
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Summer 8-12-2014

Row Compression and Nested Product
Decomposition of a Hierarchical Representation of
a Quasiseparable Matrix
Mary Hudachek-Buswell
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Hudachek-Buswell, Mary, "Row Compression and Nested Product Decomposition of a Hierarchical Representation of a
Quasiseparable Matrix." Dissertation, Georgia State University, 2014.
https://scholarworks.gsu.edu/cs_diss/84

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

ROW COMPRESSION AND NESTED PRODUCT DECOMPOSITION OF A

HIERARCHICAL REPRESENTATION OF A QUASISEPARABLE MATRIX

by

MARY HUDACHEK-BUSWELL

Under the Direction of Dr. Michael Stewart

ABSTRACT

This research introduces a row compression and nested product decomposition of an n × n

hierarchical representation of a rank structured matrix A, which extends the compression

and nested product decomposition of a quasiseparable matrix. The hierarchical parameter

extraction algorithm of a quasiseparable matrix is efficient, requiring only O(nlog(n))

operations, and is proven backward stable. The row compression is comprised of a

sequence of small Householder transformations that are formed from the low-rank, lower

triangular, off-diagonal blocks of the hierarchical representation. The row compression

forms a factorization of matrix A, where A = QC, Q is the product of the Householder

transformations, and C preserves the low-rank structure in both the lower and upper

triangular parts of matrix A. The nested product decomposition is accomplished by applying

a sequence of orthogonal transformations to the low-rank, upper triangular, off-diagonal

blocks of the compressed matrix C. Both the compression and decomposition algorithms

are stable, and require O(nlog(n)) operations. At this point, the matrix-vector product and

solver algorithms are the only ones fully proven to be backward stable for quasiseparable

matrices. By combining the fast matrix-vector product and system solver, linear systems

involving the hierarchical representation to nested product decomposition are directly solved

with linear complexity and unconditional stability. Applications in image deblurring and

compression, that capitalize on the concepts from the row compression and nested product

decomposition algorithms, will be shown.

KEY WORDS: Hierarchical matrices, Row compression, Nested product
decomposition, Stable algorithms, Quasiseparable matrices,
Image processing

ROW COMPRESSION AND NESTED PRODUCT DECOMPOSITION OF A

HIERARCHICAL REPRESENTATION OF A QUASISEPARABLE MATRIX

by

MARY HUDACHEK-BUSWELL

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2014

Copyright by
Mary R. Hudachek-Buswell

2014

ROW COMPRESSION AND NESTED PRODUCT DECOMPOSITION OF A

HIERARCHICAL REPRESENTATION OF QUASISEPERABLE MATRICES

by

MARY HUDACHEK-BUSWELL

Committee Co-Chair: Saeid Belkasim

Committee Co-Chair: Michael Stewart

Committee: Raj Sunderraman

Yi Pan

Jon Preston

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2014

iv

DEDICATION

Dedicated to my loving parents, John and Anne Hudachek, who are watching from above;

and to my very patient husband, Dan Buswell, who is ecstatic to have his wife back.

v

ACKNOWLEDGEMENTS

The monumental task of a doctoral degree can only be undertaken with the consistent

support and encouragement of many individuals. First and foremost, I must thank Professor

Michael Stewart for directing my research all these years. His instruction, patience, and

support have made me the researcher I am today. Working with Professor Stewart has

been a great honor, and I look forward to our continued collaboration. I wish to thank

the Computer Science faculty at Georgia State University for their leadership in guiding

me towards a doctoral degree in computing. Special thanks goes to my co-chair, Professor

Belkasim for introducing me to image processing and encouraging me to research in this

area. I express gratitude to my committee members, Professors Raj Sunderraman, Yi Pan

and Jon Preston, for their valuable and constructive feedback on my research.

Many thanks go to my mentor, Professor Catherine Aust, who is responsible for starting me

down this doctoral path in computer science, and assisted me in navigating the process. I

am grateful to my dear colleague, Professor Catherine Matos, for her steadfast support, and

boundless efforts to discuss my research at all hours of the day. I also extend my thanks to

Professor Rebecca Rizzo for graciously opening her office to me this last year. I would like to

acknowledge Mr. Trey Olmsted for his technical skills in maintaining my research computer,

and providing me with the freedom to access my research anywhere at anytime. My sincere

thanks also go to Ms. Tina Breckenridge for reminding me to laugh during the last decade,

and cheering me onward.

Lastly, I thank my entire family. In the end, all you have is family; it is only through their

love, care, and support that I have been able to finish this research marathon. Especially,

my husband Dan for travailing this decade long journey with me, and to my brother Michael

for his unwavering moral support and financial assistance.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF ABBREVIATIONS xii

NOTATIONS . xiii

CHAPTER 1 INTRODUCTION 1

1.1 Background and Motivation . 1

1.2 Numerical Linear Algebra Fundamentals 3

1.3 Structured Matrices . 12

1.4 Representations of Matrices . 14

1.5 Fast Solvers . 18

1.6 Problem Statement and Contributions 20

CHAPTER 2 RELATED WORK 23

2.1 Representations of Quasiseparable Matrices 25

2.1.1 Generator Representation . 25

2.1.2 Nested Product Representation 27

2.1.3 Hierarchical Representation . 28

2.2 Compression and Decomposition for Representation Conversion 30

2.3 Generator Representation and Matrix-Vector Products 33

2.4 Fast System Solvers . 37

2.5 Applications of Quasiseparable Matrices 40

vii

2.5.1 Image Deblurring . 40

2.5.2 Image Compression via Wavelets 41

2.6 Overview . 42

CHAPTER 3 ROW COMPRESSION ALGORITHM 45

3.1 Hierarchical Representation of the Quasiseparable Matrix 47

3.2 Control Algorithm for Row Compression 52

3.3 Collection of Factors and Formation of Basis 54

3.4 Householder Transformation Computation from Basis 57

3.5 Compression of the Lower Left . 59

3.6 Repartition Blocks . 62

3.7 Update and Repartitioning Upper Right 65

3.8 Summary of Row Compression Algorithm 67

CHAPTER 4 NESTED PRODUCT DECOMPOSITION OF A RANK

STRUCTURED MATRIX 70

4.1 Algorithms for Nested UBV Decomposition 74

4.2 Forming U of UBV and Reducing Upper Right 77

4.3 Computing B and V Sequences of the UBV 80

CHAPTER 5 FAST SOLVER AND APPLICATIONS 86

5.1 Matrix-Vector Multiplication . 86

5.2 Nested Product Fast Solver . 87

CHAPTER 6 IMAGE RESTORATION APPLICATION 89

6.1 Image Restoration Overview . 89

6.2 Deblurring Methods . 90

6.3 Deblurring Using Nested Product Algorithms 93

viii

CHAPTER 7 IMAGE COMPRESSION APPLICATION 98

7.1 Image Compression Fundamentals 98

7.2 Wavelets and Row Compression . 100

CHAPTER 8 CONCLUSION AND COMPARISONS 103

8.1 Complexity Comparisons . 103

8.2 Stability . 105

8.3 Conclusion . 109

8.4 Future Work . 111

REFERENCES . 113

ix

LIST OF FIGURES

Figure 1.1 Diagram of forward and backward error analysis 6

Figure 1.2 Structured matrices and their corresponding relationships 13

Figure 1.3 Hierarchical representation displaying low-rank blocks 17

Figure 2.1 Different hierarchical block partitioning of structured matrices . . 29

Figure 2.2 Hierarchical semiseparable (HSS) matrix with a binary tree 32

Figure 2.3 Three-level HSS representation on a binary tree 35

Figure 2.4 HSS structure . 36

Figure 2.5 Dissection of HSS in the multifrontal method 39

Figure 2.6 Wavelet transform encoding and decoding process 42

Figure 3.1 Binary tree of the hierarchical representation 49

Figure 3.2 Partitioned, factored matrix of a hierarchical representation . . . 51

Figure 3.3 Collection of factors to form a basis 55

Figure 3.4 Factor data structure for the collection 56

Figure 3.5 Factored hierarchical representation prior to compression 60

Figure 3.6 Compression of the left off-diagonal blocks 61

Figure 3.7 Diagram of repartitioning of the lower left blocks 63

Figure 3.8 Repartitioning of the diagonal and right blocks 67

x

Figure 3.9 Rank structured matrix after row compression 68

Figure 4.1 Sequence of compression transformations 71

Figure 4.2 Nesting illustration in the sequence of decompositions 75

Figure 4.3 Basis formation for nested product 77

Figure 4.4 First stage in the UBV decomposition 79

Figure 4.5 Repartitioning after U is applied 81

Figure 4.6 Repartitioning pattern of odd and even Di blocks 82

Figure 4.7 Nested product BV decomposition 84

Figure 4.8 The full UBV T nested product decomposition 85

Figure 6.1 Diagram of image restoration process 90

Figure 6.2 Illustration of skew-normal function 92

Figure 7.1 Block transform encoding system 99

Figure 7.2 Predictive encoding system . 99

Figure 7.3 Wavelet transform encoding and decoding process 100

Figure 7.4 Wavelet decomposition structure 101

xi

LIST OF TABLES

Table 1.1 Algorithm Comparison for Rank Structured Matrices 19

Table 2.1 Summary of Computational Complexity for Parameterizations . . 30

Table 2.2 Computational Complexity for Solvers of Rank Structured Matrices 38

Table 8.1 Hierarchical Representation and Associated Complexity Costs . . 104

Table 8.2 General n× n Matrix and Associated Complexity Costs 105

xii

LIST OF ABBREVIATIONS

CG Conjugate gradient

CL Cauchy-like

DCT Discrete cosine transform

DFT Discrete Fourier transform

DWT Discrete wavelet transform

FFT Fast Fourier transform

FMM Fast multipole method

GMRES Generalized minimal residual

H Hierarchical

HSS Hierarchically semiseparable

PDE Partial differential equations

PSF Point spread function

SSS Sequentially semiseparable

SVD Singular value decomposition

xiii

NOTATIONS

A A general matrix A with elements ai,j.

Ac A column blurring matrix.

Ar A row blurring matrix.

B A basis for the column space.

B(l,b) An off-diagonal block.

Bi A banded lower triangular matrix with regards to the nested UBV decomposition.

C Denotes the set of complex numbers.

C A compressed or Cauchy-like matrix.

D A diagonal matrix.

H Hierarchical matrix.

H Hessenberg matrix.

Ik The identity matrix of size k × k.

L A lower triangular matrix with regards to the LU−factorization.

P Permutation or transformation.

Q A unitary (orthogonal) matrix with regards to the QR−factorization.

R An upper triangular matrix with regards to the QR−factorization.

R Denotes the set of real numbers.

Σ A diagonal matrix of singular values.

T A Toeplitz matrix.

Z A shift matrix.

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Several meaningful problems in applied mathematics, engineering, and computer science

have patterns or structure that translate into corresponding classes of structured matrices.

Structured matrices have been studied for decades. Currently, the attention towards

structured matrices has amplified due to the interdisciplinary uses and special properties of

structured matrices. When the properties of structured matrices are exploited, fast numerical

methods and methods for the optimization of computation storage can be developed [1, 2].

Matrix structure can be used in solving linear systems, least squares problems, integral

equations, eigenvalue problems, and partial differential equations via direct and iterative

solvers. Even with the considerable advances in developing fast algorithms for structured

matrices, extensive work remains to be done in more challenging areas, such as multilevel

structured matrices.

Structured matrices often can be described by a compact formula for their entries.

Some classic examples of structured matrices are Cauchy
(
aij = 1

bi−cj

)
, Hankel (aij = ai+j),

Toeplitz (aij = ai−j), and Vandermonde
(
aij = aj−1i

)
matrices. The structured matrix class is

broad, containing several subclasses, with a prevalent subclass being that of rank structured

matrices. A matrix is considered rank structured if certain submatrices have low numerical

compared to the size of the matrix. However, among researchers there appears to be

no uniform agreement on terminology for distinguishing certain classes within the rank

structured matrix class. Various rank structured matrix classes, such as quasiseparable

matrices [3–7], H -matrices [8–10], H 2-matrices [11, 12], sequentially semiseparable matrices

[13–16], and hierarchically semiseparable matrices [17–21] may have similar attributes and

2

representations, but are different and the distinctions can lead to some confusion. The set of

H -matrices is comprised of dense matrices with a data-sparse representation, in which the

matrix is split into a hierarchy of blocks with clusters located on the diagonal [8, 9, 22–24].

The subset of H 2-matrices is more refined, and has a second hierarchy of clusters that exist

but are not on the diagonal [8, 9, 22, 23].

Rank structured matrices are matrices for which certain blocks have rank bounded by

a small constant. Data sparse parameterizations for these rank structured matrices can be

as simple as a low rank factorization representing the low rank blocks. Some representations

allow further compression of the matrix by exploiting common row and column spaces that

occur between blocks. Quasiseparable matrices are matrices where the blocks strictly below

or strictly above the diagonal have bounded rank. In other words, quasiseparable matrices

are of low numerical rank in the off-diagonal blocks [4, 6, 25]. Semiseparable matrices have

lower triangular and upper triangular parts that are the same as those of a low rank matrix

[13, 18]. Note that semiseparable matrices are a proper subset of quasiseparable matrices.

Quasiseparable matrices in this work are not to be confused with semiseparable matrices.

This research is centered on quasiseparable matrices and their representations.

Rank structured matrices have emerged in many applications in computer science,

systems engineering, electrical engineering and applied mathematics [1, 26]. Bridging across

disciplines is what makes this class of matrices one of the hottest topics in numerical linear

algebra in the last few years. Some of the more challenging problems and applications

are found in multilevel representations of quasiseparable matrices. Quasiseparable matrices

have a compressed representation of their off-diagonal blocks, which have low numerical

rank. A matrix representation is the set of parameters that are used to represent the matrix.

There are three representations discussed in this research: generator, hierarchical and nested

product. Hierarchical representations of structured matrices have a structure based on the

blocks of the matrix having some form of hierarchy [2, 17–19, 27]. By applying a hierarchy to

a general quasiseparable matrix, the result is a hierarchical representation of a quasiseparable

3

matrix. Currently there is a need for stable representations of quasiseparable matrices, and

fast factorization algorithms for quasiseparable matrices.

Hierarchical representations of structured matrices arise in some significant applications

within computer graphics, signal processing and electromagnetics [9, 28–30]. Two image

processing applications can benefit from fast, stable algorithms involving hierarchical

representations of quasiseparable matrices: image compression or coding and image

restoration. Wavelet transforms are used to compress images, and this research explores

the possibility of a hierarchy and rank structure existing in wavelets. It is possible to further

compress the image if a hierarchical representation of the wavelet exists, by performing the

row compression and nested product conversion on the wavelet. A quasiseparable matrix

can model satellite blur, and then the fast Fourier transform (FFT) is used to transform the

blur model. When the transformed blur model is solved, the image can be restored. The

hierarchical representation of the quasiseparable matrix is used as a preconditioner in an

iterative technique to restore the image.

In research, it is important to form a stable hierarchical representation of the

quasiseparable matrix A to exploit the low rank structure. Once formed, one must be able to

perform a compression on the parameterization of A. The flexibility of converting to another

representation is imperative to accessing existing algorithms for other representations. When

solving matrix A, one wants not only a fast direct solver, but a proven stable solver. The

major contributions of this research are the new row compression and conversion to nested

product algorithms for the hierarchical representation of a quasiseparable matrix. The

row compression and conversion to nested product algorithms focus on stability and have

comparable computational complexity to existing algorithms.

1.2 Numerical Linear Algebra Fundamentals

In this section, we will discuss basic terminology and matrix theory to be used

throughout this document. Notations for the fields of real numbers and complex numbers

4

are R and C, respectively. Given a matrix A ∈ Rn×n, its (i, j)th element is denoted by

ai,j. We let AT denote the transpose of the matrix A where (AT)i,j = aj,i. The conjugate

of an element is ai,j = ai,j. A square matrix A is considered Hermitian, if AH = A where

AH denotes the conjugate transpose of A such that AH = (A)T = AT. Matrix A ∈ Rn×n is

symmetric, if A = AT. A matrix Q ∈ Rn×n is orthogonal if QT = Q−1 and QQT = QTQ = I,

where I is the identity matrix. The canonical unit vector, ei, has 1 in the ith entry and

zeros elsewhere. [31–33].

Matrices with upper and lower bandwidth are special types of matrices that are known

as band matrices. A matrix A ∈ Rn×n has lower bandwidth p if ai,j = 0 for i > j+p and upper

bandwidth q if ai,j = 0 for j > i + q [34]. The notational convention used in this proposal

to display the zero pattern in a matrix is the Wilkinson diagram from J. H. Wilkinson [35].

The symbol × represents an element that may be nonzero, and 0 represents a zero element.

Thus, a Wilkinson diagram for a band matrix, with lower bandwidth equal to 1 and upper

bandwidth equal to 2, might look like



× × × 0 0

× × × × 0

0 × × × ×

0 0 × × ×

0 0 0 × ×


.

The following is a Wilkinson diagram of a 5×5 diagonal matrix D where the matrix elements

di,j = 0 when i 6= j: 

× 0 0 0 0

0 × 0 0 0

0 0 × 0 0

0 0 0 × 0

0 0 0 0 ×


.

5

A square matrix U is upper triangular if ui,j = 0 whenever i > j, and is of the form



× × × × ×

0 × × × ×

0 0 × × ×

0 0 0 × ×

0 0 0 0 ×


.

Similarly, a square matrix L is lower triangular if li,j = 0 whenever i < j. To denote the

lower triangular portion of a matrix A, we adopt the MATLAB notation of tril(A). The

upper triangular portion is triu(A). A matrix A is upper Hessenberg if ai,j = 0 whenever

i > j + 1. Thus zeros fall below the subdiagonal, and such a matrix has the form



× × × × ×

× × × × ×

0 × × × ×

0 0 × × ×

0 0 0 × ×


.

In all numerical algorithms, it is necessary to examine numerical stability. Let f be

a function acting on data d ∈ S to produce a solution y = f(d) to some mathematical

problem. For example, f(d) = A−1y in the case in which the problem is solving Ay = d.

Suppose d̂ is some approximation to d. A numerical problem is said to be well-conditioned if

f(d̂) is always close to f(d), when d̂ is close to d. Now in general, f(d̂) and f(d) can differ

greatly when d̂ is close to d, and if this is true then the problem is said to be ill-conditioned.

An algorithm is considered unstable if it introduces large errors in the computed solutions

to a well-conditioned problem. There are two types of error to consider in analyzing the

accuracy of an algorithm, forward and backward error, which can be seen in Figure 1.1.

Backward error analysis is easier to carry out and is better suited for matrix algorithms

6

[31, 32, 35]. More importantly, backward error analysis clearly differentiates between the

effects of ill-conditioning and algorithmic instability on the accuracy of a computed solution.

Let f̂ represent an algorithm that computes an approximation to f such that f̂(d) is close

to f(d). Forward error analysis finds the bounds for the errors of ‖f̂(d)− f(d)‖. Backward

error analysis examines ‖d̂ − d‖ ≤ O(ε) where d̂ is the perturbed data, and the computed

solution is the exact solution, f̂(d) = f(d̂) [32, 36, 37].

Figure 1.1. Diagram of forward and backward error analysis. Given a function, f , acting on
data d, an algorithm, f̂ which produces an approximation to f(d), and the approximation
set of data d̂. Forward error analysis looks at the bounds for ‖f̂(d)−f(d)‖. Backward error
begins with f̂(d) = f(d̂) and works back towards ‖d̂− d‖ to determine bounds on the data
set.

The backward error analysis in [3] is pertinent to the stability of the research in this

dissertation. Given the theorem from [3] on errors in applying Householder transformations

in the QR decomposition. Assume the usual model for floating point arithmetic with u as

the unit round-off, nu < 1, and c is a small constant, and the bound γ̃n = cnu
1−cnu . Consider

Âj+1 = fl(Q̂jÂj) where j = 1, 2, . . . , p and A1 = A is m× n. Then there exists Q̃j satisfying

Q̃T
j Q̃j = I and ‖Q̃j − Q̂j‖F ≤ γ̃m for which

Âp+1 = Q̃A+ E, ‖E‖F ≤ γ̃m‖A‖F

7

where Q̃ = Q̃p · · · Q̃1.

From [3], given the row compression algorithm A = QC, there is error represented by

A+ EA = Q̃C̃ (1.1)

where ‖EA‖2 = O(u)‖A‖2 and ‖EA‖2
‖A‖2 = O(u). Observe that for ‖EA‖2 the process begins

with C0 = A , and for each k = 0, 2, . . . ,m− 1

fl(Q̂T
k+1Ĉk) = Q̃T

k+1Ĉk + Ek,A for ‖Ek,A‖F ≤ dγ̃n‖Ck‖F .

After introducing a threshold ‖Tk,A‖F ≤ t = O(‖A‖), one obtains Ĉk+1 = Q̃T
k+1Ĉk + Ek,A +

uTk,A. The Ĉk+1 equation is iterated while applying the triangle inequality and the unitary

invariance. This results in

‖Ĉm − Q̃T
mQ̃

T
m−1 · · · Q̃T

1A‖F ≤
m∑
k=1

‖Ek,A + u‖F‖Tk,A‖F ,

and from the theorem in [3] they imply ‖A−Q̃1Q̃2 · · · Q̃mĈm‖F ≤ mdγ̃n‖A‖F +mtu+O(u2).

Through substitution, A+ EA = Q̃C̃ is justified and backward error is achieved.

Unstable algorithms can produce poor results to well-conditioned problems. If solving

an ill-conditioned problem with a stable algorithm, the solution is not any more or less

accurate than the data warrant.

Given a matrix A ∈ Rm×n for m ≥ n. A singular value decomposition (SVD) of A is

a factorization of the form A = UΣV T where U ∈ Rm×n has orthogonal columns such that

uTu = I, V ∈ Rn×n is orthogonal with vTv = I = vvT, and Σ ∈ Rn×n is diagonal. The

8

SVD of a 5× 3 matrix A looks like



A

× × ×

× × ×

× × ×

× × ×

× × ×


=



U

× × ×

× × ×

× × ×

× × ×

× × ×




Σ

× 0 0

0 × 0

0 0 ×




V T

× × ×

× × ×

× × ×

. (1.2)

Matrix A has a QR-factorization A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n

is upper triangular with positive diagonal elements. The QR factorization is an orthogonal

reduction of A to triangular form. A Wilkinson diagram follows [31, 32, 35]:



A

× × ×

× × ×

× × ×

× × ×

× × ×


=



Q

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×





R

× × ×

0 × ×

0 0 ×

0 0 0

0 0 0


. (1.3)

Similarly, an LQ-factorization of the same matrix A is AT = LQ where Q is orthonormal

and L is lower triangular, and the LQ-factorization is the transpose of QR-factorization,


AT

× × × × ×

× × × × ×

× × × × ×

 =


L

× 0 0 0 0

× × 0 0 0

× × × 0 0





Q

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×


.

9

Matrix A ∈ Rn×n has an LU factorization if the det(A(1 : k, 1 : k)) 6= 0 for k = 1 : n−1.

If the LU factorization exists and A is nonsingular, then the LU factorization is unique and is

of the form A = LU where L is a lower triangular matrix with zeros above the diagonal, and

U is an upper triangular matrix with zeros below the diagonal [36]. The LU factorization of

a 3× 3 matrix A appears below:


A

× × ×

× × ×

× × ×

 =


L

× 0 0

× × 0

× × ×




U

× × ×

0 × ×

0 0 ×

 (1.4)

.

