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A B S T R A C T

The problem of algorithm selection is of great importance to the optimisation community,

with a number of publications present in the Body-of-Knowledge. This importance stems from

the consequences of the No-Free-Lunch Theorem which states that there cannot exist a single

algorithm capable of solving all possible problems. However, despite this importance, the

algorithm selection problem has of yet failed to gain widespread attention . In particular, little

to no work in this area has been carried out with a focus on large-scale optimisation; a field

quickly gaining momentum in line with advancements and influence of big data processing.

As such, it is not as yet clear as to what factors, if any, influence the selection of algorithms

for very high-dimensional problems (> 1000) - and it is entirely possible that algorithms that

may not work well in lower dimensions may in fact work well in much higher dimensional

spaces and vice-versa. This work therefore aims to begin addressing this knowledge gap by

investigating some of these influencing factors for some common metaheuristic variants.

To this end, typical parameters native to several metaheuristic algorithms are firstly

tuned using the state-of-the-art automatic parameter tuner, SMAC. Tuning produces separate

parameter configurations of each metaheuristic for each of a set of continuous benchmark

functions; specifically, for every algorithm-function pairing, configurations are found for each

dimensionality of the function from a geometrically increasing scale (from 2 to 1500 dimen-

sions). The nature of this tuning is therefore highly computationally expensive necessitating

the use of SMAC. Using these sets of parameter configurations, a vast amount of performance

data relating to the large-scale optimisation of our benchmark suite by each metaheuristic

was subsequently generated.

From the generated data and its analysis, several behaviours presented by the meta-

heuristics as applied to large-scale optimisation have been identified and discussed. Further,

this thesis provides a concise review of the relevant literature for the consumption of other

researchers looking to progress in this area in addition to the large volume of data produced,

relevant to the large-scale optimisation of our benchmark suite by the applied set of common

metaheuristics.
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1
I N T R O D U C T I O N T O T H E T H E S I S

1.1 introduction

Human beings are a species of optimisers. Throughout history, advances in civilisation can be

said to have been built, almost solely, on our ability to optimise the various processes essential

to our survival. From our early ancestors gradually improving on their tools for hunting or

gathering to developing more efficient means to automatically mass produce items of necessity

during the industrial period, we owe much of our current, and relatively comfortable, state of

being to our insatiable desire to ‘find something better’.

As our mathematics has developed, an ever increasing number of processes of increasing

complexity are being modelled. Ever more complex models from the physical sciences, natural

sciences and human sciences have provided us with new and interesting insights and new

optimisation problems to solve. From molecular biology, for example, we have the problem of

protein folding...

However, many of these real world problems can have very large search spaces; that is, the

number of possible solutions to the problem can be incredibly large - increasing exponentially

with the dimensionality of the problem. This makes it difficult for more traditional and exact

optimisation methods, e.g., exhaustive search, to effectively search through all these possible

solutions in a time that is acceptable. In terms of optimisation in continuous spaces; that is,

where the problem variables are from the set of real numbers, these traditional approaches

often make use of function derivatives. However, many continuous problems have search

spaces that are inherently non-differentiable and thus inhibiting the use of these strategies.

For exactly these reasons, heuristic based optimisation methods - able to effectively search

within arbitrarily large search spaces in a reasonable length of time - have become increasingly

popular with several thousand associated publications even in the last year alone (2017).

However, a fundamental theorem of any search based optimisation strategy - the No Free

Lunch Theorem (NFL) - states that no single search algorithm, heuristic or otherwise, can be

shown to exhibit higher than average performance when all possible problems are considered.

2
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The consequences of the NFL therefore pose a problem to the users and developers of search

based optimisation algorithms; specifically, what algorithm or algorithms will perform best

on a given problem or set of problems of a certain type?

This problem, dubbed the Algorithm Selection Problem (ASP) by Rice [112] in 1975, has

been of some interest to researchers however despite its importance it has failed to gain

widespread attention in the research community. Furthermore, of the works that do exist,

none were found to address the issue of algorithm selection for large-scale optimisation

problems - those of very high dimensionality. This is an important omission, and one we

attempt to begin addressing - at least partially - because the exponential increase in search

space volume that invariably results from increases to problem dimensionality means that

the effectiveness - at least in terms of solution quality - of all search algorithms, including

heuristic algorithms, diminishes with dimensionality. Some strategies may however remain

reasonably effective on certain problems at higher dimensions - where their rate of decreasing

performance with dimensionality is slower - but no data is yet available to even attempt to

make such discriminations.

1.2 structure of the thesis

We begin in Chapter 2 our review of the available subject matter. In this chapter we cover

the subject of optimisation along with descriptions of some more ‘classical’ algorithmic

approaches to addressing continuous optimisation problems.

In Chapter 3, we provide a description of our selected suite of 17 benchmark functions

used throughout the experiments in this thesis. Along with the descriptions, we also provide

visual (2D) representations of each function we generated through sampling of the functions

implemented. A review of the metaheuristic search-based optimisation algorithms being used

in these studies is then provided in Chapter 4.

We then briefly cover both the problem of algorithm selection and automatic parameter

tuning (APT), in particular of the former - our selected tuning method, Sequential Model-based

Algorithm Configuration (SMAC) in Chapter 5.

Beginning our method part with Chapter 6, attention is firstly given to the metaheuristic

implementations developed for use in our experiments, including, for each approach, a list

3
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and discussion of the various ‘tunable parameters’ configured by our selected APT described

in Chapter 5. To supplement this description, and to provide more specificity to our use of

SMAC, Chapter 7 provides a brief description of the steps taken to tune each metaheuristic

for each of our benchmark functions at each dimensionality.

Finally, in Chapter 8, we blend our experimental methodology with individual findings

and discussions and for each, provide our conclusions. These conclusions are then summarised

at the end of the chapter along with a discussion of future work directions.

4
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2
C H A P T E R 2 : O P T I M I S AT I O N

2.1 introduction

The task of optimisation has become one of the main staples of modern day science, finding

utility in almost every scientific field of enquiry. In fact, Schwefel in [118] states:

“There is scarcely a modern journal, whether of engineering, economics or the

social sciences, in which the concept ‘optimization’ is missing from the subject

index.”

Given our long relationship with optimisation and its many successes, having been paramount

to our continued advancement as a species for thousands of years, this is not too surprising.

However, as problems have become increasingly more complex, compounded with the

fact that in many cases we do not know the mathematical formulation of our problem, we

are less able to rely on some of our more ‘classical’ or exact methods to optimisation. This

has led to the popularisation of stochastic optimisation methods, specifically those techniques

such as metaheuristics and hyper-heuristics, that are more able to deal with these intractable

problems in a reasonable time scale albeit with no guarantee of exact optimality. Therefore,

metaheuristics and other stochastic approaches have their place in situations where a ‘good

enough’ solution is acceptable or no known exact algorithm can find the optimal solutions in

reasonable runtimes.

This chapter begins by discussing some of the background and terminology of optimisa-

tion in general, including: a definition of optimisation, an overview of how problem difficulty

is defined and what this means to optimisation on the whole and a comparison of the main

categories of optimisation: discrete vs. continuous and local vs. global optimisation. Next we

present an overview of some of the more classical and exact methods to optimisation and how

these approaches are less able to perform efficiently when problems being approached become

larger and more complex. This leads us give a relatively concise discussion on the topic

of metaheuristics, specifically how they are applied to help solve continuous optimisation

problems.

6
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2.2 general optimisation

2.2.1 Terminology

Here we present some terminology useful to further discussions in this chapter.

2.2.1.1 Objective Function

An objective function is an encoding of the goal of some problem as a mathematical function

or computational model used to measure the quality of a given solution in respect to the

problem. It essentially represents the interface between an algorithm and the real problem

and plays a crucial role in the guidance of a search algorithm though a given search space -

without it the algorithm would have no clue as to how the solutions produced are performing.

The problem goal, or goals in the case of multi-objective problems, can be defined as either

being a minimisation goal, where the objective is to produce solutions with low values with

respect to the objective function, or a maximisation problem where higher valued solutions

are sought. When indirect solution representations are used within the algorithm - those that

do not yet represent a solution in their current form i.e., they are encoded so must first be

converted (decoded) into a form that can be directly evaluated by the objective function [17].

2.2.1.2 Feasible vs. Infeasible Solutions

Feasible solutions are all solutions within the search space of the problem which satisfy the

constraints on the problems parameters - specifically, the hard constraints (see below) [17].

Conversely, infeasible solutions all violate at least one of the problems hard constraints.

2.2.1.3 Hard vs. Soft Constraints

Hard constraints placed on a problem are conditions which have to be satisfied in order

for a solution to be feasible [17]. On the other hand, soft constraints are those which we

would like to have satisfied but which are not essential; so a solution violating one or more

soft-constraints would still be considered feasible [17]. A common way of handling soft

constraints when searching for a solution to an optimisation problem is to have solutions

incur a penalty if a soft constraint is not satisfied; possibly weighted by desirability. Therefore,

the objective function of many problems are represented by the summation of penalties for

the soft constraints [17]. This means that solutions that do not violate the soft constraints will

be considered as being of a higher quality [17].

7
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2.2.1.4 Local vs. Global Optimisation

The difference between local and global optimisation lies in the scope of the optimisation task.

Local optimisation looks to optimise within a local feasible region [97], that is, to discover a

local minimiser (or optimum) - the smallest objective value within some feasible neighbour-

hood in the problem domain. A neighourhood function N defines the neighbourhood of a

solution s ∈ S as a mapping N : S→ 2S which assigns to each s a set of solutions N(s) ⊂ S

[135]. A solution s ′ ∈ N(s) is refered to as a neighbour of s [135]. Therefore, given a domain S

and a feasible neighbourhood of the domain N(s) ⊂ S, local optimisation seeks to find a local

optimum x∗ ∈ N such that f(x∗) 6 f(x)∀x ∈ N [135]. Global optimisation on the other hand

is concerned with discovering the smallest objective value or values over the entire feasible

domain of a function - a global optimum, also often referred to as the ‘best solution’. As

before, given a domain S, global optimisation seeks to find a global optimum s∗ ∈ S such that

f(s∗) 6 f(s)∀s ∈ S [135]. The main outcome of optimisation is therefore to discover a global

optimum s∗ of which many such solutions may exist [135]. Where many global optima may

be present (it is not always known), the outcome may be defined as attempting to discover all

of the global optima in order to generate alternative choices of solution [135].

2.2.1.5 Best Solution

Using a term like the best solution implies that there must be more than one solution, all of

which are considered to have differing levels of value [50]. The meaning of best, in terms of

quality, is quite often depends on the actual problem, the solution method and any allowed

tolerances [50]. Some types of problem have exact answers where the term ‘best’ has an

absolute definition [50] - in optimisation terms, ‘best’ in these instances refers to a problems

single global optimum. Other problems however can have several global optima, so ‘best’ in

these situations is more of a relative term [50]

2.2.1.6 Discrete vs. Continuous Optimisation

Discrete optimisation involves the optimisation of problems which are characterised by a

finite number of states accepted by their input parameters; on the other hand, continuous

problems are typically those that take their solutions from an uncountably infinite set of

solutions whose parameters are members of the set of real values - of which there are no

discontinuities [97]. However, given that digital computer technologies cannot provide the

kind of precision required of a ‘true’ continuous solution, the set of possible solutions will be

far less than uncountably infinite albeit still intractably large.
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Although the practical optimisation of both types of problem can be approached using

similar methods - at least in terms of inexact heuristic methods - there are nuances found

for each type of problem that need to be taken into account in order to optimise effectively.

For example, continuous optimisation problems are considered easier to solve than discrete

problems as their typical smoothness make it possible to work out the functions behaviour at

all points close to a point x by using objective and constraint information [97]. On the other

hand, the behaviour of the objective function may change drastically between points - which

are deemed close by some measure of distance [97].

2.2.2 A Formal Definition of an Optimisation Problem

Burke and Kendall in [17] define optimisation as trying to find the best solution possible

from amongst all possible solutions. They state further that optimisation can therefore be

considered as the task of modelling the problem to be solved as a mathematical evaluation (or

objective) function representing the quality of a solution and then search through the space of

all possible solutions in order to find one that either minimises or maximises this function

[17].

The canonical form for an optimisation problems is usually stated as the minimisation of

the objective function subject to constraints placed on its variables and expressed as [97, 6]:

min f(x) : x ∈ Rn subject to


gj(x) > 0, j = {1, 2, . . . , J}

hk(x) = 0, k = {1, 2, . . . ,K}

such that: x
(L)
i 6 xi 6 x

(U)
i , i = {1, 2, . . . ,n}

(2.1)

where f(x) is the function being optimised, gj(x) are J inequality constraints and hk(x)

represent the K equality constraints [6].

2.2.3 Problem Difficulty

Michalewicz and Fogel in [90] state several different reasons why real-world optimisations

are difficult to solve effectively:

• The search space is too vast to allow the use of an exhaustive search
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• The problem is so complex that in order to determine any answer whatsoever requires

the use of such simplified models of the problem domain that any solution found is

essentially useless

• The objective function is noisy or varies over time therefore requiring that an entire

series of solutions are required as opposed to a single solution

• The search space is so heavily constrained that even finding one feasible solution to the

problem is difficult

2.2.3.1 Complexity and P vs. NP

Complexity refers to the study of how difficult an optimisation problem is to solve [17]. Here,

problems are classified according to the properties of optimisation algorithms where roughly

speaking, a problem is classified as being ‘hard’ if there exists no known fast solver and ‘easy’

otherwise [29].

The first key concept in computational complexity is that of problem size which is rooted

in the dimensionality of a given problem - that is, the number of problem parameters - and

the size of the set of values of which each of the problem parameters can be set [29].

The second key concept relates to algorithms rather than to the problems themselves, that

of the running-time [29]. Running-time is the number of “elementary” operations required

of an algorithm before it terminates when running against a given problem - in general, the

intuition of computational complexity is that larger problems will require more computational

time to solve, although this is not always true [29]. The best known definitions of the ‘hardness’

of a problem is a relationship between the size of the problem being solved to the worst-case

runtime of the algorithm to be used to solve it. This is encapsulated as a formula that defines

an upper bound on runtime of the algorithm as a function of the problem size [29]. Basically,

shorter running times are expected when this formula is a polynomial or longer when the

formula is ‘super-polynomial’ such as exponential [29].

