the other hand, if the increment is chosen needlessly too small, then the accuracy degrades because of numerical problems since in the limit, a difference quotient assumes numerically the value 0/0. Studies on the increment size and its effects on the results have also physically significant implications. If the linearized system shows high sensitivity to increment size, then this points out that the nonlincar system changes its behavior rather rapidy as it moves away from its equilibrium point, and the results obtained for the linearized system are only valid for very smail perturbations about the equilibrium. A computationally more complex, but also more accurate way of computing a derivative numerically is to use the following approximation,
\[
\begin{equation*}
\left.\frac{\partial f}{\partial x}\right|_{x}=\frac{f\left(x^{*}+\Delta x\right)-f\left(x^{*}-\Delta x\right)}{2 \Delta x} \tag{C-30}
\end{equation*}
\]
which "averages out" fast function changes and can detect discontinuities.

\section*{C. 4. STARILITY OF THE LINEARIZED SYSTEM}

The linearized system (C-23), i.e.,
\[
\begin{equation*}
\delta \bar{x}\left(t_{k+1}\right)=\psi \delta \bar{x}\left(t_{k}\right)+r \delta E_{i}\left(t_{k}\right) \tag{C-31}
\end{equation*}
\]
is stable if and only if all the eigenvalues of 4 are absolutely less than unity, i.e.,
\[
\begin{equation*}
\left|\lambda_{i}(\psi)\right|<1, \quad i=1,2,3 \tag{C-32}
\end{equation*}
\]

The eigenvalues are evaluated by the computer and changes in the eigenvalues as a function of system parameters can be plotted in the complex plane. The location of the eigenvalues, which are the roots of the system, does not only indicate stability, but also governs the transient behavior of the converter, i.e., damping and rapidity of response.

With the nominal parameter values as given in Table 2 , of the main text, was unstable. While changes in such critical parameters as \(C_{2}, R_{3}\), and \(n_{2}\), as well as others, affected the system roots in one way or another, the only really effective parameter change for stabilizing the system was to decrease the dutycycle, i.e., to either increase the supply voltage \(E_{i}\) or to decrease the desired output voltage \(E_{R}\). Figure \(C-2\) shows a root locus plot as a function of the supply voltage \(E_{i}\) with \(E_{R}\) remaining constant at 20 volts. As can be seen, changes in \(E_{i}\) primarily move the negative real root, and at a value of \(E_{i}=46\) volts, i.e., a dutycycle of 0.435 , the system is just barely stable. A reasonable operating point results when \(E_{i}=50\) volts, and it will be used in the following parameter variation studies.

Figure C-3 shows the effect of the lead capacitor \(C_{2}\) on stability. Quite good operating points are achieved for \(C_{2}\) between 5000 and \(10,000 \mathrm{pF}\), with the system becoming unstable when \(\mathrm{C}_{2}\) grows beyond \(35,000 \mathrm{pF}\).



Figure C-2 Closed Loop Roots as a Function of Supply Voltage \(E_{i}\)


Figure C-3 Closed-Loop Roots as a Function of Lead Capacitor C2

\section*{APPENDIX D}

\section*{BUCK REGULATOR DISCONTINUOUS CONDUCTION OPERATION}

\section*{D. 1 EQUIVALENT DISCRETE TIME SYSTEM}

The waveform of \(e_{i}\), as shown in Fig.D.1, is used to serve the purpose of establishing some notation regarding the time instant \(t_{k}\) when each cycle starts and each switching action occurs.

In steady state operation,
at \(t_{k}, t_{k+1}, t_{k+2} \cdots .\). the clock pulse turns the power switch at \(t_{1}^{k}, t_{1}^{k+1}, t_{1}^{k+2} \ldots\). the threshold condition turns the power at \(t_{2,}^{k}, t_{2}^{k+1}, t_{2}^{k+2} \cdots\).. the zero inductor current condition turns

The time intervals \(t_{1}^{k}-t_{k}, t_{2}^{k}-t_{1}^{k}\), and \(t_{k+1}-t_{2}^{k}\) are defined as \(T_{0 N}^{K}\), \(T_{F 1}^{k}\) and \(T_{F 2}^{k}\), respectively. These time intervals may vary from cycle to cycle. However, the time interval between \(t_{k}\) and \(t_{k+1}\) is a constant equal to the period of oscillation, i.e.,
\[
\begin{equation*}
t_{k+1}-t_{k}=T_{p} \quad \text { for all } k \tag{D-1}
\end{equation*}
\]


Figure D.1 Waveform of \(e_{i}\)

System equations of Fig.D. 1 are represented by:
\[
\begin{array}{ll}
\underline{\dot{x}}=F 1 \underline{X}+G I \underline{U} & t_{k} \leq t<t_{1}^{k} \\
\underline{\dot{x}}=F 2 \underline{X}+G 2 \underline{U} & t_{1}^{k} \leq t<t_{2}^{k} \\
\underline{\dot{x}}=F 3 \underline{X}+G 3 \underline{U} & t_{2}^{k} \leq t<t_{k+1}
\end{array}
\]

Where F1, F2: F3, G1, G2 and G3 are ( \(3 \times 3\) ) constant matrix determined by the system parameters. They are:

and,
\[
G_{2}=G_{3}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & \frac{k_{d}}{R_{3} C_{1}}
\end{array}\right]
\]

The vectors \(\underline{X}\) and \(\underline{U}\) are state variables and forcing function, respectively. They are defined as:
\[
\begin{aligned}
& \underline{x} \triangleq\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
e_{0} \\
i \\
e_{c}
\end{array}\right] \\
& \underline{U} \triangleq\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]\left[\begin{array}{l}
E_{I} \\
E_{R}
\end{array}\right]
\end{aligned}
\]

The constraints of the system, as represented by ( \(D-2\) ) through ( \(D-4\) ) are governed by the threshold condition at \(t=t_{1}^{k}, t_{2}^{k} \ldots\).
\[
\begin{equation*}
x_{3}\left(t_{k}^{1}\right)=E_{T}, \tag{D-5}
\end{equation*}
\]
the zero inductor current condition at \(t=t_{2}^{k}, t_{2}^{k+1} \ldots\).
\[
\begin{equation*}
x_{2}\left(t_{k}^{2}\right)=0 \tag{D-6}
\end{equation*}
\]
and the constant frequency condition
\[
\begin{equation*}
T_{O N}^{k}+T_{F 1}^{k}+T_{F 2}^{k}=T_{p} \quad \text { for all } k . \tag{D-7}
\end{equation*}
\]

Each of the linear systems of equations (D-2) to ( \(D-4\) ) admits a closed form solution of the form.
\[
\begin{align*}
& \underline{x}\left(t_{k}^{1}\right)=\underline{x}\left(t_{k}+T_{O N}^{k}\right)=\Phi 1\left(T_{O N}^{k}\right) \underline{x}\left(t_{k}\right)+D 1\left(T_{O N}^{k}\right) \underline{u}  \tag{D-8}\\
& \underline{x}\left(t_{k}^{2}\right)=x\left(t_{k}^{l}+T_{F 1}^{k}\right)=\$ 2\left(T_{F 1}^{k}\right) \underline{x}\left(t_{k}^{1}\right)+D 2\left(T_{F 1}^{k}\right) \underline{u}  \tag{D-9}\\
& \underline{x}\left(t_{k+1}\right)=\underline{x}\left(t_{k}^{2}+T_{F 2}^{k}\right)=\$ 3\left(T_{F 2}^{k}\right) \underline{x}\left(t_{k}^{2}\right)+D 3\left(T_{F 2}^{k}\right) \underline{u}  \tag{D-10}\\
& \text { where } \Phi i(T)=e^{F i T} \quad i=1,2,3  \tag{D-11}\\
& D i(T)=e^{F i t}\left[\int_{0}^{T} e^{-F i S} d S\right] G i \quad i=1,2,3 \tag{D-12}
\end{align*}
\]

The structures of the matrices \(\Phi i\) and \(D i\) for \(i=1,2,3\) have the following forms:
\[
\begin{aligned}
& \Phi i=\left[\begin{array}{lll}
\Phi i_{11} & \Phi i_{12} & 0 \\
\Phi i_{21} & \Phi i_{22} & 0 \\
\Phi i_{31} & \Phi i_{32} & 1
\end{array}\right] \\
& D 1=\left[\begin{array}{ll}
d l_{11} & 0 \\
d 1_{21} & 0 \\
d l_{31} & d 1_{32}
\end{array}\right]
\end{aligned}
\]

\[
D i=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & d i_{32}
\end{array}\right] \quad \text { for } i=2,3
\]

The equivalent discrete time system for the constant frequency boost converter is given by:
\[
\begin{align*}
\underline{x}\left(t_{k+1}\right) & =\Phi 3\left(T_{F 2}^{k}\right) \Phi 2\left(T_{F 1}^{k}\right) \Phi 1\left(T_{O N}^{k}\right) \underline{x}\left(t_{k}\right)+\Phi 3\left(T_{F 2}^{k}\right) \Phi 2\left(T_{F 1}^{k}\right) D 1\left(T_{O N}^{k}\right) \underline{U} \\
& +\Phi 3\left(T_{F 2}^{k}\right) D 2\left(T_{F 1}^{k}\right) \underline{U}+D 3\left(T_{F 2}^{k}\right) \underline{U} \tag{D-13}
\end{align*}
\]
together with the threshold condition derived from ( \(D-5\) )
\[
\begin{align*}
\Phi 1_{31}\left(T_{O N}^{k}\right) x_{1}\left(t_{k}\right) & +\Phi 1_{32}\left(T_{O N}^{k}\right) x_{2}\left(t_{k}\right)+\Phi 1_{33}\left(T_{O N}^{k}\right) x_{3}\left(t_{k}\right)+d l_{31}\left(T_{O N}^{k}\right) U_{1} \\
& +d 1_{32}\left(T_{O N}^{k}\right) U_{2}=E_{T} \tag{D-14}
\end{align*}
\]
and the zero inductor current condition, derived from (D-6)
\[
\begin{equation*}
\Phi 2_{21}\left(T_{F 1}^{k}\right) X_{1}\left(t_{k, 1}\right)+\Phi 2_{22}\left(T_{F 1}^{k}\right) X_{2}\left(t_{k, 1}\right)=0 \tag{D-15}
\end{equation*}
\]
and the constant frequency condition
\[
\begin{equation*}
T_{F 2}^{k}=T_{P}-T_{O N}^{k}-T_{F 1}^{k} \tag{D-16}
\end{equation*}
\]

\section*{D. 2 EQUILIBRIUM SOLUTIONS}

In the steady state the following conditions ( \(\mathrm{D}-17\) to \(\mathrm{D}-20\) ) are satisfied:
\[
\begin{align*}
& \underline{X}\left(t_{k+1}\right)=\underline{x}\left(t_{k}\right)=\underline{X}^{*}=\text { constant }  \tag{D-17}\\
& \quad \text { for all } k \\
& T_{O N}^{k+1}=T_{O N}^{k}=T_{O N}^{\star}=\text { constant }  \tag{D-18}\\
& T_{F 1}^{k+1}=T_{F 1}^{k}=T_{F 1}^{*}=\text { constant }  \tag{D-19}\\
& T_{F 2}^{k+1}=T_{F 2}^{k}=T_{F 2}^{*}=\text { constant }=T_{P}-T_{O N}^{\star}-T_{F 1}^{\star} \tag{D-20}
\end{align*}
\]

\section*{D.2.1 The Approximate Steady State}

The approximate \(T_{0}^{\star} N, T_{F}^{\star}\) and \(T_{F}^{\star}\) 2 can be computed using the following formula
\[
\begin{align*}
& T_{0 N}^{*}=\sqrt{\frac{2 L_{0} T_{p} P_{0}}{E_{I}\left(E_{I}-E_{R}\right)}}  \tag{D-21}\\
& T_{F 1}^{\star}=\sqrt{\frac{2 L_{0} T_{p} P_{0}\left(E_{I}-E_{R}\right)}{E_{I} E_{R}^{2}}}  \tag{D-22}\\
& T_{F 2}^{\star}=\sqrt{T_{p}-T_{0 N}^{*}-T_{F}^{*} 1} \tag{D-20}
\end{align*}
\]
where \(\quad L_{0}=\) the energy storage inductance
\(P_{0}=\) output power
\(E_{I}=\) input voltage
\(E_{R}=\) output voltage

Substituting ( \(D-17\) to ( \(D-20\) ) into ( \(D-13\) ), one obtains:
\[
\begin{align*}
& \left.\begin{array}{l}
+\left[\Phi 3\left(T_{\hat{F} 2}^{\star}\right) \Phi 2\left(T_{F 1}^{*}\right) D 1\left(T_{\hat{O} N}^{\star}\right)\right. \\
\left.+\Phi 3\left(T_{\hat{F} 2}^{*}\right) D 2\left(T_{\hat{F} 1}^{\star}\right)+D 3\left(T_{\hat{F} 2}\right)\right] \underline{U}
\end{array}\right\} \underline{V} \underline{U} \\
& \stackrel{\Delta}{=} \Phi\left(T_{0}^{\star} N, T_{F 1}^{\star}, T_{\hat{F} 2}^{*}\right) \underline{x} *+\underline{V}\left(T_{0 N}^{*}, T_{F}^{\star}, T_{F 2}^{*}\right) \underline{U} \tag{D-23}
\end{align*}
\]

The magnitudes of \(T_{0}^{\star} N, T_{F}^{\star}\), and \(T_{F 2}^{*}\) are obtained from equations \((D-20)\) to
\((D-22)\) Equation ( \(0-23\) ) can be solved for \(\underline{X}^{\star}\).

Let
\[
\begin{equation*}
x_{2}^{*}=0 \tag{D-24}
\end{equation*}
\]
then
\[
\begin{aligned}
& X_{1}^{\star}=\left[\Phi 3_{11}\left(\Phi 2_{11}{ }^{\Phi 1} 11^{+\Phi 2} 12^{\Phi 1} 21\right)+. \Phi 3_{12}\left(\Phi 2_{21} 1^{\Phi 1} 11^{+\Phi 2_{22}}{ }^{\Phi 1} 21\right)\right] X_{1}^{\star} \\
& +\left(\Phi 3_{11^{\Phi 2} 11^{d 1} 111^{+\Phi 3} 11^{\Phi 2} 12^{d 1} 21}+{ }^{\Phi 3} 12^{\Phi 2} 21^{d 1} 11^{+\Phi 3} 12^{\Phi 2} 22^{d 1} 1_{21}\right) E_{I} \\
& +\left(\Phi 3_{11} d 2{ }_{11}+\Phi 3_{12}{ }^{d 2} 21\right) E_{I} \\
& +\mathrm{d}_{11} E_{I}
\end{aligned}
\]

Equation \((D-21)\) can be solved for \(X_{1}^{*}\).
\[
\begin{align*}
& \left.\left.X_{1}^{\star}=\frac{1}{\left.1-\Phi 311^{(\Phi 2} 11^{\Phi 1} 11^{+\Phi 2} 12^{\Phi 1} 21\right)+\Phi 3_{12}(\Phi 2} 21^{\Phi 1} 11^{+\Phi 2} 2_{2}^{\Phi 1} 21\right)\right] \\
& \left\{\Phi 3_{11}\left[\Phi 2_{11} \mathrm{~d} 1_{11}+\Phi 2_{12}{ }^{\mathrm{d}} 1_{21}+\mathrm{d} 2_{11}\right]+\Phi 3_{12}\left[\Phi 2_{21} \mathrm{dl} 11^{+\Phi 2_{22}}{ }^{\mathrm{di}} 21\right.\right. \\
& \left.+d 2_{21}\right]+d 3_{11} 1 E_{I} \tag{D-25}
\end{align*}
\]

The state \(X_{3}^{*}\) can be derived from equation ( \(D-14\) )
\[
\begin{equation*}
X_{3}^{\star}=E_{T}-\phi 1_{31} x_{1}^{*}-\phi 1_{32} X_{2}^{\star}-d l_{31} E_{1}-d l_{32} E_{R} \tag{D-26}
\end{equation*}
\]

In this approximation \(n_{i}\) the threshold condition where the inductor current equals zero may not be satisfied. This approximation is merely employed as a starting point in order to search for the exact steady state.

\section*{D.2.2 The Exact Steady State}

Define the system state when the power switch turns off as
\[
\begin{align*}
& \underline{Y}\left(t_{k}\right) \triangleq \underline{X}\left(t_{k}+T_{O N}^{k}\right)  \tag{D-27}\\
& Z\left(t_{k}\right) \triangleq \underline{X}\left(t_{k}+T_{O N}^{k}+T_{F 1}^{k}\right) \tag{D-28}
\end{align*}
\]
and clearly
\[
\begin{align*}
& Y_{3}\left(t_{k}\right)=E_{T} \quad \text { for all } k  \tag{D-29}\\
& Z_{2}\left(t_{k}\right)=0 \tag{D-30}
\end{align*}
\]

In the steady state operation
\[
\begin{align*}
& \underline{Y}^{\star}=\phi 1\left(T_{0 N}^{*}\right) \underline{X}^{\star}+D 1\left(T_{O N}^{\star}\right) \underline{U}=f 1\left(T_{O N}^{\star}, \underline{X}^{\star}\right)  \tag{D-31}\\
& Z_{*}^{\star}=\Phi 2\left(T_{F 1}^{*}\right) \underline{Y}^{\star}+D 2\left(T_{F 1}^{*}\right) \underline{U}=f 2\left(T_{F 1}^{*}, \underline{Y}^{\star}\right) \tag{D-32}
\end{align*}
\]
and

It is tmportant to note that \(T_{O N}^{*}\) and \(T_{F}^{\star} 1\) are functions of \(\underline{X}^{\star}, \underline{U}\) via the threshold conditions ( \(D-29\) ) and ( \(D-30\) ).

If \(T_{0}^{\star} N\) and \(T_{F}^{*}\), are the exact steady state values, the steady state \(X^{*}\) calculated from \((D-24)\) to \((D-26)\) has to satisfy the following two matching conditions.
(1) the zero-inductor-current condition
\[
\begin{equation*}
B_{\text {match }}=\$ 2_{21}\left(T_{F 1}^{*}\right) Y_{1}+\$ 2_{22}\left(T_{F l}\right) Y_{2}=0 \tag{D-34}
\end{equation*}
\]
(2) the state matching condition
\[
\begin{align*}
S_{\text {match }}= & \phi 3_{d 1}\left(T_{F 2}^{*}\right) Z_{1}+\phi 3_{32}\left(T_{F 2}^{*}\right) Z_{2}+E_{T} \\
& +d 3_{32}\left(T_{F 2}^{*}\right) U_{2}-x_{3}^{*}=0 \tag{D-35}
\end{align*}
\]

Iteration linearization (Newton's method) is employed to find \(T_{O N}^{\star}\) and \(T \frac{k}{F} 1\) which satisfies the matching conditions
\[
B_{\text {match }}\left(X^{\star}, T_{0 N}^{\star}, T_{F T}^{*}\right)=0
\]
and
\[
S_{\text {match }}\left(\underline{X}^{\star}, T_{O N}^{*}, T_{F 1}^{\star}\right)=0
\]

The step-by-step procedure is described as follows:
Step 1 Employing the approximate \(\tilde{T}_{O N}^{*}, \tilde{T}_{\star}\) g given in ( \(0.21-22\) ) derive the approximate state \(\underline{X}^{*}\) from ( \(D, 24-26\) ).

Step 2 Find a new TK1 by iteration 1inearization method
such that for the given \(\tilde{x}^{*}\) and \(\tilde{T}_{O N}^{*}\) together with the new \(T_{F}^{*}\), the zerocurrent condition \(B_{\text {match }}\left(\tilde{T}_{O N}^{*}, \tilde{x}^{*}, T_{F 1}^{*}\right)=0\) will be satisfied.

Step \(3 \quad\) Check if \(S_{\text {match }}=0\) is satisfied?

Step 4 If \(S_{\text {match }}=0\) is not satisfied, modify \(T_{0}^{\star} N\) according to
\[
T_{O N}^{\star}=\tilde{T}_{O N}^{\star}-\frac{S_{\text {match }}\left(\tilde{T}_{O N}^{*}, T_{F 1}^{\star}\right)}{\left[\partial S_{\text {match }}{ }^{\gamma T_{O N}} \tilde{T}_{O N}^{\star}\right.}
\]

Step 5 Use the new \(T_{0}^{\star} N\) and \(T_{F}^{\star}\) calculated in Step 2 and Step 4 to derive a new approximate state \(\underline{\tilde{X}}^{*}\). Then to go to Step 2 and repeat the process until the state matching condition \(S_{\text {match }}=0\) is satisfied.

A flow diagram for determining the steady state is presented in Fig. D.2(a) and (b). A subroutine \(B_{\text {match }}\) is developed to search for \(a\) proper \(T_{F 1}\) to satisfy the zero-inductor condition as shown in ( \(D-34\) ) This subroutine is embodied into another subroutine \(S_{\text {match }}\) which ultimately computes the state matching condition as given in ( \(D-35\) ).


Figure D.2(a) Flow Diagram for Determining tie Steady State


Figure \(0.2(b)\) Flow Difagrain For Determining the Steady state

\section*{D. 3 ANALYSIS OF LINEARIZED DISCRETE TIME SYSTEM}

The analysis of stability, audio susceptibility, and transient response due to step change in the input voltage and the load is presented. The analysis is based on a linearized discrete system about its equilibrium state.

\section*{D.3.1 Derivation of Linearized System}

The linearized system can be derived by perturbing the system at the fth cycle. After the perturbation the nonlinear discrete time system equation (D-13) can be rewritten as:
\[
\underline{x}_{k}+1=f\left(\underline{x}_{k}, \underline{U}\right)
\]
where \(\underline{f}\left(\underline{X}_{k}, \underline{U}\right)=\Phi 3\left(T_{F 2}^{k}\right) \Phi 2\left(T_{F 1}^{k}\right) \Phi 1\left(T_{O N}{ }^{k}\right) \underline{x}\)
\[
+\downarrow 3\left(T_{F 2}^{k}\right) \downarrow 2\left(T_{F 1}^{k}\right) \text { DI }\left(T_{O N}^{k}\right) \underline{U}
\]
\[
+\phi 3\left(T_{F 2}^{k}\right) D^{2}\left(T_{F 1}^{k}\right) \underline{u}
\]
\[
\begin{equation*}
+D 3\left(T_{F_{2}}^{k}\right) \underline{U} \tag{D-36}
\end{equation*}
\]

This system can be linearized about its equilibrium state. \(x^{*}\). Denoting:
\[
\text { and } \begin{aligned}
\delta \underline{x}\left(t_{k}\right) & =\underline{x}\left(t_{k}\right)-\underline{x}^{\star} \\
\delta U_{1}\left(t_{k}\right) & =U_{1}\left(t_{k}\right)-U_{1}^{*}
\end{aligned}
\]

It follows that:
\[
\begin{equation*}
\delta \underline{x}\left(t_{k}+\eta\right)=\psi \delta \underline{x}\left(t_{k}\right)+\Gamma_{\delta J_{1}}\left(t_{k}\right) \tag{D-37}
\end{equation*}
\]
where \(\psi=\frac{\partial}{\partial x} \underline{f}\left(\underline{x}_{k}, \underline{u},\right)\)
\[
\begin{equation*}
\underline{X}^{*}, \underline{U}^{*} \tag{D-38}
\end{equation*}
\]
and \(\quad r=\frac{\partial}{\partial U_{1}} f\left(\underline{x}_{k}, \underline{U}\right)\)
\[
\begin{equation*}
\underline{x}^{\star}, \underline{U}{ }^{*} \tag{D-39}
\end{equation*}
\]

The matrix \(\psi\) is \((3 \times 3)\) and the matrix \(\Gamma\) is \((3 \times 1)\).

The partial derivatives, approximated by difference quotients, are evaluated numerically by difference quotients.

For sufficiently small \(\Delta x_{i}, i=1, \ldots, 4\)
\[
\left[\begin{array}{c}
\frac{f_{1}\left(x_{1}^{*}+\Delta x_{1}\right)-f_{1}\left(x_{1}^{*}\right)}{\Delta x_{1}}--\frac{f_{1}\left(x_{3}^{*}+\Delta x_{3}\right)-f_{1}\left(x_{3}^{*}\right)}{\Delta x_{3}}  \tag{D-40}\\
\frac{f_{3}\left(x_{1}^{*}+\Delta x_{1}\right)=f_{3}\left(x_{1}^{*}\right)}{\Delta x_{1}}--\frac{f_{3}\left(x_{3}^{\star+\Delta x_{3}}\right)-f_{3}\left(x_{3}^{*}\right)}{\Delta x_{3}}
\end{array}\right]
\]

Since \(\underline{x}\) does not appear explicitly in \(f\), in order to evaluate ( \(D-40\) ), the change of \(T_{o n}, T_{F 1}\), and \(T_{F 2}\) due to a change of \(\Delta x_{i}, i=1, \ldots, 3\), must be determined first. The new \(T_{o n}\) and \(T_{F I}\) are computed according to the threshold conditions ( \(D-14\) ) and ( \(D-15\) ).

Similarly,
\[
r=\left.\frac{\partial f}{\partial u_{1}}\right|_{x^{*}, U^{*}} \approx[\begin{array}{c}
\left.\frac{f_{1}\left(U_{1}+\Delta U_{1}\right)-f_{1}\left(u_{1}\right)}{\Delta U_{1}}\right]  \tag{D-41}\\
\left.\frac{f_{3}\left(U_{1}+\Delta U_{1}\right)-f_{3}\left(u_{1}\right)}{\Delta U_{1}}\right]
\end{array} \underbrace{}_{x^{*}, \underline{u^{*}}}
\]

It is important to select the appropriate increments \(\Delta x_{j}\) and \(\Delta U_{j}\). Some experimentation with the increment size is advisable, since the accuracy of the partial derivatives depends on it. If the linearized system shows high sensitivity to incremental size, then this points out that the nonlinear systell changes its behavior rather rapidly as it moves away from its equilibrium, and the result obtained for the linearized system are only valid for very small perturbations about the equilibrium.

\section*{D.3.2 The Stability of the Linearized System}

The linearized system ( \(D-37\) )
\[
\delta \underline{x}\left(t_{k+1}\right)=\psi \delta \underline{x}\left(t_{k}\right)+\Gamma \delta U_{1}\left(t_{k}\right),
\]
is stable if and only if all the eigenvalues of \(\psi\) are absolutely less than unity, i.e.,
\[
\begin{equation*}
\left|\lambda_{i}\right|<1 \quad i=1,2,3,4 \tag{D-42}
\end{equation*}
\]

The eigenvalues are evaiuated by the computer. Changes of eigenvalues as a function of system parameters can be plotted in the complex plane. The location of the eigenvalues in the complex plane indicates not only the stability but also the transient behavior of the system, i.e., damping and rapidity of response.

\section*{D.3.3. Stability Results}

A computer program for the constant-frequency boost converter operating in the discontinuous inductor-current has been developed. Furthermore, the computer program developed previously in Appendix \(C\) for the same converter but operating in the continuous inductor-current was incorporated in the present program. Therefore, for a given set of circuit parameters, the main program first detected the modes of operation, the continuous current mode versus discontinuous current mode, then enter into the appropriate subroutine for the computation. The stability nature of such a system when its inductor is operating on the merge from discontinuous mode to continuous mode through such a program.

In the previous Appendix \(C\), it was concluded that the converter was unstable for duty cycles figher than \(50 \%\) and the only parameter change for stabilizing the system was to decrease the duty cycle. This statement again was verified by further investigaand Figure D.4. The magnitude of the input voltage for these two runs approached to -1 from outside the unit one eigenvalue \(\lambda 3\) asymptotically asymptotically approached to +1 from inside and two other eigenvalues cannot be stabilized by beducing the anside the unit cycle. The system shows that the instability problem ac-loop resistance. Figure D. 4 dc-loop-gain resistance \(R\) problem cannot be corrected by varying

The stability nature of the converter is studied by varying such important parameters as the input voltage to the regulator and the load in a manner that the varies from the continuous inductor-current operation of the converter inductor current mode. Figur inductor current mode. Figure D. 5 shows the change of eignevalues


Figure D. 3 Eigenvalues as a Function of AC Loop Resistance \(R_{4}\).


Figure D. 4 Eigenvalues as a Function of DC Loop Resistance \(R_{3}\).


Figure D. 5 Eigenvalues as a Function of Input Voltage
function of the input voltage \(E_{I}\), at \(L_{0}=50 \mu h\). When the magnitude of the input voltage is between 25 volts and 31 volts, the converter operates in the continuous current mode with a duty cycle greater than \(50 \%\) and it is unstable. When the input voltage equals or is greater than 32 volts, all the three eigenvalues are inside the unit cycle and the system becomes stable regardless of the duty cycle ratio. It should be noted that during the input voltage variation, a jump phenomenon is observed. For example, as the input voltage varies from 31 volts to 32 volts, the eigenvalue \(\lambda 3\) varies from 2.68 to 0 and it is caused by a jump phenomenon, not by a continuous motion which can be represented by intermediate value of \(E_{I}\).

Figure D. 6 shows the change of eigenvalues as a function of the load. When the load is relatively heavy, \(R_{L}=10\) ohms to 40 ohms, and the input voltage \(E_{I}=30\) volts, the converter operates in a continuous-current mode with a duty cycle ratio greater than \(50 \%\). The system is unstable. The system is stabilized by increasing \(R_{L}\) up to or above 50 ohms such that the converter begins to operate in the discontinuous-current mode. The jump phenomenon is again manifested by investigating the change of eigenvalues in Figure D. 6 .

Figure 0.7 is another plot of eigenvalues as a function of load for a given supply voltage \(E_{I}=50\) volts. The converter first operates in a continuous - current mode for \(R_{L}\) equal to 10 ohms and 20 ohms and then operates in a discontinuous - current mode for \(R_{L}\) greater than 30 ohms. The eigenvalues \(\lambda_{1}\) and \(\lambda_{2}\) both approach unity as \(R_{L}\) approaches infinity. The system is stable under all load conditions.