A Householder transformation, or elementary reflector, is a matrix of the form P =

I − 2uuT , where ‖u‖2 = 1. Note that P is symmetric and orthogonal. Given a matrix

A ∈ Rn×n. Typically it is computed to introduce zero elements into a particular column

of A. The formula for the Householder vector, P , that transforms x to a multiple of ei is

u = sign(xi)‖x‖2ei+x where x is a column of A and xi is the ith element of x. Householder

transformations are very desirable because of their unconditional numerical stability. For

example, A is a 5 × 5 matrix, and u is the Householder vector that operates on A while

introducing zeros into the first column of A as seen in Householder reflector P where p is an

element of P = I − 2uuT :



P

p p p p p

p p p p p

p p p p p

p p p p p

p p p p p





A

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×


=



Ã

× × × × ×

0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×


. (1.5)

10

After multiple steps of the QR factorization algorithm, matrix A can be reduced to upper

triangular, via a sequence of Householder transformations forming Q as a product of P ,

Q = P1P2 . . . Pn−1, while operating on updated versions of A [31, 35, 36].

Another numerical method that introduces zeros into a matrix is Givens rotations. A

plane rotation or Givens rotation is a matrix of the form

Gi,j =



Ii−1

c −s

Ij−i−1

s c

In−j


,

where c = cos θ, s = sin θ, and c2 + s2 = 1. Givens rotations’ cost is double that of

Householder reflectors in the QR decomposition [31, 35, 36].

The column space of a matrix A ∈ Rm×n is the vector space generated by the columns

of A. A vector y ∈ Rm belongs to the column space of A if and only if y = Ax for some

vector x ∈ Rn. Similarly, the rows of A generate a vector space which is called the row space

of A, and is also referred to as the rank(A). We have rank(A) ≤ r if and only if there exist

U and V in Rm×r and Rn×r respectively, with linearly independent columns, such that

A = UV T .

The columns of both U and V contain bases for the column and row spaces of A, respectively

[36]. An example follows with A ∈ R5×5 and rank(A) = r = 3 where A = UV T is represented

11

by:



A

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×


=



U

× × ×

× × ×

× × ×

× × ×

× × ×




V T

× × × × ×

× × × × ×

× × × × ×

. (1.6)

It is often useful to approximate a large matrix with a simpler matrix of lesser rank. An

n×n matrix of rank r < n can be reconstructed from at most 2nr numbers. By implementing

this approximation, one has compressed the matrix. The abatement in arithmetic matrix

computations is striking when r is small, in which case the complexity of many operations

changes from O(n2) to O(nr).

Matrix row compression is a very useful numerical procedure that essentially factors

a matrix, reduces one of the factors, and thus reduces the matrix. A simple definition for

row compression is the row compression of a matrix A ∈ Rm×n results in A = QB where

Q ∈ Rm×m and B ∈ Rm×n. However, B is reduced since the rank(B) = r and

QB =

 B1

0

 ,
where B1 ∈ Rr×n.

Matrices can be partitioned or divided into blocks. Generally, a matrix A ∈ Rm×n can

be rewritten as follows:

A =


A11 A12 . . . A1q

A21 A22 . . . A2q

...
...

...

Ap1 Ap2 . . . Apq


,

12

where Aij ∈ Rmi×nj are submatrices called blocks such that m1 + . . .+mp = m and

n1 + . . .+ nq = n [35]. We refer to Aij as a block (submatrix) of matrix A.

1.3 Structured Matrices

An m × n structured matrix is a matrix with elements that can be defined in terms

of substantially fewer than m · n parameters. Within the structured matrix class, there is

the important subclass of rank structured matrices. This section looks at the definitions of

different classes of rank structured matrices and the nuances of those differences. A set of

structured matrices and a choice of a matrix parameterization are two distinct concepts, and

in the next section we will discuss the parameterizations of matrices.

A matrix A ∈ Rn×n is rank structured if it has one or more submatrices which have

a small upper bound on the ranks relative to the size of the matrix [16, 38]. The class

of rank structured matrices circumscribes quasiseparable matrices and has relationships

with Toeplitz and Cauchy matrices. Many fast algorithms have been developed that

take advantage of the data sparse parameterizations of these matrices [13, 30, 39–41]. The

relations between subclasses of rank structured matrices is shown in Figure 1.2.

The class of quasiseparable matrices is the essence of this research. Following [3], we

will refer to an n×n matrix A as quasiseparable of order (r, s) if all partitionings are of the

form

A =

 A
(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

 (1.7)

where A11 is k × k for k = 1, 2, ..., n− 1 satisfy

rank
(
A

(k)
21

)
= rk(A) ≤ r and rank

(
A

(k)
12

)
= sk(A) ≤ s. (1.8)

Superscripts in parentheses indicate the size of the leading principal submatrix. We refer

to rk(A) as the lower rank sequence and sk(A) as the upper rank sequence. Quasiseparable

matrices structure is preserved (with possible boundable increases in rank) by the following

13

Figure 1.2. Rank structured matrices and their corresponding relationships.

operations: matrix multiplication, inversion, QR factorization, LU factorization (without

pivoting), and (in special cases) the QR iteration [3]. The class of quasiseparable matrices

encompasses both tridiagonal and unitary Hessenberg matrices.

A subclass of quasiseparable matrices is semiseparable matrices. An n × n matrix A

is called (rL, rU) semiseparable if for some rL and rU , A = D+tril(RL)+triu(RU), with the

ranks of RL and RU equal to rL and rU respectively [42, 43]. For example,

RL =


k1l1 k1l2 k1l3

k2l1 k2l2 k2l3

k3l1 k3l2 k3l3

 , RU =


t1u1 t1u2 t1u3

t2u1 t2u2 t2u3

t3u1 t3u2 t3u3

 , D =


d1 0 0

0 d2 0

0 0 d3

 ,

14

A =


d1 t1u2 t1u3

k2l1 d2 t2u3

k3l1 k3l2 d3

 .
As can be seen in the definitions in this section, rank structured matrices, quasiseparable

matrices, and semiseparable matrices have clear differences. The class of rank structured

matrices is the broadest of the three classes, and encapsulates the other two subclasses. The

next largest, is the quasiseparable matrix class which in turn contains semiseparable matrices.

However, underlying all the differences is the same characteristic property of small numerical

ranks in the submatrices within the larger matrix. The basis of the quasiseparable matrix

structure is that the low rank blocks are strictly below or above the main diagonal. There

is much discussion on developing fast algorithms for quasiseparable matrices. Developing

fast algorithms focuses not only on the definition of a matrix, but how it is represented

or parametrized. The matrix parameterizations explored in this research are generator,

hierarchical and nested product.

1.4 Representations of Matrices

Simple classes of matrices, such as banded or tridiagonal, are straightforward to

represent. For rank structured matrices, which are often dense, computing a parameterization

is not a trivial task. Choosing how to extract the parameters or form the parameterization

of a rank structured matrix is not obvious even though the matrix may only use a few

parameters. One must also be mindful of the fact that representations behave differently

across different sets of matrices, and are similar in name and description only. The paper will

look at three representations, and focus on their interaction with quasiseparable matrices.

Using a definition from [16, 38], a representation is where an element v ∈ V is said to

represent an element u ∈ U if there is a map r

r : V ⊆ X → U ⊆ W ,

15

where the sets U and V are contained in the vector spaces X and W , respectively.

Additionally, dim(X) ≤ dim(W), r(V) = U is surjective, and there exists a map s : U → V

such that r|s(U) is bijective and r(s(u)) = u for all u ∈ U , such that r(v) = u. Essentially,

r is a representation map of the set U , and element v ∈ s(U) ⊆ W is a representation of u

where r(v) = u with u ∈ U . The choice of a representation for a class of matrices depends

on the stability of the representation and how many parameters are intrinsically needed to

represent the matrices [16, 38].

The first representation to look at is the generator representation. Let’s begin with the

representation, R, for a semiseparable matrix A which has the mapping

r|A : R ⊂ Rn × Rn × Rn × Rn → A and (u,v,p,q) 7→ tril(uvT) + triu(pqT)

where R is the set of 4-tuples of the form R = (u,v,p,q) ∈ Rn × Rn × Rn × Rn|uivi=piqi , for

i = 1, . . . , n. In this example, s : U → V , r : V → U ,

U =

A ∈ Rn×n| ∃ u,v,p,q ∈ Rn such that ai,j =

 uivj, i ≥ j,

piqj, i < j.


 and

V = {(u,v,p,q) ∈ Rn × Rn × Rn × Rn| such that uivi = piqi for i = 1, . . . , n} .

From [16], the representation of a semiseparable matrix in which the lower rank structure

extends to the diagonal will look like:

A =



u1v1 p2q1 p3p1 . . . pnq1

u2v1 u2v2 p3p2 . . . pnq2

u3v1 u3v2 u3v3
. . .

...

...
...

...
. . . pnqn−1

unv1 unv2 unv3 . . . unvn


.

This particular example is not general enough to parameterize quasiseparable matrices.

16

Quasiseparable matrices have the property that their off-diagonal blocks have low rank

with the provision the off-diagonal blocks do not intersect the diagonal. The generator

representation of a quasiseparable matrix A has vectors that generate the lower and upper

off-diagonal elements of A, and a vector that produces the elements on the diagonal [44]. An

example of a generator representation of a quasiseparable matrix is

A =

A ∈ Rn×n| ∃ u,v,p,q,d ∈ Rn such that ai,j =


uivj, i > j,

di, i = j,

piqj, i < j




where i and j = 1, . . . , n. Some quasiseparable matrices lack a generator representation,

and this can be addressed with a pair of inverse bidiagonal factors. In the above example,

if A is amended where n = 5, the generators u,v,p,q,d ∈ Rn, and the inverse bidiagonals

t, r ∈ Rn−1 [44], then the generator representationof the quasiseparable matrix is

A =



d1 p1r1q2 p1r1r2q3 p1r1r2r3q4 p1r1r2r3r4q5

u2t1v1 d2 p2r2q3 p2r2r3q4 p2r2r3r4q5

u3t2t1v1 u3t2v2 d3 p3r3q4 p3r3r4q5

u4t3t2t1v1 u4t3t2v2 u4t3v3 d4 p4r4q5

u5t4t3t2t1v1 u5t4t3t2v2 u5t4t3v3 u5t4v4 d5


.

Regrettably, it must be noted that some particular sets of generators for quasiseparable

matrices display instability in matrix-vector multiplication which is not the fault of the

algorithm.

The class of H -matrices and hierarchical representations of rank structured matrices are

examined. These data sparse parameterizations are used to represent the matrix, its inverse

and decompositions of the matrix. With these particular matrices, they are characterized by

a hierarchy in the low-rank off-diagonal blocks. Thus the matrix is hierarchically partitioned

into blocks of low rank at multiple levels of the hierarchy. The partitioning of these blocks

17

continues recursively until the lowest level diagonal block is reached. The hierarchical

representation and associated operations enable the reuse of data, and the sharing of

information across different levels, which can be extremely efficient. An example of such a

matrix is shown in Figure 1.3. Algorithms for rank structured matrices frequently make use

of a hierarchical block representation [17–19, 45–47]. The fast multipole literature [28, 29, 48]

uses binary tree structures and parameterizations for the hierarchical representation of

rank structured matrices. The research in this dissertation also utilizes the binary tree

to navigate the hierarchy and parameterizations for the hierarchical representation. This

will be discussed in Subsection 2.5.2 and Chapter 3.

Figure 1.3. The hierarchical representations of the matrices display the full-rank and
low-rank blocks. The submatrices in dark color are full rank. All other submatrices have
low numerical rank.

The nested product representation for the class of quasiseparable matrices is a series of

multiplications and subtractions that are nested within each other [3]. Given a quasiseparable

matrix H, the nested product representation multiplies the left and right hand sides of

H by orthogonal transformations, then zeros out the first of column of H with matrix

subtraction. The matrix can now be rewritten in terms of the sequence of nested orthogonal

18

transformations and matrix addition. The process is repeated until the terminating matrix

Hk is sufficiently small. Therefore, a matrix with band structure in its lower triangular part

and rank structure in its upper triangular part when the nested product is applied gives

H0 = U1

L1 + U2

L2 + U3

L3 + . . . Uk

Lk +

 0 0

0 Hk

V T
k . . .

V T
3

V T
2

V T
1 .

(1.9)

It is important to note that research groups working with low rank structured matrices favor

a particular definition, parameterization, and representation of these matrices. Comparisons

of results are difficult between the different groups due to the diverse parameterizations and

representations for the same matrix.

1.5 Fast Solvers

A fundamental problem in numerical linear algebra is solving linear systems. There

are four major factors in choosing a linear system solver: preservation of structure in

the matrix, stability, accuracy, and computational costs. Traditional Gaussian elimination

without pivoting is, in general, not stable. However, Gaussian elimination with partial

pivoting is known as the standard backward stable solver [37]. Unfortunately, these pivoting

techniques in Gaussian elimination fail to preserve the structure of quasiseparable matrices.

The unpivoted LU factorization method preserves the data sparsity of rank structured

matrices, but is based on Gaussian elimination and has stability issues [37, 49]. Table 1.1

summarizes the traditional algorithms, and how they perform with respect to stability and

data sparsity.

There is a group of solvers which keep the data sparse structure of a quasiseparable

matrix intact. Within this group, the focus now narrows towards stability and accuracy

[37]. One particular type algorithm rises to the surface where it preserves the sparsity

in the rank structure, is backward stable, and is accurate. The QR−based system

19

Table 1.1. Algorithm Comparison for Rank Structured Matrices

Traditional Algorithm Matrix Structure Stability

Gaussian elimination without pivoting Preserves Unstable

Gaussian elimination with partial pivoting Destroys Maybe Stable

SVD decomposition Destroys Stable

QR factorization Preserves Stable

solvers, for some classes of rank structured matrices, have shown promise [47]. There

are some very fast QR−based algorithms for solving structured matrices. The current

QR−based system solvers for structured matrices, that address some form of hierarchical

representation, perform a decomposition implicitly or explicitly, where the decomposition

is comprised of orthogonal matrices, and a lower or upper triangular matrix [50]. Block

solvers focus on solving matrix representations such as sequentially semiseparable (SSS) and

hierarchically semiseparable (HSS). However, this comes at an additional cost in computing

the parameterization of matrix which varies from O(nr) to O(rn2) where n is the size of a

square matrix and r is the rank of the low-rank blocks. Given a hierarchically semiseparable

representation of structured matrix A, the solvers in [13, 14, 18] do orthogonal eliminations

on both sides of A to transform A into a lower triangular matrix. The resulting matrix,

being lower triangular, can be solved directly through substitution. These block solvers

computation costs range from O(rnlog2(n)) to O(n2). It is important to note that even

though the parameterization and block solver algorithms state they are stable, none of them

have been proven stable.

Algorithms to solve quasiseparable systems use factorizations, such as the LU or ULV

[20]. In [18], an implicit ULV decomposition of A is computed, where U and V are

orthogonal matrices, and L is a lower-triangular matrix. The algorithm operates on low-rank

blocks sequentially to solve recursively for x. The fast ULV solver algorithm can be adapted

to operate on a generator representation of a quasiseparable matrix where the triangular

parts of the rank structured matrix A are decomposed as nested products of sums. The

20

computational complexity of the ULV solver algorithms ranges from solvers computation

costs range from O(nk2) to O(n2) where n is the size of a square matrix and k is the size of

a submatrix. Again, none of these algorithms have been proven stable.

The fast nested product solver presented by Bella, Olshevsky and Stewart operates on

a quasiseparable matrix A to avoid the generator representation, and decomposes A into

a nested UBV product. The problem solved in [3] is Ax = b where A is a quasiseparable

matrix. Matrix A is first row compressed, A = QC or QTA = C where C has band structure

in the lower triangular part and rank structure in the upper triangular part. What follows is

QTAx = QTb becomes Cx = QTb. Matrix C is then decomposed by the UBV algorithm,

and the fast nested product solver operates on Cx = QTb. The solver in [3] is the only

proven stable solver for these classes of matrices with computational complexity of O(n).

1.6 Problem Statement and Contributions

Rank structured matrices have arisen in an assorted variety of applications from image

processing to electromagnetics, and their importance has intensified in recent years. The

recent activity surrounding quasiseparable matrices is their emergence as a new superclass

for the structured matrix class [47]. As a result, investigating different representations,

conversions, decompositions, computations, and solvers for quasiseparable matrices is taking

on more importance in numerical linear algebra. There still isn’t much consensus on

terminology even though some algorithms have been developed more than 25 years ago.

Much early research was done on algorithms and solvers for the semiseparable matrix

class which is a subclass of the quasiseparable matrix class [51]. Representations of rank

structured matrices are as diverse as their applications with representations ranging from

unitary-weight, to generator, to hierarchical [20, 52, 53]. A number of the existing algorithms

are centered on the QR factorization techniques, and generator representations. The

nested product representation and the accompanying solver algorithm for quasiseparable

matrices introduced in [3] are proven stable with the solver computational cost being O(n).

21

The H matrix and corresponding hierarchical representations can be used to characterize

quasiseparable matrices. Numerical backward stability in existing decompositions and fast

solver algorithms other than [3] is a major sticking point.

There is a substantial gap in the research on representations of rank structured

matrices, and the conversion between representations for quasiseparable matrices. Currently,

there is only one solver proven to be stable, and the solver operates on the nested

product representation for quasiseparable matrices. There is no specific conversion for a

quasiseparable matrix from a hierarchical representation to a nested product representation.

In image processing, iterative methods for deblurring are still preferred so preconditioners

are necessary in these methods [34, 54]. Most methods use two-dimensional (2-D) circulant

preconditioners for Toeplitz systems where there is much work done in clustering of

eigenvalues. Wavelets are used to compress images, and wavelets have a hierarchical

structure. If a hierarchical representation of the wavelet is compressed, then the image

can be compressed even further. The research done by Bella, Olshevsky and Stewart

introduces a new fast stable solver based on the nested product representation of the class of

quasiseparable matrices, and, for some problems, can allow us to solve the deblur problem

stably circumventing the costly iterative methods.

The research proposed in this dissertation extends the nested product decomposition

and solver from [3] by converting a hierarchical representation of a quasiseparable matrix to a

nested product. We present a new hierarchical parameterization algorithm for quasiseparable

matrices. A major contribution of this work is the row compression of the hierarchical

structure which is then prepared for conversion to another representation. We introduce

a new conversion algorithm transforming a hierarchical representation of a quasiseparable

matrix into a nested product representation. The key component in both the compression

and conversion algorithms is the Householder transformation, which results in the algorithms

having backward stability. With a full nested product complete, the matrix-vector product

and fast solver in [3] can be used to stably solve large systems with O(n) cost. Quasiseparable

22

matrices, combined with an already computed hierarchical representation, can now have

access to a fast stable solver via our parameterization, row compression, and nested product

conversion. The algorithms of this study are applied to image compression problems that use

wavelets, and image restoration problems that involve of atmospheric turbulence of satellite

images using preconditioners.

The remainder of the dissertation is organized as follows: In Chapter 2, related works are

surveyed. The new algorithms for the parameterization and row compression of a hierarchical

representation of a quasiseparable matrix are detailed in Chapter 3. Chapter 4 lays out the

conversion of the hierarchical representation to the nested product representation found in

[3]. The matrix-vector multiplication and fast solver from [3], is discussed in Chapter 5.

Chapter 6 presents an application of the algorithms in image deblurring. Chapter 7 presents

an application of the algorithms in image compression. Comparisons, complexity, conclusions

and future work with respect to the row compression and nested product conversion are

presented in Chapter 8.

23

CHAPTER 2

RELATED WORK

Rank structured matrices are matrices for which certain blocks have ranks that are

bounded by a small constant. In Chapter 1, the rank structured matrix class was introduced

and a more formal definition was given. A diagram of the rank structured matrix class

in Figure 1.2 illustrates the relationships of quasiseparable matrices and its subclasses [2].

Quasiseparable matrices have blocks strictly above or strictly below the diagonal that have

bounded rank, and have emerged as a tractable class for development of fast algorithms.

Quasiseparable matrices are cross disciplinary in their uses with applications throughout

applied mathematics, engineering and computer science. Hence, it is not surprising that

quasiseparable matrices, as well as operations to manipulate them, are receiving a great

deal of attention from several groups in Belgium (Dewilde, Van Barel et al.) [4, 5, 15, 16, 55],

Israel (Eidelman, Gohberg) [6, 53, 56], Italy (Bini, Gemignani, Mastronardi) [30, 39, 57], the

USA (Chandrasekaran, Gu, Olshevsky, Stewart) [3, 18], etc. Hierarchical matrices form a

hierarchy of their submatrices from a rank structured matrix, and play an important role in

multipole methods and electromagnetic [8, 10, 11, 23, 28, 29, 48, 58]. Research on H -matrices

is taking place in the USA (Greengard, Rokhlin, Strain et al.), and in Germany (Hackbusch,

Börm, Grasedyck, Khoromskij).

There has been confusion among groups on the nomenclature for rank structured

matrices. The book and papers by Dewilde, van der Veen, and Alijagic [4, 5, 7] treat

quasiseparable systems, which they refer to as systems with low Hankel rank, using an

approach based on linear systems theory. Their work was the first to begin closing the gap

between function theory and numerical linear algebra where, instead of operating on matrices

of scalars or variables, the theories operated on vector representations. Dewilde and van der

24

Veen developed several classical results on algorithms for time-varying systems. Especially,

inner-outer factorization as a generalization of the QR factorization.

The work by Van Barel et al. discusses various rank structured matrix types such

as tridiagonal and semiseparable matrices in full generality which are subclasses of the

larger quasiseparable matrix class [15, 55]. They carry out efficient matrix operations

on numerical examples of subclasses of the quasiseparable matrix class. The books by

Vandebril et al. examine computations and algorithms for semiseparable matrices and their

representations [16, 38]. The Vandebril representations are centered on the Givens vector

and the use of rotations in the construction of the different representations. Research by

the Chandrasekaran group explores the sequential representations of semiseparable matrices,

and uses generators in forming their representations [13, 14]. In all three bodies of work, the

derivation of algorithms for rank structured matrices capitalized on the block quasiseparable

or sequentially semiseparable (SSS) representations. Definitions for quasiseparable matrices

are given, and by definition does contain the semiseparable matrix class. The research in

this dissertation is on hierarchical representations of quasiseparable matrices (and not SSS),

performs a factorization of blocks and not generators for the elements, and uses Householder

transformations in the row compression and nested product algorithms (and not Givens

rotations).

The hierarchical matrix class, the H −matrix class, is the class of dense matrices with

the characteristic of being represented by only a few parameters and is therefore considered

data-sparse. Matrices in the FMM, or that are used in elliptic boundary value problems, have

data clusters around the diagonal, and a hierarchy of the submatrices can be constructed

from the matrix [8, 23, 28, 48, 58]. The representation of an H −matrix requires only in

O(nlog(n)) computation, and the algorithms that operate on the new truncated H −matrix

format do so in O(nlog(n)) operations.