The final key concept of computational complexity relates to the concept that it is possible

to transform one problem into another through an appropriate mapping which may or may

not be reversible. This is referred to as problem reduction [29].

These key concepts can now be described more formally as [29]:
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1. A problem can be said to belong to the class P (polynomial) if there exists at least one

algorithm capable of solving it in polynomial time [29]

2. A problem can be said to belong to class NP (Non-deterministic polynomial) when it

can be solved by some algorithm, specifically a non-deterministic turing machine, with

no runtime guarantees, and its solution can be tested in polynomial time [29]. P can be

considered as a subset on NP since a solver with a polynomial runtime can also be used

to test solutions in polynomial time [29]

3. A problem is said to belong to the class NP-complete when it belongs to the class NP

and another problem in NP can be reduced to this particular problem by an algorithm

that runs in polynomial time [29]

4. A problem belongs to the class NP-hard if (i) it is at least as difficult as any problem in

NP-complete, but (ii) where solutions cannot be necessarily tested in polynomial time -

the canonical example being the halting problem [29]

One of the ‘grand’ challenges in complexity theory is to provide a proof that P = NP or

conversely that P 6= NP, in other words, is the class P and the class NP in fact the same class

- or not, in the latter case [29]. It should be noted that the proof required of the latter case

will need to be acquired through the application of complex mathematics, but for the former,

‘simply’ showing that an algorithm exists that can solve at least problem of class NP-complete

would provide enough of a proof [29].

2.3 classical optimisation methods

Before continuing on further to discuss stochastic optimisation, it is worth outlining some

of the existing ‘classical’ mathematical optimisation techniques. Wehrens and Buydens [142]

categorise the following methods under two headings: strong methods and weak methods.

Strong methods make certain assumptions about the structure of the solutions space; if

the assumptions made are correct then strong methods are both fast and reliable - however, it

they are incorrect the methods will never manage to find the global optimum even through

increased repetitions [142]. They are often used in the final part of the optimisation of difficult

problems where the region of the global optimum has been found but an exact solution has

yet to be discovered [142]. Additionally, they find utility where problem dimensionality is low

[142].
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Weak problems, on the other hand, make very little - if any - assumptions about the

search space but at a cost to their effectiveness and/or performance and should only be used

when there is no other option [142]. Each essentially samples the search space in the hope of

discovering good solutions quickly [142] The quintessential example of an weak method is

that of exhaustive enumeration of the search space, a technique whose use is infeasible for all

but the smallest of problem instances [142]. They tend to make use of a random component in

generating solution instances, given the fact they also use no assumptions - repeatability then

tends to be low as repeated runs of these approaches typically produce very different results

[142].

Between these two classes lies an intermediate class encapsulating approaches such as

metaheuristics and other stochastic algorithms. Metaheuristics will be discussed later in this

chapter in section 2.4.5.3 and specific methods described in Chapter 4.

2.3.1 Strong Methods

2.3.1.1 Gradient-based Optimisation Methods

gradient ascent The first gradient-based method that will be discussed is that of

Gradient Ascent - or Descent if dealing with minimisation. Here, the basic idea is to find the

slope of the function to be optimised, from the current point, and move up the hill towards the

maxima at its peak [82]. Progress continues until the slope of the function reaches zero - which

may or may not have occurred around a function maxima. Since progress cannot continue

where the slope equals zero, it is possible for gradient ascent to converge elsewhere, such as:

(i) at minima of the function and (ii) at saddle points. The gradient ascent method does not

require the computation or knowledge of f(x), but it does however make the assumption that

the first derivative f ′(x) can be known and calculated [82]. The procedure for this method is

quite straightforward for both the 1-dimensional and the n-dimensions cases.

In 1-dimension, a random initial point is selected. We then continually add to it a portion of its

slope i.e., x← x+αf ′(x) - where α is a small positive value [82]. This process continues until

the slope reaches zero and therefore x is unable to change further [82]. For the n-dimensional

case, the slope at the current point is simply replaced with the gradient so that x̄← x̄+α∇f(x̄).

There are a couple of known problems with gradient descent, one has already been discussed

- that of search progress being unable to continue when a slope not found at an optima equals

zero. The other issue is speed of convergence. The reason behind this second issue is that as

the slope approaches zero at the maximum, the value for x will overshoot the peak - landing
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on the other side of the hill - and may do this many times before reaching the maximum. The

cause of this is due to the step size α being based solely on the slope of the function at the

current position. If a slope is very steep, α will be large even if it is not required. One way

to deal with this is to tune the value of α to the particular problem instance being tackled.

Another way, if the second derivative of the function, f ′′(x), can also be calculated, would

be to abandon the gradient ascent method altogether, opting instead for Newtons Method, a

variation of gradient ascent described next.

newton’s method This variation on gradient ascent/descent involves the use of the

second derivative, i.e. x← x−α
f ′(x)
f ′′(x) of the function such that α is dampened as the algorithm

approaches a slope of zero [82]. This means that the algorithm will now converge to any kind

of zero slope - maxima, mimima, saddle points and to points of inflection [82]. Additionally,

the multidimensional case of the second derivative is not as straightforward to compute as

the gradient ∇f(x̄) was for the first derivative, but is instead a multi-dimensional Hessian

matrix Hf(x̄) comprised of partial second derivatives over each dimension [82]. This extra

complexity is compounded by the fact that newtons method divides by the second derivative,

requiring that inverse hessian matrix be calculated [82].

Since the second derivative is being used, the algorithm maintains all the information required

to identify whether it has reached a maximum solution (or minimum point in the case of

minimisation) as opposed to other points of zero slope discussed previously. This is due to

the fact that the second derivative will have negative value when a maximum point is met

and positive otherwise [82].

The use of the functions second derivative still does not solve the overall problem of local

search methods however, in that it can still converge to local optima rather than the global

optima [82]. One simple method of constructing a global search algorithm from both gradient

ascent and newtons method is to place these algorithms in a loop such that as a local optima

is discovered, the algorithm may be restarted from a random position in the search space

- keeping track of the best optimum found so far - in the hope of finding better optima

which hopefully lead to the global optima [82]. This is essentially the same approach taken

for derivative-free hill climbing algorithms when looking to search for global optima - see

Chapter 4 Section 4.2.2.1 for more details on using restarts for global optimisation.

2.3.1.2 Response Surface Methods

Originating from the area of experimental design, response surface methods make the as-

sumption that the response surface (objective function landscape / fitness landscape) can

be parameterised under a simple functions containing a single optimum [142]; that is, these
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methods aim to estimate the response surface by choosing parameters in an intelligent way

[142]. A common implementation is known as a central composite design (CCD) which makes

use of 2N points (factorial points) [70] combined with 2N points (axial points) [70] and one

central points [142, 70].

2.3.1.3 Simplex Methods

The Nelder-Mead Simplex algorithm, or simplex algorithm, was introduced in 1965 by Nelder

and Mead in [94] for multidimensional unconstrained optimisation problems. The approach

achieves this without derivative information - using only the returned objective function values

at given points - and do not attempt to approximate a gradient at any point [122]. From its

name, the Nelder-Mead Simplex algorithm is simplex based 1 Simplex-based algorithms begin

with an initial working simplex composed of n+ 1 solution points considered as the vertices

of the simplex and a corresponding set of objective function values fj := f(xj) : j = {1, 2, . . . ,n}

[122]. It is a requirement of the method that the initial vertices do not lie in the same

hyperplane, that is, the simplex should be non-degenerate [122].

To execute the algorithm, a sequence of transformation operators are applied to the

simplex which are determined by testing one or more test points and comparing these with

the objective values of the vertices [122]. The general procedure can be stated simply as [122]

1. Generate an initial working simplex

2. While termination criteria not satisfied:

a) calculate the information relevant to testing termination criteria

b) transform the current working simplex

3. Return the objective value of the best vertex of the final simplex

There are four fundamental transformation operators, each controlled by a parameter:

reflection α, contraction β, expansion γ and shrink δ [122]. Each of the four parameters α, β,

γ and δ must satisfy the following constraints [122]:

• 0 < α < γ > 1, 0 < β < 1, 0 < δ < 1

The most common values of these parameters that satisfy the constraints are: α = 1, β = 0.5,

γ = 2 and δ = 0.5 [122].

1 A simplex S in a search space Rn is defined as the convex hull of n+ 1 vertices in Rn [122]
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transformation steps Transformation of the current simplex follows three steps

[123, 122]:

1. determine the worst, second-worst and best vertices in the simplex: h, s and l respectively

as in:

fh = max
j
fj, fs = max

j 6=h
fj fl = min

j6=h
fj

2. A new centroid is computed for the best side - opposite from the worst vertex - by:

c = 1
n

∑n
j=0
j6=h

xj

3. Calculate the new working simplex by:

a) First attempt to replace the worst vertex with a new vertex through reflection...

• If the new vertex xr is better than the second best vertex xs but is not better

than the best vertex xl then simply accept the new vertex, replacing xh and

continue on to the next iteration

• If the new reflected vertex xr is actually better than the best vertex xl, attempt

to explore further by expanding xr to xe by:

xc = c+ γ(xr − c)

• The vertex xh is the replaced by the better of the vertices xr and xe

b) If the reflected point xr was found to be worse than the second best vertex xs

then this suggests that the region of xr is not a promising direction so we perform

contraction on the simplex by: xc = c+β(xh − c)

• if the new contracted vertex xc is better than xh then xh is replaced by xc and

move to the next iteration, that is: xh ← xc

• If the contracted vertex xc is worse than xh we must resort to the final trans-

formation, the shrink operator which transforms the entire simplex by main-

taining the current best point xl and modifying all others relative to it. The jth

new point is calculated using:

xj = xl + δ(xj − xl)

Termination is then determined by the following criteria:

1. Iteration budget has been exhausted

2. The minimum size for the simplex ha been reached

3. An acceptable objective value for one of the vertices has been reached
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The main advantage of simplex methods according to [122] is that it succeeded in

achieving a good minimisation of the objective function over a number of numerical trials

and does so over a relatively low number of objective function evaluations. However, a

disadvantage given is that “numerical breakdown” of the algorithm occurs in practice resulting

in requiring an “enormous” number of iteration and making very little progress toward the

minimum - even when the simplex is nowhere near the minimum [122].

2.3.2 Weak Methods

2.3.2.1 Random Search

This very simple approach involves sampling the search space at random, maintaining the

best found and terminating when the time budget is exceeded [142]. As such, this is not an

approach that is widely used [142] given the multitude of other more successful methods

available - of which some are close in terms of their simplicity (See Hill Climbing Approaches,

Chapter 4 - Section 4.2). In fact, the only class of problem that this approach is expected to

perform as well as any other is that of needle-in-the-haystack problems - where the entire

search space is completely ‘flat’ except for a single point, and so no information involving the

proximity of the optimum from the current location can be obtained by any existing algorithm

[142].

2.3.2.2 Sampling Methods

A somewhat more feasible weak method is to sample the search space using a grid of a

pre-determined size [142] - aptly referred to as grid search methods. When promising regions

are identified, grids with smaller spacings may be placed in these locations in order to perform

a more fine grained search [142]. These approaches suffer more than most from the curse of

dimensionality (Chapter 3 - Section 3.2) where as the number of problem dimensions increases

the number of samples required to form the grids increases exponentially [142]. Another

disadvantage is that since points between the samples are not known so good solutions and

regions smaller than the spacing of the grid may be missed [142].
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2.4 metaheuristic optimisation

2.4.1 What is a Metaheuristic?

The name metaheuristic is derived from a combination of the Greek prefix ‘meta’, meaning

beyond - in terms of high-level and ‘heuristic’ from the greek word ‘heuriskein’ meaning ‘to

search’ [39]. This combination can therefore translated roughly to ‘high-level search’.

Although this etymology may provide us with a loose idea of what it may mean to be a

metaheuristic, unfortunately, no one definition of metaheuristic available in the literature

seems to capture everything that it means to be a metaheuristic and so several will be

presented in this section for comparison.

As stated by Burke and Kendall in [17], Glover first used the term metaheuristics in 1986

in [39] and defines it as2:

“A meta-heuristic refers to a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are normally generated in a

quest for local optimality. The heuristics guided by such a meta-strategy may be

high level procedures or may embody nothing more than a description of available

moves for transforming one solution into another, together with an associated

evaluation rule”

Stutzle in [131], found in [11], offers another quite explanatory definition:

“Metaheuristics are typically high-level strategies which guide an underlying,

more problem specific heuristics, to increase their performance. The main goal is

to avoid the disadvantages of iterative improvement and, in particular, multiple

descent by allowing the local search to escape from local optima. This is achieved

by either allowing worsening moves or generating new starting solutions for

the local search in a more “intelligent” way than just providing random initial

solutions. Many of the methods can be interpreted as introducing a bias such that

high quality solutions are produced quickly. This bias can be of various forms and

can be cast as descent bias (based on the objective function), memory bias (based on

previously made decisions) or experience bias (based on prior performance). Many

of the metaheuristic approaches rely on probabilistic decisions made during the

2 there are other earlier papers making use of the term metaheuristic
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search. But, the main difference to pure random search is that in these algorithms

randomness is not used blindly but in an intelligent, biased form.”

A less formal definition of metaheuristics, as defined by Sean Luke in [82], is that

metaheuristics comprise a general class of optimisation algorithms - forming the main sub-

field of stochastic optimisation - that make use of some level of randomness in order to find

the solution to ’hard’ problems [82].

Blum and Roli in [11] provide a summary of the fundamental properties in which they

feel characterise metaheuristics:

• “Metaheuristics are strategies that “guide” the search process”

• “The goal is to efficiently explore the search space in order to find (near-)optimum

solutions”

• “Techniques which constitute metaheuristic algorithms range from simple local search

procedures to complex learning processes”

• “Metaheuristic algorithms are approximate and usually non-deterministic”

• “The may incorporate mechanisms to avoid getting trapped in confined areas of the

search space”

• “The basic concepts of metaheuristics permit an abstract level description”

• “Metaheuristics are not problem specific”

• “Metaheuristics may make use of domain-specific knowledge in the form of heuristics

that are controlled by the upper level strategy”

• “Todays more advanced metaheuristics use search experience (embodied in some form

of memory) to guide the search”

They continue to then offer their own short definition of a metaheuristic, as [11]:

“In short we could say that metaheuristics are high level strategies for exploring

search spaces by using different methods. Of great importance hereby is that a

dynamic balance is given between diversification and intensification . . . ”

For our purposes, we define a metaheuristic to be an algorithm making use of some for

of randomness, comprised of one or more high-level heuristics whose task it is to drive and

control a set of lower-level search heuristics in their quest to discover ‘good enough’ solutions

to ‘hard’ optimisation problems.
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2.4.2 Exploration vs. Exploitation in Metaheuristics

A common theme in all metaheuristics is that of the trade-off between exploration and exploit-

ation [6] - also referred to a diversification and intensification respectively [11]. Exploration

refers to the force in a metaheuristic, provided by its operators, that diversifies solutions main-

tained by the algorithm from the search space [6]. This divergent behaviour of the algorithm

encourages a global search behaviour [6]. Exploitation on the other hand refers to how well

the metaheuristic operators are able to use information from previously discovered solutions

in order to focus the search on specific regions of the search space [6]. Metaheuristics exist on

a spectrum depending on how much of each property is displayed i.e., some metaheuristic

approaches can be more exploitative than explorative and vice-versa [6].

