
1

A Self-Learning Particle Swarm Optimizer for
Global Optimization Problems

Changhe Li, Shengxiang Yang Member, IEEE, and Trung Thanh Nguyen

Abstract—Particle swarm optimization (PSO) has been shown
as an effective tool for solving global optimization problems.
So far, most PSO algorithms use a single learning pattern for
all particles, which means all particles in a swarm use the
same strategy. This monotonic learning pattern may cause the
lack of intelligence for a particular particle, which makes it
unable to deal with different complex situations. This paper
presents a novel algorithm, called self-learning particle swarm
optimizer (SLPSO), for global optimization problems. In SLPSO,
each particle has a set of four strategies to cope with different
situations in the search space. The cooperation of the four
strategies is implemented by an adaptive learning framework
at the individual level, which can enable a particle to choose the
optimal strategy according to its own local fitness landscape. The
experimental study on a set of 45 test functions and two real-
world problems show that SLPSO has a superior performance
in comparison with several other peer algorithms.

Index Terms—Self-learning particle swarm optimization
(SLPSO), particle swarm optimization (PSO), operator adapta-
tion, topology adaptation, global optimization problem.

I. INTRODUCTION

EVOLUTIONARY computation has become an important
active research area over the past several decades. In

the literature, global optimization benchmark problems have
become more and more complex, from simple unimodal
functions to rotated shifted multi-modal functions to hybrid
composition benchmark functions proposed recently [41].
Finding the global optima of a function has become much
more challenging or even practically impossible for many
problems. Hence, far more effective optimization algorithms
are always needed.

In the past decade, PSO has been actively studied and
applied for many academic and real-world problems with
promising results [33]. However, many experiments have
shown that the basic PSO algorithm easily falls into local
optima when solving complex multi-modal problems [25] with
a huge number of local optima. In the literature of PSO, for
most algorithms so far, all particles in a swarm use only a
single learning pattern. This may cause the lack of intelligence
for a particle to cope with different complex situations. For

Manuscript received June 01, 2011; accepted September 23, 2011. This
work was supported by the Engineering and Physical Sciences Research Coun-
cil (EPSRC) of U. K. under Grant EP/E060722/1 and Grant EP/E060722/2.

C. Li is with the School of Computer Science, China University of
Geosciences, Wuhan, 430074, China (email: changhe.lw@gmail.com).

S. Yang is with the Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex, UB8 3PH, U. K. (email: shengxi-
ang.yang@brunel.ac.uk).

T. T. Nguyen is with The School of Engineering, Technology and Mar-
itime Operations, Liverpool John Moores University, Liverpool L3 3AF,
U. K. (email: T.T.Nguyen@ljmu.ac.uk).

example, different problems may have different properties
due to different shapes of the fitness landscapes. In order to
effectively solve these problems, particles may need different
learning strategies to deal with different situations. This may
also be true even for a specific problem because the shape of
a local fitness landscape in different sub-regions of a specific
problem may be quite different, such as the composition
benchmarks in [41].

To bring more intelligence to each particle, an adaptive
learning PSO algorithm (ALPSO) that utilizes four strategies
was introduced in [21], where each particle has four learning
sources to serve the purpose of exploration or exploitation
during the search process. An adaptive technique proposed in
[22] was used to adjust a particle’s search behavior between
exploration and exploitation by choosing the optimal strategy.

Based on our previous work in [21], a novel algorithm,
called self-learning PSO (SLPSO), is proposed in this paper.
Compared with ALPSO, some new features are introduced in
SLPSO. Firstly, two strategies in ALPSO are replaced by two
new strategies. Secondly, we use a biased selection method
in SLPSO so that a particle learns from only the particles
whose pbests are better than its pbest. Thirdly, the method of
updating the frequency parameter in ALPSO is replaced by
a new one. Fourthly, we introduce a super particle generated
by extracting promising information from improved particles
instead of directly updating the gbest particle, where the
extracting method is also enhanced by using a learning ratio.
Fifthly, controlling the number of particles that learn from
the super particle is implemented. Finally, although some new
parameters are introduced in SLPSO, users do not need to tune
these parameters for a specific problem as they use the same
setting up methods for all problems.

The rest of this paper is organized as follows. Section II
describes the basic PSO algorithm and some variants. The
SLPSO algorithm is presented in Section III. Section IV
describes the test problems and experimental setup. The
experimental study on SLPSO, including the self-learning
mechanism and sensitivity analysis of parameters, is presented
in Section V . The performance comparison of SLPSO with
some peer algorithms taken from the literature is given in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

A. Particle Swarm Optimization

Similar to other evolutionary algorithms (EAs), PSO is a
population based stochastic optimization technique. A poten-
tial solution in the fitness landscape is called a particle in PSO.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Each particle i is represented by a position vector ~xi and a
velocity vector ~vi, which are updated as follows:

v′
d
i = ωvdi + η1r1(x

d
pbesti − x

d
i) + η2r2(x

d
gbest − xdi) (1)

x′
d
i = xdi + v′

d
i , (2)

where x′di and xdi represent the current and previous positions
in the d-th dimension of particle i, respectively, v′i and vi are
the current and previous velocity of particle i, respectively,
~xpbesti and ~xgbest are the best position found by particle i so
far and the best position found by the whole swarm so far,
respectively, ω ∈ (0, 1) is an inertia weight, which determines
how much the previous velocity is preserved; η1 and η2 are
the acceleration constants, and r1 and r2 are random numbers
generated in the interval [0.0, 1.0] uniformly. Without loss of
generality, minimization problems are considered in this paper.

There are two main models of the PSO algorithm, called
gbest (global best) and lbest (local best), respectively. The two
models differ in the way of defining the neighborhood for each
particle. In the gbest model, the neighborhood of a particle
consists of the particles in the whole swarm, which share
information between each other. On the contrary, in the lbest
model, the neighborhood of a particle is defined by several
fixed particles. The two models give different performances
on different problems. Kennedy and Eberhart [19] and Poli
et al. [33] pointed out that the gbest model has a faster
convergence speed but also has a higher probability of getting
stuck in local optima than the lbest model. On the contrary,
the lbest model is less vulnerable to the attraction of local
optima, but has a slower convergence speed than the gbest
model. In order to give a standard form for PSO, Bratton and
Kennedy proposed a standard version of PSO (SPSO)1 in [5].
In SPSO, a local ring population topology is used and the
experimental results have shown that the lbest model is more
reliable than the gbest model on many test problems.

B. Some Variant Particle Swarm Optimizers

Due to its simplicity and effectiveness, PSO has become
a popular optimizer and many improved versions have been
reported in the literature since it was first introduced. Most
studies address the performance improvement of PSO from
one of four aspects: population topology [25], [18], [20],
[24], [29], [40], diversity maintenance [3], [4], [6], [21], [34],
hybridization with auxiliary operations [1], [32], [46], and
adaptive PSO [15], [34], [36], [37], [52], which are briefly
reviewed below.

1) Population Topology: The population topology has a
significant effect on the performance of PSO. It determines
the way particles communicate or share information with
each other. Population topologies can be divided into static
and dynamic topologies. For static topologies, communication
structures of circles, wheels, stars, and randomly-assigned
edges were tested in [18], showing that the performance of
algorithms is different on different problems depending on the

1Notice that the term “SPSO” in this paper indicates the standard version
of PSO in [5] rather than the speciation-based PSO in [23], which will be
introduced later.

topology used. Then, Kennedy and Mendes [20] have tested
a large number of aspects of the social-network topology on
five test functions. After that, a fully informed PSO (FIPS)
algorithm was introduced by Mendes [29]. In FIPS, a particle
uses a stochastic average of pbests from all of its neighbors
instead of using its own pbest position and the gbest position
in the update equation. A recent study in [24] showed that PSO
algorithms with a ring topology are able to locate multiple
global or local optima if a large enough population size is
used.

For dynamic topologies, Suganthan [40] suggested a dynam-
ically adjusted neighbour model, where the search begins with
a lbest model and is gradually increased until the gbest model
is reached. Janson et al. proposed a dynamic hierarchical
PSO (H-PSO) [16] to define the neighborhood structure where
particles move up or down the hierarchy depending on the
quality of their pbest solutions. Liang and Suganthan [25]
developed a comprehensive learning PSO (CLPSO) for multi-
modal problems. In CLPSO, a particle uses different particles’
historical best information to update its velocity, and for each
dimension a particle can potentially learn from a different
exemplar.

2) PSO with Diversity Control: Ratnaweera et al. [34]
stated that the lack of population diversity in PSO algorithms is
a factor that makes them prematurely converge to local optima.
Several approaches of diversity control have been introduced
in order to avoid the whole swarm converging to a single opti-
mum. In [3], diversity control was implemented by preventing
too many particles from getting crowded in one region of the
search space. Negative entropy was added into PSO in [49]
to discourage premature convergence. Other researchers have
applied multi-swarm methods to maintain diversity in PSO. In
[6], a niching PSO (NichePSO) was proposed by incorporating
a cognitive only PSO model with the guaranteed convergence
PSO (GCPSO) algorithm [45]. Parrott and Li developed a
speciation based PSO [23], which dynamically adjusts the
number and size of swarms by constructing an ordered list
of particles, ranked according to their fitness, with spatially
close particles joining a particular species. An atomic swarm
approach was adapted to track multiple optima simultaneously
with multiple swarms in dynamic environments by Blackwell
and Branke [4]. Recently, a clustering PSO algorithm was
proposed in [50], where a hierarchical clustering method is
used to produce multi-swarms in promising regions in the
search space.

3) Hybrid PSO: Hybrid EAs are becoming more and more
popular due to their capabilities in handling problems that
involve complexity, noisy environments, imprecision, uncer-
tainty, and vagueness. Among hybrid EAs, hybrid PSO is an
attractive topic. The first hybrid PSO algorithm was developed
by Angeline [1], where a selection scheme is introduced.
In [46], the fast evolutionary programming (FEP) [51] was
modified by replacing the Cauchy mutation with a version
of PSO velocity. Hybrid PSO based on genetic programming
was proposed in [32]. A cooperative PSO (CPSO-H) algorithm
was proposed in [44], which employs the idea of splitting the
search space into smaller solution vectors and combines with
the gbest model of PSO. In [7], a hybrid model that integrates

3

PSO, recombination operator, and dynamic linkage discovery,
called PSO-RDL, was proposed.

4) PSO with Adaptation: Besides the above three active
research aspects, adaptation is another promising research
trend in PSO. Shi and Eberhart introduced a method of
linearly deceasing ω with the iteration for PSO in [36], and
then proposed a fuzzy adaptive ω method for PSO in [37].
Ratnaweera et al. [34] developed a self-organizing hierarchical
PSO with time-varying acceleration coefficients, where η1 and
η2 are set to a large value and a small value, respectively, at
the beginning, and are gradually reversed during the search
process. By considering a time-varying population topology,
FIPS’s velocity update mechanism [29], and a decreasing
inertia weight, a PSO algorithm, called Frankenstein’s PSO
(FPSO), was proposed in [11]. In FPSO, the swarm starts
with a fully connected population topology. The connectivity
decreases with a certain pattern and ends up with the ring
topology. The performance of a TRIBES model of PSO was
investigated in [8], which is able to automatically change the
behavior of particles as well as the population topology. A
population manager method for PSO was proposed in [15],
where the population manager can dynamically adjust the
number of particles according to some heuristic conditions
defined in [15].

Recently, a PSO version with adaptive ω, η1, and η2, called
APSO, was proposed by Zhan et al. [52]. In APSO, four evo-
lutionary states, including “exploitation”, “exploration”, “con-
vergence”, and “jumping out”, are defined. Co-incidentally,
the four operators in ALPSO [21] play the similar roles as the
four evolutionary states defined in APSO [52], but the way
of implementation is different. While the four operators in
ALPSO are updated by an operator adaptation scheme [21],
the evolutionary states in APSO are estimated by evaluat-
ing the population distribution and particle fitness. In each
evolutionary state, APSO gives one corresponding equation
to adjust the value of η1 and η2. Accordingly, the value
of ω is tuned using a sigmoid mapping of the evolutionary
factor f in each evolutionary state. Similar work of adaptively
tuning the parameters of PSO has been done in [48], [31].
However, none or little work of operator selection has been
done in PSO. Experimental study in [21] has shown that the
adaptive learning approach is an effective method to improve
the performance of PSO.

C. Self-learning and Adaptive Strategies

Swarm intelligence (SI) is the property of a system whereby
the collective behaviors of (unsophisticated) agents interacting
locally with their environment cause coherent functional global
patterns to emerge [47]. Agents (individuals) have some simple
interaction rules and each agent is able to adjust its behavior
according to the results of interaction with local environments.
Complex, emergent, and collective behaviors are shown up
only based on simple interactions with local environments.
However, it is difficult for us to understand and simulate the
emergent behaviors from nature to solve real-world problems.

Although it is difficult to exactly simulate the emergent
collective behaviors, we can employ techniques based on

adaptive operator selection (AOS) to implement the adaptive
behavior of social creature groups, e.g., ant colony, bee colony,
and bird flocking, etc. AOS is an important step toward
self-tuning for EAs. To design an efficient AOS structure,
generally, we need to solve two issues: a credit assignment
mechanism, which computes a reward for each operator at
hand based on certain rules from statistical information of
offspring; and an adaptation mechanism, which is able to
adaptively select one among different operators based on their
rewards [9], [12], [14], [39], [38], [42], [43].

The low-level behavior of the choice-function based hyper-
heuristic was investigated in [17]. Based on the fact that no
single operator is optimal for all problems and the optimal
choice of operators for a given problem is also time-variant,
Smith and Fogarty [39] suggested a framework for the classifi-
cation based on the learning strategy used to control them and
reviewed a number of adaptation methods in GAs. Thereafter,
to address the issue that the set of available operators may
change over time, Smith [38] proposed a method for estimating
an operator’s current utility, which is able to avoid some of
the problems of noise inherent in simpler schemes for memetic
algorithms. In [42], [43], an adaptive allocation strategy, called
the adaptive pursuit method, was proposed and compared with
some other probability matching approaches in a controlled,
dynamic environment. In [9], a specific dynamic method based
on the multi-armed bandit paradigm was developed for dy-
namic frameworks. In order to well evaluate the performance
of operators, recently, a new strategy [27] was introduced by
considering not only the fitness improvements from parent to
offspring, but also the way they modify the diversity of the
population, and their execution time.

III. SELF-LEARNING PARTICLE SWARM OPTIMIZER

A. General Considerations of Performance Tradeoff

It is generally believed that the gbest model biases more
toward exploitation, while the lbest model focuses more on
exploration. Although there are many improved versions of
PSO, the question of how to balance the performance of the
gbest and lbest models is still an important issue, especially
for multi-modal problems.

In order to achieve good performance, a PSO algorithm
needs to balance its search between the lbest and gbest
models. However, this is not an easy task. If we let each
particle simultaneously learn from both its pbest position and
the gbest or lbest position to update itself (velocity update),
the algorithm may suffer from the disadvantages of both
models. One solution might be to implement the cognition
component and the social component separately. This way,
each particle can focus on exploitation by learning from its
individual pbest position or focus on convergence by learning
from the gbest particle. The idea enables particles of different
locations in the fitness landscape to carry out local search or
global search, or vice versa, in different evolutionary stages.
So, different particles can play different roles (exploitation
or convergence) during the search progress, and even the
same particle can play different roles during different search
progress.