The quasiseparable matrix definition used in this research comes from the work by

Eidelman and Gohberg, and is similar to the definition found in these papers [3, 43, 47, 49,

25

59]. Eidelman and Gohberg reinterpreted the algorithm of Dewilde and van der Veen in

linear algebraic terms. The purpose of this dissertation is to take a quasiseparable matrix

already partitioned into a hierarchical representation and transform it into a nested product

representation, then solve the system.

2.1 Representations of Quasiseparable Matrices

There are three parameterizations of a quasiseparable matrix that are involved in

this dissertation: generator, hierarchical, and nested product. Many algorithms in

numerical linear algebra have been modified to work with the generator representation of

a quasiseparable matrix instead of the elements within the matrix [4–6, 13]. The generator

representation is absent as a subject of research in this work, but is surveyed as background.

All three representations can represent a quasiseparable matrix with O(n) parameters.

2.1.1 Generator Representation

The work proposed in this dissertation transforms a hierarchical representation into a

nested product representation which is based on generators. The generator representation is

one of the first representations for quasiseparable matrices, and standard numerical linear

algebra algorithms have been amended to operate on generators instead of matrix elements.

The generator representation presented as background in Bella, Olshevsky and Stewart

[3] takes the upper and lower triangular parts of the quasiseparable matrix, and applies

products of generators to form the elements. Given an n× n quasiseparable matrix A with

2× 2 block partitionings of the form

A =

 A
(j)
11 A

(j)
12

A
(j)
21 A

(j)
22

 (2.1)

where A11 is j×j for j = 1, 2, . . . , n−1. The lower rank sequence of A is rj(A) = rank(A
(j)
21) ≤

r, and the upper rank sequence of A is sj(A) = rank(A
(j)
12) ≤ s. The parameterization of

26

quasiseparable matrix with generators is formed in the example below, where A is a 5 × 5

quasiseparable matrix,

A =



d1 gT
1 h2 gT

1B2h3 gT
1B2B3h4 gT

1B2B3B4h5

pT
2 q1 d2 gT

2 h3 gT
2B3h4 gT

2B3B4h5

pT
3A2q1 pT

3 q2 d3 gT
3 h4 gT

3B4h5

pT
4A3A2q1 pT

4A3q2 pT
4 q3 d4 gT

4 h5

pT
5A4A3A2q1 pT

5A4A3q2 pT
5A4q3 pT

5 q4 d5


(2.2)

where Aj ∈ Rrj(A)×rj−1(A), Bj ∈ Rsj(A)×sj−1(A), dj ∈ R, pj ∈ Rrj−1(A), qj ∈ Rrj(A),

gj ∈ Rsj(A), and hj ∈ Rsj−1(A) [3].

When examining the off-diagonal subblocks of the generator representation of A,

M =


pT
3A2q1 pT

3 q2

pT
4A3A2q1 pT

4A3q2

pT
5A4A3A2q1 pT

5A4A3q2

 and N =

 gT
1B2h3 gT

1B2B3h4 gT
1B2B3B4h5

gT
2 h3 gT

2B3h4 gT
2B3B4h5

 ,

the blocks can be rewritten as the following product,

M =


pT3

pT4A3

pT5A4A3

 · [A2q1 q2

]
and N =

 gT1 B2

g2

 · [h3 B3h4 B3B4h5

]
.

This factorization shows M has rank at most r2(A) and N has rank at most s2(A). Similar

generator parameterizations have been used in a series of papers by Chandrasekaran et al. [13,

14, 17–19]. It is important to point out a drawback to the generator representation. When

small perturbations are introduced into some particular sets of generators of a quasiseparable

matrix A and algorithms are applied to the generators, this leads to large perturbations of

A, where the instability is caused by the generators. This can be a source of instability

27

in algorithms that use the generator representation. The cost of extracting a generator

representation of the matrix is O(n2) [4, 5].

2.1.2 Nested Product Representation

The paper by Bella, Olshevsky and Stewart [3] introduced a new parameterization

for quasiseparable matrices, the nested product representation. The algorithm given in

[3] computes a nested UBV decomposition. Given a matrix C with a banded structure in

the lower triangular part, and a quasiseparable structure in the upper triangular part. The

UBV decomposition of C is

C = Uk0
(
Bk0 + Uk1

(
Bk1 + . . .+ Ukp−1

(
Bkp−1 +Dkp

)
. . .
))
V T
kp−1

V T
k1
V T
k0

(2.3)

where 0 = k0 < k1 < . . . < kp is an increasing sequence, both Ukj and Vkj are sequences

of orthogonal transformations for j = 0, . . . , p − 1, and Bkj is a sequence of banded lower

triangular matrices with only a few nonzero columns. The form of matrix Dkp is

Dkp =

 0kp×kp 0

0 D
(kp)
kp,22


such that the superscript (kp) indicates the size of the leading principal submatrix, and the

small size of D
(kp)
kp,22

makes exploiting the rank structure in this matrix is unnecessary. The

pattern of two-sided unitary transformations in (2.3) was first used to take advantage of

rank structured matrices in a succession of papers [13, 18, 60]. If A has rank structure in

both its lower and upper triangular parts, a row compression can be used to introduce a

band structure in the lower triangular part of A. The decomposition in [3] has the row

compression introducing a band structure in the lower triangular part of A which results in

a sparse orthogonal decomposition of A. The nested UBV decomposition is stable, and uses

O(n2) operations on a general rank structured matrix, which is comparable to the generator

representation of a quasiseparable matrix.

28

The similarity between [3] and our work is that both begin with a quasiseparable matrix

A and use row compression methods to form A = QC. Our work starts with a hierarchical

representation of A, then, via hierarchical row compression and nested product algorithms,

transforms A to C and C into UBV decomposition. Whereas in [3], the row compression

forms the nested product representation directly from A. The hierarchical to nested product

conversion enables use of the fast solver and matrix-vector product algorithms presented in

[3].

2.1.3 Hierarchical Representation

Hierarchical matrices have been studied explicitly since the works of Hackbusch [8],

Hackbusch and Khoromskij [22, 23], and Hackbusch, Grasedyck and Börm [9] on H -matrices.

The fast multipole method (FMM) of Carrier, Greengard, and Rokhlin [48], and Greengard

and Rokhlin [28], used ideas related to rank structure to speed up the processing of

computationally intensive problems. However, FMM literature is not concerned with

matrices, but with the evaluation of functions The hierarchical representation is created

from a superimposed mesh on a function, and forms partitions which range from simple to

complex as seen in Figure 2.1. The dark blocks represent full rank blocks that might admit

further subdivision. the light blocks represent blocks with bounded (low) rank.

A hierarchical representation of a quasiseparable matrix is a recursive low rank factoring

and partitioning of the blocks. The algorithm for partitioning SSS matrices in [17–19] directly

relates to the work in this dissertation, and has been adapted for the quasiseparable matrices

we consider in our research. The SSS and HSS matrices considered in the works by the

Chandrasekaran group are different representations of the quasiseparable matrices used in

our research. As the matrix is partitioned into blocks at multiple levels, the blocks are

described by a formula defined by an associated binary tree. This enables reuse and sharing

of information across different levels to achieve high efficiency. The cost to compute a

hierarchical representation of a general rank structured matrix is O(n2) [18]. Table 2.1

shows the computational complexity for extracting the parameterization from an n × n

29

(a) Partitioning done in this
research denoting levels in
hierarchy.

(b) Partitions with boundary
concentrations [10].

(c) Partitions with edge
concentrations [10].

(d) Partitions with uniform
concentrations [10].

(e) Partitions with dyadic
clustering [9].

Figure 2.1. Examples of hierarchical block partitioning where the dark (purple) blocks are
full rank and all other blocks have low numerical rank. Figures 2.1(b) 2.1(c) and 2.1(d) are
from [10], and Figure 2.1(e) is from [9].

matrix represented by its elements. In the presence of sparsity or other structure, faster

algorithms are possible.

The conversion of a hierarchical representation to a nested product representation requires

that the hierarchical representation have a factored blocks that can be compressed to form a

nested product representation. Hence, the factorization of the low rank off-diagonal blocks

in the quasiseparable matrix is included in the partition algorithm. The factorization

in this research follows similar procedures as in [18]. As the matrix is partitioned

30

Table 2.1. Summary of Computational Complexity for Parameterizations

Parameterization Computational Cost

Generator representation[4] O(n2)

Nested Product representation[3] O(n2)

Hierarchical representation[18] O(n2)

and factored, a binary tree is the natural choice for representing the partitions of the

hierarchical representation. Sequentially and hierarchically semiseparable matrices are

particular representations of a quasiseparable matrix, and contain generators for the

elements. These representations have some similarities with the hierarchical representation

presented in this dissertation; however, our hierarchical representation is a block factorization

which is much more efficient.

2.2 Compression and Decomposition for Representation Conversion

The row compression algorithm presented in [3] compresses an m× n submatrix block

C in a quasiseparable matrix A. The algorithm introduces zero rows into C by computing

Householder transformations. The basic procedure for introducing zeros into a matrix is as

follows. Let X be an m× d matrix with columns that form an orthonormal basis for the left

nullspace of C. Zeros are introduced into the last d rows of C by computing Householder

transformations Qk where

QH
d . . . Q

H
2Q

H
1X =

 0

Id


and

0 = XHC =
[

0 Id

]
QH
d . . . Q

H
2Q

H
1 C =

[
0 Id

] C1

C2

 = C2 = 0.

The computation of the nullspace X is accomplished using the SVD. The row compression

of the hierarchical representation in this dissertation is similar to that in [3] by using

31

Householder transformations. However, our row compression algorithm operates on multiple

block levels in the quasiseparable matrix, transforming the multiblock region into a low rank

block columns space basis for compression.

One decomposition that this research can be compared with is the implicit ULV

decomposition where U and V are orthogonal matrices, and L is a lower -triangular matrix.

In Chandrasekaran, Gu and Pals [18] and Xia, Chandrasekaran, Gu and Li [21], both papers

form the ULV decomposition of semiseparable matrices. The research presented in [18]

is closely related to what is proposed in this dissertation where the ULV decomposition

is formed from hierarchically semiseparable (HSS) dense matrices. Their factors are not

computed and stored explicitly, U and V are represented as a product of elementary Gaussian

transforms and permutation matrices. In [21], they take HSS matrices and implicitly form

ULV−type factorizations where U and V are orthogonal matrices and L is lower triangular.

Figure 2.2 shows the HSS matrix structure and corresponding binary tree. The UBV

decomposition used in our research is on quasiseparable matrices, the factors are computed

explicitly, and it becomes a nested product. The decomposition done in our research is to

transform the hierarchical representation of quasiseparable matrices into a nested product,

and the factors are computed explicitly.

The QR decomposition of quasiseparable matrices has become a building block in a lot

of other decomposition algorithms, and is still being modified and improved. Eidelman

and Gohberg [6] did a study on the class of block structured matrices analyzing QR

factorization and inversion algorithms related to those from [4]. In [6], they modified and

simplified existing algorithms to be more transparent. They give a V US decomposition

algorithm of generators where V is a block lower triangular orthogonal matrix, U is a block

upper triangular orthogonal matrix, and S is a block upper triangular matrix with square

invertible blocks on the diagonal. The V US algorithm incorporates a matrix-vector product

of triangular systems. The fast QR iteration method introduced by Eidelman, Gohberg and

Olshevsky [56] exploits the structure of a Hermitian quasiseparable matrix. The algorithm

32

(a) Two levels of HSS off-diagonal blocks: left matrix is first-level, and right matrix is second-level.

(b) Binary tree of HSS showing two levels.

Figure 2.2. Examples of the HSS matrix and its corresponding tree representations, from
[18].

operates on generators, a linear set of parameters, defining the quasiseparable matrix. The

paper by Bini, Eidelman, Gemignani and Gohberg [39] shows a fast shiftedQR decomposition

to compute the eigenvalues of a Hessenberg matrix. The basic idea of the work in [39] is to

find a compact representation of the matrices Ak for k = 0, 1, ..., that are generated by the

QR iteration. Benner and Mach [61] presented an efficient, recursive, block column wise QR

decomposition of H - matrices by implementing the standard QR− factorization algorithm

for dense blocks as often as possible. Although, the work done in [4, 6, 39, 56, 61] is on various

QR−decomposition methods, it is relevant to ours since we are adapting QR factorization

techniques in some parts of our row compression conversion algorithm.

There are a few algorithms for representation conversion of structured matrices.

The Givens-weight representation by Delvaux and Van Barel [52] for rank structured

33

matrices is where representation conversion is mentioned. Obviously from the title, this

representation uses Givens rotations to form a representation of a rank structured matrix.

The research on representation conversion in [52], extends the work by Delvaux, Frederix and

Van Barel [62], and illustrates a hierarchical to unitary weight representation conversion. The

algorithm transforms an HSS matrix into a Hessenberg matrix via orthogonal transformations

using QR factorization. The algorithm operates on the binary tree associated with the HSS,

and converts the levels of the 2-D row tree via Givens rotations into a column tree while

obtaining the elementary orthogonal operations for the unitary-weight representation. Our

hierarchical representation conversion algorithm is more transparent and simple, it is stable,

and of course converts a hierarchical representation to a nested product representation of a

quasiseparable matrix.

2.3 Generator Representation and Matrix-Vector Products

In computer science and scientific computing, the product of a matrix and a vector is

a fundamental operation. For matrix-vector multiplication, let x ∈ Rn, A ∈ Rm×n, then

b = Ax is a linear combination of the columns of A. Thus, a formula for b with the j−th

column of A can be written as b =
∑n

j=1 xjaj and is interpreted as x acting on A to produce

b [32]. The simplest example of exploiting the quasiseparable structure of a matrix is one

with O(n) operations. The key idea of matrix-vector products is to take a rank structured

matrix A in Equation 2.1.1, and rewrite it as a sum, A = L+D + U , where

L =



0 0 0 0 0

pT
2 q1 0 0 0 0

pT
3A2q1 pT

3 q2 0 0 0

pT
4A3A2q1 pT

4A3q2 pT
4 q3 0 0

pT
5A4A3A2q1 pT

5A4A3q2 pT
5A4q3 pT

5 q4 0


, D =



d1 0 0 0 0

0 d2 0 0 0

0 0 d3 0 0

0 0 0 d4 0

0 0 0 0 d5



34

U =



0 gT
1 h2 gT

1B2h3 gT
1B2B3h4 gT

1B2B3B4h5

0 0 gT
2 h

¯3 gT
2B3h4 gT

2B3B4h5

0 0 0 gT
3 h4 gT

3B4h5

0 0 0 0 gT
4 h5

0 0 0 0 0


.

Then when multiplying A by vector x, it becomes Ax = (L + D + U)x = Lx + Dx +

Ux. The matrix Dx is straight forward, and the focus is on the matrix-vector products

of the triangular parts Lx and Ux to reformulate them as a nested products of sums. The

matrix-vector product algorithm works with the equation y = Lx and the algorithm is shown

in the 5× 5 example below



y1

y2

y3

y4

y5


=


pT
2 q1 0 0 0

pT
3A2q1 pT

3 q2 0 0

pT
4A3A2q1 pT

4A3q2 pT
4 q3 0

pT
5A4A3A2q1 pT

5A4A3q2 pT
5A4q3 pT5 q4


·



x1

x2

x3

x4

x5


. (2.4)

The matrix-vector algorithm rewrites y = Lx as a nested products of sums with the initial

values of the first equation are y1 = 0, z1 = 0, k = 2, . . . , 5 such that zk = Ak−1zk−1+qk−1xk−1

and yk = pkzk. Hence, the algorithm appears in the sequence of equations below,

z2 = A1z1 + q1x1 = A1 · 0 + q1x1, y2 = p2z2 = p2q1x1

z3 = A2z2 + q2x2 = A2 · q1x1 + q2x2, y3 = p3z3 = p3 (A2 · q1x1 + q2x2)

z4 = A3z3 + q3x3 = A3 (A2 · q1x1 + q2x2) + q3x3, y4 = p4z4 = p4 (A3 (A2 · q1x1 + q2x2) + q3x3)

z5 = A4z4 + q4x4 = A4 (A3 (A2 · q1x1 + q2x2) + q3x3) ,

y5 = p5z5 = p5 (A4 (A3 (A2 · q1x1 + q2x2) + q3x3)) .

35

The matrix-vector product algorithm in Chandrasekaran, Gu and Pals [18] uses a HSS

matrix A where the product is of the form z = Ab. In Figure 2.3, block row partitioning is

denoted by bk,i where the rows whose indices of bk,i belong to Node(k, i). Each node stores

the factorization of the off-diagonal block. The multiplication of U1;1B1;1,2V
H
1;2b1;2 leads to

the matrix-vector product

z1;1 = D1;1b1;1 + U1;1B1;1,2V
H
1;2b1;2 +R1;1

where bk;i,bk;i+1 are vectors, Dk;i is the diagonal block, Uk;i, Vk;i+1 are unitary matrices

from the decomposition, Bk;i is the matrix of singular values, and Rk;i is the carry over.

Refer to Figure 2.3 to see how these components appear in the tree. It is observed that

the intermediate quantities of the computation at higher levels of the HSS can be computed

recursively [18].

Figure 2.3. Three-level HSS representation on a binary tree displaying components used in
matrix-vector products, from [18].

The matrix-vector product presented in Delvaux, Frederix and Van Barel [62] uses a

column tree and row tree to access the components of a hierarchically rank structured matrix

36

Figure 2.4. Hierarchically semiseparable (HSS) structure with underlying 2-D row tree, and
column tree, from [62].

for the computation which is seen in Figure 2.4. Given the multiplication y = Hx. At node

k, xk denotes the part of vector x corresponding to the indices of the vertical shaft. Similarly,

yk is the part of the matrix-vector product y that corresponds to the indices of the horizontal

shaft. The first phase computes the matrix-vector product for the column tree wk = BkVkxk

for each node k. The second phase computes matrix-vector product for the leaves of the

row tree zk = zk + zk−1 and yk = Ukzk. Thus the full matrix-vector product y = Hx is

complete at the end of the second phase.

The matrix-vector product used in our research comes directly from the one given in [3].

It is designed to work specifically with a nested product representation of a quasiseparable

matrix. Thus, the reasoning behind the conversion of representation from hierarchical to

nested product. This allows the row compression A = QC from our work to be used in

the [3] matrix-vector product algorithm. The matrix-vector product algorithm operates on

the equation y = Ax = QCx. More in depth information on the algorithm is shown in

Chapter 5.

37

2.4 Fast System Solvers

The nested product solver introduced by Bella, Olshevsky and Stewart is the only proven

stable solver, and requires O(n) operations. Accessing this particular solver and using it to

solve a hierarchical representation of a system is one of the goals for this research. The

nested product solver adaptation and implementation for a hierarchical representation of a

quasiseparable matrix is mentioned later in the section and detailed in Chapter 5. Other

solvers that are useful to the research in this dissertation have some aspect in common with

the hierarchical representation of a quasiseparable matrix. For the most part, the solvers

surveyed are designed for hierarchical, HSS, or SSS matrices, with one on rank structured

matrices and another for Vandermonde matrices.

The class of H -matrices were introduced by Greengard and Rohklin [28] in their work on

FMM. Fast solvers for H -matrices were explored by Hackbusch in [22]. The matrix-vector

multiplication algorithm for rank r H -matrices has linear-logarithmic complexity. The

solver operates on the block partitionings and achieves a complexity of O(p2n) where p is

the number of partitions and n is the size of the matrix. The procedure computes an inverse

approximation using LU factorization, and recursively iterates through each partition. Börm

refines this solver in paper [63].

The SSS solver introduced by Chandrasekaran, Dewilde, Gu, Pals and van der Veen [13]

is a fast backward stable algorithm solving AX = B where A and B are given in SSS form.

The ”one-pass and top-down” algorithm carries out orthogonal eliminations to both sides of

A by computing QL and LQ factorizations. The algorithm in [13] finds the SSS form of

X thereby transforming the unknowns in X. The SSS solver algorithm follows the sequence

of blocks and operates on a single block at a time. The solver disclosed in Chandrasekaran,

Gu and Pals [18] is connected to our solver in that the hierarchical structure is most similar

to ours. The HSS ULV solver in [18] is a fast, recursive solver that computes a ULV

decomposition implicitly. The HSS ULV algorithm is derived from the SSS solver in [13], and

was amended to operate on all block rows at the same time. Then Chandrasekaran, Dewilde,

38

Gu, Lyons and Pals [19] took the HSS structure for a dense matrix and converted it into a

larger sparse system of equations. The solver algorithm in [19] extends the HSS structure

to take advantage of an efficient direct Gaussian elimination solver that is used on sparse

systems. Lastly, in this group of solvers, is the work done by Xia, Chandrasekaran, Gu and

Li [45] developing a fast direct solver for large discretized linear systems representing partial

differential equations. The multifrontal solver covers a HSS structure with a mesh, the nodes

are categorized into separators with nested dissection. The [45] algorithm then a supernodal

multifrontal method eliminates the separators and accumulates updates locally following an

elimination tree as illustrated in Figure 2.5. Table 2.2 summarizes solver algorithms for

n × n rank structured matrices that have parameterizations, and r represents the rank of

the parameterized blocks.

Table 2.2. Computational Complexity for Solvers of Rank Structured Matrices

Parameterization, Solver Algorithm Parameterization Cost Solver Cost

SSS, SVD based solver [13] O(n2) O(nlog2(n))

SSS, SVD based solver [14] O(n2) O(n2)

HSS, ULV based solver [18] O(n2) O(n2)

HSS, ULV based solver [20] O(nr) O(nr3)

Unitary weight, QR based solver [50] O(nr) O(nr2)

TheQR based solver by Delvaux and Van Barel [50] uses the Givens-weight representation

of rank structured matrix A. The solver computes the QR factorization of the linear

system Ax = b, and uses the factorization A = QR to transform the linear system to

Rx = QHb = (RVl)(V
−1
l x) = b̃ where Vl is an orthogonal operation. The equation continues

to be transformed due to the Givens-weight representation, using L = JRJ where J is an

antidiagonal matrix such that Rx = b̃ becomes LJx = Jb and [50] finally solves for Lx = b.

At the end of Section 1.5, the Bella, Olshevsky, Stewart solver was first mentioned. The

fast UBV solver in [3] assumes that a quasiseparable matrix has been compressed into an

upper triangular form and then further decomposed into a nested product. Prior to entering

39

(a) Partition with separators in nested dissection and the connections of mesh
points during elimination.

(b) Ordering separators and corresponding separator tree/nested dissection elimination
tree.

Figure 2.5. Example of stages in dissection of HSS in the multifrontal method, from [21].

the solver, the quasiseparable matrix must take the form

Uk0

(
Bk0 + Uk1

(
Bk1 + · · ·+ Ukp−1

(
Bkp−1 +Dkp

)
V T
kp−1
· · ·
)
V T
k1

)
V T
k0

where Uk and Vk are Householder unitary transformations, Bk is a nonzero column, and

Dk is a small diagonal block with only a few nonzero elements. When they solve the linear

system, Ax = b, the vector y represents the sequence of unitary transformations V T times

40

the vector x. Then they just peel apart the nested product beginning from the outside to

solve the system. The solver from [3] is presented in detail in Section 5.2.

2.5 Applications of Quasiseparable Matrices

Image processing is becoming more instrumental in contemporary science and technology.

