52 research outputs found

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    Eigenstructure of order-one-quasiseparable matrices. Three-term and two-term recurrence relations

    Get PDF
    AbstractThis paper presents explicit formulas and algorithms to compute the eigenvalues and eigenvectors of order-one-quasiseparable matrices. Various recursive relations for characteristic polynomials of their principal submatrices are derived. The cost of evaluating the characteristic polynomial of an N×N matrix and its derivative is only O(N). This leads immediately to several versions of a fast quasiseparable Newton iteration algorithm. In the Hermitian case we extend the Sturm property to the characteristic polynomials of order-one-quasiseparable matrices which yields to several versions of a fast quasiseparable bisection algorithm.Conditions guaranteeing that an eigenvalue of a order-one-quasiseparable matrix is simple are obtained, and an explicit formula for the corresponding eigenvector is derived. The method is further extended to the case when these conditions are not fulfilled. Several particular examples with tridiagonal, (almost) unitary Hessenberg, and Toeplitz matrices are considered.The algorithms are based on new three-term and two-term recurrence relations for the characteristic polynomials of principal submatrices of order-one-quasiseparable matrices R. It turns out that the latter new class of polynomials generalizes and includes two classical families: (i) polynomials orthogonal on the real line (that play a crucial role in a number of classical algorithms in numerical linear algebra), and (ii) the Szegö polynomials (that play a significant role in signal processing). Moreover, new formulas can be seen as generalizations of the classical three-term recurrence relations for the real orthogonal polynomials and of the two-term recurrence relations for the Szegö polynomials

    Multilevel quasiseparable matrices in PDE-constrained optimization

    Get PDF
    Optimization problems with constraints in the form of a partial differential equation arise frequently in the process of engineering design. The discretization of PDE-constrained optimization problems results in large-scale linear systems of saddle-point type. In this paper we propose and develop a novel approach to solving such systems by exploiting so-called quasiseparable matrices. One may think of a usual quasiseparable matrix as of a discrete analog of the Green's function of a one-dimensional differential operator. Nice feature of such matrices is that almost every algorithm which employs them has linear complexity. We extend the application of quasiseparable matrices to problems in higher dimensions. Namely, we construct a class of preconditioners which can be computed and applied at a linear computational cost. Their use with appropriate Krylov methods leads to algorithms of nearly linear complexity

    Computing All or Some Eigenvalues of Symmetric ℋ<sub>ℓ</sub>-Matrices

    Get PDF

    Fast Hessenberg reduction of some rank structured matrices

    Full text link
    We develop two fast algorithms for Hessenberg reduction of a structured matrix A=D+UVHA = D + UV^H where DD is a real or unitary n×nn \times n diagonal matrix and U,VCn×kU, V \in\mathbb{C}^{n \times k}. The proposed algorithm for the real case exploits a two--stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted sub-diagonals. It is shown that the novel method requires O(n2k)O(n^2k) arithmetic operations and it is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of (D)\Re(D) induces a structured reduction on AA in a block staircase CMV--type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and we show how to generalize the sub-diagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in kk and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.Comment: 25 page

    Row Compression and Nested Product Decomposition of a Hierarchical Representation of a Quasiseparable Matrix

    Get PDF
    This research introduces a row compression and nested product decomposition of an nxn hierarchical representation of a rank structured matrix A, which extends the compression and nested product decomposition of a quasiseparable matrix. The hierarchical parameter extraction algorithm of a quasiseparable matrix is efficient, requiring only O(nlog(n))operations, and is proven backward stable. The row compression is comprised of a sequence of small Householder transformations that are formed from the low-rank, lower triangular, off-diagonal blocks of the hierarchical representation. The row compression forms a factorization of matrix A, where A = QC, Q is the product of the Householder transformations, and C preserves the low-rank structure in both the lower and upper triangular parts of matrix A. The nested product decomposition is accomplished by applying a sequence of orthogonal transformations to the low-rank, upper triangular, off-diagonal blocks of the compressed matrix C. Both the compression and decomposition algorithms are stable, and require O(nlog(n)) operations. At this point, the matrix-vector product and solver algorithms are the only ones fully proven to be backward stable for quasiseparable matrices. By combining the fast matrix-vector product and system solver, linear systems involving the hierarchical representation to nested product decomposition are directly solved with linear complexity and unconditional stability. Applications in image deblurring and compression, that capitalize on the concepts from the row compression and nested product decomposition algorithms, will be shown
    corecore