4

Algorithm 1 Update(operator i, particle k, fes)
1: if i = a then
2: Update the velocity and position of particle k using operator a and Eq. (2);
3: else if i = b then
4: Update the position of particle k using operator b;
5: else if i = c then
6: Choose a random particle j that is not particle k;
7: if f(~xpbestj) < f(~xpbestk) then
8: Update the velocity and position of particle k using operator c and Eq. (2);
9: else

10: Update the velocity and position of particle j using operator c and Eq. (2);
11: k := j;
12: end if
13: else
14: Update the velocity and position of particle k using operator d and Eq. (2);
15: end if
16: fes++; where fes is the current number of fitness evaluations.

However, there is a difficulty in implementing this idea:
the appropriate moment for a particle to learn from gbest or
pbest is very hard to know. To implement the above idea,
we introduce an adaptive method to automatically choose one
search strategy. In this method, which strategy to apply and
when to apply that strategy are determined by the property
of the local fitness landscape where a particle is located. This
adaptive method will be further described in the following
sections.

B. Velocity Update in SLPSO

Inspired by the idea of division of labor, we can assign
different roles to particles, e.g., converging to the global best
particle, exploiting the personal best position, exploring new
promising areas, or jumping out of local optima. Accordingly,
we summarize four different possible situations regarding
surrounding environments for a general particle. Firstly, for
unimodal problems or the fitness landscape with peaks that
are far away from each other, to effectively search on local
peaks, the best learning policy for all particles may be to learn
from their neighbour best particles. Secondly, for a particle
in a slope, the best strategy may be to learn from its own
pbest position as it will help the particle to find a better
position much easier than searching in a distant sub-region.
Thirdly, for the fitness landscape with many local optima
evenly distributed, learning from neighbors may be the best
choice as this strategy will encourage particles to explore the
search space. Finally, the only choice for converged particles
is to apply mutation to jump out of local optima. Of course,
mutation can also help particle to explore the search space.

Based on the above analysis, we define four strategies and
four corresponding operators in SLPSO. In SLPSO, the learn-
ing information for each particle comes from four sources:
the archived position of the gbest particle (abest), which is
the same as the “super” particle introduced in Section II,
its individual pbest position, the pbest position of a random
particle (pbestrand) whose pbest is better than its own pbest,
and a random position prand nearby. The four strategies
play the roles of convergence, exploitation, exploration, and
jumping out of the basins of attraction of local optima,
respectively.

The four strategies enable each particle to independently
deal with different situations. For each particle k, the learning

equations corresponding to the four operators, respectively, are
given as follows:

• Operator a: learning from its pbest position

exploitation : vdk = ωvdk + η · rdk · (pbestdk − xdk) (3)

• Operator b: learning from a random position nearby

jumping out : xdk = xdk + vdavg ·N(0, 1) (4)

• Operator c: learning from the pbest of a random particle

exploration : vdk = ωvdk + η · rdk · (pbestdrand − xdk) (5)

• Operator d: learning from the abest position

convergence : vdk = ωvdk + η · rdk · (abestd − xdk) (6)

where pbestrand is the pbest of a random particle, which is
better than pbestk; the jumping step vdavg is the average speed
of all particles in the d-th dimension, which is calculated by
vdavg =

∑N
k=1 |vdk|/N , where N is the population size; N(0, 1)

is a random number generated from the normal distribution
with mean 0 and variance 1; the abest position is an archive
of the best position found by SLPSO so far.

It should be noted that different from ALPSO [21], a bias
selection scheme is added into the operator of learning from
the pbestrand position in SLPSO. A particle only learns from
a pbestrand position that is better than its own historical best
position pbest. Due to this scheme, more resources are given
to the badly-performing particles to improve the whole swarm.
The procedure is described in Algorithm 1.

It should also be noted that the abest position in Eq. (6)
is an archive of the position of the gbest particle, which is
different from the gbest particle of the whole swarm because
it is not a particle. The abest position does not use any of
the four operators to update itself except Algorithm 2 (to
be explained later in Section III-D). Although it is the same
position as the gbest particle in the initial population, it will
be updated by Algorithm 2 and becomes better than the gbest
particle. Different from the ALPSO algorithm in [21], all
particles in SLPSO, including the gbest particle, learn from the
abest position. The position and velocity update framework in
SLPSO is shown in Algorithm 1.

The third operator, which is a new one used in this paper,
enables a particle to explore the non-searched areas with a
higher probability than learning from its nearest neighbor as
used in [21]. From Eq. (5), learning from different particles
can actually alter the velocity as the distance is different from
different random particles in two successive iterations. Hence,
this strategy is able to maintain the social diversity of the
swarm at a certain level.

The choice of which learning option is the most suitable
would depend on the local fitness landscape where a particle
is located. However, it is assumed that we cannot know how
the fitness landscape looks like even though we have a priori
knowledge of the fitness landscape. Instead, each particle
should detect the shape of the local fitness landscape where it
is currently in by itself. How to achieve this goal is described
in the following section.

5

C. The Adaptive Learning Mechanism

As analyzed above, the best strategy for a particular particle
is determined by its local fitness landscape. Therefore, the
optimal strategy for a particle may change in accordance with
the change of its position during the evolution process. In
this section, we will achieve two objectives. The first is to
provide a solution to how to choose the optimal strategy,
and the other one is to adapt this learning mechanism to the
local environmental change for a particular particle during the
evolutionary process.

From another point of view, the four operators in SLPSO
actually represent four different population topologies, which
in turn allow particles to have four different communication
structures. Each population structure determines a particle’s
neighborhood and the way it communicates with the neigh-
borhood. By adaptively adjusting the population topology, we
can adaptively adjust the way particles interact with each other
and hence can enable the PSO algorithm to perform better in
different situations.

The task of selecting operators from a set of alternatives
has been comprehensively studied in EAs [12], [14], [39].
Inspired by the idea of probability matching [42], in this paper,
we introduce an adaptive framework using the aforementioned
four operators, each of which is assigned to a selection ratio.
This adaptive framework is an extension of our work in [22].
Different from the work in [22], where the adaptive scheme
is only implemented at the population level, in this paper, we
extend the adaptive scheme to the individual level and make it
simpler than the version in [21], [22]. The adaptive framework
is based on the assumption that the most successful operator
used in recent past iterations may also be successful in the
future several iterations. The selection ratio of each operator
is equally initialized to 1/4 for each particle and is updated
according to its relative performance.

For each particle, one of the four operators is selected
according to their selection ratios. The operator that results
in a higher relative performance, which is evaluated by a
combination of the offspring fitness, current success ratio, and
previous selection ratio, will have its selection ratio increased.
Gradually, the most suitable operator will be chosen auto-
matically and control the learning behavior of each particle
in different evolutionary stages and local fitness landscapes.
During the updating period for each particle, the progress value
and the reward value of operator i are calculated as follows.

The progress value pki (t) of operator i for particle k at
iteration t is defined as:

pki (t) =

 | f(~xk(t))− f(~xk(t− 1)) |, if operator i is chosen
by ~xk(t) and ~xk(t) is better than ~xk(t− 1)

0, otherwise,
(7)

The reward value rki (t) has three components, which are the
normalized progress value, the success rate, and the previous
selection ratio. It is defined as:

rki (t) =
pki (t)∑R
j=1 p

k
j (t)

α+
gki
Gk

i

(1− α) + cki s
k
i (t) (8)

where gki is the counter that records the number of successful
learning times of particle k, in which its child is fitter than

particle k by applying operator i since the last selection ratio
update, Gki is the total number of iterations where operator i
is selected by particle k since the last selection ratio update,
gki /G

k
i is the success ratio of operator i for particle k, α is

a random weight between 0.0 and 1.0, R is the number of
operators, cki is a penalty factor for operator i of particle k,
which is defined as follows:

cki =

{
0.9, if gki = 0 and ski (t) = maxR

j=1 (s
k
j (t))

1, otherwise (9)

and ski (t) is the selection ratio of operator i for particle k at
the current iteration.

In Eq. (8), if none of the operators has been able to improve
particle k since the last selection ratio update, then

∑R
j=1 p

k
j (t)

will be 0. In this case, only the third component (cki s
k
i (t)) will

be assigned to rki (t).
Based on the above definitions, the selection ratio of oper-

ator i for particle k in the next iteration t + 1 is updated as
follows:

ski (t+ 1) =
rki (t)∑R
j=1 r

k
j (t)

(1−R ∗ γ) + γ, (10)

where γ is the minimum selection ratio for each operator,
which is set to 0.01 for all the experiments in this paper.

According to the above definitions, we know that there is
always one operator that has the highest selection ratio for
each particle. This operator must be the most successful one
compared with the other operators at the current moment.
However, when a particle converges or moves to a new local
sub-region whose property is different from the previous one,
this most successful operator no longer brings any benefit to
the particle. When this case occurs, according to the punishing
mechanism in Eq. (9), the selection ratio of that operator will
decrease, while the selection ratios of the other operators will
increase. So, a new most suitable operator will be adaptively
selected based on its relatively better performance and the
outdated operator will lose its domination automatically. This
is how the adaptive mechanism works. Based on the analysis
of the adaptive working mechanism, we can see that SLPSO
is able to choose the optimal strategy and is also able to adapt
with the environmental change for each particle independently.

In addition, it should be noted that the selection ratios
of the four operators are updated at the same time and not
updated every iteration. Instead of counting the number of
successive iterations for Uf , called update frequency in [21],
we just record the number of successive unsuccessful learning
times (mk) for each particle k. If particle k is improved
by any operator before the counter mk reaches the maximal
value of Uf , mk will be reset to 0. This method reduces the
risk of punishing the best operator due to its temporally bad
performance in a short period. After the selection ratios of the
four learning operators are updated, all the information, except
the selection ratio of each operator, is reset to 0.

D. Information Update for the abest Position

In most population-based algorithms, once an individual
is updated or replaced, the information of all dimensions
will be replaced with that of a new position. This updating

6

Algorithm 2 UpdateAbest(particle k,fes)
1: for each dimension d of abest do
2: if rand() < Pkl then
3: ~xt abest := ~xabest;
4: ~xt abest[d] := ~xk[d];
5: Evaluate ~xt abest;
6: fes++;
7: if f(~xt abest) < f(~xabest) then
8: ~xabest[d] := ~xt abest[d];
9: end if

10: end if
11: end for

mechanism has one disadvantage: promising information may
not always be preserved. For example, even though an indi-
vidual has promising information in a particular dimension,
that information would still be lost if it has a lower fitness
due to unpromising information from other dimensions. This
problem, called “two step forward, one step back” in [44],
has two opposite aspects to be considered. One is that the
improvement of some dimensions at the gene level brings the
improvement of the whole individual at the individual level.
The other aspect is that some dimensions get worse although
the whole individual gets better.

To overcome the above two issues, we should monitor
the improved particles in PSO. If a particle gets better over
time, there may be the case that the particle has some useful
information in some certain dimensions even though it has
a relatively low fitness value. In that case, other particles
should learn from that useful information. In SLPSO, the abest
position learns the useful information from the dimensions of
particles which show improvement over time.

However, it is difficult to effectively implement this idea.
For example, in order to check the information of which
dimension of an improved particle is useful for the abest
position, we have to check all the dimensions of that improved
particle. This is because it is very difficult to know the
information of which dimension or combination of dimensions
of the improved particle is useful for the abest position.
Although we do not know that information, we can assign
a learning probability (Pl) for each dimension to the abest
position to learn from the improved particle. There are two
advantages to introduce the learning probability: firstly, the
algorithm will save a lot of computational resources, and
secondly, the algorithm can reduce the probability of learning
potentially useless information for the abest position even if it
also reduces the probability of learning useful information. Ac-
tually, for most cases, the information of an improved particle
may be not useful for the abest position when they distribute
in different sub-regions. Therefore, assigning a learning prob-
ability may not affect too much the performance of SLPSO.
On the contrary, if the abest position learns potentially useless
or even dangerous information from improved particles, it
will seriously affect SLPSO’s performance. The evidence can
be seen from the experimental results later in the section
of parameter sensitivity analysis. Algorithm 2 describes the
update framework of the abest position.

Algorithm 3 UpdateLearningOpt(particle k)
1: if CFk! = true && PFk = true then
2: sum :=

∑3
j=1 s

k
j ;

3: for j := 1 to 3 do
4: skj := skj /sum;
5: end for
6: sk4 := 0;
7: end if
8: if CFk = true && PFk! = true then
9: for j := 1 to 4 do

10: pkj := 0; gkj := 0; Gkj := 0; skj := 1/4
11: end for
12: end if

where CFk and PFk are used to record whether particle k uses the convergence
operator or not at the current and previous iteration, respectively

E. Controlling the Number of Particles That Learn from the
abest Position

Learning from the abest position is used to accelerate the
population convergence. For the particles close to the abest
position, the attraction to the abest position is too strong to
give any opportunity to the other three operators. In order to
make full use of the adaptive learning mechanism, we need
to control the number of particles that learn from the abest
position. There are two reasons to do so.

First, the optimal number of particles that learn from the
abest position is determined by the property of the problem
to be solved. For example, to effectively solve the unimodal
function, e.g., the Sphere function, we need to allow all par-
ticles to learn from the abest position so that all particles can
quickly converge to the global optimum. On the contrary, for
some multi-modal problems, we should allow most particles
to do local search rather than to learn from the abest position
so that they will have a higher probability to find the global
optimum. The evidence can be seen from the experimental
results in the section of parameter sensitivity analysis.

Second, it is not fair for the other three operators to
compete with the convergence operator because all of them
contribute to the convergence operator. When a particle gets
improvement through whichever of the other three operators,
the convergence operator also gets benefit through either a
direct or an indirect way: in the direct way, the improved
particle becomes the new abest position, and in the indirect
way, useful information is extracted from improved particles
and hence, if the abest position succeeds, it will also indirectly
get benefit.

Based on the above analysis, we need to control the number
of particles to use the convergence operator. However, it is hard
to know which particles are suitable to use the convergence
operator. To solve this problem, we randomly select a certain
number of particles to use the convergence operator every
iteration. To implement this idea, we need to update some
information of the particles that switch between using and not
using the convergence operator in two successive iterations.
The information that needs to be updated includes progress
values, reward values, success ratios, and selection ratios.

If the switch happens, there are two cases for updating the
related information. The first case is that particles use the con-
vergence operator in the previous iteration but do not use it in
the current iteration, and the second case is opposite to the first
one. In the first case, we need to remove the learning source of

7

Algorithm 4 The SLPSO Algorithm
1: Generate initial swarm and set up parameters for each particle;
2: Set fes :=0, iteration counter for initial swarm t := 0;
3: while fes < T Fes do
4: for each particle k do
5: Select one learning operator i using the roulette wheel selection rule;
6: Update(i, k, fes);
7: Gki ++;
8: if f(~xk(t)) < f(~xk(t− 1) then
9: gki ++; mk := 0;

10: pki+= f(~xk(t− 1))− f(~xk(t));
11: Perform UpdateAbest(k, fes) for the abest position;
12: else
13: mk := mk + 1;
14: end if
15: if f(~xk(t)) < f(~xpbestk) then
16: ~xpbestk := ~xk;
17: if f(~xk) < f(~xabest) then
18: ~xabest := ~xk;
19: end if
20: end if
21: if mk ≥ Ukf then
22: Update the selection ratios according to Eq. (10);
23: for each operator j do
24: pkj := 0; gkj := 0; Gkj := 0;
25: end for
26: end if
27: end for
28: UpdatePar();
29: t++;
30: end while

the abest position, and then re-normalize the selection ratios
of the other three operators according to their current values
and keep other information of the three operators the same.
For the second case, all the related information is reset to the
initial states: the progress values, reward values, and success
ratios are set to 0, and the selection ratios are set to 1/4 for
the four operators. The update description can been seen in
Algorithm 3.