The two areas in image processing that are applicable to the research in this dissertation

are image restoration and image compression. In image restoration, we are particularly

interested in satellite images that have been degraded due atmospheric turbulence because

the blur can modeled by a degradation function which can be represented by a quasiseparable

matrix. In image compression, we examine wavelets where a wavelet transform is applied

the image and then the transform coefficients are compressed, thus compressing the image.

In this application, the wavelet can be modeled by a hierarchical matrix

2.5.1 Image Deblurring

Image degradation is often modeled as a linear convolution of the original image with a

point spread function (PSF) representing the blur [64, 65]. Toeplitz matrices are often used

in forming the matrix of the PSF [66]. A standard technique in restoring an image is to

use a preconditioner to approximate the blur operator. Given the blurred image equation

AcXA
T
r = B where X is the restored image, B is the blurred noise-free image, and the two

structured matrices matrices Ac and Ar represent blurring in the directions of columns and

rows of the image, respectively [67, 68]. The matrix representing the blur is transformed into

a rank structured matrix where the off-diagonal blocks have low-rank, can be approximated

quickly then exploited for fast image restoration [51]. With some approximation to A, we

can obtain X = A−1c B(AT
r)−1 [32]. This is a separable blur model. More general linear

transformations also arise in blur models. Techniques for addressing matrix noise and

ill-conditioning include regularization, and iterative methods such as conjugate gradient and

generalized minimal residual. Such approximations can be efficiently computed, efficiently

41

inverted, and can be applied as a preconditioner to enhance the convergence of an iterative

method [69].

Benzi and Ng [70] consider two types of preconditioners for weighted Toeplitz

matrices in an iterative solution. The two preconditioners are, a variant of constraint

preconditioning, and the Hermitian/skew-Hermitian splitting preconditioner which are both

rank structured. In [70] they employ circulant matrices, C, to precondition weighted Toeplitz

matrices, T . More efficient tools for iterative procedures, preconditioners and matrix-vector

multiplications in the restoration of images are explored by Nagy, Plamer and Perrone [71].

The work by Hansen and Jensen [72] examines the 2-D discrete cosine transform (DCT), and

how noise, from both the signal and components of the solution, affects the reconstruction of

images computed by regularizing iterations. They determine that the generalized minimal

residual and minimal residual method are not suited for image deblurring.

The research proposed in this dissertation is a stable linear time algorithm for the

solution of a rank structured system which is applied to a PSF represented by a Toeplitz

matrix. The PSF is transformed into a rank structured Cauchy-like matrix. The

rank structure is exploited by extracting the parameters and computing a hierarchical

representation of the matrix. The resulting blur matrix is compressed, decomposed, and

solved using nested products, the only algorithm proven to be backward stable. Once the

blur system is solved, the solution is applied to the blurred image restoring it.

2.5.2 Image Compression via Wavelets

Mathematical wavelet transforms are used extensively in image compression. The huge

volume of data in a direct image spatial domain is imprudent for transmission or storage. The

wavelet transform maps the spatial domain of an image to a frequency domain, then excessive

redundancies in the image are exploited and removed [64, 73, 74]. Wavelet transformations

make it easier to compress, transmit and analyze images. The transform coding process is

done in four major steps: apply the wavelet transform, detect the threshold, entropy code

the quantized transform coefficients, and apply an inverse transform as shown in Figure 2.6

42

Figure 2.6. Diagram of the typical wavelet transform encoding and decoding process [75].

[75]. This method of lossy compression of the image is acceptable since the reconstruction

of the image need not be exact. This dissertation focuses on the discrete wavelet transform

(DWT) which computes the series expansion coefficients for a function that is comprised of

a wavelet function, ψ(x), and a scaling function, ϕ(x).

A separable 2-D orthogonal Daubechies wavelet decomposition is computed of the image.

The decomposed image forms a 2× 2 block partitioned matrix W where the upper diagonal

block approximates the image, the lower diagonal block locates the image’s edges, the lower

left off-diagonal block contains the vertical edges, and the upper right off-diagonal block

contains the horizontal edges [64]. Once the wavelet compresses the image, a hierarchy

is formed by the coefficients. The wavelet process can be repeated on the low frequency

diagonal block and the result is a multiresolution hierarchical structure. The research in

this dissertation experiments with further compression of wavelet transforms which have a

somewhat hierarchical structure.

2.6 Overview

Rank structured matrices are coming to the forefront of research today and are copiously

studied by a variety of groups exploring many different approaches. These matrices are

significant in research for the interdisciplinary and complex problems they model, and the

43

exploitable data sparse characteristic that exists within the matrix. Confusion exists on

the nomenclature of the subclasses of rank structured matrices, and their representations.

The research in this dissertation deals with quasiseparable matrices explicitly. Some

parameterizations or representations have been developed which allow solver algorithms to

operate on the quasiseparable matrices with linear complexity. However, there are gaps in the

types of parameterizations which leaves opportunity for new approaches to representations

to be explored. Some research has been devoted to representation conversion which would

allow the flexibility of moving from one representation to another; thus providing access to

other algorithms. Furthermore, some of the parameterizations are costly to compute, and

only one of the parameterization algorithms is proven to be stable.

This research presents a parameter extraction algorithm of a hierarchical representation

for a quasiseparable matrix in Chapter 3. The computational complexity is of the hierarchical

extraction is O(nlog(n)) which is improved or comparable to other parameterizations. The

primary contribution of this research is the conversion of a hierarchical representation

of a quasiseparable matrix to a nested product representation. The first step to the

representation conversion is accomplished by way of the new row compression algorithm

which is detailed in Chapter 3. The second phase, in the conversion to nested product,

decomposes the hierarchical compressed matrix forming a UBV decomposition and is

elaborated on in Chapter 4. The conversion algorithm has computation cost of O(n2) and

is still comparable to other representationconversions.

The importance of the conversion, from hierarchical to nested product representation,

is to take advantage of the only proven stable solver presented in [3]. Once the hierarchical

representation has been converted to a nested decomposition, the research delves into the

adaptation of the decomposition for implementation into the two algorithms presented in [3],

the matrix-vector product and fast system solver discussed in Chapter 5. All the algorithms

in this research focus on increased numerical stability while maintaining comparable speed

44

to those found in other previous works. A full error analysis was presented in [3] and shows

the algorithms for nested products to be backward stable.

Two direct applications of the new algorithms are image restoration and compression.

The image restoration in this research continues the initial work of [66] by directly deblurring

an image, as opposed to approximating the image using iterative methods. The Toeplitz

matrices represent the blur operators, and can be decomposed into nested products. It is

well known that wavelet transforms have a hierarchical structure. In our experiments, an

image is first compressed with the DWT, and the resulting coefficients are then sent through

the new row compression algorithm to see if they can be compressed further. Currently, no

other work in image processing is using a hierarchical row compression or a nested product

solver approach to directly deblur or compress an image. The image processing applications

are discussed in Chapter 5.

45

CHAPTER 3

ROW COMPRESSION ALGORITHM

The row compression algorithm and nested product decomposition of an n × n

hierarchical representation of a rank structured matrix A, extend the compression and

nested product decomposition of a quasiseparable matrix represented by the matrix elements.

Once matrix A is decomposed into a nested product, then the proven stable matrix-vector

multiplier and solver algorithms from [3] can be applied. The algorithms for the UBV

decomposition in [3] carry out an O(n2) row compression and an O(n2) nested product

decomposition by applying small Householder transformations directly to the matrix.

There are some matrices where low rank factorizations of off-diagonal blocks can be

obtained directly by the truncation of a series, such as in the FMM from [48], or the

transformation of a Toeplitz to a Cauchy-like matrix in [51]. Hierarchical representations of

these types of matrices can be computed with far fewer operations than the O(n2) in [3]. The

conversion of a hierarchical representation to a nested product as presented in this research

is an attractive development in working with these types of rank structured matrices.

The row compression operates on matrix A in a bottom-up approach where the first

compression operates on the rows associated with the last diagonal block at the bottom

of matrix A, then sequentially moves up to the next diagonal block until it reaches the

top. The row compression introduces as many zero rows into the lower triangular part of

A as the ranks of the off-diagonal blocks will allow. There are two stages to the proposed

parameterization: row compression and conversion to nested product of a rank structured

matrix. An outline of the major components of the row compression algorithm follows:

46

Row Compression Algorithm

The algorithm input is the hierarchical representation of a rank structured matrix.

1. Perform a bottom-up recursive row compression, navigating the binary tree, and acting

on the rows associated with each diagonal block.

2. Form a basis from a collection of the factors to the left of each diagonal block, and let

the rank, s, of the basis determine the size of the repartition that adds extra nonzero

rows below the diagonal to the upper left of the current block.

3. Compute a sequence of Householder vectors to introduce zeros into the basis, and place

the vectors in a linked list.

4. Compress the lower left off-diagonal block region by applying the Householder

transformations.

5. Repartition any left off-diagonal blocks, where a boundary will be crossed in the next

compression, by merging the nonzero rows in the current blocks up into the blocks

above.

6. Update the diagonal block and the right off-diagonal blocks by applying the Householder

transformations, tag the top s nonzero rows for repartitioning, and repartition by

merging these tagged rows from the diagonal block and/or the off-diagonal blocks into

the block above.

The first and obvious step is to begin with a hierarchically partitioned and factored

rank structured matrix. The overarching, recursive compression algorithm controls the

interaction of the stages, and calls each procedure. The second stage is to collect the

factors associated with a subset of the selected rows of A, into which zeros are introduced.

Next follows the formation of a basis for the column space of the selected rows from the

collected factors. The basis stage applies Householder transformations to the collection

47

in order to introduce zeros into the basis. From this basis, a Householder linked list is

created to store the transformations applied to matrix A to compress the matrix. The

linked list is stored and then will be later applied to update upper right off-diagonal blocks

of matrix A when performing the nested product decomposition. Once zeros have been

introduced into the selected rows of A, the matrix must be repartitioned to have the same

overall structure but with different block sizes, taking into account the additional nonzero

rows below each diagonal block. After the left off-diagonal blocks are compressed, the

Householder transformations are applied to the diagonal and right off-diagonal blocks, and

they are also repartitioned to be consistent with the partitioning of the rest of the matrix.

The algorithm is then applied recursively to the leading principal submatrix. When the

algorithm reaches the top of the matrix, the row compression is complete, and the matrix

is ready for the nested product algorithm. Notations important in Chapter 3 are: 1) The

factors U(l,b), V(l,b),W(l,b), and X(l,b) represent the factorization of off-diagonal blocks in

matrix A. 2) The set Bk denotes the basis for the column space of the low rank blocks,

whereas B(l,b) represents an off-diagonal block of matrix A . 3) The diagonal block of A is

Di.

3.1 Hierarchical Representation of the Quasiseparable Matrix

Matrix A is an n× n rank structured matrix, and a hierarchical parameterization of A

must be given. A partition-factor procedure parameterizes the matrix forming a hierarchical

representation. The partition-factor procedure performs a 2 × 2 block partitioning of the

matrix, then does a low rank factoring of the off-diagonal blocks as shown in Equations 1.7

and 1.8. A binary tree is formed at the outset of the procedure. The parameterization

procedure is performed recursively on the diagonal blocks until a terminal block size is

reached. The terminal block size is determined by the rank of the off-diagonal blocks in

conjunction with the smallest size acceptable for use with low rank factoring. The maximum

size of the terminal blocks is set to mb ≤ 4 · rank at the start of the partition-factor

48

procedure, and is used as a parameter to determine depth, navigation, and termination

of methods within the row compression algorithm. Some specific notation for the recursive

block partitioning is necessary, and an example of this notation for the first level partitioning

is

A = A1,1 =

 A1,1;(11) A1,1;(12)

A1,1;(21) A1,1;(22)

 , (3.1)

where A1,1 represents level 1, block 1. The off-diagonal blocks A1,1;(12) and A1,1;(21) are

factored, and the diagonal blocks A1,1;(11) and A1,1;(22) continue to be partitioned. The

hierarchical representation of the rank structured matrix is constructed from the recursive

partitions and creates a bidirectional, binary tree. The binary tree is illustrated by a block

8× 8 example in Figure 3.1.

The binary tree describes how the rows and columns of A have been partitioned. The

tree has an overall depth, d, based on parameter mb, such that d = log2(
n
mb

)+1, where level 1

is the root of the tree and level d contains the leaves of the tree. The leaves of the tree contain

the full rank diagonal blocks Di where i = 1, . . . , 2d−1, and i denotes the position of the block

along the diagonal from the top-left to the bottom-right. The diagonal block Di is mi ×mi

where mi ≤ mb. The nodes in a single level of the binary tree are numbered consecutively

from left to right, and represent the number of blocks being partitioned at that level. The

nodes in a single level correspond to the off-diagonal blocks oriented along the sub and super

diagonal. The off-diagonal blocks are factored as U(l,b)V
T
(l,b). The factors U(l,b) and V(l,b)

have s columns where s is the rank of the off-diagonal block obtained from the singular

value decomposition with the singular values included in U(l,b). The columns of V(l,b) are

orthonormal, but those of U(l,b) are not. Each node of the binary tree stores comprehensive

information about the new hierarchical representation that can be easily accessed, modified,

and manipulated during the compression algorithm. The most crucial information is the

two pairs of factors for the upper and lower off-diagonal blocks of the larger diagonal block

that was partitioned. The upper right off-diagonal blocks have factors W(l,b) and X(l,b), and

lower left off-diagonal blocks have factors U(l,b) and V(l,b). The notation used to identify the

49

Figure 3.1. Binary tree of the hierarchical representation for a block 8 × 8 example of the
rank structured matrix A. The tree has 8 leaves (diagonal blocks) and a depth of 4. Each
node stores pointers to the parent and/or child nodes, indices for the matrix, and flags for
navigating the binary tree.

50

location of factors in the rank structured matrix is U(l,b) where l = 1, . . . , d represents the

level and b = 1, . . . , 2l−1 is the block and node number within that level.

Further explanation of the notation in Equation 3.1 continues with the two off-diagonal

blocks defined as A1,1;(12) = W(1,1)X
T
(1,1) and A1,1;(21) = U(1,1)V

T
(1,1), and the diagonal blocks

defined as A1,1;(11) = A2,1 and A1,1;(22) = A2,2. Thus,

A =

 A2,1 A1,1;(12)

A1,1;(21) A2,2

 =

 A2,1 W(1,1)X
T
(1,1)

U(1,1)V
T
(1,1) A2,2

 (3.2)

Continued partitioning of A yields

A =



 A3,1 W(2,1)X
T
(2,1)

U(2,1)V
T
(2,1) A3,2

 W(1,1)X
T
(1,1)

U(1,1)V
T
(1,1)

 A3,3 A2,2;(12)

U(2,2)V
T
(2,2) A3,4




.

Note that block A3,4 in the 8× 8 partitioning of A belongs to node 4 on level 3 of the binary

tree in Figure 3.1. In general terms, block Al,b is defined as node b at level l, and brings

about

Al,b =

 Al+1,2b−1 Al,b;(12)

Al,b;(21) Al+1,2b

 . (3.3)

Every off-diagonal block Al,b;(12) can be written as

Al,b;(12) = W(l,b)X
T
(l,b), (3.4)

Every off-diagonal block Al,b;(21) can be written as

Al,b;(21) = U(l,b)V
T
(l,b). (3.5)

51

Figure 3.2. The quasiseparable matrix after it is partitioned and factored into a hierarchical
representation. The Di diagonal blocks are full rank where i = 1, . . . , 2d−1 and d = log2(

n
mb

)+

1 is the depth of the binary tree. The off-diagonal blocks U(l,b)V
T
(l,b) and W(l,b)X

T
(l,b) are low

rank where l = 1, . . . , d denotes the level and b = 1, . . . , 2l−1 is the block number within that
level.

Another view of the hierarchical representation, recursive block partitioning corresponding

to the binary tree in Figure 3.1, is shown in Figure 3.2. The off-diagonal blocks in this view

of the representation are denoted by U(l,b), V(l,b),W(l,b), and X(l,b).

In Figure 3.2, the block containing U(3,2)V
T
(3,2) is located in the lower triangular part

of the matrix, block 2 in level 3, along the subdiagonal of matrix A. The off-diagonal

blocks, B(l,b), in the lower triangular region of the matrix B(l,b) = U(l,b)V
T
(l,b) and in the upper

triangular region of the matrix B(l,b) = W(l,b)X
T
(l,b).

52

The nodes contain information on parent and child nodes, right or left branching

down and up the tree, flags indicating whether it is root, leaf or branch in the tree, and

index information for location in original matrix A. In preparation for compression, data

structures are created noting which levels and off-diagonal blocks are directly associated with

a particular diagonal block. A basic list of the hierarchical information stored in a node is:

• Numeric representation of node level, size, and type (i.e. branch, leaf or root).

• The U, V,W,X factors of the off-diagonal blocks for the level

• Indices from the original matrix A.

• Boolean flags for the root, branch, leaf, left move, and right move in the binary tree.

• Pointers to the left, right and/or parent nodes of the binary tree.

• If the node is a leaf or diagonal block, then the original matrix data, diagonal block

number, and pairing of the level and path movement from the root to the leaf.

Examination of binary tree structure reveals that all the right branches from the root to a

specific leaf node, or diagonal block, correspond to the left adjacent off-diagonal blocks, in

the lower left part of the matrix, to the diagonal block.

3.2 Control Algorithm for Row Compression

The control algorithm for row compression begins at the last diagonal block, Dn/mb ,

at the bottom of matrix A. The design of the control algorithm is to recursively compress

the matrix in a sequential order from the bottom to the top. The algorithm uses Di as

the key for where the row compression operates in matrix A, and updates the linked list

of Householder vectors at each stage. The control algorithm feeds the binary tree into the

various procedures during compression to modify the data. Additional data structures are

created, for the branching levels and indices, from the information stored in the leaf node

53

for Di of the tree. These data structures direct which off-diagonal blocks are operated on in

forming a low rank block column space basis and the subsequent computation of Householder

vectors. Crucial to the control algorithm is navigating the binary tree from node to node,

and acting on the rows associated with each diagonal block throughout the matrix. Both

capabilities facilitate the compression and access to data in the tree.

In order to navigate between leaves, breadth movement, and between levels on a path

to a leaf, depth movement, a handful of traversal functions are utilized. All of the traversal

methods capitalize on the boolean flags in the nodes allowing the compression algorithm to

move within the binary tree from Di up to the root. The methods use a level-path pairing

data structure that stores the path of each diagonal block Di from the root to the leaf, pairing

the level with a right or left branch flag. Hence, navigating the tree can be done by accessing

the level-path pairing to move from the root back down the tree according the path of a

particular diagonal block, either Di−1 or Di+1. A more important traversal method is the

movement to different hierarchical levels in the tree stopping to access the factors along the

path towards a diagonal block. Again, the level-path pairing is used; however, the method

stops a specified levels, not at leaves, which requires tracking.

The control algorithm directs all the other major algorithms or procedures in compressing

matrix A. The row compression applies transformations from the left and is accomplished

in three stages: the left off-diagonal region with U(l,b) and V(l,b) factors, the diagonal block,

and the right off-diagonal region with factors W(l,b) and X(l,b). The single most difficult

piece of the compression is repartitioning the affected blocks at the end of each compression

stage. Repartitioning is the removal of nonzero rows from the already compressed area, and

merging these rows up above into the area yet to be compressed. This requires intricate

manipulation of the binary tree and the data structures.

54

3.3 Collection of Factors and Formation of Basis

Once the rank structured matrix is hierarchically partitioned and factored, the factors

for a region associated with diagonal block, Di, and located in the off-diagonal blocks to

the left of Di are collected to form a basis for the column space of the low rank blocks

currently being compressed. This signals the preparatory phase of the row compression

algorithm. The selection of the off-diagonal blocks associated with a specific diagonal block,

Di, for compression, and their corresponding U(l,b) and V(l,b) factors, is determined by two

equivalent characteristics. The first characteristic is that the off-diagonal block lie strictly

to the left of the diagonal block, and the second one is that the off-diagonal block is a right

branch in the binary tree path towards the diagonal block to the right of the rows being

compressed. The column space for the basis is determined by U(l,b). The rows in Di are

identified, and determine which rows in each U(l,b) factor of the off-diagonal blocks will be in

the column space. As the off-diagonal blocks are selected, only the pertinent rows in each

U(l,b) are collected. The possible number of rows to be acted on is z where mb ≤ z ≤ 2×mb.

The column span used in the collection region is based on the target Di, and all columns

to the left of Di. These columns span across different levels of the partitioned, factored

hierarchical representation of the quasiseparable matrix. Therefore, all columns and rows of

V are collected. Hence, the size of the collection is just a few rows tall and across all columns

strictly to the left of the diagonal block. We will refer to the entire region as CollectionDi

where i refers to the index of the diagonal block. The collection of factors for D7 found in

the block 8× 8 example is shown in Figure 3.3.

The collection method examines the branching from path information stored in Di.

The method loops through each level from root to leaf, and only collects the U(l,b) and V(l,b)

factors of right branches. As the factors are collected, they are placed in a secondary smaller

data structure which is passed into the procedure that forms the basis. The collection of

factors data structure is illustrated in Figure 3.4 for the region associated with diagonal

block D7 and is referred to as CollectionD7 . The D7 collection selects U and V factors only

55

Figure 3.3. The figure highlights the collection of factors for diagonal block D7,
CollectionD7 , in the hierarchical representation of the matrix.

from levels 1 and 2 of the tree. These two levels are where right branches occur in the binary

tree along the path from the root to diagonal block D7 as seen in Figure 3.1.

In general, a basis B is a set of linearly independent vectors that span a given subspace.

Every element in the subspace is expressed uniquely as a finite linear combination of basis

vectors. Forming a basis, Bi, for the column space of the rows in each CollectionDi eliminates

extra multiplication operations in computing the Householder vectors of the much larger

overall matrix A. The basis formation method operates on the collection of factors data

structure as illustrated in Figure 3.4. In Figure 3.4, the rank of the lower triangular blocks

is s. Thus, the number of columns in each factor, U(l,b) and V(l,b), are based on the rank s.

This basis formation procedure isolates the V(l,b) column factors. The V(l,b) column factors

create a tall skinny matrix.

56

Figure 3.4. The factor data structure for CollectionD7 where U(1,1) and U(2,2) are mb × s;
and V(1,1) is n

2
× r, and V(2,2) is n

4
× s; and s represents the rank of the off-diagonal blocks.

An LQ factorization method is applied to each V T
(l,b) matrix from a single level in

CollectionDi to reduce the size of each V T
(l,b). The LQ factorization is a transposed variant of

the QR decomposition, and it is obtained from Householder transformations applied directly

to V T
(l,b). The LQ factorization of V T

(l,b) yields a reduced matrix which is then transposed into

in lower triangular block form.

Ṽ T
(l,b) =

[
V T
(l,b)

]
P =

[
L(l,b) 0

]
. (3.6)

A subblock of the basis is thus formed by multiplying U(l,b) times L(l,b) as follows,

[
U(l,b) · L(l,b) 0

]
.

