179 research outputs found

    Computational results for an automatically tuned CMA-ES with increasing population size on the CEC'05 benchmark set

    Get PDF
    Abstract In this article, we apply an automatic algorithm configuration tool to improve the performance of the CMA-ES algorithm with increasing population size (iCMA-ES), the best performing algorithm on the CEC'05 benchmark set for continuous function optimization. In particular, we consider a separation between tuning and test sets and, thus, tune iCMA-ES on a different set of functions than the ones of the CEC'05 benchmark set. Our experimental results show that the tuned iCMA-ES improves significantly over the default version of iCMA-ES. Furthermore, we provide some further analyses on the impact of the modified parameter settings on iCMA-ES performance and a comparison with recent results of algorithms that use CMA-ES as a subordinate local search

    An Investigation of Factors Influencing Algorithm Selection for High Dimensional Continuous Optimisation Problems

    Get PDF
    The problem of algorithm selection is of great importance to the optimisation community, with a number of publications present in the Body-of-Knowledge. This importance stems from the consequences of the No-Free-Lunch Theorem which states that there cannot exist a single algorithm capable of solving all possible problems. However, despite this importance, the algorithm selection problem has of yet failed to gain widespread attention . In particular, little to no work in this area has been carried out with a focus on large-scale optimisation; a field quickly gaining momentum in line with advancements and influence of big data processing. As such, it is not as yet clear as to what factors, if any, influence the selection of algorithms for very high-dimensional problems (> 1000) - and it is entirely possible that algorithms that may not work well in lower dimensions may in fact work well in much higher dimensional spaces and vice-versa. This work therefore aims to begin addressing this knowledge gap by investigating some of these influencing factors for some common metaheuristic variants. To this end, typical parameters native to several metaheuristic algorithms are firstly tuned using the state-of-the-art automatic parameter tuner, SMAC. Tuning produces separate parameter configurations of each metaheuristic for each of a set of continuous benchmark functions; specifically, for every algorithm-function pairing, configurations are found for each dimensionality of the function from a geometrically increasing scale (from 2 to 1500 dimensions). The nature of this tuning is therefore highly computationally expensive necessitating the use of SMAC. Using these sets of parameter configurations, a vast amount of performance data relating to the large-scale optimisation of our benchmark suite by each metaheuristic was subsequently generated. From the generated data and its analysis, several behaviours presented by the metaheuristics as applied to large-scale optimisation have been identified and discussed. Further, this thesis provides a concise review of the relevant literature for the consumption of other researchers looking to progress in this area in addition to the large volume of data produced, relevant to the large-scale optimisation of our benchmark suite by the applied set of common metaheuristics. All work presented in this thesis was funded by EPSRC grant: EP/J017515/1 through the DAASE project

    A prescription of methodological guidelines for comparing bio-inspired optimization algorithms

    Get PDF
    Bio-inspired optimization (including Evolutionary Computation and Swarm Intelligence) is a growing research topic with many competitive bio-inspired algorithms being proposed every year. In such an active area, preparing a successful proposal of a new bio-inspired algorithm is not an easy task. Given the maturity of this research field, proposing a new optimization technique with innovative elements is no longer enough. Apart from the novelty, results reported by the authors should be proven to achieve a significant advance over previous outcomes from the state of the art. Unfortunately, not all new proposals deal with this requirement properly. Some of them fail to select appropriate benchmarks or reference algorithms to compare with. In other cases, the validation process carried out is not defined in a principled way (or is even not done at all). Consequently, the significance of the results presented in such studies cannot be guaranteed. In this work we review several recommendations in the literature and propose methodological guidelines to prepare a successful proposal, taking all these issues into account. We expect these guidelines to be useful not only for authors, but also for reviewers and editors along their assessment of new contributions to the field.This work was supported by grants from the Spanish Ministry of Science (TIN2016-8113-R, TIN2017-89517-P and TIN2017-83132-C2- 2-R) and Universidad Politécnica de Madrid (PINV-18-XEOGHQ-19- 4QTEBP). Eneko Osaba and Javier Del Ser-would also like to thank the Basque Government for its funding support through the ELKARTEK and EMAITEK programs. Javier Del Ser-receives funding support from the Consolidated Research Group MATHMODE (IT1294-19) granted by the Department of Education of the Basque Government