F. Framework of SLPSO

Together with the above components, the implementation
of the SLPSO algorithm is summarized in Algorithm 4. The
procedure of UpdatePar() in Algorithm 4 will be introduced
later in Algorithm 5 in Section V-C.

1) V max and Out of Search Range Handling in SLPSO:
In SLPSO, we use the parameter V max to constrain the
maximum velocity for each particle, and the value of V max
is set to the half of the search domain for a general problem.
We use the following operation to handle out-of-range search:
for each dimension, before updating its position, we first
remember the position value xd(t−1) of the previous iteration,
then calculate a temporal value xt by Algorithm 1, and finally,
update its current position xd(t) as follows:

xd(t) =

 R(Xd
min, x

d(t− 1)), if xt < Xd
min

R(xd(t− 1), Xd
max), if xt > Xd

max

xt, else
(11)

where R(a, b) returns a uniformly distributed number within
the range [a, b] and [Xd

min, X
d
max] is the search range in the

d-th dimension of a given problem.
2) Complexity of SLPSO: Compared with the basic PSO

algorithm, SLPSO needs to perform some extra computation
on updating the selection ratios, the abest position, and
the three parameters. For the update of selection ratios and

parameters, we do not need to re-evaluate the fitness values
of particles, and the time complexity is O(N) (where N is
the population size) for each iteration. For the abest position
update, although it needs to re-evaluate particle’s fitness, the
re-evaluation happens only when particles get improvement.
In addition, for each dimension of the abest position, the
update is performed with a certain probability. According to
the above component complexity analysis, we can see that the
time complexity of SLPSO is not very high in comparison
with the basic PSO algorithm.

IV. TEST FUNCTIONS AND EXPERIMENTAL SETUP

A. Test Functions

To investigate how SLPSO performs in different envi-
ronments, we chose 45 functions, including the traditional
functions, traditional functions with noise, shifted functions,
and rotated shifted functions, which are widely used in the
literature [29], [25], [51], [52] as well as the complex hybrid
composition functions proposed recently in [26], [41]. The
details of these functions are given in Table I, Table II, and
Table III, respectively.

The 45 functions are divided into six groups in terms of
their properties: traditional problems (f1-f12), noisy problems
(f19-f22), shifted problems (f15-f18, f31-f32, and f36-f38),
rotated problems (f23-f26), rotated shifted problems (f27-f30,
f33-f35, and f39), and hybrid composition functions (f13-f14
and f40-f45). Table IV shows the parameter settings for some
particular functions. The shifting and rotating methods used in
the test functions are from [41]. The detailed parameter setting
for functions f31-f45 can be found in [41].

In order to generate noisy environments, the functions f19-
f22 are modified from four traditional test functions by adding
noises in each dimension as follows:

f(~x) = g(~x− 0.01 · ~or) (12)

where ~or is a vector of uniformly distributed random numbers
within the range [0, 1].

It should be noted that the test functions chosen from the
literature are not in favor of the tested algorithms, including
SLPSO. For example, beside the solved cases from [41] in
the competition of CEC 2005, we also chose some never-
solved problems, e.g., the composition functions f40-f45.
Moreover, they have different properties to test an algorithm’s
performance in terms of different aspects, such as unimodal
problems (e.g., f1, f8, and f9-f11), problems of a huge number
of local optima (e.g., f2), non-continuous problems (e.g., f3),
non-differentiable problems (e.g., f4), non-separate problems
(e.g., f5), deceptive problems (e.g., f6), functions with noise
(e.g., f19), problems with modified fitness landscape (e.g.,f15,
f25, and f28), and problems with very complex fitness land-
scapes (e.g., f13).

B. Parameter Settings for the Involved PSO Algorithms

The configuration of each peer algorithm taken from the
literature is given in Table V, which is exactly the same as
that used in the original paper. Below, we briefly describe the

8

TABLE I
THE TEST FUNCTIONS, WHERE fmin IS THE MINIMUM VALUE OF A FUNCTION AND S ∈ Rn

Name Test Function S fmin

Sphere f1(~x) =
∑n
i=1 x

2
i [−100, 100] 0

Rastrigin f2(~x) =
∑n
i=1 (x2

i − 10 cos(2πxi) + 10) [-5.12, 5.12] 0

Noncont Rastrigin f3(~x) =
∑n
i=1 (y2i − 10 cos(2πyi) + 10) [-5.12, 5.12] 0

Weierstrass f4(~x) =
n∑
i=1

(
kmax∑
k=0

[ak cos(2πbk(xi + 0.5))])− n
kmax∑
k=0

[ak cos(πbk)], [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20

Griewank f5(~x) = 1
4000

∑n
i=1(xi − 100)2 −

∏n
i=1cos(

xi−100√
i

) + 1 [-600, 600] 0

Schwefel f6(~x) = 418.9829 · n+
∑n
i=1−xi sin (

√
|xi|) [-500, 500] 0

Ackley f7(~x) = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i)− exp(1

n

∑n
i=1 cos(2πxi)) + 20 + e [-32, 32] 0

Rosenbrock f8(~x) =
∑n
i=1 100(x2

i+1 − xi)
2 + (xi − 1)2) [-2.048, 2.048] 0

Schwefel 2 22 f9(~x) =
∑n
i=1 |xi|+

∏n
i=1 |xi| [-10, 10] 0

Schwefel 1 2 f10(~x) =
∑n
i=1 (

∑i
j=1 xj)

2 [-100, 100] 0

Schwefel 2 21 f11(~x) = maxni=1 |xi| [-100, 100] 0

Penalized 1 f12(~x) = π
30{10 sin2 (πy1) +

∑n−1
i=1 (yi − 1)2 · [1 + 10 sin2 (πyi+1)]+ [-50, 50] 0

(yn − 1)2}+
∑n
i=1 u(xi, 5, 100, 4), yi = 1 + (xi + 1)/4

H Com f13(~x) =Hybrid Composition function (CF4) in [26] [-5, 5] 0

RH Com f14(~x) =Hybrid Composition function (CF4) with rotation in [26] [-5, 5] 0

TABLE II
TEST FUNCTIONS OF f15 TO f30 , WHERE “O” REPRESENTS THE ORIGINAL

PROBLEMS, “N”, “S”, “R”, AND “RS” REPRESENT THE MODIFIED
PROBLEMS BY ADDING NOISE, SHIFTING, ROTATING, AND COMBINATION

OF SHIFTING AND ROTATING, RESPECTIVELY

O N S R RS O N S R RS
Sphere f1 f19 f18 f23 f27 Schwefel f6 f20 f15 f25 f28

Rastrigin f2 f22 f17 f24 f30 Ackley f7 f21 f16 f26 f29

TABLE III
TEST FUNCTIONS OF f31 TO f45 CHOSEN FROM [41]

f Name S fmin
f31 S Sphere CEC05(F1) [-100,100] -450
f32 S Rastrigin CEC05(F9) [-5,5] -330
f33 RS Rastrigin CEC05(F10) [-5,5] -330
f34 RS Weierstrass CEC05(F11) [-0.5,0.5] 90
f35 RS Ackley Bound CEC05(F8) [-32,32] -140
f36 S Rosenbrock CEC05(F6) [-100,100] 390
f37 S Schwefel 1 2 CEC05(F2) [-100,100] -450
f38 S Schwefel 1 2 Noisy CEC05(F4) [-100,100] -450
f39 RS Elliptic CEC05(F3) [-100,100] -450
f40 Com CEC05(F15) [-5,5] 120
f41 H Com CEC05(F16) [-5,5] 120
f42 H Com Noisy CEC05(F17) [-5,5] 120
f43 RH Com CEC05(F18) [-5,5] 10
f44 RH Com NarrowBasin CEC05(F19) [-5,5] 10
f45 RH Com Bound CEC05(F20) [-5,5] 10

peer algorithms that are taken from the literature to compare
with SLPSO in this paper.

The first algorithm is the cooperative PSO (CPSO-Hk) [44],
which is a cooperative PSO model combined with the original
PSO. For this algorithm, we also use the same value for the
“split factor” k = 6 as it was used in the original paper
[44]. The second algorithm is the fully informed PSO (FIPS)
[29] with a U-ring topology that achieved the highest success
rate. The third algorithm is the comprehensive learning PSO
(CLSPO) [25], which was proposed for solving multi-modal
problems and shows a good performance in comparison with
eight other PSO algorithms. The fourth peer algorithm is
the adaptive PSO (APSO) [52], which adaptively tunes the
values of η1, η2, and ω based on the population distribution

TABLE IV
PARAMETERS SETTINGS FOR f3 , f12 , f13 , f14 , AND ROTATED AND

ROTATED SHIFTED FUNCTIONS

f Parameter values

f3 yi =

{
xi, |xi| < 1/2,
round(2xi), |xi| ≥ 1/2

f12 u(x, a, k,m) =

 k(x− a)m, x > a,
0, −a ≤ x ≤ a,
k(−x− a)m, x < −a.

m=10, M1−10(f13)=identity matrix, c1−10(f14) = 2
f13 g1−2 = Sphere function, g3−4=Rastrigin function
f14 g5−6=Weierstrass function, g7−8=Griewank function

g9−10=Ackley function
biask = 100(k − 1), k = 1, 2, . . . , 10

f29 c = 100
f23–f28, f30 c = 2

TABLE V
CONFIGURATION OF THE INVOLVED PSO ALGORITHMS

Algorithm Year Population Topology Parameter Settings
SPSO[28] 2007 Local ring ω=0.721, η1=η2=1.193
CPSO-Hk[44] 2004 Cooperative multi- ω: [0.4, 0.9], η1 = η2 = 1.49

swarm approach k=6
FIPS[29] 2004 Local URing χ = 0.7298,

∑
ci = 4.1

CLPSO[25] 2006 Comprehensive learning ω: [0.4, 0.9], η = 2.0
APSO[52] 2009 Global star ω: [0.4, 0.9], η1 + η2: [3.0, 4.0]

with adaptive tuning
TRIBES-D[8] 2009 Adaptive
FPSO[11] 2009 Adaptive ω: [0.4, 0.9],

∑
ci = 4.0

JADE[53] 2009 An adaptive DE algorithm p=0.05, c=0.1
HRCGA[13] 2008 A real-coded GA PG=25%, NGF =200,

NGM=400, NLF =5, NLM=100
G-CMA-ES[2] 2005 An ES algorithm Default settings in [2]
APrMF[30] 2009 A memetic algorithm Default settings in [30]

in the fitness landscape to achieve different purposes, such as
exploration, exploitation, jumping out, and convergence. The
fifth peer algorithm is the standard PSO (SPSO) where the
implementation can be downloaded at [28] (note that, this
is a bit different from the one proposed in [5] and more
widely used than the one in [5]). We chose this algorithm
to investigate how SLPSO performs compared to the standard
version of PSO. The sixth PSO algorithm is Frankenstein’s
PSO (FPSO) [11], which is a composite PSO algorithm that
combines a time-varying population topology, FIPS’s velocity

9

update mechanism, and a decreasing inertial weight. Since the
number of total fitness evaluations is fixed for the experimental
study in this paper, we used the suggestion by [11] to set the
parameters in FPSO where a slow topology change schedule
and an intermediate inertia weight schedule were used in this
paper. The seventh peer algorithm, the TRIBES PSO algorithm
[8], is also an adaptive PSO algorithm which can adaptively
tune the number of particles needed and the population topol-
ogy. The implementation of TRIBES PSO is provided at [28].
Note that the implementation of the TRIBES algorithm used
in this paper is a simplified version of the paper [8].

Four non-PSO algorithms are also included in the com-
parison with SLPSO. They are the JADE [53], HRCGA
[13], APrMF [30], and G-CMA-ES [2] algorithms. JADE is
an adaptive differential evolution algorithm with an optional
external archive and HRCGA is a real-coded GA based on
parent-centric crossover operators. We used the JADE with
an archive in this paper since it has shown promising results
compared with JADE without an archive in [53]. The param-
eters p for the DE/current-to-pbest strategy and c for JADE
were set to 0.05 and 0.1, respectively, as suggested in [53].
For the HRCGA algorithm, a combination of the global and
local models were used where the number of female and male
individuals for the two models were set to 200, 400 and 5,
100, respectively and the hybridization factor PG was set to
25%. APrMF [30] is a probabilistic memetic algorithm, which
is able to analyze the probability of evolution or individual
learning. By adaptively choosing one of the two actions, the
APrMF algorithm can accelerate the search of global optimum.
G-CMA-ES [2] is a covariance matrix adaptation (CMA)
evolution strategy (ES) algorithm with re-start mechanism and
increasing population size. For SLPSO, η was set to 1.496,
Vmax was set to half of the search domain for each test
function, which can be seen from Table I and Table III, and
the default parameter settings suggested in Section V-C (to be
introduced in the following section) were used for all problems
unless explicitly stated in this paper.

To fairly compare SLPSO with the other 11 algorithms,
all algorithms were implemented and run independently 30
times on the 45 test problems. The initial population and
stop criteria were the same for all algorithms for each run.
The maximal number of fitness evaluations (T Fes) was used
as the stop criteria for all algorithms on each function. The
pair of swarm size and T Fes was set to (10, 50000), (20,
100000), (30, 300000), and (100, 500000) for dimensions 10,
30, 50, and 100, respectively. For TRIBES-D, the adaptive
swarm size model was used where it begins with a single
particle and adaptively decreases or increases the number of
particles that are needed. The population size for the HRCGA
algorithm and the APrMF algorithm was suggested by [13]
and [30], respectively. Any other parameter settings of the 11
peer algorithms are based on their optimal configurations as
suggested by the corresponding papers.

C. Performance Metrics

1) Mean Values: We record the mean value of the differ-
ence between the best result found by the algorithms and the

TABLE VI
ACCURACY LEVEL OF THE 45 PROBLEMS

Accuracy level Function
1.0e-6 f1, f7, f9, f11, f12, f16, f18, f19

f21, f23, f26, f27, f29, f31, f35, f39
0.01 f2, f3, f4, f5, f6, f8, f10, f15, f17, f20, f22

f24, f25, f28, f30, f32, f33, f34, f36, f37, f38
0.1 f13, f14, f40, f41, f42, f43, f44, f45

global optimum value over 30 runs on each problem, defined
as:

mean =

30∑
k=1

(f(~x)− f(~x∗))/30 (13)

where x and ~x∗ represent the best solution found by an
algorithm and the global optimum, respectively.

2) t-Test Comparison: To compare the performance of
two algorithms at the statistical level, the two-tailed t-test
with 58 degrees of freedom at a 0.05 level of significance
was conducted between SLPSO and the peer algorithms. The
performance difference is significant between two algorithms
if the absolute value of the t-test result is greater than 2.0.