An intermediate matrix B is formed by appending the products of select rows of each U and

reduced V from the off-diagonal blocks beside each other. This intermediate basis formation

57

of CollectionD7 , from Figure 3.4, is

B =
[
U(1,1) · L(1,1) 0 U(2,2) · L(2,2) 0

]
. (3.7)

An efficient SVD factorization operates on the intermediate matrix B, for example

B = UΣV T (refer to Section 1.1). The efficient SVD first performs a QR decomposition of

B to obtain R, and stores the sequence of Householder vectors in a linked list. Next, R

is decomposed with a regular SVD algorithm where the rank of R, r, is determined by the

number singular values larger than a given tolerance level. The orthogonal matrix U , from

the SVD of R, is reduced to only the first r columns, and Ũ = U(:, 1 : r). The final step is

to apply the Householder transformations from the linked list to Ũ producing a basis, Bi,

for CollectionDi . The basis formation method returns the basis Bi and basis rank r.

3.4 Householder Transformation Computation from Basis

When dealing with a tall matrix A that ism×n wherem ≥ n, and itsQR decomposition,

explicitly forming Q requires storing m2 elements. It is faster to store only the Householder

transformations, since only n Householder vectors are required. The Householder vectors

computed from the reduced matrix basis, Bi, are equivalent to those computed from the

larger submatrix CollectionDi and the original matrix A. In this procedure, a Householder

bidirectional linked list data structure, QT
i , is created which stores the Householder vectors

and offsets for the location of submatrix CollectionDi . Note that i refers to z number of rows

in diagonal block, Di, and indicates to which rows the Householder transformation is to be

applied. Additionally, other pertinent information is saved that is necessary in subsequent

updating and compression procedures.

The procedure for computing the sequence of Householder vectors begins with Bi, and is

essentially performing the QR factorization of Bi, which was introduced in Section 1.2. The

recursive procedure introduces zeros in to each successive column of the matrix, then passes in

58

the next smaller submatrix. The Wilkinson diagram below shows how the procedure operates

on an example of a basis that is 6× 4 with a sequence of four Householder transformations,

Bi =



× × × ×

⊗1 × × ×

⊗1 ⊗2 × ×

⊗1 ⊗2 ⊗3 ×

⊗1 ⊗2 ⊗3 ⊗4

⊗1 ⊗2 ⊗3 ⊗4


.

The factorization is

Bi = Q

 R

0

 =
[
Q1 Q2

] R

0

 . (3.8)

The column space of Q1 is equivalent to the basis, R(Q1) = R(B). The sequence of four

Householder transformations, P , form Q where Q = P1P2P3P4. It follows that

Q1 = Q

 I

0

 = P1P2P3P4

 I

0

 . (3.9)

For the purposes of the compression algorithm, each Householder vector is inserted into

the tail of the linked list as it is computed. The linked list is represented by QT
i where i

is the index of diagonal block Di, and operates on the rows from Di. The linked list itself

marks the head and tail of list to allow for traversing the list both forwards or backwards.

When the Householder vectors are applied from the left of submatrix CollectionDi , zeros are

introduced into rows of the off-diagonal blocks to the left of Di. The diagonal block Di,

although unaffected at this point, is dense and potentially full rank. Thus, the computed

Householder linked list from the smaller basis matrix Bi will compress the rows of matrix

A corresponding to CollectionDi . It is imperative to track the Householder linked lists, QT
i ,

for each CollectionDi , and create a comprehensive Householder data structure, QT
i , for use

59

in the compression stages of the control algorithm which actually apply the Householder to

A.

After QT
i is returned from the Householder computation procedure to the control

algorithm, the indices of the diagonal block Di are recalculated based on rank r from basis

Bi. The control algorithm then invokes a traversal method to access node Di−1, and prepares

to call the first of the three compression stages.

3.5 Compression of the Lower Left

The compression of the off-diagonal blocks in the lower left of the hierarchical

representation begins with the U(l,b) factors in all right branch nodes corresponding to leaf

Di. The Householder transformation QT
i , obtained from the basis of the factors with respect

to Di, will introduce zeros into each U(l,b) factor directly to the left of Di. Thus, the process

of Householder transformations quickly introduces zeros into the off-diagonal blocks of the

hierarchical representation of the matrix. Figure 3.5 is a diagram of a block 8×8 hierarchical

factored matrix prior to compression. Let Uf represent a factor in a right branch in the path

to Di, and assume Uf has size mf × kf where kf ≤ mf . When Uf is multiplied by the

Householder transformation,

Uf = Qi

 Ũf

0

 (3.10)

then the last mf − kf rows of the off-diagonal block become zero. An illustration of the

first and second compression of the block 8× 8 introducing zeros into the off-diagonal region

directly to the left of D8 and D7 is shown in Figure 3.6.

The compression of the U(l,b) and V(l,b) factors in the off-diagonal blocks to the left of

Di is the most straight forward of the three stages in compression and repartitioning. The

compression of the matrix is done sequentially beginning at the bottom of the matrix and

moving up. It is important to note that after every compression there is a repartitioning of

the last left off-diagonal block involved in the compression. Therefore, the algorithm must

60

Figure 3.5. Diagram of a block 8 × 8 example displaying the factors in a hierarchical
representation of a rank structured matrix. The shaded rectangles represent the nonzero
portions of the factors in the off-diagonal blocks and the dense diagonal blocks.

tag the nonzero portion of the factors to be repartitioned. The last right branch node, or

off-diagonal block closest to Di, in the current compression will have the first s rows in U

tagged for repartitioning where s is the rank of the basis formed from CollectionDi .

Let B(q,k) be the left off-diagonal block closest to Di where q is the level and k is the

block number. Repartitioning will occur at level q. The tagged part of the U(q,k) factor is

referred to as Ur, and is what remains of factor U(q,k). Factor U(q,k) has zeros introduced

into the bottom of the factor, so essentially the top s rows of U(q,k) are nonzero. At level

q, all of V(q,k) is tagged for repartitioning, and is denoted by Vr. Off-diagonal block B(q,k)

contains both Ur and Vr. In Figure 3.6(b), the dark shaded part of block U(3,4)V
T
(3,4) is

tagged. Likewise, in Figure 3.6(d), the dark shaded part of block U(2,2)V
T
(2,2) is tagged. Both

dark shaded tagged portions are used in repartitioning before the next compression. The

repartitioning of blocks is presented the next section.

61

(a) The yellow highlights the area of the first
compression. The Householder transformation
QT

(1,8), first compression on 8th block, is applied to
the area in yellow.

(b) The white portion of the rectangles is where
zeros have been introduced. The dark shaded
portions are where QT

(1,8) has been applied. The
light shaded areas are nonzero portions yet to be
compressed.

(c) The second region in the sequence of
compressions is highlighted. The transformation
QT

(2,7) represents the second compression on 7th
block. This region has been repartitioned prior to
the compression.

(d) The dark shaded portions are where the
Householder transformations have been applied.

Figure 3.6. An illustration for the compression of the lower left off-diagonal blocks.

62

3.6 Repartition Blocks

The repartition algorithm is comprised of a factor selection procedure and a merge

procedure. The merge procedure combines two pairs of factors into a single pair, and has

a detailed mathematical explanation presented later in this section. The U(l,b)V(l,b) factor

selection procedure begins with the tagged pair of factors, Ur and Vr, found in off-diagonal

block B(q,k) associated with diagonal block Di where q represents the level and k is the block

number. The selection procedure moves up to the Di−1 diagonal block region locating the

block(s) which lay directly above the off-diagonal block B(q,k). The columns of block B(q,k)

will span one diagonal block Di−1, or span Di−1 plus additional off-diagonal blocks above

B(q,k). If block B(q,k) spans only block Di−1, then UrV
T
r is simply appended to the bottom

of Di−1 as follows

D̃i−1 =

 Di−1

UrV
T
r

 . (3.11)

If block B(q,k) spans multiple blocks directly above it, then factor Vr is partitioned to

align with the columns in the blocks above. In the Di−1 diagonal block region, suppose blocks

U(l,b)V
T
(l,b) are directly above B(q,k) where l = q + 1, . . . , d; q is the level of the off-diagonal

block below; and d is the depth of the tree. Additionally, b is the block number at level l of

a right branch in the path to diagonal block Di−1. Given that V T
ri

is a subblock of V T
r such

that the columns align with the off-diagonal block above, and i = 1, . . . , d− q. Thus,

 U(r+1,b)V
T
(r+1,b) · · · U(d,c)V

T
(d,c) Di−1

UrV
T
r

 =

 U(r+1,b)V
T
(r+1,b) · · · U(d,c)V

T
(d,c) Di−1

UrV
T
r1

· · · UrV
T
rd−q−1

UrV
T
rd−q

 .
(3.12)

A diagram of Vr being partitioned in the selection procedure is shown in Figure 3.7(a). In

Figure 3.7(a), U(1,1)V
T
(1,1) is UrV

T
r , and is being merged into blocks U(2,1)V

T
(2,1), U(3,2)V

T
(3,2), and D4.

The columns of V T
r1

align with V T
(2,1), the columns of V T

r2
align with V T

(3,2), and the columns

of V T
r3

align with D4.

63

(a) The yellow highlights the area for
repartitioning after compressing the left
off-diagonal blocks associated with diagonal
block D5. The dark shaded factors on the left
are to be merged above. Factor V T

r is partitioned
into three portions to merge with D4 and the two
off-diagonal blocks above.

(b) The dark shaded portions to the left of D5

have been merged. It is easy to see where
UrV

T
r1 , UrV

T
r2 , and UrV

T
r3 are now merged above

into U2,1V
T
2,1, U3,2V

T
3,2, and D4 respectively. All

affected blocks are now repartitioned.

Figure 3.7. Repartitioning of the left off-diagonal block closest to D5.

The most important procedure to the repartitioning of the blocks is the vertical merge

of factored blocks together into a single block represented by one pair of factors. Given two

factored blocks B1 and B2 such that B1 is m1 × n and B2 is m2 × n, and B1 is directly

above B2 as shown below  B1

B2

 =

 U1V
T
1

U2V
T
2

 . (3.13)

We assume that the U ’s have orthogonal columns, and write

 U1V
T
1

U2V
T
2

 =

 U1 0

0 U2

 V T
1

V T
2

 (3.14)

64

where the U factor matrix is (m1 +m2)×s1 and the V factor matrix is (m1 +m2)×s2. Next,

the V factor matrix is reduced by a series of Householder transformations which results in

 V T
1

V T
2

Q =
[
L 0

]
.

Here, L is s2 × s2, and Q represents the Householder transformation of the V factor

matrix. Then by using the SVD, L is broken down so that a rank decision can be made.

Thus

L = UL

 ΣL 0

0 0

V T
L (3.15)

where UL is s2 × s2, ΣL is r × r, and UL is s2 × s2. From Equations 3.14 and 3.15, one

obtains  U1V
T
1

U2V
T
2

 =

 U1 0

0 U2

 UL

 ΣL 0

0 0

V T
L 0

QT. (3.16)

Lastly, the U1 and U2 are combined to form UM , and VM is formed from ΣL, V
T
L , and QT

seen below

UMV
T
M =

  U1 0

0 U2

 UL

 I

0

 [ΣL

[
I 0

] [
V T
L 0

]
QT

]
. (3.17)

An example of this is portrayed in Figure 3.7(b) where UrV
T
r is merged into blocks

U(2,1)V
T
(2,1), U(3,2)V

T
(3,2), and D4. The example in Figure 3.7(b) shows how the block sizes

have been repartitioned, and from Equations 3.12 and 3.17, the merged expression is

[
U(M2,1)V

T
(M2,1) U(M3,2)V

T
(M3,2) DM4

]
=

 U(2,1)V
T
(2,1) U(3,2)V

T
(3,2) D4

UrV
T
r1

UrV
T
r2

UrV
T
r3

 .

65

This merge procedure is used again in repartitioning the diagonal and right off-diagonal

blocks in a Di region.

3.7 Update and Repartitioning Upper Right

Once the lower left off-diagonal blocks are compressed and repartitioned, the Householder

transformation is applied to diagonal block Di, and to all right off-diagonal blocks W(l,b)X
T
(l,b).

In the previous section, block B(q,k) is the left off-diagonal block that is repartitioned where

q is the level and k is the block number. When Di is multiplied by the Householder

transformation, it yields D̂i = QT
i Di. Since the diagonal block is full rank, there is no increase

in rank and the block remains dense. Next, the method loops through each level from leaf to

root, and all left branches in the path from Di to the root have their W(l,b) factor multiplied

by the Householder transformation. The application of Householder transformations to the

right off-diagonal blocks is much the same as to D̂i. The W factor becomes Ŵ(l,b) = QT
i W(l,b),

and the block in turn is Ŵ(l,b)X
T
(l,b) = QT

i W(l,b)X
T
(l,b). The upper right off-diagonal blocks are

of low rank, and there will be some increase in the ranks after Householder transformation are

applied. In Figure 3.6(c), the pale shaded areas have not had Householder transformations

applied to them. However, in Figure 3.6(d), the dark shaded areas illustrate where the

Householder transformations were applied in blocks D̂7 and Ŵ(3,4)X
T
(3,4).

Now begins the DWX repartitioning procedure for the diagonal and right off-diagonal

blocks which is distinctly different from the U(l,b)V(l,b) selection for the lower left off-diagonal

blocks. Diagonal block D̂i will have the first s rows tagged for repartitioning and housed

in Dr, where s is the rank from the basis in Section 3.3. If QT
i is applied to the first mb

rows of any W(l,b) factors to the right of Di, then the first s rows of Ŵ(l,b) are tagged for

repartitioning in Wri where i = 1, . . . , d−q. Therefore, repartitioning will involve only Dr, or

Dr plus Wr1 , . . . ,Wrd−q blocks. If only block Dr is to be repartitioned, then Dr is vertically

merged with XT
(q,k). The size of I is s×s and amends with the W(q,k) factor. This process will

maintain the orthogonality of the W factors. Then the dense block Dr is vertically merged

66

with XT
(q,k) where W(q,k) and XT

(q,k) are from the Di−1 region above. Thus,

W̃(q,k)X̃
T
(q,k) =

 W(q,k) 0

0 I

 XT
(q,k)

Dr

 . (3.18)

In the case where multiple blocks are to be repartitioned directly above, then Dr and Wr1X
T
r1

to Wrd−qX
T
rd−q

are appended together forming a single block before merging. A new D̃r is

created such that

D̃r =
[
Dr Wr1X

T
r1
· · · Wrd−qX

T
rd−q

]
.

The combined block D̃r is vertically merged with W(q,k)X
T
(q,k) in the Di−1 region above.

Similar to Equation 3.18, we see that

W̃(q,k)X̃
T
(q,k) =

 W(q,k)X
T
(q,k)

I D̃T
r

 .
A diagram of D5,W(3,3)X

T
(3,3), and W(2,2)X

T
(2,2) being repartitioned up into W(1,1)X

T
(1,1)

is shown in Figure 3.8. On the left, Figure 3.8(a) has the tagged area for merging highlighted

in yellow. In this example,

D̃r =
[
Dr Wr1X

T
r1

Wr2X
T
r2

]
where Wr1X

T
r1

is in block W(3,3)X
T
(3,3) and Wr2X

T
r2

is in block W(2,2)X
T
(2,2). The merge of these

blocks into W(1,1)X
T
(1,1) above, results in

W̃(1,1)X̃
T
(1,1) =

 W(1,1) 0

0 I

 XT
(1,1)

Dr

 .
Figure 3.8(b) displays the completed repartitioning of the two areas. The dark shaded areas

are where Householder transformations have been applied, the pale shaded regions have not

67

(a) The yellow highlights the area for
repartitioning after QT

5 has been applied to
blocks D̂5, Ŵ(3,3)X

T
(3,3), and Ŵ(2,2)X

T
(2,2). The

dark shaded factors on the right are to be merged
above. Factors Dr,Wr1X

T
r1 , and Wr2X

T
r2 joined

together to form D̃r.

(b) The dark shaded portions to the right of
and including D5 have been merged. It is easy
to see where I and D̃T

r are now merged above
into W(1,1)X

T
(1,1). All affected blocks are now

repartitioned.

Figure 3.8. Repartitioning of D̂5, Ŵ(3,3)X
T
(3,3), and Ŵ(2,2)X

T
(2,2) up into W(1,1)X

T
(1,1).

been compressed, and the white blocks have been reduced to zero. Figure 3.9 displays the

matrix before, then after the row compression and repartitioning.

3.8 Summary of Row Compression Algorithm

The proposed row compression algorithm of the hierarchical representation of rank

structured matrices contains many intricate and some interdependent algorithms. The

encompassing control algorithm directs the flow of and interaction between the various data

structures and procedures. It is a given that the row compression algorithms operates on a

hierarchical representation of a rank structured matrix with a bidirectional binary tree and

factored off-diagonal blocks. The control algorithm moves to last diagonal block to prepare

68

Figure 3.9. Diagram of a block 8 × 8 example displaying the hierarchical representation
of a rank structured matrix before and after the row compression and repartitioning. The
left matrix is prior to compression and is used for comparison to the compressed matrix
on the right. The matrix on the right is compressed with the application of Householder
transformations, QT

i where i = 8, . . . , 2. All lower left off-diagonal blocks are white, and zeros
were introduced into these blocks. The light shaded areas represent the nonzero portions of
the factors in the off-diagonal blocks and the dense diagonal blocks. The dark shaded areas
are where Householder transformations were applied and repartitioning took place.

for recursive compression. The preliminary compression stage begins with traversing the

binary tree and locating the left off-diagonal blocks associated with diagonal block Di. The

collection of factors procedure then accesses the nodes pulling the U(l,b) and V(l,b) factors

to produce a new data structure CollectionDi required for the basis. The basis formation

procedure manipulates components of CollectionDi to yield a basis, Bi, that is a subset

of the larger vector space. Householder vectors are computed from the basis, Bi, using

QR factorization. The Householder transformation, QT
i , is inserted into the bidirectional

linked list data structure for compression of the larger off-diagonal blocks. At this point,

compression of the left off-diagonal blocks can take place.

69

The goal is to efficiently compress the left off-diagonal blocks in the diagonal block Di

region. Given off-diagonal block B(q,k), at level q and block number k, containing factor

U(q,k). Compressing U(q,k) is an efficient way to compress block B(q,k). Therefore, U(q,k) is

multiplied by QT
i which results in

QT
i U(q,k) =

 Ũ(q,k)

0

 .
Once all the U(l,b) factors in the Di region are compressed, then the last U(l,b) and V(l,b)

factors adjacent to Di are repartitioned. The repartition procedure is complex and involves

merging two pairs of factors together. The merge procedure uses an LQ factorization and

implements an efficient SVD to accomplish the merge. The columns of V T
(l,b) are partitioned to

align with the blocks above, then the tagged part of Ur and subblock V T
Ri

are merged into the

off-diagonal and diagonal blocks that lay directly above. The last phase of compression is to

apply the Householder transformations to diagonal block Di and the right off-diagonal blocks

W(q,k)X
T
(q,k). The rank of Di does not increase, and the ranks of the right off-diagonal blocks

may see some bounded increase. After Di and the right off-diagonal blocks are updated by

Householder transformations, they are also repartitioned. However, the tagged parts of Di

and any additional W(q,k)X
T
(q,k) blocks are appended to form a single block. The now single

pair of factors is merged with the right off-diagonal block above.

The compression algorithm is recursive and continues until the second diagonal block,

D2, is reached, and the algorithm terminates after completing that compression. The

end result is that the left off-diagonal blocks are compressed. The algorithm returns the

compressed matrix C, and the Householder vector linked list. The quasiseparable matrix A

has been row compressed to form A = QC, and C is ready for decomposition by the nested

product algorithm in Chapter 4.

70

CHAPTER 4

NESTED PRODUCT DECOMPOSITION OF A RANK STRUCTURED

MATRIX

The row compression algorithm in Chapter 3 introduces zeros in the lower left

off-diagonal blocks of matrix A in a sequential sweep up from the bottom of the matrix.

Given the row compression A = QC in Chapter 3 where A is a matrix, Q is a sequence

orthogonal transformations, and C is the row compression of A. The resulting off-diagonal

block-compressed matrix C, shown in Figure 4.1, is used to extend the new sparse orthogonal

nested product decomposition for quasiseparable matrices presented in the paper by Bella,

Olshevsky and Stewart [3]. There is a distinct difference between the factorization of A that

is a product of matrices, A = UBV T where B is banded and lower triangular, and the nested

product decomposition of A that is a representation using simple matrices in combination

to form sums and products.

The nested UBV decomposition by Bella, Olshevsky and Stewart begins with a matrix C

that has a banded structure in the lower triangular part, and a quasiseparable structure in the

upper triangular part. The decomposition creates two sequences of unitary transformations

Ukj and Vkj , and two sequences of matrices Bkj and Dkj . A single stage in the nested

decomposition has the components in the above sequences form the equation

Dkj+1
= UT

kj
DkjVkj −Bkj .

The UBV decomposition of C is

C = Uk0
(
Bk0 + Uk1

(
Bk1 + . . .+ Ukp−1

(
Bkp−1 +Dkp

)
. . .
))
V T
kp−1

V T
k1
V T
k0

(4.1)

71

Figure 4.1. Diagram of a block 8× 8 example of compressed matrix C from the hierarchical
representation of a rank structured matrix A where A = QC, and Q represents the sequence
of compression transformations. White off-diagonal blocks are where zeros have been
introduced. Shaded blocks represent the nonzero blocks either as factors or full rank dense
blocks.

where 0 = k0 < k1 < . . . < kp is an increasing sequence. The matrices Bkj are a sequence of

banded lower triangular matrices with only a few nonzero columns, and have form

Bkj =


Ikj×kj 0 0

0 B
(kj)
kj ,11

0

0 B
(kj)
kj ,21

0n−dj−kj×n−dj−kj

 (4.2)

72

for j = 1, . . . , p. The matrix Dkp is a sequence of zero-bordered matrices, and have the form

Dkj =

 0kjp×kjp 0

0 D
(kjp)

kjp ,22

 (4.3)

for j = 1, . . . , p such that the superscript (kjp) indicates the size of the leading principal

submatrix, and the small size ofD
(kjp)

kjp ,22
makes exploiting the rank structure unnecessary. This

is the point at which the algorithm terminates. Both Ukj and Vkj sequences of orthogonal

transformations of the form

Ukj =


Ikj 0 0

0 U
(kj)
kj ,22

0

0 0 In−kj−δj

 , and Vkj =


Ikj 0 0

0 V
(kj)
kj ,22

0

0 0 In−kj−δj

 (4.4)

for j = 1, . . . , p such that U
(kj)
kj ,22

and V
(kj)
kj ,22

are δj × δj. The pattern of two-sided unitary

transformations exploited in [3] were first used to take advantage of rank structured matrices

in a succession of papers [13, 18, 60]. A key feature of the decomposition in [3] has the row

compression introducing a band structure in the lower triangular part of A, which results

in a sparse orthogonal decomposition of A. The nested UBV decomposition is stable, and

can be computed from a general rank structured matrix using O(n2) operations, which is

comparable to the computation of a generator representation of a quasiseparable matrix

represented by n2 matrix elements.

The connection between [3] and our work is that both begin with a rank structured

matrix A and use compression methods to form A = QC. Our work, however, starts with a

hierarchical representation of A, then via a row compression conversion algorithm transforms

C into a nested UBV decomposition. Whereas in [3], the row compression forms the nested

product representation directly from A. Once half of the decomposition is done with the

computation of matrix C, the next stage is to perform a sweep down the matrix to complete

the nested UBV decomposition operating on blocks of data.