Figure D. 6 Eigenvalues as a Function of Load When \(E_{I}=30\) Volts


\section*{COMPUTER LISTING FOR A BUCK REGULATOR DISCRETE TIME DOMAIN ANALYSIS HANDLING BOTH THE CONTINUOUS AND DISCONTINUOUS CONDUCTION OPERATIONS}
\begin{tabular}{|c|c|}
\hline 100100 & PRDGRAM Buckilnputa nutputejapezeinpure \\
\hline 00110 & XTAFE4, TAPE2I \\
\hline 00120 & DIMENSION RIPX(3,1),PSI(3,3),PSY(3, 3 ), GAFI(3,1), IMT (8), \\
\hline 00130 &  \\
\hline 00140 & MPHI1 3,3\(),\) PHI \(2(3,3)\), PHI \(3(3,3), 01(3,2), 02(3,2), 03(3,2)\), \\
\hline 00145 & XTEMP1 3,31, TVEC1(3), PHIP(3,3) \\
\hline 00150 &  \\
\hline 00160 & X G \(3(3,2)\) \\
\hline 00170 & COMMON/EXTPAR/NIT, EPS, TP, ET,MCDE \\
\hline 00180 & COMMON (STATE \(X(3,1), Y(3,1), 2(3,1), U(2,1)\) \\
\hline 00190 &  \\
\hline 00200 & ( (PRAM(4),R4), (PRAM(5),R5), (PRAM(6),RN2), (PRAM(7), \\
\hline 00210 &  \\
\hline 00220 & DATA EI, ER, ET, RL, TP/50.,20.,8.,10.,30.E-61 \\
\hline 00230 & DATA EISWIT, XMU/60.,0.011 \\
\hline 00240 &  \\
\hline 00250 & OATA C1,C2,R1,R2,R3,RG/2200.E-12,0.022E-6,28.7E \\
\hline 00260 & X13.5E3,10.E3,100.E31 \\
\hline 00270 &  \\
\hline 00280 & DATA NIT, EPS/100,1.E-6! \\
\hline 00285 & DATA MODE/2I \\
\hline 00290 & DAIA IPLOLELISTELPEAK.LEESNKEL \\
\hline 100300 & DATA LRTL, NRL, DPRAM, PRAMF \(10,2,0.00 .1\) \\
\hline 00310 &  \\
\hline 00320 &  \\
\hline 0.0330 & \(\times\) LFREO, THET O, DELTHET, THETAF,H,LRTL, NRL, DPRAK, PRAYF \\
\hline 00340 & READ (3, TERMS) \\
\hline 00350 & REHINO 2 \\
\hline 00360 & RESIND 4 \\
\hline 00370 & IF (LIST .EQ. 1) WRITE (2,TERYS) \\
\hline 100380 & 5.cOMTINUE \\
\hline 00390 & RKD=R2/(R)+R2) \\
\hline 00400 & RN=RN2/FN1 \\
\hline c0410. & D0, 8 I* 1.3 \\
\hline 00420 & G1(I, 1)=G1(1,2)=G2(1, 1)=G2(1,2)=63(1, \()=63(1,2)=0\). \\
\hline 00430 & DC \(8 \mathrm{~J}=1,3\) \\
\hline 00440. & F1 \((1, J l=F 2(1, J)=F 3(1, J)=0\). \\
\hline 00450 & F1(1,1)=F2(1, 1) \(=-1 . /(2 L * C O+R 5 * C 0)-R 5 * R L /(x)\) \\
\hline 00460 & F3(1,1) \(=-1.1(C 0 *(45+P L)\) \\
\hline 00470 & \(F 1(1,2)=\Gamma(1,2)=F 3(1,2)=\) RL/ \((C C * R L+C O * F S)-R O *=\) \\
\hline 00480 & \(\times \times(0 * 25)\) \\
\hline 00490 & F1(2,1) = \(2(2,1)=-1.1 \times 10\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 00500 & & \(F 1(2,2)=F 2(2,2)=F 3(2,2)=-R 0 / \times 10\) \\
\hline 00510 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& F(13,1)=F 2(3,1)=C 2 /(R L * C 1 * C O * R 5 * C 1 * C O)+R N /(R 4 * C I)-P K D /(R 3 * \\
& \times C 1)+C 2 * R 5 * R L /(C 1 * X(O * R L+C 1 * X L O * R S)
\end{aligned}
\]}} \\
\hline 00520 & & \\
\hline 005330 & \multicolumn{2}{|r|}{\(F 3(3,1)=-R K D /(R 3 * C 1)+C 2 /(R L * C 2 * C O * R 5 * C 1 * C O)\)} \\
\hline 00540 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{```
F1(3,2)=F2(3,2)=F3(3,2)=C2*RO*R5*RL/(C1*XLO*R5+C14\times(O*PL)-
XRL*C2ICX*CO*R5+CI*CO*RL)+RN*RO/(R4*C1)
```}} \\
\hline 00550 & & \\
\hline 00570 & \multicolumn{2}{|r|}{\(G 1(1,1)=R 5 * R L /(X L O * R 5 *\) KLO*RL)} \\
\hline 00580 & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& G 1(2,1)=1.1 \times 10 \\
& G 1(3,1)=-R N /(R 4 * C 1)-C 2 * R 5 * R L /(C 1 * \times L O * R 5+C 1 * \times L O * R L) \\
& G 1(3,2)=G 2(3,2)=G 3(3,2)=R K D /(R 3 * C 2)
\end{aligned}
\]}} \\
\hline 00590 & & \\
\hline 00600 & & \\
\hline 00610 & \multicolumn{2}{|r|}{\(U(1,1)=E!\)} \\
\hline 00620 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& U(2,1)=E R \\
& P O=E R \in 2 / R L
\end{aligned}
\]}} \\
\hline 00630 & & \\
\hline 00640 & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TFI=SORT(2.*XLO*TP*PD*(EI-ER)/(EI*ER**2))} \\
\hline 00650 & & \\
\hline 00660 & & TF2-TP-TON-TFI \\
\hline 00670 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{DELTON=XMUFTON
IF(TFZ.GE.EPS) GD TO}} \\
\hline 00675 & & \\
\hline 00677 & & MODE=1 \\
\hline 00678 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{TON-TP*ER/EI}} \\
\hline 00679 & & \\
\hline 00680 & & DELTON=XMU*TON
\[
I T=0
\] \\
\hline 00890 & & \multirow[t]{3}{*}{\begin{tabular}{l}
SCI=XHATCH(TON,EI,ER) \\
DMATCH:(XM:ICH(TONTDELTON,EI,ER)-SCI)/DELTON TON-TON-SCl/DMATCH
\end{tabular}} \\
\hline 00700 & 19 & \\
\hline 00710 & & \\
\hline 00720 & \multicolumn{2}{|r|}{SCI=XMATCH(TON, EI, ER)} \\
\hline 00730 & & \[
I T=I T+1
\] \\
\hline 00740 & \multicolumn{2}{|r|}{IF(ABSISC1).LE.EPS) GE YO © 0} \\
\hline 00750 & & IFITT,LT.NIT) 601019 \\
\hline 00760 & & TONETP*ERIEI \\
\hline 00770 & 20 & continue \\
\hline 00780 & & TFI-TP-TON \\
\hline 00790 & & CALL PHOMATIPHIF,D2, TP,Fl,G1) \\
\hline 00800 & & CALL PHOMAT (PHIZ,D2,TFl,F1, G1) \\
\hline 00810 & & CALL PHOMAT(PHII, DI, TON,F1,G1) \\
\hline 00820 & & D0 \(22 \mathrm{I}=1,2\) \\
\hline 00830 & & \(0021 \mathrm{j}=1,2\) \\
\hline 00840 & 21 & TEMPI \(1, J)=-P H I P(I, J)\) \\
\hline 00850 & 22 & \multirow[t]{2}{*}{\begin{tabular}{l}
TEMPI(I,I)=1.+TEMPI(I,I) \\
DETETEMP1(1,1)*TEMP1(2,2)-TEMP1(2,1)*TEMP1(1,2)
\end{tabular}} \\
\hline 00860 & & \\
\hline 00670 & & \\
\hline 00880 & & \\
\hline
\end{tabular}

\(\boldsymbol{\omega}\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{93.70 - XG3 3,21} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{93370-CFM-TP-TER-TF1}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{1034:0 EALL PHEMATIPHI1,01, TES, FI,G1} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{03432 C4LE PHCHATPH13,} \\
\hline 03440: & 4*1.-P\%13:1,1) \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline 435 & co TC 23 \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{tran \(2=\) Fetuen} \\
\hline 103570 & [40 \\
\hline \multicolumn{2}{|l|}{10365} \\
\hline \multicolumn{2}{|l|}{035.0 C} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{C3f0 \(\therefore\) PETHPY} \\
\hline \multicolumn{2}{|l|}{03670 - Ftid} \\
\hline \multicolumn{2}{|l|}{63700 C} \\
\hline \multicolumn{2}{|l|}{03710} \\
\hline \multicolumn{2}{|l|}{19720 - Sutagutine} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2740 \(\quad\) :U(2,1),4(3,1),P411(3,35,01(3,3),}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline 0715.9 & \\
\hline 10370 & \%62 (3, 2), 03(3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{23}{*}{}} \\
\hline & \\
\hline
\end{tabular}

MODELING OF SWITCHING REGULATOR POWER STAGES
WITH \& WITHOUT ZERO-INDUCTOR-CURRENT DWELL TIME

\author{
F. C. LEE \\ Y. YU \\ TRW Defense a Space Systems One Space Park-Bldg. 82/2367 Redondo Beach, California and \\ J, E. TRINER \\ NASA Lewis Research Center \\ Cleveiand, Ohio
}

\begin{abstract}
State space techniques are employed to derive accurate models for buck, boost, and buck/boost converter poxer stages operating with and without zero-indactor-current dwell time, A generalized procedure is develoned which treats the continuous-inductor-current mode without the dwell time as a seecial case of the discontinuous-current mode, when the dwell time vanishes. An abrupt change - i sjistem behavior including a reduction of the system order when the dwell time appears is shown both analytically and experimentally.
\end{abstract}

\section*{1. INTRODUCTIO:}

Modeling and analysis of the three basic dc-dc converter power stages, as shown in Fig. 1, has been achieved through frequency-domain averaging approaches.[1-5] However, they have been limited to analyzing a steady-state continuous operation where the MI of the output filter inductor never vanishes, as illustrated in Fig. \(2(f)\). Such an operation can be represented by a cyclic change of two power-stage topologies within each switching cycle; one for the on-time interval while the other for the off-time interval of the power switch. However, either by design intent or through light load operation, a steady-state cycle invariably contains an interval during which the inductor MP vanishes, as shown in Fig. 2(B). This interval begins when the descending MMF reaches zero during the off time of the power switch, and ends when the power switch is turned on to initiate the next on-time interval. During this zero-inductorcurrent dwell time, the tovology of the power stage consists only of the filter capacitor and the load, which is different from both the on-time interval of ascending MMF and the off-time interval of descending MMF. The addition of such a dwe 11 time thus renders the afore-referenced analytical approaches powerless.

It is commonly known that the re are significant differences in switching-regulator performances with continuous- and discontinuous-inductor current operations. Certain abrupt changes often can be observed in the breadboard performance when the inductor current leaves the continuous mode and enters into the discontinuous mode. For example, step transient response may change from oscillatory to well damped, and the audio susceptibility is generally improved. More significantly, the stability nature of the system can be changed from an unstable system to a stable one. Such important phenomena, which may very well affect converter

\section*{DRIGINAL PAGE IS DE POOR QUALITY. \\ Y}

TABLE I Matrices \(\mathrm{F}^{\prime} \mathrm{s}\) and \(\mathrm{G}^{\prime}\) 's for state variable representations of the three converters.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{Fl}_{1}=\left[\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right]\) & F2 & F3 & 61 & G2 & G3 \\
\hline Buck & & \(\left[\begin{array}{cc}0 & 0 \\ 0 & \\ C\left(R_{C}+R_{L} T\right.\end{array}\right]\) & & \(\left[\begin{array}{l}0 \\ \\ 0\end{array}\right]\) & \(\left[\begin{array}{l}0 \\ \\ 0\end{array}\right]\) & \(\left[\begin{array}{l}1 \\ \Gamma \\ \\ 0\end{array}\right]\) \\
\hline B00ST & \(\frac{\left[\begin{array}{cc}-R_{C} R_{L} & -R_{L} \\ \hline\left(R_{C}+R_{L}\right) & L\left(R_{C}+R_{L}\right) \\ R_{L} & \\ \frac{C\left(R_{C}+R_{L}\right.}{} & C\left(R_{C}+R_{L}\right)\end{array}\right]}{[}\) & \(\left[\begin{array}{cc}0 & 0 \\ 0 & \frac{-1}{C\left(R^{+}+R^{2}\right)}\end{array}\right]\) & \(\left[\begin{array}{cc}0 & 0 \\ 0 & \frac{-1}{C\left(R_{C}+R_{L}\right)}\end{array}\right]\) & \[
\left[\begin{array}{l}
\Gamma \\
0
\end{array}\right]
\] & \[
\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\] & \[
\left[\begin{array}{l}
\Gamma \\
0
\end{array}\right]
\] \\
\hline \[
\begin{aligned}
& \text { BUCK } \\
& \text { B00ST }
\end{aligned}
\] & \[
\left[\begin{array}{ll}
-\frac{R_{C} R_{L}}{j A N_{s}\left(R_{C}+R_{L}\right)} & \frac{-R_{L}}{N_{s}\left(R_{C}+R_{L}\right)} \\
\frac{2}{p A R_{L} C\left(R_{C}+R_{L}\right)} & \frac{-1}{C\left(R_{C}+R_{L}\right)}
\end{array}\right]
\] & \(\left[\begin{array}{cc}0 & 0 \\ 0 & \frac{-1}{C\left(R_{C}+R_{L}\right)}\end{array}\right]\) & \(\left[\begin{array}{cc}0 & 0 \\ 0 & \frac{-1}{C\left(\frac{1}{C+} L^{\prime}\right.}\end{array}\right]\) & \(\left[\begin{array}{l}0 \\ 0\end{array}\right]\) & \[
\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\] & \[
\left[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
N_{p} \\
0
\end{array}\right]}
\end{array}\right.
\] \\
\hline
\end{tabular}
discrete time domain models are derived in closed forms, which describe converters zbout their equilibriuc state exactly. These discrete models are then transformed into frequency domain transfer functions representing the small signal low frequency characteristics of the converter up to one half of the switching frequency. A generalized procedure is developed in this paper which not only ayoids laborious derivations for each converter but also treats the continuous current mode without the dwell time as a special case of the discontinuous current mode when the dwell time vanishes.

The mathematical models derived from this unified approach thus serves as an ideal basis for comparitive studies jetween the two operating modes with and without the divell time. The aforementioned pronounced changes of performance characteristics observed when the inductor current leaves the continuous mode and enters into the discontinuous mode are manifested by an abrupt reduction of system order both analytically and experimentally.

\section*{2. DEVELOPMENT OF POWER STAGE MODELSA general procedure}

Consider the small signal behavior of the converter about its equilibrium state is linear. When the converter is subjected to a small disturbance, the duty-cycle signal \(d(t)\) is modified as \(d(t)+\Delta d(t)\), shown as Fig. 3. Such a perturbed duty-cycle signal can be idealized as an impulse train when the perturbation is vanishing small. A linearized discrete impulse response which characterizes the small signal behavior of the power stage about its equilibrium state can be obtained if the perturbation of the output voltage, subjected to a small duty-cycle disturbance at the \(k\) th switching cycle can be computed after \(n\) cyctes of propagation. This concept can be elaborated by Fig. 4 and the following equation.
\[
\begin{equation*}
\frac{\Delta V_{0}\left(t_{k+n}\right)}{\Delta t_{k}} \Delta g\left(n T_{p}\right) \tag{1}
\end{equation*}
\]

Fig.3(A) The duty-cycle signal at steady state \(d(t)\) and after small perturbation \(d(t)+d(t)\).
(B) The perturbed duty cycle \(d(t)\).

Fig. 4 Linearized discrete power stage models. where \(\Delta t_{k}\) is a sinall duty cycle disturbance at the \(k\) th switching cycle and \(\Delta V_{0}\left(t_{k+n}\right)\) is the resulting output voltage variation at the \((k+n)\) th cycle. The sampling rate is equal to the switching frequency \(1 / T_{p}\). Through mathematical manipulation, the discrete impuise response \(g\left(n T_{p}\right)\) can be expressed in the closed form as a function of \(n T_{p}\), the power stage parameters, and the steadystate operating conditions. For convenience, the converter operations with and without zero inductorcurrent dwell time are referred to in the text as MODE 2 OPERATION and MODE 1 OPERATION, respectively.

\subsection*{2.1 State Space Representations}

The switching regulator power stage, during one cycle of operation, can be represented by three piecewise linear vector diffential equations:
\[
\begin{align*}
& \underline{x}=F 1 \underline{x}+G 1 \underline{U} \text { during } T_{F 1} \tag{2}\\
& \underline{x}=F 2 \underline{X}+G 2 \underline{U} \text { during } T_{F 2} \\
& \underline{X}=F 3 \underline{x}+G 3 \underline{U} \text { during } T_{O N}
\end{align*}
\]
where \(\underline{U}=V_{I}\).
The time intervals \(T_{F l}, T_{F 2}\), and \(T_{O N}\) are defined in Fig. 2. The inductor curfent and ene capacitor voltage, \(X=\left[j_{1}, v_{c}\right]^{T}\) are chosen as two state variables for black and boost converters. For the buck/boost converter, however, the current through either the primary winding or the secondary winding of the inductor is not continuous. The magnetic flux \(\phi\) instead of inductor current is chosen as one state variable. The F's and G's matrices for each converter are presented in Table I. It should be noted that, for Mode 1 operation, the time interval TF2 does not exist. Therefore, the vector differential equation (3) can be neglected.

\subsection*{2.2 Linearized Discrete Impulse Response \\ Consider the following duty cycle signal}
\[
d(t)= \begin{cases}1 & \text { during } T_{O N} \\ 0 & \text { otherwise }\end{cases}
\]
whose leading edge of \(T_{O N}\) is always initiated by a clock signal. When the converter is subjected to a smali duty-cycle disturbance, the propagation of the perturbed state can be illustrated in Fig. 5. The steady state with a superscript "o" is shown as the solid curve, while the perturbed state with a superscript \(" * 1\) is represented by the dotted curve. For a small duty-cycle perturbation at \(k\) th cycle from \(t_{k}^{\circ}\) to \(t_{k}^{\star}\), the perturbed state after one cycle of propagation is expressed as \(X^{*}\left(t_{k+1}^{\circ}\right)\). The trajectories for the perturbed state during each piecewise linear region can be represented by the following state transition equations (5-7) which are the solutions for the vector differential equations (2-4).
\[
\underline{X} *\left(t_{k T}^{0}\right)=\Phi 7\left(t_{k}^{o}-t_{k}^{\star}\right) \underline{X} *\left(t_{k}^{\star}\right)+\phi 1\left(t_{k}^{o}\right) \int_{t_{k}^{*}}^{t_{k}^{o} T} \phi 1(-s) \operatorname{dsG} \underline{U}
\]
\[
\underline{x} *\left(t_{k 2}^{\circ}\right)=\phi 2\left(t_{k 2}^{0}-t_{k 1}^{*}\right) \underline{x} \star\left(t_{k 1}^{*}\right)+ゅ 2\left(t_{k 2}^{0}\right) \int_{t_{k 1}^{*}}^{t_{k 2}^{o}} \phi 2(-s) \text { dsG2U } \frac{(6}{6}
\]
\[
\underline{X}^{\star}\left(t_{k+1}^{\bullet}\right)=\Phi 3\left(t_{k+1}^{0}-t_{k 2}^{\star}\right) \underline{X}^{\star}\left(t_{k 2}^{\star}\right)
\]
\[
\begin{equation*}
+\$ 3\left(t_{k+1}^{o}\right) \int_{t_{k 2}^{\star}}^{t_{k+1}^{o}} \oplus 3(-s) d s G 3 U \tag{7}
\end{equation*}
\]
where \(\phi\) i's are the state transition matrices defined as
\[
\phi i(T) \triangleq e^{F i T} \quad i=1,2,3 .
\]

Since the clock signal initiates the turm-on time, the time instant \(t_{k 2}^{*}\) is equal to \(t_{k 2}^{0}\) in equation(7).

The corresponding discrete impulse response for each switching power stage represented by (1) can be obtained by performing the following vector differentiation
\[
\begin{equation*}
g\left(n T_{p}\right)=\frac{c d X^{\star}\left(t_{k+n}^{0}\right)}{d t_{k}^{*}} \tag{8}
\end{equation*}
\]

Fig. 5 State trajectories for steady state (solid curve) and perturbed state (dotted curve)
Since the output voltage of the converter can be expressed as \(V_{0}=C X\), where \(C\) is a constant row matrix. Applying Chain Rule, one can express (8) by the following recurrence relation
\[
\begin{align*}
\frac{d X^{\star}\left(t_{k+n}^{0}\right)}{d t_{k}^{\star}} & =\frac{d X^{\star}\left(t_{k+n}^{0}\right)}{d \underline{X}^{\star}\left(t_{k+n-1}^{0}\right)} \cdot \cdot \frac{d X^{\star}\left(t_{k+1}^{0}\right)}{d X^{\star}\left(t_{k}^{0}\right)} \cdot \frac{d \underline{X}^{\star}\left(t_{k}^{0}\right)}{d t_{k}^{\star}} \\
& =\left[\frac{d X^{\star}\left(t_{k+1}^{0}\right)}{d X^{\star}\left(t_{k}^{0}\right)}\right]^{n} \frac{d X^{\star}\left(t_{k}^{0}\right)}{d t_{k}^{\star}} \tag{9}
\end{align*}
\]
where
\[
\text { - - for Mode } 1 \text { Operation }
\]

It is proved in the APPENDIX A for all three converters that
\[
\frac{d X^{*}\left(t_{k+1}^{o}\right)}{d X^{*}\left(t_{k}^{\circ}\right)} \Phi\left(T_{p}\right)=\$ 3\left(T_{O N}^{\circ}\right) \phi 2\left(T_{F 2}^{\circ}\right)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \phi 1\left(T_{F 1}^{0}\right)
\]
\[
\begin{equation*}
\text { - - Mode } 2 \tag{12}
\end{equation*}
\]
\[
\begin{equation*}
=\Phi 3\left(T_{O N}^{\circ}\right) \phi 1\left(T_{F \emptyset}^{0}\right)-\ldots \text { Mode } 1 \tag{13}
\end{equation*}
\]
\[
\begin{equation*}
\text { and } \frac{d X^{*} *\left(t_{k}^{0}\right)}{d t_{k}^{*}} \triangleq B=(F 3-F 1) \underline{X}^{\circ}\left(t_{k}^{o}\right)+(S 3-(1) \underline{U} \tag{14}
\end{equation*}
\]

Where \(x^{\circ}\left(t_{k}^{\circ}\right)\) is the state at the instant of sampling and is \({ }^{k}\) defined as \(\left[I_{M}, V_{C}\right]^{\dagger}\) for buck aid boost converters and \(\left[\phi_{M} V_{C}\right]^{T}\) for buck/boost gonverter. It should be noted that, for boost and/buck/boost. converters, the output voltage \(V_{0}\) has; a jump at the instant of sampling, since the carrent through the ESR \(R_{C}\) of the output filter capacitor is discontinuous at the sampling instant. Therefore, the sampling instants need to be carefully defined. In the present analysis, the samples are selected after the jump, \(v_{0}\left(t_{k}^{0}\right)=v_{0}\left(t_{k}^{0}+\right)\), such that the effect of ESR to the jump is included in the model.
\[
\begin{align*}
& \frac{d X^{*}\left(t_{k+1}^{0}\right)}{d \underline{X}^{*}\left(t_{k}^{0}\right)}=\frac{d \underline{X}^{*}\left(t_{k+1}^{0}\right)}{d X^{*}\left(t_{k 2}^{0}\right)} \frac{d X^{\star}\left(t_{k 2}^{0}\right)}{d \underline{X}^{\star}\left(t_{1+?}^{0}\right)} \frac{d X^{\star}\left(t_{k 1}^{0}\right)}{d X^{\star}\left(t_{k}^{0}\right)} \tag{10}\\
& \text {. - - for Mode } 2 \text { Operation } \\
& =\frac{d \underline{X} *\left(t_{k+1}^{0}\right)}{d \underline{X} *\left(\varepsilon_{k 1}^{\circ}\right)} \frac{d \underline{X} *\left(t_{k 1}^{\circ}\right)}{d \underline{X} *\left(t_{k}^{\circ}\right)} \tag{11}
\end{align*}
\]
TABLE II State transition matrices corresponding to the three time intervals:
\(0\left(T_{F 1}\right) \quad{ }^{2}\left(T_{F 2}\right) \quad\) and \(T_{F 2}\) :
TABLE III Linearizef state transition matrices.

Substituting (12-14) into (9), one can obtain
\[
\begin{equation*}
\frac{d x^{*}\left(t_{k+n}^{o}\right)}{d t_{k}^{x}}=\Phi^{n}\left(T_{p}\right) B \tag{15}
\end{equation*}
\]

The state transition matrices, \(\Phi 1\left(T_{F 1}^{\circ}\right), \Phi 2\left(T_{F 2}^{\circ}\right)\), and \(\Phi 3\left(T_{O N}\right)\) are presented in Table II. The derivations for these state transition matrices are striaght forward and are neglected in the text The explicit representations for \(\phi\left(T_{p}\right)\) and \(\phi^{n}\left(T_{p}\right)\) associated with each converter are given in Table III. The derivations for \(\phi^{n}\left(T_{p}\right)\) are presen-

The 1 nearized discrete impulse response is obtained by substituting (15) into (8)
\[
\begin{equation*}
g\left(n T_{p}\right)=C_{\phi}^{n}\left(T_{p}\right) B \tag{16}
\end{equation*}
\]

Table IV shows the discrete impulse response for each converter at each operation mode. It should be noted that the derivations for the discrete impulse response is based on a constant frequency duty cycle control. However, the result is equalconstant \(T\) and other types of control, such as constant \(T_{O N}\) and constant \(T_{O F F}\). This is because the switching frequency in the steady state operation can be considered constant as long as the

The steady state time intervals \(T_{O N}^{\circ}, T_{F}^{\circ}, T_{F 2}^{\circ}\) for constant \(O N\), constant \(O F F\) and constant frequency duty-cycle control are derived in Ref. 9.

TABLE IV Linearized discrete impulse response
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\(B=\left[\begin{array}{l}B_{11} \\ B_{21}\end{array}\right]=\left(F_{3}-F_{1}\right) \underline{x} *\left(t_{k}^{*}\right)+\left(G_{3}-G_{1}\right) \underline{U}\)} & \multirow[b]{2}{*}{\(c=\left[c_{11} c_{12}\right]\)} & \multicolumn{2}{|l|}{\(g\left(n T_{p}\right)=C \varepsilon^{n}\left(T_{p}\right) B\)} \\
\hline & & & \(\because \quad\) Mode 2 & Mode 1 \\
\hline 总 & \(\left[\begin{array}{ll}v_{1} & \\ L & 0\end{array}\right]^{T}\) & \(\left[\begin{array}{ll}R_{C} R_{L} \\ R_{C}+_{L} & \frac{R_{L}}{R_{C}^{+R_{L}}}\end{array}\right]\) & \[
\frac{c_{11} 1^{\phi} 1^{+C} 12^{\phi} 21}{11^{+\phi}} B_{11} e^{\left[-a+\frac{1}{T_{p}} \ln \left(\phi_{1} 1^{+\phi_{22}}\right)\right] n T_{p}}
\] & \(\mathrm{C}_{\underline{L}}\left(\mathrm{nT}_{\mathrm{p}}\right) \mathrm{B}\) \\
\hline 宕 & \(\left[\begin{array}{ll}v_{0} & -f_{21} I_{M}\end{array}\right]^{\top}\) & \(\left[\begin{array}{ll}R_{C} R_{L} & R_{L} \\ R_{c}{ }^{+R_{L}} & R_{c}{ }^{+R_{L}}\end{array}\right]\) & \(C_{12}\left(B_{11}{ }^{\phi_{21}}{ }_{22}+B_{21}\right) e^{\left[-a+\frac{1}{+}{ }_{p} \ln \psi_{22}\right] n T_{p}}\) & \\
\hline 気気品 & \(\left[\frac{v_{0}}{v_{S}}+\frac{v_{1}}{N_{p}}-f_{21}{ }^{\phi_{M}}\right]^{T}\) & & & \\
\hline
\end{tabular}

TABLE \(V\) Continuous impulse response－time domain and frequency domain．
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{MOOE 2} & \multicolumn{2}{|l|}{MODE 1} \\
\hline & time domain & FREQUENCY DOMAIN & time domain & frequency domain \\
\hline & Inpulse Response \(g(t)=6 e^{-a^{\prime} t}\) & \[
G(s)=z g(t)=\frac{f_{p}}{1+\frac{s}{1}} \frac{S_{p}}{U_{p}}
\] & \(g(t)=\mathrm{e}^{-\mathrm{at}}\left(k_{1} 5 \operatorname{tn} \omega t+k_{2} \cos \omega t\right)\) & \[
G_{(S)}=G_{p} \frac{1+\frac{s}{\omega_{d}}}{1+\frac{5}{\psi_{0}}+\frac{S^{2}}{\omega_{0}^{2}}}
\] \\
\hline 总 & & \[
\begin{aligned}
& \sigma_{p}=G^{\prime} a^{\prime} \\
& u_{p}=a^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& K_{1}=\frac{1}{\omega} \frac{\gamma^{2}}{C i} \square 1+\frac{R_{C}}{2 R_{L}}-\frac{R_{C} C^{2} C}{2 L} J V_{1} \\
& K_{2}=\frac{R_{C} Y^{Y}}{L} V_{1}
\end{aligned}
\] & \[
\begin{aligned}
& G_{p}=v_{1} \\
& \omega_{d}=\frac{1}{k_{c}^{C}} \\
& \omega_{0}=\sqrt{\frac{\gamma}{K C}} \\
& Q=\frac{1}{\omega_{0}} R_{C}^{C+L / R_{L}}
\end{aligned}
\] \\
\hline 砍 & \[
\begin{aligned}
& G=\gamma V_{I}\left[\left(1+\frac{T_{O N}}{F 1}\right) \frac{1}{\sqrt{L L}} \frac{\sin \omega T_{F 1}}{\cos \left(\omega T_{F 1}-\theta\right)}-\frac{\gamma}{L C} T_{O N}\right] \\
& a^{1}=\frac{\gamma}{R_{L} C}\left[1+\frac{1}{2}\left(-1+c_{\left[R_{C}\right.}^{R_{L}}\right) T_{F 1}^{T_{P}}\right]-\frac{1}{T_{P}} \ln \left[\frac{\gamma}{\omega \sqrt{L C}} \cos \left(\omega T_{F 1}-\theta\right)\right]
\end{aligned}
\] & \[
G_{p}=6 / a^{\prime}
\] & & \\
\hline 域 & & \[
\begin{aligned}
& G_{p}=G / a^{\prime} \\
& \omega_{p}=a^{\prime}
\end{aligned}
\] & & \\
\hline & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{Where \(D \otimes T_{0 N} / T_{P}, 0{ }^{0}{ }^{0} T_{F I} / T_{P}, 0=r\left(1+\frac{R_{C}}{R_{L} L^{r}}\right)\)} \\
\hline
\end{tabular}

\section*{2．3 Continuous Mode1s－Time Domain and Frequency Domain}

The linearized discrete impulse response \(g\left(n T_{p}\right)\) developed in the previous section charact－ erizes the small signal behavior of the converter exactly but only at discrete sampling instant． If one is willing to neglect the detail waveforms between samples and study the long range trend of the converter，an equivalent continuous linear im－ pulse response \(g(t)\) can be obtained simply by sub－ stituting \(t=n T_{p}\) into the expression for \(g\left(n T_{p}\right)\) in Table V．\([6,8]^{P}\) It is important to note that the discrete－to－continuous transformation is meaning－ ful only if the system response is much slower then the sampling rate．Otherwise，a significant phase delay can be introduced．Such a transformation
is made plausible，in the present analysis by the fact that every converter power stage inherently has a low－pass LC fi＂ter which largely attenuates the high frequency switching ripple；the natural resonant frequency of the output filter is usually designed to be \(1 / 15\) to \(1 / 20\) of the switching fre－ quency to achieve good output voltage regulation． The continuous linear impulse response \(g(t)\) so derived represents small signal low frequency characteristics of the converter up to one－half of the switching frequency．

The continuous impulse response functions \(g(t)\) and their corresponding frequency domain transfer functions \(G(S)\) are presented in Table \(V\) for both Mode 2 and Mode 1 Operations．The relations given in Table VI are employed to derive the final

TABLE VI Equations for inductor current (boost
converter). magnetic flux(buck/boost:converter). and output voltages at the sampling instant.

expressions for \(g(t)\) and \(G(S)\) in terms of known circuit parameters and the input voltage. It should be noted that the transfer functions for Mode 1 Operation are presented in the same form as those developed using averaging techniques shown in Table 1 of Ref. 1, so that comparisons betiveen corresponding models can be made conveniently later in the paper.

\section*{3. DISCUSSIONS}

\subsection*{3.1 Model Interpretations}

The discrete time donain modeling technique described in the previous sections provides a uniforil approach which covers both Mode 1 and Mode 2 Operations. Employing this uniform technique, the mathematical models derived for both Mode? and Node 2 therefore provide an ideal basis for comparitive studies. Conclusions of significant importance are drawn including the following:
- All three converter power stages behave as first-order systems in Mode 2, as contrary to second order systems in Mode
1. An abrupt transition of the transfer characteristic is shown when the inductor MMF emerges from Mode 1 to Mode 2 or vise versa.
- In Mode 2, the gain and the comer frequency are both furctions of the input voltage, the load, all power stage parameters, the switching frequency, and the time intervals \(T_{O N}\) and \(T_{F 1}\); while in Mode 1, the gain is only related to the input voltage \(V_{I}\) and the duty cycle ratio \(D^{\prime}\) Q \(T_{F 1} / T_{P}\) and the corner frequency is dominated by the output filter LC and the duty cycle ratio \(D^{\prime}\).
- The transfer functions for boost converter and buck/boost converter in Mode 1 contain a right-half-plane zero(\(\omega_{a}\)), if the following inequalities are satisfied
\[
\begin{align*}
& \left(\frac{L}{R_{L} D^{T 2}}+\frac{D}{2} T_{P}\right) \frac{R_{L}}{R_{L}+R_{C}}>\frac{R_{C}^{C}}{D^{T}} \text { for boost } \tag{17}\\
& \left(\frac{L_{S} D}{R_{L} D^{T C}}+\frac{D}{2} T_{P}\right) \frac{R_{L}}{R_{L}+R_{C}}>\frac{R_{C} C}{D^{\prime}} \text { for buck/boost } \tag{18}
\end{align*}
\]

The above inequalities are often satisfied in Mode \(I\) design. The positive zero will provide an additional \(90^{\circ}\) phase lag. It
is interesting to note that the positive zero is a function of the switching period \(T_{p}[7]\). The longer the switching period the smaller the positive zero -w, therefore, the effect of the additional phase lag begins at lower corner frequency. [7]
The above conclusions are only general remarks. Additional insights to the models will be provided in the following section where analysis and test results of a single-loop controlled buck converter operating at both Mode 1 and Mode 2 are presented.

\subsection*{3.2 Model Inprovements}

The frequency doma in transfer functions for Mode 1 Operation in the present analysis are compared with those developed using averaging technique by Wester et al., Table 1 of Ref. 1, with the following important conclusions. It should be noted that the single winding buck/boost converter presented in [1] is a special case of the tivo winding buck/boost when \(N_{p}=N_{3}\).
- The transfer functions for the buck converter derived from both analyses are identical.
- The power stage gain \(G_{p}\) and the natural resonant frequency \(\omega_{0}\) of boost and buck/ boost are about the same as those derived using averaging technique. The Q factors are smaller than those of the corresponding average models.
- The transfer functions for boost and buck/ boost have one positive zero and one negative zero in average models but only has one conditional positive zero in the present models.
- Tie positive zero for boost and buck/boost converters is a function of the switching frequency, while its counterpart is independent of the switching frequencid

For convenience, the transfer function of the boost converter derived from averaging technique is presented in the following:
\[
\begin{align*}
& G(s)=G_{P} \frac{\left(1+\frac{s}{\omega_{z}}\right)\left(1-\frac{s}{\omega_{a}}\right)}{1+\frac{\frac{s}{\omega_{0}}}{\omega_{0}}+\frac{\frac{s}{2}_{2}^{\omega_{0}^{2}}}{\omega_{0}}} \tag{19}\\
& \text { where } \\
& Q=\frac{1}{\omega_{0}}\left(C R_{C}+\frac{L}{R_{l} D^{\top}}\right)^{-1}, \omega_{a}=\frac{D^{12} R_{L}}{L}, \omega_{z}=\frac{1}{C R_{C}} \\
& G_{P}=V_{I} / D^{\prime 2} \quad \text { and } \quad \omega_{0}^{2}=\frac{1}{L C} \frac{D^{12} R_{L}}{R_{L}+R_{G}}
\end{align*}
\]

For comparison, the gain and phase plots of a boost converter derived from both the averaging technique and the present analysis are sketched in Fig. 6. The following numerical values are used:
\(T_{P}=10^{-4} \operatorname{secs}, L=6 \mathrm{nH}, C=41.7 \mathrm{f}, \mathrm{R}, \mathrm{R}_{\mathrm{L}}=60 \Omega\),
\(R_{C}=1 \Omega, V_{I}=60 \mathrm{~V}, V_{0}=30 \mathrm{~V}\).

Fig. 6 Frequency response for the boost converter pover stage frem the present malysis (solid curves) and from the average model(dotted curves)
Excellent agreements are shown between resul ts of these tive analytical approaches in the low frequency range, except a higher resonant peak is shown in the averupe mode I. [3] The differences of these two nlodels become significant: when the frequency is grenter than 1 kHz : the average model has laryer guin and phase angle. This is primarily due to the somewhat different. effects of the capacitor \(8 S R\) as results of the two different modeling techethues. Comparing (19) with the corresponding transfor function in Thble \(v\), a stronger contribution of ESR to the phase lead is shown in the average model due to the additional second-order term, \(-s^{*} /(\) mawz \()\), in the numerator, This may very well explain the reported diserepm ancy be tween averaying nodels and measurement data at high frequency. Take fig. 17 of Ref, 1 as an example, the measurememt data shows a less yatin and a smaller phase augle begtining at about \(1 / 10\) of the swi bshing frequency.

\section*{a. verifications}

A buck coiverter, represented by the block diugram in Fig. I, was designed to uperate in the continuous current model inder normal-tw-leavy load conditions and in the discontinuaus current mode at light load. The small signal block diagram of the converter is sham as Fty. 7. The compensation network is a lead-hat circutt having the following known transfer characteristic,
\[
\begin{equation*}
G_{\mathrm{C}}=103.31+f / 20,1+6 / 1925 \tag{20}
\end{equation*}
\]

The pulsewidth modulator as shown in Fig. 8, compares the error signal \(V_{e}(t)\) with a fixed ramp \(A(t)\).
\[
\begin{equation*}
A(t)=A_{0}\left(t-n T_{p}\right) . \quad n T_{p} \leq t \leq(n+1) T_{p} \tag{21}
\end{equation*}
\]

Where \(A_{0}=6.25 \times 10^{4}\) v/s is the slope of the rallus, The output of the PWM is a unity nulse train, with its pulse duration governed by (22).
\[
\begin{array}{ll}
d(t) \sim 1 & \text { if } A(t)=V_{e}(t) \tag{2a}\\
0 & \text { if } A(t) \geq V_{e}(t)
\end{array}
\]

Fig. 7 simplifled block diagrall for the buck converter.

Fig. 8 Waveforms for the pulseviath medulator.
The deseribind function of the gWM was derived in Ref. a; the grin of PUM is simply
\[
\begin{equation*}
k_{N}=\frac{1}{V_{p}} \tag{6}
\end{equation*}
\]

Wue to the circuit implementation there is a Bus delay from the signal \(d(t)\) to the nuver switch. For convenience this time delay is included in the pay functional block in Fig. \(\%\). The transfer function of the PWM is therefore represented as
\[
\begin{equation*}
G_{M}=A_{o}^{1} T_{P} e^{j w a t} \tag{4}
\end{equation*}
\]

The circuit paramaters used for the puver stage are listed: \(L=1 \mathrm{mh}, \mathrm{G}=455 \mathrm{mt}, R_{C}=0.034 \%\), \(R_{L}=150:, T_{P}=5014, V_{1}=40 \mathrm{~V}\), and \(V_{0}=20 \mathrm{~V}\).

Fitg. 9 shows the frequency response of the power stage together with the FUN in Mode 2 Operation. Results from hoth analysis and measurement are presented with excellent correlation. For compartsan, the analytical gain and phase of \(\mathrm{G}_{3} \mathrm{~m}^{6}\) for Node \({ }^{1}\), when \(R_{6}=6.672\), is also presented \({ }^{\prime}\) in Fig. 9 as dotted-line curves. It is evident that the converter hehaves as a first-order system in mode a in contrary to a second-order systen in mode 1. In made 2, since the phase lag of \(G, G\) is at most \(90^{\circ}\) and the corner froquency is usuatly low, only a gain compensation(an error amplifier) is needed to improves the tronstont response and to ensure the loop stability. The improvement of audiosusceptibility of the converter in mode? is due to the fact that the transfer function of the power stage is only first order wi th low corner freouency and no peaking effect.

It has been made evident in the analysis that an abrupt reduction of system order (a jump phenomenon) is shown when the inductor MFF energes from Mode 1 th Mode 2 or vise versa. This was verified by measuring the open-loop crossover frequency of the converter when the load is gradually reduced, The crossover frequency, as shown in Table VIL, remains unehanged as long as the converter is operating in Mode 1. When the load is reduced to approximately 90 to 100 ohims, the

\section*{DRIGINAL
OE ROOR QUALIS \\ ORIGINAL ane IS
OE ROOR QUALITX}

(c) \(1 / r_{p}{ }^{*} f_{p}(k H z)\)

(f) \(\mathrm{T}_{\mathrm{Fe}} \mathrm{T}_{\mathrm{p}}\)

Fig. 10. (A-F) The gain \(G\)
\(\omega_{p}\) of the buck converter in the corner frequency as functions of the following parameters plotted \(f_{P}, R_{L}, V_{I}\) and \(V_{0}\), respectively. stability becomes a trivial problem and the transont response is well damped rather than oscillo-
tory analysis also provides which the power stage po provides guidel ines upon and the switching frequency can can be designed achieve certaing frequency can be selected to performance specifications,
5. CONCLUSIONS
State space techniques are enployed to derive discrete models for buck, boost and buck/boost converters operating wi th and wi thout zerooutput linear divell time. The duty-cycle-toderived in closed forme-time-domain models are crete behavior of converters which describe the disbrium state exactiy. These discret their equilithen approximated by frequency domate models are functions representing frequency domain transfer istics of converters up to one-half of the switering frequency.

The power stage models are shown to be first order for all three converters shown to be first The contrary to second order wi thout the divell time, The analys is makes evident certain the divell time, of system behavior often observain abrupt changes board performance when the dwell in the breadThese include pronounced improvements timpears. margin, audio susceptibility and trans of stability ponse, from oscillatory to well transient resare presented to illustrate influmped. Graphs stage parameters, switching frequences, input
voltage, load, and the time intervals corresponding to the ON and OFF of the power switch to a buck converter with the dwell time. Foundation is laid for power stage design and trade-off evaluation for converter operating with and without zero-inductor-current dwe 11 time.

Evaluations of converter performance are also made between the present models and the corresponding average models, in continuous current operation. Certain improvements of the present models are shown in the high frequency range when the output-filter capacitor ESR begins to shape the gain and phase of their corresponding frequency responses.

The present analysis can be extended to include the input filter and second stage of the output filter which in many applications are the integral parts of the power processor.

\section*{APPENDIX A}

DERIVATIONS FOR \(\frac{d \underline{X} *\left(t_{k+1}{ }^{\circ}\right)}{d \underline{X}^{*}\left(t_{k}{ }^{\circ}\right)}\) and \(\frac{d \underline{X} *\left(t_{k}{ }^{0}\right)}{d t_{k}{ }^{*}}\)
A. 1 Derivations for \(\frac{d X^{*}\left(t_{k+1}{ }^{0}\right)}{d \underline{X}^{*}\left(t_{k}\right)}\)

Applying Chain Rule, one can express
\(\frac{d X^{\star}\left(t_{k+1}{ }^{\circ}\right)}{d \underline{X}^{\star}\left(t_{k}{ }^{\circ}\right)}=\frac{d \underline{X}^{\star}\left(t_{k+1}{ }^{\circ}\right)}{d \underline{X}^{\star}\left(t_{k 2^{\circ}}{ }^{\circ}\right)} \frac{d \underline{X}^{\star}\left(t_{k 2^{\circ}}\right)}{d X^{\star}\left(t_{k 1}\right)} \frac{d \underline{X}^{\star}\left(t_{k 1}{ }^{\circ}\right)}{d \underline{X}^{\star}\left(t_{k}{ }^{\circ}\right)}(A-1)\)
The derivations for each term on the right hand side of (A.1) is presented in the following:
\[
\text { (1) Computing } \frac{d X^{*}\left(t_{k+1}\right)}{d X^{*}\left(t_{k 2}\right)}
\]

Differentiate (7) in the main text \(\frac{d X^{\star}\left(t_{k+1}{ }^{0}\right)}{d X^{\star}\left(t_{k 2}{ }^{0}\right)}\)
\[
\begin{align*}
& =\$ 3\left(t_{k+1}{ }^{0}-t_{k 2^{*}}\right)\left[-F 3 X^{\star}\left(t_{k 2^{*}}\right) \frac{d t_{k 2^{*}}}{d X^{\star}\left(t_{k 2^{\circ}}\right)}\right. \\
& \left.+\frac{d X *\left(t_{k 2^{*}}\right)}{d X^{*}\left(t_{k 2}{ }^{0}\right)}\right]-\Phi 3\left(t_{k+1}{ }^{0}-t_{k 2^{*}}\right) G 3 V_{I} \frac{d t_{k 2^{*}}}{d X^{*}\left(t_{k 2}{ }^{\circ}\right)} \tag{A-2}
\end{align*}
\]

Consider the following state transition equation
\[
\begin{align*}
\underline{x}^{\star}\left(t_{k i}{ }^{*}\right)= & \Phi i\left(t_{k i^{*}-t_{k i}}\right) \underline{x}^{\star}\left(t_{k i}\right) \\
& +\int_{t_{k i}}^{t_{k i}^{*}} \phi i\left(t_{k i^{*}}-s\right) d S G i \cup \\
& 1=1,2,3 \tag{A-3}
\end{align*}
\]

Differentiate \(\underline{X}^{*}\left(t_{k j}{ }^{*}\right)\) with respect to \(\underline{X}^{*}\left(t_{k i}{ }^{\circ}\right)\) \(\frac{d X *\left(t_{k i} i^{*}\right)}{d X *\left(t_{k i}\right)}=\Phi i\left(t_{k i}{ }^{*}-t_{k i}{ }^{\circ}\right)+\frac{d \Phi i\left(t_{k i}{ }^{*}-t_{k i}{ }^{\circ}\right)}{d t_{k i}{ }^{\star}} \underline{X}^{*}\left(t_{k i}{ }^{\circ}\right)\)
\[
\left.\frac{d t_{k i}{ }^{*}}{d X^{\star}\left(t_{k i}\right.}+\Phi i\left(t_{k i^{*}-t_{k i}}\right) G i \underline{U} \frac{d t_{k i}{ }^{*}}{d X^{\star}\left(t_{k i}\right.}\right)
\]

For small disturbance about equilibrium
\[
\begin{aligned}
& \quad \Phi i\left(t_{k i}^{*}-t_{k i}\right)=I \\
& \left.\frac{d X^{\star}\left(t_{k i}{ }^{\star}\right)}{d X^{\star}\left(t_{k i}{ }^{\circ}\right)}=I+\left[F_{i} \underline{X}^{\star}\left(t_{k i}^{0}\right)+G_{i} \underline{U}\right] \frac{d t_{k i}^{*}}{d X^{\star}\left(t_{k i}\right.}\right) \\
& \text { Since the clock signal initiate the turn on } \\
& \text { of the power transistor }
\end{aligned}
\]
\[
\begin{equation*}
\frac{d t_{k 2^{*}}}{d x^{*}\left(t_{k 2}\right)} \equiv 0 \tag{A-5}
\end{equation*}
\]

Substituting (\(A-4\)) and (\(A-5\)) into (\(A-2\))
\[
\begin{equation*}
\frac{d X^{*}\left(t_{k+1}{ }^{\circ}\right)}{d \underline{X}^{\star}\left(t_{k 2}^{0}\right)}=\Phi 3\left(t_{k+1}^{0}-t_{k 2^{*}}\right) \approx \Phi 3\left(T_{O N}{ }^{\circ}\right) \tag{A-6}
\end{equation*}
\]
(2) Computing \(\frac{d X^{*}\left(t_{k 2}{ }^{\circ}\right)}{\left.d \underline{X} *\left(t_{k l}\right]^{\circ}\right)}\)

Differentiating equation (6) in the main text, and substituting (A-4) into the result, one can obtain

In the vicinity of \(t_{k l}{ }^{\circ}\), consider the following equation:
\[
\begin{align*}
\left.\underline{X}^{\star}\left(t_{k 1}\right]^{\star}\right)= & \Phi 1\left(t_{\left.k 1^{*}-t_{k 1}{ }^{0}\right) \underline{X}^{\star}\left(t_{k 1^{0}}\right)}\right. \\
& +\int_{t_{k 1}}^{t_{k 1}}{ }^{\star} \Phi 1\left(t_{k l^{*}}-s\right) G 1 \underline{U} d S \tag{A-8}
\end{align*}
\]

At \(t=t_{k l}{ }^{*}\) the inductor MMF is equal to zero
\[
\begin{equation*}
\operatorname{cl} \underline{x}^{\star}\left(t_{k} 1^{*}\right)=0 \tag{A-9}
\end{equation*}
\]
where
\[
C 1=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\]

Differentiating (A-9) with respect to \(\underline{X}^{*}\left(t_{k 1}{ }^{\circ}\right)\)
\[
\left.c]\left[\frac{\partial X^{\star}\left(t_{k 1^{*}}\right)}{\partial t_{k 1^{*}}} \frac{d t_{k 1^{*}}}{d \underline{X}^{\star}\left(t_{k 1}\right.}\right)^{+}+\frac{\partial \underline{X}^{\star}\left(t_{k 1^{*}}\right)}{\partial \underline{X}^{\star}\left(t_{k 1}\right)}\right]=0
\]
therefore
\[
\frac{d t_{k 1}^{*}}{d X^{*}\left(t_{k 1}\right)}
\]
\[
\frac{-\operatorname{cl} \Phi 1\left(t_{k} 1^{\star}-t_{k 1} 0^{\circ}\right)}{01 v * 1 t}
\]
\(=\overline{\left.C T[F] \Phi 1\left(t_{k l^{*}-t_{k 1}}\right)^{-}\right)^{\star}\left(t_{k 1}{ }^{0}\right)+\Phi 1\left(t_{k l^{\star}-t_{k 1}}\right) G 1 \text { UT }}\)

If the perturbance is very small,
\[
\begin{equation*}
\frac{d t_{k 1}}{d X^{*}\left(t_{k 1}^{0}\right)}=\frac{-\mathrm{Cl}}{\left.\left.\left.C 1[F] \underline{X}^{*}\left(t_{k 1}\right)^{0}\right)+G\right] \underline{U}\right]} \tag{A-11}
\end{equation*}
\]

Substituting (\(A-11\)) into (\(A-7\)), one can obtain
\[
\begin{align*}
& \frac{d \underline{X}^{*}\left(t_{k 2}{ }^{0}\right)}{d \underline{X}^{*}\left(t_{k 1}{ }^{\circ}\right)}=\Phi\left(t_{k 2}{ }^{0}-t_{k 1^{*}}\right)\left\{I+\left[(F 1-F 2) \underline{X}^{*}\left(t_{k 1}{ }^{0}\right)\right.\right. \\
& \left.+(G 1-G 2) \underline{U}] \frac{d t_{k 1}{ }^{\star}}{d X^{\star}\left(t_{k 1}\right)}\right\} \tag{A-7}
\end{align*}
\]
\[
\begin{align*}
\frac{d X^{\star}\left(t_{k 2}{ }^{\circ}\right)}{d \underline{X}^{\star}\left(t_{k 1}\right)^{0}} & =\Phi 2\left(T_{F 2}\right)\left\{I+\left[(F 1-F 2) \underline{X}^{\star}\left(t_{k 1}{ }^{\circ}\right)\right.\right. \\
& \left.+(G 1-G 2) \underline{U}] \frac{-C 1}{C T\left[F 1 \underline{X}^{\star}\left(t_{k 1}{ }^{0}\right)+G 1 \underline{U}\right]}\right\} \tag{A-12}
\end{align*}
\]

For small signal disturbances, the following expression can be simplified, for all converters.
\[
\begin{align*}
& I+\left[(F 1-F 2) \underline{X}^{\star}\left(t_{k 1}{ }^{0}\right)+(G 1-G 2) \underline{U}\right] \frac{-C 1}{C 1 F 1 \underline{X}^{*}\left(t_{k 1}{ }^{0}\right)+G 1 \underline{U}} \\
& =I-\left[(F 1-F 2)\left[\begin{array}{l}
0 \\
V_{V}
\end{array}\right]+(G 1-G 2) \underline{U}\right] \mathrm{Cl} /\left[\mathrm{ClF}\left[\begin{array}{l}
0 \\
V_{0}
\end{array}\right]\right. \\
& +G 1 \underline{U}]=\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right] \tag{A-13}
\end{align*}
\]
(3) Computing \(\frac{d X^{\star}\left(t_{k 1}{ }^{0}\right)}{d \underline{X}^{*}\left(t_{k}^{0}\right)}\)

Differentiating equation (5) in the main text and and substituting (A-4) into it, one can obtain
\[
\begin{align*}
& \frac{d X^{\star}\left(t_{k 1}{ }^{0}\right)}{d \underline{X}^{\star}\left(t_{k}{ }^{0}\right)}=\Phi 7\left(t_{k 1}^{0}-t_{k}^{*}\right)\left\{\left[(F 3-F 1) \underline{X}^{\star}\left(t_{k^{*}}{ }^{\star}\right)+(\dot{G} 3-G 7) \underline{U}\right]\right. \\
& \left.x \frac{d t_{k}{ }^{*}}{d X^{*}\left(t_{k}\right)}+I\right\}=\phi 1\left(T_{F l}{ }^{0}\right) \tag{A-14}
\end{align*}
\]
where \(\frac{d t_{k}^{*}}{d \underline{k}^{*}\left(t_{k}{ }^{\sigma}\right)}=0\), since the duty cycle disturbance is determined by the control loop.
A. 2 Derivations for \(\frac{d X^{*}\left(t_{k}{ }^{\circ}\right)}{d t_{k}^{*}}\)

In the neighborhood of \(t_{k}{ }^{0}\), one can express
\[
\begin{aligned}
\underline{X}^{*}\left(t_{k}{ }^{0}\right)= & \Phi 1\left(t_{k}^{0}-t_{k}{ }^{*}\right) \underline{x^{*}}\left(t_{k}{ }^{*}\right) \\
& +\Phi 1\left(t_{k}^{0}\right) \int_{t_{k}^{*}}^{t_{k}^{0}} \Phi 1(-S) d S G 1 U(A-15)
\end{aligned}
\]

Differentiate (A-15) with respect to \(t_{k}^{*}\),
\[
\begin{align*}
\frac{d X^{\star}\left(t_{k} 1^{0}\right)}{d t_{k}^{*}}= & \$ 1\left(t_{k}{ }^{0}-t_{k}^{*}\right) \frac{d X^{*}\left(t_{k}^{*}\right)}{d t_{k}^{*}} \\
& -F 1 \Phi 1\left(t_{k}{ }^{\circ}-t_{k}{ }^{*}\right) \underline{X}^{\star}\left(t_{k}^{*}\right) \\
& -\Phi 1\left(t_{k}^{\circ}-t_{k}^{*}\right) G 1 \underline{U}=(F 3-F 1) \underline{X}^{\bullet}\left(t_{k} \bullet\right) \\
& +(G 3-G 1) \underline{U} \tag{A-16}
\end{align*}
\]

\section*{APPENDIX B}

DERIVATIONS FOR \(\phi^{n}\left(T_{p}\right)\)
Matrices \(\phi^{n}\left(T_{p}\right)\) are derived for buck, boost, and buck/boost converters in both Mode 1 and Mode 2 operations.

\section*{B. 1 Mode 2 Operation}

The expressions for \(\phi^{n}\left(T_{p}\right)\), of the three converters are derived individually.
(1) Buck Converter

Referring to Table III
\[
\Phi\left(T_{P}\right)=e^{-a T_{P}}\left[\begin{array}{ll}
\phi_{11} & \Phi_{12} \tag{B-7}\\
\Phi_{21} & \Phi_{22}
\end{array}\right]
\]
since \(\quad \Phi_{11} \Phi_{22}-\Phi_{12}{ }^{\Phi_{21}}=0\)
One can express
\[
\begin{equation*}
\left[\phi\left(T_{p}\right)\right]^{2}=e^{-a T_{p}}\left(\Phi_{11}+\Phi_{22}\right) \phi\left(T_{p}\right) \tag{B-3}
\end{equation*}
\]

The following result is obtained by mathematical induction:
\[
\left[\phi\left(T_{p}\right)\right]^{n}=e^{-(n-1) a T_{p}}\left(\Phi_{1} 1^{+\phi_{2}}\right)^{n-1_{\Phi}}\left(T_{p}\right)(B-4)
\]
(2) Boost Converter and Buck/Boost Converter

It is shown in Table III that the expression \(\phi^{n}\left(T_{p}\right)\) for the boost converter and buck/boost converter is a special case of buck converter where \({ }_{11}=\Phi_{12}=0\). Therefore, it is straight forward to show that

\section*{B. 2 Mode 1 Operation}
(1) Buck Converter

Since \(F 3=F 1\) for the buck converter, it is obvious that
\(\Phi\left(T_{P}\right)=\Phi 3\left(T_{O N}\right) \Phi 1\left(T_{F l}\right)=e^{F 1\left(T_{O N}+T_{F 1}\right)=e^{F l} T_{P}(B-6), ~(D)}\)
and \(\quad \Phi^{n}\left(T_{p}\right)=e^{F l\left(n T_{p}\right)}\)
(2) Boost Converter and Buck/Boost Converter By definition \(\phi\left(T_{p}\right) \triangleq e^{F 3 T_{O N}} e^{F 1 T_{F}}\)
Applying Baker-Campbel1-Hausdorff Series [10], which says
\[
\begin{equation*}
e^{A} e^{B}=e^{C} \tag{B-9}
\end{equation*}
\]
where
\[
C=A+B+\frac{1}{2}(A B-B A)+\text { higher order terms }(B-10)
\]

Employing the first two ternis of (\(B-10\)), one can approximate (\(8-8\)) by
\[
\begin{align*}
\Phi\left(T_{P}\right) \triangleq e^{F T P} & =e^{F 3 T_{O N}+F 1 T_{F I}+\left(F 3 T_{O N}\right)\left(F 1 T_{F T}\right)} \\
& -\left(F 1 T_{F T}\right)\left(F 3 T_{O N}\right) \tag{B-11}
\end{align*}
\]

Applying Table I of the main text, one can express
\[
F T_{p}=\left[\begin{array}{lc}
f_{11} D^{\prime} & f_{12} D^{\prime}\left(1-f_{22} T_{0 N}\right) \\
f_{21^{\prime}} D^{\prime}\left(1+f_{22} T_{0 N}\right) & f_{22}
\end{array} T_{P}(B-12)\right.
\]

Since the following inequality is always true
\[
\left|f_{22} T_{O N}\right|=\frac{T_{O N}}{C\left(R_{C}+R_{L}\right)} \ll 1
\]
equation (\(B-12\)) can be simplified by
\[
F T_{p}=\left[\begin{array}{ll}
f_{11} D^{\prime} & f_{12} D^{\prime} \tag{B-13}\\
f_{21} D^{\prime} & f_{22}
\end{array}\right] T_{5}
\]

Therefore
\[
\begin{equation*}
\phi^{n}\left(T_{p}\right)=e^{F n T_{p}}=\phi\left(n T_{p}\right) \tag{B-14}
\end{equation*}
\]

\section*{REFERENCES}
[1] G.W.Wester, R.Q.Middlebrook, "Low-Frequency Characterization of Switched DC-DC Converters," IEEE Trans. Aerospace and Electronic Systems, Vo1. AES-9, May 1973, pp. 376-385. [2] G.W.Wester, "Linearized Stability Analysis and Design of a Flyback DC-DC Boost Converter, "IEEE Power Electronics Specialists Conference, Record, June 1973, pp. 130-137.
[3] R.D.Middlebrook, "Continuous Model for the
[3] Tapped-Inductor' Boost Converter," IEEE Power Electronics Specialists Conference,
[4] Record, June 1975, pp. 63-79. Cells, Development of a Continuous
[4] Record, June 1975, pp. 63-79. B . Wells, "Developnent of a Continuous Linear Model for DC-to-DC Flyback Converter," IEEE Work Shop on Applied Magnetics, Proceeding, May 1972.
[5] F.E.Lukens, "Linearization of the Pulse
[5] Width Modulated Converter," IEEE Power Electronics Specialists Conference, Record, June 1974, pp. 265-273.
[6] R.Prajoux, J.C.Marpinard and J.Jalade, "Accurate Mathematical Modeling of PWM Power Regulators," NASA Technical Translation, NASA TTF-15947, Sept. 1974.
[7] A.Cape1, J.G.Ferrante, and R.Pajoux, "State Variable Stability Analysis of Multi-loop PWM Controlled DC/DC Regulators in Light and Heavy Mode," IEEE Power Electronics Specialists Conference, Record, June 1975, pp. 91-103.
[8] B.C.Kuo, "Analysis and Synthesis of SampledData Control Systems," Book, Prentice-Hall Inc., N.J., Chapter 4.
[9] D.Y.Chen, H.A.Owen, Jr., and T.G.Wilson, "Computer-Aided Design and Graphics Applied to the Study of Inductor-Energy-Storage DC-toDC Electronic Power Converters," IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-9, No. 4, July 1973, pp. 585-597.
[10] R.Beliman, "Perturbation Techniques in Mathematics, Physics, and Engineering," Book, Holt, Rinehart and Winston, Inc., pp. 38-39.

\section*{7} -

\section*{G. 1 SYSTEM EQUATIONS}

The circuit diagram of the boost regulator has been given in Figure 22 in the main text. The system is of th order. The following variables are chosen:
\(v_{C}=\) the voltage across the output capacitor \(C_{0}\)
\(\mathbf{i}=\) the current through the energy storage inductor \(L_{o}\)
\(\begin{aligned} & e_{R}= \text { the voltage at the } R_{5} C_{2} \text { compensation network as shown in } \\ & \text { Fig. } 1\end{aligned}\)
\(e_{C}=\) the integrator output voltage.
Two dummy variables \(e_{i}, i_{D}\) are introduced to represent nonlinear characteristics of the system.

The system equations are, in the power stage,
\[
\begin{align*}
& \frac{d v_{c}}{d t}=-\frac{1}{C_{0}} \frac{1}{R_{S}+R_{L}} v_{C}+\frac{1}{C_{0}} \frac{R_{L}}{R_{S}+R_{L}} i_{D} \tag{GI}\\
& \frac{d i}{d t}=\left(-R_{0} i-e_{i}+E_{I}\right) \frac{1}{L_{0}} \tag{G2}
\end{align*}
\]
in the control loops,
\[
\begin{align*}
\frac{d e_{R}}{d t}= & \frac{1}{C_{2} R_{5}} \frac{R_{L}}{R_{S}+R_{L}} v_{C}+\frac{1}{C_{2} R_{5}} \frac{R_{S} R_{L}}{R_{S}+R_{L}} i_{D}-\frac{1}{C_{2} R_{5}} e_{R} \tag{GB}\\
\frac{d e_{C}}{d t}= & \left(-\frac{1}{C_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}-\frac{1}{C_{1} R_{5}}\right) \frac{R_{L}}{R_{S}+R_{L}} v_{C}+\frac{n R_{0}}{C_{1} R_{4}} i \\
& +\left(-\frac{1}{C_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}-\frac{1}{C_{1} R_{5}} \frac{R_{L}}{R_{S}+R_{L}}\right) \frac{R_{S} R_{L}}{R_{S}+R_{L}} i_{D} \\
& +\frac{1}{C_{1} R_{5}} e_{R}+\frac{n}{C_{1} R_{4}} e_{i}-\frac{n}{C_{1} R_{4}} E_{I}+\frac{1}{C_{1} R_{3}} E_{R} \tag{GA}
\end{align*}
\]

The output voltage \(e_{0}\) (not a variable of the system)
\[
\begin{equation*}
e_{0}=\frac{R_{S} R_{L}}{R_{S}+R_{L}} i_{D}+\frac{R_{L}}{R_{S}+R_{L}} v_{C} \tag{GS}
\end{equation*}
\]

\section*{G. 2 DIFFERENTIAL-DIFFERENCE EQUATIONS}

Since the power transistor and the diode are served as switches Sl and S2, three possible modes of operation are presented:
(1) \(\mathrm{SI}: \mathrm{ON}\)

S2: OFF the power transistor is \(O N\) and the diode is OFF,
(2) \(\begin{aligned} & \mathrm{S} 1: 0 \mathrm{OF} \\ & \mathrm{S} 2: 0 \mathrm{~N}\end{aligned}\) \} the power transistor is OFF and the diode is ON ,
(3) S1:0FF S2:OFF the power transistor and the diode are both OFF.

The system is designed to operate in these three modes in the steady state operation, However, during transient, the system may operate in mode 1 and mode 2 only.

The time intervals during mode 1 , mode 2, and mode 3 operation are assigned as \(t_{O N}, T_{O F F}{ }^{\prime}\), and \(t_{O F F}{ }^{\prime \prime}\), respectively. In these three modes of operation, dummy variables \(e_{j}\) and \(i_{D}\) are assigned to different variables. The waveform of \(e_{i}\) is shown in Fig. 2.

System equations (G1 to G4) can be rewritten in the form of state equations.

Let
\[
\begin{array}{ll}
x_{1} \triangleq v_{C} & u_{1}=E_{I} \\
x_{2} \triangleq i & u_{2}=E_{R} \\
x_{3} \triangleq e_{R} & u_{3}=E_{Q} \\
x_{4} \triangleq e_{C} & u_{4}=E_{D}
\end{array}
\]

ORIGINAL PAGE Is
OF POOR QUALITY
(1) During \(t_{O N}, S 1: O N, S 2: 0 \mathrm{FF}\)
\[
\begin{aligned}
& e_{i}=E_{0} \\
& i_{D}=0 \\
& \dot{x}_{1}=-\frac{1}{C_{0}\left(R_{S}+R_{L}\right)} x_{1} \\
& \dot{x}_{2}=-\frac{R_{0}}{L_{0}} x_{2}+\frac{1}{L_{0}} u_{1}-\frac{1}{L_{0}} u_{3} \\
& \dot{x}_{3}=\frac{1}{C_{2} R_{5}} \frac{R_{L}}{R_{S}+R_{L}} x_{1}-\frac{1}{C_{2} R_{5}} x_{3}
\end{aligned}
\]
\[
\begin{aligned}
\dot{x}_{4} & =\frac{R_{L}}{R_{S}+R_{L}}\left(-\frac{1}{C_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}-\frac{1}{C_{1} R_{5}}\right) x_{1}+\frac{n R_{0}}{C_{1} R_{4}} x_{2} \\
& +\frac{1}{C_{1} R_{5}} x_{3}-\frac{n}{C_{1} R_{4}} u_{1}+\frac{1}{C_{1} R_{3}} u_{2}+\frac{n}{C_{1} R_{4}} u_{3}
\end{aligned}
\]
(2) During \(T_{F 1}\), S1:0FF, S2:ON
\[
\begin{aligned}
e_{i}= & E_{D}+\frac{R_{L}}{R_{S}+R_{L}} v_{C}+\frac{R_{S} R_{L}}{R_{S}+R_{L}} i \\
i_{D}= & i \\
\dot{x}_{1}= & -\frac{1}{C_{0}\left(R_{S}+R_{L}\right)} x_{1}+\frac{1}{C_{0}} \frac{R_{L}}{R_{S}+R_{L}} x_{2} \\
\dot{x}_{2}= & -\frac{R_{L}}{L_{0}\left(R_{S}+R_{L}\right)} x_{1}-\left(R_{0}+\frac{R_{S} R_{L}}{R_{S}+R_{L}}\right) \frac{1}{L_{0}} x_{2}+\frac{1}{L_{0}} u_{1} \\
& -\frac{1}{L_{0}} u_{4} \\
\dot{x}_{3}= & \frac{1}{C_{2} R_{5}} \frac{R_{L}}{R_{S}+R_{L}} x_{1}+\frac{1}{C_{2} R_{5}} \frac{R_{S} R_{L}}{R_{S}+R_{L}} x_{2}-\frac{1}{C_{2} R_{5}} x_{3} \\
\dot{x}_{4}= & -\left(\frac{1}{C_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}+\frac{1}{C_{1} R_{5}}-\frac{n}{C_{1} R_{4}}\right) \frac{R_{L}}{R_{S}+R_{L}} x_{1} \\
& +\left[\frac{n R_{0}}{C_{1} R_{3}}-\left(\frac{1}{C_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}+\frac{1}{C_{1} R_{5}}-\frac{n}{C_{1} R_{4}}\right) \frac{R_{S} R_{L}}{R_{S}+R_{L}}\right] x_{2} \\
& +\frac{1}{C_{1} R_{5}} \times 3-\frac{n}{C_{1} R_{4}} u_{1}+\frac{1}{C_{1} R_{3}} u_{2}+\frac{n}{C_{1} R_{4}} u_{4}
\end{aligned}
\]
(3) During \(T_{F 2}, S 1: 0 \mathrm{FF}, \mathrm{S} 2: 0 \mathrm{FF}\)
\[
\begin{aligned}
& e_{i}=E_{I} \\
& i_{D}=i=0 \\
& \dot{x}_{1}=-\frac{1}{C_{0}} \frac{1}{R_{S}+R_{L}} x_{1} \\
& \dot{x}_{2}=0 \\
& \dot{x}_{3}=\frac{1}{C_{2} R_{5}} \frac{R_{L}}{R_{S}+R_{L}} x_{1}-\frac{1}{C_{2} R_{5}} x_{3}
\end{aligned}
\]
\[
\begin{equation*}
\dot{x}_{4}=\left(-\frac{1}{c_{1} R_{3}} \frac{R_{2}}{R_{1}+R_{2}}-\frac{1}{c_{1} R_{5}}\right) \frac{R_{L}}{R_{5} R_{L}} x_{1}+\frac{1}{c_{1} R_{5}} x_{3}+\frac{1}{c_{1} R_{3}} u_{2} \tag{9-3}
\end{equation*}
\]

The output voltage, equation (5), can be written in the same pattern
(1) During \(t_{O N}\)
\[
e_{0}=\frac{R_{L}}{R_{S}+R_{L}} x_{1}
\]
(2) During \(\mathrm{t}_{0 \mathrm{FF}}\) '
\[
e_{0}=\frac{R_{L}}{R_{S}+R_{L}} x_{1}+\frac{R_{S} R_{L}}{R_{S}+R_{L}} x_{2}
\]
(3) During \(t_{0 F F}{ }^{\prime \prime}\)
\[
e_{0}=\frac{R_{L}}{R_{S}+R_{L}} x_{1}
\]

The above system equations can be written in the following compact forms
(1) During \(t_{O N}\)
\[
\begin{align*}
& \underline{\dot{x}}=F 1 \underline{x}+G 1 \underline{u} \tag{G6}\\
& e_{0}=\frac{R_{L}}{R_{S}+R_{L}} x_{1}
\end{align*}
\]
(2) During \(T_{F 1}\)
\[
\begin{align*}
& \underline{\dot{x}}=F 2 \underline{x}+G 2 \underline{u} \tag{G7}\\
& e_{0}=\frac{R_{L}}{R_{S}+R_{L}} x_{1}+\frac{R_{S} R_{L}}{R_{S}+R_{L}} x_{2}
\end{align*}
\]
\[
\begin{align*}
& \underline{\dot{x}}=F 3 \underline{x}+G 3 \underline{u} \\
& e_{0}=\frac{R_{L}}{R_{S}+R_{L}} x_{1}
\end{align*}
\]
where F1, F2, F3, G1, G2, and G3 are (\(4 \times 4\)) matrices
\[
\begin{aligned}
& \dot{\dot{x}}=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right] \quad, \quad \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& \underline{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]
\end{aligned}
\]

\subsection*{3.2 Discrete Time Model}

The solution of a linear system equation of the form
\[
\begin{equation*}
\underline{\dot{x}}=F \underline{x}+G \underline{u} \tag{G9}
\end{equation*}
\]
is
\[
\begin{equation*}
\underline{x}(t)=e^{\left(t-t_{0}\right) F} \underline{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{(t-\tau) F} G \underline{u} d \tau \tag{G10}
\end{equation*}
\]
where \(t_{0}\) is the initial time and \(\underline{x}\left(t_{0}\right)\) is the initial state. The solution (G10) can be generarized so that the state at \(t=t_{k}+T\) can be represented by the state at \(t=t_{k}\) and the time increment \(T\).
\[
\begin{equation*}
\underline{x}\left(t_{k}+T\right)=e^{F T} \underline{x}\left(t_{k}\right)+e^{F T}\left[\int_{0}^{T} e^{-F S} d s\right] G \underline{u} \tag{G11}
\end{equation*}
\]

Define the following matrices:
\[
\begin{align*}
& \Phi(T)=e^{F T} \text { (state transition matrix) } \tag{G12}\\
& B(T)=e^{F T} \int_{0}^{T} e^{-F S_{d s}} \tag{G13}\\
& D(T)=B(T) G \text { (input matrix) } \tag{G14}
\end{align*}
\]

Then, equation (G11) becomes
\[
\begin{equation*}
\underline{x}\left(t_{k}+T\right)=\phi(T) \underline{x}\left(t_{k}\right)+v(T) u \tag{G15}
\end{equation*}
\]

The system equations (G6) to (G8) have the following close form equations.
\[
\begin{align*}
& \underline{x}\left(t_{1}^{K}\right)=\underline{x}\left(t_{K}+T_{1}^{K}\right)=\Phi_{1}\left(T_{1}^{K}\right) \underline{x}\left(t_{K}\right)+D_{1}\left(T_{1}^{K}\right) \underline{u} \tag{G16}\\
& \underline{x}\left(t_{2}^{K}\right)=\underline{x}\left(t_{1}^{K}+T_{2}^{K}\right)=\Phi_{2}\left(T_{2}^{K}\right) \underline{x}\left(t_{1}^{K}\right)+D_{2}\left(T_{2}^{K}\right) \underline{u} \tag{G17}\\
& \underline{x}\left(t_{K+1}\right)=\underline{x}\left(t_{2}^{K}+T_{3}^{K}\right)=\Phi_{3}\left(T_{3}^{K}\right) \underline{x}\left(t_{2}^{K}\right)+D_{3}\left(T_{3}^{K}\right) \underline{u} \tag{G18}
\end{align*}
\]
where the state transition matrices \(\Phi_{i}\) are
\[
\begin{equation*}
\Phi_{i}(T)=e^{F_{i} T} \quad i=1,2,3 \tag{G19}
\end{equation*}
\]
and the input matrices \(D_{i}\) are
\[
\begin{equation*}
D_{i}(T)=e^{F_{i} T}\left[\int_{0}^{T} e^{\left.-F_{i} S_{d s}\right] G_{i} \quad i=1,2,3, ~}\right. \tag{G20}
\end{equation*}
\]

The nonlinear discrete time system that describes the converter behavior exactly, can now be obtained by combining the closed form solutions (G16) to (G18):
\[
\begin{aligned}
& \text { tions (G16) to (G18): } \\
& \begin{aligned}
\underline{x}\left(t_{K+1}\right)= & \Phi_{3}\left(T_{3}^{K}\right)\left\{\Phi_{2}\left(T_{2}^{K}\right)\left[\Phi_{1}\left(T_{1}^{K}\right) \underline{x}\left(t_{K}\right)+D_{1}\left(T_{1}^{K}\right) \underline{u}\right]\right. \\
& \left.+D_{2}\left(T_{2}^{K}\right) \underline{u}\right\}+D_{3}\left(T_{3}^{K}\right) \underline{u}
\end{aligned}
\end{aligned}
\]
which can be written in the short form as
\[
\underline{x}\left(t_{K+1}\right)=f\left(\underline{x}\left(t_{K}\right), T_{1}^{K}, T_{2}^{K}, T_{3}^{K}, \underline{u}\right)
\]

The time period \(T_{1}^{K}\) is a function of the current system stage \(x\left(t_{K}\right)\), the threshold condition, or the peak current limitor, or \(T_{O F F}\), min control. The time period \(T_{2}^{K}\) is a function of the current system state \(\underline{x}\left(t_{1}^{K}\right)\), the inductor current, or the period of oscillation. The time period \(T_{3}^{K}\), is a function of \(T_{1}^{K}, T_{2}^{K}\) and the period of oscillation.

\section*{APPENDIX H}

FLOW CHART OF THE SIMULATION PROGRAM

BEGIN

Preset Data Input. Namelist Input Override. Rewind Output Tapes.

Initialize Circuit Parameters \(K_{d}\), \(n\). Set-up Matrices F, F2, G. Initialize Mdre Parameter Constants Needed in STSTEP. \(n_{S W}=0\).

IEEE Power Electronics Specialiata Conference, NASA Lewis Research Center, Cleveland, Ohio, June 8-10, 1976

A GENERAL UNIFIED APPROACH TO MODELLING SWITCIING-CONVERTER POWER STAGES
R. D. Middlebrook and Slobodan Cuk
M.S 116-81

California Institute of Technology Pasadena, California

91125

\section*{ABSTRACT}

A wethod for modelling switching-converter power stages is developed, whose starting point Is the unified state-space representation of the suitched networks and whose end rasult is either a complete state-space description or its equivalent mall-signal low-frequency linear circuit model.

A new canonical circuit model is proposed those fixed topology contains all the essential inputroutput and control properties of any dc-tode swhtching converter, regardless of its detailed configuration, and by which different converters can be characterized in the form of a cable conveniently stored in a computer data bank to provide useful tool for computer alded design and optimization. The new canonical circuit model predicts that, in general, switching action introduces both zeros and poles into the duty ratio to output transfer function in addition to those from the effective filter network.

\section*{1. Introduction}

\subsection*{1.1 Brief Review of Existing Modelling Techniques}

In modelling of switching converters in general, and power stages in particular, two main approaches - one based on state-space modelling and the other using an averaging technique - have been developed extensively, but there has been litcle correlation between them. The first approach remains strictly in the domain of equation manipulacions, and hence relles heavily on numerical methods and computerized implementations. Its primary dvantage is in the unified description of all power stages regardless of the type (buck, boost. buck-boost or any other variation) through utilization of the exact state-space equations of the two switched models. On the other hand, the approach using an averaging cechnique ia
This work was supported by Subcontract No. A72042RHBE frow TRW Systems Group, under NASA Prime Contract NAS3-19690 "Modeling and Analysis of Pouer Processing Systems."
based on equivelent circuit manipulations, resulting in a single equivalenc linaar circult model of the power stage. This has the distinct advantage of providing the circuic designer witi physical insight into the behaviour of the original switched circuit, and of allowing the powerful tools of Inear circuit analysis and synthesiz \(t\), be used to the fullest excent in design of regulitors incorporating switching converters.

\subsection*{1.2 Proposed New State-Space Averaging Approach}

The method proposed in this paper bridges the gap earller considered to exist between the statespace technique and the averaging technique of modelling power stages ty introduction of starespace averaged modeliling. At the same time it offers the advantages of boch exiscing methods the general unified treatment of the state-space approach, as well as an equivalent linear circuit model as its final result. Furthermore, it makes certain generalizations possible, which otherwise could not be achfeved.

The proposed state-space averaging method, outlined in the Flowchart of Fig. I, allows a unified treatment of a large variety of power stages currently used, since the averaging step In the state-space domain is very simple and clearly defined (compare blocks 1 a and 2 a). It merely consists of averaging the two exact scate-space descriptions of the switched models over a single cycle \(T\), where \(F_{s}-1 / T\) is the switching frequency (block 2a). Hence there is no need for special "knowrhow" in massaging the two sultched ctrcuit models into topologically equivalent forms in order to apply circuit-oriented procedure directiy, as required in [1] (block lc). Nevertheless, through a hybrid modelling technique (block \(2 c\)), the circult structure of the averaged circuit model (block 2b) can be readily recosnized from the averaged stace-space model (block 2a). Hence all the benefits of the previous averaging technique are retalned. Even though this ourilned process might be preferred, one can proceed from tlocks \(2 a\) and \(2 b\) in two parallel hut completely equivalent directions: one following path a strictiy in terms of state-space equations, and the other along path \(b\) in terms of circuit models. In elther casc, a perturbation and linearization

Fig. 1. Flowchart of averaged modelling approaches
process required to include the ducy racto modulation efzece proceeds in very straigheforyerd and formal manncr, thus cmphasizing the corner-stone chareceer of blacks 2a and 2b. Ac ch1s stage (block 2a or 2b) the teady-state (dc) and line co output transier functions are already available, as Indicated by blocks on and 6b respectuely, while che duty racto to outpur cransfer function is available ar the final-stage rodel (4a or 4b) as 土idicated by blocks \(7 a\) and \(7 b\). The two finay stage models (42 and \(4 b\)) chen give the complece description of the switching converter by Inclusion of boch independent concrols, the 1 ine volcage variacton and che duty ratio modulation.

Even though the circufe cransformiclon pach b might be preferred from the practical design scanjpoint. che state-space averaging pach a is Invaluable in caching some general conclustons bout she small-signal low-Erequency models of eny de-co-de sultching converter (even those yet co be invenced). Whereas. for path b, one hes to be presenced with the parcleular circuit In order co proceed with modelling, for pach a the final state-space sveraged equacions (block 4) give che complete model descxipelon chrough
general merices \(A_{1}, A_{2}\) and veccors \(b_{1}, b_{2}\), \(C_{1}\), and \(c_{2} T\) of the two starting switched models (Block 1a). This is also thy alons path \(b\) in the Flowchart a particular example of a boost power stage wich parasicic effects was chosen, while along pach a general equacions have been retalned. Specifically, for che boost power stage \(b_{1}-b_{2}=b\). Ihis example will be later pursued in detail along both paths.

In addicion the stace-space averaging approach offers a clear insight inco che quanticative nature of the basic averaging approximation, which becomes becear the further che effecelve low-pass filter corner frequency f 18 below the switching frequency \(s^{\prime}\). that \(1 s\), \(f_{c}^{C} / f\) < 1 . Thls \(1 s\), however, shown to be equivalenc co che requiremene for small ourput voltage ripple, and hence does not pose any sertous restricition or limicacion on modeliling of practical de-to-de converters.

Finally, the state-space averaging approach eerves as a basis for dorfvation of a useful general circuic model that deseribes the Inputoutput and concrol properties of any de-to-de converter.

\subsection*{1.3 New Canonical Circuit Model}

The culmination of any of these derivaclons along either pach a or path \(b\) in the Flowchart of Fig. i is an equivalent circuit (block 5), valyd for small-signal low-frequency variations superimposed upon a de operating point, that represents the two cransfer functions of interest for a suitching converter. These are the line voltage to output and dury ratio to output cransfer functions.

The equivalent circuit is canonical model that contains the essential propercies of any de-to-dc switching converter, regardless of the detailed configuration. As seen in block 5 for the general case, the model includes an ideal tranaformer that describes the basic de-to-dc transformation ratio from line to output; a low-pass filter whose element values depend upon che do duty ratio; and a voltage and a current generator proportional to the duty ratio modula-
tion input.

The canonical model in block 5 of the Flowchart can be obtained following either path a or path b, namely frow block 4 a or 4 b , as will be clown later. However, following the general description of the final averaged model to block 4a, certain generalizations about the canonical model are made possible, which are otherwise not achievable. Namely, even chough for all currently known switching de-to-dc converters (such as the buck, boost, buck-boost, Veniable [3], Wednberg [4] and a number of others) the frequency dependence appeara only in the duty-ratio dependent voltage generator but not in the current generator, and then only as a first-order (single-zero) polynomial in complex frequency s; however, neyther circumstance \(v 111\) necessarily occur in some converter yet to be conceived. In general, switching action introduces both zeros and poles into the dury ratio to output transfer function, In addition to the zeros and poles of the effective filcer network which escentially constitute the line voltage to outpu transfer function. Moreover, in general, both duty-ratio dependent generators, voltage and current, are frequency dependent (additional zeros and poles). That in the particular cases of the boost or buck-boost convercers this dependence reduces to a first order polynomial results from the fact that the orde; of the system which is involved in the switching action is only two. Hence from the general result, the order of the polynomial is at mose one, though it could reduce converter [3].

The significance of the new circult model is that any switching de-to-de converter can be reduced to this canonical flxed topology form, at least as far as its input-output and control properties are concerned, hence it is valuable for comparison of various performance characteristics of different de-to-de converters. For example, the effective filter networks could be compared as to their effectiveness throughout the range of dc duty cycle \(D\) (in seneral, the effective filter
guration chosen which optimizes the size and weight. Also, comparison of the frequency depenprovides the two duty-ratio dependent generators provides insight into the question of stability once a regulator feedback loop is closed.

\subsection*{1.4 Extension to Complete Regulator Treatment}

Finally, all the results obtained in modelling the converter or, nore accurately, the network can easily be incorakes part in switching action, aystems containing deto-de convere complicated example, by modelling thede converters. For same lines modelling the modulator stage along the of a closed-loop switching a linear circuit model innear feedback theorying regulator. Scandard analysis and syriory can then be used for boch and proper desizn of fee stability considerations, works for multiple loop as well as single-loopregulator configurations.

\section*{2. STATE-SPACE AVERAGING}

In this section the state-space averagirg method is developed first in general for any dc-to-dc switching converter, and then demonstrated In detall for the particular case of the boost power stage in which parasitic ef-ects (esr of the capacitor and series reststance of the inductor) are included. Ceneral equarions for both steady-state (dc) c.d dymemic performance (ac) are obtained, from which important transfer functions are derived and also applied to the special case of the boost power stage.

\subsection*{2.1 Basic State-Space Averaged Model}

The basic dc-to-dc level conversion function of switching converters is achieved by reperitive switching between two linear networks censisting of 1deally lossless storage elements, inductances be obtafned by yse In practice, this function may be obtained by use of transistors and diodes assumption that the circuit swicches. On the called "continuous circuit operates in the soinstantaneous inductor current mode in which the zero at any point in the cycle, there are enly two different "states" of the chere are enly however, can be represented by a Ifinear Each state, model (as shown in block ib of fis ineas circuit corresponding set of stace-spacig. 1) or by a 18). Even though any sete-space equations (block variables can be cho sef linearly independent it is customary and convenient state variables, networks to adopt convenient in electrical citor voltages. The total indor currents and capaelements thus determines number of storage Let us denote such a choice of a ver the system. variables by \(x\).

It then follows that any switching de-tode converter operating in the continuous conduction mode can be described by the state-space equitions for the two suitched models:
(1) Interval Id:
\[
\begin{align*}
& \dot{x}=A_{1} x+b_{1} v_{8} \\
& y_{1}=c_{1}{ }^{T} x \tag{1}
\end{align*}
\]
\[
\dot{x}-A_{2} x+b_{2} y_{g}
\]
\[
y_{2}-c_{2}^{r} x
\]
where Id denotes the interval when the switch is In the on state and \(T(l-d) \equiv T d '\) 1s the interval for which it is in the off state, as shown in Fig. 2. The static equations \(y_{1}-c_{1} T_{x}\) nad \(y_{2}-c_{2}{ }^{T} x\) are necessary in order to account for the case wien the oucput quantity does not

Fig. 2. Definition of the two switched Intervals Td and Td '.
calncide with any of the stace variables, but is rather cercain ilnear combination of the et_: varlubles.

Our objective now is co replace the stateepace description of tha two linear circuits eannting from the two successive phases of the ovitching cycle T by a single state-space description which represencs approximately the behaviour of the circult ncross the whole period \(T\). We therefore propose the following simple averaging step: cake the average of borh dynamic and static equations for the two switched intervals (1), by sumbing the equacions for interval Id multipiled by a and the equations for interval Td'multiplied by d'. The following lynear conefnuous system results:
\[
\begin{align*}
& x-d\left(A_{1} x+b_{1} v_{8}\right)+d^{\prime}\left(A_{2} x+b_{2} v_{8}\right) \\
& y=d y_{1}+d^{\prime} y_{2}-\left(d c_{1}^{T}+d^{\prime} c_{2}^{T}\right) x \tag{2}
\end{align*}
\]

After rearranging (2) inco the standard Inear continuous system state-space description, we obtain the basic averaged scate-space description (over a single period \(T\)):
\[
\begin{align*}
& \dot{x}=\left(d A_{1}+d^{\prime} A_{2}\right) x+\left(d b_{1}+d^{\prime} b_{2}\right) v_{g} \\
& y=\left(d c_{1}{ }^{T}+d^{\prime} c_{2}^{I}\right) x \tag{3}
\end{align*}
\]

This model Is the basic averaged model which Is the starting model for all other derivations (both state-space and circuit oriented).

Note that in the above equations the duty ratio d is considered conscant; it is not a time dependent variable (yer), and particulardy not a sultelied discontinuous variable which changes between 0 and 1 as in [1] and [2], bue is merely - fixed number for each cyele. This ls evidenc from the model derivacion in Appendix \(A\). In particular, when \(d=1\) (swiceh constantily on) the averaged model (3) reduces to suitched model (11), and when \(d * 0\) (switch off) it reduces to switched model (111).

In essence, comparison between (3) and (1) shows that the system matrix of the nveraged model is obtalned by taking the average of two switched model matrices \(A_{1}\) and \(\lambda_{2}\), its control is the nverage of two concrot vectors \(b\), and \(b_{2}\), and Its output is the average of two outputs \(y_{1}{ }^{2}\) and \(y_{2}\) over a periodr \(x\).

The Justefication and the nature of the approximation in substitution for the two switched models of (1) by averaged model (3) is indicated In Arpendix \(A\) and given in more derail in [6]. The bu. pproximation made, however, is that of approxime on of the fundmmencal matrix \(e^{A t}=I+A t+\cdots\) by its first-order linear term. This is, in tum, sham in Appendix B to be the same approximation necossary to obtain the de condition independent of the storage elemente values (\(L, C\)) and dependent on the de duty ractio only. It also colncides with the requirement for Iow output volcage ripple, which is shom in Appendix \(C\) to be equivalent to \(f / f_{s} \ll 1\), namely the effective filter corner srequency much lower than the switching Irequency.

The model represented by (3) is an averaged model over a single period \(I\). If we now assume that the duty ratio d is constant from cycle to cycle, namely, \(d=D\) (stesdy state de duty racio), we get:
\[
\begin{align*}
& \dot{x}=A x+b v \tag{4}\\
& y=c^{T} x
\end{align*}
\]
where
\[
\begin{gather*}
A-D A_{1}+D^{X} A_{2} \\
b=D b_{1}+D^{\prime} b_{2} \tag{5}\\
c^{T}-D c_{1} I+D^{\prime} c_{2} T
\end{gather*}
\]

Stnce (4) is a Inear system, superposition holds and it can be perturbed by introduction of Ine voleage varlations \(\hat{v}_{\text {, }}\) as \(v=V+\vec{v}\), where \(V\) is the de ilne input volrage \(\mathcal{E}\) cauSing \(E\) corresponding percurbation in the state vector \(x-x+\hat{x}\), where assin \(X\) is the de value of the ctate vector and \(\hat{x}\) the superimposed ac percurbation. Similazly, \(y=Y+\hat{y}\), and
\[
\begin{align*}
& \quad \dot{x}-A x+b v_{g}+\Delta \hat{x}+b \hat{v} \\
& x+\dot{y}-c^{T} x+c^{T} \hat{x} \tag{6}
\end{align*}
\]

Separacion of the steady-state (dc) part from the dynamic (ac) part then resules in the ateady state (dc) model
\[
\begin{equation*}
A X+b V_{G}=0 ; Y-c^{I} X \Rightarrow X-c^{T} A^{-1} b V_{B} \tag{7}
\end{equation*}
\]
and the dynamic (ac) model
\[
\begin{align*}
& \dot{\hat{x}}=A \hat{x}+b \hat{v} g \\
& \hat{y}=c^{T \hat{x}} \tag{8}
\end{align*}
\]

