7,059 research outputs found

    Block-Based Development of Mobile Learning Experiences for the Internet of Things

    Get PDF
    The Internet of Things enables experts of given domains to create smart user experiences for interacting with the environment. However, development of such experiences requires strong programming skills, which are challenging to develop for non-technical users. This paper presents several extensions to the block-based programming language used in App Inventor to make the creation of mobile apps for smart learning experiences less challenging. Such apps are used to process and graphically represent data streams from sensors by applying map-reduce operations. A workshop with students without previous experience with Internet of Things (IoT) and mobile app programming was conducted to evaluate the propositions. As a result, students were able to create small IoT apps that ingest, process and visually represent data in a simpler form as using App Inventor's standard features. Besides, an experimental study was carried out in a mobile app development course with academics of diverse disciplines. Results showed it was faster and easier for novice programmers to develop the proposed app using new stream processing blocks.Spanish National Research Agency (AEI) - ERDF fund

    Evaluación de un vehículo teleoperado con fines educativos

    Get PDF
    The use of robotics vehicles in the education of children and teenagers constitutes a modern tendency of great interest in Cuba, due to the quantity of knowledge that provides and the variety of disciplines that it integrates. The present work has as objective to evaluate the use of a teleoperated and robotic vehicle based on Arduino, in the education of children and adolescents from Cuba. It includes the study of the state of the art about educational robotics in the world and in Cuba, who allows to define the main educational activities permitted by robots and the parameters to evaluate in the vehicle of analysis. Afterwards, it carries out a description of the technical specifications of the device, which influences in the benefits obtained by the use of the vehicle. Finally, it carries out the evaluation taking into account the defined parameters in the study of the state of the art. It obtains as conclusions that the use of the vehicle with educational purposes would be very fruitful, in spite of minimum limitations that do not put directly in risk the quality of educational activities.La utilización de vehículos robóticos en la educación de niños y adolescentes constituye una tendencia moderna de gran interés en Cuba, debido a la cantidad de conocimientos que provee y la variedad de disciplinas que integra. El presente trabajo tiene como objetivo evaluar el empleo de un vehículo robótico teleoperado basado en Arduino, en la educación de niños y adolescentes cubanos. Contempla el estudio del estado del arte de la robótica educativa en el mundo y en Cuba, lo cual posibilitó definir las principales actividades educativas que permiten los robots y los parámetros a evaluar en el vehículo de análisis. Posteriormente, se realiza una descripción de las características técnica del dispositivo, las cuales influyen en los beneficios que se obtienen del empleo del vehículo. Para finalizar, se realiza la evaluación teniendo en cuenta los parámetros definidos en el estudio del estado del arte. Se obtienen como conclusiones que sería muy provechoso el empleo del vehículo con fines instructivos, a pesar de limitaciones mínimas que no ponen directamente en riesgo la calidad de las actividades educativas

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    The visual programming environment ROBI for educational robotics

    Get PDF
    This paper presents the outcomes of a research project focused on the training of Computational Thinking, resorting to a block-based visual programming language created to program an Arduino Uno based robot. To support the design and implementation of the visual programming environment Robi, we start discussing the relevance of Educational Robotics to motivate and engage children in programming activities. Students usually face great difficulties to learn computer programming and it is nowadays accepted that young people shall be trained in Computational Thinking to acquire the skills necessary to easily solve problems within and beyond the realm of Computer Science and Engineering. The resolution of obstacles imposed by the costs and reduced availability of typical Educational Robotics kits, in combination with the benefits of existing block-based programming languages, like simplicity and intuitiveness, motivated the project here reported and analyzed. We aim at showing that Robi, a visual block-based programming language and robot programming environment, provides an easy, accessible and intuitive platform to learn how to solve problems programming a computer and support the training of Computational Thinking

    Higher Education Course Curriculum for a Distance Learning Model Reinforced with Robotics for 3 to7 Years Old Children

    Get PDF
    The curriculum is organized in five different modules, with different focus. The first module is about Basic Concepts of Computational Thinking, presenting the foundations for the rest of the learning. The second module, on Computational Thinking with Block-Based and Text-Based Coding Environments, and the third module, on the Fundamentals of Physical Programming and CT with Robotic Activities, further expand the learning about computational thinking by providing information on the potential of preschool children for computational thinking and how this can be developed through different environments and tools. The fourth module changes the focus to planning and evaluating activities with children by presenting information on Designing Activities and Learning through Distance Education. This is the module that deals with the challenges and potential of distance education in Early Childhood Education, connecting practice with reflection and further learning for educators through self-evaluation and reflection. Finally, the fifth module, on Building Partnerships for Learning, looks at the development of digital skills for early age as a societal endeavour, supporting practitioners in identifying partners and initiatives as well as building communities that can leverage the educational offer. The whole curriculum was planned to provide knowledge and competences that support the development of a distance learning model reinforced with robotics for 3-7 years old children. But each module is a stand-alone learning opportunity based on the lesson plans, slides presentation and materials available. Interested users are also welcome to combine different modules into unique training experiences.info:eu-repo/semantics/publishedVersio

    Virtual laboratories for education in science, technology, and engineering: A review

    Get PDF
    Within education, concepts such as distance learning, and open universities, are now becoming more widely used for teaching and learning. However, due to the nature of the subject domain, the teaching of Science, Technology, and Engineering are still relatively behind when using new technological approaches (particularly for online distance learning). The reason for this discrepancy lies in the fact that these fields often require laboratory exercises to provide effective skill acquisition and hands-on experience. Often it is difficult to make these laboratories accessible for online access. Either the real lab needs to be enabled for remote access or it needs to be replicated as a fully software-based virtual lab. We argue for the latter concept since it offers some advantages over remotely controlled real labs, which will be elaborated further in this paper. We are now seeing new emerging technologies that can overcome some of the potential difficulties in this area. These include: computer graphics, augmented reality, computational dynamics, and virtual worlds. This paper summarizes the state of the art in virtual laboratories and virtual worlds in the fields of science, technology, and engineering. The main research activity in these fields is discussed but special emphasis is put on the field of robotics due to the maturity of this area within the virtual-education community. This is not a coincidence; starting from its widely multidisciplinary character, robotics is a perfect example where all the other fields of engineering and physics can contribute. Thus, the use of virtual labs for other scientific and non-robotic engineering uses can be seen to share many of the same learning processes. This can include supporting the introduction of new concepts as part of learning about science and technology, and introducing more general engineering knowledge, through to supporting more constructive (and collaborative) education and training activities in a more complex engineering topic such as robotics. The objective of this paper is to outline this problem space in more detail and to create a valuable source of information that can help to define the starting position for future research
    corecore