research

Fast Hessenberg reduction of some rank structured matrices

Abstract

We develop two fast algorithms for Hessenberg reduction of a structured matrix A=D+UVHA = D + UV^H where DD is a real or unitary n×nn \times n diagonal matrix and U,VCn×kU, V \in\mathbb{C}^{n \times k}. The proposed algorithm for the real case exploits a two--stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted sub-diagonals. It is shown that the novel method requires O(n2k)O(n^2k) arithmetic operations and it is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of (D)\Re(D) induces a structured reduction on AA in a block staircase CMV--type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and we show how to generalize the sub-diagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in kk and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.Comment: 25 page

    Similar works