It is interesting so note that in (7) the ateady state (de) vector \(X\) will in general only depend on the de ducy racio \(D\) and resistances in the original model, but nor on she storage element values (\(L\) 's and \(G^{\prime} s\)). This is so because \(X\) is the solucion of the linear syscem of equations
\[
\begin{equation*}
A X+\Delta V_{s}=0 \tag{9}
\end{equation*}
\]
in which \(L\) 's and \(C\) : s are proportionality contants. This is in complete agreement with the firetrorder approximation of the exact de conditions shown In Appendix \(B\), which colncides with expression (7).

From the dynamic (ac) model, the line voltage to sitate-vector transfer functions can be eanily derived as:
\[
\begin{align*}
& \frac{\hat{x}(s)}{\hat{v}_{g}(s)}-(s I-A)^{-1} b \\
& \frac{\hat{y}(s)}{\hat{v}_{g}(s)}=c^{T}(s I-A)^{-1} b \tag{10}
\end{align*}
\]

Hence at this stage both stendy-state (de) and Ind transfer functions are available, as shown by black ta in the Flowchate of Fig. 1 We now undertake to include the duty racio modulation effect into the basic averaged model (3).

\subsection*{2.2 Terturbation}

Suppose now that the duty raclo changes from cycle to cycle, that is, \(d(c)=D+A\) Where \(D\) Ia the steady-state (de) duty ratio as before and o Is a superimposed (ac) variation. With the corresponding percurbstign cefinition \(x-X+\hat{x}\). \(Y-Y+\hat{y}\) and \(v_{g}-y_{g}+v_{g}\) che basic model (3)
becomes:
\[
\begin{equation*}
+\left(\left(A_{1}-A_{2}\right) \hat{x}+\left(b_{1}-b_{2}\right) \hat{v}_{s}\right) \hat{d} \tag{11}
\end{equation*}
\]
\[
\begin{aligned}
& x+\hat{y}= c^{T} x+ \\
& \text { dc } c^{T} \hat{x}+\left(c_{1}{ }^{T}-c_{2}{ }^{T}\right) x \hat{d}+\left(c_{1}{ }^{T}-c_{2}{ }^{T}\right) \hat{x} \hat{d} \\
& \text { term terol cerm nonlinear term }
\end{aligned}
\]

The perturbad state-space descripeion is nonlinear owing to the presence of the product of the two time dependent quanclutes \(\hat{x}\) and \(\hat{d}\).

\section*{\(\frac{2.3 \text { Linearizarion and Einal State-Space Averaged }}{\text { Model }}\)}

Let us now make the small-signal approximation, namely that departures from the steady state values are negligible compared to the steady state
\[
\begin{equation*}
\hat{v}_{\mathrm{v}}^{\mathrm{v}} \ll 1, \quad \frac{\hat{d}}{\mathrm{D}} \ll 1, \quad \frac{\hat{x}}{\hat{x}^{\prime}} \ll 1 \tag{12}
\end{equation*}
\]

Then, using approximations (12) wa neglect all nonlinear terms such as the second-arder terms in (11) ims cbtain once again a Innear system, but Including disty-ratio modulation \(\hat{d}\). Nfeer separacing steady-site (dc) and dymamic (ac) parts of this linearized system we arrive \(3 t\) the follow Ing results for the flnal stare-space averaged model.

Stendy-state (de) model:
\[
\begin{equation*}
x=-A^{-1} b v_{8} ; \quad x=c^{T} x--c^{T} A^{-1} b v_{8} \tag{13}
\end{equation*}
\]

Dynamic (ac small-sicnal) model:
\[
\begin{align*}
& \dot{\hat{x}}=A \hat{x}+b \hat{v}+\left[\left(A_{1}-A_{2}\right) x+\left(b_{1}-b_{2}\right) v_{s}\right] \hat{d} \\
& \hat{y}=c^{T} \hat{x}+\left(c_{1}^{T}-c_{2}^{T}\right) x \hat{d} \tag{14}
\end{align*}
\]

In these results, \(A, b\) and \(c^{T}\) are given as before
by (5),

Equations (13) and (14) represent the smallsignal low-frequency model of any two-stace switching de-to-de converter working in the continuous conduction made.

If is important to note that by neglece of the nonlinear term In (11) the source of harmonies is effectively removed. Therefore, the linear description (14) is actualiy a linearized describing funcrion resule that is the limit of the deseribing, function as the amplitude of che input signals \(\hat{v}\) and for \(\hat{d}\) becones vanxshingly small. The sigfificance of chis is that the cheoretical frequency response obcalned from for ina to outpur ind diom (14) transfer functions cin din racio to output oental deseribing function compared with experiexplained in (1) anction measurements as signal assumption (12) or [8] in which smal1cigmal assumption (12) is preserved. Very good agrecmenc up to clase to half the switchling ([1], [2], [3], [7]).

\section*{ORIGINAL PAGE IS OE ROOR QUALITI}

In which \(I\) is the de inductor curient, \(V\) is the de capacitor voltage, and \(Y\) is the de ourput voltage.
Dynawic (ac small signal) model:
\[
\begin{align*}
& \frac{d}{d t}\left[\begin{array}{l}
\hat{1} \\
\hat{v}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{l}+(l-D)\left(R_{c} \| R\right)}{L} & -\frac{(1-D) P}{L\left(R+R_{c}\right)} \\
\frac{(l-D) R}{\left(K+R_{c}\right) C} & -\frac{1}{\left(K+R_{c}\right) C}
\end{array}\right]\left[\begin{array}{c}
\hat{1} \\
- \\
v
\end{array}\right] \\
& +\left[\begin{array}{l}
1 \\
\frac{L}{1} \\
0
\end{array}\right] \hat{v}_{g}+\left[\begin{array}{l}
\frac{R}{L} \frac{\left(D^{\prime} R+R_{c}\right)}{R+R_{c}} \\
-\frac{R}{\left(R+R_{c}\right) C}
\end{array}\right] \begin{array}{l}
\frac{v_{g} \hat{d}^{\prime}}{R^{\prime}}
\end{array} \tag{18}
\end{align*}
\]
\(\hat{y}=\left[\begin{array}{ll}(1-D)\left(R_{c} \| R\right. & \frac{R}{R+R_{c}}\end{array}\right]\left[\begin{array}{l}\hat{i} \\ \hat{v}\end{array}\right]-v_{g} \frac{R_{c} \| R}{R^{\prime}} \hat{d}\)
In which \(R^{\prime} \triangleq(1-D)^{2} R+R_{\ell}+D(1-D)\left(R_{C} \| R\right)\).
We now look more closely at the de voltage transfomation ratio in (17):
\[
\begin{equation*}
\frac{V}{v_{g}}=\frac{Y}{v_{g}}=\underbrace{\frac{1}{1-D}}_{\text {de galn }} \underbrace{\frac{(1-D)^{2} R}{(1-D)^{2} R+R_{l}+D(1-D)\left(R_{c} \mid R\right)}}_{\text {correction factor }} \tag{19}
\end{equation*}
\]

This shows that the ideal de voltage gain is \(1 / D^{\prime}\) when all parasitics are zero (\(R_{2}=0, R=0\)) and that in their presence it is silghtiy reduced by a correction factor less than 1 . Alsowo wobserye.. that nonzero est of the capacitance (\(R_{c} \neq 0\)) (with consequent discontinuity of the-outpur roltage) affects the de sain and appears. fifectively-as a resistance \(R_{1}=D D^{\prime}\left(R_{c} \| D_{0}\right.\) in series with the inductor resistance \(\mathrm{E}_{l}\). This effeer due to duciontinuity of output voltage was not included In [2], Eut was correctiy accounted for lin [\(x\)].

From the dynamic model (18) one can find the duty ratio to output and line voltage to output transfer functions, which agree exactly with chose obtalned in [1] by following a different mechod of averaged model derivacion based on the equivalence of circuit copologies of two switched netwisks.

The fundanental result of this section is the development of the general state-space averaged model represented by (13) and (14), which can be easily used to find the small-signal low-frequency model of any suicching dc-to-de converter. This was demonstrated for a boost power stage with parasitics resulting in the averaged model (17) and (18). It is important co emphasize that. unlike the transfer function description, the ecate-space description (13) and (14) gives the complete system behaviour. This is very useful In implementing two-loop and multi-loop feedback when two or more states are used in a feedback path to modulate the ducy ratio \(\hat{d}\). For example, both output voltage and Inductor current may be returned in a feedback loop.

\section*{3. HYBRID MODELLING}

In this section it will be show that for any epecific converter a useful circuit realization of the basic averaged model given by (3) can elvays be found. Then, in the following section, the percurbation and linearization steps will be carried out on the circuic model finally to arrive at the circuit model equivalent of (13) and
(14).

The circuit reallzation will be demonstrated for the same boost power stage example, for which the basic scate-space averaged model (3) becomes:
\[
\begin{gather*}
\left.\left[\begin{array}{l}
\frac{d 1}{d t} \\
\frac{d v}{d t}
\end{array}\right]=\left[\begin{array}{ll}
-\frac{R_{l}+d^{\prime}\left(R_{c} \| R\right)}{L} & -\frac{d^{\prime} R}{L\left(R+R_{c}\right)} \\
\frac{d^{\prime} R_{2}}{\left(R+R_{c}\right) C} & -\frac{1}{\left(R+R_{c}\right) C}
\end{array}\right]\left[\begin{array}{l}
1 \\
v
\end{array}\right]+\left[\begin{array}{l}
1 \\
\frac{L}{2} \\
0
\end{array}\right] \begin{array}{l}
v_{8} \\
\\
y=\left[d^{\prime}\left(R_{c} \| R\right)\right. \\
\end{array}\right]
\end{gather*}
\]

In order to "connect" the circuit, we express the capacitor voltage \(v\) in terms of the desired outpur quantity y as:
\[
v=\frac{R+R_{c}}{R} y-(1-d) R_{c} I
\]
or, in matrix form
\[
\left[\begin{array}{l}
1 \tag{21}\\
v
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
d^{\prime} R_{c} & \frac{R^{2} R_{c}}{R}
\end{array}\right]\left[\begin{array}{l}
1 \\
y
\end{array}\right]
\]

Substitution of (21) finto (20) gives

From (22) one can easily reconstruct the circuit representation shown in Fig. 5.

The basic model (22) is valid for the dc regime, and the two dependent generators can be modeled as an ideal d':1 transformer whose range extends down to dc, as shown in Fig. 6.

Fig. 5. Circuit realization of the basic statespace averaged model (20) through hybxid modelling.

Fig. 6. Basic circuit averaged model for the toost circuit example in Fig. 3. Both dc-to-dic conversion and line variation are modelled when \(d(t)=D\).

As before, we find that the circuit model in Fig. 6 reduces for \(d=1\) to switched model in Fig. 4a, and for \(d=0\) to switched mode: in Fig. \(4 b\). In both cases the addirional resistance \(R_{1}-\) dd' \(\left(R_{c} \| R\right)\) disappears, as it should.

If the duty ratio is constant so \(d=D\), the dc regime can be found easily by considering. Inductance \(L\) to be short and capacitance \(C\) to be Open for \(d c\), and the transformer to have a \(D^{\prime}: 1\) ratio. Hence the de voltage gain (19) can be directly seen from Fig. 6. Similarly, all line transfer functions corresponding to (10) can be easily found from Fig. 6.

It is interesting now to compare this ideal d':l transfomer with the usual ac transformer. While in the latter the turns ratio is fixed, the one employed in our model has a dynamic turns ratio \(d^{\prime}: 1\) which changes when the duty ratio is a function of time, \(d(t)\). It is through this ideal transformer that the actual controlling function is achlived when the feedback loop is closed. In addition the ideal transformer has a dc transformation ratio d'il. while a real transforuer works for ac signals only. Nevercheless, the concept of the ideal transformer in Fig. 6 with such properties is a very useful one, since after all the switching converter has the overall property of a de-to-de transformer those curns ratio can be dynamically adjusted by duty ratio modulation to achieve the controlling function. We will, however, see in the next section how this can be oore explicitly modelled in terms of duty-ratio dependent generators only.

Following the procedure outlined in this section one can easily obtain the basic averaged circuit models of three comon converter power etages, as shown in the summary of Fig. 7.

Fig. 7. Sumary of basic circuit averaged models for three common power stages: buck, boost, and buck-boost.

The two switched circuit state-space models for the power stages in Fig. 7 are such that the general equations (1) reduce to the special cases \(A_{1}=A_{2}=A, b_{1} \neq b_{2}=0\) (zero vecror) for che buck power stage, and \(A_{1} \neq A_{2}, b_{1}=b_{2} \neq b\) for the boost power stage, whereas for the buci-boost power stage \(A_{1} \neq A_{2}\) and \(b_{1} \neq b_{2}=0\) so that the general case is retained.

\section*{4. CIRCUIT AVERAGING}

As indicated in the Introduction, in this section the alternative path \(b\) in the Flowchart of Fig. 1 will be followed, and equivalence vith the previously developed path a firmly established. The final circuit averaged model for the same example of the boost power stage will be arrived at, which is equivalent to its corresponding state-rpace description given by (17) and (18).

The averaged circuit models shown in Fig. 7 could have been obtained as in [2] by directly averaging the corresponding components of the two switched models. However, even for some simple cases such as the buck-boost or tapped inductor boost [1] this presents some difficulty owing to the requirement of having two switched circuit models topologically equivalent, while there 15 no such requirement in the outlined procedure.

In this section we proceed with the perturbacion and linearization steps applied to the circuit model, coniinuing with the boost power stage as an example in order to include explicitly the duty ratio modulation effect.

\subsection*{4.1 Perturbation}

If the averaged model in Fig. 7b is perturbed according so \(v_{G}=V_{g}+\hat{v}_{g}, 1=I+\hat{i}, d=D+\hat{d}\),
 in Fig. 8 results.

Fig. 8. Perturbation of the basic averaged circuit model in Fig. 6 includes the duty ratio modulation effect \(\hat{d}\), but results in this monlinear circuit model.

\section*{4. 2 Linearization}

Under the small-signal approximation (12), the following linear approxinations are obtained:
\[
\begin{aligned}
& e_{n} \notin D D^{\prime}\left(R_{c} \| R\right)(I+\hat{i})+\hat{d}\left(D^{\prime}-D\right)\left(R_{c} \| R\right) I \\
& \left(D^{\prime}-\hat{d}\right)(Y+\hat{y}) \nexists D^{\prime}(Y+\hat{y})-\hat{d} Y \\
& \left(D^{\prime}-\hat{d}\right)(I+\hat{i}) \approx D^{\prime}(I+\hat{i})-\hat{d} I .
\end{aligned}
\]
and the final averaged circuit model of Fig. 9 results. In this circuit model we have finally obtained the controlling function separaced in terms of duty ratio \(\hat{d}\) dependent generators \(e\), and \(j_{1}\), while the transformer turns ratio is dependent on the de duty ratio \(D\) only. The circuit model obtained in Fig. 9 is equivalent to the state-space description given by (17) and (18).

Fig. 9. Under small-signal assumption (12), the model in Fig. 8 is linearized and this final averaged circuit model of the boost etage in Fig. 3 is obtained.

\section*{5. THE CANONICAL CIRCUIT MODEL}

Even though the general final state-space averaged model in (13) and (14) gives the complete description of the system behaviour, one might still wish to derive a circuit model describing its input-output and control properties as illustrated. in Fig. 10.

Fig. 10. Definition of the modelling objective: circult averaged model describing inputoutput and control properties.

In going from the model of Fig. 10a to that of Fig. 10b some informacion about the internal behaypur of some of the staces will certainly be lost but, on the other hand, important advantages Introduction an were briefly autlined in the

We propose the following fixed topology circuit model, shown in Fig. 11, as a realizatio

Fig. 11. Canonical circuit model realization of the "black box" in Fig. 10b, modelling the three essential functions of any de-ro-dc converter: control, basic de conversion, and low-pass filtering.
of the "black box" in Fig. 10b. We call this model the canonical circuit model, because any switching converter input-outpur model, regardless of its detalled configuration, could be represented in this form. Different converters are represented simply by an appropriate set of formulas for the four elements \(e(s), f(s), \mu, \mathrm{H}_{e}(s)\) in the general equivalent circuit. The polarity of the ideal \(\mu: 1\) transiormer is determined by whether or not the power stage is polaricy invering. Its turns ratio \(\mu\) is dependent on the de duty ratio \(D\), and efnce for modelling purposes the transformer is assumed to operate dor to de. it provides the basle di-to-dc level conversion. The single-section low-pass Le filter is shown in Fig. Il only for illustration purposes, because the actual number and configuration of the \(L\) ' \(s\) and \(C\) 's in the effective filter transfer function realization depends on the number of storage elements in the original converter.

The resistance \(R_{e}\) is included in the model of Fig. 11 to represent the damping properties of the effective low-pass filter. It is an "effective" resistance that accounts for variou (such os \(R\) resistances in the actual circult (auch as \(R_{Q}\) in the boost circuit example), the additional "switching" resistances due to disconcinuity of the output voltage (such as \(R_{1}=D^{\prime}\left(K_{C} \| R\right)\) in the boost circuit exanple).
and alco a "modulation" resistance that arises from modulation of the switching transistor torage time [1].

\section*{S.1 Derivation of the Canonical Model through}

From the general stare-space averaged model and (14), we obtain directiy using the Laplace
transform: transforn:
\(\hat{x}(s)=(s I-A)^{-1} \hat{v}_{\varepsilon}(s)+(s I-A)^{-1}\left[\left(A_{1}-A_{2}\right) x+\left(b_{1}-b_{2}\right) v_{g}\right] \hat{d}(s)\)
\(\hat{y}(s)=c^{T} \hat{x}(s)+\left(c_{1}{ }^{T}-c_{2}^{T}\right) \hat{X d}(s)\)

Now, from the complete set of transfer functions ve single out those which describe the converter input-output properties, namely
\[
\begin{align*}
& \hat{y}(s)=G_{v g} \hat{v}_{g}(s)+G_{v d} \hat{d}(s) \\
& \hat{I}(s)=G_{i g} \hat{v}_{g}(s)+G_{i d} \hat{d}(s) \tag{24}
\end{align*}
\]

In which the \(G\) 's are known explicitly in terms of the matrix and vector elements in (23).

Equations (24) are analogous to the two-port network representation of the texminal properties of the network (output voltage \(y(s)\) and input current \(\hat{f}(s))\). The subseripts designate che corresponding transfer iunctions. For example \(G_{v g}\) is the source voltage \(\hat{v}\) to output volicage \(\hat{y}\) transfer function, \(G_{i d}\) is the duty ratio \(\hat{d}\) to Input current \(\hat{i}(s)\) transfer function, and so on.

For the proposed canonical circuit model in Fig. 11, we directly get:
\[
\begin{align*}
& \hat{y}(s)=\left(\hat{v}_{g}+e \hat{d}\right) \frac{1}{\mu} H_{e}(s) \\
& \hat{f}(s)=j \hat{d}+\left(e \hat{d}^{\prime} \hat{v}_{g}\right) \frac{1}{\mu^{2} z_{e 1}(s)} \tag{25}
\end{align*}
\]
or, after rearrangement into the form of (24):
\[
\begin{align*}
& \hat{y}(s)=\frac{1}{\mu} H_{e}(s) \hat{v}_{g}(s)+e \frac{1}{\mu} H_{e}(s) \hat{d}(s) \\
& \hat{i}(s)=\frac{1}{\mu^{2} Z_{e 1}(s)} \hat{v}_{g}(s)+\left[1+\frac{e}{\mu^{2} Z_{e q}(s)}\right] \hat{d}(s) \tag{26}
\end{align*}
\]

Direct comparison of (24) and (26) provides the solutions for \(H_{c}(s), c(s)\), and \(j(s)\) in terms of the known transfer functions \(G_{\text {vg }}, G_{\text {vd }}, G_{1 g}\) and
\[
e(s)-\frac{C_{v d}(s)}{G_{v_{g}}(s)} \quad f(s)=G_{1 d}(s)-e(s) G_{18}(s)
\]
\[
\begin{equation*}
H_{e}(s)=\mu C_{V g}(s) \tag{27}
\end{equation*}
\]

Moce that in (27) the parameter \(1 / \mu\) represents the ideal de voltage gain when all the parasitics are zero. For the previous boost power stage example, from (19) we get \(\mu=1-\mathrm{D}\) and the correction factor in (19) is then associated with the effective filter network \(H_{e}(s)\). However, \(\mu\) could be found from
\[
\begin{equation*}
\left.\frac{Y}{V_{g}}=-c^{T} A^{-1}=\frac{1}{\mu} x \text { (correction factor }\right) \tag{28}
\end{equation*}
\]
by setting all parasitics to zero and reducing. the correction factor to 1 .

The physical significance of the ideal dc gain \(\mu\) is that it arises as consequence of the switching action, so it cannot be associated wich the effective filter network which at dc has a gain (actually attenuation) equal to the correction factor.

The procedure for finding the four elements In the canonical model of Fig. Il is now briefly reviewed. Flrst, from (2B) the basic dc-to-dc conversion factor \(\mu\) is found as a function of de duty ratio D. Next, frow the set of all transfer functions (23) only those defined by (24) are actually calculated. Then, by use of these four cransfer functions \(G_{u d}, G_{V g}, G_{i d}, G_{i f}\) in (27) the frequency dependent genterators efs) and \(1(s)\) as well as the low-pass filter transfer function \(H_{e}(s)\) are obtained.

The two generators could be furthe: put into the form
\[
\begin{aligned}
& c(s)=E f_{1}(s) \\
& f(s)=J f_{2}(s)
\end{aligned}
\]
where \(f_{1}(0)=f_{2}(0)=1\), such that the parameters \(E\) and \(J^{1}\) could be identified as de gains of the frequency dependent functions \(e(s)\) and \(j(s)\).

Finally, a general synthesis procedure [10] for reallzation of \(L, C\) transfer functions terminated in a single load \(R\) could be used to obtain a low-pass ladder-network circuit realization of the effective low-pass network \(\mathrm{H}_{\mathrm{e}}(\mathrm{s})\). Though for che second-order example of \(\mathrm{H}_{\mathrm{e}}(\mathrm{s})\) this step is trivial and could be done by inapection, for higher-order iransfer functions the orderly procedure of the synthesis [10] is elmost mandatory.

\subsection*{5.2 Example: Ideal Buck-boost Power Stage}

For the buck-boost circuit shown In F1g. 7c with \(R_{\ell}=0, R_{c}=0\), the final state-space averaged model is:
\[
\left[\begin{array}{c}
\frac{d v}{d t} \\
\frac{d v}{d t}
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{D^{\prime}}{L} \\
\frac{D^{\prime}}{C} & -\frac{1}{R C}
\end{array}\right]\left[\begin{array}{l}
1 \\
\hat{v}
\end{array}\right]+\left[\begin{array}{l}
\frac{D}{L} \\
0
\end{array}\right] \hat{v}_{g}+\left[\begin{array}{c}
\frac{v_{g}-v}{L} \\
\frac{-v}{D^{\prime} R C}
\end{array}\right]
\]

\section*{DRIGINAM PAGE IS QE ROOL SUALIXY}

In unich the output voltage \(\hat{y}\) coincides with the state-variable capacitance vollage \(\hat{v}\).

From (28) and (29) one obtains \(\mu=D^{\prime} / D\). With use of (29) to derive transfer functions, and ypon substitucion into (27), there results
\[
\begin{align*}
& e(s)=\frac{-V}{D^{2}}\left(1-s \frac{D L}{D^{\prime 2} R}\right), f(s)=\frac{-V}{(1-D)^{2} R} \\
& H_{e}(s)=\frac{1}{1+s / R C+s^{2} L_{e} C}, \mu=\frac{1-D}{D} \tag{30}
\end{align*}
\]
in which \(V\) is the de output voltage.
The effective filter transfer function is easily seen as a low-pass LC filter with \(L_{e}=\) \(L / D^{\prime 2}\) and with load \(K\). The two generators \({ }^{\text {in }}\) the canonical model of Fig. 11 are identified by
\[
\begin{align*}
& E=\frac{-V}{D^{2}}, \quad f_{1}(s) \equiv 1-s \frac{D L}{D^{2} R} \tag{31}\\
& J=\frac{-V}{(1-D)^{2} R}, \quad f_{2}(s) \equiv 1
\end{align*}
\]

We now derive the same model but chis time using the cquivalent circuit transformations and pach \(b\) in the Flowchart of Fig. 1.

After perturbation and linearization of the circuit averaged model in Fig. 7c (with \(R_{0}=0\), \(\mathrm{R}_{\mathrm{c}}=0\)) the series of equivalent circuits of Fig. 12 1s obtained.

Fig. 12. Equivalent circuit transformations of the final circuit averaged model (a), leading to its canonical circuit realization (c) demonstrated on the buck-boost example of F18. \(7 c\) (with \(R=0, R_{c}=0\)).
\[
\begin{aligned}
& \text { ORIGINAL PaGE IS } \\
& \text { OR ROOR QUALTTY }
\end{aligned}
\]

The objective of the transfcrmations is to reduce the original four ducy-ratlo dependent generetors in Fig. 12a to gust two generacors (voltage and current) in \(F 1 g\). 12 c which are at the input port of the model. As these circuit transformacions unfold, one sees how the frequency dependence in the generators arises naturally, as In Fig. 12b. Also, by transfer of the two generators in Fig. 12b from the secondary to the primary of the \(1: D\) transformer, and the inductance 1 to the sccondary of the \(D^{\prime}: 1\) transformer, the cascade of two ideal transformers is reduced to the single transformer with equivalent turns ratio \(D^{\prime}: D\). At the same time the effective filter network \(L_{e}, C, R\) is generated.

Expressions for the elements in the canonical equivalent circuit can be found in a similar way for any converter configuration, Results for che three famillar converters, the buck, boost, and buck-boost power stages are sumarized in Table \(I\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & (10) & \(\Sigma\) & A(s) & \(J\) & in(0) & <. \\
\hline duck & \(\frac{1}{D}\) & \(\frac{V}{D^{2}}\) & \(\cdots 1\) & \(\frac{\mathrm{K}}{R}\) & 1 & 2 \\
\hline doest & 1-0 & \(\checkmark\) & 1-4女 & \(\frac{x}{(1-0)^{28}}\) & 1 & \(\frac{1}{(1-2)}\) \\
\hline buck: doost & \(\frac{1-2}{17}\) & \(\frac{-v}{D^{3}}\) & 1-486 & \(\frac{-v}{(1-D)^{\prime 2}}\) & 1 & \(\frac{6}{(1-D)^{2}}\) \\
\hline
\end{tabular}

Tsble I Definition of the elements in the canonical circuit model of FI.. 11 for the three common power stages of Fig. 7.

It may be noted in Table I that, for the buckboost power stage, paramecers \(E\) and \(J\) have negative signs, namely \(E=-V / D^{2}\) and \(J=-V /\left(D^{\prime 2} R\right)\). However, as seen from the polarity of the ideal \(D^{\prime}: D\) transformer in Fig. 12c this stage is an inverting one. Hence, for positive input de volitage \(V_{g}\), the output dc voltage \(V\) is negative \((V<0)\) since \(V / V_{g}=-D / D^{\prime}\). Therefore \(E>O_{2}\) \(J>0\) and consequently the polarity of the voltage and current duty-ratio dependent generators is not changed but is as shown in Fig. 12c. Moreover, this is true in general: regardiess of ony inversion property of the power stage, the polarity of two generators stays the same as 10. Fig. 11.

\section*{\(\frac{5.3 \text { Significance of the Canonical Circuit Model }}{\text { and Related Generalizations }}\)}

The canonical circuit model of fig. 11 incorporates all chree basic properties of a de-code converter: the dc-to-dc conversion function (represented by the ideal \(u: 1\) cransformer); concrol (via duty ratio a dependent generators); and lowpass filtering (represenced by the effective lowpass filter network \(\left.H_{e}(s)\right)\). Note also that the ercrent generator \(f(s)\) a in the canonical circuit model, even though superfluous when the source voltage \(\hat{v}_{p}(\mathrm{~s})\) is ideal, is necessary te reflect the influefce of a nonideal source generator (with a ome internal impedance) or of an input filter [7]
upon the behaviour of the converter. Its presence enables one easily to include the linearized circuit model of a switching converter power stage in other linear circuits, as the next section will tllustrate.

Another significant feature of the canonteal circuit model is that any switching de-to-de converter can be reduced by use of (23), (24), (27) and (28) to this ifxed topology form, at least as far as its input-output and control propertics are concemed. Hence the possibility arises for use of this model to compare in an easy and unique way various performance characteristics of different converters. Some examples of such comparisons are given below.

1: The filter networks can be compared with respect to their effectiveness throughont the dynamic duty cycle \(D\) range, because in general the effective filter elements depend on the steady state duty ratio D. Thus, one has the opportunity to choose the configuration and to optimize the size and weight.
2. Basic dc-to-dc conversion factors \(\mu_{1}(D)\) and \(\mu_{2}(D)\) can be compared as to their effective range. For some converters, traversal of the range of duty ratio \(D\) from 0 to 1 generates any conversion ratio (as in the ideal buckboost converter), while in others the conversion ratio might be restricted (as in the Weinberg converter (4), for which \(\frac{1}{2} r \mu(1)\).
3. In the control section of the canonical model one can compare the frequency dependences of the gencrators \(e(s)\) and \(f(s)\) for different converters and select the configuration that best facilftates stabilization of a feedback
regulator. For example, in the buck-boost converter \(e(s)\) is a polynomial, containing actually a real zero in the right half-plane, which undoubtedly causes some stability problems and need for proper compensation.
4. Finally, the canonical model affords a very convenient means to store and file information on various dc-to-dc converters in a computer memory in a form comparable to Table \(I\). Then, thanks to the fixed copology of the canonical uitruit model, a single computer program can be used to calculate and plot various quantities as functions of frequency (l.,put and output impedance, audio susceptibility, duty ratio to output transfer response, and so on). Also, various input filters and/or additional output filter networks can easily be added if desired.

We now discuss an fmportant issue which has been intentionally skipped so far. From (27) it is concluded that in general the duty ratio dependent generators \(e(s)\) and \(f(s)\) are rational functions of complex frequency \(s\). Hence, in general both some new zeros and poles are into the duryduced into the duty ratio to output transfer function owing to the switching action, In addicion to the poles and zeros of the effective filter network (or line to output transfer function). However, in special cases, as in all -

\section*{ORGINALI PAGE LS OR POOR QUALITY}
thone shown In Table 1 . the fraquency dependence alghe reduce simply to polymomiais, aud even further it might show up only in the voltage dependent gencracors (as in the boost, or buckboost) and reduce to a constant (\(f,(s) \equiv 1\)) for the current generator. Nevercfiedesa, this doen not prevenc us from modifying any of these circuits in a way that dould exhibit the general result - Incroduction of both uddithonal meros as vell ma poles.

Let un now illustrate this general result on - ample modiflcacton of the familiar boost circuit, with a resonant \(L_{1}, C_{1}\) exreuxt in ceries with the input inductance \(L\), as shown in Fig. 13.

Fig. 13. Modified boost carcuit is min 1llustration of general frequency behaviour of the generators in the canonical circuit model of Fig. 11.

By Introduction of the canonicnl circuit model for the boost power scage (for the eircuit to the right of cross section \(A^{\prime}\)) and use of data from tablo I, the equivalent averaged circuit model of His, 14 a ls obealned, Thun, by application of the equivalent eircult transformation as outilned praviously, tha nveraged model in the canoalcal circuit form is obrained in Fig, 146. As can be seen from Fig. 14b, the volcage generator has double pole at the resonant frequency \(\mu_{1} r^{-} 1 / \sqrt{L_{1} C_{1}}\) of the parallel \(L_{1}, C_{1}\) netvork. However, the offective filter transfer function has \(n\) double zaro (nuli in magnitude) at precisely the same locstion such that the two

I18. 14. Equivalent circuit transformacion leading to the cmandeal clreuit moded (b) of the circult in Fig. 13.
pairs effectively cancel. Hence, the resonant null in the magnitude response, while present in the Ifne voltage to output transfer function, is nat seen ta the duey ratio-co output transfer funccion. Therefore, the positive effect of rejaction of certain input frepsencies around the resonant frequency \(w_{r}\) is not accompanied by a decrimental effect on che loop gain, which will not canm cain null in the magnitude response.

This example dewonstrates yee another faportanc aspact of modelifing with use of the averaging technique. Instead of applying it directly to che whole circuit in Fig. 13, we have inscead implemented it only with respect to the storage alament network which effectiveiy takes part in che switehing action, namely \(L, G\), and \(K\), Upon substitution of the sultched part of the network by the averaged circuit model, all other lingar eireuits of the complete model are retalned as they appear in the original circuit (such as \(L_{1}, C_{1}\) in \(\mathrm{Fig}_{\mathrm{g}}\). luad. Again, the current gencrator in Fig. I4n the the one which raflects the effece of che Inpue resonant circuic.

In the next section, the same property if clearly displayed for a closod-loop regulacorconverter with or without the inpute filcer.

\section*{6. SWITCIING NODE REGULATOR MODELLING}

This section demonstrates rhe ease with zhich the different converter circuit zodels developed in previous sections can be incorporated Into more complicaced syscems such as a switchingmode regulator. In addition, a brief discussion of modelling of modulacor scages In general is Included, and a complete general switching-mode regulator circuit model is given.

A gencral representation of a switching-mode regulator is shown in Fig, 15. For concreteness, the switching-mode converter is represented by a buck-boost power stage, and the input and possible additional output filter are represenced by \(n\)

1g. 15. General switching-mode regulator with Input and outpuc flicers. The block diasram it general, and single-section LC filters and a buck-boost converter me houm as typlcal realizacions.

ORIONAL PAGE IS
OF FOOR QUALCTX
atngle-section low-pass LC configuration, buc the discussion applies to any converter and any filter conflguration.

The main dificteulty in analysing the swiching mode regulator lies in the modelling of its noninnear part, the switching-mode convercer. However, we have succeeded in previcus sections in obeaindig the small-5imal lownfequency arcuit model of any "ewo-state" switening de-to-de converter, operating in the concmauous conduction mode, in the canonical ciecuit form. The output filter ds show separacely, to emphasize che fact that in averaged mocellign of the switching-mode converter only the scomate elements wheh are ectually involved in the switching acelon need be taken into account, thus minimizing the effort in fts modelline.

The next step in development of the renulator equifyalent exreuit is to obtala a model for the modulator. This is easily done by weiting in expression for the essentinl function of the modulator, which is so convert an (analog) conceod voltage \(V_{c}\) to the switch duty raciog. This ey pression can be written \(D-V_{\mathrm{t}} / \mathrm{N}_{\mathrm{ta}}\) fil which, by definition, \(V_{m}\) is the range of controi:stanal requited to sweep the duty ratio over fits fuly range from 0 to 1 . A smail variation ves super1mposed upon \(V_{c}\) theretore produces \(n\) corversponding vartation \(\mathrm{G}=\hat{v}_{\mathrm{e}} \mathrm{C}\) in D , which can be senernlysed to accounc for a nonumiform frequency response as
\[
\begin{equation*}
\hat{d}-\frac{f_{m}(s)}{v_{m}} \hat{v}_{c} \tag{32}
\end{equation*}
\]

In which \(f_{m}(0)=1\), Thus, the control voltage to duty ratio small-signal cransmission characteriscic of the modulater can be repeesented in general by the two parameters \(V_{m}\) and \(\xi_{m}(s)\), regardless of the decalled aechanisa by which the modulation is achfeved. Hence, by substitution for a from (32) the two generators in the canondcal circuit model of the switching converter can be expressed in teras of the ac concrol voltage \(\hat{v}_{c}\), and the resulting model is then a linear ac equivalent circuit chat represents the small-sipmal eransfer properties of the nonlinear processes In the modulator and converter.

It remains almply to add the linear amplifier and the input and output filters to obrain the ac equivalent circuit of the complete closedloop regulacor as shown in Fig. 16.

The modulator transier function has been incorporated in the generacor designactons, and the gencrator symbol has been changed from a circle to a square to emphastze the fact that, in the closed-loop regulator, the generators no longer are Independent but are dependent on anocher sisnal in the same syatem, The connection frem point \(Y\) to the error amplifier. viathe reference voltage suming node, represents the basic voltage feedback nescssary to es cabilish the system at a voltage regulacor. The dashed connection from point \(z\) indicates a possible additional feedback sensing; this second reedback sigrina may

Fig. 16. General small-sigat ac equivalent circuit for the switchiag-mode regulator of Fin .15.
be derived, for example, from the Inductor flux, Inductor current, er capacitor current, as in various "two-loop" conilgurations that are in tse [9].

Once again the current generator in Fig. 16 is responsible for the Interaction becween the switching-mode regulator-converter and the input flleer, thus causing performance degradaclea and or stability problems when an arbiceary input silear is addad. The problem of how properly to design the input filter is treaced in detall in [7].

As shown in \(\operatorname{Fiz}\), 16 we have succeeded \(\pm n\) obtaining the linear circuit codel ui the complete switchtug moderegulates. Hence the well-known body of linear feedback cheory can be used for both analysis and desiga of this type of regulacor.

\section*{7. Conclus lows}

A general method for modelling power stages of any suitehing de-to-de convercer has been developed through the state-space spproach. The fundamental step is in replocement of the scaceapace descriptions of the cwo switched natworks by their average over the single switching period T. With resules in a single continuous scatespace equation description (3) desisnated the basic averaged state-space model. The essential approximations made are Indicated in the Appendices, and are shown to be Justifled for any practical de-co-de swleching convercer.

The subsequenc perturbacion and linearization step under the scall-signal assumption (12) leads to che final scate-space averaged model given by (13) and (14). These equactons then serve as the bacis for develnpment of the most important qualitative result of this vork, The cazonical elrcuit bodel of Fig. 11. DLfferent converters are reprenented simply by an nppropriate set of formulas ((27) and (28)) for four elements in this general equivalent circuit. Bealdes its unificd description, of which several
examples are given in Table \(I\), one of the advantages of the canonical circuit model is that various performance characteristics of different uitching converters can be compared in a quick and easy manner.

Although the state-space modelilng approach has been developed in this paper for two-state switching converters, the method can be extended to multiple-state converters. Examples of threestate converters are the familiar buck, boost, and buck-boost power stages operated in she discontinuous conduction mode, and dc-to-ac switching inverters in which a specific output waveform is "assembled" from discrete segments are examples of multiple-state converters.

In contrast with the state-space modelling approach, for any particular converter an alternative path via hybrid modelling and circuit transformation could be followed, which also arrives first at the final circuit averaged model equivalent of (13) and (14) and finaily, after equivalent circuit transformations, egain arrives at the canonical circuit model.

Regardless of the derivation path, the canonical circuit model can easily be incorporated into an equivalent circuit model of a complete suitching regulator, as.illustrated in Fig. 16.

Perhaps the most important consequence of the canonical circuit model derivation via the genural state-space averaged model (13), (14), (23) and (24) is its prediction through (27) of additional zeros as well as poles in the ducy ratio to output transfer function. In addition frequency dependence is anticipated in the duty ratio dependent current generator of Fig. 11. even though for particular converters considered In Table \(I\), it Ieduces werely to a constant. Furthermore for souie switching networks which would effectively involve more than two storage elements, higher order polynomials should be expected in \(\mathrm{f}_{1}(\mathrm{~s})\) and/or \(\mathrm{f}_{2}(\mathrm{~s})\) of Fig. 11 .

The insights that have emerged from the general state-space modelling approach suggest that there is a whole field of new switching dc-to-dc converter power stages yet to be conceived. This encourages a ren. wed search for innovative circutt designs in a field which is yet young, and promises to yield a significant number of inventions in the stream of its full development. This progress will naturally be fully supported by new technologies coming at an ever increasing pace. However, even though the efficiency and performance of currently existing converters will increase through better, faster transistors, more ideal capacitors (with lower esr) and so on, it vill be primarily the responsibility of the circult designer and inventor co put these components to best use in an optinal topology. Search for pew circuit configurations, and how best to use present and future cechnologies, will be of prime importance in achieuing the ultimate goal of nearideal general switching de-to-dc converters.

\section*{REFERENCES}
[1] R. D. Middlebrook, " \(A\) Continuous Model for the Tapped-Inductor Boost Converter," IEEE Power Electronics Specialists Conference, 1975 Record, pp. 63-79 (IEEE Publication 75 CHO 965-4-AES).
[2] G. W. Wester and R. D. Mddlebrook, "LowFrequency Characterization of Switched dede Converters," IEEE Trans, on Aerospace and Electronic Systems, Vol. AES-9, No. 3, May 1973, Pp. 376-385.
[3] R. Haynes, T. K. Yhelps, J. A. Collins, and R. D. Mddlebrook, "The Venable Converter: A New Approach to Power Processing," IEEE Power Electronics Specialists Conference, NASA Lewis Research Center, Cleveland, Ohio, June 8-10, 1976.
[4] A. H. Neinberg, "A Boost Regulator with a New Energy-Transfer Principle," Proceedings of spacecraft Power Conditioning Seminar, pp. 115-122 (ESKO Publication SP-103, Sept. 1974).
[5] H. F. Baker, "On the Integration of Linear Differential Equations," Proc. London Math. Soc., 34, 347-360, 1902; 35, 333-374, 1903; second series, 2, 293-296, 1904.
[6] R. D. Middlebrook and S. Cuk, Final Report, "Modelling and Analysis of Power Processing Systems," NASA Contract NAS319690.
[7] R. D. Middlebrook, "Input Filter Consideretions in Design and Application of Switching Regulators;" IEEE Industry Applications Society Annual Yeeting, Chicago, Oct. 1114. 1976.
[8]. R. D. Middlebrook, "Describing Function Propertics of a Magnetic Pulsewidth Modulator," IEEE Trans, on Nerospace and Electronic Systems, Vol. AES-9, No. 3, May, 1973, pp. 386-398.
[9] Y. Yu, J. J. Biess, A. D. Schoenfeld and V. R. Lalli, "The Applicarion of StandardIzed Control and Incerface Circuits to Three DC to DC Power Converters," IEEE Power Electronics Specialists Conference, 1973 Record, PD. 237-248 (IEEE Pubilcation 73 CHO 787-2 AES).
[10] F. F, Kuo, "Network Arialysis and Synthesis," John Wiley and Sons, Inc.

DRIGINAL PAGE IS OE ROOR QUALITX

\section*{Arpendices}

In rhys sequence of thpendices several of the quentions felated to gubstitution of the two switched models (1) by the statempace descrapm tion (3) ure diseusted.

In Appendix A it is briafly Indiamed for a bimplified autonomous example how the correlation between the state-zpata averaging step and the limear approximation of the fundatacotal himatio If escablished. In Appendix \(A\) tho exace de conditions, which are genexally dependent on tha stordga element values, are shown co roduee under the same Jynear approximation to those obcadned from (7). In ippondix 9 if is demon= scrated boch analycienly and quantitatively (numerteajly, for typioad fer of paramefer values for a boeat pownr stage, that the Iftoar mproximacian of the fundmuental macris 1 s
 cormer frequency of the lowmpass filcer and \(f_{\mathrm{s}}\) to the abitehing irequeney Thin Inequalify is fin futh connaeted wxth the condrion for low outpat valtage mapple, and honee does noc jimpose my atgnificant rostriction on the outifued modelling procedure.

\section*{APMENDIX A}

The fundauental approximation in the scate-apace avarimiug aprroseh

Dee the two Dineak systems be deserawed by
(A) Incerval Td, \(0<t<c_{0}\); it) Iaterval Id', \(t_{0}\) cces:
\[
\begin{equation*}
x-\Lambda_{1} x \quad x=\Lambda_{2} x \tag{33}
\end{equation*}
\]

The axact solucions of these statemspace aquactons nce:
\[
\begin{align*}
& x(n)-c^{A_{1}} x(0), \\
& \left.x(t)-c^{A_{1}\left(t-t_{0}\right)} \times\left(t_{0}\right), \quad t \in\left[t_{0}\right]\right] \tag{34}
\end{align*}
\]

The state-variable vector \(x(t)\) Is continupus merosie the suitching tnstang \(0_{0}\) and so:
\[
\begin{equation*}
x(T)-A^{A_{2}^{(T-I d)}} x\left(t_{0}\right) 4 a^{d} A_{2} e^{d A_{1} I} \times(0) \tag{35}
\end{equation*}
\]

Suppose chat the folloolnts approximation is now incrodueed ince (35):
\[
\begin{equation*}
e^{r} A_{2} x A_{1} T{ }_{\sim} e^{\left(d A_{1}+d ' A_{2}\right) T} \tag{36}
\end{equation*}
\]
remulring In min mproximake volucion
\[
\begin{equation*}
=(x) A^{\left(d d_{1}+d \cdot A_{2}\right) I} x(0) \tag{37}
\end{equation*}
\]

However, chis is the sume me the solution of the following dinear system equation for \(x(T)\) :
\[
\begin{equation*}
\dot{x}=\left(d A_{1}+d^{\prime} A_{2}\right) x^{x} \tag{38}
\end{equation*}
\]

The last noded (3S) is, therefore, the averaged modad ubtained frow the cwo swicched nodola ofyef by (3) and ta vaded provided appreximation (36) 19 wal sactafled. This la so if che fojlouthe hatar approndmations of the fundatental macrices hald:
\[
\begin{align*}
& a^{d A_{2} D^{x}} \lambda^{d} x+d_{1} T \\
& d^{\prime} A^{T} y+d^{\prime} A_{2} T \tag{39}
\end{align*}
\]
 tha more general sesult BakermCaptiedl-Hausdorff sertas (2):
\[
\begin{equation*}
A T-\left(d A_{1}+d^{\prime} A_{2} d v+d d^{\prime}\left(A_{1} A_{2} \cdots A_{2} A_{1}\right) x^{2}+\cdots\right. \tag{40}
\end{equation*}
\]
vhure
\[
\begin{equation*}
e^{A x}-e^{d A_{2}{ }^{7} d d_{1} 7^{7}} \tag{4,2}
\end{equation*}
\]

Hence, when the matrices axe commacative, that la

\section*{ABPBND2X 8}

Derfuaton of the gasat de condtrons and their shaphacation louler jinper anproximation of the fundmental matrices

We now darive the exact stendymstare (de) condithon from the seneral geacomspaes description of che two swleched clreust madean, Let: \(x\). \(x_{2}\) to the state-variahe vector fan Anterval mo \(\left(0<t<n_{0}\right)\) and \(x+x_{2}\) chat for lacerval Fin' \(\left(e_{0} \ll x\right)\).
1) Incervan The (Octaco):
14) interval mitto cocti):
\[
\begin{equation*}
\dot{x}_{1}=\lambda_{1} x+b v \tag{42}
\end{equation*}
\]
\[
\dot{x}_{2}-A_{2} x+b y_{k}
\]

The respective solucions are:
\[
\begin{align*}
& x_{1}(t)-c^{A_{1}} x_{1}(0)+y_{1} n_{1}(t) h_{2} \\
& x_{2}(t)-A_{2}^{t} x_{2}\left(c_{0}\right)+y_{8} 8_{2}\left(c-c_{0}\right) b \tag{43}
\end{align*}
\]
where
\[
\begin{equation*}
X_{1}(t)-\int_{0}^{t} e^{A_{1}} d r-A_{1}^{-1}\left(e^{A_{1}}-1\right) \operatorname{cor} 1-1,2 \tag{43}
\end{equation*}
\]
proudded lnvarse matrices \(A_{1}^{-1} \cdot A_{2}^{-1}\) extac.
Solutsons (4 D) concain ceo yec undecermetned constants, \(x_{1}(0)\) thd \(x_{2}(t)\), We cherefore limposo

\section*{DRIGINAL PAOG IS DT ROOR SUAMTY}
a) the vector of tata variables is continuous across the stitehing instant \(c_{0}\), eince the inductor currents and capacicor voltages cannot change inscantancously. Hence
\[
\begin{equation*}
x_{1}\left(v_{0}\right)-x_{2}\left(\tau_{0}\right) \tag{45}
\end{equation*}
\]
b) from the steady state requirement, all the state variables should return after period r to cheir initinl values. Hence:
\[
\begin{equation*}
x_{1}(0)-x_{2}(T) \tag{46}
\end{equation*}
\]

The boundary conditions (45) and (46) are 11luatrated in Fig. 17, where \(v(0)=v(T)\). \(1(0)-I(T)\) and \(\mathcal{L}(t)\) and \(v(t)\) are continuous across the suitching instant \(t_{0}\).

F1g. 17. Typical stace-vaziable time dependence over a olngle pertod in the sceady-stace, for the boost circuit numerical example whth \(f_{s}\) mbHz.

Inscrtion of (45) and (46) 1ato (43) results in solution for the initial condition:
\[
\begin{equation*}
x_{1}(0)=v_{c}\left(I-e^{D^{\prime} A_{2} T e^{D A_{1} T}}\right)^{-1}\left(e^{D^{\prime} A_{2} T} B_{1}(D T)+B_{2}\left(D^{\prime} I\right)\right) b \tag{47}
\end{equation*}
\]

As scen from Flg. 17, the average values of inductor current and capacitor voleage could bo found by incegracion aver the pexiod \(x_{1}\) in
ceneral, the steadymstate vector \(X\) is found from:
\[
\begin{equation*}
x=\frac{1}{T}\left[\int_{0}^{c_{0}} x_{1}(\tau) d \tau+\int_{t_{0}}^{T} x_{2}(T) d T\right] \tag{48}
\end{equation*}
\]

Hence, by use of (43) through (47) in (48), the integracion could be carried out and the explicite moluclon obeained as
\[
\begin{equation*}
x(T)=g\left(\Lambda_{1}, \Lambda_{2}, D, T\right) \tag{49}
\end{equation*}
\]

In which the actual expression could ensily be found [6].

For the boost circult exmple of Fig. 3 , and with parameter values \(v-37.5 v, D-0.25\), \(\mathbf{R}_{\mathrm{l}}=0.46 \Omega_{\mathrm{t}} \mathrm{R}_{\mathrm{C}}-0.28 \Omega, 1=\mathrm{B}_{6 \mathrm{mH}}, C-45 \mu \mathrm{~F}\), and \(\mathbf{R}-300\), the output de voltage obcalned from (49) and the initial inductor current \(1(0)\) from (47)
are plocted as functions of switching frequency \(f_{s}=7 / T\) in Fig . 18 via a compucer program. As seen from Fig, 18, the point where che inicial Inductor cusrenk becowes zero detemines the boundary between continuous and disconcinuous

Fig. 18. Typical dependence of the steady-state (de) condizions (ourput voltage) on the switching frequency \(\mathrm{I}_{\mathrm{s}}\) in che continuous conduction region (to the righe of the dotced line).
conduction regions. It is also evident from Fig. 18 that the output de volrage changes with switehIng fxequency is, particularly when is becomes close to \(f_{c}\), the effoctive flliter corner frequency.

If che Jinear approximactons (39) are cubstituted inco (49), the firsc-order approximation of the de statemvector \(x\) becomes Independent of \(I\), namely
\[
\begin{equation*}
x=-\left(D A_{1}+D^{\prime} A_{2}\right)^{-1} b v_{g} \tag{50}
\end{equation*}
\]
which is equivalent to the state-space averaged result (13).

For a given switching frequency, one can find the Instalal condicion \(x_{1}(0)\) and, with use of (43), plot the cime dependence of the state variables during a period \(T\) co obtain the sceady state switching ripple. For the same numerical exiople for the boost powor stage, and with switehing frequency \(\mathrm{f}_{\mathrm{s}} \mathrm{k} 1 \mathrm{kHz}\) (point \(A\) on Fig. 18), substantial ripple in the outpur voltage and Inductor current is observed as demonseraced by Fib. 17. However, is all conditions ara rechined but the skitchlag frequency is increased to \(\mathrm{F}_{3}-10 \mathrm{kHz}\) (point B on Hg . 18), the plot of Fis. 19 is obtained, from which it is evident chate the suitching ripple \(1 s\) subscanclaily reduced, Morcover the state vardables show very strong Incartey fu the two Intervals Td and Td'. Ihis Is by no manas an accident, but a consequence of the fact that incar approxdmactons (39) are well sacisfied ac polnc If since \(f_{s} / f_{c}-43.5\) 2 1 , ne verifled in Appenddx \(C\).
\[
\begin{aligned}
& \text { ORIGINAL PAGE WI } \\
& \text { OF POOR QUALICA }
\end{aligned}
\]

Fig. 19. Same as Fig. 17 but with \(f_{s}-10 \mathrm{kHz}\). Strong Ilnearity and small ripples exhibifed by the curves are consequences of \(e^{A} \approx I+A T\), since \(f_{c} / f_{d} \ll 1\).

\section*{APPENDIX C}

On tha dinear approximation of the fundareental mecrix

We now dewonstrate the Inear approximations (39) for the boost circuit example (16), in which for sioplicity of presentation \(R_{Q}-0\) and \(R_{c}-0\) 1a essumed. The two exponential (fundamental) matrices are:
\[
e^{A D T} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & e^{-2 a D T}
\end{array}\right]
\]
\(A_{2} D I-\alpha D^{\prime} T\left[\begin{array}{cc}\cos \omega_{0} D^{\prime} T+\frac{\alpha}{\omega_{0}} \ln \omega_{0} D^{\prime} T & -\frac{\sin \omega_{0} D^{\prime} T}{\omega_{0}^{L}} \\ \frac{\operatorname{snn} \omega_{0} D^{\prime} T}{} & \cos \omega_{0} D^{\prime} T-\frac{a}{\omega_{0}} \sin \omega_{0} D^{\prime} T\end{array}\right]\)
where
\[
a-\frac{1}{2 R C} \quad w_{0}=\sqrt{\frac{1}{L C}-a^{2}}
\]

Suppose now that the switching frequency fo \(-1 / T\) is much greater than che natural frequencles \(\alpha\) and \(\omega_{0}\) of the converter, unch chat
\[
\begin{equation*}
\omega_{0} D^{\prime} T \ll 1 \quad \text { and } \quad \text { abr } r<1 \tag{52}
\end{equation*}
\]

Then, by introduction of the linear approximacions \(e^{-D^{\prime} T} \not \subset 1-\alpha D^{\prime} T, \quad c o m \omega_{0} D^{\prime} I \not \subset 1\), In \(\omega_{0} D^{\prime} T \sim \omega_{0} D^{\prime} T\)
-quatione (51) reduce to:
\[
\begin{align*}
& A_{1}^{D T} \approx I+A_{1} D T \\
& e^{A_{2} D^{\prime} T} \approx^{I}+A_{2} D^{\prime} T \tag{54}
\end{align*}
\]

For the cypical numerical values in Appendix \(B\), and for \(f_{s}-10 \mathrm{kHz}\), replactanc of the fundamental antrices by thelr ilnear approximations introduces incignificant error (less than \(2 \approx\)) since condiciona (52) are well sacisfied. Furcherwore, since unually \(w_{0} \gg a\) (as also in chis case), condition (52) becomes
\[
\begin{equation*}
\omega_{c} T \ll 1 \tag{55}
\end{equation*}
\]
or, with an even greater degzee of inequality,
\[
\begin{equation*}
f_{c} \ll f_{0} \tag{56}
\end{equation*}
\]
where \(2 \pi f_{c}-\omega_{c}=D^{\prime} / \sqrt{L C}\) is che effective filter corner frequency.

\title{
A GENERAL UNIFIED APPROACH TO MODELLING SWITCHING DC-TO-DC CONVERTEERS IN DISCONTINUOUS CONDUCTION MODE
}

\author{
SLOBODAN ĆUK and R.D. MIDDLEBROOK 116-81 \\ Calfornio Institute of Technology Pasadena, Callfornia 91125 \\ \title{
DRRGNALE PAGE IS
DR ROOR AUALITY
}
}

Fig. 1. Three common switching de-to-dc converters: a) topological configuration independent of switch realization; b) bipolar transistor implementation of the suitch's.

Consider, for example, the buck-boost converter of Fig. 1. If the energy atored in the inductor during the first interval \(\mathrm{DT}_{\mathrm{s}} \equiv \mathrm{D}_{7} \mathrm{~T}_{\mathrm{g}} 1 \mathrm{c}\) completely released to the output load be one the switching cycle \(T_{3}\) has ended, the inductor current becomes zero for the \({ }^{3}\) last portion \(\mathrm{D}_{3} \mathrm{~T}_{\mathrm{B}}\), as seen in Fig. 2 b .

\section*{a)}

6)
inductor current ilti

Fig. 2. Inductor current waveforms and definition of two conduction modes: a) continuous conduction mode; b) discontinuous conduction mode.

Thus the tranaliton from conclnuous to diacontinuous conduction mode 1 a obtained by aither incrade of load \(R\) (hence by lowering of the average de current \(I\)) or by decrease of inductanca \(L\) or switching frequency \(f\) In any case, however, the operation in the discontin= wus conduction mode resultes in theee different switched networke, am illustrated in \(\mathrm{If}_{\mathrm{g}}\). 3 for the buck-boost converter (as opposad to two switched networks for coninnoum conduction oparation). An analogous eltuation exlate for the other two converters of FIg . 1 as well as for a number of other switching converters.

Fig. 3. Three suitached netuoris for the buch-boost converter operating in the discontinuous conduction node: a) transiston on, diode oof; b) transistor obt diode on; c) thrasistor o6d, diode ad6.

In Section 2 an extensive overview of the complete atructure of modeling of awitching converters and regulators in the discontinuous conduction mode by use of the new method is provided. In particular, the steps leading to the equivalent circuit models that deacribe both ateady-state (dc) and dynsmic (ac small aignal) behaviour are briafly explained. The subsequent eection then give a detailed and thorough sccount of the new method outilned in Section 2.

Firat, in Section 3, the procedure for modeling In disconcinuous conduction mode ls viewed as a special case of that for continuous conduction mode \([1,2,3]\) (provided the state-space averaging step of [2] is properly generalized to include three or more structural changes within each switching period as shown in Appendix) and additional constenaints imposed to model opecial Inductar current behaviour. Though the results obtained are in terms of linear equations, the useful chrcuic realizations may be obtained as in Section 4 . The atralghtforward perturbation and linearization steps In Section 5 lead to de and ac circuit models. They result for chree common converters of Fig, 1 in the fixed topology, catomicat circuit bodel and are easily tabulated. Because of the need for complete preantation of the theoretical background of the new method, and lack of space, only cursory experimental variftcation is included at the end of Section 6. Finally, In Section 7 the completeness of the obtained converter circuit models is remphasized by their direct incorporation in suitching regulaton models.

Since the method presented here is essentially a consistent extension of the techulque for continuous conduction mode [2], the exposition will closely follow the format given in \([2]\), such that the common steps to both wethods become inumediately transparent, and those that are differant clearly distinguished.

\section*{2 REVIEW OF THE NEW STATE-SPACE HODEL.LING TECINIQUE \\ IN THE DISCONTINUOUS CONDUGTLON MODE}

\subsection*{2.1 Brief review of existing modelilng tachnigues}

Owing to the relardvely more complicated nature of the converter operation in the diecontinuous conduction mode, dynamic (ac amall aignal) models have been lacking (even though valid models for continuous conduetion mode have already been obtained) until recently several
upproaches (\([4]-[10]\)) have been proposed. However, while all these techniques ([4]-[10]) provide through varlous linearization procedures the proper linearized tranefer functions (duty ratio modulation \(\hat{d}\) to output voltage \(\hat{v}\) and line voltage \(\hat{v}\) to output voltage \(\hat{v}\) transfer functions), they are incapable of repreaenting the input properties of the converter, and hence fail to arrive at the complete inearized converter model. This is an entirely analogoue situation to that for continuous conduction mode \([2,3]\), where these methode could not model the input properties (open- and closed-loop input impedance, for example) of the convertera and regulators in concinuous conduction mode of operation. In addition, they stay throughout modelling in the domain of equation manipulations only, and thus the useful insight which can be gained from linear circuit models (as demonstrated in \([1,2,3]\) is lost. Hence the primary objective of the development here becomes to overcome all these difficultias by extending the powerful state-space averaging technique of [2], together with its circuit model realizations, to the discontinuous conduction mode of convexter operation and Einally to arrive at the complete linear circuit model of various convarters (like, for example, those of Fig. 1).

\subsection*{2.2 New atate-space and circuit averaging methods for switching converters in the digeontinuous conduction mode}

The state-space and circuit avaraging methods presented in [2] are now to be suitably modified to account For the discontinuous conduction node of operation, and the resulte are sumarized in the Flowchart of Fig. 4. As before for the continuous conduction mode, the starting model for the switching converter (block 1 in the Flowchart of Fig. 4) is either in terms of the statespace description of the switched networks (as in block la), or in terms of linear circuit models of the switched networks (as in block lb).

The difference, however, from the previous description is not only that now there are three different etructural conflgurations within each switching period, but also in the fact that instantaneous inductor current is hestricted in its behavior: it atarts at zero at the beginning of a switching period and falls to zero current again even before the switching period has expired (see the Instantaneous inductor current waveform in block 1 of Fig. 4).

It is actually this second difference which clearly distingulshes the discontinuous conduction mode of operation, while the first difference, that of having three different structural configurations, appears in a way to be merely incidental. That is, in Appendix A it to shown that the state-space averaging step of [2] can be directly extended to include "three-state" converters (converters with three structural changes within each switching pariod), provided such converters are operated in the continuous conduction mode, and any restrictions on state-apace variables (Inductor currents and capacitor voltages) are avoided. Therefore, our objective in modelling converters operating in the discontinuous conduction mode (and exhibiting "three-state" configuration behavior) becomes that of supplementing this generalized state-space averaging step for "threestate" converters by additional constraints which reflect the special behavior of one of the state variables, the inductor current. Hence the switching-mode converter orerating in the discontinuous conduction mode (and having three structural changes) may be viewed as a special case of the ordinary "three-bitate" converters which are free from any restrictions on state variables. Thus the primary goal is properly to determine these additional constraints and to find how they propagace through various paths of the modeliling (such as paths \(a\) and \(b\) on the flowchart of F1g, 4).

From the Flowchart of \(\operatorname{Fig}, 4\) it 15 inmedfately claur thac path a follows a development etrictiy in terms of state-space equations, the state-spucs averaged modelling technique, while the other path \(b\) proceads in terms of circuit modela, circuit averaged modeliliag, Moreover, as before for the continuous conduction mode,
along pach u the gencral equations (through general mintrices \(A_{1}, A_{2}, A_{3}\) und vectora \(b_{1}, b_{2}\), and \(b_{3}\)) are retained to emphagize the fact that fie outlined prom cedure io applleable to any "three-state" converter operating in the discontinuous conduction mode, while along path \(b\) a particular example of the boost con-

Fig. 4. Flowchart of averaging approaches in modeling switching de-to-dc converters it the discontinuous conduction mude. Puth a: general state-space modelling; Path bs cincuit trans fonnation method.
verter is followed, owing to the requirement for the specific converter topology along that path. SpeciEically, for the boost power gtage, \(A_{1}=A_{3} \nmid A_{2}\) are \(2 \times 2\) matrices, and \(b_{1}=b_{2} \neq 0, b_{3}=1_{0}\) are vectors. This example will later be puraued in detail along both pathe.

We now follow path a more closely. The crucial step in made in going from block la to \(2 a\) in that the original description through three state-space equationg (block la) is substituted by a aingle state-apace averaged model (block 2a). This is justified as followe. The fundamental performance requirement of awitching converters (negligible switching ripple) results in natural frequencies \(\omega_{a}\) and \(f_{c}\) much lower than the awitching frequency \(f_{s}\). This, \({ }^{c}\) in turn, leade as shown in Appendix \(A\) to the generalized state-apace averaging step. So far this would be the same averaging step as applied to any ordinary "three-state" owitching converter. However, as indicated befure, the inductor current 1 does not behave as a true otatespace variable in the discontinuous conduction mode since it does not have free boundary conditions (but fixed at zero) which is shown to lead to the following constraint:
\[
\begin{equation*}
\frac{d i}{d t} \equiv 0 \tag{1}
\end{equation*}
\]

This immediately reduces by one the order of the basic state-space averaged model (block 2a), since one of the dynamic equations (that for inductor current) reduces to a static equation. In addition to this, an expression describing the average inductor curreat 1 can be found directly from the converter itself (block 1) and becomes the second constraint, termed perturbation equation 1 , which is
\[
\begin{equation*}
1=1\left(v_{g}, v, d, I, T_{B}\right) \tag{2}
\end{equation*}
\]

Thus, the two maitional constraints (1) and (2), together with tie generalleed state-space averaging atep, compietely determine the converter model in the discintinuous conduction mode. It remains only to apply the standard perturbation techniques (block 3a) and (on the basis of the small-aignal assumption) the linearization techniques to both state-space averaged equations and the perturbation equation of block \(2 a\) In order to arrive at the final state-space averaged model (block 4a). This model gives separately both dc and ac small-signal descriptions through general matrices \(A_{1}, A_{2}, A_{3}\) and vectors \(b_{1} ; b_{2} ; b_{3}\) of the starting switched models (block \(1 \frac{1}{a}\)) and cơnstraints corresponding to those of (1) and (2).

Naturally, we can now proceed from the basic stateapace averaged model (block \(2 a\)) via hybrid modelling and circuit recognition (block 2 c) to arrive at the very useful circuit reallzation (block \(2 b\)). Note, however, that now the constraint (1) effectively leads to shorting the inductance \(L\) in the circuit model since \(v_{L}=L \mathrm{di} / \mathrm{dt}=0\). This, for the particular boost circuit example, reduces the circuit to first order. The other constraint (2) is also easily specified (see additional constraint in block 2 b) with the help of the inductor current waveform (block 1). The same circuit model (block 2b) could however, be obtalned directly from the switched circuit models (block 1 b), by following the circuit averaging path, provided the circuit averaging step for "threestate" converters is supplemented by the aforementioned equivalents of the constraints (1) and (2). Again, the remaning circuit perturbation (block 3 b) and circuit inearization steps are stratghtforward and result in the final circuic averaged models (block \(4 b\)) separately for dc and ac small-signal. As seen from block \(4 b\), the de part of the perturbation equation, current \(I\), tagethe With the de circuit model, completely determines the de conditions, while ite ac part \(\hat{l}\) contributes to the final ac circult averaged model.

Finally, both models (block 4 a or 4 b) can be used to determine the transfer functions of interest: line voltage variation \(\hat{v}\) and ducy ratio modulation \(\hat{d}\) to output voltage \(\hat{v}\) (blocke \(6 a\) and \(6 b\) respectively).

\subsection*{2.3 New canonical circuit model for discontinuous conduction mode}

Ae for the continuous conduction mode, the culmination of the modelling ia again a canonical circuit model (block 5 of Fig. 4), whose fixed topology (though different from the one for continuous conduction mode) has all the features necessary to present a complete circuit model. However, this fixed topology of the model for discontinuous conduction mode came merely as a by-product, since for the three converters of Fig. 1 (buck, boost, and buck-boost) the ac small-signal models all resulted in the fixed topological structure of the model in block 46 of Fig. 4 without any need for equivalent circuit or other transformations. It does not appear that this canonical circuit topology could be directly extended to some arbitrary converter. Even though this canonical circuit model is not so general as that for two-state converters [2], a useful comparison between the two canonical aircuit topologies can be made (at least for the comon converters of Fig. 1 in both operating mafies).

While in the continuous conduction ade the effect of duty ratio modulation \(\hat{d}\) was represented by voltage and curnonit duty ratio dependent generators at the inpes port (hence properly representing negative closedloop input impedance at low frequencies as shown in [2], here in discontinuous conduction mode there are two duty ratio dependent current generators, one in the input circuit (again, properly to model converter input properties as shown later in Section 7), and the other in the output circuit to generate the duty ratio \(d\) to output transfer function.

The sallent feature of the canonical circuit model in block 5 of the Flowchart in Fig. 4 is that both transfer functions are obtained using only the output port of the complete canonical circuit model, unlike the situation for continuous conduction mode where the complete circuit model was necessary to determine them. This is also why other methods which properly represent the transfer function in discontinuous conduction mode ([4]-[10]) have completely omitted modelling of the converter input properties.

\subsection*{2.4 Extenaion to complete regulator treatment}

It will be shown in Section 7 how the Inear model of the modulator stage can be obtained. It remains simple to incorporate the canonical circuit model (block 5 in the Flowchart of Fig. 4) to arrive at the linear circuit model of a closed-loop switching regulator operating in the discontinuous conduction mode.

A word of caution, however, is appropriate here. Namely, since the very nature of operation in the discontinuous conduction mode is that the order of the system is reduced at least by one, this would definitely change the dynamics and possible compensation networks necessary for atable operation of the closed-loop regulator. Furthermore, if both conduction modes are expected to take place for the particular application, the compensation network should be designed to ensure stability of the closed-loop and acceptable transient performance for either of the two modes. Hence canonical circuit models for both continuous and discontinuous conduction mode become an invaluable tool in the proper design of switching regulators. In addition, comparison of the advantages and \(/ 0 r\) disadvantages between the two modes of operation become feasible, and possible trade-offs between regulator performance and choice of parameters and operating conditions is clearly displayed.

In sumary, the new method is generally applicable "o any "three-atate" converter operating in the diacontinuous conduction mode (block 4a), even though for an arbitrary converter the final circuit model (block 4b) may have diffarent (more complicated) topology than the canonical circuit model for the three comon eonverters (block 5). We aiso emphasize the fact that the methods for finding dc and ac amall-signal modela are consistent with each other. Namely, for both modele we need only the standard state-space or circuit averaging step (depending on whether path \(a\) or \(b\) is chowen) applicable to any converter with thinee switched network configurations. Then to diatinguish that the converter is operating in the discontinuous conduction mode, additional restriccions (1) and (2) are imposed. Now, the dc part of perturbation equation (2) together with the de sfate-apace or circuit averaged model completely determines the final dc model, while the ac part \(\hat{1}\) of (2) helpe in complete definition of the final ac small-aignal btate-space or circuit avaraged model.

It may seem that the method outlined holda only for "three-state" converters in discontinuous conduction mode, This is not so, since it can easily be generalized to include more complicated schemes of discontinuous conduction mode of operacion. As an illustration of this generality, conolder the new class of switching converters of Appendix \(A\), the cascade connection of ordinary buck and boost converters, which could also be classified as two-inductor converters (as opposed, for example, to the converters of Fig. 1 which are one-inductor converters). Suppose also that the two switches are driven synchronously with the same switch duty ratio \(D_{\text {p }}\) thus resulting in a two-otate converter for continuous conduction operation. If, however, one of the two Inductor. currents becomes discontinwous, a three-state converter operating in the discontinuous conduction mode is obtained. But now the matrices \(A_{1}, A_{2}, A_{3}\) and \(A\) would be of 4 th order (as opposed to 2nd ofder for the converters of Fig. 1) and the final state-space or circuit averaged model would be of the 3 rd order (reduction of order by one due to discontinuity of one of the two inductor currents). Moreover, there is also the poosibility that both inductor currents could become discontinuous under certain operating conditions in which case four-state converters are generated. Therefore, the generalized state-space averaging step (Appendix A) applicable to four-state converters is supplemented with additional conetraints: for each discontinuous current there will be two constraints imposed analogoue to (1) and (2). The immediace consequence of these constraints is that the fourth-order original converter model becomes only a second-order final atate-space or circuit averaged model (with two inductances effectively dieappearing from the final cixcuit averaged model).

Despite this demonstration of the generality of the method, we will restrict ourselves in the remaining Sections to the "chree-state" converters in the discontinuous conduction mode since all the essential features of the method are present there.

\section*{3 \\ STATE-SPACE AVERAGING IN DISCONTINUOUS CONDUCTION MODE}

Various paths on the Flowchart of Fig. 4 will now be followed in detail, first with general derivation and then illustrated by examples.

\subsection*{3.1 State-space averaging}

In this aection, the final state-space averaged model (block 4 a of Fig. 4) is derived, first in general for any three-state switching converter in discontinwous conduction mode, and then demonstrated on the idealized boost circuit example (parasitic effects not included). Steady state (dc) conditions are obtained
for this particular example and discused in depth, including determination of the boundary between che two modes of converter operacion.. From the dynamic (ac amallsignal) model. the two transfer functions of interest \(\left(\hat{v}(s) / \hat{v}_{(s)}(s)\right.\) and \(\left.\hat{v}(a) / d(s)\right)\) are also determined to enable comparizon with the corresponding tranefer functions derived from the final circuit averaged model for the boost converter preutanted in Section 3.3.

\section*{Basic state-space averaged model}

We firbt define the time-domaln description of an arbitraty three-atate switching converter operating in the discontinuous conduction mode with the help of Fig. 5 , which dimplays the switch drive (Fig. 5a) and instantaneous inductor current (Fig. Sb) which becomes discontinuous. The defintition of the three intervals \(T_{8} d_{1}, T_{s} d_{2}\), and \(T_{T} \mathrm{~d}_{3}\) (or corresponding ateady-state quantities \(\mathrm{T}_{\mathrm{g}} \mathrm{D}_{1}\), \(\mathrm{T}_{\mathrm{s}}^{\mathrm{s}} \mathrm{D}_{2}\), and \(\mathrm{T}_{\mathrm{s}_{3}} \mathrm{D}_{3}\)) is also clearly visible on Fig. 9 .
a)

b)

Fig. 5. Definition of the time intervals and perturbation quantities: al transistor switch drive; b) instantaneaus inductor current.

As seen from Fig. 5, the "off" interval [\(t_{1}, T_{8}\)] is now subdivided into two intervals \(T_{8} d_{2}\) and \(T^{1} d^{8}\) (or \(T D_{2}\) and \(T_{s} D_{3}\)). While the first "on" interval id is dictated by the owitch drive and is a known quantity (at least in open-loop converter usage), the second interval T \(\mathrm{T}_{2}\) (or ' \(\mathrm{F}_{8} \mathrm{D}_{2}\)), which will be termed the "decay" interval, is as yet unknown and depends in general on both the length of the first interval and some circuit parameters, and deecribes how deep in the diecontinuous conduction mode the converter is operating. Nevertheless we assume that the decay interval \(T D_{2}\) exists (hence the discontinuous conduction mode) and leave it to the modelling procedure itcelf to reveal how it is actually determined.

For each of the three intervals in Fig. 5 , there exists in general a different switched network (compare with Fig. 3 for the buck-boost converter example), which can be described by a corresponding state-space equation as follows:
\[
\begin{array}{lll}
\dot{x}=A_{1} x+b_{1} v_{g} & \text { for interval } d_{1} T_{s}, & \left(0 \leq t \leq t_{1}\right) \\
\dot{x}=A_{2} x+b_{2} v_{g} & \text { for interval } d_{2} T_{8}, & \left(t_{1} \leq t \leq t_{2}\right) \\
\dot{x}=A_{3} x+b_{3} v_{g} & \text { for interval } d_{3} T_{8}, & \left(t_{2} \leq t \leq T_{8}\right) \tag{3}
\end{array}
\]

While for the continuous conduction mode a similar expression 18 sufficient to describe the converter, hexe In diacontinuous conduction mode, (3) does not describe the switching converter completely. Namely, the instantaneous inductor current is restricted in its evolution since from Fig. 5
\[
\begin{align*}
& 1(0)=1\left[\left(d_{1}+d_{2}\right) T_{8}\right]=0 \text { and } 1(t) \equiv 0 \text { for } t \varepsilon\left[t_{2}, T_{8}\right] \tag{4}\\
& \text { DE POOR QUALITY }
\end{align*}
\]

Therefore (3) togerher with (4) completely detarmind the beliavior of the uwitehing converter. However, directly from this description, even the determination of the ateady-state (dc) condicions on an exact busis might be - very difficult (if not insurmountable) task, and moreover the cremendous complexity of the result may be unnecessary. In addition, the direct perturbation of (3) and (4) to obtain the dynamic response of the converter would become by an order of magnitude more difficult if not virtually impossible. Our objective then becomet, as it was in [2] for the continuous conduction mode, to replace the original converter deecription through three state-space equations (3) by a aingle etate-space deacrip tion which will accuratley represent the evolution of the otate-vector at the switching instants. It is also desirable that the addicional constraint (4) be appropriately accounted for to modify this averaging equivaleat, but In such a way as to interfere the least possible with its orderly procedure.

The firac task is accomplished by application of the generalized state-space avaraging step for three-state converters (Appendix A) to (3), which reaults in a aingle state-space description
\[
\begin{equation*}
\dot{x}=\left(d_{1} A_{1}+d_{2} A_{2}+d_{3} A_{3}\right) x+\left(d_{1} b_{1}+d_{2} b_{2}+d_{3} b_{3}\right) v_{g} \tag{5}
\end{equation*}
\]

Note, however, that this continuous description is a continuow equivalent to the originally derived approximate discrete system [1]. Hence the definition of a discrete derivative [1] transforms the conatraint (4) into
\[
\begin{equation*}
\frac{d I}{d t}\left(n T_{B}\right)=\frac{1\left(T_{B}\right)-1(0)}{T_{B}}=0 \tag{6}
\end{equation*}
\]

It follows that the inductor current in the equivalenc concinuous system (5) ceases to be a thue statespace variable, since according to (6) It has lost its dynamic properties. Nevertheless, despite the zero constraints \(1\left(\mathrm{nT}_{\mathrm{g}}\right)=0\) and \(\mathrm{d} 1 / \mathrm{dt}\left(\mathrm{nT}_{\mathrm{g}}\right)=0\) for \(n=0,1, \ldots\), a line voltage perturbation (\(v_{\text {, seen in Fig. 5b) does }}\) cause a perturbation of the ifstantaneous inductor currant (shown in dotted linee on F1g. 5b) from ita stadyatate wave form (heavy line in Fig. 5b), which in turn reaulte in a corresponding perturbation \(\hat{v}\) of the output ateady-ecate voltage. Note that there is also perturbation of the average inductor current 1 (defined in Fig. 5b for interval \(\left(d_{1}+d_{2}\right) T_{\mathrm{a}}\) when inetantancoue inductor current 1 (t) is dilferent from zero) from its steadyatate avarage current I. This is in sharp contrast to the aituation in the continuoue conduction mode where the average inductor currant does not change under any emellagnal perturbation, but rather initial and final condition \(1(0)\) and \(L(T\),\() change accordingly to accommodate\) parturbation. Here, \(1(0)\) and \(1\left(T_{0}\right)\) are fixed at zero. and the average inductor current io the quantity which reflecte the effect of incroduced perturbation.