73

The row compression algorithm methods and procedures, outlined in Chapter 3, are

amended to accommodate direction, orientation, and region changes required to compute a

nested UBV decomposition. An outline of the major procedures in the hierarchical UBV

decomposition algorithm are:

Hierarchical Nested UBV Decomposition Algorithm

1. Perform a top-down sequential UBV decomposition by acting on the rows associated

with each diagonal block, and all columns to the right of and including the diagonal

block.

2. Form a basis from a collection of the W and X factors to the right of each diagonal

block, and let the rank, s, of the basis determine the size of the repartition.

3. Repartition the right off-diagonal blocks that fall directly below the diagonal block,

and merge the nonzero rows into the blocks below.

4. Update the diagonal block by applying the Householder transformations to the diagonal

block from the left.

5. Compute an LQ factorization of the diagonal block, forming B and V of the nested

product.

The result, after applying the hierarchical UBV decomposition algorithm to C, is a

nested product representation of the quasiseparable matrix [3]. The matrix,

B = Bk1 + · · ·+Bkp−1 +Dkp ,

74

will look like a banded diagonal matrix [76] similar to



× 0 0 0 0 0 0

× × 0 0 0 0 0

× × × 0 0 0 0

0 0 0 × 0 0 0

0 0 0 × × 0 0

0 0 0 0 0 × 0

0 0 0 0 0 × ×


.

The main difference between the UBV decomposition in [3] and the one presented here

is that we start with a hierarchical representation and entire blocks are decomposed into

the nested product representation, not just a single vector at a time. The nested product

notation is somewhat the same, and is amended to reflect that blocks are being transformed

instead of vectors. Two important notation clarifications for Chapter 4 must be made:

1) The factors U(l,b) and V(l,b) represent the factorization of lower off-diagonal blocks in

compressed matrix C, and Uk and Vk indicate sequence of Householder transformations in

nested UBV decomposition. 2) The set Bk denotes the basis for the column space of the low

rank blocks, whereas Bk represents the lower triangular diagonal block in the nested UBV

decomposition.

4.1 Algorithms for Nested UBV Decomposition

The UBV nested product algorithm begins with a hierarchical representation of the

compressed matrix C that is obtained from the hierarchically partitioned quasiseparable

matrix A, as seen in Figure 4.1. The control algorithm utilizes the binary tree structure of

C and creates a new linked list UBV data structure. Each node of the UBV comprehensive

data structure will house each of the Ui and Vi sequences of orthogonal transformations, and

the Bi lower triangular matrix associated with the corresponding diagonal block, Di. The

75

Figure 4.2. Illustration of a block 8 × 8 nested product decomposition. From left to right,
the shaded areas in each of the decompositions in the sequence are nested within the current
decomposition of the diagonal block.

same binary tree traversal routines that are implemented in the row compression algorithm

are also used in the nested product algorithm to access data in the tree. The nested product

control algorithm is recursive, and at each recursive call adds a node to the UBV data

structure. These navigation methods are presented in detail in Section 3.2.

The control algorithm for the nested product decomposition starts at the first diagonal

block, D1, and recursively decomposes matrix C until it reaches the last diagonal block.

This movement creates a nesting effect where everything to the right and below the current

diagonal block, Di, is encapsulated in a hierarchical parameterization as seen in Figure 4.2.

Everything in the upper left is represented by a banded matrix B. The algorithm uses Di

as the key for where the UBV decomposition operates on matrix C. The decomposition

acts on the rows in and to the right of each Di and forms a basis from the off-diagonal

blocks to the right of each diagonal block. As the algorithm navigates through the binary

tree for C, it introduces zeros into the off-diagonal blocks to the right of Di. All elements

directly below the diagonal block already contain zeros from the previous row compression

algorithm. The decomposition is accomplished in two stages: the introduction of zeros into

the right off-diagonal region with W(l,b) and X(l,b) factors using a transformation Uk, followed

76

by the reduction of the diagonal block into a lower triangular block using transformation

Vk. Repartitioning does occur in the blocks between the two stages, and the processes to

repartition blocks are the same as described in Section 3.6.

The selection of the off-diagonal blocks for the basis formation associated with diagonal

block Di is determined by two equivalent characteristics: the off-diagonal block must lie

strictly to the right of Di, and the off-diagonal block should be a left branch in the binary

tree path for Di. The column space for the basis is determined by the appropriate W(l,b). The

rows in Di are identified, and determine which rows in each W(l,b) factor of the off-diagonal

blocks will be in the column space. As the off-diagonal blocks are selected, only the pertinent

rows in each W are collected. All columns and rows of each X(l,b) are collected. Hence, the

size of the collection is just a few rows tall and across all columns strictly to the left of the

diagonal block. The collection of factors for D1, both in the matrix and as the CollectionD1 ,

are illustrated in the block 8× 8 example in Figure 4.3.

The basis Bi is a set of linearly independent vectors which span the given subspace.

The basis procedure is exactly the same as presented in Section 3.3 where Householder

transformations are utilized in an LQ factorization of the CollectionD1 . The number of

columns in each factor, W(l,b) and X(l,b), are based on the rank of the lower triangular blocks.

This basis formation procedure isolates the W(l,b) column factors that are relevant to

determining the column space of the region of C into which zeros are to be introduced.

An LQ factorization method is applied to each X(l,b) factor in CollectionDi to reduce the size

of each X(l,b). The LQ factorization of X(l,b) yields a reduced matrix which is then transposed

into lower triangular block form

B1 =
[
W(3,1) · L(3,1) 0 W(2,1) · L(2,1) 0 W(1,1) · L(1,1) 0

]
. (4.5)

.

An efficient SVD factorization operates on the intermediate matrix for the basis by first

performing a QR decomposition in order to obtain the factor R. Figure 4.3(b) displays

77

(a) The 8 × 8 block example highlights the
collection of factors for diagonal block D1,
CollectionD1 , in the compressed matrix C.

(b) The factor data structure in the 8 × 8 block
example for CollectionD1 of the off-diagonal blocks
W(3,1), X(3,1),W(2,1), X(2,1),W(1,1), and X(1,1).

Figure 4.3. Illustration of a block 8× 8 formation of basis Bi from the W(l,b) and X(l,b)

factors associated with diagonal block Di.

CollectionD1 that is used to compute the basis B1. The sequence of Householder vectors

from Q are stored in a linked list. The orthogonal matrix U , from the SVD of R, is reduced

to only the first r columns, where r is the rank the R, resulting in Ũ = U(:, 1 : r). The

final step is to apply the Householder transformations from the linked list to Ũ , producing

a basis, Bi, for CollectionDi . The basis procedure method returns the basis, Bi, and basis

rank, s. The basis and rank are used to compute unitary transformations that introduce

zeros in the upper right off-diagonal blocks of the larger matrix C.

4.2 Forming U of UBV and Reducing Upper Right

The basis Bi is a reduced form of a collection of factors associated with each diagonal

block Di discussed in Section 4.1. The Householder vectors computed from the reduced

matrix basis, Bi, are equivalent to those computed from the larger submatrix CollectionDi

78

and the compressed matrix C. The sequence of Householder vectors computed from Bi

forms the Uk from the UBV decomposition. A new nested product class data structure

is created to harbor each of the three data structures in the nested UBV decomposition.

In this stage, the sequence of Householder vectors are stored in a bidirectional linked list

data structure, UT
i , along with the offsets for the location of submatrix CollectionDi . The

procedure for computing the sequence of Householder vectors performs the QR factorization

of Bi, and is detailed in Section 3.4. However, the QR factorization places zeros in the lower

left,

Bi = Q

 R

0

 ,
and the nested product requires zeros placed in the upper right.

If the basis Bi is flipped upside down prior to computing the Householder vectors, then

the unitary transformations are essentially introducing zeros in the top rows of the basis.

Thus, the permutation, P , is applied to the basis, Bi, resulting in

PBi = B̆i, PB̆i = Bi, and PP = I

where B̆i is the flipped matrix Bi. The QR factorization of B̆i in this section is notated as

B̆i = Ŭi

 R

0

 = Ŭi,1Ŭi,2 . . . Ŭi,k

 R

0

 ,
where the sequence of Householder transformations is represented by Ŭi = Ŭi,1Ŭi,2 . . . Ŭi,k

such that i refers to the diagonal block Di and 1 ≤ k ≤ rank(Bi). Next, each Householder

vector is permuted, flipping them upside down, producing

(PŬi,1P)(PŬi,2P) . . . (PŬi,kP) = PUi,1Ui,2 . . . Ui,kP.

Hence, when the Householder sequence, Ui, is applied to Bi zeros are introduced into the

79

(a) The yellow highlights the area of where the
sequence of Householder transformations, UT

1 , are
applied to the W(3,1),W(2,1), and W(1,1) factors.
All white rectangles denotes zeros.

(b) The yellow highlights the area of where
UT
1 is applied next to the D1 block. The

teal shaded areas show where the W(3,1)X
T
(3,1),

W(2,1)X
T
(2,1), and W(1,1)X

T
(1,1) have been reduced.

The purple shaded areas have not been affected by
UT
1 .

Figure 4.4. An example of a block 8 × 8 matrix where the Householder transformations,
UT
1 in the UBV decomposition, are applied from the left to the right off-diagonal blocks

W(3,1)X
T
(3,1), W(2,1)X

T
(2,1), and W(1,1)X

T
(1,1) associated with diagonal block Di.

upper rows of the matrix,

UT
i Bi =

 0

L

 .
The computed Householder linked list from the smaller basis matrix Bi will compress

the upper right off-diagonal blocks of matrix C corresponding to CollectionDi . The permuted

Householder transformations, Ui,1Ui,2 . . . Ui,k, are applied from the left to the Wl,b factor from

CollectionDi , in order to introduce zeros into the top nonzero rows of the right off-diagonal

blocks. An 8×8 block matrix example of this procedure is illustrated for diagonal block D1 in

Figure 4.4. The compression algorithm for W(l,b) and X(l,b) is essentially the same as the one

outlined in Section 3.6, it just operates on a different set of factors. Once the off-diagonal

80

blocks have zeros in the top rows, UT
i is then applied to diagonal block Di, D̂i = UT

i Di,

completing the Householder transformation across matrix C, and the matrix is ready for

repartitioning at diagonal block D̂i. The Householder linked lists, UT
i , for each CollectionDi ,

are stored in the comprehensive UBV data structure for access by the fast solver. The UBV

complex data structure is a bidirectional linked list that houses data structures for linked

lists of Householder vector sequences, collects index information for diagonal block D̂i, tracks

the ranks of the all the off-diagonal blocks, and stores the data for D̂i.

As the compression algorithm operates on CollectionDi , it also tags the rows of the

factors needed for repartitioning with the blocks directly below CollectionDi . The number

of nonzero rows tagged for repartitioning is based on the rank, s, of the basis, Bi, computed

from the right off-diagonal blocks. Assume D̂i has size md × nd where nd ≤ md, then the

elements in the top md − s rows of CollectionDi contain zeros, and the bottom s nonzero

rows are tagged for repartitioning. The repartitioning merge procedure is exactly the same

as the one presented in Section 3.6.

4.3 Computing B and V Sequences of the UBV

Repartitioning is the next step in the decomposition of matrix C. Essentially, the process

combines two pairs of off-diagonal factors into a single pair utilizing a merge method detailed

in Section 3.6. The block and factor selection procedure is slightly different from the one in

Section 3.6. The number of right off-diagonal blocks involved ranges from 1 to d− 1 where

d is the depth, and what determines the number involved is where it is located in the binary

tree in addition to whether it is associated with an odd or even diagonal block. The rank

of basis Bi, s, and the bottom rows of each factor involved in repartitioning were set aside

while computing the sequence of unitary transformations, UT
i . A convenient pattern emerges

and two routines are created for selecting off-diagonal blocks based on the current diagonal

block, D̂i.

81

(a) The D̂1 block is teal shaded to denote where
the sequence of unitary transformations UT

1 has
been applied. The dashed line shows where the
W3,1 and X3,1 factors will be merged into the D2

block below, thus repartitioning D2.

(b) The D̃2 block has been repartitioned, and the
right off-diagonal blocks are updated. Note that
W(2,1),W(1,1), X(2,1) and X(1,1) are not merged, but
not necessarily repartitioned since a block boundary
has not been crossed.

Figure 4.5. Illustration of a block 8 × 8 example where UT
1 has been applied to diagonal

block D̂1 and CollectionD1 followed by the repartitioning of W(3,1)X
T
(3,1) with diagonal block

D̃2 below. The top rows of off-diagonal blocks W(2,1)X
T
(2,1), and W(1,1)X

T
(1,1) contain zeros.

If i is odd, then only one block below D̂i is involved in repartitioning and it is diagonal

block Di+1. Referring to Section 3.1, the depth of the binary tree is d = log2(
n
mb

)+1 where n

is the size of matrix C and mb is the original terminal block size. The right off-diagonal block

at level d − 1, associated with D̂i, is involved in repartitioning as shown in Figure 4.6(a).

The tagged pair of factors, Wr and Xr, from this single off-diagonal block are merged with

diagonal block Di+1 directly below. Thus, Di+1 becomes

D̃i+1 =

 WrX
T
r

Di+1

 .
An example of repartitioning for the first diagonal is seen in Figure 4.5.

82

(a) The odd diagonal blocks D1, D3, D5, D7 will
always have level = d−1 off-diagonal blocks to the
immediate right involved in repartitioning, and
that repartitioning involves only the Di+1 block.
Thus blocks W(3,1)X

T
(3,1), . . . ,W(3,4)X

T
(3,4) are

repartitioned with D2, D4, D6, D8 respectively.

(b) The even diagonal blocks D2, D4, D6 will
always have the off-diagonal blocks repartition
with multiple blocks below, including the Di+1

block. Block W(l,b)X
T
(l,b) is repartitioned with all

blocks below from level = l + 1, . . . , d − 1, and
Di+1. Hence for D4, W(1,1)X

T
(1,1) is repartitioned

with D5,W(3,3)X
T
(3,3), and W(2,2)X

T
(2,2).

Figure 4.6. An 8 × 8 block diagram of the odd and even pattern for repartitioning. Only
a single contiguous off-diagonal block to the right of Di is involved in repartitioning. The
left figure highlights the region to the right of each odd diagonal block that is involved in
repartitioning. The right figure highlights the region to the right of each even diagonal block
that is involved in repartitioning. A pattern emerges for efficient handling of the odd blocks.

If i is even, then multiple blocks below D̂i are involved in repartitioning. The one right

off-diagonal block, associated with D̂i, selected for repartitioning is located at the last left

branch in the tree before reaching D̂i, and the level of this block is noted as k. This block

will be referred to as F(k,q) where k represents the level and q is the block number. The

tagged pair of factors, Wr and Xr, from this single off-diagonal block are merged with all

right off-diagonal blocks associated with diagonal block Di+1 and at levels greater than k,

and illustrated in Figure 4.6(b). The off-diagonal block F(k,q) spans multiple blocks directly

below it, then factor Xr is partitioned to align with the columns in the blocks below. Prior

83

to merging, the blocks look like

 WrX
T
r

Di+1 W(d−1,b)X
T
(d−1,b) · · · W(k+1,c)X

T
(k+1,c)


where the level of the off-diagonal blocks below range from d− 1 to k + 1.

At this juncture in the algorithm, all elements directly below and to the right of D̂i are

zero which is seen in Figure 4.5(b). An LQ factorization method is applied to D̂i producing

a lower triangular block and sequence of unitary transformations. The LQ factorization of

D̂i yields a reduced matrix,

D̂i =
[
Bi 0

]
Vi

where Vi is the sequence of Householder vectors and Bi is the lower triangular block. An

example of the BV decomposition is shown in Figure 4.7 for diagonal block D̂1. Both the

Vi and Bi data structures are stored in the comprehensive UBV data structure.

Once the region associated with diagonal block Di is decomposed and repartitioned, the

control algorithm recursively moves to the next region below associated with D̃i+1. Every

subsequent decomposition is dependent on all the previous decompositions because of the

repartitioning. When the algorithm reaches the last diagonal block, D̃2d−1 , no sequence for

U is computed because there is nothing to the right of the block. The last diagonal block is

only decomposed into B2d−1 and V2d−1 . The final UBV matrix decomposition is illustrated

in Figure 4.8. The comprehensive UBV data structure is now ready to be input into the

fast solver.

84

(a) The yellow highlights the area where an LQ
factorization is computed on D̂1. The sequence of
Householder transformations, V T

1 , are applied from
the right to D̂1.

(b) The green highlights the reduction of D̂1 into
a lower triangular block B1. All white blocks have
zeroes introduced.

Figure 4.7. An illustration for the nested product BV decomposition diagonal block, D̂1.

85

Figure 4.8. Diagram of a block 8 × 8 example displaying the hierarchical representation
of a rank structured matrix after the row compression and nested product decomposition
have been performed. The compression and decomposition algorithms have introduced zeros
into all lower left and upper right off-diagonal blocks which are white. The green shaded
areas represent the nonzero diagonal lower triangular blocks that are considered full rank
and dense.

86

CHAPTER 5

FAST SOLVER AND APPLICATIONS

The fast nested product system solver in this research is the existing algorithm presented

in [3], and will be extended to the hierarchical variant of the UBV decomposition. When the

hierarchical representation of a quasiseparable matrix is compressed and decomposed into

the UBV data structure, the fast, linear system, nested product solver can be used. The

fast solver and matrix-vector product algorithms are important procedures operating on a

data sparse matrix.

5.1 Matrix-Vector Multiplication

The nested UBV decomposition developed in Chapter 4, is used in the matrix-vector

multiplication algorithm in [3]. The matrix-vector product algorithm operates directly on

the nested product data structure. Given a quasiseparable matrix A and vector x, compute

b = Ax. Matrix A = QC where Q is the sequence of unitary transformations from the row

compression in Chapter 3 and and C is the nested UBV decomposition C = D0 = R0V
T.

From [3], we have

R0 = Uk0
(
Bk0 + Uk1

(
Bk1 + · · ·+ Ukp−1

(
Bkp−1 +Dkp

))
· · ·
)
, and V = Vk0 · · ·Vkp−2Vkp−1 ,

(5.1)

then the problem becomes b = QR0V
Tx. A recurrence relation arises that can be used

in the sequence of matrices Rj from the smaller nested products. Let Rp = Dkp , and, for

j = 0, 1, . . . , p− 1, let Rj = Ukj
(
Bkj +Rkj+1

)
. The recurrence yields

Rj = Ukj
(
Bkj + Ukj+1

(
Bkj+1

+ · · ·+ Ukp−1

(
Bkp−1 +Dkp

)
· · ·
))
. (5.2)

87

The first step in the matrix-vector multiplication algorithm is to let

y = V Tx = V T
kp−1

V T
kp−2
· · ·V T

k0
x

then b = QR0y. This leads directly into the second step R0y = QTb where we let

z = R0y = Uk0
(
Bk0 + Uk1

(
Bk1 + · · ·+ Ukp−1

(
Bkp−1 +Dkp

))
· · ·
)
y. (5.3)

Here, yp = Dkpy, yj−1 = Ukj−1
(yj + Bkj−1

y), and y0 = R0y = z. The third and final

step is b = Qz = Q1Q2 . . . Qrz. Due to the recurrence of the computation and the sparsity

of the blocks, the complexity of the matrix-vector product multiplication is O(n).

5.2 Nested Product Fast Solver

Given a quasiseparable matrix A, vector b, and Ax = b, then compute x. The first

step of the fast nested product solver is to take the system R0y = QTb and form the system

b = QR0V
Tx. Let y and c be defined as follows

y = V Tx = V T
kp−1

V T
kp−2
· · ·V T

k0
x, and c = c0 = QTb

where x is efficiently computed from y = V x. Now the system R0y = QTb looks like

Uk0
(
Bk0 + Uk1

(
Bk1 + · · ·+ Ukp−1

(
Bkp−1 +Dkp

))
· · ·
)
y = QTb = c0, (5.4)

and becomes R0y = c0.

The solver algorithm strips each stratum on the left-hand side of Equation 5.2, to focus

on solving for a single yj where yj is dj−1×1 for j = 1, 2, . . . , p. Then the algorithm multiplies

both sides of the equation by Uj−1. In the next step, the solver algorithm multiplies c0 = R0y

88

by UT
k0

on both sides to solve the first layer of the nested product,

Uk1
(
Bk1 + · · ·+ Ukp−1

(
Bkp−1 +Dkp

)
· · ·
)
y +Bk0y = UT

k0
c0 =

 c0,1

c0,2

 ,
yielding the first component of y. Only the first column of Bk0 is nonzero, and the first row

of R1 is all zeros except for the (1, 1) element. Hence,

Bk0y = y1Bk0e1, y1 = c0,1/b0,1, and c1 = UT
0 c0 − y1Bk0e1.

The first layer is peeled away, and c1 = R1y is the next system to solve for in the nested

product.

The new system R1 is bordered by a column and row of zeros. The smaller system is

solved with the same process as R0, and y1 isn’t involved. The remaining elements of y are

found by repeating the procedure for the sequence of zero bordered systems. Recall from

Section 5.1,

Rj = Ukj
(
Bkj +Rkj+1

)
= Ukj

(
Bkj + Ukj+1

(
Bkj+1

+ · · ·+ Ukp−1

(
Bkp−1 +Dkp

))
· · ·
)
.

In the subsequent systems, each cj will be bordered by dj−1 rows and columns with

cj = Rjy = UT
j−1cj−1 −Bj−1

 yj

0

 ,
such that yj is not required in any of the following systems in the repetitive procedure.

The last system to solve is Dpy = cp. The nested product solver easily extends to the

matrix subblocks in the UBV decomposition from Chapter 4. Linear time systems with a

hierarchical representation can now be stably solved. This opens up the opportunity of stably

and efficiently deblurring an image using the nested product decomposition and solver.

89

CHAPTER 6

IMAGE RESTORATION APPLICATION

Image reconstruction can benefit from the development of the new hierarchical row

compression and nested product conversion algorithms in Chapters 3 and 4 respectively,

as well as, access to the fast stable solver. The application of the row compression and

nested product decomposition is used in conjunction with deconvolution methods for image

deblurring. A concise mathematical model represents the blurring process of the image.

6.1 Image Restoration Overview

The restoration process of an image begins with the input image f(x, y) in the spatial

domain. When a degradation function H and additive noise η are applied to the input image

the result is a degraded image g(x, y). If H is linear and invariant, then the degraded image

is given by

g(x, y) = h(x, y)Ff(x, y) + η(x, y) (6.1)

where h is the spatial representation of the degradation function and F indicates convolution.

A diagram of the degradation process is shown in Figure 6.1. Convolution in the spatial

domain of image processing is analogous to multiplication in the frequency domain. The

frequency domain equivalent to Equation 6.1 is

G(u, v) = H(u, v) · F (u, v) +N(u, v) (6.2)

where G,H,N are the Fourier transforms of the corresponding terms in Equation 6.1 [64].

When there is insufficient knowledge about the degradation of an image, then

the degradation is modeled and estimated. Some degradations can be represented by

90

Figure 6.1. Illustration of the input image f(x, y) that has the degradation function H and
additive noise function η applied to f producing the degraded image g(x, y) [64].

simple functions like relative constant speed movement, wrong lens focus and atmospheric

turbulence [65]. The research in this dissertation looks at the atmospheric turbulence

degradation mathematical model derived in [77]

H(u, v) = e−k(u
2+v2) (6.3)

where k is a constant dependent on the nature of the turbulence. The atmospheric turbulence

model is referred to as the blur model or operator in this research. There are various

approaches to deblur or restore the image degraded by atmospheric turbulence such as inverse

filtering.