3) Success Rate: Another performance metric is the success
rate, which is the ratio of the number of successful runs over
the total number of runs. A successful run means the algorithm
achieves the fixed accuracy level within the T Fes fitness
evaluations for a particular problem. The accuracy level for
each test problem is given in Table VI. The accuracy levels
for functions f31-f45 are obtained from [41] and the accuracy
levels of other functions are the same as used in [41], which
were set according to the problem difficulty for all involved
algorithms.

V. EXPERIMENTAL STUDY ON SLPSO
A. Self-Learning Mechanism Test

In order to investigate the level of effectiveness that the
adaptive learning mechanism can bring to SLPSO, we carried
out experiments on SLPSO with the adaptive learning mech-
anism and SLPSO without the adaptive learning mechanism
(denoted Non-SLPSO) over all the test functions in 30 dimen-
sions. For SLPSO, the default parameter settings were used.
In Non-SLPSO, all the four operators have the same selection
ratio of 0.25 during the whole evolutionary process. Table VII
presents the results of SLPSO and Non-SLPSO on the 45 test
functions.

Table VII shows that the result of SLPSO is much better
than that of Non-SLPSO on 36 out of the 45 test problems.
The reason to the result that SLPSO performs worse than Non-
SLPSO on some problems is because the parameter values
used were improper for those problems. This can be seen
from the comparison of SLPSO with the default configurations
and the optimal configurations in the next section where
the performance of SLPSO with the optimal configuration
is greatly improved. The comparison results show that the
adaptive mechanism works well on most problems. It is also
confirmed that different problems need different strategies to
solve. To achieve the best performance, it is necessary to
tune the selection ratios of the four operators so that the best
strategy can effectively play its role.

10

TABLE VII
COMPARISON WITH RANDOM SELECTION FOR THE FOUR OPERATORS

REGARDING THE MEAN VALUE

f f1 f2 f3 f4 f5 f6 f7 f8 f9
Non-SLPSO 3.91e-13 6.84e-10 7.55e-07 1.52e-04 0.0201 3.82e-04 1.06e-07 22.8 1.73e-07

SLPSO 2.78e-50 0 0 4.50e-15 0.0227 3.82e-04 3.47e-14 2.06 1.35e-26
f f10 f11 f12 f13 f14 f15 f16 f17 f18

Non-SLPSO 43.3 1.20e-04 4.11e-15 138 74.1 3.83e-04 0.00108 2.34e-05 4.39e-05
SLPSO 0.00793 0.00254 1.57e-32 59.8 33.3 3.82e-04 3.36e-14 0 0
f f19 f20 f21 f22 f23 f24 f25 f26 f27

Non-SLPSO 4.11e-04 4.70e-04 0.0142 0.0897 1.12e-12 211 5.98e+03 3.79 1.95e-04
SLPSO 4.04e-04 4.25e-04 0.0144 0.0678 7.67e-50 134 3.96e+03 3.4 0
f f28 f29 f30 f31 f32 f33 f34 f35 f36

Non-SLPSO 5.13e+03 20.8 176 4.04e-05 2.17e-05 174 34.2 20.8 58.9
SLPSO 4.67e+03 20.5 111 1.00e-13 1.17e-13 115 32.9 20.4 10.7
f f37 f38 f39 f40 f41 f42 f43 f44 f45

Non-SLPSO 234 1.16e+04 0.482 304 435 543 902 405 310
SLPSO 1.40e-06 1.16e+04 1.19e-13 305 420 914 1.56e+03 457 300

TABLE VIII
SELECTED EXAMPLES OF EFFECT ON THE THREE PARAMETERS (Uf ,Pl ,

AND M) IN SLPSO

Uf f1 f6 f20 Pl f1 f6 f20 M f1 f6 f20
1 2.92e-32 7.9 35.5 0.05 1.74e-110 347 320 0 0.00817 0.295 0.138
3 1.41e-29 11.8 15.8 0.1 4.39e-128 205 138 0.1 0.00278 0.015 0.0176
7 1.10e-20 3.82e-04 11.8 0.3 5.01e-61 43.4 27.6 0.3 7.73e-04 0.0065 0.0076
10 3.81e-19 7.9 7.9 0.7 1.35e-26 3.95 11.8 0.7 7.83e-06 7.1e-04 0.0012

1 3.81e-19 7.9 7.9 1 3.81e-19 7.9 7.9

B. Parameter Sensitivity Analysis of SLPSO

There are three key parameters in SLPSO: the update
frequency (Uf), the learning probability (Pl), and the number
of particles that learn from the abest position (M). To find
out how the three key parameters affect the performance of
SLPSO, an experiment on the parameter sensitivity analysis of
SLPSO was also conducted on all the 45 problems in 30 di-
mensions. The parameter of the number of particles that learn
from the abest position (M) is replaced by the percentage of
the population size in this section. The default values of the
three parameters were set to 10, 1.0, and 1.0, respectively. To
separately test the effect of a particular parameter, we used the
default values of the other two parameters. For example, to test
the effect of Uf , we use a set of values for Uf and the default
values for Pl (Pl = 1.0) and M (M = 1.0), respectively.

Three groups of experiments with Uf set to [1, 3, 7, 10],
Pl set to [0.05, 0.1, 0.3, 0.7, 1.0], and M set to [0.0, 0.1, 0.3,
0.7, 1.0] were carried out separately. Table VIII shows the
results on three example functions f1, f6, and f20. Because of
the space limitation, the results of the other functions are not
provided in this paper. From Table VIII, similar observation of
the effect on the three parameters can be seen that the optimal
value of each parameter for a specific problem does depend
on the property of that problem.

Although we have an insight on how the three parameters
affect the performance of SLPSO, the corresponding optimal
value of each parameter above may not be the real optimal pa-
rameter settings for a particular problem. It is difficult to obtain
the real optimal parameter settings for a general problem for
several reasons. First, we cannot test all the possible values
of the three parameters as one of them is continuous, e.g., Pl.
The value of M is population size dependent. Second, there
may be relationships among the three parameters, i.e., they are
not independent for SLPSO to achieve the best performance
on a general problem.

In order to test whether the three key parameters of SLPSO

TABLE IX
COMPARISON OF SLPSO WITH OPTIMAL AND DEFAULT CONFIGURATIONS

IN TERMS OF MEAN VALUES

f f1 f2 f3 f4 f5 f6 f7 f8 f9
Optimal 6.16e-139 0 0 0 0.00173 3.82e-04 1.06e-14 0.0551 3.36e-71
Default 2.78e-50 0 0 4.50e-15 0.0227 3.82e-04 3.47e-14 2.06 1.35e-26
f f10 f11 f12 f13 f14 f15 f16 f17 f18

Optimal 7.45e-10 1.89e-05 1.57e-32 27 33.7 3.82e-04 1.23e-14 0 0
Default 0.00793 0.00254 1.57e-32 59.8 33.3 3.82e-04 3.36e-14 0 0
f f19 f20 f21 f22 f23 f24 f25 f26 f27

Optimal 1.48e-04 4.02e-04 0.00941 0.0298 3.22e-111 88.4 2.49e+03 0.249 0
Default 4.04e-04 4.25e-04 0.0144 0.0678 7.67e-50 134 3.96e+03 3.4 0
f f28 f29 f30 f31 f32 f33 f34 f35 f36

Optimal 1.98e+03 20.4 81.1 5.49e-14 9.28e-14 75.4 28.7 20.3 1.22
Default 4.67e+03 20.5 111 1.00e-13 1.17e-13 115 32.9 20.4 10.7
f f37 f38 f39 f40 f41 f42 f43 f44 f45

Optimal 4.86e-10 1.71e+03 5.68e-14 265 403 488 400 363 290
Default 1.40e-06 1.16e+04 1.19e-13 305 420 914 1.56e+03 457 300

TABLE X
OPTIMAL PARAMETER SETTINGS FOR THE 45 PROBLEMS

f f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
Uf 3 1 1 1 3 1 1 1 3 1 10 1 1 1 1
Pl 0.1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.7 0.3 0.3 0.1 0.05
M 1 0.7 0.7 0.7 0 0.1 0.7 1 1 1 1 1 0.1 0.3 0.1
f f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30
Uf 7 1 1 7 1 1 1 7 10 3 1 1 3 1 7
Pl 0.05 0.7 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.05 0.05 0.3 0.05 0.05 0.05
M 1 1 1 0 0.1 0 0.7 1 1 0 0 1 0.1 1 0
f f31 f32 f33 f34 f35 f36 f37 f38 f39 f40 f41 f42 f43 f44 f45
Uf 10 7 10 1 1 10 3 10 7 3 3 1 3 1 10
Pl 0.05 0.3 0.05 0.05 0.05 0.1 0.1 0.05 0.05 0.05 0.1 0.1 0.05 0.1 0.3
M 1 1 0 1 1 1 1 0 1 0.3 0 0.1 0.3 0.3 1

are interdependent or not, further experiments were carried out
based on the combination of the values given above for all the
three parameters. The experimental results regarding the best
results on each problem are summarized in Table IX and the
corresponding optimal combinations of the three parameters
for each problem are shown in Table X. It should be noted
that we take the parameters of the optimal combinations as the
real optimal configurations of SLPSO for each test problem
even if they may not be the real optimal configurations.

Comparing the optimal configurations for each problem
obtained in this section with the results in the above section,
we can see that the three key parameters do have inter-
relationship. Taking the Sphere function (f1) as an example,
the optimal combination of the three parameters are 3, 0.1,
and 1 for Uf , Pl, and M , respectively, which are different
from the above experimental results where the corresponding
optimal values are 1, 0.05, and 1, respectively. Therefore, there
is probably no effective general rule that can be applied to set
up the three parameters in SLPSO.

C. Parameter Tuning in SLPSO

The values of these three key parameters significantly affect
the performance of SLPSO on most problems tested in this
paper. To achieve the best performance for SLPSO, different
optimal values of Uf , Pl, and M are needed on different
problems, which can be seen from the above experimental
study on the parameters sensitivity analysis. The aim of this
section is to suggest several approaches to adjusting the values
of the three parameters for a general problem without manually
tuning the parameters.

First, we present a general solution to set up the values
of the update frequency (Uf) for SLPSO on all problems.

11

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
er

 o
f

p
ar

ti
cl

es
 (

M
)

fes/TFes

Fig. 1. The number of particles that use the convergence operator at different
iterations in a swarm of 10 particles.

Based on our previous work in [21], the optimal values of Uf
mainly distribute from 1 to 10 on most test problems in [21].
This information is very useful for SLPSO to set up Uf for a
general problem. In order to use this information, we assign
each particle with a different value of Uf instead of using the
same value of Uf for all particles. The value of Uf for particle
k is defined as follows:

Uk
f = max(10 ∗ exp(−(1.6 · k/N)4), 1) (14)

where N is the population size and Ukf is the update frequency
of particle k. By this scheme, the values of Uf of all particles
distribute from 1 to 10. As a result, it is possible that some
particles may be able to achieve the optimal value of Uf for
different problems. Similar idea was implemented in CLPSO
[25] to adjust the learning probability Pc for each particle on
a general problem.

For the learning probability (Pl), we use the same setup
method as used for the update frequency where the learning
probabilities of all particles distribute between 0.05 and 1.0,
which is described as follows:

P k
l = max(1− exp(−(1.6 · k/N)4), 0.05) (15)

In order to reduce the risk of using improper values of Uf
and Pl for a particular particle, we generate a permutation of
index numbers of particles every iteration and then update the
values of Uf and Pl for each particle. As to how many particles
should use the convergence operator, we use the following
formula:

M(fes) = N · (1− exp(−100(fes/T Fes)3)) (16)

where T Fes is the total number of fitness evaluations al-
lowed for a run. Fig. 1 shows the function relationship between
M and fes. From Fig. 1, it can be seen that all particles
initially do not use the convergence operator in order to focus
on local search. However, to accelerate the convergence, the
number of particles that use the convergence operator will
gradually increase to the maximum value of 10 when the
number of fitness evaluations reaches 40% of the total number
of fitness evaluations. The main reason of using this particular
method instead of using the selection ratio of the convergence
operator to tune the value of M lies in that we need to bring
another new parameter of the maximum selection ratio for
the convergence operator in order to achieve the objective. In

Algorithm 5 UpdatePar()
1: Create a permutation of index number;
2: Update Uf for each particle by Eq. (14);
3: Update Pl for each particle by Eq. (15);
4: Calculate the number of particles using the convergence operator by Eq. (16);
5: Update related information of the four operators for each particle by Algorithm 3;
6: Calculate the inertia weight ω by Eq. (17);

addition, the optimal value of the maximum selection ratio for
different problems probably is different and unknown.

In SLPSO, the inertia weight ω linearly decreases from 0.9
to 0.4 according to the following equation:

ω(fes) = 0.9− 0.5 ∗ fes/T Fes (17)

In order to show the effectiveness of these parameter tun-
ing methods, comparison between the optimal configurations
and the default configurations suggested in this section was
conducted. The results are shown in Table IX. From the
results, it can be seen that the performance of SLPSO with the
default configurations is comparable to that with the optimal
configurations on most test problems. However, this result also
shows that it is necessary to further study how to effectively
set up the parameters of SLPSO for general problems.

The parameter tuning equations used in SLPSO were de-
veloped empirically from our experimental study based on
the problems selected in this paper. Although these equations
and the constants used in them, e.g., 1.6 in Eq.(14) and
Eq.(15), may be not the optimal ones to set the values for the
parameters of SLPSO, they were not randomly chosen but a
result of a careful analysis. The analysis of all these equations
is not discussed as it is not the main task of this paper. Here,
we just provide some ideas of how to tune the parameters for
SLPSO for general problems, and users can design their own
methods to set the parameters for SLPSO. However, we would
like to discuss some experience from our experimental study
in terms of tuning the three key parameters in SLPSO. For
the parameters Uf and Pl, we should allow enough particles
to use the extreme values, e.g., 25% of total particles using
the value of 0.05 or 1.0 for Pl. Regarding M , it is important
that no particle learns from the abest position initially and
the number of particles that learn from the abest position
gradually increases until all particles learn from the abest
position when the number of fitness evaluations reaches about
40% of total fitness evaluations. Although the parameter tuning
methods were developed based on the problems used in this
paper, they can also be used for new problems. These methods
work well and the evidence can be seen from the comparison
of SLPSO that uses these methods to set the parameters with
other algorithms in Section VI. The update operations of these
parameters in SLPSO are summarized in Algorithm 5.

D. Selection Ratios of the Four Operators

So far, although we have recognized that the adaptive
learning mechanism is beneficial, it is not yet clear how the
four operators in SLPSO would perform on a general problem.
To answer this question, we analyze the behavior of each
learning operator on some selected problems of 30 dimensions
over 30 runs. To clearly show the learning behavior of the

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 50000 100000

se
le

c
ti

o
n
 r

a
ti

o
s

fitness evaluations f1 (Sphere)

a b c d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 50000 100000

se
le

c
ti

o
n
 r

a
ti

o
s

fitness evaluations f2 (Rastrigin)

a b c d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 50000 100000

se
le

c
ti

o
n
 r

a
ti

o
s

fitness evaluations f11 (Schwefel_2_21)

a b c d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 50000 100000

se
le

c
ti

o
n
 r

a
ti

o
s

fitness evaluations f18 (S_Sphere)

a b c d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 50000 100000

se
le

c
ti

o
n
 r

a
ti

o
s

fitness evaluations f25 (R_Schwefel)

a b c d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 50000 100000

se
le

c
ti

o
n
 r

a
ti

o
s

fitness evaluations f45 (RH_Com_Bound_CEC05)

a b c d

Fig. 2. Selection ratios of the four operators on six selected functions, where a, b, c, and d denote the exploitation, jumping-out, exploration, and convergence
operators, respectively.

four operators without impact from other factors, we allowed
all particles to use the convergence learning operator through
the whole run in this set of experiments. Fig. 2 only presents
the results on six problems since similar observations can be
obtained on other functions. From Fig. 2, several observations
can be made and are described below.