Since the onjective in modeling the dyname performance of the converter is falthfully to represent departure from the oteady-atate, we introduce the average inductor current a substitute for the "loet" statefariable (the Instantaneous Inductor current). But, rather than change the symbol, we aseign to the same deaignation this new meaning. Then from Fig. 56 we obtain
\[
\begin{equation*}
1-\frac{1}{2}-1\left(v_{8}, v, d, L, T_{B}\right) \tag{7}
\end{equation*}
\]
and designate 1t penturbation equation 1, for reasons Which will become apparent later. Naturally, the other conseraine (6) for this average inductor current 1 is maincained (as seen also from Fig. 5b) and we finally obtain the basic atate-ipace averaged model for discontinuous conduction mode:
\(\dot{x}=\left(d_{1} A_{1}+d_{2} A_{2}+d_{3} A_{3}\right) x+\left(d_{1} b_{1}+d_{2} b_{2}+d_{3} b_{3}\right) v_{g}\)
with addicional conetraincs
\[
\begin{align*}
& \frac{d L}{d t}=0 \tag{9}\\
& 1=1\left(v_{g}, v, d_{1}, L, T_{B}\right) \tag{10}
\end{align*}
\]

The two additional constrainte (9) and (10) modify the ordinary averaged model (8) to accoignt for the discontinuity of the finductor current, This model (block 2a in the Flowchart of Fig. 4) is the atarting point for all other derivations (both state-space and circuit-oriented) and representa an averaged model over a single period \(T_{s}\).

Note, also from (7) that the caluclation of the average inductor current i 10 actually based on the asampthon of the innearity of the inductor current waveform (triangular waveshape in Fig. 5). However, this does not pose any limitations at all, Bince the ilnearity of the inductor waveform is again a consequence of the small switching ripple requirement and therefore consistent with the same basic assumption made in the continuous conduction mode.

We now consider first the simplest possible case, deteraination of the basic de conditions in the steady state regime. In the steady state all quantities become dc quantities and are denoted by capital letters, that 18. \(d_{1}-D_{1}-D, d_{2}=D_{2}, d_{3}-D_{3}, v_{0}=V_{0} x=X\). The average inductor current 1 Becomas the steady state average inductor current \(I\) (aee Fig. 5 b , for example) and the ateady-state vector \(X-(I \quad V, \ldots)\). Since then \(d X / d t \equiv 0\), the state-apace eqsation (8) reduces to that Incar algebraic syetem
\[
\begin{equation*}
a x+b v_{g}=0 \tag{11}
\end{equation*}
\]
where
\[
\begin{align*}
& A=D_{1} A_{1}+D_{2} A_{2}+D_{3} A_{3} \tag{12}\\
& b=D_{1} b_{2}+D_{2} b_{2}+D_{3} b_{3}
\end{align*}
\]
while the first constraint (9) is automatically batisfied and the eecond conetraint becomes
\[
\begin{equation*}
I=I\left(V_{g}, V, D_{1}, L, T\right) \tag{13}
\end{equation*}
\]

It is now intereating to compare these reaults for dc conditions (11), (12) and (13) with those for the continuous conduction mode [2]. For eesier correlation of thase resules, the rotation \(d_{1}=d\) and \(D_{1}=D\) henceforth will be used interchangeably. \({ }^{1}\) The steady itate vector \(X\) is the eolution of the inear system (11) as it was before in [2]. Hence atorage elements (\(L\) ' \(s\) and \(C^{\prime} s\)) are proportionality congtants in the linear system (1i) and it appears as though solution \(X\) of '(11) ia independent of them and dependent on de duty ratios and resistances In the original model. However, since \(D_{1}+D_{2}+D_{3} \equiv 1\) or \(D_{7}=1-\left(D+D_{2}\right)\) from (1i) and (12) it follows that the ateady etate vector \(X\) is now dependent on two duty ratios \(D\) (given) and \(D_{2}\) (as yet undetermined) as opposed to only D in [2]. The additional constraint (13) which expresses the average steady state inductor current I in terms of circult parameter values can now be used together with (11) to solve for the unknown duty ratio \(D_{2}\), and hence to determine the length of the second interval \(D_{2} T_{s}\). In general, then, \(D_{2}\) is dependent on circuit parameters (such as \(L\) and \(T\), for example) and hence de condicions are also substantlaily dependent on switching frequency \(f_{\text {a }}\) and inductance \(L\). This is in sharp contrast to the continuous conduction mode [2], where de conditions are dependent on duty ratio \(D\) and resietances only.

In aumary, expressions (11) and (13) completely determine the de conditions in the discontinuous condiction mode, and at the same time help to determine the length of the second interval \(D_{2} T_{s}\), which was unknown at the beginning of this analygis.

We now undertake to obtain the dynamic model by perturbation of the babic model (\(8-10\)).

\section*{Penturbation}

Suppose that the bwitch drive duty ratio d changea from cycle to cycle, in addition to the line voltage variation. Hence, the general perturbation equations
\[
\begin{array}{ll}
d=D+\hat{d} & d_{2}-D_{2}+\hat{d}_{2}, \tag{14}
\end{array} \quad d_{3}-D_{3}+\hat{d}_{3}, ~ a n d ~ i=I+\hat{i}
\]
introduced into the basic-state space averaged model given by (8), (9), and (10) result in
\[
\begin{align*}
\dot{\hat{x}} & =\left[(D+\hat{d}) A_{1}+\left(D_{2}+\hat{d}_{2}\right) A_{2}+\left(D_{3}-\hat{d}-\hat{d}_{2}\right) A_{3}\right](x+\hat{x})+ \tag{15}\\
& +\left[(D+\hat{d}) b_{1}+\left(D_{2}+\hat{d}\right) b_{2}+\left(D_{3}-\hat{d}-\hat{d}_{2}\right) b_{3}\right]\left(V_{8}+\hat{v}_{8}\right)
\end{align*}
\]
with additional constraints
\[
\begin{align*}
& \frac{d \hat{I}}{d t}=0 \tag{16}\\
& I+i=1\left(V_{g}+\hat{\delta}_{g}, V+v, D+\hat{d}, L, T_{g}\right) \tag{17}
\end{align*}
\]

From \(d+d_{2}+d_{3} \equiv 1\), when perturbed by (14), we got \(D+\hat{d}+D_{2}+\hat{d}_{2}+D_{3}+\hat{d}_{3}=1\) or, since also \(D+D_{2}+\) \(D_{3} \equiv 1\), we finaliy arrive at
\[
\begin{equation*}
\hat{\mathrm{d}}_{3}=-\left(\hat{d}+\hat{\mathrm{d}}_{2}\right) \tag{18}
\end{equation*}
\]
which was then used in (15).
The perturbed model given by (15), (16), and (17) is nonlinear owing to the presence of at least secondorder terms.

Linearization and final state-space averaged model
We now make the small-signal approximation, namely that the departures from the oteady-state values are small compared to the ateady-state values themselves:
\[
\begin{equation*}
\frac{\hat{v}_{\mathrm{g}}}{\mathrm{v}_{\mathrm{g}}} \ll 1, \quad \frac{\hat{\mathrm{~d}}}{\overline{\mathrm{D}}} \ll 1, \quad \frac{\hat{\mathrm{~d}}_{2}}{\mathrm{D}_{2}} \ll 1, \quad \frac{\hat{x}}{\mathrm{x}} \ll 1 \tag{19}
\end{equation*}
\]

Using approximations (19) we neglect all second (or higher) order terms, and obtain once again a linear syacem but including duty-ratio modulation d. After separating the steady-state (dc) and dynamic (ac) parts of both state-space equations (15) and constraints (16) and (17) we arrive at the following results for the final atate-space averaged model.

Steady state (de) model:
\[
\begin{equation*}
x=-A^{-1} b V_{g} \tag{20}
\end{equation*}
\]

Subject to constraint
\[
\begin{equation*}
I=1\left(V_{g}, V, D, L, T_{B}\right) \tag{21}
\end{equation*}
\]

\[
\begin{equation*}
\dot{\hat{x}}=\hat{A}+b \hat{v}_{g}+\hat{d}\left[\left(A_{1}-A_{3}\right) x+\left(b_{1}-b_{3}\right) v_{g}\right]+\tilde{d}_{2}\left[\left(A_{2}-A_{3}\right) \dot{x}+\left(b_{2}-b_{3}\right) v_{g}\right] \tag{22}
\end{equation*}
\]
subject to constraints
\[
\begin{align*}
\frac{d \hat{i}}{d t} & =0 \tag{-3}\\
\hat{i} & =\frac{\partial 1}{\partial v_{g}} \hat{v}_{g}+\frac{\partial 1}{\partial v} \hat{v}+\frac{\partial 1}{\partial d} \hat{d} \tag{24}
\end{align*}
\]
where \(A\) and \(b\) are as given before by (12).
From (24) It also becomes obvlous why (7) was originally called "perturbation equation I." In addicton, since \(\hat{x}=[d 1 / d t d v / d t \ldots]\) the introduction of constraint (23) into (22) reduces the Eirst dynamic equation to a static one, from which the unlantw modulation \(d_{2}\) can be datermined in terms of \(\hat{v}_{g}\) and \(\hat{i}\) modulations and circuit parameters.

The dynamic state-apace equation which, because of (23), became a static one, can now be designated "perturbation equation \(I I, "\) since it helps to determine the other unknown perturbation quantity \(d_{2}\). Together with (24) this uniquely defines the line transfer function \(\hat{y}(8) / \hat{y}(8)\) and duty ratio modulation crangfer function \(\hat{v}(8) / d(s)\). However, owing to the presence of constraints (23) and (24) no closed-form expression in available for the cransfer functions, unilke the case for the contin-, uous conduction mode.

We conclude chis section with illustration of chese general results on the boost converter. Both dc and ac sma11-signal models are then analyzed in detall and some unique insights into the operation of the boost converter in the discontinuous conduction mode are obtained. Dc conditions and the determination of the boundary of the two mades of operation are particularly thoroughly analyzed.

Example: ideal boost power stage in discontinuous conduction móde

For the ldeal boost power stage of Fig. I the three switched networks in the diacontinuous conduction mode of operation are shown in Fig. 6 .
a) Interval \(d T s\) :
b) interval \(d_{2} T_{s}\) : c) interval \(d_{3} T_{5}\) :

Fig. 6. Three suitched networks of the ideal boast converter of Fig. 1 operating in the discon tinutous conduction mode.

For the choice of state-space vector \(x=(1 \quad v)^{T}\), the srate-space equations of the threa linear switched networks in Fig, 6 become:
\[
\begin{array}{lr}
\dot{x}=A_{1} x+b_{1} v_{B} & \text { for Interval } d T_{y} \\
\dot{x}=A_{2} x+b_{2} v_{g} & \text { for interval } d_{2} T_{2} \tag{25}\\
\dot{x}=A_{3} x+b_{3} v_{g} & \text { for interval } d_{3} T_{s}
\end{array}
\]
where
\(A_{1}=\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{R C}\end{array}\right] \quad A_{2}=\left[\begin{array}{cc}0 & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{R C}\end{array}\right] \quad A_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & -\frac{1}{R C}\end{array}\right]\)
\(b_{1}=\left[\begin{array}{ll}\frac{1}{L} & 0\end{array}\right] T \quad b_{2}=\left[\begin{array}{ll}\frac{1}{L} & 0\end{array}\right] T\)
In addition to this, perturbation equation \(I\) (7) is reeded. However, it can easily be found from Fig, 6a as
\[
\begin{equation*}
1=\frac{1}{\max } 2=\frac{v_{g}}{2 L} d T_{s}=1\left(v_{g}, d, L, T_{6}\right) \tag{27}
\end{equation*}
\]

The same result could have been concluded also from Fig. \(5 b\), taine which actually represents instantaneous inductor curront for the boost converter (or buck-boost converter since buth have the same slope during interval dT).

Equations (26) and (27) contain now all that is needed to determine both dc and ac small-signal models by application of the general reault, equations (20) through (24). We first analyze in greater depth the steady-8tate (de) model.

\section*{Steady s.tate (de) model analysis}

By use of (26) in (20) the following linear algebraic syatem results
\[
\left[\begin{array}{cc}
\underline{A} \\
0 & -\frac{D_{2}}{L} \tag{28}\\
\frac{D_{2}}{C} & -\frac{1}{R C}
\end{array}\right]\left[\begin{array}{c}
\underline{X} \\
I \\
V
\end{array}\right]+\left[\begin{array}{c}
\underline{b} \\
\frac{D+D_{2}}{L} \\
0
\end{array}\right] \begin{gathered}
\\
v_{8}=0
\end{gathered}
\]

In which the quantities \(A, X\) and \(b\) are clearly identified and obtained by use of their definition (12). The general remark made previously about the solution of this linear algebraic system (28) becomes clearly visible. Storage elements (\(L\) 's and \(C^{\prime} s\)) are indeed proportionality constants, and the solution of (28) is
\[
\begin{align*}
& \frac{V}{V_{g}}=1+\frac{D}{D_{2}} \tag{29}\\
& I=\frac{V}{D_{2} R} \tag{30}
\end{align*}
\]

Hence, the dc conditions depend only on duty ratios \(D\) and \(D_{2}\) and resistance \(R\). From (29) we conclude also that the boost converter has even in the discontinuous, conduction mode the boosting property (de gain \(V / V \geqslant 1\)), since \(D_{1} D_{2}\) are by definition poaitive quantities. However, the dc conditions are not quite determined since \(D_{2}\) is as yet unknown. But, by use of the additional constraint (21), as further specified in (27) as
\[
\begin{equation*}
I=\frac{V_{g} D T_{s}}{2 L} \tag{31}
\end{equation*}
\]
together with (29) and (30), dc conditions (and also \(D_{2}\)) are completely determined. For example, substitution of (31) into (30) results in
\[
\begin{equation*}
D_{2}-\frac{V}{R I}-\frac{V}{R} \frac{2 L}{D T_{g} V_{g}}-\frac{V}{V} \frac{K}{D}=\frac{M K}{D} \tag{32}
\end{equation*}
\]
where the important dimensionless quantity \(K\) is defined at

This dimensionless parameter \(K\) plays a key role in the discontinuous conduction mode since it combines uniquely all the paramaters responsible for such behavior. Another quantity which will frequently appear is the dc voltage gain V/V, so we define also another dimensionless parameter \(M^{B_{a s}^{*}}\)
\[
\begin{equation*}
M \stackrel{\Delta}{-} \frac{V}{V_{g}} \tag{34}
\end{equation*}
\]

Finally, by use of (32) and (34) In yet unused dc relation (29), the quadratic equation for dc gain \(M\) is ob-
\[
\begin{equation*}
M^{2}-M-D^{2} / K=0 \tag{35}
\end{equation*}
\]

Since from (29) the dc gain \(M\) is positive, only the positive solution of (35) is meaningful and we obtain
\[
\begin{equation*}
N=\frac{1+\sqrt{1+4 D^{2} / K}}{2} \tag{36}
\end{equation*}
\]

Finally, the substitution of (36) in (32) determines the previously unknown duty ratio \(D_{2}\) as
\[
\begin{equation*}
D_{2}=\frac{K}{D} \frac{1+\sqrt{1+4 D^{2} / K}}{2} \tag{37}
\end{equation*}
\]

Hence, we have succeeded in expressing, through (36) and (37), two important quantities, the dc gain \(M\) and duty ratio \(\mathrm{D}_{2}\), in terms of the driving condition (duty ratio \(D\) of the transistor switch), and the single dimensionless quantity \(K\) which solely reflects the effect of cilcuit parameter values (\(L\) and \(R\)) and the other operating condition, the switching frequency \(f_{s}\), upon the dc conditions in the discontinuous conduction mode. If desired, the remaining de quantity, the steady-state average inductor current \(I\), may be found in terms of \(D\) and \(K\) by use of (37) in (30).

All these expressions (36), (37), and (30) are very useful in predicting the dc conditions when the switching converter is used alone, that is in an open-loop fashion, since the duty ratio \(D\) is given (independently generated) and the constant \(K\) may be calculated from element values with use of (33). However, if the converter is used in a closed-loop switching regulator the output do voltage \(V\) is predetermined by the cholce of the reference voltage and kept constant regardless of any variation of input dc voltage \(V\), by appropriate self-adjustment of the de duty ratio \(D\) (internally generated) in a negative feedback manner. Hence in closed-loop operation, \(D\) and \(D_{2}\) become dependent on the external de gain \(M\) and the dimensionless parameter \(K\). These dependences can easily be found from (36) and (37) to get, for closed-loop consideration:
\[
\begin{align*}
& D=\sqrt{K M(M-1)} \tag{38}\\
& D_{2}=\sqrt{\frac{K M}{M-1}} \tag{39}
\end{align*}
\]

Hence, (36) and (37) conveniently determine dc quantities for open-100p considerations, while (38) and (39) are likewise useful for closed-loop considerations.

It is now interesting to compare the open-1oop dc gain in the discontinuous conduction mode given by (36) with the corresponding dc gain in the continuous conduction mode, which, for the ideal boost converter is
\[
\begin{equation*}
M=\frac{1}{I-D} \tag{40}
\end{equation*}
\]

Hence, tha ldant de gain (80) is dopendant on ducy ratio D) only and nor on elrecutt paramatare (\$uch an \(L\), R) or bwitching frequancy \(f\). In tharp contrast to this, the de gain if in tha diecenclnuvur conduction moda (36) is dopondent alao on \(K\) in addicion to \(p\) and henco in a Htrong function of awitehing fraquethey \(f\), Inductunce \(L\), and lond \(R\). Novartholuas, whan the convartar in unad In chia moda in a clonod-loon rugulator, tha multcorructing fature of tho duty ratio i) would eompmantu any powndble changer of lond \(R\) or awltching frequancy \(I_{B}\) and atill keop the output voltaga rolatively conmtant. "

Anothor quation naturalily arlizes in comparisum of tha two de gadna; when do we calculate de gatn from one (36) ar tho othar formula (40), or, what is tha criterion to detarmine in which of the two mades (continuoum or discontinuous) tha convertex is oparating? The anowar 1e provided abily with raferenca to Fig. 5 . When tha eacond interval \(\mathrm{D}_{2} \mathrm{~T}\) is amaller thar interval (\(1-\mathrm{D}\)) \(\mathrm{T}_{\mathrm{s}}\), the convarter in operacing in tha diucontinuous conduacion mode, and in continuous mode otherwise, eo tha critarion bacomas
continuous conduction mede
\[
\begin{equation*}
\mathrm{D}_{2}>1-\mathrm{D} \tag{41}
\end{equation*}
\]

Wisterttinupus conduction mode
\[
\begin{equation*}
\mathrm{D}_{2}<1-\mathrm{D} \tag{42}
\end{equation*}
\]

To obtaln a conventant quantltativa meadure we find, firet, what happene axactily on the boundary betwen the two moden of convarter operation, or
boundants bedween two condaction modes
\[
\begin{equation*}
b_{2}-1-v \tag{43}
\end{equation*}
\]

By usa of (37) In (43), tha aquation to dotermine the cricical value of paramater \(k\), that to, kotermine tha
this happene, is which
\[
\begin{equation*}
\sqrt{k_{c r i t}^{2}+4 k_{c r i t} D^{2}}-2 p D^{4}-K_{c r d t} \tag{44}
\end{equation*}
\]
from which
\[
\begin{equation*}
K_{\mathrm{crit}}-\mathrm{Do}^{2} \tag{45}
\end{equation*}
\]

Thi solution (45) 16 the groper solut ton of (44) since
 always postive regardieds of \(D\), resulting in a proper positive righimhand side of (44). Whth thit, the criterla (41) mind (42) for datamination of the operating mode becane
continuoles conduerion mode \(k>K_{\text {crit }}\)
disconciluons conduction mode
\[
\begin{equation*}
K<K_{\mathrm{crit}} \tag{47}
\end{equation*}
\]
bowndury bedueen two conduction modes
\[
\begin{equation*}
K-N_{\mathrm{cxc}} \tag{48}
\end{equation*}
\]

Whara \(K\), as givan before by (33), la a function of paramatera \(h_{a} R_{1}\) and \(f_{4}\), whila \(K_{\text {crit }}\) ta a function of

We now invertigate how chana eritarda, (46) through (48), behave throughout the duty ratio ringa \(D\) e \([0,1]\). To factiltata thin insight, \(K\) crit ho plotred un a function of duty ratio \(D\) in Fig, 7 . Agriten in Fig. Ja, K crit (D)
has a haximum of \(4 / 27\) at \(D=1 / 3\). This now enablea an laportant concluaion about oparating mode to be diabn. Namaly, if the paramatara \(L, K\), and \(f\) are auch that the computad paramater: \(K\) la greatar than \(4 / 27\), expression (46) Le satiaflod regandeess of duty ratio \(D\). llence for \(x \geqslant 4 / 27\) the convertar adoaly oparates in the cont fandua conduction mode, no mittar what the operatlag eomsit an (duty rativ D) la, llowovor, if paramatorn \(\mathrm{L}, \mathrm{R}\), and f ure wach that \(K+4 / 27 \sim 0.15\) the aftuntion beconen ne \({ }^{3}\) Hhown In Fls. 7a, where the particular axample of \(K=\) \(0.08<0,15\) da choadn. For a cartain range of duty ratio D, that is \(D\) will \(D\) \& How (he ohown by the shaded area In Flg. \(7 n\)), the conditpux (47) lo Batiafied and the converter operates in the discontinuous conduction moda, While for tha ramalning portions of the operating range (\(0<D<D_{\text {min }}\) and \(D_{\text {max }}<D<1.0\)) It again oparaten in tha continuous condmaxtion made, aince then lnequalicy (46) holda.

Fig. 7. Detenmonation of the openating mode (continwous on descontunuous) fon the idear boost converter of Fig. 1.

This diacusaion has bean In terms of open-loop conAdacations, when duty ratio Die glven and axternaliy controlled. Howeyar, a bafore for de conditions, it 10 desirable to hava the boundary condition (45) In cerma of the de gada \(M\), which le mora suitable quantity for cloned-loop considerationa. Thie can easily be dona since tha de gain \(M\) in continuous acrosa the boundary (an sean by vea of (43) in (29) resulting in (40)), and thus aubititution \(D=(M-1) / M\) in (t5) gives
\[
\begin{equation*}
\mathrm{K}_{\text {crit }}-\frac{M-1}{N^{3}} \tag{49}
\end{equation*}
\]

Thle function \(\mathrm{K}_{\mathrm{crit}}{ }^{(M)}\) (a ploted in Fig, 7b, and a similax diecussfon appliea, Howevar, now the maximum of K (\((M)\) of \(4 / 27\) is obtalned for gain \(\mathrm{M}-1.5\). As beEfic, for \(K<4 / 27\), the convarter is ln the duem continuour conduction mode, but now for de gain in in the range \(M_{w i n} * M<M_{m a x}\) an shown by the shaded area In Fig. 7b, "hitha raveale a potenthaily serious problem If the boost rogulator ware designod (and compananced) to oparate in the discontinuous conduction mode only, Namaly, durlag the fultelal turn-on procesis, tha output voleage atarte from zaro, and tha convarcer would have to pasa through the continuous conduction reglon finst (for \(1<M<M_{m i n}\)), before conaling to the diecontinuoua conduction magion (shaded area in Fig. 7b), l'his would suggest posedbla etabilley problems, if the clobed-loop were not compenzated to assure arabce operation in the continuous conduction mode as well.

From the standpoint of the de gatne (as a finction of duty ratia D\()\), tha odtuntion corresponding to that of Fise 7 in ghown In FLg. 8 foy some \(K<4 / 27\).

From the de gains for both conduecton modes shown in Fis. 8, te bocomes obvious that the actund de galn will follow the Canger of the two galns, thins the node of operation with change accordingly as the duty ratio changes from 0 to A. Also in the close vicintey of gatn \(M-1(1-N-M, \quad\), the convarter is always oparating in the contintious conduetion mode. Thus, the
problam of having, for axample, \(D_{2} \operatorname{lnf}\) inita when \(M+1\) from (39) is only a ficticloum one, amea (3y) is for che diacontinuous conduction mode and hance not applicable in the vielnity of and at gain \(N=1\).

Fig. 8. Boost conventer de voctage gains in continuous and discontinuous conductiun nodes as a formetion
á duty ratio \(D\).
comuronums conduction mode
\[
\begin{equation*}
R \& N_{\text {ordt }} \tag{53}
\end{equation*}
\]
discontinuous conduction mode
\[
\begin{equation*}
K \geqslant R_{\text {crit }} \tag{54}
\end{equation*}
\]
boundary between tho modes
\[
\begin{equation*}
R-R_{\text {erdt }} \tag{55}
\end{equation*}
\]

Lec us now illustrate chis on a numerical axampla. For \(L=880 \mu \mathrm{~F}, \mathrm{f}=20 \mathrm{kHz}\) wa calculate \(\mathrm{K}-35.2 \mathrm{~h}\). liy the sama dxgument an bafore (mae Figt. \(7^{\text {nom }}\) And 8, for example) tha convertar will afowys operate in the continuous conduccion moda if
\[
\begin{equation*}
\mathrm{k}<\frac{27}{4} \mathrm{R}_{\mathrm{nom}} \tag{56}
\end{equation*}
\]

We conclude that de anslysis with some ummerleal examples and ralated quantitative and quajitativa signifleanca of the diwensionlass paramater \(K\). For axampla, for the det of paramotars \(L=880 \mu \mathrm{H}, \mathrm{R}-2201 \mathrm{and} f\) 20kHz, we compute \(K=2 L f i f=0.16\). Therefore, since paramoters always oparate in the will with chide set of mode. However if for en che concintious gonduction is reduced co \(f=10 \mathrm{kHz}\), example, the aw.thing fraquancy und some range of discontince results in \(\mathrm{K}=0.08 \times 4 / 27\) should be axpected (see Fips, 7 conduction operacton reduction of parameter \(x\). Therefora, the tion. From the deflattionaw \(4 / 27\) causes this tranuland change to the discontinuous in (33) this reduction qualicatively achieved binuous conduction moda ds load \(R\), decrease of increase of quency \(f\). There 18 alao a fourth \(L\) or owitching fracontinuous conduction node fourth way to enter the disoperating condition the dyty that 10 to change the in Fig. 7 and Fig. 8, but only if the as 111 uatratad 1s met.

Very of ten, howevar, out of all head four porm sibilities, one is mostly interasted in how the change of load \(R\) affuctes the oparating mode. Namely, the paramaters \(L\) and \(F_{z}\) are usually deaign parametere whowa cholice may dopend on the aliza and efficlency requiremente of the converter or regulator. On the other hand, of range of variacion of duty racio \(D\), or equivalently of gain \(M\), is a design requirement in a clowed-loop conpiementation aince the output voltage \(V\) is maincained \(V\) congtant againes the ranga of variation of input voltage
 change depending load \(R\) also can hava a wide range of often out of 8 on cha ueser of the ragulator, and is nation of the converter apers control. Hance, datermichanges of load B bere operating mode with reopect to accomplished by finding an equivale. This can ba easily relfpactively, as
\[
\begin{align*}
& \mathrm{R}_{\mathrm{crit}}-\frac{1}{{D D^{2}}^{2}} \mathrm{R}_{\mathrm{nom}} \tag{50}\\
& \mathrm{R}_{\mathrm{crit}}-\frac{\mathrm{M}^{3}}{\mathrm{~N}-1} \mathrm{R}_{\text {nom }} \tag{51}
\end{align*}
\]
where \(R_{\text {nou }} 1 a\) a dasign paranetar dafined by
\[
\begin{equation*}
\mathrm{R}_{\mathrm{nom}} \mathrm{DLf}_{\mathrm{B}} \tag{52}
\end{equation*}
\]

The criturla for decermination of the oparating mode, (46). (47), mad (48), then become
or for tha given numartcal axampla for \(k<2380\). Whon \(R>2380\) thare will ba a ranga of gain \(M\) (oae Fig. B) for which the convertar oparates in the discontinuoug conduction moda.

This concludes the extensiva de analysis mad wa now curn to the dynamic (ac amall-signal) model analysis of thix ideal boose convarcer axampla.

\section*{Dinamie (fie small-signal) model analys is}

Befora we apply the ganaral rasult to chis ddeal . booet convertar axampla, lat us firgt put the constraint (27) Into a more sudtable form by using the ateady-etate average inductor currant I of (3i) to ges
\[
\begin{equation*}
1-\frac{v_{g} d T_{s}}{2 L}-\frac{v_{R} d}{V_{g} D} \tag{57}
\end{equation*}
\]

By una of perturbation equation (57), nodel dascruption (26) and definition (12) In the general result given by (22) through (24), wa obtaln
\[
\begin{aligned}
& \text { dyamic (ac amall-wignal) model }
\end{aligned}
\]
with additional constraines
\[
\begin{align*}
& \frac{d}{d t}=0 \tag{59}\\
& i=\frac{I}{V_{B}} \hat{v}_{8}+\frac{T}{D} \tilde{d} \tag{80}
\end{align*}
\]

As opposad to the general rasule, we can now for chis epecific examplo enter the conseratnts (59) nor (60) into dynamic modal description (58). Tha introduction of (\$9) raduces the first dynamic equation in (58) to a static one, and after proportionality constant is ram moved the dynambe model bacomes
\[
\begin{align*}
& 0=-n_{2} \hat{v}+\left(D+D_{2}\right) \hat{v}_{g}+v_{g} \hat{d}+\left(v_{8}-v\right) \hat{d}_{2} \tag{61}\\
& c \frac{d \hat{v}}{d t}-D_{2} \hat{i}-\hat{v} / R+I \hat{d}_{2} \tag{62}
\end{align*}
\]

With additional conatralat (60). Nota, however, that now the firat static equation (61) actually determines the unknown modulation quintley \(d_{2}\) (modulation of tha mecond interval \(\hat{d}_{2} T\) as shown in Fig, 5 , for axamile) In terma of the other de and ac quanticles. In the remilning dynamic equacion (62), besides this modulation \(d_{2 n}\) which we can now express from (61), current modulation \({ }^{2}\) also appears. But, from the perturbation equation 1 (60) it is also determined in terms of the known ac quantities (forced modulations \(\hat{v}_{\text {g }}\) and \(\hat{d}\). In gencral, both equacions (60) and (61) cluld have boch modulacion quantithen 1 and \(\hat{d}_{2}\) for some arbitwary converter, Sut, they ara ilpear algebrade equations and could be solved for \(\hat{1}\) and \(d_{2}\) in terms of other ac quancities and then oubacitutad in the ramaining dynamic description (which could be, for some converter with more than two storage elements, higlier than the first order model given by (62)).

Another general feature, which is hidden in this model, is that (61) can be considered as a consequenca of the equation
\[
\begin{equation*}
\left(d+d_{2}\right) v_{y}-d_{2} v \tag{63}
\end{equation*}
\]
which after usual perturbation and Inearization steps and subtraction of de terms reduces to (61). Hence, In analogy to (57), equation (63) can now be designated perturbation equaclon II. The appearance of (63) in cha modelling will become more apparent later in the hybrid modeling and circuir avaraging techniquese. But In any case, the unknown modulation quantities 1 and \(d_{2}\) come an the solution of two Iinear algebralc equations, which are essentially linaarized verbions of perturbation equations \(I\) and \(I I\). (57) and (63) respectively.

To complece che dynamic model description we aimply ubetitute (60) and the solution of \(\mathrm{d}_{2}\) from (61) in (62) to get
\[
\begin{equation*}
c \frac{d \hat{v}}{d t}-\left(\frac{D_{2} I}{v-V_{g}}+\frac{1}{R}\right) \tilde{v}+\left(\frac{D_{2}}{V_{g}}+\frac{D+D_{2}}{V-V_{g}}\right) I \hat{v}_{g}+\left(\frac{D_{2}}{D}+\frac{V^{g}}{V-V_{8}}\right) I \hat{d} \tag{64}
\end{equation*}
\]

Slince this dymamic model has signifleance only for the closed-loop regulator, it is convendent to exprese all de quantities in terma of \(M, K, R\) and output valeage \(V\), as was explalned before lin the de analyois. Hence by use of (38), (39) and (30) we obtain
\[
\begin{equation*}
\mathrm{c} \frac{\mathrm{~d} \hat{v}}{\mathrm{dt}}-\frac{2 M-1}{M-1} \frac{1}{R} \hat{v}+\frac{M}{M-1} \frac{2 M-1}{R} \hat{v}_{\mathrm{g}}+\frac{2 V}{R} 7 \mathrm{KM}^{1}(M-1) \frac{1}{\mathrm{~d}} \tag{65}
\end{equation*}
\]

In (65) all proportionality constants would become infinite and waningleas when \(M-1\). However, it was explained in the de analysis that in the vicinity of and at gain \(M=1\), the boose converter always operateb in the continuous conduction mode, hence a different dynamic model appllea.

14 Is now easy to obtaln from (65) two transfer functions of Intereat
\[
\begin{align*}
& G_{v g}-\frac{\hat{v}(s)}{\hat{v}_{g}(s)}-G_{0 g} \frac{1}{1+a / w_{p}} \tag{66}\\
& G_{v d}-\frac{\hat{v}(s)}{\hat{d}(u)}-G_{o d} \frac{1}{1+\theta / u_{p}}
\end{align*}
\]

\section*{4 HYBRID MODELLING TN DISCONTINUOUS CONDUCIION MODE}

We demonstrate in chis section how for any specific converter a useful circuit model of the basic atataspace averaged model (8) can be found, appropriately modified by inclusion of the constraint (9), and supplemented by the additional conseraint (10). In terms of the Flowchart of Fig. 4 we will proceed from hlock 2a through 2c to arrive at the circuit model in block \(2 b\). Again this le illustrated on the same Ideal boost converter example as in the pravious section.

When the booat converter description (26) and (27) is applied to (8), (9) and (10) the following basic state-space averaged model reaults:
\[
\left[\begin{array}{l}
\frac{d 1}{d t} \tag{69}\\
\frac{d v}{d t}
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{d_{2}}{L} \\
\frac{d_{2}}{c} & -\frac{1}{R C}
\end{array}\right]\left[\begin{array}{c}
1 \\
v
\end{array}\right]+\left[\begin{array}{c}
\frac{d+d_{2}}{L} \\
0
\end{array}\right]
\]
with additional constraints
\[
\begin{align*}
& \frac{d i}{d t}=0 \tag{70}\\
& 1=\frac{v_{d} d T_{0}}{2 L} \tag{71}
\end{align*}
\]

It now becomes clear that introduction of (70) Into (69) reduces the fixst dynamic equation to perturbation aquation II as given before by \((6)\). But, Instead of lneroducing this substitution, las \(u s\) first find the circuits realization of the state-space equacions (69) as shown In Fig. 9.

The constraint (70) leads, in the circuite model of Fig. 9, to effective dinappearance of the inductance \(L\), since \(v=\) Ldi/dt \(=0\). The rasulcing equality of che two voltage generators producea again cha perturbation equation If given by (63). At the same time shorting of the Induccance causes reduction of syatem order by one, and effectively a single pole tranafer function result becones apparent.

Fig. 9. Circuit nealization of the state-space model (69), with constraint (70) also inckuded.

Lat us now put the circuit of Fig. 9 into nore elegant forms by introducing a dc and ac transformer In place of the two dupendent generatore in Fig. 9. Also It is desirabla to have source voltage \(v\) effectively at the Input of the converter, rather thin as some modified quanticy an \(\left(d+d_{2}\right) v\) in Fig. 9. Howevar, this is aasily accompliahed by introduction of another de and ac transformer at the fnput of the converter. In addition, the true input current into the converter becomas properly exposed as seen in the badic circuitaveraged model of Fig. 10. In addition to the circuit model in Fig. 10 we need the remaining constraint (71) to complete the description of the converter in discontinuous conduction mode (as also displayed In Fig. 10). Ae before, the circuit model and the additional perturbation equation are valid for both de and ac condiciona. Hence the two traneformars in Fig. 10 are operating both at ac and de and the appropriate eymbol is introduced.

Fig. 10. Basic circuit averaged model for the ideal boost converten in the discontinuous conduction mode.

A word about the new transformer aymbol introduced In Fig. 10 is appropziate here. In the modelling of de-to-dc convarters a need naturally arises to have as - convenient modeleing tool epacial types of traneformare: a transformar which operates far boch ac and de Elgnals, as for example chat In Fig, 10 , and also a transformer which only works at de (for which the need will ardee later in Section 5.1). Even though these transformers are not physically realizable they are, neverthaless, useful in modelifng the basic converter function: de-to-de conversion. Henca, as an indicator of thelr epecific functions, the gymbia of \(\mathrm{Fig}, 11\) axe intro-
a) de and ac transtommer blde transformer

duced. For consistency, the conventlonal, physically raalizable, ac traneforme only, is pictorially repremented as in Fig. Ilc. Later in Section 5.2, for similar purposes, the ame overprint glypha will be used Wh reslatarice aymole.

Following the procedure outlined in this bection one can easily obtain the basic avaraged circuit modele of the three common power atages of Elig. 1. These models for discontinuous conduction mode are summarized In Fig. 12.
a) buck power slage:

b) boost power stage:

Fig. 12, Summary of the basic circuit averaged models for three common power stages in discontinueus conduction mode.

\section*{5 CIRCUIT AVERAGING IN DISCONTINUOUS CONDUCTION MODE}

In this section the alternative path \(b\) in the Flowchart of Fig. 4 is followed and the perturbation and innearization ateps corresponding to those in stateapace averaging path a are applied to the circuit model to arrive at the flnal circuit averaged models, separately for steady-state (dc) and dynamic (ac) response.

We continue with the same ideal boost converter example and hence use as a starting model the circult model of Fig. 10. Even though that clrcutt model was obtained by following hybrid modelling, we emphasise also the other possibility. Namely, it could have been obtained directly by averaging the three suitehed circuit models of Fig, 6 using the standard circuit averaging technique and supplementing it by the appropriate conatralnte (70) and (71).

\section*{Penturbation}

If the averaged circult model of Fig. 10 is perturbed together with its perturbation equarion 1 according to

Fig. 11. Definition of various thansformer symbols used \(v_{g}=v_{g}+\hat{v}_{g}, \quad 1=I+\hat{i}_{2} \quad d-b+\hat{d}_{1} \quad d_{2}=D_{2}+\hat{d}_{2}, \quad v=v+\hat{v}\)

Fig. 13. Pertunbation of the basic avenaged eincuit model in fig. 10 resutes in this nonibear circuit model.

\section*{Lutcarlzadion}

With the amallugignal assumption on perturbation, that is
\[
\begin{equation*}
\hat{d} \ll D_{1} \quad \hat{d}_{2} \ll D_{2}, \hat{1} \ll x, \quad \hat{v} \ll V_{1} \quad \vec{v}_{g} \ll V_{\mathrm{a}} \tag{73}
\end{equation*}
\]
the azcond-ordar cornw in Eag. 13 can be naglacted and the linearized madel of Sig, 14 obtaned.

Fig. 14. Moder of Fig, 13 tincarized to include de and ae smakl-signal models.

The circuit model in Fig. 14 tegather with tha dc and ac pare of the perturbation equation I (also ahown in Fig. 14) completely datarmines both nodele. At thin polut, wa continue to devalop separately the two elrcuit models - the steady-atate (de) circuit model and the dynamic (ac amall-signal) model,

\subsection*{5.1 Steady-acate (da) chrcult model}

With all ac quancitede soc to nero, the de circule model ts obcalnad alrectly fram Fig. 14, and upon aubstitution of da dependant generatore by the de transformer symbols, the circult modei in Fig. 15 rosulte.

Fig. 15. Fanat de aincuite noded of the toost womerter in the descontinuous condertion node,

Thie circuit model is also supplamencad by tha de pare of the perturbation equation \(I\), which is, of courae, tha sama as (31). From tho circuit modal in Fig. 15 cha other two de relations (29) stud (30) are obtainad. Hence the de elreute model leade to tha diane de conditlons and rapults diacusaed ne langth In Saction 3.1 on tate-apace avaraging.

We now tum to the development of the dynamte (ac) circult modal.

\section*{5.2 bynamic (ac) clrcult modal}

Aftar the nteady-atate (de) quancltiea aro nubcmactod trom cho circuic model in Fig. 14 (and percurbacion aquation aw wall) the ac circuit modal in Fig. 16 1s obtained.

Fig. 16. Dptamic lac smxet-signallicincuit moder fon the boos t converten weth the cons traint on nodulation \(?\) (penturbation equation 1) not yet included in the circuit modet.

From F18. 16 It 18 obvious that the two dependent current ganeratorg aro functions of two yat undatarminad modulation quantithea \(\hat{d}_{2}\) and \(\hat{x}\), olnce tha other quantities are althay alraady datomainad from the do circuit modal (auch as \(\mathrm{D}_{2}\), I) or are knowi driving quantitias (as \(D\) and \(\bar{d}\)). Whila the curront modulation is alraady availubla through che linearized perturbation equation I (aco Fig. 16), the ocher modulatyen? quantity \(\hat{d}_{2}\) can uadily be obtained from the inside loop of Eig. \(16^{2}\). Namaly, since the two voltage geaerators in Fig. 16 must be aqual, wo get
\[
\begin{equation*}
\left(\mathrm{D}+\mathrm{D}_{2}\right) \hat{v}_{\mathrm{s}}+\left(\mathrm{d}+\hat{\mathrm{a}}_{2}\right) \mathrm{v}-\mathrm{D}_{2} \hat{v}+\hat{\mathrm{d}}_{2} v \tag{74}
\end{equation*}
\]

Note that this is the same equation as the first (static) equation (61) of the atate-spaca averaged model. Now it In asey to sae that (74) and (61) came out actually wo a consequence of the perturbation and lineardzation scepa appliad to the perturbation aquation II (63), alnce the voltaga generatore in Fis. 16 reaulted from the perturbation and linearization of the vaitage generatore in Fig. 9, which have been shown to be equal for diecontinuous conduction mode (owing to \(\mathrm{di} / \mathrm{de}=0 \mathrm{conm}\) stratint).

The aquacion (74) can now be solved for the unknown wodulation \(d_{2}\) gnd, togethar with the perturbation equam cion defining i, detaralnes the two currant generators In terms of the known modulation quantities ae followa:

\(\hat{j}_{0}=\hat{u}_{2} I+D_{2} i=\frac{2 V I}{V-V_{g}} d+\frac{V}{V_{g}}{\underset{V-V}{g}}_{2 V-V}^{R} \hat{v}_{g}-\frac{V}{V-V} \frac{1}{R} \hat{v}\)
Sinca tha convartar dynamic modal ts usually used in closud-loop rugulator applications, we convanientyy exprese all de quantities in terma of \(N\), \(K, R\) and outpue regulatad volrage \(y\) (as explained bafore) to arelve at
\[
\begin{align*}
& J_{1}-\frac{2 v}{k} \sqrt{\frac{M}{K(N-1)}} \hat{d}+\frac{M^{3}}{M-1} \frac{1}{R} \hat{v}_{s}-\frac{M}{M-1} \frac{1}{R} \hat{v} \tag{77}\\
& \vec{j}_{0}-\frac{2 V}{K} \frac{1}{\sqrt{N M(M-1)}} \hat{d}+\frac{M(2 M-1)}{M-1} \frac{1}{R} \hat{v}_{g}-\frac{M}{M-1} \frac{1}{R} \hat{v} \tag{78}
\end{align*}
\]

By uga of (77) and (78) in the circuit model of Fig. 16, tha ctriult moded in Elg. 17 is ganarated.

Fig. 17. Dynamic (ac small-signal) circuit model of the (for modueation with perturbation equation I (equality of the voltage andurbation equation I included in the circuit model.
The two voltage generators \(\hat{v}_{1}\) and \(\hat{\mathbf{v}}_{\text {in Fig. }}\) in are purposely shown in dotted lines to eaphasize the fact that they are no longer essential, sance the into find modulation \(\hat{d_{2}}\) and subatitut already been used circuit model. Therefore they can no lsewhere in the the circuit model. Finally, by modelling omitted from generatore in Fig. 17 which, by modelling the current tages across them as ac resiators proportional to volcuit model of pig. 18 is obtained.

Fig. 18. Final ac small-signal circuit model for boost converter in the discontinuous conduction mode.
The element values in Fig. 18 are defined as
\[
\begin{array}{ll}
J_{1}=\frac{2 V}{R} \sqrt{\frac{M}{K(M-1)}}, \quad r_{1}=\frac{M-1}{M^{3}} R, \quad g_{1}=\frac{M}{M-1} \frac{1}{R} \\
j_{2}=\frac{2 V}{R} \sqrt{\frac{1}{K M(M-1)}} \quad r_{2}=\frac{M-1}{M} R, \quad g_{2}=\frac{M(2 M-1)}{M-1} \frac{1}{R} \tag{80}
\end{array}
\]

Also since \(r_{1}\) and \(r_{2}\) are ac resistances only, the appropriate symol conaistent with that adopted for the is used in Fig. is. the dotted-line box in Fi two current generators inalde gymbols to emphasize the fact the used with square current generatora (on some other they are dependent circuit).

From the circuit model in Fig. 18 and by use o element definitions (79) and (80), the two transfer verified that they \(G\) and can be derived. It can easily be before, (\((66)\), (67) and exactly with those obtained An intereating obaervani(68), using state-space averaging of the circuit model in Fig. 18 can be to the topology to arrive at these two trater can be made. Namely, -lements in the output port uned, without any need fort infut \({ }^{\frac{1}{2}}\) and \(g_{2}\) have been evar, the input port deacription bort deacription. How the determination of the complen becomes mandatory if aired, aince it properiy modete circuit model 1 s deproperties (both open- and cloe the important input for example), as will be illustrated inp input impedances, Moreover, the output port 11 ustrated In Section 7.2. puf properties through the dependent does affect the in1v In Fig. \(18 . \quad\).

An interesting comparison with the circuit model
topologies for the continuous conduction mode \([1,2]\) appropriate here. While in the contion mode \([1,2]\) seems mode the effect of duty ratio continuous conduction through duty ratio dependen modulation d was expressed ators, here two duty ratio depenge and current gener(one at the input and the dependent current generators appropriately account for other at the output port) perties (and output properties input and transfer protinction and unique feature of the well). Another disFig. 18 is the presencere of the circuit model of are in general dependent on an resistances only (which the gain \(M\)), a characterd an operating condition, cinuous conduction mode. Bic not present in the conand qualitative differences, But despite these topological tinuous conduction mode \([1,2]\) and discoit models for conduction mode (Fig. 18) have gond discontinuous conin common: they both have something very important circuit model which accurasent a complete inearized transfer propertiee but arately represents not only as well.

The method outlined in this section, and illustrated for the boost converter, is applied to the other two tabular forms (ing. 1 and results are presented in various Section 6 on a canonical circuit model

\section*{6 CANONICAL CIRCUIT MODEL FOR DISCONTINUOUS}

In this section the canonical circuit model for discontinuous conduction mode (block 5 in the Flowch of Fig. 4 or Fig. 18) is obtained for the the Flowchart switching converters of Fig. 1, and thanks to its fixed circuit topology, the regult and thanks to its fixed in the form of various tables, are conventently summarized ac small-signal circuit modela, beparately for de and for

From the dc conditions and by following the derivations presented in Section 3.1, the simple formulas for determination of the boundary between the two conboost converters may also be found for the buck and buck(49) through (51) for the boost convalogous to (45) and tabulated for all three comon converter, are again This then ultimately models (those of [2] or thoses which of the circuit should be chosen for given parametertions 5.1 and 5.2) ating conditions of a clon parameter values and operAn interesting pictorial interpret switching regulator this decision is given in terpretation facilitating and position of another "inherent"frequeqcy frey scale quency defined by converter and \(f_{c}\) before) with respect element values, ifke w
whing frequency \(f_{B}\) experimentalily verified on a transfer propercies are verter breadboard and excell particular buck-boost condictions is observed, thus confirming the with the preof the circuit models for confirming the high accuracy mode.

\subsection*{6.1 Derivation of the canonical elrcuit modele for}

In this section the canonical circuit models (both dc and ac small-signal circuit models) for the two remaining converters of Fig. 1 are derived from the basic clrcuit averaged models in Fig. 12 .

\section*{Buck converter in discontinuous conduction mode}

With regard to the de circuit model derivation, a general observation seems appropriate here. Namely, th dc.circuit model of the boost converter (Pig. 15) could have been obtained directly from the unperturbed cir-
cuit toodel In Fig. \(12 b\) by alraply taklag all quantitias to be de quancicies and as usual considering the capahave been to be open for de signali, Hence, as should have been expected, the elrcuit models in Fis. 12 togechar with the addicional exprassions for the average axacely why it was are valid de modals. But chie ia ented methode previousiy emphasized that the prasistent with for finding de and ac models are cont modele with each other. After all, ac small-algnal round aomy rapresent the innemrizad parturbation perturbacion and lintate (de) conditions, Hence, by in fig 12 and inearization of the circuit models in Fig. 12, the ac circuit models conslatenc with the de cirposed de circult modela result. Therefore, the with de quantitieg for the buck converter ia as In Fig. 12 A and de transformery only, \(d_{2}-D_{2}, 1-I, v_{g}=V_{g}, V=V\)

After usual perturbation and Intaearization steps (ace applied to the circuit modal of Fig. \(12 a\), the dynamic (ac) circuit model in Fig. 19 is obtained.

Fig. 19. Dthamic (ac small-signal) cinctit model for the buck converter in discontinuous conduction mode. with corresponding perturbation equation I for
modulation \(i\).

The perturbation equation \(x\) de diffecent from that for the boost convarter and is
\[
\begin{equation*}
1-\frac{\left(v_{g}-v\right) d T}{2 L}-\frac{\left(v_{g}-v\right) d}{\left(v_{g}^{-V}\right) D} I \tag{81}
\end{equation*}
\]

After perturbation and linearization of (81) we get
\[
\begin{equation*}
\hat{I}-\frac{I}{V_{g}-V} \hat{v}_{g}+\frac{I}{D} \hat{d}-\frac{I}{V_{g}-V} \hat{v} \tag{82}
\end{equation*}
\]

When the unknown modulation quantity \(\hat{d}_{2}\) is found from equality of the two voltage generators in Fig. 19, and by use of (82), the two current generatora in Fig. 19, after expression of de quantities in termo of closedloop parameters \(\mathrm{N}, \mathrm{K}, \mathrm{R}\), and \(V\), becoma
\(\hat{j}_{1}-J_{1} \hat{d}+\hat{v}_{g} / r_{1}-g_{1} \hat{v}_{;} \quad \hat{J}_{0}-J_{2} \hat{d}+g_{2} \hat{v}_{g}-\hat{v} / r_{2}\)
Whare
\(J_{1}-\frac{2 V}{R} \sqrt{\frac{1-M}{K}}, \quad r_{1}-\frac{1-M}{M^{2}} R, \quad g_{1}-\frac{M^{2}}{1-M} \frac{1}{R}\)
\(J_{2}-\frac{2 V}{R} \frac{1}{M} \sqrt{\frac{1-M}{K}}, \quad I_{2}=(1-N) R, \quad 8_{2}-\frac{M(2-M)}{1-M} \frac{1}{R}\)
Henca the same topoLogy of the dynamic (ac) model for che boont convertar shown in Fig, 18 is also obtained for the buck converter, in the discontinuous conduction mode, but with the model element vatues defined by (84)

Buck-boosic converter in the discontenuous conduction mode

The de circult model for the buck-boost converter ia obeained directly from the circuit model in fi?, 12 c After perturbation and linearization of the nociel, the dynamic (ac) circuit model In Fig. 20 is obtalned.

Fig. 10. Dimanic lac small-signal circuit model fon the buck-boost converter in discontinuous conduction mode with perturbation equation I (60 k i) shown explicithy.

The parturbation equation \(I\) is now the same as for the boont converter (71) and the two current generators J, and \(J\) in Fig, 20 are as defined in (83) but with the following element values for the buck-boost converter \(f_{1}-\frac{2|V|}{\sqrt{K_{R}}}, \quad r_{1}=\frac{k}{M^{2}}, \quad g_{I}-0\)
\[
\begin{equation*}
J_{2}=2 \frac{|V|}{\sqrt{K R}} \frac{1}{M}, \quad r_{2}=R, \quad g_{2}=\frac{2 M}{R} \tag{86}
\end{equation*}
\]

Again the same circuit topology of Fig. 18 results, but with element values (86) and (87). However, chere is a small distinction from the previous two models aince now, as saen in (86), gy 0 . Therefore there is no foedback affect from the output part to the input circuit model as in the other two converters, and the openloop input impedance ie Just \(r\). But, this is reasonable to expect for the buck-boost converter, since It is the only converter in which the energy transferring inductance is presant either solely in the input circult (interval \(\mathrm{Dr}_{\mathrm{g}}\)) or molely in the output circuit (interval \(\mathrm{D}_{2} \mathrm{~T}_{\mathrm{S}}\)). In the other two converters (buck and boost), on the other hand, the output clrcuit (Including \(C\) and \(R\)) ia at leasc for a portion of period T connected to the input and represents a loading affect on it. Hence the feedback action through current generator \(g_{1} \hat{v}\) is to be expected in these two

The results for all three converters (buck, boost and buck-boost) are summarized in che next section.

\subsection*{6.2. Sumpary of the canonical circule madel results}

In this gection the reaults for both de and dymamic (ac) canonical circuit modela for buck, boost, and buckboost converter are summarized and, owing to the fixed clrcuit model topology, convenfentily Ilsted lin several cables.

In Fig. 21 the polarity of the second transformer 1:M, ie inverting for the buck-boost converter and otherwise us shown. The parameters in the de circult model of Fig, 21 are defined in the firat three calumes of rable \(I\), while the remaining two colums tabulate the de relations derived from this circuit moded. Note, howevar, that this circuit model can be used to determine other de quantities as well, such as the de input durrent \(I_{i n}\) in terms of the defining parametern.

Fig. 21. Steady-state (dc) circuit model for the converters of Fig. 1 in the discontinuous con-
duction mode.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{converter type} & \multicolumn{3}{|l|}{definition ef de model} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{derived quantities}} \\
\hline & \(M_{1}\) & \(\mathrm{M}_{2}\) & \(1 / \mathrm{averaga}\) & & \\
\hline \multirow{3}{*}{buck} & \multirow{3}{*}{D} & & Haveraga & \(\underline{=} M_{2} V / R\) & \(M=M_{1} M_{2}\) \\
\hline & & \(\frac{1}{D+D_{2}}\) & \(\frac{\left(V_{\mathrm{g}}-\mathrm{V}\right) \mathrm{DT}}{2 \mathrm{~L}}\) & \(\frac{V}{\left(D+D_{2}\right) R}\) & D \\
\hline & & & & & D+ \({ }_{2}\) \\
\hline boust & \(D+D_{2}\) & \(\frac{1}{D_{2}}\) & \(\frac{V_{\text {g }} D T_{s}}{2 L}\) & \(\frac{V}{D_{2} R}\) & \(\underline{D+D_{2}}\) \\
\hline \multirow[t]{2}{*}{luck boost} & \multirow[t]{2}{*}{0} & & & & \\
\hline & & \(\frac{1}{D_{2}}\) & \(\frac{V_{q} 0 T_{5}}{2 L}\) & \(\frac{V}{D_{2} R}\) & \(\frac{\mathrm{D}}{\mathrm{D}_{2}}\) \\
\hline
\end{tabular}

TABLE 1. Definition of the de circuit model in Fig. 21 Gor the three common converters of Fig. Fig operating in the discontinuous conduction mode.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
converter \\
type
\end{tabular} & \multicolumn{3}{|c|}{\begin{tabular}{c}
open-loop consideration
\end{tabular}} & \multicolumn{2}{|c|}{ closed-loop consideration } \\
\cline { 2 - 5 } & \(M(D, K)\) & \(D_{2}(D, K)\) & \(D(M, K)\) & \(D_{2}(M, K)\) \\
\hline buck & \(\frac{2}{1+\sqrt{1+4 K / D^{2}}}\) & \(\frac{K}{D}\) & \(\frac{2}{1+\sqrt{1+4 K / D^{2}}}\) & \(\sqrt{\frac{K M^{2}}{1-M}}\) \\
\hline bocst & \(\frac{1+\sqrt{1+4 D^{2} / K}}{2}\) & \(\frac{K}{D} \frac{1+\sqrt{1+4 D^{2} / K}}{2}\) & \(\sqrt{K M(M-M)}\) & \(\sqrt{\frac{K M}{M-1}}\) \\
\hline \begin{tabular}{l}
buck \\
boost
\end{tabular} & \(\frac{D}{\sqrt{K}}\) & \(\sqrt{K}\) & \(M \sqrt{K}\) & \(\sqrt{K}\) \\
\hline
\end{tabular}

TABLE II. Summary of dc transfer properties of the three common converters of Fig . I in the discontinas wond conction mode expressed for open-loop as well as for closed-loop considerations.

With use now of the last three columns of Table 1 and the procedures outilned in Section 3, the very useful Table II can be generated, in which the dimensionless paramater \(K\) is defined as before with \(K=2 L / R T_{s}-2 L f_{s} / R\)

The element values of the dynamic (ac) circuit model in Fig. 22 for the three convertere are shown

Again, as Table II was generated from Table I and only input-output de tranafer properties obtained, we can aimilarly generate from Table III another, Table IV, in which only input-output ac transfer properties. (transfer functions \(G_{\mathrm{vg}}\) and \(G_{\mathrm{vd}}\)) are listed for the three
convertera.

Fig. 22. Final ac smale-signal circuit model for converters of Fig. I in the discontinuous con-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline type & \(J_{1}\) & \(r_{1}\) & \(g_{1}\) & \(j_{2}\) & \(r_{2}\) & \(g_{2}\) \\
\hline buck & \(\frac{2 V}{R} \sqrt{\frac{1-M}{K}}\) & \(\frac{1-M}{M^{2}} R\) & \(\frac{M^{2}}{1-M} \frac{1}{R}\) & \(\frac{2 V}{R M} \sqrt{\frac{1-M}{K}}\) & \((1-M) R\) & \(\frac{M(2-M \mid}{1-M} \frac{1}{R}\) \\
\hline boost & \(\frac{2 V}{R} \sqrt{\frac{M}{K \mid M-1)}}\) & \(\frac{M-1}{M^{3}} R\) & \(\frac{M}{M-1} \frac{1}{R}\) & \(\frac{2 V}{R \sqrt{K M(M-1)}}\) & \(\frac{M-1}{M}\) & \(R\) \\
\hline \begin{tabular}{l}
buck \\
boost
\end{tabular} & \(\left.\frac{2|V|}{M-1}-1 \right\rvert\, \frac{1}{R}\) \\
\hline & \(\frac{R}{M^{2}}\) & 0 & \(\frac{2|V|}{R \sqrt{K} M}\) & \(R\) & \(\frac{2 M}{R}\) \\
\hline
\end{tabular}

TABLE 1II. Definition of the elements in the canonical. circuit model of Fig. 22 for the three common converters of Fig. 1 operating in the discontinuous conduction mode.
\begin{tabular}{|c|c|c|c|}
\hline type & \(\mathrm{G}_{\text {og }}\) & God & \(w_{p}\) \\
\hline buck & M & \(\frac{2 V(1-M)^{3 / 2}}{\sqrt{K} M(2-M)}\) & \(\frac{2-M}{1-M} \frac{1}{R C}\) \\
\hline boost & M & \(\frac{2 V}{2 M-1} \sqrt{\frac{K M}{M-1}}\) & \(\frac{2 M-1}{M-1} \frac{1}{R C}\) \\
\hline buckboost & M & \(\frac{V}{\sqrt{K} M}\) & \(\frac{2}{R C}\) \\
\hline \multicolumn{4}{|l|}{\(G_{v g}=\frac{\hat{v}}{\hat{v}_{g}}=G_{o g} \frac{1}{1+s / w_{p}} ; \quad G_{v d}=\frac{\dot{v}}{d}=G_{\text {od }} \frac{1}{1+s / u_{p}}\)} \\
\hline
\end{tabular}

TABLE IV. Summary of the ac trans fer properties of the three common converters of Fig. 1 operating in the discontinuous conduction mode.

All the results presented in this section are applicable only to the discontinuous conduction mode of appliwhen the these three switching converters. To determine for continuous results ought to be applied and when those the two modes conduction mode [2], the boundary between converters and tabulated in is determined for these three

\subsection*{6.3 Determination of the boundary between two}

As explained in detall in Section 3.1 the criteria
boundary betwepn the two conduction nodes
\[
\begin{equation*}
K=K_{\text {crit }} \quad \text { or } \quad R=R_{\text {crit }} \tag{88}
\end{equation*}
\]
continuous conduction mode
\[
\begin{equation*}
K>K_{\text {crit }} \quad \text { or } \quad R<R_{\text {crit }} \tag{89}
\end{equation*}
\]
discontinuous conduction mode
\[
\begin{equation*}
K<K_{\text {crit }} \quad \text { or } \quad R>R_{\text {crit }} \tag{90}
\end{equation*}
\]
where \(K\) is as defined before \(K=2 L / R T_{B}=2 L f_{8} / R\). Following the aame procedure outlined in section 3.1 for the boost converter example, the parametera \(K_{c r i t}\) and \(R_{\text {crit }}\) can easily be found for the other two converters ancitall resutls are shown tabulated in Table V.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{converter type} & \multicolumn{2}{|l|}{open-lnop consideration} & \multicolumn{2}{|l|}{closed.loop eonbiteration} \\
\hline & \(\mathrm{K}_{\text {crit }}(\mathrm{D})\) & \(\mathrm{R}_{\text {crit }}\left(D_{1} R_{\text {ixom }}\right.\) & Kerit (M) & Rcrill \(\left.M_{1} R_{\text {nom }}\right)\) \\
\hline buck & \(1-D\) & \(\frac{\mathrm{R}_{\text {nom }}}{1-\mathrm{D}}\) & \(i-N\) & \(\frac{\mathrm{R}_{\text {nom }}}{1-\mathrm{M}}\) \\
\hline bocet & \(D(1-0)^{2}\) & \(\frac{R_{\text {noin }}}{D(1-D)^{2}}\) & \(\frac{M-1}{M^{3}}\) & \(\frac{M^{3}}{M-1} R_{\text {nom }}\) \\
\hline Luck boost & \((1-0)^{2}\) & \(\frac{\mathrm{Rn}_{\text {n }}}{(1-0)^{2}}\) & \(\frac{1}{(M+1)^{2}}\) & \((M+1)^{2} R_{\text {nom }}\) \\
\hline
\end{tabular}

TABLE V. Determination of the boundary between the two conduction modes, expressed for open-loop as well as for closed-loop considerations.
In Table \(V\) nominal resistance \(R_{\text {nom }}\) is a design parametar defined by
\[
\begin{equation*}
R_{\text {nom }}-2 L f_{\theta} \tag{91}
\end{equation*}
\]

It has already been demonstrated in Section 3.1 for the boost converter that parameter \(K\) can be chosen (\(K>4 / 27\)), such that the converter is always operating in the continuous conduction mode regardiess of the operating point, that is de duty ratio D , while the discontinuous conduction mode can occur only for \(K<4 / 27\), and then only for a portion of the dynamic range of duty ratio \(D\). The same holds true for the other two converters, and the following criteria can be set:
a) when \(K>K_{M}\) the converter is always in continuous conduction mode regardless of \(D\).
b) when \(K<K_{M}\) discontinuous conduction mode can occur, but only for a limited range of duty ratio \(D\).
Parameter \(K_{M} 1 s\) actually the maximum or the duty ratio \(D\) dependent function of first stium in Table \(V\), and is for comparison purposes ifsted In Table VI.

TABLE VI. Summary of the parameter \(K_{M}\) determining the region of unconditional continuous conduction for three common converters of Fig. 1.
From Table VI it is obvious that when \(K>1\) any of the chree converters 11 sted will always operate in the continuous conduction mode, and when \(K<4 / 27\) each of
them w11 operate in the diucuncinuous conduction mode for a portion of the duty ratio range. With this, and the first column in Table II, the dc voltage gain as a function of duty ratio can be shown as in Fig. 23b for \(K<4 / 27\), while the corresponding result for continuous conduction mode \(1 s\) illustrated for comparison perpses in Fig. 23a for \(K>1\).
a)

b) discontinuous conduction

Fig. 23. Comparison of the de voltage gain characteristics in the two conduction modes for the common converters of Fig. 1.
In Flg. 23b heavy innes designate the region of actual discontinuous conduction operation, whereas dotted innes signify that the continuous conduction mode takes over and the dc gain characteristics begin to follow those for the continuous conduction mode (see for comparison Fig. 8). From Fig. 23b it is also evident that in the buck and the buck-boost converter, the transition between the two conduction modes occurs only once at higher duty ratio \(D\), and not also at the lower end as it does in the boost converter. Therefore during initial atart-up of the converter, when the duty ratio changes from zero to the value required by the steady-atate gain \(M\), the two converters (buck and buck-boost) can be decigned to stay in the discontinuous conduction mode only, even in this transitional period.

We now present another viewpoint, which in an interesting pictorial way and a unfque frequency interpretation, illuminates the determination of the converter operating mode and the basic small awitching ripple requirement. Namely, from Fig. 1 it is apparent that the three common converters essentially consiat of the gingle switch \(S\) positioned differently among the source voltage \(V_{\mathrm{g}}\) and chree elementa, inductance \(L\), capacitance \(C\), and load \(R\). With only these three elements three different "inherent" frequencies can be defined regardless of the converter type. Two of them, \(\omega_{\alpha}\) and \(\omega_{c}\), termed natural frequencies, are defined as
\[
\begin{equation*}
\omega_{\alpha}=\frac{1}{2 \mathrm{RC}}, \quad \omega_{c}=\frac{1}{\sqrt{\mathrm{LC}}} \tag{92}
\end{equation*}
\]

However, yet another "Inherent" frequency \(\omega_{\beta}\) can be defined by these three elements as
\[
\begin{equation*}
\omega_{B}-\frac{R}{2 L} \tag{93}
\end{equation*}
\]

The dimensionless parameter \(K\), which plays a crucial role in the determination of the conduction mode, can now be expressed as
\[
\begin{equation*}
K=\frac{f_{s}}{w_{B}} \tag{94}
\end{equation*}
\]

Therefore, the position of this new frequency \(w_{8}\) with respect ot the switching frequency \(f_{s}\) determines the conduction mode. Hence for \(K>1\) or \(\omega_{B}<f_{0}\), each of the three converters will always be in \({ }^{\beta}\) continwous conduction mode regardless of \(D\). On che other hand, \(\omega_{\alpha} \ll f_{s}\) and \(\omega_{c} \ll f_{k}\) are requirewents for small switching ripple. \({ }^{8}\) The information contained in the position of these three "inherent" frequencies \(\omega_{\alpha}, w_{\beta}\) and \(f_{c}\) with respect to the switching frequency \(f^{\alpha}{ }^{\prime} s^{\beta}\) concisely summarized in Fig. 24 . The diagram in Fig. 24 , with the

Fig. 24. Frequency enterpretation of the conduction mode type and small switching ripple requirement
help of definitions (92) and (93), displays in a convincing manner the interplay between conduction mode types, owitching ripple requirement and choice of parameter values \(L, C, R\), and \(f\). For example, increase of load \(R\) can cause change to discontinuous conduction mode without deterioration in swicching ripple. However, if inductance \(L\) or switching frequency is reduced, change to discontinuous conduction mode can occur, but at the price of higher switching ripple since separation between \(\omega_{c}\) and \(f_{s}\) is also reduced. One would have to increase Capacitance \(C\) to remain at an acceptable switching ripple level. Thus the frequency diagram of Fig. 24 gives valuable insight, both qualitative and quantitative, into the basic relationshipi inherent to switcling converters. It is interesting that from (92) and (93) a very simple relationship follows
\[
\begin{equation*}
\omega_{c}=2 \sqrt{\omega_{\alpha} \omega_{\beta}} \tag{95}
\end{equation*}
\]
which may further facilitate quantitative analysis.

\subsection*{6.4 Experimental verification of the transfer properties}

Both dc and ac transfer properties have been exper1mentally verified on a circuit breadboard of the buckboost converter shown in Fig. 12c. Because of lack of space, only cursory experimental verification is included here.

The buck-boost converter was chosen because of several unique features which clearly distinguish it form the other two converters, and which are easy to check. A quick look at Table II, for example, reveals that it is the only converter whose second interval \(\mathrm{D}_{2} \mathrm{~T}\) is independent of the operating conditions (duty ratio \(D\) or gain \(M\)), but rather is fixed determined by the parameter K only.

Likewise, a look at Table III shows that the ac resistance \(r_{2}\) is also independent of steady-state operating condition (gain M). Therefore, the single pole of the two transfer funcitons \(G\) and \(G\) does not move with change of operating condition (gain \(M\)) as it does in the other two converters.

Finally, the open \(-100 p_{2}\) input impedance of the buckboost converter is \(R_{1}=R / M^{2}\) since there is no internal feedback (\(g_{1}-0\)). Hence the input impedance is purely resistive, which is not the case for the other two converters.

The transfer propertles have been verified on the test buck-bonst converter with the following switching compunents: transistor 2 N 2880 and diode TRW SVD 100-6.

\section*{De gain measurements}

For the choice of element values \(L=890 \mu H, C-12 \mu \mathrm{~F}\), \(K=220 \AA, f^{\prime}=10 k H z\) and \(V=6 V\) we compute \(K=2 L f / R=\) 0.81 and \(\mathrm{D}_{2}{ }^{\mathrm{s}}=\sqrt{\mathrm{K}}-0.28\). Therefore, the buck-boost con-
verter operates in the discontinuous conduction mode from \(D=0\) until \(D=1-D_{2}=0.72\), and the experimental de gain characteristic is shown in this duty ratio range on Fig. 25.

Fig. 25. Dc voltage gain measurements for the buck-boost converter in the discontinuous conduction mode.

As seen in Fig. 25, the experimental points follow very closely the theoretical straight line characteristic. The experimental data, however, are slightly lower than the theoretical curve since the transistor saturation voltage and diode drop have not been accounted for in the theoretical model, although this could easily be accomplished. The inductor current waveform was monitored, and confirmed discontinuous conduction operation for \(\mathrm{D} \varepsilon[0,0,72]\) while \(\mathrm{D}_{2}\) measured was constant as predicted, at \(D_{2}=0.28\).

\section*{Ac transfer function measurements}

The duty ratio modulation \(\hat{\mathbf{d}}\) to output voltage \(\hat{\mathbf{v}}\) transfer function \(G\) is now measured using the describing function measurement technique [11] and results are shown in Fig. 26.

Fig. 26. Experimental magnitude-orequency response of \(G_{v d}=\hat{v} / \hat{d}\) transfer function for buck-boost converter in the discontinuous conduction mode.

The element values used are the same as for the dc measurements, except that the inductance was increased four times to \(L=3.5 \mathrm{mH}\) to reduce the superimposed switching ripple and to reduce the ringing effect in the \(\mathrm{D}_{3} \mathrm{~T}_{\mathrm{s}}\) interval. Hence for \(\mathrm{L}=3.5 \mathrm{mH}, \mathrm{C}=12 \mu \mathrm{~F}, \mathrm{R}=220 \Omega\), \(\mathrm{F}^{3} \mathrm{~S}\) 10kHz, \(\mathrm{V}=6 \mathrm{~V}\) we calculate \(\mathrm{K}=1.62\) and \(\mathrm{D}_{2}=0.56\). The range of Biscontinuous conduction operation is then reduced to \(D E[0,0.44]\). The single pole of the transfer functions \(G_{v}\) and \(G_{v d}\) (see Table IV) becomes \(f=1 / \pi R C=\) 120 Hz , which \({ }^{8}\) is in excellent agreement with the experimental data shown in Fig. 26.

The measuremente were repeated for sevaral operating points in the diseontinwous conduction region, nanely, fo \(D=0.1,0.2,0,3\), and 0.4 but the aingle pole at \(f_{p}\), as predicted, did not move.

The experimental measurements therefore have confirmed the high degree of accuracy of the camonical eircult model (Fig. 22) for the discontinuous conduction mode of operation.

The question of finput properties of switching converters and regulators, and particularly of opanand closed-loop input impedances, in thoroughly analyzed In the next section on modelifing of a suitching mode hegulatoh in the diseontinuous conduction mode.

7 WODELLLNG OF SWITCHING REGULAIOR IN

\section*{DISCONTINUOUS CONDUCTION MODE}

This section demonstrates how the canonical circuit model for a switching converter operating in the discontinuous conduction mode can easily be incorporated into the complete switching-mode ragulator model. Consider now a switching-node regulator as shown in FIg, 27, an fllustrative example since the discussion applies to any convertar.

Fig. 27. Suitching-mode regulator

\subsection*{7.1 Modulator stage modelling and complete regulacor} clrcult model

So far, we have obtained the canonical clacult model for the switchfng-mode convarter. The next step in development of the regulacor equivalent circuit is to obtain a model for the modulator. This is easily done by wricing an expression for the essential function of the modulacor, whieh is to convert an (analog) control voltage \(V\) to the switch duty ratio \(D\). This expression can be writcten \(D=V_{V} / V\) in which, by definition, \(V\) is the range of control \({ }^{\mathrm{c}} \mathrm{I}_{\mathrm{gnal}}^{\mathrm{m}}\) required co sweep the duty ratio over lta full range from 0 to 1. A small variation \(\hat{v}_{c}\) superinposed upon \(V_{c}\) therefore producea a corresponding variation \(\mathrm{d}=\hat{v}^{\mathrm{c}} / \mathrm{V}\) in \({ }^{\mathrm{C}} \mathrm{D}\), which can be genersilued to account for a nobuniform frequency response as
\[
\begin{equation*}
\mathrm{d}=\frac{\mathrm{F}_{\mathrm{m}}(\mathrm{~s})}{\mathrm{V}_{\mathrm{n}}} \mathrm{v}_{\mathrm{c}} \tag{96}
\end{equation*}
\]

In which \(f_{f}(0)-1\). Thus, the control voltage co ducy ratio umal 1 -algnal transmission characteriotie of the modulator can be represented in general by the two parameters \(V_{m}\) and \(f(b)\), regardless of the detailed mechanism by which Ehe modulation is achleved.

The inclusion of the canonical circuit model (Fig. 22) and an appropriate model for the modulator atage (96) into the switching regulator (Fig. 27) resulte in a complete circuit model of a switching regulator in the discontinuous conduction mode, as ahown in Fig. 28.

Fig. 28. Genenal ac amale-signai circuit model for the suctching regueator of Fig. 25 operating in the discontinuaus conduction mode.

The generator symbol for the current generators \(J_{1}(s) \hat{d}\) and \(f_{2}(s) \hat{d}\) at the input and output ports, respectIvely, has Geen changed from a circle to a square to emphasire that in the closed-loop regulator they have become dependent generators (on output voltage varlation \(v\) in parcicular). A closer look at the circuit model in Flg. 28 reveals some unique propercies of this negative feedback circuit. Nawely, it has been previously shown in Section 3 that only the output port network (consloting of current generators \(g_{2} \hat{v}, \mathcal{L}_{2} \hat{d}\), resistances \(r_{2}\) and \(R\) and capacitance C) effectivaly Eakes part in determination of the opan-100p transfer functions \(G\) and \(G\) The immediate implicarion of this is that for yeal soufce woltage \(v_{n}\), the loop gain \(T\) is defined only with respect to the oufput port as shown in Fig. 28. Likewise, the output impedance \(Z\) and line transmission characteristic F (audio-susceptibility) become solely defined in terms of the output port elements, while the input port takes part only in determination of the input lmpedance \(Z_{1}\). This is easily confirmed by analysis of the equivalent circuit in FIg. 28, which leads to
\[
\begin{align*}
& T=G_{v d}(s) \Lambda(s) f_{m}(s) / V_{m} \tag{97}\\
& Z_{0}=\frac{Z_{e_{0}}(s)}{1+T} \tag{98}\\
& F=\frac{G_{v_{g}}(s)}{1+T} \tag{99}\\
& \frac{1}{Z_{1}}-\frac{T}{1+T}\left(\frac{G_{v g}}{G_{v d}} J_{1}-\frac{1}{\mathbf{r}_{1}}\right)+\frac{1}{1+T}\left(\frac{1}{r_{1}}-g_{1} C_{v g}\right) \tag{100}
\end{align*}
\]

The first chree expressions are rather obvious and are a consequence of the general results of linear feedback theory. They also confirm that \(T, Z\), and \(F\) are Functions of the output port elenents only, sinco the open-Loup transfer functions \(G_{v g}\) and \(G_{v a}\) are Independent
of input port elements. of input port elements.

It should be noted, however, that this pecullar dependence of some Feedback quantities \(T, Z\), and \(F\) on output port elements only, is a quite specilid case, which is a consequence of the ideal source voltage \(\bar{v}\). If the sourch voltage had an incernal impedance, or g Input filter were facluded in fronc of the converter, even the open-loop transfer functions \(G\) and \(G\) would become dependent on ale circuit elementsg the feedback quantifies even more so, and chis spectal feature would
disappear. This once again demonstraces how powerful these converter equivalent circuit models are, since any of such additional effecte can be directly included in the circuit model of Fig. 28 , pwing to ics complete cincuit representation of the converter properties.

We now investigate in more detail the important input properties of the circuilt model in Fig, 28.

\subsection*{7.2 Input properties of switching regulators in diacontinuous conduction made}

As seen in (100) the input impedance \(Z_{1}\) is also dependent on the input quantities \(j_{1}, r_{1}\), and \(g_{1}\). In addition the input duty ratio dependent current generator \(I_{1}\) is now responsible for the negative input impedance at low frequenctes. Indeed, if \(j_{7}=0\), and aince at low frequencies \(T+\infty\), the input resistance \(R\) would appear to be positive, in obvious conflict with the actual physical requirement.

Let us now verify this for the discontinuous conduction mode, and consider firbt the limiting case of (100) for high loop gain \(\mathrm{T}+\infty\) (at low frequencies)
\[
\begin{equation*}
\frac{1}{R_{1}}=-\left(\frac{c_{v 8}}{G_{v d}} J_{1}-\frac{1}{r_{1}}\right) \tag{101}
\end{equation*}
\]

From the clrcuit model in Fig. 28 the converter open-loop cransfer functions \(G_{v g}\) and \(G_{v d}\) ure easily found as
\[
\begin{align*}
& G_{v g}=g_{2}\left(r_{2} \| R\right) \frac{1}{1+s C\left(r_{2} \| R\right)} \tag{102}\\
& G_{v d}=f_{2}\left(r_{2} \| R\right) \frac{1}{1+\operatorname{sC}\left(r_{2} \| R\right)}
\end{align*}
\]

By use of (102) in (101) we finally obtain the closed-loop incremental resistance \(R_{i}\) as
\[
\begin{equation*}
R_{1}=-\left(\frac{J_{1}}{\jmath_{2}} g_{2}-\frac{1}{r_{1}}\right) \tag{103}
\end{equation*}
\]

Using now the definitions of element values \(f_{1}, j_{2}\), \(\dot{g}_{2}\), and \(r_{1}\) from Table III in (103), we obtain for del \({ }^{2}\) tifee converters (buck, boost and buck-boost) that
\[
\begin{equation*}
R_{i}--\frac{R}{M^{2}}=-\left(\frac{V_{g}}{V}\right)^{2} R \tag{104}
\end{equation*}
\]

From (103) it is also evident that despite the presence of the positive term, the negative term has prevailed, correctly predicting the negative closed-loop input resistance.

Let us now consider the other extreme when the loop gain is very small, that is \(T \rightarrow 0\) (or equivalently at high frequencies). Then, the input impedance approaches the open-loop input impedance \(\mathrm{Z}_{\mathrm{in}}\) obtained from (100) as
\[
\begin{equation*}
\frac{1}{Z_{i n}}-\frac{1}{r_{1}}-g_{1} G_{v g} \tag{105}
\end{equation*}
\]

The same result could be obtatned directly from the openloop converter model in Fig. 22. From (105) it seems as though \(z_{10}\) could be negative owing to this negative internal effect of the current generator \(g, v\) in the model of F18. 22. However, this is not crue, Since the lowfrequency value of the open-100p input impedance \(\mathrm{K}_{\text {in }}\) becomes from (105)
\[
\begin{equation*}
k_{1 n}=\frac{r_{1}}{1-B_{1} r_{1} g_{2}\left(r_{2} \| R\right)} \tag{106}
\end{equation*}
\]

Again by using element definitions from Table III in (106) we get for all three converters
\[
\begin{equation*}
R_{\text {in }}=\frac{R}{M^{2}}=\left(\frac{V}{V}\right)^{2} R \tag{107}
\end{equation*}
\]
which correctly predicts the open-loop low-frequency input resistance co be positive.

From these results and the corresponding one for continuous conduction mode [1], it follows that the closedloop low-frequency input realstance \(R_{\text {f }}\) is given by (104) hegardless of the conduction mode type and switching converter type (buck, boost, or buck-booat). The same is also true for the open-loop low-frequency Input resistance \(R_{\text {in }}\) given by (107).

Hence, this bection has confirmed that the canonical circult model for discontinuous conduction mode (Fig. 28) properly models the regulator input properties (closedloop input impedance) In much the same way as the canonical circuit model for continuous conduction mode [1,2] did, through the presence of duty ratio dependent current generators at the input of the converter model. The immediate consequence of this is that the regulator circuit model (\(\mathrm{Fig}_{\mathrm{g}}\). 28) is a complete circuit model which represents all essential properties; input, output and transfer properties.
\(\qquad\) CONCLUSIONS

\section*{A general method for modelling anty three-state} switching converter operating in the discontinuous conduction mode has been presented. The fundamental step is in replacement of the state-space descriptions of the three switched networks (3) by their average (8) over the single period \(T\), the same step as eaken for any ordinary chree-state converter. This is then supplemented by additional constraints (9) and (10) which properly account for the discontinuous conduction mode of operation.

The subsequent perturbation and Ifnearization steps are rpplied not only to the state-space or circuit averaged models but also to the constraints, which then provide the additional information needed to define completely both dc and ac small-signal models.

An extensive analysis of the de conditions in the discontinuous conduction mode has been given, in Section 3 , which then enabled the definition of the boundary between the two operating modes for a specific boost converter example. An easily interpretable formula (\((45\)) or (49)) led to simple criterla (46), (47) and (48)) for determination of the converter mode of operation.

Analysis of the dynamic (ac small-signal) model confirmed the general modelling prediction - reduction of the system order by one. Thus, common converters of Fig. I showed a single-pole frequency response in the discontinuous conduction mode, as apposed to their twopole reaponse in the continuous conduction mode.

Then, following the hybrid modelling path (Section 4) and the circuit averaging path (Section 5), a new circuit model (\(F i g\), 18) with a rather unusual topological structure is obtalned for the boost converter, which provides a complete model for dynamic (ac smallsignal) behavlor.

The canonical circuit model with the same topology (Fig. 18), but with different element values, is obtained in Section 6 for the other two converters of Fig. 1, and the results are conveniently sumarized in varlous tablea, Experimental verification of de and ac transfer properties of a buck-boost converter in discontinuous conduction mode are also provided.