On the extreme ends of the scale, an example of a purely explorative search can be

observed in the trivial random search algorithm which involves randomly selecting solutions

in the search space for a given number of iterations [6]. Examples of purely exploitative search

are hill climbing algorithms (Chapter 4 - Section 4.2) that perform small incremental steps in

the space while new improvements are discovered or no further steps can be taken without

finding a worsening solution [6]. Most metaheuristics, however, offer the ability to tune these

aspects through the parameters used by their operators [6].

The exploitative and explorative nature of metaheuristics, along with their effective use

of randomness, give them several advantages over classical (exact) optimisation methods.

Bandaru and Deb illustrate this in [6] with the following list:

• Metaheuristics are able to find ‘good enough’ solutions to computationally ‘easy’ prob-

lems with a large input complexity [6]

• They can find ‘good enough’ solutions for NP-hard problems (see Section 2.2.3.1) [6]

• As opposed to most classical optimisation approaches, metaheuristics make use - and

indeed, do not require - gradient information about the objective function and can

therefore be applied to non-analytic, black-box or simulation-based objective functions

[6]

• Most metaheuristic algorithms are capable of escaping from local optima [6]

• Due to the above ability to escape local optima, metaheuristics can better deal with

uncertainties related to the objectives [6]
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• Multiple objectives can be handled by most metaheuristics given minor algorithmic

modifications [6]

2.4.3 Problems Addressed by Metaheuristics

The types of problem addressed by metaheuristics are those where

• The size of the solution space is large enough to make the use of exhaustive or exact

algorithms infeasible,

• There is no known deterministic algorithm to solve the problem at all or within a

reasonable time frame, and

• Problems where there is little knowledge of the domain that can be used to construct an

optimal solution[82].

• A near-optimal solution to a problem is acceptable as opposed to the searching for the

exact optimal solution [6]. Metaheuristics do not come with any guarantees of optimality.

2.4.4 Categorisations of Metaheuristics

Several different categorisations of metaheuristics, based on a variety of properties, have

been made over the years. Unfortuanately, there is little consensus as to a single scheme for

categorising metaheuristics from the list given in the next subsections, they are often used

interchangeably in the literature and even combined for increased specificity.

2.4.4.1 Nature-inspired vs. Non-nature Inspired Metaheuristics

One method used to classify metaheuristics is by basing this classification on the conceptual

origins of the approach [11]. In metaheuristic research, these origins roughly fall into the

category of either being inspired by natural processes (Genetic Algorithms (GA) and Particle

Swarm Optimisation (PSO)) or “artificial” (Tabu Search and ILS) in the sense that nature was

not queried for insight. Blum and Roli [11] do not consider this classification very meaningful

for two reasons. The first is that many ‘hybrid’ approaches do not fit cleanly into either class

- and in fact, may fit both simultaneously [11]. The second reason given is that it is often

difficult to attribute even some non-hybrid metaheuristics to either class, for example, the use

of memory in Tabu search could also be considered as being nature inspired [11].
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2.4.4.2 Single-solution vs. Population-based Metaheuristics

Another characteristic that may be used for classifying metheuristics is whether one or more

solutions are being utilised at once [11]. Metaheuristic algorithms that operate only on a

single solution are often referred to as trajectory methods which include the set of local search

algorithms such as: Iterated Local Search (ILS), Simulated Annealing (SA) and Tabu Search

[11]. What all these algorithms have in common is their property of describing the path , or

trajectory, through the search space [11]. In contrast, population based metaheuristics such as:

Particle Swarm Optimisation (PSO), Genetic Algorithms (GA) and Differential Evolution (DE),

focus on the descriptions of the evolution of multiple, often related, solutions in the search

space [11]. Another way of referring to these classifications is as Local vs. Global Optimisation

Metaheuristics - typically single solution metaheuristics are only employed for local search

whereas population-based approaches are able to search for a globally optimum solution to a

given problem.

2.4.4.3 Dynamic vs. Static Objective Function

Metaheuristics can also be classified by the way in which they might make use of the objective

function [11]. Some approaches use the objective function in the same way it is provided

- as a ‘black-box’ - where others such as guided local search make modifications to the

objective function as the search progresses [11]. The logic behing this approach is to enable

the algorithm to escape from local optima by changing the search landscape itself [11].

2.4.4.4 One vs. Many Neighbourhood Structures

The majority of metaheuristics make use of only a single neighbourhood structure throughout

the search process. What this means is that the topology of the search landscape does not

change [11]. Others, the canonical example being Variable Neighbourhood Search (VNS),

make use of a set of neighbourhood topologies allowing for the algorithm to switch between

then in order to diversify the search [11].

2.4.4.5 Memory vs. Memoryless Metaheuristics

Another classification scheme is to focus on whether or not the metaheuristic makes use of

search history / trajectory information - these days considered to be a fundamental component

of sucessful metaheuristics [11]. Memoryless algorithms, such as Simulated Annealing (SA),

carry out a Markov process - where the information used to decide where the search should

explore next is taken exclusively from the current solution [11]. For Memory algorithms, a

further delineation can be found in the various ways that an algorithm may make use of
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memory - usually considered between the categories of short or long-term memory [11].

Short-term memory approaches typically maintain only information about the previous

few iterations, the last few solutions found and decisions made [11]. Long-term memory

approaches on the other hand make use of a large set of various ‘synthetic’ parameters about

the search [11].

2.4.5 General Concepts

2.4.5.1 Solution Representations Used in Metaheuristics

In order to develop solutions to a given problem; that is, to provide input to the objective

function representing the problem, a suitable solution representation for use in optimising

the problem in the context of metaheuristics must be selected. There are several drawbacks

and advantages to the use of each type of solution representation discussed here, however

the selection of a representation is often heavily influenced by the problem being solved. Any

change to solution representation will often require a subsequent change to the objective

function and in effect, the nature of the search space will also change. For example, it may

be tempting to use a representation simply because it feels more natural and intuitive but

some search spaces based on a representation (and it’s corresponding objective function) may

well be more rugged, sparse, deceptive or of a larger scale than other spaces defined by other

representations and functions. The solution representation also determines how the search

operators might create neighbourhoods and how the objective function will be evaluated; for

example, a representation requiring heavy or complex conversion by the objective function will

require more time and computational resources. Objective functions are considered to be one

of the main bottlenecks in search, so it is always prudent to minimise computation costs here

where possible. All in all, it is important to keep the nature of the resulting search space in

mind when selecting a representation as the efficiency of search is very much determined by it.

In the following paragraphs, since we work primarily with a vector-based representation3, we

outline several of the more common vector-based representations and how they are typically

used.

(a) binary representation The simplest of the common representations used, the

binary representation, is one in which each solution is held as a vector of bits where each bit

or sub-sequence of bits represents some parameter of the problem being solved [29]. For a

given problem, a practitioner should: (i) ensure that it is clear how the binary string is to be

3 By vector, we mean a one-dimensional array of a fixed length, as per Luke in [82]
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interpreted, that is, how it is to be decoded into a meaningful solution and (ii) in ensuring

(i), that each possible binary vector encodes a valid (but no necessarily feasible) solution

to the problem given and conversely that each possible solution can be encoded [29]. For

some problem types, the binary representation is a natural one - especially those considering

boolean decisions (yes/no) [29, 111, 135] - thus ensuring the above considerations are met. An

canonical example is a 0/1 Knapsack Problem where a solution can be encoded as simply as

whether or not an item is included in the knapsack or not - a binary decision [29, 111, 135].

It is also common that a binary vector be used to represent other data types such as integer

or real-valued numbers; for example, a bit string of length l = 80 can be used to encode ten

integer values using 8 bits each or five 16 bit real-valued numbers [29] - a scheme known as

Binary Coded Decimal (BCD) [143]. BCD represents each decimal digit as a string of bits (4 or

more bits). So a string of length 80 could code 20 decimal digits (each length 4), or 10 decimal

digits (each length 8), or 5 decimal digits (each length 16). The sign is usually coded as another

single bit. However, these schemes tend to have the disadvantage that consecutive decimal

numbers are considered neighbours in the context of decimal space but not in the context of

binary space [143], that is, the Hamming distance between two consecutive decimal numbers,

for example integers, often does not equal 1 [29] forming what are known as Hamming Cliffs:

where adjacent integers are represented by complimentary bit vectors and therefore share few

or no bits in common [143, 82]. This problem can be helped by a binary to decimal mapping

variation, Gray Coding, where consecutive integers will always have a Hamming Distance of 1

[29, 143].

(b) integer representation Used in situations where individual solution parameters

can naturally take one of n discrete values, the Integer representation has been used for

solutions representations, such as: of unordered sets i.e., {1 = red, 2 = green, 3 = blue} or the

definition of a discrete metric space [82]. When designing an integer-based solution represent-

ation of a problem, it is worth considering if there are any natural relationships between all

the possible values that a solution parameter can have [29]. This is often more obvious for

ordinal parameters, such as for the integers themselves, than for cardinal parameters - such as

compass directions that do not appear to have a natural ordering [29].

(c) real-valued representation Usually, the most natural encoding for parameters

that take their values from a continuous rather than discrete space is a real-valued or floating-

point representation [29]. Given that precision on current digital computer technology is

limited, it is technically more accurate to refer to this representation as a floating-point

representation [29]; however, for consistency we will continue with using the term real-valued
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for the remainder of this thesis. An example of a natural class of problem for a real-valued

representation is that of continuous function optimisation, where the parameters of a solution

represent a continuous point within the metric space of a given continuous function. When

recombination operators for real-valued representations are considered, it is possible to

generalise many of the operators used for discrete spaces to real-valued representations [29],

for example: one-point, n-point crossover and uniform crossover (Chapter 4, Section 4.3.2.2);

however these discrete recombination operators - as they are for discrete representations - are

unable to introduce new values for the parameters thus leaving this task to the mutation

operators [29]. Other options are to use recombination operators specifically suited to real-

valued solutions, ones that are able to generate new parameter values [29]. Operators of

this type that generate new values between two solutions to be recombined are known as

intermediate or arithmetic recombination operators [29]. Alternatively operators that generate

new parameter values close to - and can exceed - one of the solutions are known as blend

recombination operators [29]. Unlike recombination, mutation operators for real-valued

solutions cannot be extended naturally from discrete representations and so specialised

mutation operators have been developed; one such example is that of uniform mutation

(Chapter 4, Section 4.3.2.3).

2.4.5.2 Metaheuristics and the ‘No Free Lunch Theorem’

In the fields of optimisation and metaheuristics, the no free lunch theorem (NFL) states that

[146, 145]:

When averaged across all possible problems, the performance of all algorithms

is equal, irrespective of the choice of evaluation criteria.

There are a couple of consequences to this statement. Firstly, since all algorithms are equally

good on average across all problems, this suggests there must be some subset of problems on

which an algorithm performs well and another subset on which it performs poorly 4. Secondly,

it suggests that it is not correct to state that one algorithm is better than any other and that

comparisons between algorithms must take into account the types of problems the algorithm

performs best on.

There have been attempts to develop techniques that are able to circumvent the no free

lunch theorem to various degree. Two notable examples are that of hybrid metaheuristics and

hyper-heuristics, both of which are beyond the scope of this thesis.

4 of course, this is an over-simplification made for the purposes of illustration
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One caveat of the NFL is that, at the moment, there is some contention on whether or

not the NFL is only valid for discrete problem domains. For most problems being solved

computationally on a Von Neumann architecture this detail should not present a problem due

to the fact that we make use of a finite representation with precision bounded by internal

representation. For more information and discussion on both sides of the argument about this

detail of NFL, readers can refer to both [4, 141].

2.4.5.3 Comparisons Between Metaheuristic Approaches

Comparison between metaheuristic techniques has been said to be more difficult than for other

types of algorithm [121]. However, comparing metaheuristics to one another is an important

step in metaheuristic development in order to determine where a new approach stands in

relation to others in terms of various performance measures a suitability to certain situations.

Since the NFL theorem prohibits any implication that one approach is in general ‘better’ than

any other, one cannot make such comparisons based solely on solution quality over a set of

problem instances. As such, there are several important considerations that should be taken

into account in order to effectively compare metaheuristics to one another in a meaningful

way - without violating the implications of the NFL. A discussion of these considerations

appear in the next few sub-sections based exclusively on the excellent presentation of the

topic provided by Silberholz and Golden in [121].

(a) testbeds

(A.i) The Use of Existing Testbeds In the majority of cases, it is of benefit - and actually

considered to be the ideal case [121] - to make use of pre-existing testbeds available from the

metaheuristic literature [121]. Not only does this allow comparisons with other metaheuristics

to be carried out on a “by-instance” basis [121], but where algorithm results are published, it

also removes the need to either obtain or reproduce algorithm source code from the literature

in order to compare against the same or a different testbed - of which it will likely provide a

different set of results. However, these existing testbeds can sometimes be insufficient or their

use is not possible [121] - examples include:

• The existing testbeds have not been made available to other researchers or the problem

instances have been generated randomly [121], for which either or both the function used

to generate the instances or the seeds used for the pseudo-random number generator

are not published or available.
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• The testbeds are too small either in terms of available problem instances or of problem

instance size [121].

• A new problem is being addressed by the metaheuristics being compared, therefore,

there will be no existing testbed available for use [121]

When the available testbeds are insufficient for use in comparing metaheuristics available,

there may be little option other than to develop new testbeds.