First, the operators have very different performance on
each specific problem and their performances also vary on
different problems. On many problems, the best learning
operator changes from the beginning to the end of evolution.
For example, the best learning operator is the jumping-out
operator (operator b) for the Schwefel 2 21 function (f11) at
the early stage. However, its selection ratio decreases after
fes = 20000 until the end. On the contrast, the selection
ratio of the exploration operator (operator c) increases and the
exploration operator becomes the best learning operator after
about 50000 evaluations. There is a period from fes = 40000
to fes = 50000 where the convergence operator (operator d)
turns out to be the best learning operator. The exploitation op-
erator (operator a) may be not suitable for the Schwefel 2 21
function as its selection ratio decreases from the beginning
and remains at a very low level till the end.

Second, for some functions, the best learning operator
does not change during the whole evolution process, e.g.,
the convergence operator on the Sphere function (f1) and
the exploration operator on the R Schwefel function (f25).
The corresponding selection ratios remain at the highest level
during the whole evolution process on these two functions.

In addition, the convergence status appears at the population
level for the S Sphere function (f18). From the graph of
function f18, we can see that the selection ratios of the four
operators return to the initial state, where they almost have

the same value of 0.25. The convergence status shows only if
none of the four learning operators can help particles to move
to better areas. Of course, when a whole swarm converges to
the global optimum, this phenomenon will show.

In general, we can get the following observations: 1) due
to the advantages of the convergence operator discussed in
Section III-E, particles get the greatest benefit from the con-
vergence operator on functions f1, f2, and f18; 2) although
the jumping-out operator has the lowest selection ratio on most
problems, it does help the search during a certain period on
some problems, e.g., f11; 3) particles always get benefit from
the exploration operator and even the largest benefit from it on
some functions, e.g., f25, and f45; 4) the exploitation operator
may work for a short period after particles jump into a new
local area as its selection ratio never reaches the highest level.

The results of this section confirm that different problems
need different kinds of intelligence to solve them and that
an adaptive method is needed to automatically switch to an
appropriate learning operator at each evolutionary stage. We
can also draw the conclusion that the individual level of
intelligence works well for most problems.

VI. EXPERIMENTAL STUDY ON COMPARISON WITH
OTHER ALGORITHMS

A. Comparison Regarding Mean and Variance Values

In this section, experiments were conducted to compare
SLPSO with 11 peer algorithms described in Section IV-B.
Each algorithm was executed 30 independent runs over the 45
test problems in four dimensional cases, which are 10, 30, 50,
and 100 dimensions, respectively, except the APrMF algorithm
in 100 dimensions. The reason is that the program of APrMF

13

TABLE XI
COMPARISON RESULTS OF MEANS AND VARIANCES IN 30 DIMENSIONS

f f1 f2 f3 f4 f5 f6 f7 f8 f9
SLPSO 2.78e-50±8.09e-49 0±0 0±0 4.50e-15±3.55e-14 0.0227±0.144 3.82e-04±7.31e-12 3.47e-14±4.45e-14 2.06±12.3 1.35e-26±3.88e-25
APSO 1.64e-51±3.75e-50 5.7±11.9 2.3±12.3 0.27±1.73 0.013±0.0863 686±9.83e+03 0.0771±1.58 23.4±70.5 4.56e-32±8.16e-31

CLPSO 3.84e-13±1.51e-12 2.36e-04±0.00129 0.302±3.5 1.67e-06±7.52e-06 2.53e-08±3.47e-07 39.5±306 4.05e-07±9.96e-07 22.9±10.9 1.09e-08±2.57e-08
CPSOH 1.64e-30±2.72e-29 10.8±34.7 10.9±35.7 1.57e-07±3.00e-06 0.0235±0.0918 2.67e+03±3.89e+03 2.91e-14±4.02e-14 18.4±8.13 1.72e-14±2.95e-13

FIPS 5.36e-12±2.28e-11 75±83.2 82.4±86.8 2.06e-04±3.20e-04 0.00162±0.0368 2.46e+03±4.43e+03 5.23e-07±6.95e-07 24.7±1.53 1.17e-07±2.33e-07
SPSO 1.15e-69±2.86e-68 46.1±78.5 48±70.9 2.31±7.99 0.0144±0.108 3.79e+03±4.21e+03 1.35±5.67 17.4±9.25 7.24e-37±1.79e-35
JADE 2.11e-104±5.84e-103 0.398±3.33 2.53±7.45 0.175±1.84 0.0072±0.0772 351±925 0.122±2.01 0.399±6.55 8.24e-57±1.16e-55

HRCGA 7.05e-105±2.08e-103 45.5±167 77.2±174 0.294±0.97 0.00812±0.061 1.77e+03±5.19e+03 4.62e-14±1.64e-13 7.38±10.6 4.42e-60±6.58e-59
FPSO 2.71e-04±6.35e-04 129±68.2 115±108 0.0429±0.0492 0.11±0.582 2.94e+03±4.52e+03 0.0037±0.00628 26.1±1.37 5.28e-04±8.13e-04

TRIBES-D 0±0 0±0 0±0 0±0 0±0 5.16e+03±711 0±0 22.1±0.286 0±0
APrMF 0±0 0±0 13.1±3.28 4.41±2.2 3.81e-05±1.72e-04 3.09e+03±349 3.32e-08±9.77e-08 50.4±24.7 0.0029±0.00282

G-CMA-ES 2.78e-15±3.94e-31 12.9±7.11e-15 20±0 0±0 4.66e-15±0 1.24e+04±3.64e-12 3.43e-11±0 4.79e-15±2.37e-30 1.87e-10±7.75e-26
f f10 f11 f12 f13 f14 f15 f16 f17 f18

SLPSO 0.00793±0.233 0.00254±0.0186 1.57e-32±4.50e-47 59.8±505 33.3±258 3.82e-04±8.66e-12 3.36e-14±4.00e-14 0±0 0±0
APSO 0.00991±0.0503 0.203±0.909 0.0173±0.212 73.3±599 510±3.82e+03 318±4.25e+03 1.07±18.9 5.58±12.4 1.14e-26±1.36e-25

CLPSO 1.48e+03±1.83e+03 8.69±6.83 4.47e-14±2.00e-13 40.1±255 75.2±605 15±210 4.77e-05±5.09e-04 0.465±3.91 1.28e-12±4.25e-12
CPSOH 309±6.73e+03 1.69e-04±0.0016 4.61e-32±6.45e-31 264±1.1e+03 794±3.72e+03 2.27e+03±3.06e+03 0.36±3.77 25±49.7 1.89±13.5

FIPS 321±847 0.0541±0.129 2.27e-13±1.18e-12 306±1.32e+03 166±1.17e+03 2.37e+03±5.02e+03 8.35e-06±1.83e-04 50.4±76 14.6±358
SPSO 4.54e-04±0.00431 1.41±4.41 0.287±2.47 72±942 93.7±1.29e+03 3.19e+03±4.11e+03 1.1±4.88 58.2±73.5 1.01e-28±7.08e-28
JADE 8.71e-12±1.51e-10 1.15e-04±8.82e-04 0.0904±1.72 30±251 173±1.31e+03 377±791 0.152±2.25 1.2±5.34 6.73e-30±1.99e-28

HRCGA 349±9.87e+03 0.00775±0.0491 2.23e-31±5.52e-30 26.7±242 23.3±232 1.93e+03±2.91e+03 1.77e-14±5.94e-14 45±191 2.72e-28±2.17e-27
FPSO 2.49e+03±2.96e+03 3.32±4.14 9.13e-05±0.00168 516±1.26e+03 419±1.76e+03 2.36e+03±4.62e+03 1.01±14.2 83.3±64 316±6.69e+03

TRIBES-D 0±0 0±0 2.39e-04±2.18e-04 96.7±143 395±621 5.06e+03±574 1.05±0.866 90.9±30.1 1.08e-27±2.19e-28
APrMF 2.62e+04±7.99e+03 61.1±12.2 0.0276±-1 378±125 332±45.6 2.93e+03±341 0.0121±0.0415 4.2±2.94 0.0416±0.184

G-CMA-ES 7.97e-15±3.16e-30 2.01e-11±9.69e-27 7.17e-15±4.73e-30 100±1.42e-14 5.02e-08±1.32e-23 1.22e+04±1.82e-12 19.6±1.07e-14 235±2.84e-14 2.52e-15±0
f f19 f20 f21 f22 f23 f24 f25 f26 f27

SLPSO 4.04e-04±0.00138 4.25e-04±8.03e-05 0.0144±0.0209 0.0678±0.133 7.67e-50±9.99e-49 134±348 3.96e+03±1.09e+04 3.4±5.88 0±0
APSO 2.40e-04±7.25e-04 788±8.85e+03 0.0113±0.0146 5.72±12 4.38e-42±1.29e-40 113±169 7.58e+03±6.7e+03 3.76±5.7 1.05e-25±2.19e-24

CLPSO 2.22e-04±1.73e-04 23.7±309 0.0108±0.004 0.202±1.66 7.56e-05±4.32e-04 134±102 7.62e+03±3.1e+03 2.25±3.21 3.47e-04±0.00146
CPSOH 1.87e-04±2.49e-04 2.76e+03±2.47e+03 0.0101±0.00558 13.1±43.6 1.56e-28±1.97e-27 158±286 8.48e+03±5.54e+03 8.25±47.3 4.91±100

FIPS 1.49e-04±8.88e-05 2.56e+03±4.3e+03 0.00891±0.00263 79.3±91.6 2.29e-10±8.54e-10 184±58.7 5.88e+03±5.54e+03 8.61e-06±2.42e-05 338±5.82e+03
SPSO 1.49e-04±1.66e-04 3.48e+03±3.45e+03 0.966±4.47 49.4±55.8 1.10e-56±2.61e-55 84.9±257 5.33e+03±4.59e+03 1.61±4.27 9.56e-28±7.61e-27
JADE 1.65e-04±5.83e-04 493±1.22e+03 0.266±2.6 0.859±5.82 1.66e-88±4.76e-87 50.7±58.5 5.53e+03±4.01e+03 0.742±4.35 5.11e-29±6.97e-28

HRCGA 5.98e-04±0.00653 1.97e+03±3.36e+03 0.0149±0.0388 66.8±250 2.59e-83±7.08e-82 149±420 4.1e+03±6.2e+03 0.529±3.42 1.66e-27±8.12e-27
FPSO 6.35e-04±0.00104 3.04e+03±3.74e+03 0.0132±0.0086 123±95.2 0.00368±0.0129 208±59.8 6e+03±9.5e+03 0.04±0.0819 670±5.86e+03

TRIBES-D 4.65e-09±3.48e-09 4.95e+03±660 5.25e-08±6.95e-08 1.27e-06±1.86e-06 0±0 0±0 7.13e+03±1.03e+03 0±0 3.27e-15±1.67e-14
APrMF 71.1±131 1.09e+04±42.3 20.4±0.49 437±128 1.92e+03±2.38e+03 253±37.9 624±687 18.2±0.455 2.54e+03±2.79e+03

G-CMA-ES 1.02e-04±1.09e-05 1.24e+04±10.1 0.00763±4.30e-04 20.1±7.11 1.80e-15±7.89e-31 20.9±1.78e-14 6.83e+03±2.73e-12 5.18e-11±0 2.98e-15±1.18e-30
f f28 f29 f30 f31 f32 f33 f34 f35 f36

SLPSO 4.67e+03±1.29e+04 20.5±0.906 111±224 1.00e-13±1.74e-13 1.17e-13±1.79e-13 115±249 32.9±14.5 20.4±0.846 10.7±140
APSO 7.85e+03±6.02e+03 21.2±0.579 152±215 7.20e-14±1.38e-13 5.74±9.09 133±300 30.4±25.1 21.2±0.357 29.9±168

CLPSO 7.88e+03±2.72e+03 21±0.208 150±133 8.01e-13±3.40e-12 0.199±2.59 142±84.5 30.1±7.76 21±0.191 10.4±56.7
CPSOH 8.45e+03±3.95e+03 20.9±0.39 245±242 0.0426±1.25 35.5±58.8 221±287 28.2±17.4 20.9±0.373 1.73e+03±4.23e+04

FIPS 5.98e+03±5.71e+03 21±0.267 180±49.1 130±2.47e+03 48.1±57.1 190±60.4 37.5±10.3 21±0.268 3.56e+06±8.31e+07
SPSO 5.79e+03±4.46e+03 20.9±0.409 80.7±185 1.63e-13±4.00e-13 47.9±75.1 82.4±200 32.5±27.4 21±0.35 29.1±214
JADE 5.96e+03±4.19e+03 20.9±0.315 63.7±74.6 5.68e-14±8.04e-14 0.73±4.21 58.1±85.4 29±7.6 20.9±0.308 0.532±7.42

HRCGA 4.53e+03±5.11e+03 21.1±0.318 125±415 2.10e-13±7.29e-13 29.9±48.7 107±407 16.7±43.7 21.1±0.391 8.59±65
FPSO 6.13e+03±7.2e+03 21±0.256 196±61.1 447±4.23e+03 78.9±75.1 200±80.8 40.2±6.69 21±0.273 3.71e+07±5.80e+08

TRIBES-D 7.45e+03±1.19e+03 21±0.0458 104±38.3 5.12e-14±1.71e-14 103±37.8 107±46.8 26.5±4.34 21±0.0444 75.2±143
APrMF 917±724 20.6±0.183 232±32.3 0.755±4.06 3.92±4.42 231±37.1 30.9±2.07 20.5±0.16 5.57e+10±1.92e+03

G-CMA-ES 8.01e+03±5.46e-12 21±3.55e-15 44.8±0 5.68e-14±0 66.7±5.68e-14 52.7±3.55e-14 0±0 20±1.07e-14 5.68e-14±0
f f37 f38 f39 f40 f41 f42 f43 f44 f45

SLPSO 1.40e-06±1.57e-05 1.16e+04±2.99e+04 1.19e-13±1.47e-13 305±837 420±410 914±1.5e+03 1.56e+03±2.84e+03 457±1.06e+03 300±1.01e-11
APSO 0.0182±0.0953 946±3.3e+03 7.39e-14±1.43e-13 363±714 462±1.39e+03 656±2.96e+03 1.71e+03±3.31e+03 312±939 300±2.81e-11

CLPSO 3.38e+03±3.19e+03 1.12e+04±1.57e+04 4.06e-09±1.27e-08 291±533 400±0.968 838±843 1.5e+03±2.43e+03 492±988 345±615
CPSOH 1.34e+03±1.14e+04 1.07e+04±7.25e+04 1.24±36.4 639±1.9e+03 1.22e+03±1.92e+03 1.35e+03±1.76e+03 2.08e+03±818 649±372 619±259

FIPS 172±444 770±2.81e+03 8.87e+03±2.62e+05 477±623 451±767 471±730 430±897 520±994 534±803
SPSO 0.616±17.7 540±6.03e+03 51±1.51e+03 418±1.09e+03 403±98.3 426±425 545±2.4e+03 520±1.12e+03 586±617
JADE 2.33e-09±6.59e-08 1.97e+03±1.14e+04 5.49e-14±5.59e-14 343±595 464±1.35e+03 459±1.38e+03 509±2.24e+03 417±1.17e+03 433±890

HRCGA 11.7±103 1.31e+03±3.62e+03 8.01e-13±4.99e-12 320±606 400±3.54e-11 465±371 400±7.21e-11 231±626 572±666
FPSO 1.67e+03±2.84e+03 2.49e+03±4.17e+03 5.96e+04±1.10e+06 459±1.42e+03 549±1.41e+03 988±445 837±3.17e+03 644±175 620±159

TRIBES-D 1.96±1.32 339±168 3.44e+06±1.22e+06 470±275 643±491 496±345 637±247 900±0 900±0
APrMF 4.21e+04±1.07e+04 1.40e+05±3.16e+04 9.59e-18±4.68e-17 583±93.2 404±102 393±30.2 1.26e+03±4.78 1±1 1±1

G-CMA-ES 5.68e-14±0 7.38e+04±9.15e+04 5.68e-14±0 200±5.68e-14 400±1.14e-13 1.5e+03±403 1.94e+03±0 659±0 400±1.71e-13

obtained from the authors (the MAPv1-win version [30] in
Windows systems, e.g., Windows XP and Windows 7) crashed
on most test problems used in this paper in 100-dimension.
Therefore, we cannot provide the corresponding results on
problems in 100-dimension. However, this does not affect so
much the comparison as we have the results of APrMF in 10,
30, and 50 dimensions. The corresponding results are provided
in Tables XI and XII, respectively, where the best result on
each problem among all algorithms is shown in bold. Although
the detailed results in 10 and 50 dimensional cases are not
provided in this paper due to the space limit, we still discuss
the results in this section. The first row in Table XIII shows
the number of problems where the best result was achieved by
each algorithm over the 45 problems in 10, 30, 50, and 100

dimensions, respectively.