Finally, the model of the awitching-mode regulator operating in the discontinuous conduction mode ie obtainad in Section 7, and important input properties (both open- and closed-loop) are thoroughly analyzed.

The out11ned mathod 18 general and directly applicable to investigation of the diucontinuous conduction mode in more complex awitching converter atructures, auch as those deacribed in [12,13], involving more than a aingle inductor.

\section*{REFEXENCES}
[1] Slobodan Cuk, "Modeliling, Analyais, and Deaign of Switching Converters," Ph.D. thesis, Callformie Institute of Technology, November 1976.
[2] R. D. Middlebrook and S. Ćuk, "A General Lnified Approach to Modelling Switching-Converter Power Stages," IEEE Power Electronics Specialists Conference, 1976 Record, pp. 18-34, (IEEE Publication 76 CHO 1084-3AES). (Also to be publighed in International Journal of Electronics, London).
[3] R. D. Middlebrook and S. Euk, "Modelling and Analysis Methods for Dc-to-Dc Switching Converters, IEEE International Semiconductor Power Converter Conference, 1977 Record, pp. 90-111 (IEEE Pubi1cation 77 CH 1183-31A).
[4] R. Prajoux, J. C. Marpinard, and J. Jalade, "Accurate Mathematical Modeliling of PWM Power Regulators," Translation of Report, Laboratoire d'Automatique et d'Analyse des Sybtems, C.N.R.S., 1asued under ESTEC Contract No. 2026 AK, May 74, 25 pp.
[5] A. Capel, J. G. Ferrante, and R. Prajoux, "Stabillty Analyais of PWM Controlled DC/DC Regulator with DC and AC Feedback Loops," IEEE Power Electronics Spectalists Conference, 1974 Record, Pp. 246-254, (IEEE Publication 74. CHO 863-1-AES).
[6] A. Capel, J. G. Ferrante, and R. Prajoux, "State Variable Stability Analysis of Multiloop PWM Controlled Regulators in Light and Heavy Mode," IEEE Power Electronice Specialiats Conference, 1975 Record, pp. 91-102 (IEEE Publifation 75 CHO 965-4-AES).
[7] H. A. Owen, A. Capel, and J. G. Ferrante, "Simulation and Analysis Methods for Sampled Power Electronic Systems," IEEE Power Electionics Specialists Conference, 1976 Record, pp. 45-55 (IEEE Publication 76 CH 1084-AES).
[8] F. C. Lee, Y. Yu, and J. E. Triner, "Modelling of Switching Kegulator Power Stages with and without Zero-inductor Current Dwell Time," IEEE Power Electronics Specialista Conference, 1976 Record, pp. 62-72, (IEEE Publication 76 CH 1084-3AES).
[9] A. Capel, J. G. Ferrante, and R. Prajoux, "Dynamic Behavior and 2 Transform Stability Analysis for DC/DC Regulators with a Nonifnear PWM Controiled Loop, " IEEE Power Electronics Specialiate Conference, 1973 Record, pp. 149-157, (IEEE Publication CHO 787-2AES).
[10] M. Clique and A. J. Fossard, "Development et Appllcations de Modeles Numeriques pour \(1^{\prime}\) Evaluation dea Systems de Pulssance," ler Rapport d'Advancement, April 1976, Contract ESTEG no. 2590/75AK.
[11] R. D. Middlebrook, "Measurement of Loop Gain in Feedback Systems," Internatior'al Journal of Electronice, 1975, vol. 38, no. 4, pp. 485-512.
[12] Slobodan Ćuk and R. D. Middlebrook, "A Hew Optimu Topology Switching DC-to-DC Converter," IEEE Pover Electronice Specialists Conference, Palo Alto, Callf., June 14-16, 1977.
[13] Slobodan ćuk and R. D. Mlddlebrook, "Coupled-Inductor and Other Rxtengione of a New Optimum Topology Suitching Dc-tonDc Convertex, "IEEE Induetry Applicatione Sociaty Annual Meeting, Loe Angeles, Calif.. Oct. 2-6, 1977.

\section*{State-space averaging step extended to converters with gallistructural (three or more) topological changes}

We derive the state-apace averaging step for awitching convertera characterized by three structural changes within each awitching period. Each topological atructure can be described a before by linear statespace equations, hence
\(\dot{x}_{1}=A_{1} x_{1}+b_{1} v_{g} \quad\) for interval \(d_{1} I_{g}, \quad\left(0 \leq t \leq t_{1}\right)\)

\(\dot{x}_{3}=A_{3} x_{3}+b_{3} v_{g}\)
Two boundary conditions are now imposed. Since the state-space vector is continuous in transition from first to second and from second to third regione,
\[
\begin{align*}
& x_{2}\left(t_{1}\right)-x_{1}\left(t_{1}\right) \tag{A.2}\\
& x_{3}\left(t_{2}\right)-x_{2}\left(t_{2}\right)
\end{align*}
\]

Solution of (\(A, 1\)) under the smill signal assumption for \(\hat{v}_{g}\) (where \(v_{g}-V_{g}+\hat{v}_{g}\) and \(\hat{v}_{g} \ll V_{g}\)) yields
\[
\begin{align*}
& x_{1}(t)=e^{A_{1} t} x_{1}(0)+v_{g} B_{1}(t) b_{1} \\
& x_{2}(t)=e^{A_{2}\left(t-t_{1}\right)} x_{2}\left(t_{1}\right)+v_{g} B_{2}\left(t-t_{1}\right) b_{2} \text { for } t \in\left[0, t_{1}\right] \tag{A,3}\\
& \left.x_{3}(t)=e^{A_{3}\left(t-t_{2}\right)} t_{2}\right]
\end{align*}
\]
where
\[
\begin{equation*}
B_{1}(t)=\int_{0}^{t} e^{A_{1} \tau} d \tau, 1=1,2,3 \tag{A.4}
\end{equation*}
\]

Use of boundary conditions (A.2) In (A.3) gives
\[
\begin{align*}
& x_{3}\left(T_{B}\right)-e^{A_{3} d_{3} T_{8}} e^{A_{2} d_{2} T_{B}} e^{A_{1} d_{1} T_{8}} x_{1}(0)+ \\
&+v_{8}\left[e^{A_{3} d_{3} T_{8}} e^{A_{2} d_{2} T_{B}} B_{1}\left(d_{1} T_{B}\right) b_{1}+\right. \\
&+e^{\left.A_{3} d_{3} T_{B_{B}}\left(d_{2} T_{8}\right) b_{2}+B_{3}\left(d_{3} T_{6}\right) b_{3}\right]} \tag{A.5}
\end{align*}
\]

With introduction of the inelar approximations
\[
\begin{equation*}
e^{A_{1} d_{1} T_{B}} \sim I+A_{1} d_{1} T_{B}, \quad 1=1,2,3 \tag{A.6}
\end{equation*}
\]
into (A.4) and (A.5), and after retention of only firstorder terme (linear in \(T_{g}\)). (A.5) reduces to
\(x_{3}\left(T_{2}^{*}\right)=\left(I+d_{1} A_{1}+d_{2} A_{2}+d_{3} A_{3}\right) x_{1}(0)+\left(d_{1} b_{1}+d_{2} b_{2}+d_{3} b_{3}\right) v_{g}\)
Thia leade to a single continuous linear system
\(\dot{x}=A x+b v_{g}\) where
\[
\begin{align*}
& A \Delta d_{1} A_{1}+d_{2} A_{2}+d_{3} A_{3} \\
& b \Delta d_{1} b_{1}+d_{2} b_{2}+d_{3} b_{3} \tag{A.8}
\end{align*}
\]

It remans, finally, to characterize the statespace averaging stej for the generalized switching converter with \(n\) atructural changes within each switching period, namely, one described by
\[
\dot{x}=A_{1} x+b_{1} v_{8}, \quad \begin{align*}
& d_{i} T_{8}=t_{1}-t_{i-1} \tag{A,9}\\
& t \in\left[t_{1-1}, t_{i}\right]
\end{align*}
\]
for which the corresponding basic atate-space averaged
\[
\begin{align*}
& \text { model 1e }=\sum_{i=1}^{n} d_{1} A_{i} \\
& \dot{x}=A x+b v_{g} ; b \\
& n \sum_{i=1}^{n} d_{1} b_{i}
\end{align*}
\]

As an filustration of a switching converter with such multiatructural change, consider the converter shown in Fig. A.la whose two switches \(S_{1}\) and \(S_{2}\) are driven as specified in Fig. A.lb. The Ewo awitches \(S_{1}\) and \(S_{2}\) are shown in their "on" pasition in Fig. A.la. \({ }^{1}\) It can easily be recognized that this converter is actually a booat converter cascaded by a buck converter whose switches are driven synchronously but with different duty ratios, \(d_{1}\) and \(d_{1}+d_{2}\) respectively.
a)

b)

c) switches

a) \(S_{1}\) on, \(S_{2}\) off:
b) \(S_{1}\) on, \(S_{2}\) on:

Fig. A. 2 Various switched networks for the converter in Fig. A,la.

On the other hand if the converter is looked upon as consisting of cascaded boost and buck converters and each of them has been modelled separately as a "rwo-state" converter as in [2], and their models put together, the same result would have been obtained.

However, for the diacontinuous conduction mode, in addition to the state-space averaging step (A. B) for "three-state" converters, other restrictions ((1), (2)) are imposed to reflect the limited behavior of inductor current (Fig. 2b) with fixed (zero) boundary values.

But In any case, for either continuous conduction mode [2], or discontinuous conduction mode, the corresponding state-space averaging step is fustiffed on the basis of the fundamental performance requirement for switching dc-to-dc converters of small (negligible) switching ripple, as follows:

This, together with proper inclusion of the inductior current discontinuity as additional constraints (1), (2), enable the extremely simple, powerful and accurate scheme for modelling and analysis of switching converters in discontinuous conduction mode to be established.

Fig. A. 1 Switching converter exhibiting multistructural change: a) boost converter cascaded by a buck converter; b) switch drive for "three-state" behavior; al switch drive for "bour-state" behavion.

However, if this converter is looked upon as aingle ayatem, the switching action of Fig. A.Ib would produce pariodic sequential change among three different atructures (shown in Fig. A. \(2 \mathrm{~b}, \mathrm{c}\), and d), while that of Fig. A.1.c would produce periodic sequential change among all four different awitched networks of Fig. A.2. In any case, it demonstrates the feasibility of realization of a switching converter having three or more switched network configurations, even in the continuous conduction mode of operation.

\section*{APPENDIX K}

Inherent in the multiple-loop digital signal processor (DSP), shown in Figure 8 on page 38 of the text, is the triangular ramp at the integratoramplifier output as a result of the rectangular inductor voltage at the integrator input. This ramp, when working in unison with the externallygenerated threshold level, produces the necessary mechanism to effect the regulator duty-cycle control.

One is therefore interested in how the duty cycle \(d(t)\) of the power switch is being effected by a sinusoidal disturbance at point \(B\). The use of \(d(t)\) is more versatile than the voltage at point \(A\), as the result is then applicable to all types of power-circuit configurations. In the case of the buck regulator shown in Figure 8, the voltage at point \(A\) is simply \(E_{i} d(t)\) where \(E_{i}\) is the input voltage \(t\), the regulator.

The sinusoidal-disturbance propagation is protrayed in the figure included. The figure includes both circuit implementation and waveform propagation. The switching-frequency triangular ramp and the lower-frequency distrubance are designated by \(v_{x}\) and \(v_{y}\), respectively. The sum of \(v_{x}\) and \(v_{y}\) is compared to threshold level \(E_{T}\). Using a constant \(T_{O N}\) duty-cycle control as an example, the intersection of \(\left(v_{x}+v_{y}\right)\) with \(E_{T}\) marks the initiation of the \(T_{O N}\) interval. The length of \(T_{O N}\) is unperturbed by \(v_{y}\), as the DSP is configured for a constant \(T_{O N}\). After the programmed \(T_{O N}\) interval elapses, the length of the subsequent off time is determined by the next intersection of \(\left(v_{x}+v_{y}\right)\) with \(E_{T}\). Following this pattern, the duty-cycle signal \(d(t)\) is illustrated accordingly.

Let the DSP input signal be:
\[
\left(v_{x}+v_{y}\right)=A \sin \omega t
\]
and let the DSP output, \(d(t)\), be expressed by its Fourier series as:
\[
d(t)=D+a_{1} \sin \omega t+v_{1} \cos \omega t \ldots
\]

Then, by definition, the describing function of the pulse modulation becomes:
\[
F_{M} \triangleq \frac{\left(a_{1}^{2}+b_{1}^{2}\right)^{1 / 2}}{A} e^{-j \tan ^{-1}\left(b_{1} / a_{1}\right)}
\]

Once \(a_{1}\) and \(b_{1}\) can be determined, the gain/phase of the pulse modulation are obtained.

Derivations for \(a_{1}\) and \(b_{1}\) are rather tedious tasks. Since the major objective of this appendix is the formulation of the physical mechanism through which \(d(t)\) is being effected by \(\left(v_{x}+v_{y}\right)\), the detailed mathematical derivations is not included.

For the constant-T \(T_{O N}\) duty-cycle control, the describing function can be shown to be:
\[
F_{M}=\frac{2 D}{S_{F} T_{n}}\left[1+\left(\frac{\omega T_{O N}}{2}\right)^{2}\right]^{1 / 2} e^{-j \omega T} O N
\]
where \(D\) is the steady-state duty cycle without the disturbance, \(S_{F}\) is the slope of the steady-state integrator output ramp during the off time, and \(\omega\) is the angular velocity of the sinusoidal disturbance. Based on this describing function, the gain|phase from point \(B\) to \(A\) clockwise in Figure 8 becomes:
\[
K_{p}=\frac{2 D E_{i}}{S_{F} T_{O N}}\left[1+\left(\frac{\omega T_{O N}}{2}\right)^{2}\right]^{1 / 2} e^{-j \omega T_{O N}}
\]

This value of \(K_{p}\), when used in conjunction with eq. (150) on page 107 of the test, completely defines the open-loop transfer function of the mult-iple-loop control.

A point of particular interest is that the gain of the digital signal processor stage increases with the frequency of the disturbance signal. Realizing the validity of the equation for \(K_{p}\) only holds for frequencies much lower than the switching frequency due to approximations made in its derivation, the equation for \(K_{p}\) has been indeed verified within the signalfrequency range from essentially dc to a decade above the corner frequency of the output filter.

r putik, \(=1\) INDOS2,
THE CEJECTIVE OF THIS PROGRGM IS TD FEFFGFM AH TD リSEPS: PLEASE READ THE FDLLDWING ETATEMEHT: CFFEFLILLY EEFDRE EXECUTITGG THE PRDGPGM.
THE HEEDED IHFIUT FAEAMETERS GRE THE FQLLDLING

IF HOT GIMEH EY THE UEEF, DC IS EET
HI : CDFE JEHEITH IN IF HOT GIVEN EY THE UCEF, UI IS SET FTT 7.3 BY IEFAULT.
FE : FATID DF GVEFFIGE CHE THFN LEIIGTH TD THE EDFE CTFCUMFEFENCE.

F. IF Mat GIVEI, FIN IS CET AT 4 EY DEFFIULT.

FHD: CAHUUCTOP FESTSTIVITY IH \(\square H M-M E T E P\). IF

EE : MAKINUM FLUX DENEITY IN KILDGFUSEE
\(L\) : DEEGIED IHDUCTATICE IN MICFDHETPIE

FLEAEE ALSD GIVE INDVIDUAL IHFSTT DATA FDE IC, DI,
FC, FH, FHI RHD IF FHI' DF DEFAULTED VETTIHG: IS
HOT DESIFED. HOT DESIFEM.
 FIP GIISMEPS GT THE EMD DF THE FUUH,
HIT IUMEER: DF TUPHS, U IS PEPMEFETHTY
\(A Z\) IS PPDDUCT DF A FHIS \(Z\), FIC IS CDHDUCTUF GREA FEP

\[
\underset{1}{\text { TE }}
\]
\(\xrightarrow{\mathrm{IE}} \mathrm{L}=200 ., I F=4.5, B=3.5, P=0.69913\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(\begin{array}{ll}\text { If } \\ \mathrm{DI} & =8.9 \\ =7.8,\end{array}\)} \\
\hline \multicolumn{2}{|l|}{\(\begin{array}{ll}\text { D1 } & =2.8, \\ \text { FC }\end{array}\)} \\
\hline Fi, \(=4\). & \(=4.0 \mathrm{E}-01\), \\
\hline PHI \(=1\). ? & \multirow[t]{2}{*}{\(=1.724 E-06\),} \\
\hline \(\mathrm{P}=6\). & \\
\hline \(\mathrm{BL}=3\). & \(=3.5\), \\
\hline \[
I F=4 .
\] & \(=4.5\),
\(=2.0 E+02\), \\
\hline \(\mathrm{L}=2\). & \\
\hline \multicolumn{2}{|l|}{SEHD} \\
\hline A \(=\) E. F39E- 111 & SRUAFE CEMTIMETEFS \\
\hline \(z=6.391 E+40\) & CENTIMETERE \\
\hline \(t 1=3.661 E+01\) & TUPHS \\
\hline \(\mathrm{U}=1.094 \mathrm{E}+02\) & GFUSS/DEFSTED \\
\hline \(\mathrm{FL}=4.435 \mathrm{E}+10\) & CUEIC CENTIMF-EO \\
\hline \(A C=2.419 E+03\) & CIFCULFP MIL \\
\hline \(b=6.085 \mathrm{E}+01\) & GRems \\
\hline
\end{tabular}

Computer
Printout
of

Printout

\title{
FORMULATION OF A METHODOLOGY FOR POWER CIRCUIT DESIGN OPTIMIZATION
}

Yuan Yu, Max Bachmann, Fred C.Y. Lee
TRW Defense \& Space Systems, Redondo Beach, California
and
Janes E. Triner
NASA Lewis Research Center

\section*{ABSTRACT}

A power processing optimization methodology is established to effectively conceive a design, to meet all requirement specifications and concurrently optimize a given design quantity deemed particular desirable. Such a quantity can be the weight, efficiency, regulatior response, or any other physically-realizable entity. Four design examples are given to deinonstrate the ne thodology. The method of Lagrange multipliers is applied to three examples to acquire optimum solutions are not clused form. When closed-form solutions are not amendable in the other example, a nonlinear programing algorithm is used to conceive the optimum design numerically. Areas of future investigations are outlined to foster the poiver processing optimization into its ultimate maturity.

\section*{1. INTRODUCTION}

Partially due to the traditional supporting role it serves in relation to other seemingly more glamorous technology areas, and partially due to its own rapidly evolving nature, power processing technology has been hampered by a lack of rigorous design, modeling, and optimization techniques. As a result, ellipirical and intuitive reliances often intercede with the designer's desire to be "nore scientific" and his commitment of being "on schedule". Handicapped by a general lack of established design, analysis, and optimization tools, the tendency has been for a designer to become competent in dealing with a certain particular circuit approach, rather than to be familiar with other available approaches and the optimization techniques which can be used to identify the optimull design for a given set of specification requirements. Such inadequacies invariably lead to penalties involving equipment weight, efficiency, or other performances. In viev of the forthcoming needs for use of considerable higher level of power and the severe penalties that may be incurred in the absence
of useful design and tradeoff tools, the need for establishing a design optimization methodology has becone increasingly evident.

To be specific, the utility of the design optimization is that it will not only pinpoint the detailed power processor design to meet given specifications, but also achieve the optimization with respect to a certain power-processor characteristic deened particularly desirable by the designer. The characteristic can be the weight, the efficiency, or any other realizable \({ }^{\circ}\) entity of the power processor. While power processing as a technology has reached a level of sophistication where the analysis and optimization of these characteristics should have been well established, a survey of existing literatures has proven the contrary.

In the following sections, the power processing design optimization effort is first surveyed. The methodology entailed in this work is then described. Design optimization examples are provided to demonstrate the methodology. Starting with simple problems admitting closed-form optinum solutions, examples of ascending complexity are presented for which the use of nonlinear programming algorithms becomes necessary in achieving numerically the intended optimization. Prior to the conclusion, areas of future investigations are briefly discussed to out line the ingredients needed to foster the power processing design optimization into its ultimate maturity.

\section*{2. EXISTING POWER PROCESSING OPTIMIZATION}

Since power magnetics represent a major portion of the total power processor weight whenever switching regulators and input/output filters are used, it is to be expected that optimization of magnetics design has received considerable attention. \([1,2,3]\) However, most of these studies assume the use of a certain conductor size for a given current(e.g., 1000 circular mils per ampere); the design is reduced to the development of a search routine to select the optimum core configuration. Closed-form solutions for optimum core paraneters are not derived. As a consequence, weight-loss tradeoff is only possible through the parametric-data approach. [4]

\section*{ORGINAD RAGM M' OR POOR GUATEXE:}

Beyond the magnetics design, optimization study on power processors seens to be quite rare in view of the vast power and control circuit development.

As far as the power circuit is concerned. attempts have been made to accumulate the parametric data of functional designs (input filters, inversion and rectification, output filters, etc.) within a converter in order to identify an optinum overall converter design. [5] Primarily due to the lack of proper modeling for the individual functions as well as the inability to mathematically incorporate the interdependences existing among the functions, the attempts have failed. A manifestation of this failure is the current inability of a power circuit designer to determine an optimum converter switciang frequency that will minimize the converter loss (weight) for a given converter weight (loss).

When power and control circuits are combined to form a sivitching regulator, the regulator steady-state and dynamic performances add significantly to the complexity of design optimization far beyond that of the pover circuit alone. Although a computer nonlinear programing technique was utilized to conceive the design of a hysteresis-controlled self-oscillating regulator [6], practically all existing performance optimization has been confined to breadboard experimentation and computer simulation. However, with the recent availability of power and control circuit models [7,8,9,10], analytical optimization of regulator performances such as stability and dynamic response has for the first time become a distinct possibility.

As the power processing modeling and analys is gradually approaches its full development, the trend for power processing optimization is likely to open an area of most zealous research. It is for the promotion of this trend that the following optimization methodology and examples
are formulated.

\section*{3. POWER PROCESSING OPTIMIZATION METHODOLOGY}

A me thodology is formulated here to apply the optimization theory in achieving non-i terative optimum design of power processing circuits. Simply stated, the task is to minimize an objective function \(f(x, k)\), subject to design constraints \(g_{j}(x, k, r)=0\).
\[
\text { Here, } x=\left(x_{1}, x_{2}, \cdots x_{n}\right)^{T} \text { is a } n \text {-dimensional }
\] vector representing circutt parameters to be deteruined. Examples of x include the values of \(R, L\), and \(C\), the operating frequency, and the design details of magnetic components including the effective core area, the mean core length, the perneability, the wire size, and the number of winding turns.

The \(k\) 's represent yarious constants known from common knowledge or designer's experience.

OKivivata
DPBOR

Examples include copper resistivity, core and winding densities, core window fill factor, saturation flux density, capacitor enerby-storage
capabilities, etc.

The \(r\) 's are requirement specifications which the optimum design must meet. Examples include filter attenuation, output ripple amplitude, maximuln weight, minimum efficiency, source EMI, etc. These requirements are usually prescribed to the power processor designer by someone presunably knowledgeable in the entire power system.

The function \(f(x, k)\) is the particular power processor characteristic to be optimized. Examples include the total weight, the total loss, the dynamic response, the figure of nerit of a specific design, or any other preferrable design quantity such as reliability and cost.

Equation \(g_{j}(x, k, r)=n\) represent a total of " \(j\) " design constraitts relatisg \(x, k\), and \(r\). For example, one of the equations may relate the filter attenuation required at a given frequency to the RLC filter parameters, and a second equation may relate the output-ripple amplitude to the LC output filter, the ESR of \(C\), the switching frequency, the input and output converter voltages, and the output power. Still another equation may relate the sum of all losses to the required. efficiency. The number of constraints will be sufficientiy large to allow all requirements "r" and all constants " \(k\) " to find their ways into governing the design of all circuit parame ters " \(x\) ". Consequently, solutions acquired for equations \(g_{j}(x, k, r)=0\) to minimiz ze the objective function \(f^{j}(x, k)\) would authentically portray a detailed optimum design, down to the component level, in accordance with the requi rements and the optimization objective specified.

\section*{4. METHODOLOGY IMPLEMENTATION}

From the foregoing description, the key to implenenting the methodology rests on suitable mathenlatical or computer techniques that can be used to solve the simultaneous constraints and concurrently minimize the objective function.

As shown in the optimization examples to be presented later, the nature of the power processur design often leads to highly nonlinear constraints and objective function, thus rendering the wellcoded linear programing techniques inapplicable.

While the theory regarding nonlinear constrained optimization has been well developed, only few problems with rather simplistic nature can be solved in closed form. Most larger problems arising from practical applications are sufficiently complicated that, to identify their optimum solutions one has to resort to computational means.
4.1 Optimization Theory Using Lagrange Multipliers

Quite anendable to generalization, optimization
theory in terms of Lagrange multipliers [1]] provides a practical method in seeking an extremm for objecti ve function \(f(x, k)\), subjecting to a total of " \(j\) " nonlinear constraints
\[
\begin{equation*}
g_{j}(x, k, r)=0, \tag{1}
\end{equation*}
\]
where \(x\) is a \(n\)-dimensional vector. The method proceeds by first forming a function \(F\), where
\[
\begin{equation*}
F=f+E n_{j} g_{j} \tag{2}
\end{equation*}
\]

Here, the \(h_{j}\) 's are Lagrange multipliers independent of \(x\) 's.

Next, for function F to have an extremum, the requirement is:
\[
\begin{align*}
& \frac{\partial F}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}+n_{1} \frac{\partial g_{1}}{\partial x_{i}}+\ldots+n_{j} \frac{\partial g_{j}}{\partial x_{i}}=0 \\
& i=1,2, \cdots n . \tag{3}
\end{align*}
\]

Between equations (1) and (3), there are a total of (\(j+i n\)) equations, which can be used to solve the "n" unknown variables \(x_{1}\) to \(x_{n}\) and the " \(j\) " unknown multipliers \(h_{1}\) to \(h_{j}\).

Application of this method to simple pover processing optimization problems occasionally yields closed-form solutions. Three such examples are given in Section 5.

\section*{4,2 Nonlinear Progranming Techniques Using Penalty Functions}

The key to nonlinear programming is an algorithm that enables optimum numerical solutions to be reached, with fast convergence, froll an initial guess of the solutions. Since the effectiveness of a given nonlinear programing technique is invariably affected by the global and local properties of a multi-dimensional problem to which the technique is applied, the unfortunate consequence is that there is no uniformly good method on which an algorithm can be based to handle satisfactorily most optimization problems.

From the numerous existing methods of nonlinear programuing, two popular ones were selected to test their utilities in power processor optimizations: the method of reduced gradient [12] and the method of penalty functions [13]. The particular codes used to implement these tivo approaches are, respectively, the Generalized Reduced Gradient (GRa) and the Sequential Unconstrained Minimization Technique (SUNT). [14,15] Based solely on our application experience to date, both codes handle simple power processing optimization problems equally well, but the SUNT seems to have a distinct edge in achieving convergence for more complicated problems. Consequently, the SUNT code, which is a notable nember of the penalty function class of algorithms, is used in the demonstration examples shown in Section 5.

At this juncture, a note is in order to
clarify the neaning of the penalty function. A penalty function is one which, when added to the original objective function to form a penalized objective function, will detract from achieving a minimum objective when an associated constraint is violated. A particular useful penalty function used in the SUNT code is thus the quadratic form of \(g_{j}(x, k, r)\), which results in the formulation of the following equation:
\[
\begin{equation*}
f_{p}(x, k)=f(x, k)+c \sum_{j=1}^{j}\left[g_{j}(x, k, v)\right]^{2} \tag{4}
\end{equation*}
\]

Here, \(f(x, k)\) is the original objective function, \(f_{p}(x, k)\) is the penalized objective function, \(c\) is \({ }_{a}{ }^{p}\) positive weighing coefficient when a minimum of \(f_{n}(x, k)\) is desired, and \(g_{i}(x, k, r)=0\) are the nonlinear equality constriats. Frome eq. (4), it is apparent that the constrained minimum of \(f(x, k)\) subject to constraints \(g_{j}=0\) is identical to unconstrained minimum of \(\lim _{c \rightarrow \infty} f_{p}(x, k)\).

The SUMT code thus accomodates the initial " c ", the conditions under which " c " is to be increased, and the criterion of bypassing the increasing " \(c\) " when the minimization procedure has run its course.

Before leaving for power circuit ootimization examples, the following important considerations are stated:
(1) Notice that the penalty-function method of seeking numerical solutions does not represent an extension of the theory of Lagrange multipliers presented in Section 4.1. Despite its sound theoretical background, the Lagrange multipliers method is less attractive, in general, from the computational vievpoint, as the number of search parameters is increased by the number of Lagrange multipliers.
(2) Since most SumT subroutines are written in FORTRAN IV, the program can be run on any large computer with a Fortran compiler. Hovever, being primarily a research tool, the user generally needs to experiment with SUMT in order to realize all its capabilities as well as its limitations.
(3) Given a specific search algorithm, one can generally find an objective function and a set of constraints for which the given algorithm performs best. This characteristic makes it difficull to compare objectively the general merits of different algorithus. The fact that SUMT has provided a better performance than GRG in our application does in no way imply its overall superiority over other codes. The production of a technique applicable to solve efficiently all nonlinear programming problems is not in sight, at least not in the near future.

\section*{5. DEMONSTRATION EXAMPLES}

Four exameles of power processing ontimization
are presented to demonstrate the methodology previously described. They are:
(1) Optimum-weight core selection for an inductor, with winding size predetermined.
o (2) Optimum-iveight inductor design with a given loss constraint.
(3) Optimum-loss inductor design with a given weight constraint.
(4) Comparison of optimum-weight single-stage and tiro-stage input filter design with identical loss and other requirement constraints.
The nature of the first three examples are such that they admit closed-form solutions based on the application of Lagrange multiplier method. The solutions of the other one, however, are acquired numerically through the use of the SUMT program.

Before presenting the examples, it is convenient to recall that \(f(x, k)\) is the objective function, and \(g_{.}(x, k, r)=0\) are constraints. The \(k\) 's represent all known constants needed for the design, the r's are requirement specifications which the optimum design must meet, and the \(x\) 's are optimum circuit and component parameters to be determined.

Example 1 Optimum-Weight Inductor Core Selection

Quite often in actual inductor design, the designer wishes to identify a core to achieve a certain inductance and to accomodate all windings for which the conductor size of each turn has been predetermined either intuitively or empirically. In this case, one is not interested in an optimum design strictly from a fixed-loss-minimum-weight or a fixed-weight-minimum-loss standpoint. All that is wanted is the selection of a core that is just right, i.e., it is neither too small nor too large for the application.

In this design, the following parameters are needed:
Knawn Constants k's
\(A_{c}\) : Predetermined cross-sectional area of one turn conductor
\(B_{S}\) : Sasuration flux density of the core
\(D_{C}\) : Conductor density
\(D_{i}\) : Iron core density
\(F_{c}\) : Ratio of one turn condcutor average length to core circumference
\(\mathrm{F}_{\mathrm{w}}\) : The proportion of core window area actually occupied by the conductor when the window is filled

Given Requirements r's.
L : Inductance needed
\(I_{p}\) : Peak current in the inductor winding

Unknown Variables x's
A : Core cross-sectional area
\(N\) : Number of turns
\(Z\) : Mean length of core
\(\mu\) : Permeability of core
Constraint Equations \(g_{j}\) 's
All magnetic core flux capability is utilized:
\[
\begin{equation*}
B_{s} N A-L I_{p}=0 \tag{5}
\end{equation*}
\]

All window area of the toroid core is occupied:
\[
\begin{equation*}
\left(N A_{c} / I I F_{W}\right)^{1 / 2}-(2 / 2 \pi)+(\sqrt{A} / 2)=0 \tag{6}
\end{equation*}
\]

In deriving eq. (6), a core with a square crosssectional area \(A\) is assumed so that the circumference of the core becones \(4 \sqrt{A}\).

Objective Function \(f(x, k)\)
Let the total inductor weight be \(W\), then,
\[
\begin{align*}
W=f(x, k) & =\text { conductor weight }+ \text { core weight } \\
& =4 F_{c} D_{c}{ }_{c} N \sqrt{A}+D_{i} A Z \tag{7}
\end{align*}
\]

Having identified the problem, it is recalled that the objective here is to find solutions for the \(x\) 's so that \(W\) of eq.(7) is minimized and at the same time eqs. (5) and (6) are satisfied. Unless otherwise specified, the use of international metric system units is assumed.

Substituting \(x_{1}\) for \(\sqrt{A}, x_{2}\) for \(N\), and \(x_{3}\) for \(Z\), eqs. (5) to (7) becone, respectively,
\[
\begin{align*}
g_{1}(x, k, r) & =B_{S} x_{2}{ }^{2} x_{1}{ }^{2}-L I_{p}=0 \tag{8}\\
g_{2}(x, k, r) & =\sqrt{\frac{A_{c}}{\pi F_{w}}} x_{2}-\frac{x_{3}}{2 \pi}+\frac{x_{1}}{2}=0 \tag{9}\\
f(x, k) & =4 F_{c} D_{c} A_{c} x_{2}{ }^{2} x_{1}+D_{i} x_{1}{ }^{2} x_{3} \tag{10}
\end{align*}
\]

Using the method of Lagrange miltipliers described in Section 4.1, eq. (2) becomes:
\[
\begin{align*}
F= & 4 F_{c} D_{c} A_{c} x_{2}^{2} x_{1}+D_{i} x_{1}{ }^{2} x_{3}-h_{1}\left(B_{s} x_{2}^{2} x_{1}^{2}-L I_{p}\right) \\
& -h_{2}\left[\left(A_{c} / \pi F_{W}\right)^{0.5} x_{2}-\left(x_{3} / 2 \pi\right)+\left(x_{1} / 2\right)\right] \tag{11}
\end{align*}
\]

As prescribed in eq.(3), partial differentiation of eq. (11) with respect to \(x_{i}\) gives:
\[
\begin{equation*}
\frac{\partial F}{\partial x_{1}}=4 F_{c} D_{c} A_{c} x_{2}{ }^{2}+2 D_{i} x_{1} x_{3}-2 h_{1} B_{s} x_{2}{ }^{2} x_{1}-\left(h_{2} / 2\right)=0 \tag{12}
\end{equation*}
\]
\[
\begin{align*}
& \frac{\partial F}{\partial x_{2}}=8 F_{c} D_{c} A_{c} x_{1} x_{2}-2 h_{1} B_{s} x_{2} x_{1}^{2}-h_{2}\left(A_{c} / \pi F_{w}\right)^{0.5}=0 \tag{13}\\
& \frac{\partial F}{\partial x_{3}}=0_{i} x_{1}^{2}+\left(h_{2} / 2 \pi\right)=0 \tag{14}
\end{align*}
\]

From the five equations (8), (9), (12), (13), and (14), the five unknowns \(x_{1}\) to \(x_{3}\) and \(h_{1}\) to \(h_{2}\) can
be solved.

Solutions of \(h_{1}\) and \(h_{2}\) are irrelevant to the inductor desian. The relebant ones are:
\[
\begin{align*}
& A=x_{1}^{2}=(1 / 3)\left(L I_{p} A_{c} / B_{s} \pi F_{w}\right)^{1 / 2} s \tag{15}\\
& N=x_{2}^{2}=3\left(L I_{p} \pi F_{W} / A_{c} B_{s}\right)^{1 / 2} s^{-1} \tag{16}\\
& Z=x_{3}=(2 \sqrt{3} \pi)\left(L I_{p} A_{c} / B_{s} \pi F_{w}\right)^{1 / 4}\left(S^{-1 / 2}+\frac{s^{1 / 2}}{6}\right) \tag{17}
\end{align*}
\]
where
\[
\begin{equation*}
S=\left(1+\frac{12 F_{c} F_{w} D_{c}}{D_{i}}\right)^{1 / 2}-1 \tag{18}
\end{equation*}
\]

From eqs. (15) to (18), the permeability and the weight of the inductor can be derived as:
\[
\mu=(2 \pi / \sqrt{3})\left(B_{s} / I_{p}\right)^{-5 / 4}\left(A_{c} / \pi F_{W}\right)^{3 / 4} L^{-1 / 4} S\left(S^{-\frac{1}{2}}+\frac{S^{\frac{1}{2}}}{6}\right)
\]
\[
\begin{align*}
& W=\left(2 \pi D_{c} / \sqrt{3}\right)\left(L I_{p} A_{c} / \pi B_{s} F_{w}\right)^{3 / 4} s^{-1 / 2} \tag{19}\\
& \cdot {\left[6 F_{c} F_{w}+\left(D_{i} / D_{c}\right)\left(s+\frac{s^{2}}{6}\right)\right] } \tag{20}
\end{align*}
\]

Equations (15) to (20) illustrate the particular set of \(A, N, Z\), and \(\mu\) that will produce the minimum combined copper and iron weight of an inductor with inductance \(L\), peak winding current \(I_{p}\), conductor cross-sectional area \(A_{c}\), satura \({ }^{\text {p }}\) tion flux density \(B_{s}\), winding \({ }_{c}\) factor \(F_{w}\), pitch factor \(F_{F}\), and specific densities \(D_{C}\) for \({ }^{\prime}\) ' the conductor and \(D_{i}\) for the core. In \({ }^{C}\) these equations, \(A\) and \(Z\) are in square meters and meters respectively, \(W\) is in kilograms, and \(\mu\) is in Weber/Anpere-Turn-Meter. To convert \(\mu\) into Gauss/0ersted, eq.(19) is divided by a factor \(4 \pi \times 10^{-7}\).

To demonstrate the utility of these equations, the following constants are assumed for the molypermalloy-powder-core inductor:
\[
\begin{aligned}
& F_{W}=0.4, F_{c}=2, B_{S}=0.35 \text { Weber } / \mathrm{meter}^{2}, \\
& D_{C}=8900 \mathrm{~kg} / \mathrm{m}^{3}, \text { and } D_{i}=7800 \mathrm{~kg} / \mathrm{m}^{3} .
\end{aligned}
\]

Using these constants and making the necessary conversions to the more familiar engineering units, then, with \(L\) expressed in microhenries, \(I_{p}\) in amperes, and \(A\) in circular mils, equations (15) \({ }^{c}\) to (20) become:
\[
\begin{array}{ll}
A=2.8 \times 10^{-4}\left(L_{p} A_{c}\right)^{1 / 2} & c^{2} \\
N=103\left(\mathrm{LI}_{p} / A_{c}\right)^{1 / 2} & \text { turns } \\
Z=0.18\left(L I_{p} A_{c}\right)^{1 / 4} & \text { cm } \\
\mu=6.1\left(I_{p}\right)^{-5 / 4}(L)^{-1 / 4}\left(A_{c}\right)^{3 / 4} & \text { Gauss/Oersted } \tag{25}\\
W=0.001\left(L_{p} A_{c}\right)^{3 / 4} & \text { grams }
\end{array}
\]

Notice that once \(L, I_{Q}\), and \(A\) are known, the inductor weight is delermined \({ }^{\text {c from eq. (25) wi thout }}\) the need for actually designing, the inductor.

\section*{Example 2 Optimum -Weight Inductor Design Subjecting to a Given Loss Constraint}

This example deals with the design of an iron core inductor to be used in an input filter. The allowed loss for the inductor is given as a constraint. The inductor current is assumed to be essentially dc, thus producing negligible iron loss. The results obtained here are of considerable practical significance; the results define in closed form the optimum-weight magnetics design parameters including core area, mean length, permeability, winding size, and number of turns once the loss in the inductor is given. Furthermore, the optimum inductor weight for a given loss is known directly without even designing the inductor.

\section*{Known Constants \(k\) 's}
\(P\) : Power loss allowed in the inductor
\(B_{s}\) : Saturation flux density
\(\rho\) : Resistivity of the conductor
\(D_{C}, D_{i}, F_{C}\), and \(F_{W}\) are identical to Example 1.
Given Requirements \(r\) 's
\(I_{d c}: d c\) current in the inductor
L. : Inductance

Unknown Variables x's
\(A_{c}\) : Conductor size
\(A, N, Z\), and \(\mu\) are identical to Example 1.
Constraint Equations \(g_{j}\) 's
Equations (26) and (27) are identical to eqs.
\((5)\) and \((6)\) :
\[
\begin{align*}
& B_{s} N A \tag{26}\\
& \sqrt{\frac{A_{c} N}{\pi F_{W}}}-\frac{Z}{d c}=0 \tag{27}\\
& 2 \pi
\end{align*}+\frac{A^{1 / 2}}{2}=0 .
\]

In addition, the copper loss in the inductor is:
\[
\begin{equation*}
P-\left(4 I_{d c}^{2}{ }^{2} F_{c} N \sqrt{A} / A_{c}\right)=0 \tag{28}
\end{equation*}
\]

Objective Function \(f(x, k)\)
\[
\begin{equation*}
W=4 F_{c} D_{c} A_{c} N \sqrt{A}+D_{i} A Z . \tag{29}
\end{equation*}
\]

Substituting \(x_{1}\) for \(\sqrt{A}, x_{2}\) for \(N, x_{3}\) for \(Z\), and \(x_{4}\) for \(\sqrt{A_{c}}\), setting up function \(F\) of eq. (2), and differentiating \(F\) with respect to \(x_{1}, x_{2}, x_{3}\), and \(x_{4}\) yield the following seven equations:
\[
\begin{align*}
& B_{s} x_{1}{ }^{2} x_{2}{ }^{2}-L I_{d c}=0 \tag{30}\\
& \sqrt{1 / \pi F_{w}} x_{2} x_{4}-\left(x_{3} / 2 \pi\right)+\left(x_{1} / 2\right)=0 \tag{31}\\
& P-\left(4 I_{d c}{ }^{2} \rho F_{c} x_{2}{ }^{2} x_{1} / x_{4}{ }^{2}\right)=0 \tag{32}\\
& 4 F_{c} D_{c} x_{4}{ }^{2} x_{2}{ }^{2}+2 D_{i} x_{1} x_{3}-2 h_{1} B_{s} x_{2}{ }^{2} x_{1}-\left(h_{2} / 2\right) \\
& \quad+\left(4 I_{d c}{ }^{2} \rho F_{c} x_{2}{ }^{2} h_{3} / x_{4}{ }^{2}\right)=0 \tag{33}\\
& 8 F_{c} D_{c} x_{4}{ }^{2} x_{2} x_{1}-2 h_{1} B_{s} x_{2} x_{1}{ }^{2}-\left(1 / \pi F_{w}\right)^{1 / 2} h_{2} x_{4} \\
& \quad+\left(8 h_{3} I_{d c}{ }^{2}{ }_{\rho} F_{c} x_{2} x_{1} / x_{4}{ }^{2}\right)=0 \tag{34}\\
& D_{i} x_{1}{ }^{2}+\left(h_{2} / 2 \pi\right)=0 \tag{35}\\
& 8 F_{c} D_{c} x_{4} x_{2} x_{1}-\left(1 / \pi F_{w}\right)^{1 / 2} h_{2} \\
& \quad-\left(8 I_{d c}{ }^{2} \rho F_{c} h_{3} x_{2} x_{1} / x_{4}^{3}\right)=0 \tag{36}
\end{align*}
\]

Solving for \(A, N, Z\), and \(A_{c}\), it can be shown that the following closed-form §olutions exist:
\[
\begin{align*}
& A=16\left(\rho D_{c} F_{c}{ }^{4} / B_{s}{ }^{2} \pi_{i}\right)^{2 / 5}(S)^{-4 / 5}\left(I_{d c}{ }^{4} L^{2} / P\right)^{2 / 5} \tag{37}\\
& \left.N=(1 / 16)\left(\pi^{2} D_{j}^{2} / D_{C}{ }^{2} B_{S} D^{2} F_{c}\right)^{8}\right)^{1 / 5}(S)^{4 / 5} \\
& \left(L P^{2} / I_{d c}^{3}\right)^{1 / 5} \tag{38}\\
& Z=\left[(1 / 2)\left(\pi^{8} D_{i}{ }^{3} \rho^{2} / F_{w}{ }^{5} D_{c}{ }^{3} B_{s}{ }^{4} F_{c}{ }^{7}\right)^{1 / 10}(s)^{3 / 5}\right. \\
& \left.+4\left(\rho_{\pi}{ }^{4} F_{c}{ }^{4} D_{C} / B_{S}^{2} D_{j}\right)^{1 / 5}(S)^{-2 / 5}\right]\left(I_{d C} L^{2}\right. \\
& \triangleq T\left(I_{d c}{ }^{4} L^{2} / P\right)^{1 / 5} \tag{39}\\
& A_{c}=\left(\pi D_{i} F_{C} \rho^{4} / D_{c} B_{S}^{3}\right)^{1 / 5}(S)^{2 / 5}\left(I_{d c}^{11} L^{3} / P^{4}\right)^{1 / 5} . \tag{40}
\end{align*}
\]
where \(T\) represents the quantity in the bracket on the right-hand side of eq.(39), and \(S\) is:
\[
\begin{equation*}
S=\left(D_{i} F_{c} / D_{c} F_{w}\right)^{1 / 2}+\left[\left(D_{i} F_{c} / D_{c} F_{w}\right)+96 F_{c}^{2}\right]^{1 / 2} \tag{41}
\end{equation*}
\]

From these equations, one can obtain:
\[
\begin{equation*}
\mu=16\left(D_{c} B_{s}^{3} \rho F_{c}^{4} / \pi D_{i}\right)^{2 / 5}(T)(S)^{-4 / 5}\left(I_{d c}{ }^{2} L / P^{3}\right)^{1 / 5} \tag{42}
\end{equation*}
\]
\[
\begin{align*}
W= & {\left[\left(\pi^{2} D_{i}^{2} D_{c}^{3} \rho_{p_{c}}^{2} / B_{s}^{6}\right)^{1 / 5}(S)^{4 / 5 O D R}\right. \text { QUALLLU }} \\
& \left.+16\left(\rho F_{c}^{4} D_{c} D_{i}^{3 / 2} / B_{s^{\pi}}^{2}\right)^{2 / 5}(S)^{-4 / 5}(T)\right]\left(L^{6} I_{d c}^{12} / P^{3}\right) \tag{43}
\end{align*}
\]

Several significant characteristics exposed by these equations are:
(1) For a given core material, the minimum weight expressed in eq. (43) can be calculated directly from the inductance \(L\), the \(d c\) current \(I_{d c}\), and the loss limit \(P\), without attending to the design details of the inductor.
(2) For a given loss, the inductor weight is proportional to \(\left(\operatorname{LI}_{d c}^{2}\right)^{6 / 5}\), but is inversely proportional to \(\mathrm{P} 3 / 5\).
(3) The two terms in the bracket on the righthand side of eq. (43) represent the conductor and core weight, respectively. Since they are both proportional to the same quantity \(\left(I_{d c} 12,6 / p^{3}\right)^{1 / 5}\), there is one, and only one, optimum weight design for a given loss. Varying the conductor-to-core proportion in an alternate design would only result in a heavier inductor.

Using powder cores as an example, the following parameters can be assumed without losing much of the generality:
\[
\begin{array}{ll}
B_{S}=0.35 & \mathrm{~W} / \mathrm{m}^{2}, D_{c}=8900 \mathrm{~kg} / \mathrm{m}^{3} \\
D_{i}=7800 & \mathrm{~kg} / \mathrm{m}^{3}, \rho=1.724 \times 10^{-8} \text { ohmmeter } \\
F_{c}=1.9 & , F_{W}=0.42
\end{array}
\]

Substituting these parameters into eqs. (37) to
(43) and making necessary unit conversions for engineering convenience, one has:
\[
\begin{align*}
& A=0.00076\left(I_{d c}^{4} L^{2} / P\right)^{2 / 5} \mathrm{~cm}^{2} \tag{44}\\
& N=37.6\left(L P^{2} / I_{d c}^{3}\right)^{1 / 5} \text { turns } \tag{45}\\
& Z=0.21\left(I_{d c}^{4} L^{2} / P\right)^{1 / 5} \quad \mathrm{~cm} \tag{46}\\
& A_{C}=2.68\left(I_{d c} L^{11} / P^{4}\right)^{1 / 5} \text { cir. mils } \tag{47}\\
& \mu=15.6\left(I_{d c}^{2} L / P^{3}\right)^{1 / 5} \quad \text { Gauss/0ersted } \tag{48}\\
& W=0.0022\left(I_{d c} 1 L^{6} / P^{3}\right)^{1 / 5} \text { grams } \tag{49}
\end{align*}
\]

In these equations, \(I_{d c}\) is in amperes, \(L\) is in microhenries, and \(P\) is in watts.
\(Z=1.617 W^{1 / 3}\)
\(\mu=7100\left(\mathrm{~W} / \mathrm{I}_{\mathrm{dc}}{ }^{2} \mathrm{~L}\right)\)
cm
(62)
\(P=4.124 \times 10^{-5}\left(L^{2} I_{d c}^{4} / W^{5 / 3}\right)\) Watts
\(A_{c}=8881\left(W^{4 / 3} / L I_{d c}\right)\)
cir. mils

In equations (60) to (65),W,L,I \(\mathrm{I}_{\mathrm{dc}}\) are in grams, microhenries, and amperes, respectively.

\section*{Example 4 Comparison of Optimum-Weight Input Filter Design Using Single-Stage and Two-STage Filters}

In this example, the optimum-weight designs of two different input-filter configurations are compared to assess their relative utility. The first configuration is a conventional LC filter shown in Figure 1, where \(R\) is the winding resistance of \(L\). The second configuration shown in Figure 2 is a two-stage filter [16], in which R1 and \(R 2\) are the winding resistance of \(L 1\) and \(L 2\), R3 is the lumped sum of ESR of C1 and a much higher external resistance added in series with C1, and C2 is a high-quality capacitor with negligible ESR. The advantage of the two-stage filter is that while a high efficiency can be maintained through the use of \(C 2\) in the second stage to handle most of the switching current, the resonant peaking of the entire filter is being controlled by the external resistance R3 in the first stage. During normal operations, the current in Cl is negligible.

Figure 1 A Single-Stage Filter

Figure 2 Two-Stage Filter
the following simplified equations are obtained:
\[
\begin{align*}
& A=0.045 W^{2 / 3} \quad \mathrm{~cm}^{2} \tag{60}\\
& N=0.635\left(\mathrm{LI}_{\mathrm{dc}} / W^{2 / 3}\right) \quad \text { turns } \tag{61}
\end{align*}
\]

\section*{Known Constants \(k\) 's}

DRIGINAL PAGE IS D: ROOR QUALITY
\(B_{s}\) : Identical saturation flux density assumed for L, L1, and L2
\(K_{c}\) : Capacitor weight per farad of capacitance for \(C\). For a given voltage rating and case size, the weight of the capacitor is divided by the highest capacitance of that case size to arrive at \(a\) value for \(K_{c}\).
\(K_{c}\) : \(\begin{aligned} & \text { Capacitor weight per farad of capacitance } \\ & \text { for } C 1 .\end{aligned}\)
\(K_{c 2}\) : Capacitor weight per farad of capacitance
for \(C 2\) \(D_{C}, D_{i}, F_{c}, F_{W}\), and \(p\) are identical to Example 1, and are assumed to be the same for \(L, L T\),

Given Requirements \(r\) 's
B : Resonant peaking limit for the filter of
\(B_{1}\) : Resonant peaking limit for
the first stage filter of Figure 2
\(B_{2}\) : Resonant peaking limit for
the second stage filter of Figure 2
\(F\) : Frequency of the switching current
\(G\) : Attenuation required at frequency \(F\)
Idc: Dc current in the inductors
: Power loss allowed
The last four requirements are assumed
identical for both filters to facilitate a
realistic comparison.

\section*{Unknown Variables x's}

The variables for the filter of Figure 1 are:
\[
\begin{aligned}
& A, N, Z, A_{C}, L, C, R \\
& \left(R=P / I_{d C}{ }^{2}\right)
\end{aligned}
\]

The variables for the filter of Figure 2 are:
\(A_{1}, N_{1}, Z_{1}, A_{c l}, L_{1}, C_{j}, R_{1}\)
\(A_{2}, N_{2}, Z_{2}, A_{c 2}, L_{2}, C_{2}, R_{2}, R_{3}\)
\(\left(R_{1}+R_{2}=P / I_{d c}{ }^{2}\right)\)
Constraint Equations \(g_{j}\) 's
Five constraints exist for Figure 1:
No Saturation:
\[
\begin{equation*}
\mathrm{B}_{\mathrm{s}} \mathrm{NA}-\mathrm{LI}_{\mathrm{dc}}=0 \tag{66}
\end{equation*}
\]

Full Window:
\[
\begin{equation*}
\left(N A_{c} / \pi F_{W}\right)^{1 / 2}-(Z / 2 \pi)+(\sqrt{A} / 2)=0 \tag{67}
\end{equation*}
\]

Loss Limit:
\[
\begin{equation*}
\left(4 \rho F_{c} N \sqrt{A /} A_{c}\right)-\left(P / 1_{d c}{ }^{2}\right)=0 \tag{68}
\end{equation*}
\]

Resonant Peaking Limit:
\[
\begin{equation*}
L-C B^{2} R^{2}=0 \tag{69}
\end{equation*}
\]

Required Attenuation:
\[
\begin{equation*}
\left(1-4 \pi^{2} F^{2} L C\right)^{2}+4 \pi^{2} F^{2} R^{2} C^{2}-G^{-2}=0 \tag{70}
\end{equation*}
\]

Eight constraints exist for Figure 2:
No Saturation For \(L 1\) and \(L 2\) :
\[
\begin{align*}
& B_{s} N_{1} A_{1}-L_{1} I_{d c}=0 \tag{71}\\
& B_{s} N_{2} A_{2}-L_{2} I_{d c}=0 \tag{72}
\end{align*}
\]

Full Window For \(L 1\) and \(L 2\) :
\[
\begin{align*}
& \left(N_{1} A_{c 1} / \pi F_{w}\right)^{1 / 2}-\left(Z_{1} / 2 \pi\right)+\left(\sqrt{A_{1}} / 2\right)=0 \tag{73}\\
& \left(N_{2} A_{c 2} / \pi F_{w}\right)^{1 / 2}-\left(Z_{2} / 2 \pi\right)+\left(\sqrt{A_{2}} / 2\right)=0 \tag{74}
\end{align*}
\]

Loss Limit:
\[
\begin{equation*}
4 p F_{c}\left[\left(N_{1} \sqrt{A_{1}} / A_{c 1}\right)+\left(N_{2} \sqrt{A_{2}} / A_{c 2}\right)\right]-\left(P / I_{d c}^{2}\right)=0 \tag{75}
\end{equation*}
\]

Resonant Peaking At First Stage Filter:
\[
\begin{equation*}
\frac{1+\frac{L_{1}}{C_{1} R_{3}{ }^{2}}}{\left(\frac{C_{2}}{C_{1}}\right)^{2}+\frac{L_{1}}{C_{1} R_{3}{ }^{2}}\left(1-\frac{C_{2}}{C_{1}}-\frac{L_{2} C_{2}}{L_{1} C_{1}}\right)}{ }^{2}-B_{1}^{2}=0 \tag{76}
\end{equation*}
\]

Resonant Peaking At Second Stage Filter:
\[
\begin{equation*}
\left(L_{2} / L_{1}\right)-B_{2}=0 \tag{77}
\end{equation*}
\]

Required Attenuation:
\[
\begin{equation*}
G=\frac{1}{\frac{L_{2} C_{2}}{L_{1} C_{1}}\left(\frac{F}{f_{1}}\right)^{3} \frac{R_{3}}{\left(L_{1} / C_{1}\right)^{T / 2}}-\frac{C_{2}}{C_{1}}\left(\frac{F}{f_{1}}\right)^{2}} \tag{78}
\end{equation*}
\]
where \(f\) is the first stage resonant fre-
quency:
\[
\begin{equation*}
f_{1}=1 /\left[2 \pi\left(L_{1} C_{1}\right)^{1 / 2}\right] \tag{79}
\end{equation*}
\]

Objective Functions \(f(x, k)\)
The weight for the filter of Figure 1 is:
\[
\begin{equation*}
W=4 F_{c} D_{c} A_{c} N \sqrt{A}+D_{i} A Z+K_{c} C \tag{80}
\end{equation*}
\]

The weight for the filter of Figure 2 is:
\[
\begin{align*}
W= & 4 F_{c} D_{c}\left(A_{c 1} N_{1} \sqrt{A_{1}}+A_{c 2} N_{2} A_{2}\right. \\
& +D_{i}\left(A_{1} Z_{1}+A_{2} Z_{2}\right)+K_{c 1} C_{1}+K_{c 2} C_{2} \tag{81}\\
& + \text { Negligible weight for } R 3
\end{align*}
\]

To obtain the optimum design for Figure 1, notice that in eqs.(69) and (70) all parameters are given except for \(L\) and \(C\). Thus \(L\) and \(C\) are solved directly, from which the capacitor weight \(K_{c} C\) is known. Furthermore, eqs. (66) to (68) are c identical to those of Example 2, where a closedform expression for optimum inductor weight is already available from eq.(43). Consequently, the
minimum filter weight is derived without resorting to SUMT. Assuming the following:
\begin{tabular}{llll}
\(B_{s}=0.35\) & Weber \(/ \mathrm{m}^{2}\) & \(D_{c}=8900\) & \(\mathrm{~kg} / \mathrm{m}^{3}\) \\
\(F_{c}=1.9\) & \(D_{i}=7800\) & \(\mathrm{~kg} / \mathrm{m}^{3}\) \\
\(F_{W}=0.42\) & \(B=2\) & \((6 \mathrm{db})\) \\
\(\rho=1.724 \times 10^{-8}\) & ohmmeter & \(G=0.002\) & \\
\(F=20\) & GHz & \(\mathrm{P}=0.6\) & Watts \\
\(I_{d c}=3\) & Amp & \(\mathrm{K}_{\mathrm{c}}=372\) & \(\mathrm{~kg} /\) Farad
\end{tabular}

Then, it can be found from eqs.(69) and (70) that
\[
L=23.7 \quad \mu H \quad C=1335 \quad \mu \mathrm{~F}
\]

Equation (49) thus gives
\[
\begin{aligned}
W & =0.0022\left(I_{d c}^{12} L^{6} / P^{3}\right)^{1 / 5}+K_{c} C \\
& =1.9+497=499 \text { grams }
\end{aligned}
\]

The overwhelming portion of the total weight is contributed by the capacitor. The large capacitance is needed to meet the prescribed resonant peaking \(B\) and power loss limit \(F\).

As for Figure 2, the closed-form solutions for L1, L2, C1,C2, etc., are unattainable. The optimum filter weight must be obtained numerically from SUMT. Using the same constants given in Example 1 and assuming
\[
\mathrm{K}_{\mathrm{c} 1}=372 \mathrm{~kg} / \text { Farad, and } \mathrm{K}_{\mathrm{c} 2}=2600, \mathrm{~kg} / \mathrm{Farad}
\]
for foil tantalum and polycarbonate capacitors respectively, the SUMT processing gives the following optimum design:
\begin{tabular}{llll}
\(A_{1}=0.70\) & \(\mathrm{~cm}^{2}\) & \(A_{2}=0.138\) & cm \\
\(N_{1}=30\) & turns & \(N_{2}=51\) & turns \\
\(Z_{1}=6.38\) & cm & \(Z_{2}=6.33\) & cm \\
\(A_{c 1}=2919\) & cir. mils & \(A_{c 2}=3257\) & cir. mils \\
\(L_{1}=309\) & \(\mu H\) & \(L_{2}=103\) & \(\mu \mathrm{H}\) \\
\(C_{1}=75\) & \(\mu \mathrm{~F}\) & \(\mathrm{C}_{2}=20\) & \(\mu \mathrm{~F}\) \\
\(R_{1}=0.0237\) & ohm & \(R_{2}=0.0159\) & ohm \\
\(\mu_{1}=249\) & Gauss/0er. & \(\mu_{2}=145\) & Gauss/0er. \\
\(R_{3}=2.12\) & ohm & \(W=171\) & grams.
\end{tabular}

Notice the smaller \(W\) of Figure 2 filter as compared with that of Figure 1, thus demonstrating the lighter optimum weight of the two-stage filter in relation to its single-stage counterpart when they are designed to meet identical peaking, attenuation, and efficiency requirements. The difference in weight will increase (decrease) with a lower (higher) aliowance on either the resonant peaking or the power loss for a given attenuation requirement.

\section*{6. FUTURE INVESTIGATIONS}

Through the demonstration examples, the objective of establishing a power processing optimization methodology is achieved. However, like any other emerging branch within the modeling and analysis of power processing, the optimization
application can only grow into a future state of maturity with constant enhancememt from efforts of research and development. Imminent future investigation should include, but not limit to, the following areas:
(1) Without an accurate model for power component losses, the application of optimization principle to weight-loss study is of dubious value. Loss elements such as (A) core loss as a function of frequency, flux density, and excitation wave form, and (B) semiconductor switching losses as related to various magnetics-semiconductor hybrid circuits and energy recovery schemes, must be authentically depicted to achieve a meaningful optimization.
(2) The four examples given in Section 5 contain only constraints which do not include requirements involving feedback control such as regulator stability, output impedance, and audio susceptibility. However, with the recent availability of switchingregulator modeis \([7,8,9,10]\), the inclusion of these requirements as constraints for the design of a complete regulator system now looms as the next vital step for power processing design optimization.
(3) To effect power processing design optimization, the parallel devleopment of computer search methods applicable to broad classes of power processing problems is desirable. However, since no single method can be expected to cope with all problems equally well, the development of dedicated computer programs for a given class of power processing optimization will likely become an area of highly specialized research.

\section*{7. CONCLUSIONS}

A power processing optimization methodology is established to effectively conceive a design, which not only accomodates all requirement specifications, but also optimizes a given design quantity deemed particularly desirable. Such a quantity can be cither weight, efficiency, regulator response, or any other physically realizable entity.

As an initial demonstration of the optimization methodology, four design examples are presented. The method of Lagrange multipliers is applied to three examples to secure closed-form optimum solutions. These solutions prescribe an optimum-weight inductor design for a given loss constraint, and an optimum-loss inductor design for a given weight constraint. When closed-form solutions are not amendable in the other example, a nonlinear programming algorithm is used to conceive the design numerically.

Successful optimization effort eventually will achieve the following significant results: (1) there will be no need for heavy empirical reliances to perform the necessary design, (2) the penalties that may be incurred due to a suboptimum design can be eliminated, which is particularly important in view of the forthcoming
trend for use of considerable higher level of power, and (3) the optimization tool will, for the first time, allow a power processing system designer to perform intelligently the tradeoff study of candidate systems and to define confidently the optimum requirement specifications for the various equipment within a given system.

In perspective, one must realize that an optimization is generally associated with physical phenomena. Thus, the power processing optimization is of practical value only when there exists an accurate understanding of the physical principles upon which the constraints and the problem solutions depend. is a consequence, knowledge of power processing circuit and device characteristics (such as core losses, regulator control model, semiconductor switching phenomenon, etc.,) is a prerequisile to a successful power processing optimization. Furthemore, since most optimization problems are sufficiently complicated to defy closed-form solutions, the successful adoption of existing or dedicated search algori thms to power processing design optimization is an essential parallel development. It is only through continuous efforts in power processing modeling and analysis and in computer nonlinear programming can the design optimization be fostored into its future maturity.

\section*{8. REFERENCES}
[1] B. Castle, "Optimum Shapes for Inductors," IEEE Trans. Parts, Materials, and Packaging, Vo1. PMP-5, No. 1, March 1969, PP. 3-15.
[2] S.Y.M. Feng, T.G. Wilson, and W.A. Sander III, "Optimum Toroidal Inductor Design Analysis," 20th Electronic Components Conference Proceedings, 1970, PP. 337-347.
[3] D.Y. Chen, H.A. Owen, and T.G. Wilson, "Computer-Aided Design and Graphics Applied to the Study of Inductor-Energy-Storage dc-to-dc Electronic Power Converters," IEEE Trans. Aerospace and Electronics Systems, Vo1. AES-9, No. 4, July 1973, PP. 585-597.
[4] J.R. Woodbury, "Design of Imperfectly Coupled Power Transformers for dc to dc Conversion," IEEE Trans, Industrial Electronics and Control Instrumentation, Vol. IECI-21, No. 3, August 1974, PP. 152-159.
[5] "Analysis of Aerospace Power Conditioning Component Limitations," TRW Contractor Report NASA CR-97000, April 1969.
[6] F.F. Judd and C.T. Chen, "Analysis and Optimal Design of Self-Oscillating DC to DC Converters," IEEE Trans. Circuit Theory, Vo1. CT-18, Nov. 1971, Pp. 651-658.
[7] G.W. Wester and R.D. Middlebrook, "LowFrequency Characterization of Switched DCDC Converters," IEEE Trans. Aerospace Electronics Systems, AES-9, No. 3, May 1973, PP. 776-385.
[8] R.D. Middlebrook, "Continuous Mode 1 for the Tapped-Inductor Boost Converter, " IEEE Power Electronics Specialists Conference Record, June 1973, PP. 63-79.
[9] F.E. Lukens, "Linearization of the PulseWidth Modulated Converter," IEEE Power Electronics Specialists Conference Record, June 1974, PP. 265-273.
[10] R.P. Iwens, Y. Yu. and J.E. Triner. "Time Domain Modeling and Stability Analysis of an Integral Pulse Frequency Modulated DC to DC Power Converter," IEEE Power Electronics Specialists Conference Record, June 1975, PP. 80-90.
[11] D.A. Pierre, Optimization Theory with Applications (Book). John Wiley \& Sons, Inc. 1969, PP. 36-43.
[12] J. Abadie, and J. Carpenter, "Generalization of the Walte Reduced Gradient Method to the Case of Nonlinear Constraints," Book, OPTIMIZATION, edited by R. Fletcher, Academic Press, N.Y., 1969.
[13] A.V. Fiacco, and G.P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Progranuming," Management Science, 10, July 1964: PP. 601-617.
[14] Unpublished Generalized Reduced Gardient Algorithm Originated by J. Abadie.
[15] W.C. Mylander, R.L. Holmes, and G.P. McCormick, "A Guide to SUMT-Version 4," Paper RAC-P-63, Research Analysis Corp., October, 1971.
[16] Y. Yu and J. J. Biess, "Some Design Aspects Concerning Input Filters for DC-DC Converters," Power Conditioning Specialists Conference Record, 1971, PP. 66-79.

\section*{Driginal page
OF POOR Qualdy}

\section*{APPENDIX N}

\section*{PROGRAM LISTING OF SUMT PROCESSING FOR CONVERTER
DESIGN OPTIMIZATION dESIGN OPTIMIZATION}

\begin{tabular}{|c|c|}
\hline 023203 & \(V A L=(x 14 * \times 6742-\times M 3 \div \times 4 * \times 5 * * 2) *(13)\) \\
\hline 02330 & KETURN \\
\hline 02340 C & EVAL COMSTRe 4 \\
\hline 023504 & \(Y \mathrm{I}=\mathrm{XY}-\mathrm{X10} 0(1 .+\mathrm{XM4})\) \\
\hline 02360 & VAL \(=(1 .+\times 15 * \times 15) * \times 9 * X 4-504 * \times 10 * \times 10+\times 15 * \times 15 * Y 1 * Y 1)\) \\
\hline 02370 & VAL \(=-V A L \pm C 141\) \\
\hline 02380 & RETUK! \\
\hline 02390 C & EVAL.CONSTH. 5 \\
\hline 024005 & \(Y 1=\times 44 \pm \times 107 \times 25 \pm \times 257 \times 25-\times 10 * \times 25 \pm \times 257 \times 16 \pm \times 15\) \\
\hline 02420 & \(Y 3=\times 1.6 * \times 9 \div \times 15 * \times 16 * * 2\) \\
\hline 02430 & VAL \(=(Y 1 * \times 24-Y 3) * C(5)\) \\
\hline 02440 & HETUH: \\
\hline 02450 C & EVAL.CUNSTR. 6 \\
\hline 024606 & \\
\hline 02470 & KETURN \\
\hline 02480 C & EVAL.CONSTR. 7 \\
\hline 024907 & VAL \(=(\) (\(\times 1 \pm \times 1 * \times 2 * \times 2)-\times 7 * \times 46 / C 011) * C(7)\) \\
\hline 02500 & BETURN \\
\hline 02510 C & EVAL.CIHHSTR.* \\
\hline 025208 & \\
\hline 02530 & RETUH \\
\hline 02540 C & EVAL.COHSTK. 4 \\
\hline 02550.9 & VAL \(=-1 \times M 7 * 22 \div \times 3-\times M 5=\times 11+\times M B=\times 11 \sim C(9)\) \\
\hline 02560 & KETURN - - - - - - - \\
\hline 02576 & EVAL.CSTHSTK. 10 \\
\hline 0254010 & \\
\hline 02590 & HETUKG \\
\hline 02600 C & EVAL.CONSTP. 11 \\
\hline 0261011 & \(V A L=(C 05-\times 13-\times 14)=(11)\) \\
\hline 02620 & HETUKH \\
\hline 02636 C & Eval Comsta. 12 \\
\hline 02649 12 & \\
\hline 02641 & PETUYY \\
\hline 02643 C & EVAL.CONSTH.13 \\
\hline 0264413 & \\
\hline 02645 & HETIJM, \\
\hline 02646 C & Eval.conste. 14 \\
\hline 0264714 & VムL \(=(\times 10-1.05-6) \%\) (14.) \\
\hline 9204 & \\
\hline 02651 C & EVAL.COHSTR.15 \\
\hline 02652 15 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 03644 C & OR CUNSTKAINTS 11 IF II HOT 0 \\
\hline 03646 & COMMON/SHAKE/X (100), DEL (100), A (100, 100), N, \\
\hline 43648 & \\
\hline 03650
43652 & \\
\hline 03652 & \\
\hline 03660 & CUMmIN/CUNSTA/C(20) \\
\hline 03670 & ELUIVALENCE \((\times 1, \times(1) 1,1 \times 2, \times(2)\) \\
\hline 03680 & \(1(\times 5, \times(5)),(x 6, x(6)),(\times 7, x(7)\) \\
\hline 03690 & \(2(x 10, x(101),(x 11, x 111)),(x 12, x(12)),(x 13, x(13)\), \\
\hline 13700 & EUUIVALENCE \((\times 14, \times(14)),(\times 15, \times(15)),(\times 16, \times(16))\) \\
\hline 03702 & \(\frac{1}{2}(\times 17, \times(17)),(\times 18, x(18)),(\times 19, \times(19)),(\times 20, \times(20))\), \\
\hline 03704
133706 & \(21 \times 21, \times 121) 1,(x 22, x(22)),(x 23, \times(23)),(\times 24, \times(24))\), \\
\hline 03710 & \(31 \times 25, \times(25)\)
\(1 T=11+1\) \\
\hline 03720 & G0 To \(1100,14,11,5,7,8,12,4,10\) \\
\hline 03730 C & O.F. \\
\hline 03740100 & \(\Delta(1,1)=2 . * \times M 2 * \times 11\) \\
\hline 05150 & \(A(1,2)=2.4 \times 12 \sim \times 2 \times 13 * \times 3\) \\
\hline 03760 & \\
\hline 03770 & \(\mathrm{A}(1,11)=2.7 \times 142 \% \times 1\) \\
\hline 03780 & \(A(2,2)=2 . \approx x_{M 1 *} \times 1 \sim x .3=x 3\) \\
\hline 03790 & \\
\hline 03800 & A \((3,3)=2.7 \times \mathrm{M} 1 * \times 1 * \times 2 * \times 2\) \\
\hline 03810 & \(4(4,4)=2 . * \times M 2=\times 12\) \\
\hline 1,3820 & \(4(4,5)=2.7 \times 1+1 \% \times 5 \approx \times 6 \% \times 6\) \\
\hline 03830 & \(A(4,6)=2.7 \times 141=x 5 \% \times 5=x 6\) \\
\hline 03840 & \(A(4,12)=2.4 \times 12 * \times 4\) \\
\hline 03850 & A \(15,51=2.7 \times M 14 \times 4 \times 1.4 \times 6\) \\
\hline 03460 & A \((5,6)=4\). \(=\times \times M 2 * \times 4 * \times 5 * \times 6\) \\
\hline 03862 & \(A(6,6)=2 .=X M 1+X 4=x, 5 \times 85\) \\
\hline 03864 & \(4(17,17)=2 . * x M 2+x / 2\) \\
\hline 03066 & \(A(17,18)=2 * * \times 1 * \times 18 * \times 19 \% * 2\) \\
\hline 03868 & \(A(17,19)=\) \% \(+x M 1 * 18 *=2 \times 119\) \\
\hline 03470 & \(A(17,22)=2 . \pm \times M 24 \times 17\) (\({ }^{\text {a }}\) \\
\hline -03872 & \(A(18,18)=2 . * \times M 1 * \times 17 * \times 19 * \# 2\) \\
\hline 03674 & \\
\hline 03876 & \(A(19,19)=2.7 \times M 1 * \times 17=\times 18 * * 2\) \\
\hline 03880 & RETUKN \\
\hline 03882 C & CONSTK. \\
\hline 038841 & Y \(1=X M 16 \div 11 . / C 010-1.1\) \\
\hline
\end{tabular}

 GO 1030

\begin{tabular}{|c|c|}
\hline -2790 & DO \(50 \mathrm{I}=1,25\) \\
\hline 0290050 & OEL 11\()=0\). \\
\hline 02810 & G0 T0 1100,14,11,5,7,8,12,9,10,13,15,1,2,3,4,6,16,17, 11 \\
\hline 32320 C & EVAL.GRAD. OF O.F. \\
\hline 02830100 & DEL (1) \(=\) XH1*X2*X2*x3*X3+2.*XM2*X1*X11 \\
\hline 02840 & \\
\hline 02850 & DEL (3) \(=2\) **XM1*x1*x2*x2*x3 \\
\hline 02860 & DEEL (4) \(=\) XM1*X5*X5*X6*X6+2**XH2*X4*X12 \\
\hline 02870 & DEL \((5)=2 . * \times M 1 * \times 4 * \times 5 * \times 6 * \times 6\) \\
\hline 02886 & DEL(6) \(=2\) 。* \(\times\) M1* \(\times 4 * \times 5 * \times 5 * \times 6\) \\
\hline 02890 & DEL (9) \(=\mathrm{XK} 2\) \\
\hline 02892 & DEL(10) \(\times\) KK3 \\
\hline 02894 & \\
\hline 02896 & DEL(12) \(=\times \times 12 * \times 4 * x_{4}\) \\
\hline 02990 & DEL (17) \(=2\) **XM2*x17*X22+XM1*X18**2*X19**2 \\
\hline 02905 & \\
\hline 02910 & DEL(19)=2**M1**17*X1***2**29 \\
\hline 02915 & DEL(21) \(=\) KK4 \\
\hline 02920 & OEL (22)=XM2*x17**2 \\
\hline 97930 & RETURN \\
\hline 02940 C & EVAL GRAD.OF CONSTR.1 \\
\hline 029421 & Y1=XM16*(1./CO16-1.) \\
\hline 02943 C & PIF=XM6*\#2*(X: \(3+\times 14\)) \\
\hline 02944 C & \(\mathrm{PO}=\mathrm{XH} 10+\mathrm{XH11} \#(\mathrm{CO} 2+\mathrm{CO3}) * \times 25\) \\
\hline 02946 C & \\
\hline -2954 & \\
\hline 02956 & DEL \((14)=-X\) M \(6 * \times M 6 * C(1)\) \\
\hline -2960 & \\
\hline 02968 & \\
\hline 02969 & \\
\hline 02970 & Y2\#XM1 \(1 * 1602+\operatorname{CO} 3)+0.5 * X M 11 *(\operatorname{Cos}+3 . * \operatorname{Cog+C07)~}\) \\
\hline 02971 & \\
\hline 02978 & RETURN \\
\hline 02980 C & EVAL.GRAD.OF CONSTR. 2 \\
\hline 12990 & DEL 11\()=-\times\) M \(3 * \times 2 * \times 2 * C(2)\) \\
\hline -3900 & DEL \((2)=-2 * *\) * \(3 * x\) (\(* \times 2 * C(2)\) \\
\hline 43.10 & DEL 13) \(=2 . * \times 3 * \times 13 * C(2)\) \\
\hline 03620 & DEL(13) \(=\times 3 * \times 3 * C(2)\) \\
\hline 03830 & RETURN \\
\hline 314 & ENALebine. \% temsta.3 \\
\hline -3050 3 & \\
\hline - & - \\
\hline
\end{tabular}

Yuan Yu and Fred C. Y. Lee , California
TRW Defense \& Space Systems, Redondo Beach, California
and
James E. Triner
NASA Lewis Research Center, Cleveland, Oh.

\section*{SUMMARY}

Utilizing the demonstrated capability of nonlinear programing aloorithms, a practical desion opcimization approach for power converters is established to conceive a design to meet all power-circuit performance requirements and concurrently optimize a defined ance requremenght or losses. In addition to quantity such as weffective design, the computer-aided facilitate a means to readily assess (1) the approach provides arofef, (2) impacts of converter weight-efficiency tradeof' characteristics on a given requirements and component charsion configurations, design, and

\section*{1. Introduction}

In the design of a power cunverter, the number of variables to be designed generally exceeds that of the constraints linking the variables to various performance requirements. Consequently, after the design constraints are defined, there exists virtually an infinite set of design solutions. The essence of a the design optimization, therefore, is to pinpoint a set of design variables to meet all qivention of a and concurrently to achieve the opticmed particularly certain converter characteristic can be the converter desirable. The characteristic physically-realizable weight, loss, or with a converter.
entity associated with a corverter.
Before venturing into more detailed design optimization aspects, it is perhaps worthwhile to review the state of the art in power converter design. Comparing with an ideal design optimization approach that will demand extremely sophisticated computer processing, a practical power-converter design optimization approach within existing computational programing capabilities is then adapted.

\subsection*{1.1 State-of-the-Art Desion Approach}

The state-of-the-art power-converter design, as perby the authors, contains the following major sequences:
(1) The designer obtains all specified converter requirements prescribed by someone presumably knowledgeable. Based on the nature of these requirements, the designer selects the basic power-circuit configuration:
power-cuck
\(\therefore\) Boost
Buck Boost
Series Resonant
Parallel Inverter, etc.
power electronics components such as mannetics semiconductor switches, and capacitors are also selected.
2) The designer's previous experience and occasionlly the particular requirements are called upon to elect the control-circuit configuration and the duty cycle control method that includes: the duty cycle constant frequency, constant off time and variable on time; constant hysteresis, two-state modulation; variable frequency, variable on/off time
3) Having selected the power and control-circuit configurdtions, the designer starts the power circuit desig.: by empirter switching frequency. picking a power-converter Along with the control indee and load voltages. requirements such as source EMI, output-voltage ripple, and the allawed weight (loss) for a given loss (weight), the designer proceeds to obtain semiconductor choices, input/output filter parameters, and design details of inductors and transformers. Such a design is characterized by the designer's subjective judgment which is often profusely arbitrary. Crude weiaht-loss analysis is then made, with occasional feeble attempt for is then made, whe loss optimization. The same piecemeal weight or loss optimization ifferent procedure is repeated many completing a frelimiswitching frequencies befor Despite the timenary power-circhations, optimization of the overall consuning itera
power circuic duty-cycle related nonlinearities in the power stage and the analog-to-discrete-time pulse modulation stage, the design of the control modulat for a qiven power circuit to meet circuit for a qiven porformance requirements the control-dependent penses to source/load step such as stabily disturbances is presently beyond the or sinusolda the majority of the converter capability of the iance with performance requirements designers. Compliance when by design" (i.e., is usually acmpont-parater iterations), and breadboard compon elaborate testing.
inst this background, it is gratifying to note the
Against this background, strides made recently in the a andysis. [1-6] contral-related modeling and will be advanced in the Undoubtedly these analy bases of analytically-bused design future to form the bases coupled with standardization quidelines which, when coupledions, will culof control-circulo conte col circuit design minate in a complete control cequirements. For the meeting being, however, the preponderant converter designs are by no means analytically based. Additional effort s involved in advancina from "anaiysis for a qiven power and control circuit design in assessing performance compliance " to analytically-based power- and contral-circuit desian to meet 111 derformance requirements".

\subsection*{1.2 An Ideal Design Optimization Approach}

As previously stated, the utility of a design optimization is to pinpoint the detailed converter design to meet given performance specifications, and to achieve concurrently the minimization of a certain converter characteristic defined by the designer. Simply stated, the task is to minimize an objective function \(f(x, k)\), subjected to design constraints \(g_{j}(x, k, r)=0\).
Here, \(x=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{\top}\) is a \(n\)-dimensional vector representing power and control circuit parameters to be designed. Examples of \(x\) are values of \(R, L\), and \(C\), the switching frequency, and the design detalls of magnetic components includinit core area, mean core length, permeability, wire size, number of turns, and turns ratio of multiple-winding magnetics.

The \(k\) 's represent various constants related to component characteristics. These constants are known to designers through common sense or design experiences. Examples include winding and core densities, winding resistivity, window fill factor of the core, winding pitch factor (i.e., the ratio of the mean length of one-turn winding to the core circumference), transistor and diode conduction and switching characteristics, coreloss parameters, intended maximum operating flux density of given magnetics, and ESR as well as energystorage characteristics of filter capacitors.

The \(r\) 's are performance requirements to be met by the optimum design. Control-independent requirements include input/output voltages, output power, maximum weight, minimum efficiency, source EMI, and maximum output ripple. Control-dependent requirements include regulator stability, minimum audiosusceptibility rejection, and maximum output impedance.

The function \(f(x, k)\) represents the converter optimization criterion. Examples include the total weight, the total loss, the figure of merit of a specific design, a particuiar control-oriented performance, or any selected design quantity such as reliability and cost. The criterion generally can be expressed as a function of the \(x\) 's and the \(k\) ' \(s\).

Equations \(g_{j}(x, k, r)=0\) represent a total of " \(j\) " constraints reldting requirements \(r\) to design variables \(x\) and design constants \(k\). Examples of these equations include the relationship of an efficiency requirement to the sum of copper loss, core loss, semiconductor conduction and switching losses, and the loss in the capacitor ESR, the relationship of source EMI to the input-filter design parameters, the switching frequency, and the fnput/output voltage and current levels. Equations \(g_{j}=0\) allow all performance requirements " \(r\) " and all component constants " \(k\) " to be integrated into governing the design of all variables " \(x\) ". Consequently, solutions acquired for equations \(g_{j}=0\) to minimize the abjective function \(f(x, k)\) would represent a detailed optimun design, down to the component level, in accordance with the performance requirements and the optimization criterion specified.

Thus, an ideal design optimization approach is to analytically ortray \(g_{j}=0\) for all control-dependent and control-independent performance requirements. In conjunction with the defined optimization criterion \(f(x, k)\), computer techniques are then applied to seek out the \(x\) 's that would satisfy \(g_{j}=0\) and concurrently minimize \(f(x, k)\).

Comparing the ideal optimization approach to present state-of-the-art design, the following notes are made:
(1) Both approaches start by obtaining requirements and selecting basic power- and control-circuit configurations.
(2) The switching frequency, which is fundamental to the power-circuit design, is selected in the ideal approach consistent with the optimization criterion. Unlike the state-of-the-art piecemeal design, the ideal approach acquires all design variables, including those prescribing detailed magnetics design, in an inclusive manner. Interdependences between various variables in different converter functions (e.g., input filter and output filter) are thus inherently preserved.
(3) The ideal approach would eliminate the need for excessive "bench design" of control-circuit vartabies. It will also reduce the role of convertel lesuiny iv thai un veliticaliull uniy, rather than its current role of being the major vehicle through which compatibility between converter requirements and capabilities can be demonstrated.

\subsection*{1.3 A Practical Design Optimization Approach}

While the aforedescribed ideal approach represents the ultimate in converter design, its actual implementation is presently not without major difficulties. To begin with, it is realized that the well-developed computer linear programming techniques are inapplicable to converter optimization due to the nonlinear nature of the converter problems involved. As a result, the key to a successful design optimization of a complicated converter is to secure a nonlinear programming algorithm that enables optimum numerical solutions to be reached, with fast convergence, from an initial guess of the solutions. Since the effectiveness of any nonlinear programing technique is invariably affected by the global and local properties of the multi-dimensional design problem, the unfortunate consequence is that there is no uniformly good method on which an algorithm can be based to handle optimization problems as complicated as those involved with the design of a complete power converter. Naturally, the likelihood of securing an applicable nonlinear programing routine-improves as the number, the nonlinearity, and the complexity of the nonlinear constraints diminish.

Some of the most nonlinear and complex constraints are those describing the control-dependent performance requirements. Stability, audiosusceptibility, and output-impedance characteristics involve all powerand control-circuit RLC parameters as well as the converter switching frequency. Furthermore, the characteristics themselves are functions of the signal modulation frequency via s-transform or \(z\) transform, thus compounding the complexity of the control-dependent performance design constraints. Based on experiences gained to date on the application of various nonlinear programming routines, the chance for a successful inclusion of all control-dependent performance constraints in an overall power-converter design optimization is extremely slim for the foreseeable future.

To realize a practical approach within the demonstrated capability of nonlinear programing, one is, for the time being, forced to forsake the control-circuits, and th concentrate instead on the design optimization of the converter pover circuit. The scope of the optimization criteria is reduced to include only those related to ruver-circuit performance characteristics, such as weinht and losses.

Admittedly a less meritorious approach, its utility is still significant for the following reasons:
- The prevailing trend toward converters designed for higher power places increasing emphas is on loss and weight optimizations.
- Sensitivity to program cost and space/military equipment standardization encourages analysisbased designs to reduce weight, loss, and cost penalties resulting from suboptimum designs and developments.
- For a given power- and control-circuit configuration, converter design experience has indicated that, once the power-circuit parameters are properly designed, generally it is possible to design compatible coverter control-circuit parameters to meet stability and other controldependent performance requirements. Thus, whil the inclusion of control-dependent constraints in an overall converter design optimization represents a increase in the optimization effort, it is not likely to alter the weight-loss optimization results obtained from considering power-circuit related constraints alone. The results obtianed from power-circuit optimization are, therefore, both practical and meaningful.
- Comparing to the number of control-circuit configurations proposed and in use to date, there are relatively few commonly-used power-circuit configurations. The utility of the power circuit design optimization should be widespread and well-defined.