(A.ii) Creating a New Testbed Although making use of existing testbeds is the preferred

option when comparing metaheuristics, there are several situations where there is little

option except for developing a new testbed - some of which have already been discussed in

the previous sub-section. This section will discuss several factor that should be taken into

consideration when developing a new testbed. The first goal in developing a new testbed

is that of ensuring problem instances included in the suite effectively mimic real-world

situations [121]. Although artificial problems have their uses when developing and testing a

metaheuristic, being artificial, many if not most of these fail to fully represent the important

characteristics of a corresponding real-life problem instance. Since metaheuristics find their

utility being applied to real-world problems as opposed to ‘toy’ problems it is crucial during

the analysis of metaheuristics that the behaviour of algorithms on these kinds of problem is

represented in results.

Another goal in creating an effective testbed is the provision of problem instances of various

types and levels of difficulty [121]. In terms of types of problem, every metaheuristic has a

‘niche’ set of problems on which it performs very well and others where it does not perform

as well. This observation is a consequence of the ‘No Free Lunch Theorem’ (Section 2.4.5.2)

which states that when averaged over all possible problems, every search method, including

metaheuristics, show the same performance - this means that there has to be a subset of

all problems where a given metaheuristic performs best. It is therefore important when

analysing and comparing metaheuristics that a wide range of problem types are represented

in the testbed in order to identify those types of problem where a metaheuristic performs

best. In terms of the levels of difficulty found among the test instances, several factors are

involved in determining what makes a problem difficult to solve, which are discussed in

Chapter 3, Section 3.2. When applied to real-world settings, metaheuristics will likely be

targeted towards optimising objective functions which exhibit some of these factors - when

analysing metaheuristics, representing all of these factors in the testbed ensures a more

accurate depiction of overall performance.

Silberholz and Golden also suggest that large problem instances must be represented in the

testbed [121]. One reason for this is that exact method are often able to run in a reasonable
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length of time whilst also providing the guarantee of returning the optimal solution [121].

Metaheuristics are not required for these types of problem, they are most useful for those

problems where the optimal solution cannot be found so readily. As metaheuristics show their

utility being applied to these more intractable problems, it is important to ensure that they

are represented in any new testbed.

(A.iii) Making the New Testbeds Available After creation of a new testbed, it is important

to make sure it is easily accessible. Providing a testbed for others not only ensures it is widely

used but also allows other researchers to make their own comparisons easily [121]. According

to Silberholz and Golden in [121], one easy way to make a testbed available is to provide

a simple generating function for the problem instances in the testbed. Another approach is

simply to publish the testbed [121] or make it available through an author provided webpage

or web service. Of these last suggestions, publishing will likely be the preferred option as it

relies less on other researchers simply ‘stumbing’ upon the webpage and has the benefits of

having the testbed go through the peer review process.

(b) classification of the problem instances Proper classification of the prob-

lem instances present in the testbed is crucial to the effective analysis of metaheuristic

techniques [121]. As discussed previously, since the no free lunch theorem suggests that every

search algorithm has its niche set of problems on which it performs well, this niche set can

only be discovered and subsequently reported for a new metaheuristic when problems in the

testbed are appropriately separated into classes. According to Silberholz and Golden, state

that each of these classifications should be:

• Noted prior to any experimentation

• Discussed individually in terms of a metaheuristics performance

The authors note further that the proper classification of real-world instances, and subsequent

analyses, is of particular importance as it can help algorithm developers in industry, with a

certain type of dataset, to decide on the most suitable approach to use [121].

(c) parameters In terms of comparing the actual algorithms themselves, it is useful to

consider the factors surrounding the parameters included in these algorithms. Here, these

are defined as the variables belonging to an algorithm that are involved in modifying the

behaviour of the algorithm. For example, common parameters in a GA can include: population

size, mutation rate and tournament size (for tournament selection). Silberholz and Golden

note that in a metaheuristic, parameters can be set statically, such as using a fixed population
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size in a genetic algorithm, or based on the problem instance - a population size of 5
√
n

for instance, where n is the number of nodes in the instance [121]. 5 Four factors which

will be discussed here are: the relation of the number of parameters to the simplicity of an

algorithm, tuning and visualising the parameter space, parameter interactions and fair testing

of metaheuristics in the context of parameters.

(C.i) Parameters and Algorithmic Simplicity When making comparisons between differ-

ent metaheuristics in terms of solution qualities, it is useful to consider the complexity of the

approach. For example, given two approaches which produce similar results, the simpler of

two approaches is the superior algorithm [121]. A few reasons behind this superiority include:

(i) being simple to reimplement in an industrial setting, (ii) being simpler to reimplement

by researchers and (iii) being simpler to explain and analyse [121]. A number of reasonable

metrics exist including the number of lines of source code required to implement the algorithm

or the number of steps of pseudocode used to describe it [121]. However, both of these ap-

proaches rely too heavily on the programming language used to implement an algorithm, the

individual style of the programmer and the level of detail in terms of pseudocode descriptions

[121]. Silberholz and Golden prescribe a more meaningful metric - that of the number of

parameters used in an approach [121]. Although this metric does not provide an estimation of

programming complexity in terms of actually implementing an algorithm, it does however

give a good estimation of how difficult the algorithms behaviour will be to understand and

tune according to a given application.

(C.ii) Visualising and Tuning the Parameter Space The consequence of the parameter

metric prescribed by Silberholz and Golden in the previous section is that metaheuristics

making use of many parameters are considered more complex than those with only a few

[121]. The main source of this complexity is that the effort required to understand and tune

the parameters becomes far greater as the number of parameters considered increases [121]

- the size of the parameter space in fact increases exponentially as more parameters are

added. For example, if we consider a brute-force approach to tuning the parameters in a

metaheuristic, tuning involves testing the performance of a set of m parameter values for each

of the n parameters under consideration [121]. If only three values for each of the parameters

were tested i.e. 3n different configurations, a configuration set would be obtained of size: 9

for a metaheuristic with only 2 parameters, 2187 configurations for a metaheuristic with 7

parameters and an intractable 1,853,020,188,851,841 configurations if 32 parameters are used

[121]. It is true, however, that there are more intelligent methods used to search for good

5 Although, other algorithms in the literature can a do adjust parameters dynamically based on the progress of the

search
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parameter settings - automatic parameter tuners such as SMAC (see Chapter 5 - Section 5.4)

and Irace are two such examples - but the exponential growth of the parameter space still

poses problems to these methods [121]. In addition to these issues, is that of visualisation of the

parameter space as the amount of parameters in an algorithm increases [121]. Summarising

an example from Silberholz and Golden [121], for an algorithm with only two - or even

three - parameters, the parameter space can be quite easily visualised with many standard

2D visualisation techniques, e.g., a scatter plot where the axes each represent one of the

parameters and the colour or size of the points can represent the cost of the parameter setting

at a given point. In the same way, a space of three parameters may be viewed on a 3D scatter

plot, however there will likely be some difficulty in viewing interior points unless various

‘slices’ through the visualisation are taken. Although Silberholz and Golden make note of a

potential visualisation for 4D parameters spaces; such as in [56], they are quick to point out

that these types of approaches in no way makes 4-dimensions as intuitively visualised as the

2D and 3D cases above increasing the visualisation difficulty [121].

(C.iii) Interactions Between Parameters Another complexity caused by large parameter

sets in a metaheuristic is that these have a tendency to produce complex parameter interactions

[121]. Silberholz and Golden state that from the point of view of optimisation, the interaction

of parameters implies that the optimisation of individual parameters or even small subsets of

parameters will become increasingly ineffective as the number of parameters considered is

increased [121]. The authors however cite an instance where non-trivial parameter interactions

were observed in a genetic algorithm containing only 3 parameters. The implication of this

is that to an extent it is often difficult to avoid all parameter interactions with the exception

of metaheuristics making use of only 1 parameter or no parameters at all [121] - where no

interaction can occur.

(C.iv) Fair Testing Concerning Parameters The other concern when comparing meta-

heuristics, apart from simplicity, is that of fairness when tuning parameters [121]. For example,

if one algorithm is over-tuned to the entire set of problem instances of which it is being

tested, that can produce unfair comparisons; alternatively, if only a representative subset of

the problems are used to tune parameters and the remainder to compare the metaheuristics,

this would represent a much fairer comparison strategy [121].

(d) comparing solution quality Since metaheuristics are designed to produce

solutions of high quality, comparisons between metaheuristics in the context of solution

quality performance is amongst the most important [121].
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(D.i) Quality Metrics In order to compare the quality of solutions produced by two

or more metaheuristics, a suitable objective metric is required - the best metric being the

deviation of the produced solutions from optimal [121]. Comparisons made over separate

problem instances are, in general, weaker than those made over the same problem; this is

because different instances will have different structures in their search landscapes and more

than likely different values for the optimum [121]. This metric is clearly only applicable to

those problems of which the optimum value is known. For problems where the optimum is

not known, several alternative metrics exist. One popular metric is deviation from best known

solution [121], where the best known solution published in literature can be used in place of

the true optimum for determining performance. It is also possible to use this metric when no

best known solution has been published [121] - possibly through the generation of a solution

using an algorithm known to perform well on the particular class of problem being addressed

- however, comparisons made without the true optimum will be less meaningful [121].

(D.ii) Fairness of Performance Comparison As mentioned briefly in Section 2.4.5.3, it is

usually prudent to make use of existing test beds when comparing metaheuristics. In particu-

lar, the fairness of such comparisons against original implementations can be ensured, as no

re-implementation of algorithms needs to be carried out (where source code is unavailable

and results published) and the inadvertent introduction of implementation errors in the test

bed itself is unlikely compared to creating a new test bed e.g., when using re-implementations

of some problem instances from other test sets. In the context of this thesis, testbeds which

can facilitate the fair comparison between metaheuristics used to solve continuous problems

include those provided for black-box optimisation competitions such as the Black-Box Op-

timisation Benchmarking (BBOB) competition [32, 47], where the test set used is available

as the COmparing Continuous Optimisers (COCO) platform described in [49] as well as the

various benchmark sets provided for the IEEE Congress on Evolutionary Computations (CEC)

competitions such as CEC-2005 [133].

The usual approach to fair performance comparison in the literature is using rank-based

analysis. This is most commonly carried out by:

1. Applying the set of algorithms being compared to a suite of problems to obtain a ‘raw’

performance measure (whether a fitness or time-based measure)

2. Using the raw performance data to generate a rank ordering (best to worst performing)

of the algorithms against each of the problems in the set

3. Aggregating the ranks generated for all problems for each algorithm to arrive at a

consensus ranking against the set as a whole, as per Mersmann et al. [88]
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Typically, these ranks will then be presented in tabular form in order to analyse the

rankings, however in [88], Mersmann et al. make use of parallel coordinate plots to improve

comprehensibility and ease of analysis. In this thesis, both approaches are used for algorithm

comparison, however for our plots the axes are inverted to provide easier visualisation of

results.

In terms of fairness of comparison, by normalising the raw performances as ranks any bias

in comparison from the nature of the problems, e.g., different perceived difficulty levels, are

eliminated as only the ordering of the algorithms in the context of the selected performance

measure is considered. Subsequent statistical tests will therefore be far less influenced by an

unbalanced weighting given to any one data point. However, since ranking certainly involves

loss of information, they are far less sensitive to large variances in the data, in this case the

variances between performances obtained by algorithms, and thus do not readily show large

differences in performance which may be an important factor in a particular study. One

possible benefit to this resistance to noise in the data is that it more clearly highlights the

differences of real interest, cutting through the stochastic noise inherent to the data obtained

from metaheuristics.

2.5 large-scale global optimisation

A Large Scale Optimisation Problem (LSOP) is characterised as having many hundreds or

thousands of dimensions. These kinds of problem are considered harder to solve than lower

dimensional problems and algorithms that show good performance in lower dimensions can

perform poorly when used against a scaled version of the same problem [18]. The nature

of problems of this scale differ hugely from lower dimensional problems as each increase

of dimensionality causes an exponential increase in domain volume [18] - often referred to

as the ‘curse of dimensionality’ (See ‘Dimensionality’ - Chapter 3, Section 3.2). For example,

a 1-dimensional search space containing 100 possible solutions, where one solution can be

considered as being the global minimum, will require 100 function evaluations in the worst-

case. Scaling the same problem to 2-dimensions has 1002 = 10000 possible solutions but

extending this even to a 50-dimensional problem would place the global minimum as a single

point in 10050 = 1× 10100 (a googol) feasible solutions [18]. Further to the scaling of the

search domain, dimensionality can also affect structural features of the search space itself. An

example from Caraffini et al. in [18] states the fact that a unit sphere in 3-dimensions has a

surface area of S2 = 4π and a volume of V3 = 4
3π. If we were then to extend this unit sphere

into n-dimensional space, it can be proved that the ratio between surface area and volume
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is 1n ; meaning that as the dimensionality increases, more and more points can be found on

the surface as the volume becomes comparatively smaller [18]. This greatly increases the size

of the neighbourhoods around the optimal solutions, in turn greatly increasing the time for

conventional metaheuristics to solve the problem.

Computationally, the effective solution of LSOPs can increase the cost significantly; due not

only to the large increase in the search space, but also by the large function evaluation budgets

required to find high performing solutions [18]. For example, an optimisation algorithm that is

capable of solving a 10-dimensional problem within 50,000 function evaluations would require

50, 00040 = 9.1× 10187 [18] which far outweighs not only the number of atoms estimated in

the observable universe (1078 to 1082) but also the number of seconds since the universe began

4.361170769× 1017. Clearly, maintaining search coverage in this way simply isn’t tractable.

An often forgotten consideration is that of the parameter configurations of the algorithms

being used against LSOPs. For example, Caraffini et al. [18] describe a common population

scaling strategy whereby the population size should increase exponentially with dimension-

ality in order to maintain search coverage; however, they quickly point out that, as with

function evaluations budgets, this strategy quickly becomes impractical [18]. Using the same

example as before, if a population-based optimisation algorithm with a population size of

30 was successful against the 10-dimensional problem, to maintain a consistent solution

density in 50-dimensional space, the population size would have to contain 3040 ≈ 1.22× 1059

individuals [18]. Metaheuristic approaches are therefore only able to cover a small portion of

large-scale search spaces since population sizes of this magnitude are impractical, and often

impossible, to actually use [18].