6.2 Deblurring Methods

The first and most obvious choice in image restoration is direct inverse filtering based

on the transform of the image [64, 65]. In this simple method, an estimate of the transform

of the original image is computed,

F̂ (u, v) =
1

H(u, v)
·G(u, v) +

1

H(u, v)
·N(u, v).

Unfortunately, if the degradation function is known, this does not mean that the noise,

N(u, v), is known. Therefore, computing the exact input image is not possible. Combine

the unknown noise N(u, v) with H(u, v) containing zeros or small values, and 1
H(u,v)

·N(u, v)

91

will dominate the entire image restoration. Together, both of these issues, produce a poor

result of full inverse filtering. In summation, direct inverse methods explicitly invert the blur

function, and are extremely costly in terms of time and memory, and are sensitive to noise,

since the blur function is often severely ill-conditioned.

When reconstructing a satellite image, noise is bound to be present. Filtering a solution,

when restoring the image, diminishes the effects of the noise, and decompositions exist

to filter the restoration process. The blur model is linear, and therefore admits a matrix

formulation

g = Af + η.

The SVD of the degradation function H is a direct method that filters H in reconstruction,

and enforces regularity conditions on the solution [67]. However, direct algorithms for general

matrices, such as the degradation function, require O(n3) work which is an exorbitant cost.

Techniques for addressing this difficulty include regularization, and iterative methods such

as conjugate gradient (CG) and generalized minimal residual (GMRES). Iterative solvers are

based on Krylov subspaces, and when combined with good preconditioners these methods

are alternatives to the classical FFT-based algorithms [31, 32]. Approximations to the

blur matrix are exploited, efficiently computed, and efficiently inverted. This concept of

a preconditioner increases the rate of convergence in the iteration process.

For this research on deblurring, the atmospheric turbulence blur model used is

represented as a 2-D separable Gaussian function,

A(r, c) = e−k(c
2+r2) = e−k(c

2) · e−k(r2) = Ac · Ar

where r is the row and c is the column. The ill-posed system to solve for is

AcXA
T
r = B

92

Figure 6.2. Symmetric blur model is on the left and nonsymmetric blur model is on the
right [72].

where X is the restored image, B is the blurred noise-free image, and the two n×n Toeplitz

matrices Ac and Ar represent blurring in the directions of columns and rows of the image

respectively [67]. The equation to solve, in order to restore the image by direct inversion, is

X = A−1c B
(
ATr
)−1

.

A zero boundary condition is assumed, as is a variant blur model. An illustration of the

nonsymmetric, skew-normal blur function is seen in Figure 6.2 [72]. These zero boundary

and spatially variant conditions allow the use of efficient methods such as the FFT and

spectral decomposition [71].

The iterative restoration method our research initially explored uses the Kronecker

product to form the PSF matrix, and GMRES to approximate the inverse to the

preconditioner. The Kronecker GMRES iterative method is applied to the normal equations

without explicitly forming the complex conjugate transpose of a matrix. The convergence of

any inverse approximation iterative algorithm depends on the eigenvalues of the coefficient

matrix A [66]. If the spectrum is clustered around one, then convergence will be rapid. So in

93

order for the Kronecker GMRES iterative method to be useful, preconditioning is typically

applied to cluster the spectrum around one. Preconditioners and their inverses can be

computed directly, but to do so is unnecessary. Often an approximate inverse preconditioner

can be found by constructing a matrix composed of vectors which allows the algorithm to

simply perform vector-matrix multiplication [69].

The preconditioners used for this particular implementation are based on the circulant

Toeplitz system. The Toeplitz column and row blur operators are first transformed into

Cauchy-like (CL), quasiseparable matrices [66]. The quasiseparable matrices are the basis

for a preconditioned iterative method. The CL matrices have the property that each of the

off-diagonal blocks have low rank. A fast divide and conquer algorithm extracts the rank

structure, and compresses the approximations [78]. Generators are formed from the ranks

and approximations, and preconditioners are constructed from the generators. A detailed

presentation on the transformation of the Toeplitz blur operators to CL matrices is done in

Section 6.3.

The new structured matrices are quasiseparable, and allow for an O(n) solution to

the approximate system for deblurring. The quasiseparable systems are ported into the

superfast solver from [51]. The construction and solver both demonstrate stability. The cost

of quasiseparable construction and the solver are both O(np2), where p is the maximum rank

of the off-diagonal blocks in the CL matrices. Total cost is bounded by O(nlog(n))+O(np2).

The results produced artifacts in the image, and the lower the rank the worse the restoration

appeared to be [66]. If direct methods with reasonable costs and stability can be developed,

then deblurring of these systems would greatly benefit.

6.3 Deblurring Using Nested Product Algorithms

A direct method for the restoration of images degraded by atmospheric turbulence

is examined. This work uses the class of approximations to blurring operators representing

Gaussian blur as described in Section 6.2. When a satellite image is degraded by atmospheric

94

turbulence, regularized inverse methods to restore the image use a PSF to model the blur.

In this dissertation, we consider n × n images, and PSFs that are spatially invariant and

separable with a Toeplitz matrix to represent the PSF [72]. Iterative methods for solving

Toeplitz systems may be fast, if they converge quickly, but they do not always converge

quickly [67]. The system here is solved directly using a hierarchical representation of the

matrix, and the row compression algorithm presented in Chapter 3 coupled with the new

proven stable nested product decomposition and solver presented in [3]. The row compression

algorithm refers to the compression of a linear system and is not to be confused with image

compression.

The fast Fourier transform (FFT) is used to transform the Toeplitz blur matrix, T ,

into a Cauchy-like matrix with rank structure. We detail the Toeplitz matrices and their

transformation here as was mentioned previously in Section 6.2. Given an n × n Toeplitz

matrix, T , with constant diagonals of the form,

T =



t0 t−1 t−2 . . . t−(n−1)

t1 t0 t−1
. . .

...

t2 t1
. t−2

...
. t0 t−1

tn−1 . . . t2 t1 t0


. (6.4)

A common special case of Toeplitz matrices is when every row of the matrix is a right cyclic

shift of the row above forming the circulant matrix, Tcir, [31]

Tcir =



t0 t−1 t−2 . . . t−(n−1)

t−(n−1) t0 t−1
. . .

...

t−(n−2) t−(n−1)
. t−2

...
. t0 t−1

t−1 . . . t−(n−2) t−(n−1) t0


. (6.5)

95

The circulant matrix corresponds to periodic convolution which can be done efficiently

O(nlog(n)) using the FFT algorithm.

For a general Toeplitz matrix, fast algorithms depend upon the fact that every Toeplitz

matrix satisfies a displacement equation where two downshift matrices Z1 and Z−1 are

combined with the Toeplitz blur matrices to create a displacement matrix,

Z1T − TZ−1 =



t−(n−1) − t−1 t−(n−2) − t−2 . . . t1 − t−(n−1) 2t0

0 0 t−(n−1) + t1
...

... t−(n−2) + t2
...

...
...

0 0 t−1 + t−(n−1)


. (6.6)

The Toeplitz displacement equation also has the factorization

Z1T − TZ−1 = XY T (6.7)

where X ∈ Rn×α, Y T ∈ Rα×n, and α ≤ n is the displacement rank(XY T) = α [51]. The

factors X and Y are

X =



1 t0

0 t−(n−1) + t1
... t−(n−2) + t2
...

...

0 t−1 + t−(n−1)


and Y =

 t−(n−1) − t1 t−(n−2) − t2 . . . t1 − t−(n−1) t0

0 0 . . . 0 1



respectively, and the displacement structure has rank 2.

The FFT is applied to both sides of Equation 6.3 resulting in

FZ1F
HFT − FTZ−1 = FXY T.

96

The eigenvalues of the FFT of the displacement equation ω = e
πi
n are the base for the CL

matrix, Ĉ.

The CL matrix Ĉ is defined as

Ĉ = FTD−10 FH , ckj =
xHk yj

ω2k−2 − ω2j−1 (6.8)

where F is the normalized inverse of the discrete FFT matrix, D0 is the diagonal matrix of

ω raised to powers from 0 to n− 1, and T is the Toeplitz blur matrix. Matrix Ĉ is uniquely

determined by the generators from X and Y of the SVD. A second displacement equation

is formed,

D1Ĉ − ĈD−1 = (FX)
(
Y D−10 FH

)
(6.9)

where D1 and D−1 are diagonal matrices of ω raised to even and odd powers from 0 to n− 1

[51]. Matrix Ĉ has the property that off-diagonal blocks can be approximated by matrices of

low rank, and is classified as a quasiseparable matrix. All stages of the Toeplitz to Cauchy

transformation algorithm are stable. Since matrix Ĉ is quasiseparable, it is a suitable target

for the algorithms of this dissertation.

The hierarchical representation of a rank structured matrix partitions the CL matrix and

represents the elements of the matrix using an expansion series in [51]. The resulting matrix

is shown in Figure 3.2. The row compression algorithm from Chapter 3 begins with the

hierarchical representation of the CL matrix, Ĉ, and compresses the rows of the off-diagonal

blocks by applying Householder transformations. The nested product decomposition from

Chapter 4 operates on the compressed CL matrix and computes a sparse orthogonal nested

product decomposition, UBV.

The nested product solver algorithm in [3] operates on the equation y = Ĉx. The

solver begins with the outermost layer of the nested product, solves for that layer, strips

the current layer away revealing the next layer, and repeats the process. The decomposition

can be used to solve a system stably and with linear complexity. The separable model

97

with direct inversion is equivalent to TcXT
T
r = B̃, where Tc and Tr are Toeplitz matrices.

The hierarchical parameterization, row compression, nested product conversion, and linear

system solver algorithms solve two regularized systems,

(Tc + αI)X0 = Y forX0, and X(Tr + αI) = X0 forX

to obtain the deblurred image. This particular regularization only works naturally for

positive definite matrices, which includes the matrix used to represent Gaussian blur. The

method generalizes to Tikhonov regularization and more general blur functions. The direct

deblurring methods presented here are proven stable.

98

CHAPTER 7

IMAGE COMPRESSION APPLICATION

Image compression minimizes volume of data in an image without loss of image

information. Algorithms for image compression remove redundancies that appear in the data

[65]. It is possible to further reduce redundancies in multiresolution wavelet compressions

with the hierarchical row compression algorithm in this dissertation.

7.1 Image Compression Fundamentals

Data compression is the process of reducing the amount of data to represent an image.

The goal is to remove redundant data and still retain quality information to represent the

image. There three types of data redundancies: coding redundancy, spatial and temporal

redundancy, and irrelevant information. The first redundancy deals with the binary coded

bits that represent the intensities in the image. The second redundancy examines the array

spatially for replicated correlated pixels. The third and simplest compression is removal of

extraneous information that is not used. Irrelevant information compression is the direction

of the research [64].

Human visual perception of the image information does not involve a quantitative

analysis of the pixels. The pixel values can be modified, within given parameters, without

any subjective degradation to the resulting image. For removal of irrelevant information,

the digital image has its intensity values examined. Where there are clusters in the intensity

values, then an averaging is done to have a single value represent that intensity. There is

irreversible loss of information, but the loss is not perceived in the quality of the reconstructed

image. This loss of quantitative information is referred to as quantization. There are three

techniques for removing an image’s irrelevant information: block transform coding predictive

coding, and wavelet coding.

99

Figure 7.1. Diagram of a block transform encoding process.

In block transform coding, an image is divided into equal size subblocks that do not

overlap. Each subblock is processed independently using a 2-D transform, such as the FFT.

Then the transform coefficients are quantized. A diagram for the block transform coding

process is found in Figure 7.1 [64]. In predictive coding, the pixels of the image are inspected

and eliminating any redundancies in closely spaced pixels. The value of a closely spaced pixel

is predicted, and the difference between the prediction and the actual value is stored. The

differences are quantized and encoded. A diagram for the predictive coding process is found

in Figure 7.2 [64].

The wavelet transform maps the spatial domain of an image to a frequency domain,

then excessive redundancies in the image are exploited and removed [73, 74]. Wavelet

transformations make it easier to compress, transmit and analyze images. The transform

coding process is done in four major steps: apply the wavelet transform, detect the

Figure 7.2. Diagram of a predictive encoding process.

100

Figure 7.3. Diagram of the typical wavelet transform encoding and decoding process.

threshold, entropy code the quantized transform coefficients, and apply an inverse transform

as shown in Figure 7.3 [75]. The difference between the wavelet transform coding and block

transform coding methods is that the wavelet transform process does not include the subblock

preprocessing stage in block transform coding.

7.2 Wavelets and Row Compression

Mathematical wavelet transforms are used extensively in image compression. Reducing

the huge volume of data in a direct image spatial domain is important for transmission or

storage. This method of lossy compression of the image is acceptable since the reconstruction

of the image need not be exact [74]. The research here focuses on the discrete wavelet

transform (DWT) which computes the series expansion coefficients for a function that

is comprised of a wavelet function, ψ(x), and a scaling function, ϕ(x) [65]. In the

one-dimensional case, the DWT of an image computes the approximation (low frequency)

coefficients and the detail (high frequency) coefficients.

A single-level, separable, 2-D orthogonal Daubechies wavelet decomposition of an image

forms a 2× 2 block partitioned matrix W where each of the four subblocks contain detail or

approximation coefficients. In the 2-D DWT, four separable functions are required:

ψ(x, y) = ψ(x)ψ(y), scaling;

ϕH(x, y) = ϕ(x)ψ(y), horizontal edges;

ϕV (x, y) = ψ(x)ϕ(y), vertical edges;

ϕD(x, y) = ϕ(x)ϕ(y), diagonal edges.

(7.1)

101

Figure 7.4 depicts a three-stage 2-D DWT decomposition of an image with A,H, V, and D

as the low, horizontal, vertical and diagonal bands respectively [64]. Once an image is

decomposed by the multiresolution wavelet transform, a hierarchical structure is evident

in the resulting decomposed matrix W , where the lower left off-diagonal blocks represent

the vertical bands and the upper right off-diagonal blocks represent the horizontal bands

of the image. This hierarchical structure can be seen in Figure 7.4. This research exploits

common rank structure between the lower off-diagonal blocks to introduce additional zeros.

Similarly, this exploitation also applies to the common horizontal band structure in the upper

off-diagonal blocks of the wavelet.

Figure 7.4. Wavelet mulitresolution image decomposition where Li is a low band, Vi is a
vertical band, Hi is a horizontal band, and Di is a diagonal band generated from a three-stage
wavelet transformation.

The vertical and horizontal edge off-diagonal blocks in the wavelet decomposition have

similarities to the hierarchical matrices. The connection between the wavelet structure and

the hierarchical representation is apparent. The row compression algorithm, developed in

Chapter 3, applies a sequence of unitary transformations to the the low rank factorization to

102

introduce zeros into the off-diagonal blocks of the matrix. The row compression algorithm

can be amended to operate on the Daubechies DWT common edge blocks, exploiting both

the sparsity and rank structure of the wavelet transform. A permutation and subtraction of

the vertical and horizontal edges aligns the common edge space for compression. Orthogonal

transformations are applied to the common edge space and zeros are introduced. Thus the

information about the edges captured by the wavelet transform is compressed.

103

CHAPTER 8

CONCLUSION AND COMPARISONS

The conclusion to this dissertation contains four parts. The comparisons of this

research and algorithms to existing algorithms for hierarchical representations and other

representations for rank structured matrices. Using double precision, IEEE machine

epsilon as a benchmark, the relative backward error results on a numerically sensitive

parameterization, for the algorithms in this research, are computed. Additionally, a specific

structured matrix, that is unstable in other algorithms, with poor backward error, is used

in our algorithms and shows good numerical stability. Next a list of the contributions made

by this research is presented. Lastly, future work is discussed.

8.1 Complexity Comparisons

The algorithms investigated during this research operated on different types and/or

representations of rank structured matrices. In order to present an “apples to apples”

comparison, knowing the representation and type of rank structured matrix that each

algorithm began with, is necessary for comparison. Since this research is on the hierarchical

representation of a quasiseparable matrix, the first comparative table examines the different

complexity aspects of algorithms that operate on the hierarchical representation of a

structured matrix. There are three different types of matrices involved: H −matrices,

semiseparable matrices, and quasiseparable matrices. Table 8.1 summarizes the complexities

of the algorithms that begin with a hierarchical representation of structured matrix. The

H −matrix is already in a hierarchical form which imposes no additional cost. However,

algorithms for solving a system that involved an H −matrix preconditioner either computed

approximate inverses [8, 79] or performed an H −LU factorization [80, 81]. Both approaches

require O(nlog(n)) operations. The semiseparable [17–20] and quasiseparable [3] matrices

104

compute the hierarchical representation, which result in a cost of O(nlog(n)) operations;

however, sparse systems and other possible structures can lower parameterization costs. The

cost of the system solvers involving H and H 2 matrices, semiseparable, and quasiseparable

matrices is linear which is a marked improvement over the H −matrix system solvers.

Storage involving semiseparable and quasiseparable matrices begins at O(nlog(n)), which

is comparable to that of the H −matrices. However, as the solver progresses only O(n)

storage is necessary. Thus storage and solver costs for semiseparable and quasiseparable

matrices are comparable or lower than those for H −matrices. Of these system solvers, the

one presented in [3] is the only proven stable solver.

Table 8.1. Hierarchical Representation and Associated Complexity Costs
(Initial parameterization storage is O(nlog(n)) for all algorithms.)

Final
Matrix Type & Compute Parameter Solver
Solver Algorithm Parameterization Storage Operations

H −matrix, Inversion NA O(nlog(n)) O(nlog(n))

H −matrix, H −LU NA O(nlog(n)) O(nlog(n))

H 2−matrix, H −LU O(nlog(n)) O(n) O(n)

Quasiseparable, UBV O(nlog(n)) O(n) O(n)

We now compare algorithms that begin with a general n × n rank structured matrix.

There are four different types of matrices involved: H −matrices, semiseparable matrices,

hierarchical semiseparable and quasiseparable matrices. In this comparison, all algorithms

begin with the general matrix form and must compute the hierarchical parameterization. In

Table 8.2, the cost to compute the parameterization is the same across all algorithms. Storage

involving semiseparable matrices, hierarchical semiseparable and quasiseparable matrices

begins at O(nlog(n)), which is comparable to that of the H −matrices. However, as the

solvers progress only O(n) storage is necessary. The ULV and UBV algorithms outperform

the H −matrix algorithm. Of these listed, only the UBV algorithm is proven stable. Thus

the UBV algorithm is the subject of our research. It is clear that the nested UBV algorithms

105

have at least comparable, and, in some cases, improved complexity over other algorithms in

this area. In Section 8.2, the stability of the row compression and nested UBV decomposition

is discussed.

Table 8.2. General n× n Matrix and Associated Complexity Costs
(Initial parameterization storage is O(n2) for all algorithms.)

Final
Matrix Type & Compute Parameter Solver
Solver Algorithm Parameterization Storage Operations

H −matrix, Inversion O(n2) O(nlog(n)) O(nlog(n))

H 2−matrix, H −LU O(n2) O(n) O(n)

Hierarchical Semiseparable, ULV O(n2) O(nlog(n)) O(n)

Sequentially Semiseparable, ULV O(n2) O(n) O(n)

Quasiseparable, UBV O(n2) O(n) O(n)

The cost to compute the row compression of a hierarchical representation of a

quasiseparable matrix is O(nlog(n)) operations. Converting the hierarchical row compression

to a nested product requires O(nlog(n)) operations. In contrast, the row compression and

nested product decomposition of a general matrix, presented in [3], use O(n2) operations.

Thus, the algorithms developed in this research have reduced the complexity from O(n2) to

O(nlog(n)) for matrices with a hierarchical representation. The storage for a hierarchical

representation of a quasiseparable matrix is O(nlog(n)), and the storage for the final nested

product decomposition is O(n).

8.2 Stability

The row compression and nested product decomposition algorithms developed in this

research focus on stability with comparable or improved complexity to other methods that

currently exist. The essential numerical linear algebraic computations in the row compression

and nested product decomposition algorithms are Householder transformations and the QR

factorization. The strength of Householder transformations is their unconditional numerical

106

stability. The Householder QR factorization is well known to be normwise backward stable.

The algorithms for the row compression and conversion to the nested product decomposition

in this dissertation were specifically designed to take advantage of the numerical stability of

Householder transformations and the QR factorization.

The backward error expression used to compute the row compression algorithm in this

dissertation is from [3] and was discussed in Section 1.2. Given an n×n quasiseparable matrix

A of rank 2, and the following information P,Q, Y, Z ∈ Rn×2, dk ∈ R, and n = 1024. Matrix

A is defined to be

triu(A) = triu(Y ZT), tril(A) = tril(PQT), diag(A) = D = diag(d1, . . . , dn),

where triu, tril, and diag denote the upper triangular part, lower triangular part and diagonal

of matrix A respectively.

The computed relative backward error for the hierarchical row compression algorithm

applied to A, in double precision, is

‖Q̃C̃ − A‖2
‖A‖2

≈ 5.4985× 10−14.

The relative backward error for the nested product decomposition begins with the definition

of matrix C presented in Section 5.1 with R0 and V T defined in Equation 5.1. Given an

n× n row compressed matrix C where n = 1024. The computed relative backward error for

the nested product decomposition algorithm applied to C, in double precision, is

‖R̃0Ṽ
T − C‖2
‖C‖2

≈ 1.1150× 10−14.

A full backward error analysis for the nested product decomposition and solver has been

proven in [3].

107

The generator representation can be used in many standard algorithms for structured

matrices. Regrettably, some generator representations display instability when algorithms

are applied to these generators. It is sufficient to illustrate the instability of these generators

in a specific example where the unstructured matrix-vector multiplication is applied to a

quasiseparable matrix L. This example is presented in [3]. Given a quasiseparable matrix

L that has the generator representation from Equation 2.1.1. The strictly lower triangular

part is represented by the generators

pT
k =

[
1 1

]
, Ak =

1

4

 11 4

−4 1

 , and qk =

 1 + 2−45

−2


which do not depend on k, and L = L+ LT.

The matrix-vector multiplier, Lx = y, for a quasiseparable matrix and vector, x =[
1 1 . . . 1

]T
, can be computed by

zk = Ak−1zk−1 + qk−1xk−1, and yk = pT
k zk

where k = 2, 3, . . . , n, y1 = 0 and z1 = 0. For n = 32, the double precision computations of

the matrix-vector multiplier Lx = y formed the approximation ŷ = fl(Lx). An additional

approximation was computed using unstructured matrix-vector multiplication which formed

ỹ = fl(Lx). The computed backward error was

‖L‖2 ≈ 3.82,
‖ỹ − ŷ‖2
‖L‖2‖x‖2

≈ 8.22× 10−8.

These results are not consistent with reasonable normwise backward error bounds on matrix

L. Therefore, the existing algorithms working with such generators cannot be expected to be

normwise backward stable [3]. The issue is intrinsic to the generators and is not an issue with

the algorithm. The nested product approach averts this problem by avoiding a generator

representation.