Consequently, given the limited nonlinear-programming capability currently demonstrable, a practical and useful design optimization approach can be formulated, which consists of the following two major steps:
(1) Desigh the power-circuit paraneters to achieve the weight-loss optimization of a given power circuit configuration that will meet all control-independent performance requirements
(2) Based on the power circuit parameters thu obtained, guidelines to design detailed control-circuit parameters to meet specified control-dependent performance requirements are then used to fulfill the design of a complete power converter. This step does not involve the use of a nonlinear programming routine. Design guidelines for controlcircuit parameters will be conceived analytically based on work currently in progress, and should be with in reach in the near future.
At present, the generation of design guidelines mentioned in step (2) appears to be the likely major thrust of near-term power-converter modeling and analy sis. Undoubtedly, many significant contributions are forthcoming from industry/university/government research effort, both here and abroad. The emphasis of this paper is placed on step (1). It is hoped that the work reported here will provide the needed complemen for results emerging from the step (2) effort. Together they are expected toifshape the standardized powerconverter design approach in the foreseeable future.
In the following sections, the methodology implementation of the step-(1) design optimization is discussed. Several computer-based optimization examples are given to demonstrate the utility of the said approach. Some needed improvements to enhance design optimization are also briefly outlined.

\section*{2. Implergentation of Design Optimization}

Continued rapid growth by applied optimization as a scientific discipline has been fostered by the application of optimization theory and the high-speed computer developments. In power converter design, it follows naturally that the key in implementing the design optimization approach rests on the availability of suitable mathematical and computer techniques

\subsection*{2.1 The Lagrange Multiplier Method}

A general mathematical optimization technique is the Lagrange Multiplier method [7], which can be used to seek an extremum for the objective function \(f(x, k)\), subjected to a total of " \(j\) " constraints:
\[
g_{j}(x, k, r)=0, \quad x=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{\top}
\]

The method forms a function \(F\), where \(F=f+\Sigma h_{j} g_{j}\)
with the \(h_{j}\) 's being the Lagrange multipliers.

\[
\frac{\partial F}{\partial x_{i}}=0, \quad i=1,2, \ldots n .
\]

From \(g_{j}=0\) and \(\partial F / \partial x_{i}=0\), a total of \((j+n)\) equations are avalable to determine the " \(n\) " design variables and the " \(j\) " Lagrange multipliers.

Application of this method occasiona'ly yields closed form solutions for simple power-converter optimization problems. Three such examples on optimum-weight and optimum- loss magnetics design were presented. [8] However, when the problem transcends the simple component level, the method generally does not yield closed form solutions.

\subsection*{2.2 Nonlinear Programming Techniques}

Most larger problens arising from practical powerconverter applications are sufficiently complicated to defy closed-form solutions. To identify numerically an optimum design. one has to resort to nonlinear programming algorithms which provide fast convergence to optimum solutions from a reasonable set of initial guesses. While there exist numerous methods of nonlinear programming, the effectiveness of each method depends greatly on the global and local properties of the particular multi-dimensional problem to which the method is applied. The dependency makes it difficult to compare objectively the general merits of different algorithms. Based solely on our application experience to date, the Sequential Unconstrained Minimization Technique (SUMT) based un the method of a penalty function seems to be most effective in achieving convergence for highly nonlinear power-converter design optimization problems. [9,10]

A penalty function is one, which, when added to the original objective function \(f(x, k)\) to form a penalized objective function \(f_{p}(x, k)\), will detract from achieving a minimum objective when an associated constraint within constraints \(g_{j}(x, k, r)=0\) is not satisfied. The particular penalty function used in the SUMT code is the quadratic form of \(g_{j}\). which gives:
\[
f_{p}=f+c \sum_{j}^{j}\left[g_{j}\right]^{2}
\]

Here, \(c\) is a weighting coefficient when a minimum of \(f\) is desired. From the above equation, it is apparent that the constrained minimum of \(f(x, k)\)

\section*{ORIGINAL PAGE E OE ROOR QUALIXC}
subjected to constraints \(g_{j}=0\) is identical to the unconstrained minimum of \(f_{p}^{j}(x, k)\) when \(c\) approaches infinity. The SUMT code this accommodates the initial " c ", the conditions under which " c " is to be increased, and the criterion of bypassing the increasing " \(c\) " when the intended minimization process has run its course.

Before presenting design examples, the following application experience on SUMT are stated:
- Being primarily a research tool not specifically designed for power converter applications, the user generally needs to experiment with SUMT to realize its capabilities as well as limitations.
- To save computer time, the number of variables should be reduced to a minimum by combining all interpendent ones.
- Numerically the 9 .'s vary over a very wide range, To avuid conditions where 20 isain \(g_{j}\) in wit agu tion for \(f\) may be so large as to obscure the effects of the rest of the \(g_{j}\) 's, each \(g_{i}\) must be properly scaled by a factor to insure that the effect of violating a given constraint is of the same order of magnitude as the effect of violating any other constraint.
- Depending on the problem involved, the initial set of guesses for optimum solutions can very important in determining the rate of convergence.

\section*{3. Demonstration Examples}

Three design examples, one sased on closed-form optimum solutions obtained from Lagrange multiplier method, the other two utilizing the SUMT, are provided to demonstrate power-converter design optimization.

\subsection*{3.1 Example 1 Optimum Weight Inductor Design}

Using the method of Lagrange multipliers, the closedform solution for an optimum-weight inductor design with a given loss constraint were presented. [8] The solutions prescribe core area \(A\), core length \(Z\), winding turns \(N\), permeability \(U\), core volume \(A Z\), conductor area \(A C\), and the minimum weight \(W\). These parameters, in turn, are expressed as functions of conductor density DC, core density DI, winding pitch factor \(F C\), window fill factor FW , conductor resistivity RHO, intended operating flux density BS, peak conductor current \(I P\), needed inductance \(L\), and allowed loss \(P\). These closed-form solutions are implemented into a user-oriented computer subprogram, complete with user instruction, input request, input summary printout, and the optimum design results.

Upon executing the subprogram on a remote terminal, the computer will provide the following instructions:

\section*{(RUNEIT=IMDOSE}

THE GEJECTIVE OF THIE FPOGRM IS TO PEFFDEM AN
TPT IMUM LIEIGHT MDUGTOR DEEIGN FUF A EIVEH LOS:
TO UZEFE: PLEA:E READ THE FOLLOWITHE *TATEMENT:
T:AFEFILLY BEFDRE E: ECLITITHT THE PFDGPAM.
THE HEEDED HPIUT PAREMETERE HRE THE GDLLOMIME
DC 1 EOMDGGTOF DENEITY IH GFAM CUEIE EN. IF IICT GIVEII BY. THE
COPE DEH:IT, II GFAM EUSIG LM.
 AT R S Ki defrult.
 FOFE OIFITMFEFENCE.

 IF HOT EIVEN. FH T: EET AT . 4 BU DEFMELT

: DESIGNED POMER LOEE IH WATTS.

IF : PEA INGUCTOF CUPFENT IN GOPEPES.

ELEA:E GIVE MFUT DATA FOR Liffibs pand F beloli.
FLEATE GLZA GIVE IHDIMDDIAL INFUT DATA FOF ILE DI,
Fi, Fli, AND KH
n IUFIIT i: tiéned if nefaulted zertitigs are uised. FOE WH:HEPS AT THE END OF TNE FUR:
A \(1:\) COKE APEA, Z IS MEAII CDRE LETGTH.
11 IV NLMAER DF TUFNS. U IS PEPMERRILITY.
AZ I: PFODNCT OF A AND Z, IHC IS CONDULTOR AREA FEF
TUFINGIS DFTIMLM INDUGOR VEIGGT FOR A GIVEN \(F\).
Subsequently, the computer requests input data from the user with regard to DC,DI,FC,FW,RHO, P,BS,IP, and L. Here, conductor density DC, resistivity RHO, core density DI, and operating flux density BS are known to a designer for given conductor and core materials. Factors FC and FW are generally known by a desiqner witil yivell willinty anu wie culitigutabions, ror parameters DC, DI, FC, FW, and RHO, the inherent values set by the subprograg are \(8.9 \mathrm{~g} / \mathrm{cm}^{3}, 7.8 \mathrm{~g} / \mathrm{cm}^{3}, 2\), 0.4 , and \(1.724 \times 10^{-0}\) ohm-meter, respectively, representing the commonly-used copper density, core density, pitch factor for a filled window, fill factor for a filled window, and copper resistivity. The values of these parameters can be supplanted by a user's own design numbers. However, if no user inputs with regard to these parameters are received, the subprogram will utilize the inherently-set values by default. The power loss \(P\), the peak current IP, and the required inductance \(L\), are, of course, individually assigned by the user for specific applications.

In this example, the user needs a 200 -ull inductor carrying a peak current IP of 4.5 amperes and utilizing an operating flux density BS of 3.5 kilogauss (i,e., a molypermalloy movder core). The loss allowed by the user is 0.699 watts. For DC, DI, FC, FW, and RHO, the user decides to use thase set by the subprogram. The user thus responds to the computer input request by typing the following:

Upon completion of input data, the computer prints out a summary of assigned input parameters including the defaulted ones:
\begin{tabular}{|c|c|}
\hline nic & m s.s. \\
\hline 4 & \(\pm 7.3\) \\
\hline Fic & - E.0. \\
\hline F. & \(=4, \mathrm{DE}-61\). \\
\hline FH0 & \\
\hline F & = \% *atE-at. \\
\hline E. & = \\
\hline IF & \(=4.5\) \\
\hline 1. & \\
\hline
\end{tabular}

Finally, the optimum design values are computed by the subprogram and delivered as outputs:
\begin{tabular}{|c|c|}
\hline A \(=0.939 \mathrm{E}-01\) & こOUAFE CEITIMEILN: \\
\hline \(\pm=6.391 E+00\) & CENTIMETERS \\
\hline \(11=3.851 E+01\) & TLPIS \\
\hline \(11=1,094 E+02\) & GFUE- DEFETED \\
\hline \(\mathrm{A}=2+.435 \mathrm{E}+10\) & CUBIC CENTIMT \\
\hline \(A C=2,+1\) CE + 13 & EIFCLLAF Mit. \\
\hline \(H=5.088 E+01\) & SFAMS \\
\hline
\end{tabular}

With \(A=0.694 \mathrm{~cm}^{2}, \quad Z=6.39 \mathrm{~cm}, U=109\) gauss/oersted, and \(A C=2419\) cir, mils, a compatible design using the commercially -available components is either core 55930 of Magnetics, Inc., or core A930157-2 of Arnold Engineering, with a wire size of \#17 AWG. Such a design guarantees a loss 1 imit around 0.7 watts as specified. From the printout, the inductor core and winding weight is approximately 61 grams.

The cost for this design session is 51 cents. This compares favorably to hours of laborious and suboptimum design iterations needed by an experienced designer using the paper-and-pencil approach.

Similar subprograms are conceived for the following:
- Optimum-weight inductor/transformer, with loss given as a constraint
- Optimum-weight inductor/transformer, with wire size given as a constraint
- Optimum-loss inductor/transformer, with welght given as a constraint

For details regarding these user-oriented subprograms, the readers are referred to Reference [11], to be published in the Fall, 1977.

\subsection*{3.2 Example 2 Optimum-Weight Switching-Regulator}

This example deals with optimization on a vastly expanded scale in relation to the previous example The design objective is to minimize the total coniponent weight of a buck switching regulator power circuit, shown in Figure 1. The total loss allowed is given as a constraint.

Twenty-three variables "x" exist in this example, i.e., \(x=\left(x_{1}, x_{2}, \ldots x_{23}\right)^{\top}\) :
\(R_{1}, R_{2}, R_{3} \quad: D c\) winding resistances of inductors \(L_{L_{3}}^{L_{3}, L_{2}}, C_{3}, C_{2}, R_{4}: \begin{aligned} & L_{1}, L_{2}, \text { and }{ }^{\text {In }} \\ & \text { Output filter parameters }\end{aligned}\) Output filter parameters. The ESR of C3 is known to be RC.
\(A_{1}, A_{2}, A_{3} \quad:\) Core cross-sectional area of inductors
\(Z_{1}, Z_{2}, Z_{3} \quad:\) Mean length of inductors \(L 1, L 2\), and \(L 3\) : Number of turns on inductors L1, L2,
\({ }^{A_{C 1}}, A_{C 2}, A_{C 3}\)
: Inductor winding areas per turn for L1, L2, and L3 : Switching frequency

The design constants " \(k\) " are described below. Numerical values used in this example are given in the parenthesis at the end of each corresponding description.

: Assianed windina pitch factor for : Assigned window fill factor for inductors L1, L2, and \(L 3(, 4,4,4)\) Common conductor resistivities for \(1,724 \times 10^{-8}\) ohm (\(1.724 \times 10^{-8}, 1.724 \times 10^{-8}\),
Core densities of inductors L1, L2, and \(L 3\) (\(7.8,7.8,7.8 \mathrm{~g} / \mathrm{cm}^{3}\)) L2, and 13 ensities of inductors LI
Operating flux densities inte inductors LT , 2 , and 3.5 kilogauss)
\(D C P_{1}, D C P_{2}, O C P_{3}\) : Weight per microfarad for \(\mathrm{Cl}, \mathrm{C}_{2}\), and C3 (210, \(1100,72 \mathrm{kilogram} /\) farad) \(Q\) conducts \((0.25 \mathrm{~V})\) rop when transistor Base-emitter forward drop of Q(0.8 V Transistor switching rise time(.15us) Transistor switching fall time(2 us) Diode turn-on of diode \(D \quad(.9 \mathrm{~V})\) \(\left.\begin{array}{ll}\text { Diode turn-off time } \\ \text { Diode recovery time } & (.03 u s) \\ \text { Frequs }\end{array}\right)\) Frequency-dependent core-loss factor largenctor L3, which processes a large ac flux excursion.

Figure 1 Buck Converter Power Circuit
Pertormance requirements " \(r\) " and their values used in this example are the following:
\begin{tabular}{ll}
\(P E:\) Input filter resonant peaking limit & \((6 \mathrm{db})\) \\
\(\mathrm{P}_{\mathrm{o}}:\) Output power \\
\(\mathrm{E}_{\mathrm{i}}:\) Input voltage & \((100 \mathrm{~W})\) \\
\(E_{0}:\) Output voltage & \((20-40 \mathrm{~V})\) \\
\(\left.\mathrm{S}_{\mathrm{o}}\right)\) & \((15 \mathrm{~V})\)
\end{tabular}
\(s(F)\) : Frequency-dependent source conducted interference
\(r_{i}:\) Output ripple
e: : Required efficiency
In addition, constraints of sufficient core window also observed.

Figure 2 Source EMI Requirement Used in Example 2. \(S=0.1\) A and \(\mathrm{S}=0.5 \mathrm{~A}\) are used for design \(\# 1\) and design \(\# 2\)
\(\begin{aligned} & \text { The constraints } \\ & \text { expressions: } \\ & j\end{aligned}(x, k, r)=0\) include the following

\section*{Loss Constraint}

In this constraint, the sum of all component losses should not exceed the total losses allowed by the minimum efficiency requirement, or,
\(P_{i f}+P_{t}+P_{d}+p_{o f i}+P_{o C}=P_{o}(1-e) / e\)
where:
\(P_{i f}=\) Input filter copper losses
\(=\left(\frac{P_{0}}{e E_{i}}\right)^{2}[4(R H O)]\left(\frac{F_{c 1} N_{1} A_{1}{ }^{0.5}}{A_{c 1}}+\frac{F_{c 2} N_{2} A_{2}{ }^{0.5}}{A_{c 2}}\right)\)
\(P_{t}=\) Transistor saturation loss
+ Base drive loss based on \(10-\) to- 1 current drive
+ transistor turn-on switching loss
+ transistor turn-off switching loss
\[
\begin{align*}
= & P V_{s t} / E_{i} \\
& +0.1 P_{0} V_{b e} / E_{i} \\
& +\left(E_{i} T_{s r} F / 6\right)\left[\left(P_{0} / E_{0}\right)-\left(E_{i}-E_{0}\right) E_{0} / 2 L_{3} E_{i} F\right] \\
& +\left(E_{i} T_{s f} F / 6\right)\left[\left(P_{0} / E_{0}\right)+\left(E_{i}-E_{0}\right) E_{0} / 2 L_{3} E_{i} F\right] \tag{3}
\end{align*}
\]
\(P_{d}=\) Diode conduction loss
+ Turn off and recovery losses
+ Turn-on loss
\(=\left(E_{i}-E_{0}\right) P_{0} V_{d} / E_{0} E_{i}\)
\(+\left[E_{i} F\left(T_{f d}+3 T_{r e}\right) / 12\right]\left[\left(P_{0} / E_{0}\right)-\left(E_{i}-E_{0}\right) E_{0} / 2 L_{3} E_{i} F\right]\)
\(+\left[E_{i} F T_{n d} / 12\right]\left[\left(P_{0} / E_{0}\right)+\left(E_{i}-E_{0}\right) E_{0} / 2 L_{3} E_{i} F\right]\)
\(P_{\text {ofi }}=\) Output inductor core loss
+ Output inductor copper loss
\[
\begin{align*}
= & 80 E_{0}\left(E_{i}-E_{0}\right) Z_{3} O_{e}(F) / N_{3} E_{i} \\
& +\left[4(R H O) F_{c 3^{H}} H_{3} A_{3}^{0.5} / A_{c 3}\right] \\
& \cdot\left(\left(P_{0} / E_{0}\right)^{2}+\left[\left(E_{i}-E_{0}\right) E_{0} / 12 L_{3} E_{i} F\right]^{2}\right) \tag{5}
\end{align*}
\]
\(P_{o c}=\) Output filter ESR losses
\[
\begin{equation*}
=(1 / 12)\left[\left(E_{i}-E_{0}\right) E_{0} / 12 L_{3} E_{i} F\right]^{2} R_{c} \tag{6}
\end{equation*}
\]

Notice the dependence on switching frequency \(F\) in equations (3) to (6)

\section*{Frequency-Dependent Source EMI Constraint}

The frequency-dependent source EMI requirement sketched in Figure 2 has a constant peak-current allowance of " S " amperes when the frequency is below 2 kHz , and decreases linearly on a logarithmic scale from 2 KHz up. The input filter must be designed so that:
\(\begin{aligned} & \text { Required attenuation } \\ & \text { at switching frequency }\end{aligned}=\frac{\text { EMI Requirement }}{\text { Fundamental switching current }}\)
Thus,
\[
\begin{align*}
& {\left[\left(L_{2} C_{2} / L_{1} C_{1}\right)\left(2 \pi F \sqrt{1} C_{1}\right)^{3}(1 / D)-\left(C_{2} / C_{1}\right)\left(2 \pi F L_{1} C_{1}\right)^{2}\right]^{-1}} \\
& =\left[S / \sqrt{1+(F / 2000)^{2}}\right] /\left(A^{2}+B^{2}\right)^{0.5} \tag{7}
\end{align*}
\]
where:
\[
\begin{aligned}
& A=\left(2 P_{0} / \pi E_{0}\right) \sin \left(\pi E_{0} / E_{i}\right) \\
& B=\left[\left(E_{i}-E_{0}\right) E_{0} / L_{3} R F_{i}\right]\left[\cos \left(\pi E_{0} / E_{i}-\frac{\sin \left(\pi E_{0} / E_{i}\right)}{\pi E_{0} / E_{i}}\right]\right. \\
& D=R_{4}\left(C_{1} / L_{1}\right)^{0.5}
\end{aligned}
\]

\section*{Other Input Filter Desion Constraints}

In addition to source EMI, ther critical aspects of an input filter design inclubs its resonant peaking and
its output impedance, While these characteristics are important in determining the audiosusceptibility performance and the control-loop stability of the converter, they are normally not specified in the coaverter specification sheet. However, to ensure that the optimumweight power circuit design will be compatible with its companion feedback control circuit, the inclusion of the self-imposed resonance and impedance characteristics becomes highly desirable.

In this example, the requirement "PE" concerning resonant peaking is included as a design constraint:
\[
(P E)^{2}=\frac{1+\left(R_{4}{ }^{2} C_{1} / L_{1}\right)}{\left(C_{2} / C_{1}\right)^{2}+\left(R_{4}{ }^{2} C_{1} / L_{1}\right)\left[1-\left(C_{2} / C_{1}\right)-\left(L_{2} C_{2} / L_{1} C_{1}\right)\right]^{2}}
\]

Output Ripple
\[
\begin{equation*}
r_{i}=\frac{1}{8 L_{3}^{C} C_{3}}\left(1-\frac{E_{0}}{E_{i}}\right)\left[\left(\frac{1}{F}\right)^{2}+\frac{4 \dot{L}_{3}^{2} R_{c}^{2} E_{i}^{C}}{E_{0}\left(E_{i}-E_{0}\right)}\right] \tag{9}
\end{equation*}
\]

\section*{Window Area Constraint}

All inductor windings must be accommodated within the physical confine of the available core window area. Phus, for inductors LI to L3,
\[
\begin{equation*}
\left(N_{k} A_{c k} / \pi F_{w k}\right)^{0.5}-z_{k^{\prime \prime}}+A_{k}^{0.5} / 2=0, k=1,2,3 \tag{11,12,13}
\end{equation*}
\]

\section*{Operating Flux Density Constraint}

The inductor design must not exceed the intended operating flux density level. Since inductors L1 and 12 only conduct direct current,
\[
\begin{equation*}
N_{k} A_{k}-L_{k} P_{o} / e E_{i} B_{s k}=0, \quad k=1,2 \tag{14,15}
\end{equation*}
\]

Inductor \(L 3\) handles both de and ac components,
\[
\begin{equation*}
N_{3} A_{3}-\left(L_{3} / B_{s 3}\right)\left[\left(P_{0} / E_{0}\right)+\left(E_{i}-E_{0}\right) E_{0} / 2 L_{3} E_{i} F\right]=0 \tag{16}
\end{equation*}
\]

The objective function \(f(x, k)\) in this example is the totaliron, copper, capacitor, and semiconductor weight. Since the semiconductor weight is essentially fixed, the function \(f(x, k)\) becomes:
\[
\begin{align*}
f(x, k) & =\text { core weight }+ \text { winding weight } \\
& + \text { capacitor weight } \\
& =\Sigma(D I)_{k} A_{k} Z_{k}+4^{\prime}(D C)_{k} A_{k}^{0.5} F_{c k} N_{k} A_{c k} \\
& +\Sigma(D C P)_{k} C_{k}, \quad k=1,2,3 \tag{107}
\end{align*}
\]

Having defined all variables \(x\) 's, constants \(k\) ' \(s\), requirements \(r\) 's, contraints \(g_{j}\) ' \(s\), and the objective function \(f(x, k)\), the goal of this design is to solve all \(x\) 's to satisfy each constraint prescribed in eqs.
(1) to (16), and concurrently to minimize the quantity specified in eq. (17).

Obviously, a problem of this complexity is not dmenable to closed-form solutions. The SUMT computer program is used to acquire optimum solutions numerically. The
program contains fourteen pages of Fortran listing dealing mostly with constraints and their first and second derivatives with respect to variables within the constraints. Considering the limited information such a listing can provide without extensive descriptive supplements, the program itself is not included here. It is, however, available in Reference [11].
Two sets of optimum design results are illustrated in Table 1. The difference between them is that design "l assumes a three-times higher ESR for the output filter capacitor and a five-times more stringent source EMI requirement than those of design \#2. In each design, all RLC parameters, the switching frequency, the design details of all magnetics, and the minimum weight, are collectively achieved in a single computer run which represents minimum component-weight designs.

Table 1 Optimum Converter Component Weight
\begin{tabular}{|c|c|c|}
\hline & \[
\left(R_{c}=\frac{\text { Design } 1}{0.3 \text { onm, }}=0.14\right)
\] & \\
\hline 21 (cm) & 5.10 & 3.11 \\
\hline A1 \(\mathrm{Cm}^{2}\); & 0.438 & 0.161 \\
\hline \(N 1\) (turns) & 40 & 21 \\
\hline ACl \(\left(\mathrm{man}^{2}\right)\) & 0.77 g & 0.519 \\
\hline 22 (cm) & 3.86 & 2.35 \\
\hline A2 \(\left(6 \pi^{2}\right)\) & 0.251 & 0.092 \\
\hline N 2 (turns) & 22 & 12 \\
\hline \(A C 2\left(m^{2}\right)\) & 0.756 & 0.507 \\
\hline 23 (cm) & 7.84 & 5.20 \\
\hline A3 (\(\mathrm{cm}^{2}\)) & 0.694 & 0.235 \\
\hline NJ (tums) & 48 & \\
\hline \(\mathrm{A}=3\left(\mathrm{~mm}^{2}\right)\) & 1.9 & 1.21 \\
\hline i) (-H) & 253 & 53.7 \\
\hline 12 (-H) & 84 & 17.9 \\
\hline [] (,H) & 152 & 52.5 \\
\hline CT (\(\sim\) F) & 85.5 & 47 \\
\hline CE (mF) & 30.8 & 10 \\
\hline C3 (LF) & 710 & 325 \\
\hline k) (millohm) & 41.5 & 20.9 \\
\hline R2 (milliohn) & 17.9 & 9.1 \\
\hline R3 (milliohm) & 25.3 & 18,3 \\
\hline R4 (onms) & 2.97 & 0.94 \\
\hline F (KHz) & 22.0 & \\
\hline W Igrams) & 239.5 & 78.1 \\
\hline
\end{tabular}

Notice the impact exerted by ESR and source EMI on the two data columns of Table 1. For the same loss constraint, every parameter of design \#2 is smaller than its counterpart of design \#1. The only exception occurs at the analytically-detenmined optimum switching frequency, where the 43.9 kHz for design \(\# 2\) is almost twice that of the design \#1. As a result, the combined magnetics and capacitor weight of design \(\# 2\) is barely one-third of that for design \(\$ 1\).

The total computer cost per run for a problem of this magnitude is generally with in the \(\$ 20-\) to- \(\$ 40\) range. This compares favorably with days of suboptimum paper-and-pencil design iterations.
3.3 Example 3 Ootimum-Weight Source-Converter System

In this example, the buck converter shown in Figure 1
is integrated with a solar-array battery source of a known power density(kilogram/watt). The converter mechanical packaging weight is also included in the overall design optimization. Since the converter loss is supplied from the power source, and since the converter packaging weight (heat sink included) increases with the converter losses, for a given output power it follows that the combined source-and-mechanical-package weight becomes heavier if more converter loss is allowed. On the other hand, experience also indicates that the total converter component weight (magnetics and capacitors) tends to diminish with more allowable losses. Consequently, for a given output power as well as a given source density and packaging density there must exist an optimum converter efficiency at which the combined system weight including power source, converter packaging, and converter component, is a.t its minimum. The objective of this example is to identify numerically such an optimum efficiency. The minimum efficiency requirement "e" used in Example 2 for component weight optimization only thus is no longer a design constraint. Instead, the efficiency becomes an unknown variable in this example.

Comparing this example to Example 2, the different formation of design variables, design constants, performance requirements, and the objective runction are as follows:
- Efficiency "e" becomes a variable in addition to the twenty-three variables listed in Example 2.
- Two more design constants, KS and KH, for source and packaging densities respectively (in kilograms per watt), are added to the twenty-eight constants shown in Example 2.
- Efficiency " \(e\) " is no longer a performance requirement. All other requirements in Example 2, however, remain applicable to this example.
- The loss constraint used in Example 2 is eliminated. The sum of ail losses, i.e., the quantity
\[
=P=P_{i f}+P_{t}+P_{d}+P_{o f i}+P_{o c}
\]
is being used in this example as part of the new objective function. All other constraints in Example 2 remain effective in this example.
- The new objective function for this example is:
\[
\begin{align*}
W & =\text { Core Weight }+ \text { Winding Weight } \\
& + \text { Capacitor Weight }+ \text { Source Weight } \\
& + \text { Packaçing Weight } \\
& =\Sigma(D I)_{k} A_{k} Z_{k}+4-(D C)_{k} A_{k}^{0.5} F_{C k} N_{k} A_{C k} \\
& +\Sigma(D C P)_{k} C_{k}+\left(P_{0}+S P\right)(K S) \\
& +(V P)(K H), \quad k=1,2,3 \tag{18}
\end{align*}
\]

Since (\(\Sigma P\)) is shown in Example 2 to be a function of multiple factors;
\[
\begin{equation*}
\Sigma P=\text { function of }\left(N_{k}, A_{k}, A_{c k}, L_{3}, Z_{3}, F, R_{c}\right), k=1,2,3 \tag{19}
\end{equation*}
\]
it can be seen that, after all variables are numerically identified by SUMT, the term (, P) can be calculated to reveal the particular converter efficiency that will produce a minimum combined source-converter

Again, the detailed computer programming for this problem is available in Reference [11]. Numerical values for design constants and performance requirements are identical to those used in design \({ }^{\prime \prime}\) of Example 2. Two sets of optimum design results for minimum system weight are illustrated in Table 2. The difference between them is the different source density "KS" and packaging density "KH" assumed.

Table 2 Optimum Source-Converter System

Several impacts exerted by different KS's and KH's are noted:
- As expected, a decrease in \(\mathrm{kg} / \mathrm{W}\) of source and package densities from design \#1 to design \#2 allows more loss in design \(\# 2\) to achieve an optimum-weight system. The converter efficiency for such a system is reduced from 94.1\% of design \#1 to \(93.6 \%\) of design \#2. The \(94.1 \%\) efficiency, incidently, represents nearly the maximum possible efficiency consistent with the various lossrelated design constants specified in Example 2. The most influencial design constants limiting the efficiency achievable are transistor and diode conduction drops in conjunction with the required output power and voltage levels.
- For a four-to-one reduction in source density, the optimum efficiency only decreases from the approximate maximum limit of \(94.1 \%\) by 0.5 . 3 . Since the realistic source density (including source and source conditioning) currently available is in the proximity of that used in design N1, it is not surprising that the system designer has currently placed the highest emphasis on obtaining the highest converter efficiency possible.

\section*{4. Needed Improvements on vesign Optimization}

While a practical design optimization approach has been successfully demonstrated to solve zather complex problems, it is not the intention of this paper to paint an over-simplified picture concerning power converter design optimization in general.

To start with, one must realize that an optimization is generally associated with physical phenomena. Thus, the design optimization is of practical value only when there exists an accurate understanding of the physical princtples and mathematical models upon which the design constraints and the design constants all depend. Since weight and loss generally are used as power-converter optimization criteria, knowledge of power-device weight-loss characteristics is thus a prerequisite to a successful optimization. Of these characteristics, the more important ones are:
- The accurate core-loss data as a function of the switching frequency and the asymmetrical rectangular-waveform excitation
- The "effective resistance" of magnetic windings in high-frequency, high-current applications
- An acceptable semiconductor switching-loss profile for power transistors and diodes in a given magnetics-semiconductor power-circuit configuration, and the likely impacts exerted by the commonly-used means of energy recovery on switching losses.

These characteristics, at the present time, are insufficiently defined, Considering that they are needed in the day-to-day design effort without any excursion into the realm of optimization, better understanding of component benavior must be regarded as a necessity that is long overdue. Without further knowledge of these cnaracteristics, the selection of the optimum switching frequency, which is the most important parameter in power converter design and weight-loss tradeoff, will continue to be determined empirically. Since the optimization results are as accurate as the participating design constants and constraints, the design ootimization approach thus brings into sharp focus the pressing need for knowledge of these characteristics.

Furthermore, since most practical power converter optimization problems are sufficiently complicated to defy closed-form solutions, the availability of powerful and fast-convergent nonlinear programming algorithms is indispensable. However, no general-purpose algorithms can be expected to cope with specialized nonlinear power converter problems. The SUMT used in the examples performs well in the presence of good starting guesses of variables for constraints whose partial derivatives with respect to all variables are well behaved. On the other hand, the guarantee that it "almost always converges" is not inherent in SUMT, nor is it expected from other algorithms in the foreseeable future. Consequently, the deve lopment of dedicated computer optimization routines for \(\Rightarrow\) given class of power converters will likely become a highly specialized yet essential research.

A practical power converter design optimization approach is proposed in Section 1, and its implementation is discussed in Section 2. Through three practical engineering design examples given in Section 3, the approach is demonstrated to greatly facilitate several endeavors heretofore regarded as difficult or unattainable:
(1) It allows a cost-effective optimum design for a power component or a complete power converter, down to the component level. The design includes the identification of the optimum switching frequency and detailed magnetics design parameters Not only meeting all power-circuit related per" formance requirements, the optimization of either the weight, the loss, or any other realizable entity of a power converter can be achieved.
(2) The design takes into account the interdependent nature of the various functions within a power converter (e.g,, the impact of output-filter parameters on the input-filter design). The total computer cost for a complete power circuit design is within the \(\$ 20\)-to- \(\$ 40\) range, which compares favorably with days of suboptimum, piecemeal, hand-iterated design effort. Savings in both design and development cost are thus achieved.
(3) It provides a fast and accurate weight-loss tradeoff as well as a means for ready assessment of the impact of a given requirement or a particular component characteristic on an optimum design.
(4) It can assist the power syetw designer to conceive the optimum system configuretion and the proper converter specifications to achieve an overall optimum system, thus setting the stage for a more "scientific" design approach not relying heavily on subjective judgements.

Proper fostering for power-converter design optimization takes the form of accurate device characterizations and dedicated programming developments. These needed improvements are briefly outlined in Section 4.

The importance of identifying an optimum design among all designs is underscored by the fact that, all other performances being equal, the design that is best in a specified sense is the one usually prevails. However, being extremely hardware oriented and forever engrossed with necessary evils such as "schedule" and "cost", a power converter designer of ten considers the desiyn tasks successfully fulfililed even though the design itself may be, knowingly or unwittingly, quite "suboptimum", With the advent of high-speed computers applitd optimization has become increasingly popular in practically all engineerinq disciplines. It is for the promotion of this trend in the field of power-converter design that the cost-effective optimization effort reported herein is strived.
[1] G. W. Wester and R. D. Middlebrook, "LowFrequency Characterization of Switched DC-DC Converters". IEEE Trans. Aerospace Electronics Systems, AES-9, No. 3. May 1973, pp. 376-385.
[2] R. D. Middlebrook and S. Duk, "A Generalized Unified Approach to Modeing Switching-Converter Power Stages", 1976 PESC Record, pp. 18-34.
[3] R. P. Iwens, Y. Yu, and J, E. Triner, "Time Domain Modeling and Stability Analysis of an Iritegral Pulse Frequency Modulated DC to DC Power Converter", IEEE Power Electronics Specialists Conference Record, June 1975, pp. 80-90.
[4] R. Prajoux, "Accurate lathematical Modeling of PIMM Power Requlators", NASA Technical Translator, NASA TTF - 15947, September, 1974.
[5] H. A. Owen, A. Capel, and J. G. Ferrante, "Simulation and Analysis Methods for Sampled Po.ur Electronic Systems", IEEE Power Electronics Specialists Conference Record, June 1976, pp. 45-35.
[6] F. C. Lee, Y, Yu and J. E. Triner, "Plodeling of Switching Regulator Power Stages With and Without Zero Inductor-Current Duell Time", IPEE Power Electronics Specialists Confererce Revord, June 1976, pp. 62-72.
[7] D. A. Pierre, Optimization Theory with Applications (Book), John idley \& Sons, 1969, pp. 36-43.
[8] Y. Yu, M. Bachmann. F. C, Lee and J. E. Triner, "Fomulation of a Methodology for Power Circuit Design Optimization", 1976 PESC Record, pp. 35-44.
[9] A. V. Fiacco, and f. P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimization Technique for lonlinear Programmino", Management Science, 10, July 1964, pp. 601-617.
-10] W. C. Mylander, R. L. Holmes, and G. P. itcCormick, "A Guide to SUAT-Version 4", Paper RAC-P-63, Research Analysis Corp., October 1971.
[1] "Modeling and Analysis of Power Processing Systems, Phase II Final Report", NASA Contractor Report, CR135173, to be published in Fail, 1977, prepared by TRW DSSG for NASA Lewis Research Center.

\section*{APPENDIX \(Q\)}

SAMPLES OF COMPONENT DATA COMPILATIONS

In this appendix, data bases for (1)Foil Tantalum Polarized Capacitors, and (2) Copper Wire Sizes, are illustrated as samples of data compilation.

\section*{Q. 1 DATA BASE FOR FOIL-TANTALUM POLARIZED CAPACITORS}

The DB for foil-tantalum polarized capacitors is given in Table 1. Each row represents information for a given capacitor that is commercially, available. Major headings of this table are discussed as the following.

\section*{VDC Rating (V)}

This represents the temperature-dependent dc voltage rating of the capacitors in volts. For \(T \leqq 85^{\circ} \mathrm{C}\), the ratings under the \(85^{\circ} \mathrm{C}\) column apply. In most PPS applications, the maximum temperature specified is either \(85^{\circ} \mathrm{C}\) or \(125^{\circ} \mathrm{C}\). Obviously, if the specification is \(125^{\circ} \mathrm{C}\), then the reduced ratings under the \(125^{\circ} \mathrm{C}\) column prevail.

\section*{Capacitance (\(\mathrm{\mu F}\))}

The capacitance in micro-farad for each capacitor is listed for low, nominal, and high temperatures. The capacitance at \(25^{\circ} \mathrm{C}\) (room temperature), along with the dc voltage rating for a specified temperature, are the key indices in locating a commercial parts. For example, a certain DOS run has identified that the dc voltage needed is 68 V and the capacitance needed is \(51 \mu \mathrm{~F}\). The temperature range, say, is specified to be between \(-30^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). Then, one determines 75 V -capacitor is required for it is the voltage level that is higher than 68V. We don't want to overkill by using 100, 150, or 200V capacitors, for they are generally heavier and more bulky. Having decided on 75 V , one looks for the minimum capacitance at \(-30^{\circ} \mathrm{C}\) to be larger than the \(51 \mu \mathrm{~F}\) calculated. From Table 1, the \(75 \mathrm{~V}, 100 \mathrm{H}\) capacitor then emerges as the best choice among commercially-available parts.

Often, the DOS run would demand a capacitance that cannot be satisfied by a single capacitor. For example, instead of \(51 \mu \mathrm{~F}\), the DOS may identify a value of \(151 \mu \mathrm{~F}\). When that happens, three \(75 \mathrm{~V}, 100 \mu \mathrm{~F}\) capacitors in parallel will have to be chosen in order to achieve a minimum of \(3 \times 60=180 \mu \mathrm{~F}>151 \mu \mathrm{~F}\) at \(-30^{\circ} \mathrm{C}\).

Case Size
The case size of capacitors represents their physical dimensions. For foil-tantalum capacitors, there are four different case sizes. For reasons beyond me, case 4 is the smallest size, case 1 is larger than case 4 , case 2 is larger than case 1 , and case 3 is the largest. They all take the tubular form:
\begin{tabular}{lcc}
& Length (cm/in) & Diameter (cm/in) \\
Case 4 & \(2.70 / 1.062\) & \(0.754 / 0.297\) \\
Case 1 & \(3.81 / 1.500\) & \(0.993 / 0.391\) \\
Case 2 & \(5.55 / 2.187\) & \(0.993 / 0.391\) \\
Case 3 & \(7.14 / 2.812\) & \(0.993 / 0.391\)
\end{tabular}

This information should be stored somewhere, and should be made readily available upon user's request.

\section*{Weight (grm)}

This column gives the weight of each capacitor. Notice that \(i\) is only a function of the case size. The larger the case size, the heavier is the weight.

\section*{IRMS (A)}

This is the RMS current rating for each capacitor, in amperes, at \(25^{\circ} \mathrm{C}\) and a current frequency of 0.05 kHz . For other temperatures and frequencies, the correction factors are prescribed by the following equation:

AC Current Rating \(=(\) IRMS \()(1.175-0.007 T)\left(2.753 \mathrm{~F}^{1 / 3}\right)\)
Where (IRMS) is shown in Table 2, \(T\) in \({ }^{\circ} C\), and \(F\) in \(k H z\). For example, at \(85^{\circ} \mathrm{C}\) and 10 kHz , the AC current rating for the first-row capacitor would be:

AC Current Rating \(=(0.42)(1.175-0.007 \times 85)\left(2.753 \times 10^{1 / 3}\right)=1.43 \mathrm{~A}\)

Since tilie operating frequency can be different for different DOS applications, it is impossible to present the ac current rating of a given capacitor in Table 1. Consequently, equation (1) must be invoked every time to provide the capacitor current rating for each capacitor in a given application.

\section*{ESR (Ohms)}

ESR is the abbreviation for "Equivalent Series Resistance." It is of vital importance in all aspects of performance. It is again a function of temperature, being much higher at low temperatures. The capacitor manufacturers are rather uncommittal in their assessment of ESR. As a result, the ESR values presented in Table 1 are by no means final. Using manufacturer's data, the ESR's for all capacitors at a given temperature are identical.

\section*{MIL-Spec}

This column shows the military specifications governing these capacitors. Most of these specifications do not concern the DOS (e.g., humidity, lead length, etc.).

\section*{Q. 2 DATA BASE FOR WIRE SIZES}

The American Wire Gauge (AWG) will be used as the wire size standard. The wire area is expressed both in circular mils and in (millimeter) \({ }^{2}\) to facilitate users of different preferences. The resistance per length, expressed in milliohms per meter, is expressed for three different temperatures covering \(-30^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\), and \(+100^{\circ} \mathrm{C}\). Calculation of different performances will require the use of milliohms/ meter at different temperatures. For worst-case loss evaluation, the \(100^{\circ} \mathrm{C}\)-data will be used. However, for performance such as damping factor of the filter, the opposite low-temperature data will be used.

Table 1 Data Base for Foil Tantalum Polarized Capacitors
\begin{tabular}{|c|}
\hline YOC & ing (V) & \multicolumn{5}{|c|}{CAPACITAMCE (uF)} & \multicolumn{2}{|c|}{DIEMSIOM} & Weiont (z) & \multicolumn{7}{|c|}{IRES AT \(85^{\circ} \mathrm{C}\) (A)} & \multicolumn{7}{|c|}{Imes at \(125^{\circ} \mathrm{C}\) (A)} & \multicolumn{3}{|c|}{EsR(OHES)} & MLL-SPEC \\
\hline \(85^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) & -550'C & \(\underline{-30}{ }^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(85^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) & Length (orn/in) & Drameter (ay (n) & & 10xHz & 20 & 30 & 40 & 50 & 75 & 100 & 10 & 20 & 30 & 40. & 50 & 75 & 100 & -300\% & \(\underline{25}\) & \({ }^{85}\) & - \\
\hline 15 & 10 & 37 & 40 & 55 & 75 & в2 & 3.81/1.500 & 0.993/0. 391 & 8.0 & 1.44 & 1.22 & 2.08 & 2.29 & 2.47 & 2.82 & 3.11 & 0.75 & 0.94 & 1.07 & 1.18 & 1.28 & 1.46 & 1.61 & 0.5 & 0.1 & 0.05 & c-39096 \\
\hline 25 & 15 & 20 & 24 & 40 & 76 & 105 & \(2.70 / 1.062\) & 0.754/0.297 & 3.5 & 0.48 & 0.61 & 0.69 & 0.76 & 0.88 & 0.94 & 1.04 & 0.25 & 0.31 & 0.36 & 0.40 & 0.43 & 0.49 & 0.54 & & & & \\
\hline 25 & 15 & 50 & 60 & 100 & 190 & 262 & 3.81/1.500 & 0.993/0.391 & 8.0 & 1.00 & 1.26 & 1.44 & 1.58 & 1.71 & 1.95 & 2.15 & 0.52 & 0.65 & 0.74 & \({ }^{5}, 82\) & 0.88 & 1.01 & 1.11 & & & & \\
\hline 39 & 20 & 54 & 60 & 85 & 110 & 117 & 7.14/2.812 & 0.993/0.391 & 17.5 & 2.61 & 3.29 & 3.71 & 4.15 & 4.47 & 5.12 & - 5.63 & 1.35 & 1.70 & 1.95 & 2.15 & 2.31 & 2.64 & 2.91 & & & & \\
\hline 3 & 29 & 152 & 180 & 304 & 570 & 920 & 7.34/2.312 & 0.993/0.391 & 17.5 & 2.58 & 3.25 & 3.72 & 4.10 & 4.41 & 5.05 & 5.55 & 1.33 & 1.68 & 1.92 & 2.12 & 2.28 & 2.61 & 2.87 & & & & \\
\hline 59 & 30 & 3.8 & 4 & 6 & 8 & 8.3 & 2.70/1.060 & 0.754/0.297 & 3.5 & 0.38 & 0.48 & 0.55 & 0.60 & 0.65 & 0.74 & 0.82 & 0.20 & 0.25 & 0.28 & 0.31 & 0.33 & 0.38 & 0.42 & & & & \\
\hline 50 & 30 & 9 & 11 & 18 & 34 & 40 & 2.70/1.050 & 0.154/0.297 & 3.5 & 0.31 & 0.39 & 0.45 & 0,43 & 0.53 & 0.61 & 0.67 & 0.16 & 0.20 & 0.23 & 0.25 & 0.27 & 0.31 & 0.3 & & & & \\
\hline 50 & 30 & 12 & 14 & 20 & 28 & 30 & 3.81/1.500 & 0.993/0.391 & 8.0 & 0.89 & 1.13 & 1.29 & 1.42 & 1.53 & 1.75 & 1.93 & 0.46 & 0.58 & 0.67 & 0.73 & 0.79 & 0.91 & 1.00 & & & & \\
\hline 50 & 30 & 24 & 28 & 40 & 55 & 60 & 5.55/2.187 & 0.993/0.391 & 13.0 & 1.58 & 1.99 & 2.28 & 2.51 & 2.71 & 3.10 & 3.41 & 0.82 & 1.03 & 1.18 & 1.30 & 1.40 & 1.61 & 1.76 & & & & \\
\hline 50 & 30 & 24 & 28 & 47 & B9 & 106 & 3.81/1.500 & \(0.993 / 0.391\) & 8.0 & 0.55 & 0.82 & 0.94 & 1.04 & 1.12 & 1.28 & 1.40 & 0.34 & 0.43 & 0.49 & 0.54 & 0.58 & 0.66 & 0.73 & & & & \\
\hline 50 & 30 & 76 & 90 & 150 & 285 & 394 & 5.55/2.187 & 0.993/0.391 & 13.0 & 1.44 & 1.82 & 2.08 & 2.29 & 2.47 & 2.83 & 3.11 & 0.75 & 0.94 & 1.08 & 1.19 & 1.28 & 1.46 & 1.61 & & & & \\
\hline 75 & 50 & 6.5 & 7 & 12 & 23 & 24 & 2.70/1.050 & 0.754/0.291 & 3.5 & 0.28 & 0.35 & 0.40 & 0.44 & 0.47 & 0.54 & 0.59 & 0.14 & 0.18 & 0.21 & 0.23 & 0.24 & 0.28 & 0.31 & & & & \\
\hline 75 & 50 & 7.5 & 9 & 15 & 28 & 34 & 3.81/1.500 & 0.993/0.391 & 8.0 & 0.41 & 0.52 & 0.60 & 0.66 & 0.71 & 0.81 & 0.90 & 0.21 & 0.27 & 0.31 & 0.34 & 0.37 & 0.42 & 0.46 & & & & \\
\hline 75 & 50 & 17 & 20 & 33 & 63 & 14 & 3.81/1.500 & 0.993/0.391 & 8.0 & 0.55 & 0.69 & 0.79 & 0.87 & 0.94 & 1.08 & 1.19 & 0.28 & 0.36 & 0.41 & 0.45 & 0.49 & 0.56 & 0.61 & & & & \\
\hline 75 & 50 & 24 & 30 & 40 & 50 & 55 & 7.14/2.812 & 0.993/0.391 & 17.5 & 1.79 & 2.23 & 2.58 & 2.84 & 3.06 & 3.50 & 3,85 & 0.93 & 1.17 & 1.33 & 1.47 & 1.58 & 1.81 & 1.99 & & & & \\
\hline 75 & 50 & 24 & 28 & 4 & 89 & 123 & 3.81/7.500 & 0.993/0.391 & 8.0 & 0.65 & 0.82 & 0.94 & 1.04 & 1.12 & 1.28 & 1.41 & 0.34 & 0.43 & 0.49 & 0.54 & 0.58 & 0.65 & 0.73 & & & & \\
\hline 75 & 50 & 39 & 42 & 70 & 120 & 137 & 5.55/2.187 & 0.993/0.391 & 13.0 & 1.03 & 1.30 & 1.49 & 1.64 & 1.76 & 2.02 & 2.22 & 0.53 & 0.67 & 0.77 & 0.85 & 0.91 & 1.04 & 1.75 & & & & \\
\hline 35 & 52 & 72 & 20 & 100 & 175 & 195 & 5.55/2.187 & 0.993/0.391 & 13.0 & 1.20 & 1.52 & 1.74 & 1.91 & 2.06 & 2.35 & 2.59 & 0.62 & 0.78 & 0.90 & 0.99 & 1.06 & 1.22 & 1.34 & & & & \\
\hline 100 & 65 & 13 & 15 & 25 & 37. & 42 & 3.81/7.500 & 0.993/0.391 & 8.0 & 0.52 & 0.65 & 0.74 & c. 81 & 0.33 & 1.01 & 1.11 & 0.27 & 0.34 & 0.38 & 0.42 & 0.46 & 0.52 & 0.57 & & & & \\
\hline 103 & 55 & 28 & 30 & 50 & 75 & 85 & 5.55/2.187 & 0.993/0.391 & 13.0 & 0.86 & 1.08 & 1.24 & 1.37 & 1.47 & 1.68 & 1.85 & 0.84 & 0.55 & 0.64 & 0.71 & 0.75 & 0.87 & 0.96 & & & & \\
\hline 109 & 65 & 38 & 45 & 75 & 139 & 141 & 7.14/2.812 & \(0.993 / 0.391\) & 17.5 & 1.24 & 1.56 & 1.79 & 1.97 & 2.12 & 2.42 & 2.67 & 0.64 & 0.81 & 0.92 & 1.02 & 1.10 & 1.25 & 1.38 & & & & \\
\hline 159 & 100 & 1.2 & 1.5 & 2 & 2.5 & 2.8 & \(2.70 / 1.060\) & 0.754/0.297 & 3.5 & 0.21 & 0.26 & 0.30 & 0.33 & 0.35 & 0.40 & 0.44 & 0.11 & 0.13 & 0.15 & 0.17 & 6.18 & 6.21 & 0.23 & & & & \\
\hline 150 & 103 & 2.2 & 3 & 4 & 6. & 6.7 & \(2.70 \% 1.060\) & 0.754/0.297 & 3.5 & 0.14 & 0.17 & 0.20 & 0.22 & 0.24 & 0.27 & 0.30 & 0.07 & 0.09 & 0.10 & 0.11 & 0.12 & 0.14 & 0.15 & & & & \\
\hline 150 & 109 & 5 & 7 & 10 & 15 & 17 & 3.81/1.500 & 0.993/0.391 & 8.0 & 0.31 & 0.39 & 0.45 & 0.49 & 0.53 & 0.61 & 0.67 & 0.16 & 0.20 & 0.23 & 0.25 & 0.27 & 0.31 & 0.34 & & & & \\
\hline 153 & 100 & 7.5 & 9 & 15 & 29 & 34 & 3.81/1.500 & 0.993/0.391 & 8.0 & 0.38 & 0.48 & 0.55 & 0.60 & 0.65 & 0.74 & 0.82 & 0.20 & 0.25 & 0.28 & 0.31 & 0.33 & 0.38 & 0.42 & & & & \\
\hline 150 & 100 & 14 & 15 & 25 & 47 & 49 & 5.55/2.187 & 0.993/0.391 & 13.0 & 0.62 & 0.78 & 0.89 & 0.98 & 1.05 & 1.21 & 1.33 & 0.32 & 0.40 & 0.46 & 0.51 & 0.55 & 0.63 & 0.69 & & & & \\
\hline 150 & 100 & 17 & 20 & 33 & 62 & 75 & 5.55/2.187 & 0.993/0.391 & 13.0 & 0.72 & 0.91 & 1.04 & 1.15 & 1.24 & 1.41 & 1.56 & 0.37 & 0.47 & 0.54 & 0.59 & 0.64 & 0.73 & 0.80 & & & & \\
\hline 150 & 100 & 24 & 28 & 4 & 49 & 107 & 7.14/2.812 & 0.993/0.391 & 17.5 & 0.99 & 1.26 & 1.44 & 1.58 & 1.71 & 1,95 & 2.15 & 0.51 & 0.65 & 0.74 & 0.82 & 0.69 & 1.01 & 1.11 & & & & \\
\hline 200 & 150 & 1 & 1.2 & 1.5 & 1.8 & 2 & 2.70/1.060 & 0.754/0.297 & 3.5 & 0.17 & 0.22 & 0.25 & 0.27 & 0.29 & 0.34 & 0.37 & 0.09 & 0.11 & 0.13 & 0.14 & 0.75 & 0.37 & 0.19 & & & & \\
\hline 200 & 150 & 6.5 & 7 & 10 & 12 & 13 & 5.55/2.187 & 0.993/0.391 & 13.0 & 0.83 & 1.04 & 1.19 & 1.31 & 1.41 & 1.62 & 1.78 & 0.43 & 0.54 & 0.62 & 0.68 & 0.73 & 0.84 & 0.92 & d & & - & 1 \\
\hline 200 & 150 & 9.6 & 11 & 15 & 18 & 20 & 7.1412.812 & 0.993/0.391 & 17.5 & 1.14 & 1.43 & 1.64 & 1.80 & 1.94 & 2.22 & 2.45 & 0.59 & 0.74 & 0.85 & 0.93 & 1.00 & 1.15 & 1.26 & \(\checkmark\) & & & \\
\hline
\end{tabular}

Table 2 Data Base For Wire Conductors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Wire Size AWG & \multicolumn{2}{|c|}{Wire Area} & \multicolumn{3}{|l|}{Resistance/Length (milliohms/meter)} \\
\hline & Cir Mil & \((\mathrm{mm})^{2}\) & \(\underline{-30^{\circ} \mathrm{C}}\) & \(+40^{\circ} \mathrm{C}\) & \(100^{\circ} \mathrm{C}\) \\
\hline 8 & 18010 & 9.127 & 1.67 & 2.18 & 2.67 \\
\hline 9 & 14350 & 7.272 & 2.17 & 2.75 & 3.37 \\
\hline 10 & 11470 & 5.812 & 2.66 & 3.47 & 4.25 \\
\hline 11 & 9158 & 4.641 & 3.35 & 4.38 & 5.36 \\
\hline 12 & 7310 & 3.704 & 4.22 & 5.52 & 6.75 \\
\hline 13 & 5852 & 2.965 & 5.32 & 6.96 & 8.51 \\
\hline 14 & 4679 & 2.371 & 6.71 & 8.77 & 10.7 \\
\hline 15 & 3758 & 1.904 & 8.46 & 11.0 & 13.5 \\
\hline 16 & 3003 & 1.522 & 10.7 & 14.0 & 17.1 \\
\hline 17 & 2421 & 1.227 & 13.4 & 17.6 & 21.5 \\
\hline 18 & 1936 & 0.981 & 16.9 & 22.1 & 27.1 \\
\hline 19 & 1560 & 0.791 & 21.4 & 28.0 & 34.2 \\
\hline 20 & 1246 & 0.631 & 26.9 & 35.2 & 43.0 \\
\hline 21 & 1005 & 0.509 & 33.9 & 44.4 & 54.3 \\
\hline 22 & 807 & 0.409 & 43.1 & 56.3 & 68.9 \\
\hline 23 & 650 & 0.329 & 53.9 & 70.5 & 86.3 \\
\hline 24 & 524 & 0.266 & 68.2 & 89.2 & 109 \\
\hline 25 & 424 & 0.215 & 85.9 & 112 & 137 \\
\hline 26 & 342 & 0.173 & 109 & 143 & 175 \\
\hline 27 & 272 & 0.138 & 137 & 179 & 219 \\
\hline 28 & 219 & 0.111 & 173 & 227 & 277 \\
\hline 29 & 180 & 0.091 & 216 & 283 & 346 \\
\hline 30 & 144 & 0.073 & 275 & 360 & 440 \\
\hline 31 & 117 & 0.059 & 347 & 454 & 556 \\
\hline 32 & 96 & 0.049 & 431 & 563 & 689 \\
\hline 33 & 77 & 0.039 & 547 & 715 & 874 \\
\hline 34 & 61 & 0.031 & 694 & 908 & 1110 \\
\hline 35 & 49 & 0.025 & 879 & 1149 & 1405 \\
\hline 36 & 40 & 0.020 & 1102 & 1441 & 1762 \\
\hline 37 & 33 & 0.017 & 1361 & 1779 & 2176 \\
\hline 38 & 26 & 0.013 & 1723 & 2252 & 2754 \\
\hline 39 & 20 & 0.010 & 2250 & 2942 & 3598 \\
\hline 40 & 16 & 0.008 & 2870 & 3752 & 4588 \\
\hline 41 & 13 & 0.007 & 3516 & 4597 & 5622 \\
\hline 42 & 10 & 0.005 & 4410 & 5765 & 7050 \\
\hline 43 & 8 & 0.004 & 5596 & 7447 & 9106 \\
\hline 44 & 7 & 0.004 & 6891 & 9010 & 11018 \\
\hline
\end{tabular}

MAPPS SYSTEM EXECUTION FLOW

APPENDIX S
dATA BASE MANAGEMENT COMMON DATA AREA (DBMCOM)
\begin{tabular}{ll}
DBFNR & Data Base File Number \\
DBTF & Data Base Table File \\
SETNAM & Set Name \\
RECNAM & Record Name \\
ITMNAM & Item Name \\
DBIERR & Data Base Error Code \\
DBKEY & Data Base Record Key I dentifier \\
DBARY & Data Base Array \\
DBRA & Data Base Record Area \\
DBFSW & Data Base Function Switch \\
DBNBUF & Data Base Number of Buffers \\
DBFUNC & Data Base Function
\end{tabular}

\title{
APPENDIX
}

U

MODELING AND ANALYSIS OF POWER PROCESSING SYSTEMS

\author{
Yuan Yu \\ Fred C. Lee \\ Arthur D. Schoenfeld \\ TRW Defense \& Space Systems Group, Redondo Beach, Califgntuor quarty, James E. Triner \\ NASA Lewis Research Center, Cleveland, Ohio
}

\begin{abstract}
Effort of a NASA-sponsored, computer-based program on "Modeling and Analysis of Power Processing Systems "is reported. The overall program objective is to provide an engineering tool to reduce the design, analysis and development time, and thus the cost, in achieving the required performances for power processing equipment and systems. Progranistructures, and design/ analysis examples are given to illustrate the program's utility in power and control circuit design, performance analysis, and design optimization.
\end{abstract}

\section*{1. InTRODUCTION}

Electric power processing technology is a rather complex field encompassing disciplines of power conversion and control electronics, liagnetics, and analog as well as digital signal processing. However, primarily due to its rapidly-evolving nature and its preoccupation with hardware production, the technology development has been hampered by the lack of vigorous modeling, analysis, design, and optimization techniques. As a result, heavy reliance on empirical and intuitive methods has become the necessary ingredient in power processing equipment designs. Needless to say, such inadequacies inevitably lead to penalties involving equipment performance, weight, reliability, and cost. In view of (1) the forthcoming needs for use of considerably higher level of power in future missions, (2) the prevailing trend of equipment standardization which must rely on an analysis-based design, and (3) the ever-increasing sensitivity on equipment cost, in which brute-force and single-minded power processing techniques woúld only result in more severe penalties than those suffered today, the pressing need for power processing modeling and analysis cannot be overemphasized.

To fulfill such a need, a program entitled "Modeling and Analysis of Power Processing Systems (MAPPS)", is described in this paper. Being a long-range program, it is currently at the conclusion of the initial Phase II effort. Phase I of the program addressed the formulation of a methodology for the MAPPS approaches [1]. In the initial

Phase II, certain selected approaches were implemented through computer-based subprograms dealing with design, analysis, and optimization at the equipment level. To provide the basic coordination for the various subprograms, the framework of an expandable Data Management Program is also completed within the initial Phase II.

In the following sections, commonly-used power processing terminologies are defined first to avoid later ambiguity. MAPPS subprogram categories and their specific objectives with respect to analysis, design, and optimization are next described; examples are provided to illustrate each subprogram category. Following a short introduction of the data management program, the eventual MAPPS capability and its future are concluded.

\section*{2. COMMONLY-USED TERMS AND MODELING/ANALYSIS OBJECTIVE}

Certain basic terms frequently used in this paper are summarized as the following to facilitate terminology clarification:

Component: Electronic parts such as magnetics, capacitors, seniconductors, etc.

Circuit: \(\quad \therefore\) A combination of electronic circuits to perform a given function. Examples are input filter, output filter, feedback amplifiers, etc.
Equipment: : A black box containing many components to satisfy certain specified input/output compatibilities. Examples are line regulators, dc to dc converters, etc. An equipment can be divided into the power circuit and the control circuit; the former processes the power flow from input to output, the latter controls the power flow.
System:
A combination of multiple equipment aimed to fulfill source/ load power processing application in a spacecraft.

\footnotetext{
This work was performed under NASA Contrace NAS3-19690, "Modeling and Analys is of Power Processing Systems," by TRW Defense and Space Systems, Redondo Beach, California, for NASA Lewis Research Center.
}

Performance: Steady-state or transient behavior of the equipment or system.
Design: Conceive a scheme for equipment or system to meet a given set of perfomance requirements.
Analysis: Analytically/numerically determine the performance of a given design.

Design
Optimization: To design equipment or system and concurrently to minimize a defined quantity (such as weight or loss).

Performance Requirements:
(Controlindependent)

These requirements are closely associated with the power circuit design:
- Source EMI
- Output Ripple
- Weight
- Loss
- Input/Output Voltage Levels
- Load Power

\section*{Performance}

Requirements:
(Controldependent)

These requirements are closely associated with the control circuit design:
- Stability
- Attenuation of Source Disturbances (audiosusceptibility)
- Response to Load Disturbances (output impedance)
- Response to Step Line/Load Changes
- DC Regulation

Based on these defined terminologies, the MAPPS overall objective is to provide the engineering tools to reduce the design, analysis, and optimization time, and thus the development time and the cost, in achieving the required performances for power processing equipment and systems.

\section*{3. MAPPS MAJOR SUBPROGRAMS}

The four major MAPPS subprograms, designated as Design Optimization (DOS), Control Design (CDS), Performance Analysis (PAS), and System Analysis (SAS), are described in Table 1.

For detailed information regarding contents of Table 1, the readers are referred to reference [2], to be published in Fal1, 1977. The Data Management Program mentioned in Section 1, which coordinates the user interfaces for all subprograms, will also be treated thoroughly in [2].

In this paper, each subprogram will be represented by key examples fllustrating the utility and the effectiveness of the subprograms. While they are inherently computer-based, the design requirements and the analytical foundation leading to the formulation of the particular subprogram are present to supplement the numerical demonstration of the analytical results.

\section*{4. DESIGN OPTIMIZATION SUBPROGRAM (DOS)}

As previously stated, the utility of the design optimization is that it will not only pinpoint the detailed equipment design to meet given performance specifications, but also achieve the minimization of a certain equipment characteristic deemed desirable by the designer. Simply stated, the task is to minimize an objective function \(f(x, k)\), subject to design constraints \(g_{j}(x, k, r)=0\).

Here, \(x=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{T}\) is a \(n\)-dimensional vector representing circuit parameters to be determined. Examples of \(x\) include the values of . \(R, L\), and \(C\), the operating frequency, and the design details of magnetic components including the effective core area, the mean core length, the permeability, the wire size, and the number of winding turns.

The k's represent various constants known from common knowledge or designer's experience. Examples include copper resistivity, core and winding densities, core window fill factor, saturation flux density, capacitor energy-storage capabilities, etc.

The \(r\) 's are performance specifications which the optimum design must meet. Examples include filter attenuation, output ripple amplitude, maximum weight, ninimum efficiency, source EMI, etc. These requirements are usually prescribed to the equipment designer by someone presumably knowledgeable in the entire power systen.

The function \(f(x, k)\) is the particular equipment characteristic to be optimized. Examples include the total weight, the total loss, the figure of merit of a specific design, or any other preferable design quantity such as reliability and cost.

Equation \(g_{j}(x, k, r)=0\) represent a total of " \(j\) " constraints relating \(x, k\), and \(r\). For example, one of the equations may relate the filter attenuation required at a given frequency to the RLC filter parameters, and a second equation may relate the sum of al losses to the required efficiency. The number of constraints will be sufficiently large to allow all requirements "r" and all constants " \(k\) " to be integrated into governing the design of all circuit parameters " \(x\) ". Consequently, solutions acquired for equations \(g_{j}(x, k, r)=0\) to minimize the objective function \(f(x, k)\) would authentically portray a detailed optimum design, down to the component level, in accordance wi th the performances and the optimization objective specified.

\title{
DRIGINALE PAGE 5 OR POOR QUALFTY
}

TABLE 1. SUBPROGRAM DESCRIPTIONS

From the foregoing description, the key to implementing the design optimization rests on suitable mathematical or computer techniques that can be used to solve the simultaneous constraints and concurrently minimize the objective function. However, only few problems with rather simplistic nature can be solved in closed form, using techniques such as Lagrange Multipliers [3,4]. Most larger, problems arising from practical applications are sufficiently complicated that, to identify their optimum solutions, one has to resort to computational means.

In the initial Phase II, the following five DOS's have been successfully implemented:
- Optimum weight inductor/transformer design, with loss constraint given.
- Optimum weight inductor/transformer design, with wire size given.
- Optimum loss inductor/transformer design, with weight constraint given.
- Optimum weight input filter design. - Optimum weight buck svitching regulator

The first and the last subprograms are given here as illustrative examples.

Using the method of Lagrange Multipliers, the closed-form solutions for the first example have been presented [4]. The solutions prescribe a minimum-weight inductor design through core area \(A\), core length \(Z\), number of turns \(N\), permeability \(U\), core colunie \(A Z\), conductor area \(A C\), and minimum weight \(W\). These parameters, in turn, are expressed as functions of the copper density \(D C\), the iron density DI, winding pitch factor FC, window filling factor FW, resistivity RHO, loss constraint \(P\), flux density \(B S\), peak winding current IP, and the needed inductance \(L\). These closed-form solutions are implemented into a computer-based subprogram. Upon executing the subprogram on a remote terminal, the computer will provide the following printout of instruction for an uninitiated user:

THE DE IECTIVE OF THI: FPDEFAM IS TD PERFDEM AN
 to IIEF:: FLEATE REAE THE FOLLDMIMG :TATEMEHT: offergli lefore esecurimg the ffogfan. THE HEEDEI THFIT FHRAMETEF. RPE THE FOLLOM1MG:
 IF HOT EIVEA By THE UEEF, Mi: 1: SET

 If Hat GIVEI B' THE MEEF, HI IE SET

H: : bhitio df huefbie che tuen lemigth to the 4OFE GIFGMFEFERICE.

 hat Giveti, RHO I De: IGIEI PDuEF le:

 NDT RE:IFED.
 FOF GHINEF: AT THE EMD DF THE FIN:
A I: GDFE HFEA. 2 IF MEAM LOFE LEMGTH,

Subsealuently, the computer will request input data from the user with regard to \(L, I P, B S, P, D C, D I\), \(F C, F W\), and RHO. This is the only information the user is required to furnish. In this example, the trier needs a \(200-\mathrm{uH}\) inductor carrying a peak current of 4.5 A based on a core having a 3.5 kilogauss flux capability. The loss allowed is 0.699 W . For values of \(D C, D I, F C, F W\), and RHO, the user selects to use those set by the program in the absence of any user's input. The user then types:
\[
1-00 ., 1 F=4.5, E=-5, F=0.6971
\]

Upon completion of input data, the computer prints out a summary of these inputs:
\begin{tabular}{|c|c|}
\hline [10, & \(=1.3\) \\
\hline TT & \(=\mathrm{T}\) - , \\
\hline Fr & is E.til \\
\hline Flt & - 4.01E-1. \\
\hline Ftin & \\
\hline \(F\) & \\
\hline T: & - 5.5 \\
\hline \(1 P\) & \(=4 . *\) \\
\hline L & \\
\hline
\end{tabular}

Finally, the optimum design parameters, along with their conventional units, are computed and delivered as outputs:

The cost for this design session is \(\$ 0.57\). This compares to hours and perhaps days of design iterations using paper-äd. pencil approach.

The next example deals with optimization on a vastly-expanded scale - an optimun-weight design for the complete buck switching-regulator power circuit shown in Figure 1.

Figure 1 Buck Power Circuit

Here, R1 to R3 are winding resistances of L1 to L3, respectively. The input filter is composed of L1-C1-R4-L2-C2, with L3-C3 being the output filter, and RC being the ESR of C3. Counting in addition the area \(A\), turns \(N\), length \(Z\), and conductor area \(A C\) required to completely define each inductor, and including the switching frequency \(F\), a total of twenty-three variables are involved. These variables, along with design constraints that include efficiency, source current ripple, output voltage ripple, input filter resonance, full utilization of inductor window areas, and no inductor saturation, are presented in Table 2. Most constraints are complicated nonlinear functions of the aforementioned variables; the most complicated one being equation (1) of Table 2, which includes copper losses, semiconductor conduction losses, capacitor dissipations, and frequency-dependent core losses and semiconductor switching lesses. The objective of the optimum desigr, is to solve for all variables, with the intent to satisfy each constraint, and concurrently minimize the optimization criterion - the total weight of copper, iron, capacitors, and the heat sink. Notice in particular the switching frequency is not a pre-set value; its optimum design is an integral part of the total converter design.

\section*{Table 2 Design Optimization Sumnary}

Obviously, a problem of this complexity is not amenable for closed-form solutions. The nonlinear programming algorithm, SUMT, is used to conceive

\title{
ORIGINALL PAGE LE OF POOR QUALIMX
}
the design numerically [5]. The computer program for this problem contains fourteen pages of Fortran listing dealing mostly with constraints and their first and second partial derivatives, Considering the limited information such a listing can provide wi thout extensive descriptive elaborations, the program itself is not included here. It is, however, available in Reference [2].

Two sets of optimum design results are illustrated in Table 3. The difference between them is that design \#1 assumes a three-times higher ESR for the output filter capacitor and a fivetimes more stringent source EMI requirement than those of design \#2. In each design, all RLC parameters, the switching trequency, the design detalis of all magnetics, and the min mum weight, are collectively achieved in a single run. The design not only lleets all specified performances, it also represents the minimum possible weight.

\section*{Table 3 Optimum Design Results}
\begin{tabular}{|c|c|c|}
\hline z1. (cin) & 5.10 & 3.11 \\
\hline Al (\(\mathrm{cm}^{2}\)) & 0.438 & 0.101 \\
\hline N1 (turns) & 414 & 31 \\
\hline ACl (mun' \({ }^{2}\)) & 1,724 & 0.514 \\
\hline \(22(\mathrm{~cm})\) & 3.80 & 2. \({ }^{5}\) \\
\hline A \({ }^{2}\left(\cos ^{2}\right)\) & 0.251 & A. 49. \\
\hline Na fturns? & 2 & 12 \\
\hline Ac) (min \({ }^{\text {a }}\) & 0.756 & a. 5102 \\
\hline 33 (cm) & 3 3, 81 & 4.20 \\
\hline A \(\left(\mathrm{cm}^{2}\right)\) & 0.694 & 0.815 \\
\hline N3 (turins) & * & 36 \\
\hline AC3 (\(\mathrm{nan}^{6}\)) & 1,2 & 1.21 \\
\hline 11 (1) & 3 & 43.7 \\
\hline 12 (4 (1) & 31 & 13.9 \\
\hline 13 (6) & 19 & 53.5 \\
\hline C1 (2) & 84.3 & 17 \\
\hline ct (1) & 10.8 & 10 \\
\hline [3 (6) & H, & 18 \\
\hline A) \{mill tobu! & 11.4 & 20.9 \\
\hline Ee (milleluy & 12.9 & 9.1 \\
\hline Ra (milliohn) & 3.3 & 18.3 \\
\hline St jums). & 4 & 0.94 \\
\hline \(f\) (kilis) & & 41.4 \\
\hline \(H\) (turomes) & 254 & \%8, \\
\hline
\end{tabular}

Notice the fimpact exerted by \(E S R\) and source EMI on the two data colums of Table 3, For the same efficiency constraint, every parameter of design \#2 is smaller than its counterpart of design \(\# 1\). The only exception occurs at the analytically-determined op timum switching frequency, where the 43.9 kHz for design \#2 is almost twice that of the 22kHz for design \#1, Due to the higher frequency and smaller physical paraneters, the combined magnetics and capacitor weight for design \#2 is barely one-third of of that for design \#1.

The total computer cost per run for a problem of this magnitude is generally within the \(\$ 20-\) to- \(\$ 40\) range. This compares favorably with days of nonoptimum paper-and-pencil design iterations.
greatly facilitate the following endeavors heretofore regarded as unattainable:
(1) Allow a cost-effective optimum design from component to equipment level, including the identification of the optimum switching frequency. The cost per rin is negligible when conpared with days and perhaps weeks of nonoptimum design and development iterations.
(2) Provide a fast and accurate weight-efficiency tradeoff as well as a means for ready assessment of the impact of a given requirement or a particular component characteristic on an optimum equipment design.
Guthond ©os uffut is pianced iur rindse if of the MAPPS program to extend from the present buck converter to buck boost, boost, and other most-commonly used power-circuit configurations.

\section*{5. CONTROL DESIGN SUBPROGRAMS (CDS)}

Froll a feedback control viewpoint, a switching regulator can be generally divided into three major functions: the power stage, the pulse modulation, and the error processor.

The power stage includes the input filter, the power, switches, and the output filter. They can be assembled together, in Figure 2A, to form a buck, a boost, and a buck boost circuit. Each circuit can be further divided in accordance with the status of. inductor MMF; the MMF can be continuous or discontinuous during nominal operation, as illustrated in Figure 2B. Even though the power stage is a linear circuit during each time interval of Figure 2B, the combination of all different linear circuits for the purpose of analyzing a complete operating cycle becomes a piecewise-linear nonlinear analysis problem. Fortunately, the solution to this problem has made significant advance in recent years, both here and abroad. Approaches based on topology deduction \([6,7]\), discrete time domain modeling [8, 9,10], and average time doman modeling [11] have been successfully performed.

Figure 2 A Switching Regulator Major Functions

Figure 2B Continuous and Discontinuous Inductor MMF
Depending on the pulse-modulation mechanization, different forias of duty-cycle control of the power switch are possible. These forms include constant frequency, constant on time, constant off time, bistable trigger, and variable frequency based on variable on time and off time. While the ways of pulse-modulation implementation proposed and in use today may appear numerous, they can always be reduced to two basic ingredients; a threshold level and a ramp function. The intersection of these two ingredients initiates the switching-action for the duty-cycle control. In single-1oop controlled switching regulators, the ramp or the threshold is derived from the output of the error processor, which, in turn, derives its input from sensing the regulated quantity at the output of the power stage. However, in certa in more recent multiple-loop developments \([12,13]\), incentive in much improved stability performance has resulted in an additional loop through which the needed ramp generation is obtained from a steady-state ac switching waveform inherent within the regulator. Regardless the details of ramp or threshold generation, when a lowfrequency disturbance is applied to the pulse modulation, the time needed for the ramp to intersect the threshold is also perturbed. It is based on this mechanism that the low-frequency pulse-modulation transfer function can be formulated. Essentially, the describing function technique is used to obtain the gain and phase of the pulsemodualtion stage. Certain examples of pulsemodulation analysis are given in Reference [2].

The error processor processes the amplification and compensation of the sensed analog signal at the power-stage output. The analog-to-analog conversion presents no particular difficulty for analysis, as only small signal, linear circuits are involved. However, for most regulators the design of the power stage and the pulse modulation are set by requirements other than control-dependent performances. Consequently, the error-processor design usually determines, to a large extent, the quality of the regulator feedback 100 p .

The function of the Control Design Subprograms, therefore, is to utilize the analytical results already achieved from the power stage and the pulse modulation, and to detemine numerically the design
of the error processor based on a pre-selected compensation configuration in order to meet a given set of performance requirements.

As a simple example, the design of the RC compensation in Figure 3 is illustrated. Here, the buck regulator power stage parameters are given: \(E_{i}=25\) to \(50 \mathrm{~V}, \mathrm{~L}=1 \mathrm{mH}, \mathrm{C}=455 \mathrm{uF}, \mathrm{R}_{\mathrm{c}}=.068\) ohms, \(E_{Q}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6.7\) ohms, and switching frequen \(\mathrm{Cy}=20 \mathrm{kHz}\). The values of \(\mathrm{R1}\) to \(\mathrm{R4}, \mathrm{Cl}, \mathrm{C} 2\), and open-loop dc gain \(K\) are to be determined so that the following performance requirements can be met:

Figure 3. Error Processor RC Compensation

Upon executing the program with the needed inputs, the computer will print out an input sunnary as shown below:
\begin{tabular}{|c|c|}
\hline EIMITI & - \(2.5 E+01\). \\
\hline EIMAX & - \(5.0 \mathrm{C}+61\). \\
\hline E0 & - \(2006+01{ }^{\circ}\) \\
\hline FO & - O.0Et01. \\
\hline RES & - 1.0E-0. \\
\hline \(L\) & - 1.0E-03, \\
\hline 5 & \(=1.55 E^{-124}\). \\
\hline R3 & - E.SE-6E \\
\hline Fs & - E. DE + \(6+\). \\
\hline F: & - E, DE + 03, \\
\hline THET: & - +.0E+01. \\
\hline
\end{tabular}

The program then proceeds to calculate all parameters, and prints out the numerical results:

Cle Aetretos

The user can exercise the option to obtain a gain/phase Bode plot for design verification:

\begin{tabular}{|c|c|c|c|c|}
\hline PHETA & FFEC \(\mathrm{H}_{2}\) ， & HEE： & & FHASE \\
\hline 5.00 & こ．ラーラアE＋以E & 二ッパ & 6．tronsetui & 43.85 \\
\hline 10.00 & 5．555re＋03 & 19，54 & & 30.50 \\
\hline 15.04 & 3． \(335 \pm 6+02\) & \(11.0{ }^{\text {cte }}\) & \(3 \cdot 6\)－t．ty & 31.24 \\
\hline 20.00 & 1．1111E＋UE & E．73 & E．169．E＋00 & 3e．ese \\
\hline －5．000 & 1．3539E＋113 & \(5 .+4\) & 1．43． 2 E +60 & 40，＋1 \\
\hline 30.00 & 1．820．E＋03 & ． 97 & 1．12vee＋U1 & ＋2．30 \\
\hline 35.00 & 1． \(3+4+4 E+103\) & －1．04 & \(3.670 \mathrm{E}-01\) & ＋6． 57 \\
\hline ＋0．00 & 2．2ezこe＋03 & －2．75 & & 45， 0 \\
\hline ＋5．00 & 2．50UNE＋US & －4．23 & \(0.14+ \pm E-11\) & －1．ac \\
\hline 50.00 & 2．TFTSE＋03 & －5．53 & & ちこ．5 \\
\hline 55.00 & 3．US50．e 0 －\({ }^{3}\) & －0．74 & ＋ \(1.5 \pm+|E-1| 1\) & 54.02 \\
\hline 00.00 & 3．333SE＋\({ }^{\text {a }}\) & \(7 . .75\) & 4．09830－u1 & 55.41 \\
\hline 55.00 & 3．6111E＋63 & －3．71 & 3，ctces－111 & 50.07 \\
\hline －0．00 & \(3.3385 E+43\) & －3－5．\({ }^{\text {a }}\) & \(3.3150 \mathrm{E}-11\) & 57.34 \\
\hline －5．00 & ＋．1087E＋03 & \(-10 .+4\) & \(3.0145 E-\mathrm{D})\) & 53．94 \\
\hline 50.00 & 4，＋4，4＋6＋63 & \(-11.15\) & 2．atcerol & 59．78 \\
\hline 85.00 & ＋．teste \({ }^{\text {cos }}\) & －11．35 & 3．S5sie－01 & 00.90 \\
\hline 90.00 & \(5.0000 \mathrm{jE}+03\) & \(-1.3 .511\) & & 21．8\％ \\
\hline
\end{tabular}

From this analysis，a 1.85 kizz crossover trenuency and a phase margin of approximately 45 deg ．is obtained，thus meeting the requirements previously specified．The computer cost for the entire design and analysis is \(\$ 0.81\) ．

In the continuation of Phase II，the CDS will be expanded to cover other ac performance require－ ments such as audiosusceptibility and output im－ sedance．All three basic power stages and all commonty－used pulse modulations will be included． single－and multiple－loop error processors will be incorporated．

\section*{6．PERFORMANCE ANALYSIS SUBPROGRAM（PAS）}

While the small－signal frequency－domain modeling approach used in the CDS allows a user to gain more insight to enhance the initial para－ meter design，one also realizes that a switching regulator is inherently a highly nonlinear circuit containing analog－to－discrete－time conversion，and as such，can be more accurately，analyzed through the discrete time－domain modeling and analysis． Furthermore，in case of large line／load distur－ bances，the ensuing duty cycle of a switching requlator is no longer．time－invariant．Since any practical equipment is likely to be higher than second order，there is simply no general method applicable to large－signal analysis of such non－
 frequency domain analysis and discrete time－domain analysis for which the operating duty cycle is as－ sumed to be either fixed or step－changed，the dis－ crete time－domain simulation capable of dealing with a time－varying duty cycle must be regarded as an important tool in the PAS．The basic modeling approach，the needed analysis background，and the merits and limitations associated with the frequency－ domain analysis and time－domain analysis／simulation are summarized in Table 4.

Techniques for all four approaches given in Table 4 are well established in MAPPS．The most

Table 4 Modeling Approach Descriptions
\begin{tabular}{|c|c|c|c|c|}
\hline & AVERAGE FREQUENCY domain & EXACT FREQUENCY DOMAIN & DISCRETE TIME DOMAIN ANALYSIS & discrete time domain SIMULATOR \\
\hline BASIC MODELING & Take advantage of the much lower output－filter reso－ nant frequency in relation to the equipment switching frequency，the nonlinear switching power stage is approximated by a continu－ ous smail－signal average model． & Represent the power stage with a linearized discrete impulse response function． The discrete time model is then transferred into the frequency domain． & Exact formulation of state equations，and use itera－ tion method（Newton＇s）to solve for the exact equi－ librium state．Linearized about the equilibrium state to become linear and time－ invariant．Z－transformation to frequency domain when needed． & Base on recurrent discrete time－domain analytical ex－ pressions，and propagate recurrent equations through Fortran computation． \\
\hline BACKGROUND NEEDED & Linear control theary and／or linear state space model． & State space techniques． & State space techniques and Fortran programming． & State space techniques and Fortran programming． \\
\hline MERITS & \begin{tabular}{l}
－Gain more insight on equipmient parameter design． \\
－Analytical skill resides in many design engineers． \\
－Readily applicable to high－order circuits and equipment．
\end{tabular} & －More accurate power stage model at higher signal frequencies，up to one－half of the switching frequency． & \begin{tabular}{l}
－Nost accurate stability analys is through eigen－ values． \\
－No need to separate a converter into functional blocks．Most straight－ forward analysis． \\
－Directly lead to cost－ effective performance sinulation． \\
－Most suitable for a standardized design．
\end{tabular} & \begin{tabular}{l}
－Handle large－signal disturbance analysis such as sudden output short and regulator starting． \\
－much faster than general purpose simulation pro－ grams such as ECAP． SCEPTRE，etc．
\end{tabular} \\
\hline MAJOR LIMITATIONS & Diminishing accuracy be－ yond 10－15\％of switching frequency．Not suitable for high bandwidth regulators． & Difficult to incorporate input filter and puilse modulation． & Basically a numerical approach．No closed． form insight can be gained． & None other than loss of insight generally asso－ ciated with simulation efforts when not supported by analyses． \\
\hline
\end{tabular}
applicable PAS for a given design depends on the analysis objective, the accuracy desired, the type of control circuit used, whether the circuit topology is standardized, the nature of the disturbance, and, perhaps most influential, the user's analysis background.. Consequently, the PAS's implemented to date are not limited to any single approach.

Two PASexamples are given here for illustration purposes. They are all based on switching regulators employing a standardized multiple-loop control circuit. The first example analyzes the switching regulator shown in Figure 4 using the discrete-time domain analysis. The options the user can take include the following:
```