From a similar standpoint, consideration can also me given towards the computational

budget afforded to the optimisation algorithm i.e., commonly the number of objective function

evaluations. Using a similar example to the above, an algorithm which is originally tasked

with optimising a 10-dimensional problem using a budget of 50,000 function evaluations,

would require - for the same problem in only 50-dimensions - 5000040 ≈ 9.1× 10187 function

evaluations in order to cover the same proportion of the search landscape [18]. Therefore,

although it is usual practice when optimising problems with relatively few dimensions

(certainly < 50) that the budget be scaled proportionally to the dimensionality, this strategy

simply won’t scale to LSOPs. However, real-world LSOPs exist and as with smaller real-world

problems, often need to be optimised effectively and efficiently in order to produce useful

solutions, so research has been focussed on the development of algorithms and approaches
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aimed specifically at solving LSOPs whilst at the same time trying to overcome the various

difficulties described above [18]. Caraffini et al. roughly categorise the methods for tackling

LSOPs as follows [18]:

• Methods which exploit promising search trajectories intensively

– Perhaps quite unintuitively, these methods effectively abandon the search for global

optimiality and instead intensively exploit promising regions already explored

in order to find high performing solutions. Perhaps just as unintuitively, one

popular method implementing this strategy involves the use of only a small

population or by using a population which diminishes during the search [18].

Doing this allows one to control the amount of exploration carried out as there is

less diversification present in the population, this in turn allows the population

to begin converging towards one of the promising regions discovered early on

in the search - with minimum exploration beyond this region. One other way to

implement this approach is to combine highly exploitative local search algorithms

with other algorithms and population-based structures [18]. Specifically, the local

search algorithms used tend to exploit promising regions by perturbing a solution

in an axis-parallel manner i.e., only one parameter of the solution is modified at any

given time. Indeed, we found that the neighbourhood function utilised in the local

search algorithms implemented for this study and making use of this axis-parallel

strategy (see Chapter 4, Section 4.1.3) produced far better performance (in terms

of solution quality) than allowing steps in any and all axes in a single iteration.

Further, and echoed by Caraffini et al. [18], the modification of the Co-variance

Matrix Adaption Evolution Strategy (CMA-ES) for separable problems sep-CMA-ES

(detailed in Chapter 4, Section 4.7) implements this kind of axis-parallel trajectory

through use of a diagonal rather than a full co-variance matrix in its updates.

This variation of CMA-ES has been shown to be particularly promising within

high-dimensional spaces, not only due to its use of an axis-parallel trajectory, but

also, it is more suitable to large-scale problems as the calculation of a diagonal

co-variance matrix requires far fewer computational resources and thus can be

calculated far more quickly than a full matrix.

• Methods which use some mechanism for decomposing the search space

– An implementation of this strategy is realised in an approach known as Cooperative

Co-evolution, where LSOPs are decomposed into several smaller sub-problems

which can each be solved independently of each other by a set of co-evolving
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populations (one for each sub-problem). A more detailed discussion of Cooperative

Co-evolution is presented in the next section (Section 2.5.1).

A common link between these two strategies for tackling large-scale problems is that

each, in its own way, is achieving improvement by the exploitation of search directions [18].

Caraffini et al. go further, with the assertion that this means that “every modern metaheuristic

for LSOPs gives up the search for the global optimum and simply tries to enhance as much as

possible upon an initial sampling” [18]. However, it could be argued that an approach such

as cooperative co-evolution does not in fact abandon the search for optimality, but instead is

actively seeking it through the combination of simpler (and hopefully optimal) sub-solutions.

Further, Ma et al. [83] point out that having multiple co-evolving populations helps the search

as a whole maintain diversity; a property widely held to facilitate an effective global search.

Also, one could state this same assertion about any metaheuristic algorithm, including those

not specifically targeted at LSOPs, where metaheuristics as a general concept each work to

enhance the performance of one or more initial states. Such algorithms, with the exception of

simple local search algorithms, although not guaranteed to discover the optimal solution, do

appear to have this goal in mind; which is particularly true of population-based approaches

where there is a general aim to explore as much of the space as possible over the course of the

search.

I do however agree with the authors of [83] that this certainly true of approaches cat-

egorised by the first strategy; local search algorithms - as their name suggests - do not have

a strong focus towards global optimality and small populations will reduce the amount of

exploration of the space, which can more easily be interpreted as abandoning the idea of

achieving global optimality than for approaches such as cooperative co-evolution.

2.5.1 Cooperative Co-Evolutionary Algorithm

Similarly to other evolutionary approaches, a Cooperative Co-Evolution Algorithm (CCEA)

finds its inspiration from theories of natural evolution. The predominant evolutionary concept

adopted by CCEA is that of mutualism, a facet of co-evolution, where the success of two or more

species or sub-populations is partially dependent on shared mutually beneficial relationships

[83]; in essence, the species can be said to be evolving together (co-evolution) with the mutual

goal of continued survival. Three interactions between species have been observed to occur

in nature [83]: (i) Resource-Resource Interactions - where each population/species trade
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consumable products necessary for each of their survival, (ii) Resource-Service Interactions

- where a consumable product is provided in turn for conducting a useful function e.g.,

bees consume pollen in trade for dispersing pollen to other places, and (iii) Service-Service

Interactions - when each species provides a function useful to the other, e.g., a pro-biotic

bacterial species provides services to the immune system of humans (as well as having other

functions) and the human provides a safe, warm and nutrient-rich environment for the

bacteria to live and procreate.

Looking closely at the history of our own species, it is easy to see that humans have

themselves benefit from mutualistic relationships with other species as well as between other

human groups. Consider our relationships with domesticated animals, particularly dogs,

whereby humans benefit from positive emotional attachment as well as work provided by dogs

e.g., herding of cattle and sheep, hunting, pest control, protection etc.; and humans reciprocate

by providing a home, protection, food, warmth etc. Amongst ourselves, we have, and do,

benefit from trade and cooperation between different countries and cultures as well as many

other beneficial interations. Henrik Valeur, a Danish architect who introduced the concept

of co-evolution to the architectural world considers that; “As we become more and more

interconnected and interdependent, human development is no longer a matter of the evolution

of individual groups of people but rather a matter of the co-evolution of all people”[137].

CCEA, then, works by applying a simplified version of this natural concept in terms

of co-evolving sub-populations of solutions to a given problem. Particularly useful against

large-scale problems, each independent sub-population evolves towards the solution to a non-

overlapping sub-problem of lower dimensionality. An overall solution can then be obtained

through the combination of sub-solutions found by the separately evolving sub-populations

[18, 83]. As such, the evaluation of any given individual in any given sub-population requires

cooperation with all other sub-populations [83]. Specifically, the fitness of an individual from

a sub-population is calculated in terms of complete solutions in which the individual is

participating [83]. It is chiefly this divide-and-conquer decomposition approach that places

CCEA at an advantage over more traditional evolutionary algorithms [83].

According to Ma et al. [83], CCEA can be said to have four main advantages stemming

from its decomposition strategy:

1. Decomposition of the problem into sub-problems allows CCEA to be readily parallelised

in order to speed up the optimisation process
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2. Since each sub-problem is tackled by a separate sub-population, CCEA can maintain

good solution diversity - a difficulty often plaguing other evolutionary algorithms

3. By decomposing a system into “sub-modules”, the system as a whole can be made

more robust against the errors and failings of any one module; increasing reusability in

dynamic environments

4. If decomposition is carried out effectively, the ‘curse of dimensionality’ (Chapter 3,

Section 3.2) can be somewhat alleviated allowing for generally better performance when

solving LSGO problems when compared to more traditional EA

Despite the power that can be displayed by CCEA, a difficulty often faced when using this

approach is deciding how to go about decomposing a problem into its various sub-problems.

Clearly, this problem is trivial if the problem is known to be fully additively or multiplicatively

separable (see Chapter 3, Section 3.2) where there is minimal interaction between variables;

problems can then be naively separated out as k = d
n instances of the problem where d is

the problem dimensionality and n is the number of dimensions per sub-problem. 6. It is also

possible, mostly for separable problems, to have k = 1, where each of the d sub-populations

evolve solutions for sub-problems of a single dimension. In fact, this was the strategy employed

in the first CCEA, Cooperative Co-evolutionary Genetic Algorithm (CCGA), by Potter and

De Jong [107]. Complete solutions to separable problems can then be combined through

the summation, multiplication or some other reconstitution of sub-solutions. However, a

significant disadvantage of CCEA is that as sub-populations are added, the total number of

evaluations of the objective function available to CCEA also needs to increase proportionally,

since each population conducts its own set of function evaluations in determining the fitness

of solutions to its sub-problem. Therefore, depending on the scale of the problem to be solved,

it may be wise to consider larger sub-problems in order to reduce computation time.

Several ‘flavours’ of CCEA can be found in the literature, which include: the first cooperat-

ive co-evolutionary approach - CCGA - proposed by Potter and De Jong in [107], Cooperative

Co-evolution with Differential Evolution (DECC) by Yang et al. [150] and Cooperative Co-

evolution based on PSO (CCPSO) by Li and Yao [75] to name but a few. However, for the

remainder of this section we will not focus on these variations on an individual basis, but

instead form our discussions around one or another of the two basic CCEA algorithmic

6 Of course, this is a simplified view of problem decomposition for CCEA in general, sub-problems do not have to

be of the same dimensionality as one another and can thus be of variable size. Indeed, for problems that are only

partially-separable, one decomposition method may be to evolve smaller separable parts of the problem independently

from a comparatively larger non-separable part(s)
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frameworks outlined by Popovici et al. in [106] as many CCEAs are a variation on one of

these frameworks or the other. Before discussing these however, I present a brief discussion of

problem decomposition for CCEA.

For a more detailed discourse of cooperative co-evolutionary algorithms, three of the

main sources cited in this section can be recommended: The survey paper by Ma et al. [83],

focussing specifically of function optimisation [107] by Potter and De Jong and in particular

[106] by Popovici et al. which provides a relatively thorough treatment of the subject matter.

2.5.1.1 Problem Decomposition

Many decomposition strategies have been developed since the inception of CCEA, including

the simpler of those as mentioned previously, however, an overaching issue that arises when

performing problem decomposition using any such strategy, is how to decompose problems

where variable interactions are present [83]. Indeed, it is exactly this issue that motivates the

search for more effective decomposition strategies - since without such interactions i.e., if

every problem was fully separable, then a simple strategy using a sub-problem size of k = 1

would not have a more effective substitute.

In the ideal case then, the decomposition should be conducted with a focus on any possible

variable interactions with a view to minimise such interactions; for example, a problem that

can arise if interacting variables do not form part of the same sub-problem, is that the CCEA

can easily become trapped in a pseudo-minimum [83] 7. By keeping all interacting components

together, these sub-problems can be solved separately without negatively affecting the solution

to the other (separable) sub-problems.

Decomposition methods range from those which make use of Static Variable Group-

ing or Random Variable Grouping, to somewhat more complex methods such as linkage

learning-based variable grouping, domain knowledge-based variable grouping and overlap

and hierarchical grouping [83]. However for brevity, we will only discuss the first two of these

here.

(a) static variable grouping Static variable grouping methods make no attempt

to discern any interdependence amongst variables, but instead simply decompose high-

7 Ma et al. note that a pseudo-minimum does not refer to a local minimum of the original (full) problem, but is in fact

a minimum that is created by incorrect decomposition. A difficulty that likely plagued Potter and De Jongs early

CCGA which indeed performed much better against separable problems than against non-separable problems
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dimensional problems into a series of low-dimensional sub-problems where the grouping

remains fixed throughout the execution of the algorithm [83]. The original CCEA by Potter

and De Jong (CCGA) [107] is an example of static variable grouping, where the grouping is

held as n 1-dimensional sub-problems and each searched by a separate sub-population [83].

As mentioned previously, this algorithm did not perform well when faced with non-separable

problems. To overcome this problem, several other static grouping methods were proposed.

First, in [124], a pool of static decompositions, where each could potentially vary in size from

a single variable sub-problem to a full length problem, were used to produce new solutions

through random combination. Another decomposition method which statically decomposed

a problem into m s-dimensional sub-problems, where n = m× s, was introduced by van

den Bergh and Engelbrecht in [138] which was shown to perform better than Potter and De

Jongs 1-dimensional decomposition on several benchmark functions [83]. A later method, very

similar to this, by Cao et al. [152], made use of a sequential sliding window to decompose

problems and was compared to several random variable grouping methods, however, it was

not compared against the method of van den Bergh and Engelbrecht or any other static

variable grouping method for that matter.

(b) random variable grouping Random Variable Grouping (RG) is often employed

to partially alleviate the problem faced by static variable grouping, whereby since groups are

fixed throughout the optimisation process, if two interacting problem variables are placed

into different groups on initialisation of the algorithm, there can be no way of them to be part

of the same group at all during execution [83]. It does this by randomly selecting variable for

each sub-problem [83], that is, the grouping of variables is changed throughout the course of

optimisation. Two schemes for selecting the size of the sub-problems in RG are: (i) using a

fixed size or (ii) dynamically changing the size throughout the optimisation process [83]; each

of these will be discussed separately.

(A.i) Random Variable Grouping with a Fixed Sub-problem Size Here the number of

sub-problems m is fixed and in each co-evolutionary cycle, randomly selects a set of variables

s for each sub-problem such that n = m× s. In this way, RG looks to improve the probability

of combining any interacting variables into the same sub-problems [83]. A proof presented in

[151], concludes that there is a relatively high probability that two variables which interact

will be part of the same sub-problem during at least two co-evolutionary cycles, and thus

further conclude that with little domain knowledge, RG is quite effective at capturing variable

interactions. On the other hand, if the number of interacting variables is large, the probability

of finding these variables together in the same sub-problem, for at least one co-evolutionary
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cycle, remains very low [99]. The first CCEA using random grouping, and using fixed

sub-problem sizes - was proposed by Yang et al in [150] implemented as part of their

cooperative co-evolution with differential evolution (DECC-I) approach, where results showed

that, particularly for non-separable problems, it outperformed CCEA using a static grouping

approach. Later, the authors improved upon this algorithm with the development of DECC-G

which makes use of adaptive weighting strategy during its co-adaptation process; it was found

that DECC-G outperformed standard DE as well as DECC using a static grouping scheme

[151].