108

Nonetheless, when the row compression and nested product algorithms are applied to

this same matrix L, the backward error is consistent with reasonable normwise backward

error bounds. For n = 32, the double precision computations yielded

‖Q̃C̃ − L‖2
‖L‖2

≈ 1.0803× 10−14 and
‖R̃0Ṽ

T − L‖2
‖L‖2

≈ 1.6213× 10−15.

This is a major improvement over the generator based algorithms from the example in [3].

The row compression and nested product backward errors with respect to L demonstrates

the stability of both algorithms in the dissertation.

The approach for computing the hierarchical representation of a quasiseparable matrix

is directly related to the works in [3, 17–19], and has been adapted for this research. The

hierarchical parameterization algorithm is not considered part of the original research in

this dissertation. The number of operations to compute the hierarchical parameterization

depends upon whether updating techniques are used, if additional structure can be further

exploited, and what type of matrix is involved. The extraction of parameters for the

hierarchical representation of a quasiseparable matrix is stable. Other parameterizations,

such as generator representation and rotation representation, can have stability issues for

some matrices.

The total operation complexity for computation of the row compression, nested product

decomposition, matrix-vector multiplication and nested product solver of a hierarchical

representation of a quasiseparable matrix is

O(nlog(n)) +O(nlog(n)) +O(n) +O(n) = O(nlog(n)).

The row compression and nested product decomposition in this dissertation are stable, and

the overall cost is an improvement over the work in [3] for matrices for which a hierarchical

representation is readily available or easily computed.

109

8.3 Conclusion

Quasiseparable matrices, and hierarchical representations of them, are playing an ever

increasing role in applied mathematics, engineering and computer science with the versatility

of their use in many applications. Stable algorithms for the nested product representation of

a quasiseparable matrix, matrix-vector multiplication and fast solver, have been developed

in [3]. These algorithms are the only proven stable algorithms for this class of matrices.

When they are coupled with existing gaps in algorithms for conversion of hierarchical

representations to other parameterizations and potential applications in image deblurring

and wavelet compression, it is clear there is room for major advancements in this area

of numerical linear algebra and associated applications to image processing. The research

in this dissertation on row compression and nested product decomposition is a discernible

contribution towards research involving quasiseparable matrices.

This research began by looking at hierarchical matrices, the nested product solver for

quasiseparable matrices in [3], stable algorithms, and applications in image processing. The

following results have been achieved:

1. A new row compression algorithm for the hierarchical representation of quasiseparable

matrices has been introduced that utilizes the stability of Householder transformations

to compress the matrix. The row compression algorithm exploits the data sparse

characteristic of the hierarchical representation, and computes the compression in

O(nlog(n)) operations, which is an improvement over the row compression in [3].

The main goal in this research was stability, and this has been accomplished. For

a 1024 × 1024 quasiseparable matrix, the relative backward error is ≈ 5.4985 × 10−14

for the row compression algorithm.

2. The row compression algorithm is recursive and operates on partitions of the matrix.

A novel approach, within the algorithm, is the repartitioning of the compressed blocks

110

prior to the next compression. The repartitioning procedure in the row compression is

a very difficult procedure to implement, and is not being done in any related papers.

3. The nested UBV decomposition algorithm is directly connected to the work by Bella,

Olshevsky, and Stewart. The conversion to a nested product representation required

adapting the nested UBV decomposition to work with blocks. The nested UBV

decomposition of a row compressed hierarchical representation of a quasiseparable

matrix has O(nlog(n)) operations which is an improvement over the nested product

decomposition in [3]. For a 1024× 1024 quasiseparable matrix, the relative backward

error is ≈ 1.1150 × 10−14 for the nested product decomposition. The nested UBV

decomposition algorithm is stable and a full backward error analysis of the algorithm

is done in [3].

4. The primary reason for this research was to allow the stable procedures from [3] to

be applied to hierarchical representations of a quasiseparable matrix. Now a systems

with a hierarchical representation of a quasiseparable matrix, with a strong guarantee

of stability, can be solved in O(nlog(n)) total operations.

5. A stable linear time algorithm for the solution of a rank structured system is applied

to a point spread function (PSF) represented by a Toeplitz matrix. The algorithm is

used to restore an image degraded by a spatially invariant and separable blur. The

PSF is transformed into a rank structured Cauchy-like matrix. The resulting matrix

has a hierarchical representation that is compressed into a decomposition that yields

a linear time system solver.

6. This research exploits a stable row compression algorithm for decomposing a hierarchically

or sequentially structured matrix to compress an n×n image represented by a wavelet

transform. The multiresolution discrete wavelet transform is used to decompose an

image. The row compression algorithm builds up a low rank approximation of the

111

wavelet transform by applying orthogonal transformations and updating techniques.

The cost is O(n2) operations.

8.4 Future Work

The row compression and nested product conversion algorithms presented in this

dissertation have been designed and implemented in MATLAB. The focus of this research

was designing stable algorithms with lower complexity. However, in order to optimize

the algorithms, in practice they must be translated into an efficiently compiled language

to increase efficiency and speed, and manage memory. Thus one aspect of future work

is the implementation of the algorithms in Fortran. The complex data structures in the

algorithms were designed and created in MATLAB, and require a great deal of finesse when

implementing them in Fortran. The Fortran translation also requires incorporating LAPACK

numerical linear algebra routines for systems of equations. The Fortran implementation has

commenced. The performance of the application of the algorithms in image deblurring and

wavelet compression will be examined upon completion of the Fortran conversion. The

hierarchical representation conversion opens the door to extend our work to include other

rank structured matrices with a hierarchical structure and the problems they model. Some

such matrices are boundary, edge, or dyadic clustering concentrations in the partitioning of

hierarchical matrices in [10], and they would benefit from access to the proven stable solver

in [3].

Parallelization of the hierarchical parameterization is an area to explore. As the

algorithms were being developed in this research, there was discussion on how to do part of

the computations in parallel. The nested product conversion algorithm has matrix blocks

that are interdependent on each other within the computations of the decomposition, and

thus would not benefit from parallelization at this point in time. However, the hierarchical

partitioning of the quasiseparable matrix performs computations on matrix blocks that are

independent of each other, and we would like to do parallel partitions of the hierarchical

112

parameterization in our future research. Additionally when designing and implementing

the row compression algorithm, an idea emerged about parallelizing the row compression

into two sets of compressions, and then merging the results together. Future work would

investigate parallel row compressions on the hierarchical representation of a quasiseparable

matrix.

113

REFERENCES

[1] D. A. Bini, V. Mehrmann, V. Olshevsky, E. E. Tyrtyshnikov, and M. van Barel, Eds.,

Numerical methods for structured matrices and applications, ser. Operator Theory:

Advances and Applications. Basel, CH: Birkhäuser Verlag, 2010, vol. 199, the Georg

Heinig memorial volume.

[2] V. Olshevsky, Ed., Structured matrices in mathematics, computer science, and

engineering. I, ser. Contemporary Mathematics, vol. 280. Providence, RI: American

Mathematical Society, 2001.

[3] T. Bella, V. Olshevsky, and M. Stewart, “A nested product decompostion of a

Quasiseparable matrix,” SIAM J. Matrix Anal. Appl., vol. 34, no. 4, pp. 1520–1555,

2013.

[4] P. Dewilde and A.-J. van der Veen, Time-varying systems and computations. Boston,

MA: Kluwer Academic Publishers, 1998.

[5] ——, “Inner-outer factorization and the inversion of locally finite systems of equations,”

Linear Algebra Appl., vol. 313, no. 1-3, pp. 53–100, 2000.

[6] Y. Eidelman and I. Gohberg, “A modification of the Dewilde-van der Veen method for

inversion of finite structured matrices,” Linear Algebra Appl., vol. 343/344, pp. 419–450,

2002, Special issue on structured and infinite systems of linear equations.

[7] E. Alijagic and P. Dewilde, “Minimal quasi-separable realizations for the inverse of a

quasi-separable operator,” Linear Algebra Appl., vol. 414, no. 2-3, pp. 445–463, 2006.

[8] W. Hackbusch, “A sparse matrix arithmetic based on H -matrices. I. Introduction to

H -matrices,” Computing, vol. 62, no. 2, pp. 89–108, 1999.

114

[9] W. Hackbusch, L. Grasedyck, and S. Börm, “An introduction to hierarchical matrices,”

in Proceedings of EQUADIFF, 10 (Prague, 2001), vol. 127, no. 2, 2002, pp. 229–241.

[10] L. Grasedyck and W. Hackbusch, “Construction and arithmetics of H -matrices,”

Computing, vol. 70, no. 4, pp. 295–334, 2003.

[11] S. Börm and W. Hackbusch, “A short overview of H 2-matrices,” PAMM, vol. 2, no. 1,

pp. 33–36, 2003. [Online]. Available: http://dx.doi.org/10.1002/pamm.200310009

[12] S. Börm, “H 2-matrices multilevel methods for the approximation of integral

operators,” Computing and Visualization in Science, vol. 7, no. 3-4, pp. 173–181, 2004.

[Online]. Available: http://dx.doi.org/10.1007/s00791-004-0135-2

[13] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. J. v. d. Veen, “Fast stable solver

for sequentially semi-separable linear systems of equations,” in Proceedings of the 9th

International Conference on High Performance Computing, ser. HiPC ’02. London,

UK: Springer-Verlag, 2002, pp. 545–554.

[14] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, “Some fast algorithms for sequentially semiseparable representations,” SIAM

J. Matrix Anal. Appl., vol. 27, no. 2, pp. 341–364, 2005.

[15] R. Vandebril, M. Van Barel, and N. Mastronardi, “A note on the representation and

definition of semiseparable matrices,” Numer. Linear Algebra Appl., vol. 12, no. 8, pp.

839–858, 2005. [Online]. Available: http://dx.doi.org/10.1002/nla.455

[16] ——, Matrix computations and semiseparable matrices. Vol. I. Baltimore, MD: Johns

Hopkins University Press, 2008.

[17] S. Chandrasekaran, M. Gu, and W. Lyons, “A fast adaptive solver for hierarchically

semiseparable representations,” Calcolo, vol. 42, no. 3-4, pp. 171–185, 2005.

115

[18] S. Chandrasekaran, M. Gu, and T. Pals, “A fast ULV decomposition solver for

hierarchically semiseparable representations,” SIAM J. Matrix Anal. Appl., vol. 28,

no. 3, pp. 603–622, 2006.

[19] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, “A fast solver for HSS

representations via sparse matrices,” SIAM J. Matrix Anal. Appl., vol. 29, no. 1, pp.

67–81, 2006/07.

[20] Z. Sheng, P. Dewilde, and S. Chandrasekaran, “Algorithms to solve hierarchically

semi-separable systems,” in System theory, the Schur algorithm and multidimensional

analysis, ser. Oper. Theory Adv. Appl. Basel, CH: Birkhauser, 2007, vol. 176, pp.

255–294.

[21] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Fast algorithms for hierarchically

semiseparable matrices,” Numer. Linear Algebra Appl., vol. 17, no. 6, pp. 953–976,

2010.

[22] W. Hackbusch and B. Khoromskij, “A sparse h-matrix arithmetic: general

complexity estimates,” Journal of Computational and Applied Mathematics,

vol. 125, no. 12, pp. 479 – 501, 2000, numerical Analysis 2000. Vol.

VI: Ordinary Differential Equations and Integral Equations. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0377042700004866

[23] W. Hackbusch and B. N. Khoromskij, “A sparse H -matrix arithmetic. II. Application

to multi-dimensional problems,” Computing, vol. 64, no. 1, pp. 21–47, 2000.

[24] S. Le Borne, “Multilevel hierarchical matrices,” SIAM J. Matrix Anal. Appl., vol. 28,

no. 3, pp. 871–889 (electronic), 2006.

[25] S. Delvaux, “Rank structured matrices,” Dissertation, University of Leuven, 2007.

[26] S. Dianat and E. Saber, Advanced Linear Algebra for Engineers With Matlab. Taylor

& Francis, 2009.

116

[27] T. Kailath and A. H. Sayed, Eds., Fast reliable algorithms for matrices with structure.

Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1999.

[28] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”

J. Comput. Phys., vol. 73, no. 2, pp. 325–348, 1987. [Online]. Available:

http://dx.doi.org/10.1016/0021-9991(87)90140-9

[29] R. Beatson and L. Greengard, “A short course on fast multipole methods,” in Wavelets,

multilevel methods and elliptic PDEs (Leicester, 1996), ser. Numer. Math. Sci. Comput.

New York, NY: Oxford Univ. Press, 1997, pp. 1–37.

[30] D. A. Bini, L. Gemignani, and J. R. Winkler, “Structured matrix methods for CAGD: an

application to computing the resultant of polynomials in the Bernstein basis,” Numer.

Linear Algebra Appl., vol. 12, no. 8, pp. 685–698, 2005.

[31] J. W. Demmel, Applied numerical linear algebra. Philadelphia, PA: Society for

Industrial and Applied Mathematics (SIAM), 1997.

[32] L. N. Trefethen and D. Bau, III, Numerical linear algebra. Philadelphia, PA: Society

for Industrial and Applied Mathematics (SIAM), 1997.

[33] R. A. Liebler, Basic matrix algebra with algorithms and applications, ser. Chapman &

Hall/CRC Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2003.

[34] G. Strang, Linear algebra and its applications, 4th ed. Belmont, CA: Thomson,

Brooks/Cole, 2006.

[35] G. W. Stewart, Matrix algorithms. Vol. I. Philadelphia, PA: Society for Industrial and

Applied Mathematics, 1998, Basic Decompositions.

[36] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed., ser. Johns Hopkins

Studies in the Mathematical Sciences. Baltimore, MD: Johns Hopkins University Press,

1996.

117

[37] N. J. Higham, Accuracy and stability of numerical algorithms, 2nd ed. Philadelphia,

PA: Society for Industrial and Applied Mathematics (SIAM), 2002.

[38] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix computations and

semiseparable matrices. Vol. II. Baltimore, MD: Johns Hopkins University Press,

2008.

[39] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg, “Fast QR eigenvalue algorithms

for Hessenberg matrices which are rank-one perturbations of unitary matrices,” SIAM

J. Matrix Anal. Appl., vol. 29, no. 2, pp. 566–585, 2007.

[40] S. Chandrasekaran and M. Gu, “Fast and stable eigendecomposition of symmetric

banded plus semi-separable matrices,” Linear Algebra Appl., vol. 313, no. 1-3, pp.

107–114, 2000. [Online]. Available: http://dx.doi.org/10.1016/S0024-3795(00)00106-3

[41] D. Fasino, N. Mastronardi, and M. Van Barel, “Fast and stable algorithms for reducing

diagonal plus semiseparable matrices to tridiagonal and bidiagonal form,” in Fast

algorithms for structured matrices: theory and applications (South Hadley, MA, 2001),

ser. Contemp. Math. Providence, RI: Amer. Math. Soc., 2003, vol. 323, pp. 105–118.

[Online]. Available: http://dx.doi.org/10.1090/conm/323/05699

[42] T. Bella, “Topics in numerical linear algebra related to quasiseparable and other

structured matrices,” Dissertation, University of Conneticut, 2008.

[43] T. Bella, Y. Eidelman, I. Gohberg, and V. Olshevsky, “Computations with

quasiseparable polynomials and matrices,” Theoret. Comput. Sci., vol. 409, no. 2, pp.

158–179, 2008.

[44] G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed., ser. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,

MD, 2013.

118

[45] J. Xia, S. Chandrasekaran, M. Gu, and X. Li, “Superfast multifrontal method for large

structured linear systems of equations,” SIAM J. Matrix Anal. Appl., vol. 31, no. 3, pp.

1382–1411, 2009.

[46] J. Xia, “On the complexity of some hierarchical structured matrix algorithms,” January

2012, submitted.

[47] P. Zhlobich, “Quasiseparable Matrices and Polynomials,” Dissertation, University of

Connecticut, 2010.

[48] J. Carrier, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algorithm for

particle simulations,” SIAM J. Sci. Statist. Comput., vol. 9, no. 4, pp. 669–686, 1988.

[49] Y. Eidelman and I. Gohberg, “Linear complexity inversion algorithms for a class of

structured matrices,” Integral Equations Operator Theory, vol. 35, no. 1, pp. 28–52,

1999.

[50] S. Delvaux and M. Van Barel, “A QR-based solver for rank structured matrices,” SIAM

J. Matrix Anal. Appl., vol. 30, no. 2, pp. 464–490, 2008.

[51] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, “A superfast algorithm for

Toeplitz systems of linear equations,” SIAM J. Matrix Anal. Appl., vol. 29, no. 4, pp.

1247–1266, 2007.

[52] S. Delvaux and M. Van Barel, “A Givens-weight representation for rank structured

matrices,” SIAM J. Matrix Anal. Appl., vol. 29, no. 4, pp. 1147–1170, 2007.

[53] Y. Eidelman and I. Gohberg, “On generators of quasiseparable finite block matrices,”

Calcolo, vol. 42, no. 3-4, pp. 187–214, 2005.

[54] T. F. Chan and J. Shen, Image processing and analysis : variational, PDE, wavelet, and

stochastic methods. Philadelphia, PA: Society for Industrial and Applied Mathematics

(SIAM), 2005.

119

[55] M. Van Barel, R. Vandebril, N. Mastronardi, S. Delvaux, and Y. Vanberghen, “Rank

structured matrix operations,” in Workshop on State-of-the-Art in Scientific and

Parallel Computing, PARA06, Umea, SE, June 2006.

[56] Y. Eidelman, I. Gohberg, and V. Olshevsky, “The QR iteration method for Hermitian

quasiseparable matrices of an arbitrary order,” Linear Algebra Appl., vol. 404, pp.

305–324, 2005.

[57] D. A. Bini, L. Gemignani, and V. Y. Pan, “Fast and stable QR eigenvalue algorithms for

generalized companion matrices and secular equations,” Numer. Math., vol. 100, no. 3,

pp. 373–408, 2005. [Online]. Available: http://dx.doi.org/10.1007/s00211-005-0595-4

[58] W. Hackbusch and S. Börm, “H 2-matrix approximation of integral operators by

interpolation,” Appl. Numer. Math., vol. 43, no. 1-2, pp. 129–143, 2002.

[59] T. Bella, V. Olshevsky, and P. Zhlobich, “Classifications of recurrence relations via

subclasses of (h, m)-quasiseparable matrices,” in Numerical Linear Algebra in Signals,

Systems and Control, ser. Lecture Notes in Electrical Engineering, P. Van Dooren, S. P.

Bhattacharyya, R. H. Chan, V. Olshevsky, and A. Routray, Eds. Springer Netherlands,

2011, vol. 80, pp. 23–53.

[60] S. Chandrasekaran and M. Gu, “Fast and stable algorithms for banded plus

semiseparable systems of linear equations,” SIAM J. Matrix Anal. Appl., vol. 25, no. 2,

pp. 373–384, 2003. [Online]. Available: http://dx.doi.org/10.1137/S0895479899353373

[61] P. Benner and T. Mach, “On the qr decomposition of H −matrices,” Computing, vol. 88,

no. 3-4, pp. 111–129, 2010.

[62] S. Delvaux, K. Frederix, and M. Van Barel, “Transforming a hierarchical into a

unitary-weight representation,” Electron. Trans. Numer. Anal., vol. 33, pp. 163–188,

2008/09.

120

[63] S. Börm and J. Gördes, “An exact solver for simple H -matrix systems.”

[64] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle

River, NJ: Prentice Hall, 2008.

[65] M. Sonka, V. Hlavác, and R. Boyle, Image Processing, Analysis, and Machine Vision,

3rd ed. Toronto, Canada: Thomson-Engineering, 2008.

[66] M. Hudachek-Buswell, C. Matos, and M. Stewart, “Deblurring with rank-structured

inverse approximations,” in SIGGRAPH ’09: Posters, ser. SIGGRAPH ’09. New

York, NY: ACM, 2009, pp. 34:1–34:1.

[67] P. C. Hansen, J. G. Nagy, and D. P. OLeary, Deblurring images : matrices, spectra, and

filtering. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM),

2006.

[68] M. K. Ng and B. Plemmons, “Blind deconvolution and structured matrix computations

with applications to array imaging, blind deconvolution: Theory and applications,”

2007.

[69] J. Nagy, R. Plemmons, and T. Torgersen, “Iterative image restoration using

approximate inverse preconditioning,” Image Processing, IEEE Transactions on, vol. 5,

pp. 1151–1162, 1996.

[70] M. Benzi and M. Ng, “Preconditioned iterative methods for weighted Toeplitz least

squares problems,” SIAM J. Matrix Anal. Appl., vol. 27, no. 4, pp. 1106–1124

(electronic), 2006.

[71] J. G. Nagy, K. Palmer, and L. Perrone, “Iterative methods for image deblurring: a

matlab object-oriented approach,” Numerical Algorithms, vol. 36, pp. 73–93, 2003.

[72] P. C. Hansen and T. K. Jensen, “Noise propagation in regularizing iterations for image

deblurring,” Electron. Trans. Numer. Anal., vol. 31, pp. 204–220, 2008.

121

[73] R. DeVore, B. Jawerth, and B. Lucier, “Image compression through wavelet transform

coding,” Information Theory, IEEE Transactions on, vol. 38, no. 2, pp. 719–746, March

1992.

[74] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet

transform,” Image Processing, IEEE Transactions on, vol. 1, no. 2, pp. 205–220, Apr

1992.

[75] X. Wu, “Compression of wavelet transform coefficients,” in The Transform and Data

Compression Handbook, ser. Electrical Engineering and Applied Signal Processing

Series. Boca Raton, FL: CRC Press, 2001, pp. 347–378. [Online]. Available:

http://dx.doi.org/10.1201/9781420037388.ch8

[76] G. Strang, “Groups of banded matrices with banded inverses,” Proc. Amer.

Math. Soc., vol. 139, no. 12, pp. 4255–4264, 2011. [Online]. Available:

http://dx.doi.org/10.1090/S0002-9939-2011-10959-6

[77] R. E. Hufnagel and N. R. Stanley, “Modulation transfer function

associated with image transmission through turbulent media,” J. Opt.

Soc. Am., vol. 54, no. 1, pp. 52–60, Jan 1964. [Online]. Available:

http://www.opticsinfobase.org/abstract.cfm?URI=josa-54-1-52

[78] R. H.-F. Chan and X.-Q. Jin, An introduction to iterative Toeplitz solvers, ser.

Fundamentals of Algorithms. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM), 2007, vol. 5.

[79] G.-L. Börm, Steffen and W. Hackbusch, “Introduction to hierarchical

matrices with applications,” Engineering Analysis with Boundary

Elements, vol. 27, no. 5, pp. 405–422, 2003. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0955799702001522

122

[80] L. Grasedyck, “Adaptive recompression of −matrices for bem,”

Computing, vol. 74, no. 3, pp. 205–223, 2005. [Online]. Available:

http://dx.doi.org/10.1007/s00607-004-0103-1

[81] L. Grasedyck, R. Kriemann, and S. LeBorne, “Domain decomposition based −lu

preconditioning,” Numerische Mathematik, vol. 112, no. 4, pp. 565–600, 2009. [Online].

Available: http://dx.doi.org/10.1007/s00211-009-0218-6

	Georgia State University
	ScholarWorks @ Georgia State University
	Summer 8-12-2014

	Row Compression and Nested Product Decomposition of a Hierarchical Representation of a Quasiseparable Matrix
	Mary Hudachek-Buswell
	Recommended Citation

	tmp.1402928447.pdf.VspPt