EHTER"STDP"TO DISCONTIMUE RAS,OTHERWISE "ND"
?N
DO YDU WANT TO CHANGE "PHRAM"? (Y IR N)
?N
DO YOU UANT TD CHR゙NGE "COMP"? CY OR N
?N
DO `GU WANT NAMELIST? (Y OR N
DO YDU WANT STARILITY RNALYSIS? (Y OR N)
DO YDU WANT STARILITY RNRLYSIS? (Y OR N)
?N NO YOU WANT RODT LDCUS ANALYSIST (Y OF N
?N
DD YOU WANT RUDID ANALYSIS'T (Y,N
7N

```


In this example, subsequent to data input, the user indicates his interest in performing the stability analysis under various line and load conditions. The computer first calculated the three eigenvalues of the regulator corresponding to a 40 V input:
```

LNMEIR= REAL
9.5e18e4E-41
5.3e0564E-61
-1.351078E+00
TMAETHAFY
0.
(1.)
0.

```

It is found that one of the eigenvalues is outside the unity circle, the converter is thus unstable in this line condition. Next, the three eigenvalues . of the regulator corresponding to a 50 V input are calculated as:
\begin{tabular}{cc}
LAMEDH \(=\) & FEFL \\
\(9.562760 E-01\) & IMAGIUARY \\
\(5.074947 E-01\) & 0. \\
\(-9.305425 E-01\) & 0.
\end{tabular}

Here, all three eigenvalues are inside the unity circle, slgnifying a stable system. The load resistance is then increased from 10 ohms to 30 ohms, and the three eigenvalues become:
```