(A.ii) Random Variable Grouping with Dynamic Sub-problem Size According to Ma et

al. [83] one of the main disadvantages faced when using static grouping and random grouping

with a fixed sub-problem size is that in order to correctly set the sub-problem size s, one

must have some prior knowledge of the problem domain in question. For example, a small

s is suitable if the problems being addressed are separable in nature, where a larger s is

more suitable for use against non-separable problems so as to improve the probability that

interacting variables will be grouped together [83]. Therefore, having an approach which

dynamically tunes the value of s to the domain is desirable [83]. In [150], additionally to

DECC-I, Yang et al. DECC-II in which given a predefined range, randomly tuned the value of

s on each cycle [83]. The probability of selecting s from S = {s1, . . . , st} is calculated based on

its recent performance [83]. An approach presented in [57] (CCDECD) shows the applicability

of the use of heuristic rules based on knowledge of the domain for the modification of s [83].

Several studies including [99, 100, 76] make use of a fixed s until no further improvements

to solution fitness can be achieved at which time a new value of s is selected uniformly at

random from S = {s1, . . . , st} [83]. Additionally to this, in [103] the value for s is decreased

gradually as the search progresses.

2.5.1.2 Basic Algorithmic Frameworks for CCEA

In this section we describe two general frameworks which underpin most CCEA implement-

ations, namely; the single population CCEA and the multi-population CCEA. In the single

population scheme, individuals interact with other individuals from the same population;

whereas, for the multiple population scheme, individuals can interact with individuals from

one or more different populations. Pseudocode for each of these schemes, derived from [106],

is given in Algorithm 1 and 2 respectively.
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Algorithm 1 Single Population CCEA

1: procedure SP-CCEA

2: population← initialise

3: evaluators← select evaluators from the population

4: Evaluate each individual ∈ population by interacting with evaluators

5: while terminate == false do

6: parents← select parents from population

7: children ← produce children from parents using variational operators (x-

over/mutation)

8: evaluators← select evaluators from parents + children

9: Evaluate each individual ∈ children by interacting with evaluators

10: Select survivors to be passed on to the next generation

11: end while

12: return solution

13: end procedure
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Algorithm 2 Multiple Population CCEA

1: procedure MP-CCEA

2: for each (pop ∈ populations) do

3: pop← initialise

4: evaluators← select evaluators from (populations - pop)

5: Evaluate each individual ∈ pop by interacting with evaluators

6: end for

7: while terminate == false do

8: for each (pop ∈ populations) do

9: parents← select parents from pop

10: children ← produce children from parents using variational operators (x-

over/mutation)

11: evaluators← select evaluators from (populations - pop)

12: Evaluate each individual ∈ children by interacting with evaluators

13: Select survivors to be passed on to the next generation

14: end for

15: end while

16: return solution

17: end procedure

A few details have been omitted from both algorithms shown here. Firstly, it is common to

find CCEA implementations which make use of a so called archive, a form of search memory

maintained over generations i.e., throughout the whole evolutionary process [106]. Also, there

is no indication about which specific interactions should be evaluated, how the results of any

interactions can be combined in order to provide individuals a measure of fitness or how

communication between populations is achieved when multiple populations are considered

[106].
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3
C H A P T E R 3 : C O N T I N U O U S O P T I M I S AT I O N B E N C H M A R K

F U N C T I O N S

3.1 introduction

Firstly in this chapter, some of the main factors affecting continuous problem difficulty are

discussed. In the next section, a short discussion of the decision to construct a new benchmark

suite is provided. Finally in this chapter, we present a summary of the functions included in

the new suite. Full descriptions of all functions included in the suite can be found in Appendix

E.

The primary source used for the selection of benchmark functions in this suite was the

highly cited review by Jamil and Yang [63]; cross-checked for the commonality of selected

functions with other continuous benchmark function sets (see Chapter 3 Section 3.3). Others

(i.e., Bent Cigar, Deflected Corrugated Spring, Inverted Cosine Wave, Levy, Rastrigin, Schwefel

and Sum of Different Powers Functions) were found in various secondary sources [73, 93,

134, 36, 51]. One other reason for using secondary sources was simply to ensure that the

function definitions and generated plots (see Appendix E) were correct and that corresponding

definitions and plots were consistent between sources. However, another reason was that in

order to construct a balanced suite of generally well known functions, the sets of functions

such as those found in other benchmark suites, e.g., [133, 32, 47], could not be referenced in

their entirety due to over/under representation of problems with certain features (see section

3.3 for discussion). Therefore, other - perhaps less well known functions - had to be selected

where their definitions and outputs could be easily and reliably validated. Functions with

discrepancies between their descriptions and output from several sources were therefore not

used in order to help ease the replicability of the study being undertaken.

3.2 what makes a function difficult to optimise

Several factors influence the difficulty in optimising an objective function [63]:

1. Ruggedness of the fitness landscape
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2. Dimensionality of the objective function

3. Separability of the objective function

4. Global Basin Structure

5. Variable Scaling

6. Search Space Homogeneity

7. Basin Size Homogeneity

8. Contrast Between Local and Global Optima

9. Plateau Sizes

Each of these will be discussed in turn over the following few paragraphs.

ruggedness The ruggedness, or modality, of a function can either refer to: (i) the number

of local optima, present in the landscape, or (ii) the number of global optima present in the

landscape. Weise defines ruggedness simply as “From a simplified point of view, ruggedness

is multi-modality plus steep ascends or descends in the fitness landscape”. We focus on

multi-modality in the local sense so we use the term multi-modality to this effect. If a search

algorithm encounters these optima in the search for global optimality, and becomes trapped

in (unable to escape) that region of space, this can have a negative impact on search progress

[63]. Therefore, functions with a large number of optima (multi-modal functions) tend to be

more difficult to search than functions with few optima (also multi-modal) or a single optima

(Uni-modal functions). Local search strategies will tend to perform poorly on multi-modal

functions, demanding the use of a global strategy.

dimensionality When considering objective functions of multiple dimensions, optim-

isation practitioners often run up against the so-called ‘curse of dimensionality’, an idea first

highlighted by Bellman in 1961 in [8]. The curse of dimensionality refers to the phenomena

where an exponential increase of volume in a function space occurs as new dimensions are

considered. If for instance a 1D function was to be sampled evenly 20 times in the range [0, 1],

we would of course have a sample of size 201. However to retain the same density of sample

points in the 2D case, in terms of distance between consecutive points, we would require a

sample of size 202 = 400, 203 = 8000 for the 3D case and a massive 204 = 160, 000 for a 4D

sample. It is clear to see that for dimensions even higher than this, and likely including a

smaller granularity of samples per dimension, that adequately sampling the available space

quickly becomes intractable. The obvious consequence for search and optimisation is that
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algorithms need to search over increasing numbers of possible solutions in the search for

optimality - causing a rapid deterioration of solution quality obtained within a given time

budget and the speed of convergence to the optimum solution when no budget is used. How-

ever, another less obvious consequence is that a search methodology that is found to be useful

for problems in smaller dimensions may turn out to be almost useless when considering the

same problems in higher dimensions. Therefore, given that real-world optimisation problems

tend to be defined in highly n-dimensional space, optimisation methods that work well within

some reasonably high range of dimensions are incredibly valuable.

separability A separable function is defined as a function of n parameters that can be

rewritten as the product of n functions of one parameter each. That is, they can be easily

partitioned into several sub-problems each with lower dimensionality and greater ease of

searching [63, 12]. Combining the solutions to each sub-problem constructs a final solution.

There are two types of separable function related to the nature of this final solution

construction: (i) additively separable functions and (ii) multiplicatively separable functions.

Given a function F of n parameters {xi, ..., xn}, a function can be described as additively

separable if there exist a set of functions {f1, ..., fn} of one parameter, such that: F(x1, ..., xn) =

f(x1) + . . .+ f(xn). An example of such a function is that of the Rastrigin function (see section

E.12). Similarly, given a function F of n parameters {xi, ..., xn}, a function can be described

as multiplicatively separable if there exist a set of functions {f1, ..., fn} of one parameter,

such that: F(x1, ..., xn) = f(x1)f(x2) . . . f(xn). The Alpine Function no.2 [63] (not included

in our benchmark suite) can be described as being multiplicatively separable. In general

non-separable functions tend to be harder to optimise than separable ones. The main reason

for this is due to the fact that a separable function of n independent parameters can be

optimised by n independent optimisation processes on each parameter [63].

Optimisation methods that can take advantage of the separable nature of functions tend to

perform well. In order to increase the difficulty of functions for the purposes of benchmarking

new and existing optimisation methods, and to consequently drive the development of ever

more effective techniques, researchers have been making use of testbeds where the normally

separable problem instances have been made non-separable through coordinate rotation by

use of a rotation matrix [12, 114]. We do not consider functions that have undergone coordinate

rotation in this thesis since (i) there are many inherently non-separable benchmark functions

available, and (ii) for our purposes, it was useful to look at performances of algorithms

against separable problems as well as non-separable as no comparative studies exist, to our

knowledge, that show the behaviour of different metaheuristic algorithms for large-scale

separable problems. Further, multiplicatively separable functions are currently beyond the
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scope of the present study and so only functions that are additively separable are included in

our benchmark suite. The reason for this is that due to the
∏

term present in these functions,

some solution values returned would eventually exceed the maximum value of the internal

representation when searching above some threshold dimensionality. For fairness and in order

to avoid the introduction of bugs in our algorithms - if modifying the internal representation -

the decision was made to avoid the use of this type of function.

global basin structure For a local optimum x̂, a basin or basin of attraction consists

of the set of configurations from which a gradient walk, or steepest descent, will reach x̂ [12].

Therefore, since every basin contains at least the local optimum itself then every basin can be

considered as being non-empty [12]. The global basin is a similar structure to local basins,

however at a larger granularity instead considering the set local basins able to reach the global

optimum by means of a suitable basin-hopping algorithm. For example, a highly multi-modal

problem such as Rastrigin’s Function (Section E.12) forms a clearly defined parabola of local

minima and maxima when viewed from a distance tending towards the global optimum [12];

thus giving the impression that the non-linear Rastrigin function is convex. Problems without

a global basin structure are considered harder to solve as the global optima can appear at

any point in the search space with no overall guidance as to where it is located [12]. Some

algorithms such as ILS and other basin-hopping approaches can take advantage of global

basin structures in order to converge on the global optimum.

variable scaling Variable scaling refers to the difference in scale with respect to the

search space dimensional bounds. This means that it would be necessary to perform smaller

steps in some dimensions and larger steps in others [12]. Even when the bounds on the

search space are uniform across all dimensions, the problem may still behave very differently

in certain dimensions than for others [12]. Algorithms such as CMA-ES (section 4.7) are

particularly suited to this type of problem [12].

search space homogeneity Many of the standard benchmark functions developed for

testing the effectiveness of optimisation approaches are often designed with a homogeneous

search space structure - often defined by an individual simple formula [12]. However, in the

real world it is rare to find problems with such stuctures; instead, problems tend to have far

more complex structure [12]. To combat this issue, many benchmark sets consist of functions

that are composed of several functions blended into one such that the search space of the

resulting function has different characteristics in different areas [12] - much more like how

real-world problems might appear.
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basin size homogeneity The size of global basin is known to play a role in determin-

ing the hardness of a problem [12]. Torn et al. in [136] emphasise this fact by stating that if

the basin is large the global optimum is easier to detect and the problem is easier to solve

that for those where the global basin is far smaller. However, problems can also be caused

in cases where many local optima basins exist. For example, many algorithms for use with

multi-modal functions, such as niching methods, make the general assumption that basin

sizes are mostly similar and as a result use appropriate distances to differentiate between the

basins; of course, this means that if the variance of basin sizes is large then these techniques

will perform poorly [136].

contrast between local and global optima This problem characteristic refers

to the quality, or height, differences between the local and global optima when compared to

the average quality of the search space as a whole. If this contrast is high then good locations

in the search space are more easily detected [136].

plateau sizes Plateaus make optimisation problems harder as they do not provide any

directional information required by trajectory-oriented approaches - large plateaus effectively

partitioning the search space making it difficult to transition from one area to another [136].

3.3 constructing a custom function suite versus using existing benchmark

function suites

As there is a need for a balanced suite of benchmark functions for this study, i.e., a balance of

the features under investigation, one was constructed by sampling from the large quantity of

existing - and widely used - functions. Previous attempts have been made to construct similar

standard benchmark suites, such as: for continuous optimisation competitions like CEC-2005,

CEC-2010 and CEC-2013. As stated in Chapter 2, Section 2.4.5.3, it is recommended that one

should try to make use of existing and widely used benchmark sets, such as these, rather than

constructing a separate suite.

However, the need for a balanced suite of functions restricted the direct use of the existing

test suites; although many of the functions present in these suites have been included. There

were several reasons for this. Firstly, the current focus of the continuous global optimisation

community is to find approaches capable of solving problems which are resistant to current

methods [21]. As such, and since effective algorithms currently exist for solving classes of
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problem with uni-modal, low dimensional and separable characteristics, these are rather

under-represented in these suites compared to problems with more resistant characteristics,

such as: multi-modal, high-dimensional and non-separable [21]. Table 3.1 provides a summary

of the proportion of problems with certain features present in these suites as compared to

the suite constructed for this study. The proportions are also presented graphically in Fig.

3.1 for convenience. The Black-Box Optimisation Benchmark (BBOB) benchmark suite is not

presented, due to the difficulty in verifying the problem features possessed by the benchmark

functions used; specifically, the features are not always explicitly stated in the published suite

descriptors [32, 47]. However, Clerc in [21], from which I also verify the correctness of some of

the feature proportions found in these other suites for Table 3.1, provides data suggesting that

this set is also too unbalanced for our purposes - in favour of multi-modal and non-separable

functions.

Table 3.1: Summary of the Proportion of Problems With Certain Features Present in Various Existing

Test Suites Versus the Test Suite Constructed for this Study

Feature / Suite CEC-2005 CEC-2010 (LSGO) CEC-2013 CEC-2013 (LSGO) Bespoke Suite

Uni-modal 5/25 (20%) 8/20 (40%) 5/28 (18%) 7/15 (47%) 10/17 (59%)

Multi-modal 20/25 (80%) 12/20 (60%) 22/28 (82%) 8/15 (53%) 7/17 (41%)

Separable 2/25 (8%) 3/20 (15%) 4/28 (15%) 4/15 (27%) 8/17 (47%)

Non-separable 22/25 (88%) 2/20 (10%) 24/28 (85%) 3/15 (20%) 9/17 (53%)

Partially-separable 1/25 (4%) 15/20 (75%) 0/28 (0%) 8/15 (53%) 0/17 (0%)

Less than 10 Dimensions 0/25 (0%) 0/20 (0%)* 0/28 (0%) 0/20 (0%)* 17/17 (100%)

Figure 3.1: Barchart Summarising Prevalence of Problems With Certain Features Present in Each Bench-

mark Test Suite
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From Table 3.1 and Fig. 3.1, we can see that the bespoke function suite used for this

thesis is indeed more evenly distributed in terms of the problem featured of interest (i.e.,

separable/non-separable and uni-modal/multi-modal). Additionally, as we explore how

different metaheuristics behave at different problem scales, it is required that low dimensional

versions of our benchmark functions can be evaluated during our investigations. It can be

clearly seen that every one of the published standard benchmark suites fails to meet this

requirement, where for the ‘bespoke’ suite, any scale of instance for each function is possible.