From the first row in Table XIII, it can be seen that
SLPSO achieves a slightly worse result than the best performer
TRIBES-D among the 12 algorithms. The number of the
best results achieved by SLPSO for the four dimensional
cases are 11, 11, 12, and 14, which are slightly smaller than
the figures (12, 17, 14, and 16) obtained by the TRIBES-
D algorithm, respectively. G-CMA-ES and HRCGA achieve
the third and fourth ranking, respectively. The performances
of FIPS, CPSOH, and FPSO are the worst in terms of the
number of best mean results among all the peer algorithms
where the figures are all 0 for the four dimensional cases.

Among the 12 traditional problems, TRIBES-D achieves
the best results where it found the global optima of nine

14

TABLE XII
COMPARISON RESULTS OF MEANS AND VARIANCES IN 100 DIMENSIONS

f f1 f2 f3 f4 f5 f6 f7 f8 f9
SLPSO 2.42e-38±3.83e-37 0±0 0±0 2.39e-13±3.97e-13 0.0126±0.084 0.00127±6.32e-11 1.72e-13±9.83e-14 52.6±192 1.50e-18±5.57e-18
APSO 1.82e+03±3.02e+04 140±1.22e+03 194±1.11e+03 2.87±63.5 18.7±351 9.2e+03±2.72e+04 1±20.6 113±163 32.7±267

CLPSO 3.79e-08±4.51e-08 61.5±34.4 79.8±26.8 0.00214±0.00113 9.50e-08±3.75e-07 2.91e+03±2.95e+03 3.78e-05±3.33e-05 94.3±6.42 8.91e-06±7.69e-06
CPSOH 7.68e-24±3.96e-23 183±223 177±294 0.135±2.03 0.00493±0.0522 1.65e+04±8.21e+03 3.69e-13±9.88e-13 151±1.17e+03 9.12e-13±3.05e-12

FIPS 1.4±1.66 696±128 725±207 2.11±0.623 0.576±0.414 2.3e+04±5.98e+03 0.196±0.124 97±1.73 0.159±0.0993
SPSO 2.68e-43±4.55e-42 209±220 113±189 11.2±22 0.0125±0.147 1.48e+04±9.66e+03 2.17±2.8 90.2±53.2 3.66e-24±7.24e-23
JADE 1.12e-104±1.52e-103 2.06±9.11 33.6±27.6 5.19±12.5 0.00335±0.0535 549±1.35e+03 1.37±1.71 0.535±7.42 6.28e-51±1.40e-49

HRCGA 4.30e-74±6.04e-73 177±179 267±214 7.4±7.48 0.0965±0.45 4.11e+03±3.36e+03 2.3±1.53 61.4±21.6 5.32e-33±1.57e-31
FPSO 4.05e+03±3.06e+03 688±142 706±141 46±8.9 37.5±27.6 2.53e+04±3.94e+03 8.42±2.1 267±143 41.5±10.7

TRIBES-D 0±0 0±0 0±0 0±0 0±0 1.79e+04±1.14e+03 0±0 91.8±0.185 0±0
G-CMA-ES 5.72e-16±0 65.7±0 92±0 1±1 1.65e-14±0 4.15e+04±7.28e-12 4.72e-11±0 2.49e-14±6.31e-30 2.90e-09±0

f f10 f11 f12 f13 f14 f15 f16 f17 f18
SLPSO 7.56±29.9 0.15±0.302 1.57e-32±4.50e-47 46.7±612 105±1.77e+03 -2.29e+04±1.00e-10 1.63e-13±8.50e-14 0±0 0±0
APSO 5.33e+04±7.35e+05 56.9±96.4 6.98e+06±1.43e+08 371±2.71e+03 1.78e+03±2.89e+03 -1.12e+04±6.08e+04 17.3±28.8 429±2.23e+03 1.27e+04±1.85e+05

CLPSO 6.65e+04±3.42e+04 16±6.9 3.19e-09±5.40e-09 14.7±423 1.33e+03±2.81e+03 -2.24e+04±965 0.0375±0.582 67.2±32.2 3.16e-07±4.88e-07
CPSOH 3.75e+04±1.04e+05 0.00786±0.0184 1.04e-24±8.83e-24 618±350 1.47e+03±2.13e+03 3.05e+03±1.27e+04 5.6±16.9 447±317 672±2.91e+03

FIPS 1.15e+05±5.95e+04 25.1±9.07 34.5±61.6 105±535 81.3±482 -6.97e+03±1.6e+04 0.0907±0.0682 489±179 0.407±0.429
SPSO 2.96e+03±9.14e+03 36.2±24 0.698±5.62 65.3±1.35e+03 385±3.85e+03 -1.18e+03±1.66e+04 2.2±2.81 253±299 1.50e-27±3.39e-27
JADE 2.08±28.5 14.9±11.4 0.163±1.44 30±602 845±4.69e+03 -2.23e+04±1.28e+03 1.29±2.58 2.65±8.48 0±0

HRCGA 9.24e+03±2.02e+04 42.7±37.5 0.544±3.93 1.11e-05±3.27e-04 20±590 -1.57e+04±7.85e+03 1.03±3.28 130±155 3.59e-19±9.86e-18
FPSO 2.44e+04±1.73e+04 15.2±4.84 34.5±24.6 647±139 1.3e+03±2.66e+03 -3.09e+03±8.85e+03 8.64±2.3 782±179 4.2e+03±2.47e+03

TRIBES-D 0±0 0±0 1.41e-04±1.20e-04 206±449 977±896 6.48e+03±2.05e+03 2.37±0.41 468±95.5 5.03e-26±2.46e-26
G-CMA-ES 1.64e-13±2.52e-29 2.39e-10±1.03e-25 5.58e-15±2.37e-30 6.83e-08±3.97e-23 8.57e-08±3.97e-23 1.37e+04±7.28e-12 19.6±0 771±2.27e-13 1.30e-15±7.89e-31

f f19 f20 f21 f22 f23 f24 f25 f26 f27
SLPSO 0.00861±0.0129 0.00245±0.00146 0.0414±0.0326 1.37±1.87 1.07e-35±2.19e-34 802±1.59e+03 2.8e+04±2.03e+04 17.5±5.58 0±0
APSO 0.00311±0.0048 1.1e+04±3.17e+04 0.483±13.5 115±1.05e+03 4.32e+03±9.63e+04 927±2.19e+03 4.05e+04±3.07e+04 17.2±33.7 2.43e+04±3.46e+05

CLPSO 0.0014±5.13e-04 2.98e+03±3.4e+03 0.0149±0.00298 73±31.7 0.00569±0.019 885±169 3.69e+04±4.35e+03 4.14±5.65 0.065±0.0948
CPSOH 0.00133±0.00134 1.64e+04±6.98e+03 0.0153±0.0077 215±248 3.77e-22±2.12e-21 961±640 3.59e+04±9.63e+03 15.6±43.8 3.48e+03±1.25e+04

FIPS 1.4±1.48 2.31e+04±7.08e+03 0.191±0.171 681±166 11.3±12.3 940±122 3.27e+04±2.85e+03 2.17±1.01 2.72±3.32
SPSO 0.00116±0.00171 1.32e+04±1e+04 2.01±3.05 202±206 3.91e-32±3.65e-31 351±643 2.45e+04±9.9e+03 2.78±2.5 9.19e-27±1.98e-26
JADE 0.00129±0.00213 711±1.41e+03 1.4±2.13 2.7±12 6.99e-83±8.94e-82 240±200 2.57e+04±6.57e+03 2.41±2.09 4.27e-28±3.73e-27

HRCGA 2.6±16.5 3.84e+03±2.99e+03 2.35±1.91 182±155 7.75e-32±2.15e-30 310±255 2.02e+04±1.06e+04 3.69±1.87 1.36e-17±2.56e-16
FPSO 4.11e+03±3.17e+03 2.53e+04±4.61e+03 8.19±2.12 681±182 9.18e+03±5.8e+03 807±115 3.43e+04±7.76e+03 10.9±2.51 1.09e+04±5.98e+03

TRIBES-D 2.62e-09±2.05e-09 1.75e+04±1.5e+03 7.11e-09±7.59e-09 5.07e-07±3.81e-07 0±0 0±0 3.08e+04±2.48e+03 0±0 3.21e-23±6.51e-23
G-CMA-ES 7.33e-04±5.54e-05 4.15e+04±6.69e-06 0.0112±4.27e-04 94.7±22.4 2.12e-15±3.94e-31 142±1.14e-13 2.5e+04±7.28e-12 6.01e-11±0 1.70e-15±3.94e-31

f f28 f29 f30 f31 f32 f33 f34 f35 f36
SLPSO 3.08e+04±1.44e+04 20.3±0.946 617±1.22e+03 6.16e-13±4.55e-13 6.04e-13±5.42e-13 617±1.22e+03 144±35.5 20.4±0.857 22.9±165
APSO 4.75e+04±3.47e+04 21.5±0.334 1.71e+03±3.24e+03 1.27e+04±1.85e+05 313±1.87e+03 1.71e+03±3.24e+03 145±83.4 21.5±0.348 2.50e+10±3.67e+11

CLPSO 4.07e+04±4.22e+03 21.3±0.127 1.01e+03±232 3.16e-07±4.88e-07 68.1±30.3 1.01e+03±232 141±14 21.4±0.122 332±376
CPSOH 3.99e+04±1.48e+04 21.3±0.158 1.21e+03±886 672±2.91e+03 440±289 1.21e+03±886 127±32.9 21.3±0.192 1.09e+07±5.61e+07

FIPS 3.35e+04±4.45e+03 21.3±0.181 908±125 0.407±0.429 491±128 908±125 160±7.54 21.3±0.16 6.67e+03±1.12e+04
SPSO 2.73e+04±8.88e+03 21.3±0.231 358±544 3.92e-13±1.34e-12 257±231 358±544 141±19.3 21.3±0.163 141±306
JADE 2.89e+04±7.65e+03 21.3±0.149 361±214 1.29e-13±1.79e-13 2.35±9.49 361±214 133±16.6 21.3±0.161 0.532±7.42

HRCGA 2.35e+04±6.58e+03 21.4±0.183 257±706 4.99e-10±6.40e-09 128±125 257±706 57.8±30.9 21.4±0.167 74.1±955
FPSO 3.7e+04±9.79e+03 21.3±0.122 1.04e+03±197 4.2e+03±2.47e+03 768±161 1.04e+03±197 141±77.6 21.3±0.14 1.95e+08±2.29e+08

TRIBES-D 3.55e+04±2.91e+03 21.3±0.0235 469±88.1 1.29e-13±2.51e-14 485±124 469±88.1 124±9.66 21.3±0.023 3.04e+03±4.37e+03
G-CMA-ES 2.96e+04±1.09e-11 21.3±1.78e-14 304±5.68e-14 1.71e-13±0 908±4.55e-13 304±5.68e-14 0±0 21.3±1.78e-14 3.99±0

f f37 f38 f39 f40 f41 f42 f43 f44 f45
SLPSO 9.94±38.8 2.78e+05±2.56e+05 5.17e-13±3.44e-13 340±576 517±1.77e+03 1.91e+03±373 2.01e+03±1.49e+03 2e+03±1.48e+03 1.84e+03±228
APSO 2.09e+05±1.76e+06 5.62e+05±2.53e+06 3.36e+08±6.84e+09 703±2.49e+03 1.53e+03±3.52e+03 2.11e+03±489 2.21e+03±1.67e+03 2.25e+03±1.69e+03 2.32e+03±296

CLPSO 1.28e+05±5.16e+04 2.13e+05±8.38e+04 0.00279±0.00402 408±766 488±1.28e+03 1.82e+03±214 2.14e+03±1.57e+03 2.15e+03±1.58e+03 2.25e+03±74.2
CPSOH 3.68e+04±1.05e+05 1.47e+05±2.58e+05 1.54e+06±3.44e+07 951±508 1.48e+03±1.19e+03 1.51e+03±1.54e+03 2.23e+03±234 2.24e+03±187 2.28e+03±322

FIPS 1.40e+05±8.22e+04 1.95e+05±9.2e+04 237±1e+03 460±534 501±511 1.17e+03±81.4 1.78e+03±2.45e+03 1.7e+03±2.41e+03 575±141
SPSO 6.44e+03±1.05e+04 1.46e+05±1.65e+05 3.58e-13±7.84e-13 557±2.02e+03 457±1.29e+03 977±1.15e+03 1.61e+03±3.64e+03 1.85e+03±1.63e+03 997±3.5e+03
JADE 94.5±1.73e+03 8.68e+04±7.85e+04 1.48e-13±3.07e-13 401±847 497±1.77e+03 991±3.31e+03 1.94e+03±2.29e+03 1.89e+03±2.73e+03 945±4.26e+03

HRCGA 1.69e+04±7.8e+04 8.39e+04±8.09e+04 3.17e-05±5.84e-04 407±197 407±197 1.12e+03±222 882±3.66e+03 836±3.58e+03 401±26.7
FPSO 1.71e+05±7.17e+04 2.16e+05±1.04e+05 1.44e+07±9.51e+07 988±405 1.17e+03±588 1.56e+03±1.03e+03 2.07e+03±1.55e+03 2.08e+03±1.58e+03 2.15e+03±734