LFMEDA= REAL
IMAGINART
4.3S324FE-01 0.
9.559716E-01 0.
0.
0.

```

Notice one eigenvalue vanishes. The zero eigenvalue corresponds to the status of inductor MMF, which enters discontinuous-current operation (i.e., zero current at the beginning of on time) under light load conditions Again, the regulator is found to be stahle.

Figure 4. A Buck Regulator

The second PAS example demonstrates the discrete time-domain simulation as applied to the boost regulator shown in Figure 5. Figure 6 shows the simulated inductor current during regulator start-up. The simulation includes the circuit feature of peak-current limiting during severe. transients, as is evident from the flat-top envelop at the beginning of the start-up. The measured start-up transient from the flight hardware is in good agreement with the simulation. The total computer cost for this run is \(\$ 2.04\).

Figure 5. A Boost Regulator

\section*{7. SYSTEM ANALYSIS SUBPROGRAMS (SAS)}

The SAS's represent an extension of the aforedescribed DOS's and PAS's from equipment to system level. The SAS's rely on DOS's as the basic tool for identifying the optimum system configuration, and on PAS's to address the dynamic system performances under large-signal disturbances.

An example of optimum system configuration is conveniently found in Figure 1 used in the discussion of DOS, in which the total converter weight was optimized under constraints that include a

\section*{ORIGINAL PACE OE POOR QUALITY}
fixed total loss．The example is readily extended to include the source supplying power to the con－ verter．Since the loss in the converter is ulti－ mately derived from the source，what the system designers really want is：for a given source power density（watts／kilogram），how should the converter efficiency be specified so that the combined source and equipment weight can be minimized？

The new objective function thus becomes the sum of power converter weight，the heat－sink weight， and the source weight．Since both the heat－sink weight and the source weight are decreasing func－ tions of converter efficiency while the converter component weight increases with the efficiency， obviously there exists an efficiency at which the combined source and converter weiaht is at its minimum．Efficiency＂e＂thus disappears as a design constraint．Instead，it becomes an unknown parameter to be designed by SUMT routine in order to optimize the new objective function．

Without elaboration of programming details，the computer output of optimum design of the circuit of Figure 1 to achieve a minimum combined source－ converter weight is shown here．The design includes all circuit and magnetics parameters．It identifies all optimum switching frequency of 22.1 KHz ，a tar－ get efficiency of \(94.1 \%\) for the converter，and a minimum combined weight of 7.56 kg ．The total cost for the run is \(\$ 22.18\) ．
\begin{tabular}{|c|c|c|c|}
\hline 410 & \(4.12993 E \sim 05\) & N1＊ & 24.599 \\
\hline N2 & 14.272 & AC2＊ & 1．13？ \(27-16\) \\
\hline C1＊ & 1．32，93f－is & 「2＊ & \(1.901355-05\) \\
\hline 21＊ & \(1.83485 \mathrm{f}-\mathrm{C} 2\) & R2＊ & d． 05958 EECO \\
\hline \(43 *\) & 3．42393E－03 & N？ & 42.011 \\
\hline 63＊ & 1．343806－03 & 23. & 7．872 \({ }^{\text {P }}\) ¢ -02 \\
\hline F＝ & 22118 & 24. & ．811：6 \\
\hline AC： & ．．．i3？ \(\mathrm{F}_{\mathrm{t}}\)－i6 & Aで＊ & 2．39312E－－5 \\
\hline L1＊ & 1．52sh； 6 －06 & 12. & \(5.12250 \mathrm{c}-25\) \\
\hline 21＊ & 4．．0cisie： & 120 & －1．187236－．2 \\
\hline \(0 *\) & ． 75345 & 1. & 11i\％．． \\
\hline At 3 ． & 2．， \(9+175-10\) & 1\％ & \\
\hline R\％＊ & 1．34：：2t－6i & ci & 2．212：0t－03 \\
\hline t＋F＊ & ． 94125 & & \\
\hline \multicolumn{4}{|l|}{R1： \(1.834848444 E=02\)} \\
\hline \multicolumn{4}{|l|}{\[
R 2=3.259504146 \mathrm{f}=33
\]} \\
\hline \multicolumn{4}{|l|}{D．7，534468771E－01} \\
\hline \multicolumn{4}{|l|}{P1F＝1．90d31tb11 \(\mathrm{E}-01\)} \\
\hline \multicolumn{4}{|l|}{POE 1．109054381} \\
\hline \multicolumn{4}{|l|}{PCe 3.533550064} \\
\hline \multicolumn{4}{|l|}{PCL＝1．032713674} \\
\hline \multicolumn{4}{|l|}{PTiTJTAL LU5¢） 6.2461555 d} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{SUURCE WE1JMTA t＊99\％a0634d} \\
\hline \multicolumn{4}{|l|}{HEAT SINK WFTG4T：4，OS3060SっTE－21} \\
\hline
\end{tabular}

\section*{8．THE DATA MANAGEMENT PROGRAM}

The normal use of the MAPPS involves inter－ active conversation between the MAPPS system and the user．The user begins by signing on to the computer operating system．The user requests that the MAPPS system be loaded and executed in the conventional program load and execute manner．A conversation then begins between the user and an executive routine through which the user instructs

Figure 6．Boost Regulator，Inductor Current Simulation
the system to attach certain external files and to perform specific analytic and／or data base manipu－ lation functions．The MAPPS System will be suffi－ ciently flexible to allow a sophisticated user to shortcut steps that are not needed because of the user＇s in－depth knowledge of the system．The new user will be presented with informative messages as processing goes forward and will also be able to retrieve some instructional text to clarify options at decision points．Upon completion of the input cycle，the MAPPS System will proceed to execute and satisfy the user＇s requests．The user will be able to invoke various subprograms which will aid in the equipment／system design，modeling analysis，and optimization．If intermediate results require a decision by the user，interactive con－ versation will again take place．During the course of an interactive session the user may display results，permanently or temporarily store results， or retrieve previously stored results from the data base．

The fusion of the various modules into a coor－ dinated processing system is accomplished by devel－ oping appropriate control and communication routines． An Executive User Interface（EUI）routine affords the user with the means for selecting specific processes for execution．An Executive module car－ ries out subprogram load requests and memory space allocation as well as input／output file linkage requests．Subprogram User Interface（SUI）routines provide the means for user interaction with the system．One SUI exists for each analytic subpro－ gram integrated into the MAPPS System．Each SUI is capable of handling all of the communications rela－ tive to its respective subprogram．In addition to several analytic subprograms there will be a Data Base Manager subprograti under control of the MAPPS Executive．The Data Base Manager（DBM）will res－ pond to，and perform all，Data Base access requests generated during any and all execution of MAPPS System analytic routines．

In the initial Phase II, a working prototype of the Data Management Program has been developed to facilitate expansion and enhancement as the MAPPS power processing subprogram capabilities increase.

\section*{9. CONCLUSIONS}

To anyone working with nondissipatively regulated converters, inverters, and systems comprised of these equipment, certain design and analysis intricacies inevitably make themselves felt throughout the equipment and system design and development stage. Eiipirical and intuitive reliances often intercede with the designer's desire to be "more scientific" and his commitment of being "on schedule". Handicapped by a general lack of established design, modeling, analysis, and optimization tools, it has not been unusual for a power processing designer to face the perplexing situation of emerging from the intercession practically empty-handed.
other than cost, the plight that most equipment and system designers find themselves in has to do with at least one of the following power processing characteristics: weight/efficiency, performance, and reliability. While power processing as a technology has reached the level of sophistication where the modeling, analysis, and optimization of these characteristics should have been well established, a survey of existing documents and literature has proven the contrary.

The primary content of this paper focuses the attention on the developed modeling and analysis subprograms for power processing components, equipment and systems. As is evident from the examples given here, the subprograms are entirely oriented toward the user. Four diversified subprograms including those of power circuit design optimization, control circuit design, regulator performance analysis, and power system analysis, are established. Their continued developments will undoubtedly lead to the following:
- Fully automated design for basic converter power and coritrol circuits to meet performance specifications. Possible elimination of breadboard development stage.
- Fully automated switching-regulator performance analysis.
- Computer-aided power system configuration design and dynamic system simulation
- Significant cost saving, weight/efficiency optimization, and reliability improvement for power processing equipment or system development programs.
10. REFERENCES
[1] Modeling and Analysis of Power Processing Systems, Feasibility Investigation and

Formulation of a Methodology", NASA Contractor Report, CR134686, Prepared by TRW Systems for NASA Lewis Research Center.
[2] "Modeling and Analysis of Power Processing Systems, Phase II Final Report", NASA Contractor Report, CR135173, to be published in Fall, 1977, Prepared by TRW Systems for NASA Lewis Research Center.
[3] D. A. Pierre, Optimization Theory with Applications (Book), John Wiley \& Sons, 1969, pp. 36-43.
[4] Y. Yu, M. Bachmann, F. C. Lee, and J. E. Triner, "Formulation of a Methodology for Power Circuit Design Optimization", Electronics Specialists Conference (PESC) Record, 1976, pp. 35-44.
[5] A. V. Fiacco, and G. P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming", Management Science, 10, July 1964, pp. 601-617.
[6] G. W. Wester and R. D. Middlebrook, "LowFrequency Characterization of Switched DC-DC Converters", IEEE Trans. Aerospace Electronics Systems, AES-9, No. 3, May 1973, pp. 376-385.
[7] F. E. Lukens, "Linearization of the PulseWidth Modulated Converter", IEEE Power Electronics Specialists Conference Record, June 1974, pp. 265-273.
[8] R. P. Iwens, Y. Yu, and J. E. Triner, "Time Domain Modeling and Stability Analysis of an Integral Pulse Frequency Modulated DC to DC Power Converter", IEEE Power Electronics Specialists Conference Record, June 1975, pp. 80-90.
[9] R. Prajoux, "Accurate Mathematical Modeling of PWM Power Regulators", NASA Technical Translator, NASA TTF - 15947, September, 1974.
[10] F. C. Lee, R. P. IWens, and Y. Yu, "Generalized Computer-Aided Discrete Time Domain Modeling and Analysis of DC-DC Converters", to be published in the 1977 PESC Record.
[11] R. D. Middlebrook and S. Cuk, "A Generalized Unified Approach to Modeling Switching-Converter Power Stages", 1976 PESC Record, pp. 18-34.
[12] A. Kernick, D. L. Stechschulte, and D. W. Shireman, "Static Inverter wi th Synchronous Output Wave form Synthesized by Time-Optimal Response Feedback \({ }^{\text {H1}}\), 1976 PESC Record, pp. 148-156.
[13] Y. Yu, J. Biess, A. D. Schenfeld and V. R. Lall, "The Application of Standardized Control and Interface Circuits to Three DC to DC Power Converters", 1973 PESC Record, pp. 237-248.

\section*{12. REFERENCES}
[1] "Modeling and Analysis of Power Processing Systems", Phase I, Final Report, NASA CR 134686, July 1974.
[2] R.P. Iwens, Y. Yu, and J.E. Triner, "Time Domain Modeling and Stability Analysis of an Integral Pulse Frequency Modulated Dc to Dc Power Converter", 1975 Power Electronics Specialists Conference (PESC) Record, pp. 80-90.
[3] F.C. Lee, R.P. Iwens, Y. Yu. "Generalized Computer-Aided Discrete Time Domain Modeling and Analysis of Dc-Dc Converters", 1977 PESC, Palo Alto, Calif.
[4] P. Prajoux, J.C. Marpinard, and J. Jalade, "Accurate Mathematical Modeling of PWM Power Regulators", NASA Technical Translation, NASA TTF-15947, September 1974.
[5] A. Capel, J.G. Ferrante, and P. Prajoux, "State Variable Stability Analysis of Multiple-Loop PWM Controlled Dc/Dc Regulators in Light and Heavy Mode", IEEE 1975 PESC Record, pp. 91-103.
[6] F.C. Lee, Y. Yu, and J.E. Triner, "Modeling of Switching Power Stages With and Without Zero Inductor Current Dwell Time", 1976 PESC Record, pp. 62-72.
[7] G.W. Wester and R.D. Middlebrook, "Low Frequency Characterization of AES-9, No. 3, May 1973, pp. \(\frac{376-385}{}\)
[8] R.D. Middlebrook and S. Cuk, "A Generalized Unified Approach to Modeling of Switching-Converter Power Stages", 1976 PESC Record, pp. 18-34.
[9] S. Cuk and R.D. Middlebrook, "A Generalized Unified Approach to Modeling Switching Dc-to-Dc Converters in Discontinuous Conduction Mode", 1977 PESC, Palo Al to, California
[10] Y. Yu and J. Biess, "The Application of Standardized Control and Interface Circuits to Three Dc-Dc Power Converters", 1973 PESC Record, pp. 237-248.
[11] Y. Yu, R.P. Iwens, F.C. Lee, L.Y. Inouye, "Development of a Standardized Control Module for Dc-to-Dc Converters", NASA CR-135072, August 1977
[12] D.A. Pierre, Optimization Theory with Applications (Book), John Wiley \& Sons, 1969, pp. 36-43.
[13] A.V. Fracco, and G.P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimization Techniques for Nonlinear Programming", Management Science, 10, 1964, pp. 601-617.
[14] J. Abadie, and J. Carpenter, "Generalization of the Walte Reduced Gredient Method to the Case of Nonlinear Constraints", OPTIMIZATION (Book), Edited by R. Fletcher, Academic Press, N.Y. 1969.
[15] Y. Yu, M. Bachmann, F.C. Lee, and J.E. Triner, "Formulation of a Methodology for Power Circuit Design Optimization", 1976 PESC Record, pp. 35-44.
[16] Y. Yu, F.C. Lee, and J.E. Triner, "Power Converter Design Optimization", 1977 PESC, Palo Alto, California.
[17] G.W. Wester, "Low-Frequency Characterization of Switched dc Converters", Ph.D. Thesis, California Institute of Technology, Pasadena, California May 1972.
[18] R. Prajoux, J.C. Marpinard, and J. Jalade, "Etablissement de Modeles Mathematiques pour Regulateurs de Puissance a Modulation de Largeur d'Impulsions; 2. Modeles Continus", ESA Scientific and Technical Review, Vol. 2, No.1, 1976, pp. 115-129.
[19] M. Clique and A.J. Fossard, "Modelisation des Cellules Elementaires", Contrat ESTSC No. 25901, 75AK, 1976
[20] R.D. Middlebrook and S. Cuk, "Modeling and Analysis Methods For Dc-to-DC̀ Switching Converters", IEEE International Semiconductor Power Converter Conference, Orlando, Florida, March 1977.
[21] D.Y. Chen, H.A. Owen, and T.G. Wilson, "Computer-Aided Design and Graphic Applied to the Study of Inductor-Energy-Storage Dc-Dc Electronic Power Converters", IEEE Trans. Aerospace and Electronics Systems, Vol. AES-9, No. 4 July 1973, pp. 585-597.
[22] A.N. Kolmogorov and S.V. Fomin, "Elements of The Theory of Functions and Functional Analysis, Vol.11, page 43 et seq., Graylock Press, Rochester, New York, 1961.
[23] J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method with Applications", Academic Press, New York, 1961.
[24] R.L. Furrenkopf, A.E. Sabroff, and P.C. Wheeler, "Integral Pulse Frequency ON-OFF Control", AIAA Guidance and Control Conference, Cambridge, Mass.
August 1963.
[25] B. Kuo, "Analysis and Synthesis of Sampled Data Control Systems", Chap. 6, Prentice Hall, Englewood Cliffs, New Jersey, 1963.
[26] E.I. Jury, "Theory and Application of the Z-Transform Method", John Wiley
\& Sons, New York, 1964.
[27] B. Friedman, "Principles and Techniques of Applied Mathematics", John Wiley \& Sons, New York, 1962.
[28] A. Kernick, D.L. Stechschulte, and D.W. Shireman, "Static Inverter with Synchronous Output Waveform Synthesized by Time Optimal Response Feedback", 1976 PESC Record, pp. 148-156.
[29] W.C. Mylander, R.L. Holmes, and G.P. McCormick, "A Guide to SUMTVersion 4", Paper RAC-P-63, Research Analysis Corp., October 1971.
[30] Y. Yu, and J.J. Biess, ":Some Design Aspects Concerning Input Filters for Dc-Dc Converters", 1971 Power Conditioning Specialists Conference Record, pp. 66-79.```