3.4 functions

Appendix E provides details and definitions of the standard continuous benchmark functions

we implemented and used in this thesis, where all included 2D function plots were generated

using statistics package R through sampling the functions by a uniform step size in each

dimension.

In order to eliminate positional bias in terms of the selected initial solutions when

benchmarking algorithms, existing suites are commonly constructed from functions in which

the coordinate system has been shifted with respect to the base function definition (e.g.

‘CEC-2005 Special Session on Real-Parameter Optimisation’ function suite [133]). In this way,

the location of optima (including the global optima) can be modified whilst preserving the

features and structure of the function. With respect to the experiments in this thesis, the issue

of positional bias is addressed by selecting an initial solution in the search space uniformly at

random for each individual run of an algorithm. Therefore, the use of shifted functions for

the purposes of preventing positional bias is unnecessary.

The following section provides a table summarising key details of the functions included

in the suite, including: domain of each function, location of the global minimum, value of the

global minimum and a note of the features of interest (separability and modality) provided by

each function.
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3.4.1 Summary of Functions

Table 3.2: Summary of n-Dimensional Benchmark Function Suite

Function Name Domain
Location of Global Minima/

Minimum

Global Minima

Value(s)

Ackley Function −32.768 6 xi 6 32.768 x∗i = 0 f(x∗) = 0

Alpine Function no.1 −10 6 xi 6 10 x∗i = 0 f(x∗) = 0

Bent Cigar Function −100 6 xi 6 100 x∗i = 0 f(x∗) = 0

Brown Function −1 6 xi 6 4 x∗i = 0 f(x∗) = 0

Chung-Reynolds Function −100 6 xi 6 100 x∗i = 0 f(x∗) = 0

Deflected Corrugated

Spring Function
0 6 xi 6 2α* x∗i = α f(x∗) = −1

Exponential Function −1 6 xi 6 1 x∗i = 0 f(x∗) = −1

Griewank Function −600 6 xi 6 600 x∗i = 0 f(x∗) = 0

Inverted Cosine Wave

Function
−5 6 xi 6 5 x∗i = 0 f(x∗) = −n+ 1

Levy Function −10 6 xi 6 10 x∗i = 1 f(x∗) = 0

Qing Function −500 6 xi 6 500 x∗i = ±
√
i f(x∗) = 0

Rastrigin Function −5.12 6 xi 6 5.12 x∗i = 0 f(x∗) = 0

Rosenbrock Function −30 6 xi 6 30 x∗i = 1 f(x∗) = 0

Schwefel Function −500 6 xi 6 500 x∗i = 420.9687 f(x∗) = 0

Sphere Function −5.12 6 xi 6 5.12 x∗i = 0 f(x∗) = 0

Sum of Different

Powers Function
−1 6 xi 6 1 x∗i = 0 f(x∗) = 0

Sum Squares Function −10 6 xi 6 10 x∗i = 0 f(x∗) = 0
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4
C H A P T E R 4 : M E TA H E U R I S T I C A P P R O A C H E S U S E D I N T H I S T H E S I S

4.1 introduction

In this chapter we give some background to the metaheuristic approaches implemented for

this study. We cover the essentials of each technique and include descriptions of common

operators and algorithmic variations found in the literature. When discussing several different

operator implementations for a metaheuristic, the operator described last in the corresponding

section was used in our implementation of the metaheuristic. For clarity, the operators for

each algorithm are given as follows:

• Random Mutation Hill Climb (RMHC)

– Neighbourhood function (described in Section 4.1.3)

• Steady-state Genetic Algorithm (SSGA)

– Selection: Tournament Selection

– Crossover: 1-Point Crossover

– Mutation: Single Gene Mutation (as described in Section 4.3.2.3)

– Replacement: Replace-Worst

Following the background of each metaheuristic algorithm, we outline the metaheuristic

implementations used throughout our experiments along with a brief outline of the imple-

mentation specifics - highlighting important design decisions. We also provide pseudocode

representing the actual JavaTM source code we produced or sourced externally. Finally, we

describe the ‘tunable parameters’ for each metaheuristic optimised in the automatic parameter

tuning phase (Chapter 6) along with their value ranges - as used by SMAC - and justification

for their selection.

In the remainder of this section, we must provide some general details that affect mul-

tiple implementations, namely: the solution representation used consistently throughout all

implementations and the neighbourhood function utilised by our single solution methods -

RMHC and SA.
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4.1.1 Exposing Algorithm Parameters

The selection of the parameters to be tuned by the selected automatic parameter tuning

method - SMAC (see Chapter 5 Section 5.4) - for each of the algorithms used in this study

were selected as being the most common parameters being tuned by practitioners as described

in published works. Of course, more parameters for some of the algorithms could have been

exposed beyond those commonly found in the literature; for example, the selection of the

most appropriate boundary handling schemes for PSO or the crossover or mutation operator

used by the GA. However, there are a couple of reasons for not including these kinds of

parameters in the tuning procedures.

Firstly, parameters of the type given in the example above go beyond simply modifying the

behaviour of the algorithms through the changing of values; selecting one setting over another

would change the internal mechanics of the algorithm itself, in effect producing a different

algorithm altogether. As tuning takes place for this study for each problem-dimension pairing

and any comparison between algorithms in also in this context, the returned results and

analyses could be considered invalid as essentially different algorithms are being compared -

even when considering plots of a single problem with dimensionality along the x-axis.

The second reason exposing more parameters was problematic is that of the scale of the

data generation that was to be conducted; specifically, the correspondingly large amount of

time and computational cost required. As will be discussed later in Chapter 6 Section 6.1,

the number of independent tuning procedures for each algorithm-problem-dimension triplet

amounted to 1700. With the worst-case maximum number of runs of the target algorithm

being carried out by SMAC during these processes set to 1000 - the recommended default

number of runs; the wall clock time required to complete even a single set of parameter

configurations for one algorithm (i.e., each problem-dimension pairing) grew enough on

a single machine to warrant parallelisation of these independent tuning processes on our

departments computer cluster. Even then, finding a full set of configurations of an algorithm

would take upwards of a day and worst of all, tuning sep-CMA-ES with SMAC - considering

its higher computational cost (due to calculating the diagonal covariance matrices) - would

take almost 3 days to find a complete set of configurations. With these numbers in mind,

since SMAC - like all automated parameter configuration tools - is still bound by the ‘curse of

dimensionality’, a parameter space volume increasing exponentially with each new parameter

considered would call for a larger maximum number of target algorithm runs to ensure SMAC

is still able to find effective configurations. Further, since SMAC is probabilistic in nature,

more repeats of the entire tuning process would have to carried out to improve the likelihood
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and therefore confidence that SMAC has - to the best of its ability - found the most effective

configurations for each algorithm.

4.1.2 Solution Representation

For each of the implemented metaheuristics, a fixed double solution representation was used.

Each parameter p in a solution of size d, where d is the dimensionality of the problem, can

take on a value from the interval [0.0, 1.0] ⊂ R which is then later scaled by the objective

function i.e., the benchmark problem, to fall within the interval [UB,LB] ⊂ R where LB and

UB are the lower and upper bounds for the given problem dimension respectively. There is a

couple of reasons to having the solutions encoded in this way. Firstly, the implementations are

independent from the problem being solved; allowing the implementations to be reused on

different problems - should time allow - e.g., real-world problems, without requiring significant

modification therefore avoiding the possibility of programming error that may introduce noise

in further comparisons. Secondly, the search space of the encoded representation and the

decoded solution are equivalent, that is, the representation does not change the nature of the

search landscape and its associated features. The encoded solutions are decoded within the

objective functions using the following:

x ′i = LB+ xi × (UB− LB) (4.1)

Where xi represents an encoded parameter i of an encoded solution representation x and

x ′i is the decoded (scaled) parameter. Once scaled, the solution can then be used directly in

evaluation of the objective function.

4.1.3 Neighbourhood Function

For those algorithms that require the use of a neighbourhood for generating new solutions in

the search space from a given point, namely: random mutation hill climbing and simulated

annealing, a common neighbourhood function is used. If working within discrete spaces - e.g.,

if the problems were combinatorial in nature - a neighbourhood can be quite easily defined as

being a move to the next (or previous) discrete state in one or more dimensions. However,

given that optimisation takes place in a continuous context in these studies - i.e., the notion of

a next discrete step in any given direction is meaningless due to continuous nature of values

in any given direction - steps within the space have to be defined in terms of a ‘step size’

variable. It is common to use a fixed step size tuned to a given optimisation problem, however

this strategy has several disadvantages (see Fig. 4.1) and so, dynamic step sizes that scale with
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search progress and/or solution state are sometimes used. When using a fixed step size, it is

critical to the performance of the search algorithm that an appropriate value be selected as it

imposes a structure (as viewed by the algorithm) to the underlying search landscape. A value

that is too large can make the landscape appear flatter to the algorithm making it harder to

traverse the landscape as well as hampering progress towards local optima - including global

optima, and in general moving the algorithms behaviour closer to that of random search. On

the other hand, if the step size value is too small, it may be more difficult to escape from local

optima and by utilising small moves the region of global optimality may never be reached

with an allocated computational budget, i.e., the algorithm is too slow to converge. These

issues with fixed step sizes can be better illustrated through example as shown in Fig. 4.1

where we assume an approach that can accept worsening solutions such as SA.

(a) Overly large fixed step size (b) Overly small fixed step size

(c) An appropriate step size that fails to scale from a

course grain to a lower grain search (exploration vs.

exploitation)

Figure 4.1: Effects of inappropriate fixed step sizes
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In Fig.4.1a(a), an inappropriately large value for the step size can cause the search to ‘skip

over’ local optima as with stepsize1 or end up becoming trapped within the basin of a local

optimum unable to reach the minimum like stepsize2. In Fig. 4.1b(b) on the other hand, a

step size which is too small makes very slow progress towards the minimum. Even with a

suitably appropriate step size for the problem being solved it can still affect the quality of

the final solution returned - even if the global basin has been discovered - this can be seen in

Fig.4.1c(c). Although this is less likely to cause problems similar to the step size in Fig.4.1b(b)

- due to the scale of the basin of attraction in relation to the step size - this example shows

that there is still a possibility of this occurring as the search nears optimality.

Several methods exist for dynamically selecting step sizes and have been found to be

quite successful albeit far more computationally expensive; however, for brevity we will not

discuss them further.

However, another method exists, and is the one we use for our algorithms in this study,

namely, the use of stochastic step sizes. We use this here as it combines the benefit of low

computational cost when using fixed step sizes with some ability to scale appropriately as the

search progresses, as found in dynamic step methods. In order to avoid the problems of overly

large steps sizes - as described above - a step size is not simply selected before execution,

bounded only by the boundary constraints of the problem, but rather a step size is selected

uniformly at randomly on each iteration of the algorithm from a neighbourhood defined by a

user supplied parameter and centred at the current solution. If the neighbourhood exceeds

any bounds of the problem then the violating bound of the neighbourhood is set to that of the

violated bound. All of this means that the neighbourhood can be larger than allowable when

compared to one when using a strictly fixed step size, giving some of the benefits of a higher

grained exploration of the search space, but since the defined neighbourhood essentially

contain all possible neighbours perpendicular to the current solution within its bounds, a

stochastic selection from among these neighbours can allow for a finer-grained search.

4.2 hill climbing algorithms

Hill climbing algorithms are a family of local search metaheuristics originally developed for

searching within discrete combinatorial search spaces - although the algorithm can be adapted

to work with a variety of different solution encodings [16]. As with many local search methods,

hill climbing algorithms tend to maintain only a single individual throughout the entire search
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procedure [115]. Although there are many varieties, many of which were developed to solve

issues found with other hill climbing variations, the general functioning of these algorithms

are quite similar and tend to differ mainly in how candidate solutions are sampled [96]. Hill

climbing, or descent if dealing with minimisation, therefore attempts to discover solutions

of better quality by iteratively selecting a member of the immediate local neighbourhood

and testing whether or not there is an improvement - accepting an improving solution as

the new current solution and rejecting worsening solutions [96]. Given this description, hill

climbing methodologies can be said to be composed of two main phases: (i) a step function,

that defines the neighbourhood of the current solution to be searched and (ii) an acceptance

strategy determining what solutions are to be accepted as a new current solution. Although

we discuss hill climbing algorithms here, these phases also apply to most other local search

methods.

4.2.1 Common Variations

4.2.1.1 Simple Hill Climbing Algorithm

Simple Hill Climbing, also referred to as Next-best Neighbour and Next-descent/ascent Hill

Climbing, is a deterministic search algorithm which involves the generation of neighbours

sequentially one at a time, by the neighbour operator(s), and evaluating their objective value.

If any improvement is found over the current solution, the neighbour becomes the new

current solution without evaluating any more solutions of the previous current solution [35].

Pseudocode of simple hill climbing is shown in Algorithm 3 derived from the description of

the approach found in [35].
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Algorithm 3 Pseudocode of Simple Hill Climbing

1: procedure HillClimb

2: currentSolution← RandomSolution

3: terminategetsfalse

4: while terminate == false do

5: candidateSolution← NextNeighbour(currentSolution) . Get next reachable

neighbour

6: if (Score(candidateSolution) 6 Score(currentSolution)) then

7: currentSolution← candidateSolution

8: end if

9: if (currentSolution.score is good enough) then

10: terminate = true

11: end if

12: end while

13: return currentSolution . return best solution discovered

14: end procedure

4.2.1.2 Steepest Descent Hill Climbing Algorithm

In this variation on simple hill climbing, all possible neighbours of the current solution are

considered - at least when considering discrete representations - and the best neighbour

solution is selected to compete with the current solution [89]. If the best neighbour is found to

be better than the current solution, then neighbour replaces it and the whole process begins

anew [89]. If no neighbour is found that is better than the current solution then the algorithm

has converged on a local optimum and the algorithm can either terminate here or the search

can be restarted from a random position in the search space - keeping note, but making no

further use of, the best solution discovered during the previous search [89].