TRIBES-D 6.07e+03±1.26e+03 9.35e+04±1.28e+04 1.34e+07±2.51e+06 773±502 789±609 980±612 900±0 900±0 900±0
G-CMA-ES 3.41e-13±0 1.67e+05±1.26e+05 1.71e-13±0 400±1.71e-13 400±1.14e-13 2.01e+03±14.6 2e+03±6.82e-13 1.99e+03±2.27e-13 2.08e+03±1.82e-12

TABLE XIII
STATISTICAL RESULTS OF THREE DIFFERENT ASPECTS REGARDING THE NUMBER OF BEST MEAN VALUES ACHIEVED (#BM), THE NUMBER OF SOLVED

(#S), PARTIALLY SOLVED (#PS), NEVER SOLVED PROBLEMS (#NS), AND t-TEST RESULTS OVER THE 45 PROBLEMS IN 10, 30, 50 AND 100 DIMENSIONS,
WHERE “#+”, “#-”, AND “#∼” REPRESENT THAT THE PERFORMANCE OF SLPSO IS SIGNIFICANTLY BETTER THAN, SIGNIFICANTLY WORSE THAN, AND

STATISTICALLY EQUIVALENT TO THE PERFORMANCE OF ITS RIVAL IN TERMS OF THE t-TEST RESULTS, RESPECTIVELY

Dim SLPSO APSO CLPSO CPSOH FIPS SPSO JADE HRCGA FPSO TRIBES-D APrMF G-CMA-ES
#BM 10,30,50,100 11,11,12,14 1,0,0,0 5,0,0,0 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,3 4,4,5,8 0,0,0,0 12,17,14,16 4,8,1,- 8,11,13,6

#S,#PS,#NS
10 22,9,14 17,13,15 11,17,17 14,15,16 9,17,19 11,11,23 10,20,15 14,12,19 10,15,20 19,6,20 14,6,25 18,1,26
30 19,6,20 7,13,25 10,9,26 6,8,31 6,8,31 7,9,29 9,15,21 10,7,28 0,2,43 18,3,24 7,7,31 17,1,27
50 20,5,20 5,13,27 11,10,24 6,9,30 8,6,31 7,6,32 9,15,21 11,4,30 0,0,45 18,3,24 3,5,33 17,0,28
100 18,5,22 0,14,31 7,0,38 5,3,37 1,0,44 7,5,33 8,11,26 8,6,31 0,1,44 18,2,25 - 18,0,27

#+,#-,#∼
10 - 22,2,21 12,10,23 29,0,16 22,6,17 26,3,16 15,7,23 12,12,21 29,4,12 17,10,18 23,7,15 28,12,5
30 - 21,8,16 30,5,10 28,5,12 30,7,8 25,9,11 17,17,11 19,9,17 36,3,6 19,16,10 27,9,9 24,17,4
50 - 27,3,15 31,9,5 33,6,6 29,9,7 24,13,8 18,17,10 22,16,7 35,5,5 16,19,10 31,6,8 17,19,9
100 - 33,1,11 33,7,5 35,7,3 37,6,2 24,16,5 18,18,9 22,14,9 38,3,4 19,21,5 - 19,20,6

problems. Compared with other algorithms except TRIBES-
D, SLPSO is the only algorithm that successfully found the
global optimum of the Rastrigin (f2) and non-continuous
Rastrigin (f3) functions over all the four dimensional cases.
Especially for the Schwefel function (f6), SLPSO is the only
algorithm that is able to find the near global optima across

the four dimensional cases among the 12 algorithms. SLPSO
also achieves the best results on function f12 among all the
algorithms. Functions f1, f7, and f9 are successfully solved
by all algorithms in all the tested dimensions under the given
accuracy level, except SPSO on functions f7 and APSO and
FPSO on function f9 in 50 and 100 dimensions. For function

15

f8, G-CMA-ES achieves the best results that are much better
than the other algorithms.

For the modified problems, the performance comparison of
each algorithm on the original problems and corresponding
modified problems is not shown due to the space limitation.
We only summarize the comparison as follows: 1) different
modifications on a specific problem bring in different diffi-
culties; 2) the same modification on different problems also
brings in different difficulties; 3) the same modification on a
specific problem brings in different difficulties for different
algorithms.

From the experimental results, it can be seen that modifi-
cations do raise the challenge to most algorithms and make
the problems harder to solve than the original problems. One
interesting thing is that, among the 12 algorithms, SLPSO is
the only algorithm that is not sensitive to the modification
of shifting the global optimum to a random location on the
four test functions. Although TRIBES-D successfully finds
the global optima for most traditional problems whose global
optima have the same parameter values in all dimensions
(e.g., the Rosenbrock function f8 has a global optimum of
[1,1,...,1]), it fails to find the global optima of the correspond-
ing modified problems. Taking function f2 in 30 dimensions
as an example, TRIBES-D successfully finds the global optima
of function f2, while for the shifted f2 (i.e., f17), it achieves
the second worst results among all the tested algorithms. The
similar observation can be made with APrMF on function f1
and f18.

For the composition functions f13 and f14, G-CMA-ES ob-
tains the best results in most dimensional cases among the 12
algorithms. HRCGA also achieves good performances, which
are slightly worse than the performance of G-CMA-ES. Except
G-CMA-ES and HRCGA, SLPSO achieves much better results
than the other 12 algorithms on most dimensional cases. For
the other composition functions (f40-f45), the performance of
SLPSO is not the best among the 12 algorithms. But, it does
not mean that SLPSO is not suitable to solve this kind of
problems. Comparing the results of SLPSO with the optimal
configurations and with the default configurations in Table
IX, it can be seen that the performances of SLPSO with the
optimal configurations are much better than that of SLPSO
with the default configurations. Generally speaking, among
the 12 algorithms, HRCGA, APrMF, and SPSO have relatively
better performances on the composition problems.

Based on the results in the first row of Table XIII, it can
be seen that TRIBES-D, SLPSO, and G-CMA-ES obviously
dominate the other algorithms in terms of the number of the
best mean results. Another interesting observation is that the
performance of APSO and CLPSO dramatically decreases
with the increasing of the number of dimensions, but the
situation of SLPSO and JADE is opposite to APSO and
CLPSO and their performance increases with the increasing
of the number of dimensions. For example, the number of
the best mean results obtained by SLPSO on problems in 10
dimensions is 11 and the figure increases to 14 on problems
in 100 dimensions.

B. Comparison Regarding the Success Rate

According to the accuracy level given for each problem in
this paper, we present the comparison of the statistical results
of the 12 algorithms in terms of the success rate. The second
row in Table XIII shows the number of problems that are
solved (#S), partially solved (#PS), and never solved (#NS)
by the 12 algorithms in 10, 30, 50, and 100 dimensions. A
problem is called solved, partially solved, or never solved, if
an algorithm reaches the corresponding given accuracy level
over all 30 runs, over some of (but not all) 30 runs, or over
none of 30 runs, respectively.

In the second row of Table XIII, the number of solved,
partially solved, or never solved problems is calculated by
the number of problems where the success rate is equal to 0,
within (0, 1), or equal to 1, respectively, for each algorithm.
It can be seen that SLPSO has the best performance among
the 12 algorithms on problems in all the dimensional cases.
TRIBES-D achieves slightly worse results than SLPSO. The
number of problems solved by SLPSO is about 20 in the
four dimensional cases, which is about twice as the number
of problems solved by the fourth best algorithm (CLPSO).
The number of problems solved by G-CMA-ES is slightly
smaller than that of TRIBES-D, which makes it the third best
algorithm.

Generally speaking, the difficulty of a problem will increase
when the number of dimensions increases. So, an algorithm’s
performance will also decrease. From the results in the second
row of Table XIII, we can clearly see this trend for some
algorithms, e.g., APSO, CPSOH, FIPS, FPSO, and APrMF,
where the number of never solved problems increases while
the number of solved problems decreases when the number
of dimensions increases. For algorithms SLPSO, CLPSO,
SPSO, JADE, HRCGA, TRIBES-D, and G-CMA-ES, their
performances remain at a certain level when the number of
dimensions increases.

C. Comparison Regarding the t-Test Results

In order to investigate how much the performance of SLPSO
is better or worse than the performance of other 11 algorithms
at the statistical level on each problem, a two-tailed t-test
operation was performed in this section. The statistical results
are shown in the third row in Table XIII – the detailed results
are not provided in this paper due to the space limit. Each
result is shown as #+, #-, and #∼, which mean that the per-
formance of SLPSO is significantly better than, significantly
worse than, and statistically equivalent to the performance
of its rival in terms of the t-test results, respectively. For
example, the t-test results between SLPSO and TRIBES-D
on 50 dimensions are (16,19,10), which mean that SLPSO
achieves significantly better results than, significantly worse
results than, and statistical equivalent results to TRIBES-D on
16, 19, and 10 problems, respectively.

Compared with the other 11 algorithms, it can be seen that
SLPSO outperforms the other 11 algorithms in terms of the t-
test results except the TRIBES-D and G-CMA-ES algorithms
in 50 and 100 dimensions. The number of problems where
SLPSO achieves significantly better results than the other

16

TABLE XIV
ALGORITHMS’ RANKING REGARDING THE NUMBER OF BEST MEAN

VALUES (#BM), PROBLEMS SOLVED (#S), AND t-TEST RESULTS (t-TEST)

#BM(DIM) #S(DIM) t-Test(DIM) Overall
10 30 50 100 10 30 50 100 10 30 50 100

SLPSO 2 2 3 2 1 1 1 1 1(111) 1(134) 1(144) 1(162) 1(1.42)
APSO 6 5 6 7 4 6 9 6 6(66) 7(85) 10(53) 11(21) 9(6.92)

CLPSO 4 5 6 7 6 4 4 3 2(105) 6(86) 6(108) 7(104) 6(5.0)
CPSOH 7 5 6 7 5 7 8 4 10(38) 11(62) 9(63) 9(68) 11(7.33)

FIPS 7 5 6 7 8 7 6 5 8(55) 9(65) 8(74) 8(71) 10(7.0)
SPSO 7 5 6 6 6 6 7 3 9(42) 8(82) 7(102) 6(134) 8(6.42)
JADE 7 5 6 5 7 5 5 2 5(73) 2(117) 2(135) 2(157) 5(4.42)

HRCGA 5 4 4 4 5 4 4 2 3(88) 5(96) 4(124) 5(139) 4(4.33)
FPSO 7 5 6 7 7 8 11 6 11(32) 12(31) 12(34) 10(44) 12(8.5)

TRIBES-D 1 1 1 1 2 2 2 1 4(84) 3(113) 3(130) 3(150) 2(2.0)
APrMF 5 3 5 - 5 6 10 - 7(64) 10(64) 11(46) - 7(5.64)

G-CMA-ES 3 2 2 3 3 3 3 1 6(66) 4(111) 5(114) 4(142) 3(3.25)

algorithms is much larger than the number of problems where
SLPSO performs significantly worse than the other algorithms.

D. Algorithms’ Ranking

In order to have an overall view of the performances of
the 12 algorithms, we rank the 12 algorithms regarding three
different aspects: a) the number of problems where the best
result is achieved; b) the number of solved problems; c) the
number of problems where the performance of an algorithm is
significantly better than its peer algorithms according to the t-
test values. For the second criterion, if two algorithms have the
same number of solved problems, then check the number of
partially solved problems. If they still have the same number,
it means they have the same ranking.

Table XIV shows the ranking of each algorithm in all the
four dimensional cases, where the overall ranking is calculated
by sorting the average of the sum of all the rankings obtained
of each algorithm. For the fourth column in Table XIV, the
value attached to each ranking value is the number of problems
where the performance is significantly better than its peer
algorithms according to the t-test values. It should be noted
that we just use these methods to show the overall performance
of the involved algorithms even though these ranking criteria
might not be fair enough to show the performance of each
algorithm.

According to the algorithms’ ranking, it can be seen that
SLPSO outperforms all the other algorithms in terms of
different aspects except the second ranking with the best mean
values in 10, 30, and 100 dimensions and the third ranking
in 50 dimensions. Finally, the rankings of all the involved
algorithms regarding the three different aspects are as follow:
SLPSO, TRIBES-D, G-CMA-ES, HRCGA, JADE, CLPSO,
APrMF, SPSO, APSO, FIPS, CPSOH, and FPSO.

E. Comparison on Two Real-World Problems

In order to test the effectiveness of SLPSO on real-world
applications, we chose two problems from real life: design
of a gear train [35] and parameter estimation for frequency-
modulated (FM) sound waves. The first problem, which was
introduced in [35], is to optimize the gear ratio for a compound
gear train that contains three gears. It is to be designed that the
gear ratio is as close as possible to 1/6.931. For each gear, the

TABLE XV
COMPARISON ON TWO REAL-WORLD PROBLEMS

Gear ratio Estimation error
Min Max Mean Std Min Max Mean Std

SLPSO 2.70e-12 6.19e-09 2.22e-09 9.83e-09 0 13.79 4.18 26.99
APSO 2.70e-12 1.31e-08 1.59e-09 1.44e-08 0 34.22 11.33 41.13
CLPSO 2.70e-12 1.36e-09 1.99e-10 2.22e-09 0.007 14.08 3.82 23.53
CPSOH 1.54e-10 2.02e-06 2.80e-07 2.33e-06 3.45 42.52 27.08 60.61
FIPS 8.88e-10 8.9e-07 3.27e-08 8.77e-07 0 15.11 5.93 25.75
SPSO 2.70e-12 2.56e-07 1.39e-08 2.57e-07 0 18.27 9.88 33.85
JADE 2.70e-12 1.36e-09 2.10e-10 2.259e-09 0 13.92 7.55 26.18
HRCGA 2.70e-12 1.181e-09 1.53e-10 1.88e-09 0 17.59 8.41 32.54
FPSO 2.057e-09 0.00017 1.57e-05 0.00018 0 15.82 5.22 28.31
TRIBES-D 9.64e-12 7.17e-05 3.62e-06 1.26e-05 2.22 22.24 14.68 4.57
APrMF 2.70e-12 2.36e-09 1.01e-09 6.84e-10 0.063 0.94 0.54 0.22
G-CMA-ES 2.701e-12 7.32e-001 2.44e-02 1.31e-01 3.326 55.09 38.75 16.77

number of teeth must be between 12 and 60. The mathematical
model of this problem can be described as follows:

f(x) = (1/6.931− x1 · x2
x3 · x4

)2 (18)

where xi ∈ [12, 60], i = 1, 2, 3, 4.
The second problem is to estimate the parameters of a FM

synthesizer [10]. This problem is a highly complex multi-
modal problem with strong epistasis. The parameter vector has
six components: X = [a1, ω1, a2, ω2, a3, ω3], which is given
in the following equation:

y(t) = a1·sin(ω1·t·θ+a2·sin(ω2·t·θ+a3·sin(ω3·t·θ))) (19)

and the expression of the target sound waves is given by:

y0(t) = sin(5·t·θ+a1.5·sin(4.8·t·θ+2·sin(4.9·t·θ))) (20)

where θ = 2π/100 and the parameters are constrained in
[−6.4, 6.35]. The fitness function is defined as follows:

f(~x) =

100∑
t=0

(y(t)− y0(t))2 (21)

All the algorithms involved in previous experiments were
tested on these two problems. For each algorithm, the param-
eter settings used were the same as in previous experiments
and the swarm size was set to 10 for all algorithms except
for the TRIBES-D, G-CMA-ES, and HRCGA algorithms. The
total number of fitness evaluations was set to 20000 and 30000
for the first and second problems, respectively. The statistical
results over 30 runs are shown in Table XV, where “Min”,
“Max”, “Mean”, and “Std” are the best, worst, mean, and
standard deviation values, respectively.