    A self-learning particle swarm optimizer for global optimization problems

    Get PDF
    Copyright @ 2011 IEEE. All Rights Reserved. This article was made available through the Brunel Open Access Publishing Fund.Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grants EP/E060722/1 and EP/E060722/2

    Population-based Algorithm Portfolios with automated constituent algorithms selection

    Get PDF
    AbstractPopulation-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneously. Previous investigation on PAP reveals that choosing appropriate constituent algorithms is crucial to the success of PAP. However, no method has been developed for this purpose. In this paper, an extended version of PAP, namely PAP based on Estimated Performance Matrix (EPM-PAP) is proposed. EPM-PAP is equipped with a novel constituent algorithms selection module, which is based on the EPM of each candidate EAs. Empirical studies demonstrate that the EPM-based selection method can successfully identify appropriate constituent EAs, and thus EPM-PAP outperformed all single EAs considered in this work

    Linearized biogeography-based optimization with re-initialization and local search

    Get PDF
    Biogeography-based optimization (BBO) is an evolutionary optimization algorithm that uses migration to share information among candidate solutions. One limitation of BBO is that it changes only one independent variable at a time in each candidate solution. In this paper, a linearized version of BBO, called LBBO, is proposed to reduce rotational variance. The proposed method is combined with periodic re-initialization and local search operators to obtain an algorithm for global optimization in a continuous search space. Experiments have been conducted on 45 benchmarks from the 2005 and 2011 Congress on Evolutionary Computation, and LBBO performance is compared with the results published in those conferences. The results show that LBBO provides competitive performance with state-of-the-art evolutionary algorithms. In particular, LBBO performs particularly well for certain types of multimodal problems, including high-dimensional real-world problems. Also, LBBO is insensitive to whether or not the solution lies on the search domain boundary, in a wide or narrow basin, and within or outside the initialization domain

    Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems

    Get PDF
    This paper addresses the issue of computational resource allocation within the context of cooperative coevolution. Cooperative coevolution typically works by breaking a problem down into smaller subproblems (or components) and coevolving them in a round-robin fashion, resulting in a uniform resource allocation among its components. Despite its success on a wide range of problems, cooperative coevolution struggles to perform efficiently when its components do not contribute equally to the overall objective value. This is of crucial importance on large-scale optimization problems where such difference are further magnified. To resolve this imbalance problem, we extend the standard cooperative coevolution to a new generic framework capable of learning the contribution of each component using multi-armed bandit techniques. The new framework allocates the computational resources to each component proportional to their contributions towards improving the overall objective value. This approach results in a more economical use of the limited computational resources. We study different aspects of the proposed framework in the light of extensive experiments. Our empirical results confirm that even a simple bandit-based credit assignment scheme can significantly improve the performance of cooperative coevolution on large-scale continuous problems, leading to competitive performance as compared to the state-of-the-art algorithms

    Memory-Enhanced Evolutionary Robotics: The Echo State Network Approach

    Get PDF
    International audienceInterested in Evolutionary Robotics, this paper focuses on the acquisition and exploitation of memory skills. The targeted task is a well-studied benchmark problem, the Tolman maze, requiring in principle the robotic controller to feature some (limited) counting abilities. An elaborate experimental setting is used to enforce the controller generality and prevent opportunistic evolution from mimicking deliberative skills through smart reactive heuristics. The paper compares the prominent NEAT approach, achieving the non-parametric optimization of Neural Nets, with the evolutionary optimization of Echo State Networks, pertaining to the recent field of Reservoir Computing. While both search spaces offer a sufficient expressivity and enable the modelling of complex dynamic systems, the latter one is amenable to robust parametric, linear optimization with Covariance Matrix Adaptation-Evolution Strategies
    corecore