From Table XV, it can be seen that the first problem
has been solved easily by all the algorithms. However, for
the second problem, none of the 12 algorithms finds the
global optimum for all the 30 runs. By observing the Min
values with the second problem, SLPSO, APSO, FIPS, SPSO,
JADE, HRCGA, and FPSO have found the global optimum at
least once in 30 runs. However, TRIBES-D, CLPSO, CPSO-
H, APrMF, and G-CMA-ES have never found the global
optimum. Among the seven algorithms that are able to find
the global optimum at least once, SLPSO obtains the smallest
mean error.

17

VII. CONCLUSIONS

This paper investigates a self-learning PSO (SLPSO) algo-
rithm that can enable a particle to adaptively adjust its search
behavior during the search process for global optimization
problems. In SLPSO, each particle has four learning sources
produced by four operators, which have different properties
to guide particles to converge to the current global best
position, exploit a local optimum, explore new promising
areas, and jump out of a local optimum, respectively. An
adaptive selection mechanism is introduced to enable particles
to automatically choose the appropriate learning objective at
the appropriate moment during the search process.

Experiments on some challenging test problems were car-
ried out in this paper. From the comparison results on all the
test problems, several conclusions can be drawn for the SLPSO
algorithm. First, the adaptive learning mechanism works at the
individual level where particles are independent to adapt with
their local fitness landscapes in different sub-regions. Each
particle can choose an appropriate strategy at an appropriate
moment according to the property of its local search space for
achieving the best performance of SLPSO. Second, SLPSO
significantly enhances the performance of PSO in terms of the
performance metrics used in this paper and SLPSO performs
much better than other peer algorithms. Third, SLPSO is
also an effective optimization tool for the two real-world
applications tested in this paper.

We can not expect SLPSO to solve every global optimiza-
tion problem. In fact, it is impossible. However, the adaptive
learning framework attempts to provide a special approach
where particles have more intelligence to decide their own
step direction based on the knowledge learnt from the local
fitness landscape. It is helpful for solving different types of
problems, especially problems that have very complex fitness
landscapes.

ACKNOWLEDGMENT

The authors would like to thank Prof. X. Yao, Prof. Y. Jin
and Dr. P. Rohlfshagen for their thoughtful suggestions and
constructive comments.

REFERENCES

[1] P. Angeline, “Evolutionary optimization versus particle swarm opti-
mization: Philosophy and performance differences,” in 7th Conf. Evol.
Programming, 1998, pp. 601–610.

[2] A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in 2005 Congr. Evol. Comput., vol. 2, 2005,
pp. 1769–1776.

[3] T. M. Blackwell and P. Bentley, “Don’t push me! collision-avoiding
swarms,” in 2002 Congr. Evol. Comput., vol. 2, 2002, pp. 1691–1696.

[4] T. M. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 459–472, 2006.

[5] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in IEEE Swarm Intel. Symp., 2007, pp. 120–127.

[6] R. Brits, A. Engelbrecht, and F. van den Bergh, “A niching particle
swarm optimizer,” in 4th Asia-Pacific Conf. Simulated Evolution and
Learning, vol. 2, 2002, pp. 692–696.

[7] Y. Chen, W. Peng, and M. Jian, “Particle swarm optimization with
recombination and dynamic linkage discovery,” IEEE Trans. Syst.,Man,
Cybern. B: Cybern., vol. 37, no. 6, pp. 1460–1470, 2007.

[8] Y. Cooren, M. Clerc, and P. Siarry, “Performance evaluation of TRIBES,
an adaptive particle swarm optimization algorithm,” Swarm Intell.,
vol. 3, pp. 149–178, 2009.

[9] L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag, “Adaptive
operator selection with dynamic multi-armed bandits,” in Proceedings of
the 10th annual conference on Genetic and evolutionary computation,
ser. GECCO ’08. New York, NY, USA: ACM, 2008, pp. 913–920.

[10] S. Das and P. N. Suganthan, “Problem definitions and evaluation criteria
for CEC 2011 competition on testing evolutionary algorithms on real
world optimization problem,” Dept. of Electronics and Telecommunica-
tion Engg., Jadavpur University, Kolkata, India, Tech. Rep., 2011.

[11] M. A. M. de Oca, T. Stutzle, M. Birattari, and M. Dorigo, “Franken-
stein’s pso: A composite particle swarm optimization algorithm,” IEEE
Trans. Evol. Comput., vol. 13, no. 5, pp. 1120–1132, 2009.

[12] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Trans. Evol. Comput.,, vol. 3, no. 2, pp.
124–141, 1999.

[13] C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, and A. M.
Sanchez, “Global and local real-coded genetic algorithms based on
parent-centric crossover operators,” Europ. J. Oper. Res., vol. 185, pp.
1088–1113, 2008.

[14] D. E. Goldberg, “Probability matching, the magnitude of reinforce-
ment,and classifier system bidding,” J. Mach. Learn., vol. 5, no. 4, pp.
407–425, 1990.

[15] S. Hsieh, T. Sun, C. Liu, and S. Tsai, “Efficient population utilization
strategy for particle swarm optimizer,” IEEE Trans. Syst., Man, Cybern.
B: Cybern., vol. 39, no. 2, pp. 444–456, 2009.

[16] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Trans. Syst., Man, Cybern. B: Cybern.,
vol. 35, no. 6, pp. 1272–1282, 2005.

[17] G. Kendall, E. Soubeiga, and P. Cowling, “Choice function and random
hyper heuristics,” in Proceedings of the fourth Asia-Pacific Conference
on Simulated Evolution And Learning, SEAL. Springer, 2002, pp. 667–
671.

[18] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance,” in 1999 Congr.Evol. Comput.,
1999, pp. 1931–1938.

[19] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kaufmann
Publishers, 2001.

[20] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in 2002 Congr. Evol. Comput., 2002, pp. 1671–1676.

[21] C. Li and S. Yang, “An adaptive learning particle swarm optimizer for
function optimization,” in 2009 Congr. Evol. Comput., 2009, pp. 381–
388.

[22] C. Li, S. Yang, and I. A. Korejo, “An adaptive mutation operator for
particle swarm optimization,” in 2008 UK Workshop Comput. Intell.,
2008, pp. 165–170.

[23] X. Li, “Adaptively choosing neighborhood bests using species in a
particle swarm optimizer for multimodal function optimization,” in 2004
Genetic Evol. Comput. Conf., 2004, pp. 105–116.

[24] X. Li, “Niching without niching parameters: Particle swarm optimization
using a ring topology,” Evolutionary Computation, IEEE Transactions
on, vol. 14, no. 1, pp. 150–169, Feb. 2010.

[25] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baska, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
2006.

[26] J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test functions
for numerical global optimization,” in 2005 Symp. Swarm Intell., 2005,
pp. 68–75.

[27] J. Maturana, A. Fialho, F. Saubion, M. Schoenauer, and M. Sebag, “Ex-
treme compass and dynamic multi-armed bandits for adaptive operator
selection,” in Evolutionary Computation, 2009. CEC ’09. IEEE Congress
on, may 2009, pp. 365 –372.

[28] C. Maurice, “Standard PSO 2007 (SPSO-07),” http://www.
particleswarm.info/Programs.html, 2007.

[29] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, Maybe better,” IEEE Trans. Evol. Comput., vol. 8, pp.
204–210, 2004.

[30] Q. H. Nguyen, Y. S. Ong, and M. H. Lim, “A probabilistic
memetic framework,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp.
604–623, 2009, source codes available at: http://code.google.com/p/
memetic-algorithm/downloads/list.

[31] T. Niknam and E. A. Farsani, “A hybrid self-adaptive particle swarm
optimization and modified shuffled frog leaping algorithm for distri-
bution feeder reconfiguration,” Engineering Applications of Artificial
Intelligence, vol. 23, no. 8, pp. 1340 – 1349, 2010.

http://www.particleswarm.info/Programs.html
http://www.particleswarm.info/Programs.html
http://code.google.com/p/memetic-algorithm/downloads/list
http://code.google.com/p/memetic-algorithm/downloads/list

18

[32] R. Poli, C. D. Chio, and W. B. Langdon, “Exploring extended particle
swarms: a genetic programming approach,” in 2005 Conf. on Genetic
and Evol. Comput., 2005, pp. 33–57.

[33] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An
overview,” Swarm Intell., vol. 1, no. 1, pp. 33–58, 2007.

[34] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,
2004.

[35] E. Sandgren, “Nonlinear integer and discrete programming in mechan-
ical design,” in the ASME Design Technology Conf., 1988, pp. 95–105.

[36] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
IEEE Int. Conf. Evol. Comput., 1998, pp. 69–73.

[37] Y. Shi and R. Eberhart, “Fuzzy adaptive particle swarm optimization,”
in 2001 Congr. Evol. Comput., vol. 1, 2001, pp. 101–106.

[38] J. E. Smith, “Credit assignment in adaptive memetic algorithms,” in
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, ser. GECCO ’07. New York, NY, USA: ACM, 2007, pp.
1412–1419.

[39] J. E. Smith and T. C. Fogarty, “Operator and parameter adaptation
in genetic algorithms,” Soft Computing - A Fusion of Foundations,
Methodologies and Applications, vol. 1, pp. 81–87, 1997.

[40] P. N. Suganthan, “Particle swarm optimizer with neighborhood operator,”
in 1999 Congr. Evol. Comput., 1999, pp. 1958–1962.

[41] P. N. Suganthan, N. Hansen, J. J. Liang, Y.-P. C. K. Deb, A. Auger, and
S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005
special session on real-parameter optimization,” Nanyang Technological
University, Singapore, Tech. Rep., 2005.

[42] D. Thierens, “An adaptive pursuit strategy for allocating operator
probabilities,” in Proceedings of the 2005 conference on Genetic and
evolutionary computation, ser. GECCO’05. New York, NY, USA:
ACM, 2005, pp. 1539–1546.

[43] D. Thierens, “Adaptive strategies for operator allocation,” in Parameter
Setting in Evolutionary Algorithms, ser. Studies in Computational Intel-
ligence, F. Lobo, C. Lima, and Z. Michalewicz, Eds., vol. 54. Springer
Berlin / Heidelberg, 2007, pp. 77–90.

[44] F. van den Bergh and A. P. Engelbrech, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, pp.
225–239, 2004.

[45] F. Van Den Bergh, “An analysis of particle swarm optimizers,” Ph.D.
dissertation, University of Pretoria, Pretoria, South Africa, South Africa,
2002.

[46] C. Wei, Z. He, Y. Zhang, and W. Pei, “Swarm directions embedded in
fast evolutionary programming,” in 2002 Congr. Evol. Comput., vol. 2,
2002, pp. 1278–1283.

[47] T. White, “Swarm intelligence,” http://www.sce.carleton.ca/netmanage/
tony/swarm.html, 1997.

[48] Z. Wu and J. Zhou, “A self-adaptive particle swarm optimization algo-
rithm with individual coefficients adjustment,” in 2007 Conf. Comput.
Intell. and Security, 2007, pp. 133–136.

[49] X. Xie, W. Zhang, and Z. Yang, “Dissipative particle swarm optimiza-
tion,” in 2002 Congr. Evol. Comput., vol. 2, 2002, pp. 1456–1461.

[50] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 959–974, 2010.

[51] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, 1999.

[52] Z. Zhan, J. Zhang, Y. Li, and H. S. Chung, “Adaptive particle swarm
optimization,” IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 39, pp.
1362–1381, 2009.

[53] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, 2009.

Changhe Li received the B.Sc. and M.Sc. de-
grees in computer science from China University
of Geosciences, Wuhan, China, in 2005 and 2008,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Leicester, U.K. in July
2011. He is currently a lecturer with the School of
Computer Science, China University of Geosciences,
Wuhan, China. His research interests are evolution-
ary algorithms, particle swarm optimization, and
dynamic optimization.

Shengxiang Yang received the B.Sc. and M.Sc.
degrees in automatic control and the Ph.D. degree
in systems engineering from Northeastern Univer-
sity, Shenyang, China in 1993, 1996, and 1999,
respectively. He is currently a Senior Lecturer with
the Department of Information Systems and Com-
puting, Brunel University, U.K. He has over 130
publications. He has given invited keynote speeches
in several international conferences and co-organised
several symposiums, workshops and special sessions
in conferences. He serves as the area editor, associate

editor or editorial board member for four international journals. He has co-
edited several books and conference proceedings and co-guest-edited several
journal special issues. His major research interests include evolutionary and
genetic algorithms, swarm intelligence, computational intelligence in dynamic
and uncertain environments, artificial neural networks for scheduling and
real-world applications. He is the chair of the Task Force on Evolutionary
Computation in Dynamic and Uncertain Environments, Evolutionary Compu-
tation Technical Committee, IEEE Computational Intelligence Society and the
founding chair of the Task Force on Intelligent Network Systems, Intelligent
Systems Applications Technical Committee, IEEE Computational Intelligence
Society.

Trung Thanh Nguyen received his BSc in Com-
puter Science from Vietnam National University,
Hanoi in 2000, and his MPhil and PhD in Com-
puter Science from the University of Birmingham
in 2007 and 2011, respectively. From 2000 to 2005
he was a researcher in the Research Institute of
Post and Telecoms in Vietnam. In 2011 he was a
research fellow in the University of Birmingham.
He is currently a research fellow in the Liverpool
John Moores University, UK. His current research
interests are global (dynamic and static) optimisation

using metaheuristics and bio-inspired methods, and applications of meta-
heuristics and operation research to real-world problems, especially problems
in port/maritime evironments.

http://www.sce.carleton.ca/netmanage/tony/swarm.html
http://www.sce.carleton.ca/netmanage/tony/swarm.html

	Introduction
	Related Work
	Particle Swarm Optimization
	Some Variant Particle Swarm Optimizers
	Population Topology
	PSO with Diversity Control
	Hybrid PSO
	PSO with Adaptation

	Self-learning and Adaptive Strategies

	Self-Learning Particle Swarm Optimizer
	General Considerations of Performance Tradeoff
	Velocity Update in SLPSO
	The Adaptive Learning Mechanism
	Information Update for the abest Position
	Controlling the Number of Particles That Learn from the abest Position
	Framework of SLPSO
	Vmax and Out of Search Range Handling in SLPSO
	Complexity of SLPSO

	Test Functions and Experimental Setup
	Test Functions
	Parameter Settings for the Involved PSO Algorithms
	Performance Metrics
	Mean Values
	t-Test Comparison
	Success Rate

	Experimental Study on SLPSO
	Self-Learning Mechanism Test
	Parameter Sensitivity Analysis of SLPSO
	Parameter Tuning in SLPSO
	Selection Ratios of the Four Operators

	Experimental Study on Comparison with Other Algorithms
	Comparison Regarding Mean and Variance Values
	Comparison Regarding the Success Rate
	Comparison Regarding the t-Test Results
	Algorithms' Ranking
	Comparison on Two Real-World Problems

	Conclusions
	References
	Biographies
	Changhe Li
	Shengxiang Yang
	Trung Thanh Nguyen