Steepest descent can be extended to continuous domains, as with all hill climbing ap-

proaches, by introducing the notion of a step size parameter which defines a discrete neigh-

bourhood for the current solution. For course, one must be careful of the value selected for

the step size. If the size is too small the neighbourhoods can become very large - increasing

computational cost, the speed of algorithm will be bounded by the small step size and once a

local optimum is discovered the step size will be too small to jump over to other ‘hill/troughs’

[82]. If on the other hand the step size is too large, the algorithm may skip over local optima
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and lose all information related to promising search trajectory; moreover, the algorithm will

have a difficult time converging to a local optimum [82]. The consequences of the selected

step sizes are best illustrated by Fig. 4.1 in Chapter 6.

Pseudocode of steepest descent hill climbing is shown in Algorithm 4 derived from the

pseudocode found in [89]. This pseudocode includes random restarts which makes it more

akin to a global optimiser such as those found in section 4.2.2.

Algorithm 4 Pseudocode of Steepest Descent Hill Climbing

1: procedure SD-HillClimb

2: t← 0

3: overallBest← initialise

4: while (t 6= t.MAX) do

5: foundLocal← FALSE

6: currentSolution← RandomSolution

7: while (!foundLocal) do

8: neighbours← getAllNeighbours(currentSolution)

9: candidateSolution← getBest(neighbours)

10: if (Score(candidateSolution) 6 Score(currentSolution)) then

11: currentSolution← candidateSolution

12: else

13: foundLocal← TRUE

14: end if

15: end while

16: t← t+ 1

17: if (currentSolution 6 overallBest) then

18: overallBest← currentSolution

19: end if

20: end while

21: return overallBest . return best solution discovered

22: end procedure

4.2.1.3 Stochastic Hill Climbing Algorithm

Stochastic Hill Climbing SHC is a local optimisation algorithm and is an extension of determ-

inistic hill climbing approaches such as simple hill climbing (first-best neighbour) and steepest
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ascent/descent hill climbing [16]. One of the most popular implementations of SHC, and the

one utilised for this study, is that of Random Mutation Hill Climbing (RMHC) [16] introduced

by Forrest and Mitchell in [35] where it was used in conjunction with other hill climbing

approaches to investigate the behaviour of genetic algorithms (section 4.3). Pseudocode of a

stochastic hill climbing approach - specifically the RMHC algorithm by Forrest and Mitchell

as derived from [16] - is given in Algorithm 5.

Algorithm 5 Pseudocode of Stochastic Hill Climbing (RMHC)

1: procedure RMHC

2: currentSolution← RandomSolution

3: while terminate == false do

4: candidateSolution← RandomNeighbour(currentSolution)

5: if (Score(candidateSolution) 6 Score(currentSolution)) then

6: currentSolution← candidateSolution

7: end if

8: end while

9: return currentSolution . return best solution discovered

10: end procedure

For RMHC, the call to RandomNeighbour mutates a single locus of the current solution

at random [16], in effect taking a single dimensional step. This contrasts with simple hill

climbing, and is in fact the only difference, which generates each neighbour of the current

solution in turn until one is found that is improving.

4.2.2 Global Optimisation with Hill Climbing

As hill climbing algorithms are local methods that maintain only a single solution at a

time, when performing global optimisation, they can easily become trapped in local optima.

Extension of the basic algorithms to search within multiple local neighbourhoods provides

the needed diversification to avoid this problem. Approaches such as: random-restart hill

climbing, local beam search and stochastic beam search can provide diversification through

repetition of the search process - accomplished by various means each with different properties.

Simulated annealing can also be considered as a global variation of hill climbing utilising

non-deterministic search, however, this is covered separately in section 4.5. The next few

subsections will cover these other global hill climbing approaches in more detail.
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4.2.2.1 Random-restart Hill Climbing

Another approach to improving on the quality of solution discovered by local search techniques

such as hill climbing is to simply restart the search from a different randomly selected initial

point in the search space. This is the basis of random restart hill climbing, the motivation

being the hope that the global optimum will eventually be found through trial and error.

Again there are several variations, each determined either by how a restart of the algorithm is

triggered - after a given length of time or until the algorithm terminates naturally - or whether

a fixed number of restarts are used or not. These variations are not mutually exclusive and

can be combined. An obvious disadvantage of this approach is that it requires more time

and computational resources than a single repeat of the standard hill climbing algorithm

used, increasing linearly with the number of restarts required. Another problem with this

approach is that as the problem instance size increases, random sampling has a much reduced

chance of finding a point in the search space that would lead the algorithm to converge

on a solution of higher quality [80] - this chance reducing further as the current solution

quality approaches optimality. Therefore, reaching these higher quality solutions requires

more of a biased sampling which can be facilitated by stochastic search [80]. Despite its

issues, random-restart hill climbing is fairly easy to implement, requiring only one or two

additional parameters, an additional loop surrounding the main hill climbing algorithm and

some very minor modifications e.g. keeping track of the overall best solution globally rather

than returning the best overall solution from a single local repeat.

4.2.2.2 Local Beam Search

Instead of making use of only a single solution as in local hill climbing algorithms, local beam

search maintains a population of k solutions. Here, k solutions are randomly generated over

the search space and all members of their neighbourhoods are generated [127]. The k members

over all neighbourhoods are selected and the algorithm begins a new iteration. Although this

might appear as though several repeats of hill climbing are being performed concurrently,

the repeats run independently and no information is shared between search processes; on

the other hand, local beam search does share information between localities by considering

all neighbourhood members to become part of the newly maintained set of size k [127]. In

this way, areas of the search space that do not hold much promise can be rejected in order to

redirect search efforts to more promising regions. This however leads to the disadvantage that

over time the maintained set of k solutions can still converge to a local optimum as weaker

but more diverse solutions and regions are quickly rejected.
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4.2.2.3 Stochastic Beam Search

To address the disadvantage of local beam search eventually becoming stuck in local optima,

stochastic beam search does not select the best k members from the whole list of k neighbour-

hood members, but instead selects k members randomly with a probability of selection given

by an increasing function of a members quality [127].

4.2.2.4 Iterated Local Search (ILS)

The main basis of iterated local search (ILS) is that the search should not focus on the entire

set of all possible feasible solutions S, but instead, the resulting solutions returned from some

underlying heuristic - usually local search - in other words, the far smaller set S∗ of locally

optimal solutions s∗ [81]. The search behaviour can therefore be categorised as a markov

chain of locally optimal solutions returned from this underlying heuristic, leading to solutions

better than those that can be found through random repeated trials - as with random restarts

[80]. In practice, local search methods such as hill climbing have been the most commonly

used search heuristic in ILS, but in fact, any optimisation algorithm can be used even if this is

deterministic rather than stochastic [80, 81].

Lourenco, Martin and Stützl in [80] and [81] state two factors that determine whether an

algorithm is an instance of ILS:

1. There must only be a single chain of solutions being followed - this then excludes the

use of any population-based heuristics

2. The search for improving solutions must be taking place within a reduced search space

defined by the output of the underlying search heuristic

ILS requires a mechanism for moving within the space S∗ of local optima. Unlike random

restart this mechanism - a perturbation of the current s∗ - provides a sampling biased by

increasingly better local optima. However, as Blum and Roli point out in [11], it is - in most

cases - infeasible to construct such a neighbourhood structure as S∗; therefore the trajectory

between local optima has to be performed without introducing the notion of a neighbourhood

structure explicitly [11].

However, and as discussed in section 4.2.2.1, the bias provided by ILS will still help

alleviate the issue faced by the random restart method where random sampling has a

decreasing chance of discovering new points in the space that would lead to convergence on a

new s∗. The perturbation of the current local optima should neither be too large or too small
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[80]. Too large and the new intermediate solution s ′ will be random, we lose the useful bias

and the algorithm will degenerate into a random restart-like approach [80, 11]. If conversely,

the perturbabtion is too small, the search will often return back to s∗ meaning that little of the

space of S∗ will be investigated [80, 11].

4.2.3 Random Mutation Hill Climb: Implementation

4.2.3.1 Details and Description

As detailed above, a random mutation hill climbing algorithm does not generate all improving

neighbourhood solutions, as with steepest ascent/descent hill climbing - but rather ‘mutates’

a single solution parameter selected uniformly at random and also mutating the selected

parameter by uniform mutation (Section 4.3.2.3) - and accepts the solution as the new current

solution if and only if the new solution is improving. Furthermore, the improving neighbour

is not accepted by a probability based on the magnitude of the improvement but is instead

accepted immediately as the ‘first choice’ generated. As with the simulated annealing im-

plementation (Chapter 4 - Section 4.5) this implementation makes use of the neighbourhood

function described in Section 4.1.3. As such, the implementation only uses a single tunable

parameter - stepSize - that defines the neighbourhood of a solution.
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4.2.3.2 Pseudocode

Algorithm 6 Pseudocode of RMHC Implementation

1: procedure RMHC(stepValue, pSize) . Main loop procedure

2: problemSize← pSize

3: stepSize← stepValue

4: S← generateInitialSolution(problemSize)

5: Sscore ← evaluateSolution(S)

6: while (terminate == false) do

7: N← generateNeighbour(S,problemSize, stepSize) . get random neighbour of

S

8: Nscore ← evaluateSolution(N)

9: if (Nscore < Sscore) then

10: S← N

11: Sscore ← Nscore

12: end if

13: end while

14: return S . return best solution discovered

15: end procedure

16: procedure GenerateInitialSolution(problemSize)

17: solution← init

18: for (i = 0 to problemSize-1 by 1) do

19: solution[i]← uniform random float ∈ [0.0, 1.0]

20: end for

21: return solution

22: end procedure

23: procedure GenerateNeighbour(solution, problemSize, stepSize)

24: neighbour← solution

25: r← uniform random float ∈ [0.0, 1.0]
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26: boundMin← neighbour[i] − stepSize

27: boundMax← neighbour[i] + stepSize

28: if (boundMin < 0.0) then . Boundary handling

29: boundMin← 0.0

30: else

31: if (boundMin > 1.0) then

32: boundMin← 1.0

33: end if

34: end if

35: boundRange← boundMax− boundMin

36: r← uniform random float ∈ [0.0, 1.0]

37: step← boundRange ∗ r

38: neighbour[i]← boundMin+ step

39: return neighbour

40: end procedure

In this implementation, as with all the implementations described in this section, the procedure

evaluateSolution is provided by the benchmark problem suite implementation presented in

Chapter 3 of which all implementations make use. Therefore, evaluateSolution is not expanded

in the pseudocode; however, the solution is decoded and evaluated by the benchmark suite in

the manner described in section 4.1.2.
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4.2.3.3 Tunable Parameters

Only one parameter is used that can affect the performance of the algorithm, specifically,

step size. As discussed in section 4.1.3, this parameter defines the maximum radius of an

axis-aligned hyperplane along each dimension of the search space centred on the current

solution location. A neighbouring point - perpendicular to the current solution - from within

the hyperplane is then generated stochastically by uniformly selecting a new value for one of

the solution parameters. The result is a stochastically variable neighbourhood with the ability

to scale with search granularity.

(a) Determining the Hyperplane (b) Generation of a neighbour solution sol2 in the Hy-

perplane

Figure 4.2: Definition of a neighbourhood of a solution sol using the stepsize parameter and the

stochastic generation of a neighbouring solution sol2

In the example shown in Fig. 4.1.3, a neighbourhood is defined by firstly determining its

lower and upper bounds in each dimension i of the problem (Fig. 4.2a) - where i ∈ [1, ...,d]

and d is the problem dimensionality. Since the box is to be centred on the current solution S,

the lower bound LBi and upper bound UBi of each box dimension is calculated by:

LBi = Si − stepSize

UBi = Si + stepSize
(4.2)

where Si is the position of the solution S in the search space in the ith dimension. To then

generate a neighbouring solution N, a different uniform pseudorandom value ri ∈ [0.0, 1.0] is

generated in a single random dimension i and is applied to the current solution in the range

of LBi and UBi as follows:

Ni = LBi + ri × (UBi − LBi) (4.3)

64

[ 22nd January 2020 at 18:00 ]



Through initial experimentation using the neighbourhood function as shown in Fig. 4.1.3,

generating neighbours along a single dimension only i.e., directly perpendicular, was found to

be a more effective strategy than those generated through perturbing along several dimensions.

Thus, we opted to use the single dimensional version for each of the algorithms making use

of a neighbourhood function.

4.3 genetic algorithms (ga)

Genetic algorithms are a population-based evolutionary algorithm, developed and introduced

by Holland in the 1960’s. Genetic algorithms (GA) are inspired by natural evolution and

genetics [17]. In fact, Holland specifies in [54] that genetic algorithms are based on the classic

view of chromosomes as a sequence of genes; a view that eventually led to the development of

mathematical genetics founded by Fischer in [34] 1, which provide formulae that describes the

rate of spread of given genes throughout a population. A GA is therefore a more generalised

and computer executable equivalent of the formulation used by Fischer in mathematical

genetics [54]. A typical implementation of a genetic algorithm might consist of the following:

1. A population

• A set of candidate solutions to a given problem being solved

2. An Objective Function or “Fitness”

• A measure of quality used to determine good solutions from not so good solutions

in the population

3. A Selection Operator

• A strategy of determining which individuals in a population, at a given time, are

allowed to perform crossover and which ones can be carried across to the next

generation. There are many such strategies.

• Solutions which are among the fittest in a given population are able to bypass the

selection procedure employed, whereby a small portion of the very best solutions in

the population are brought brought across to the next generation, typically without

undergoing any changes - mimicking the natural concept of ‘survival of the fittest’.

This is known as elitism or elitist selection.

4. A Crossover Operator

1 First published in 1930
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• Also referred to as a recombination operator, this is a method of combining the

existing genetic information from two ‘parent’ solutions together in order to create

one or more ‘child’ solutions. In search terms, crossover represents the main source

of ‘exploitation’ during a search i.e., along with selection operators, it facilitates the

convergence of the population towards a local optimum

• Typical methods of combination include: uniform crossover, one-point crossover

and two-point crossover. There are however a wide selection of possible alternatives.

5. A Mutation Operator

• A means of ensuring that the population contains enough diversity so as to be able

to better cover the space of possible solutions. Mutation in a search is the main

source of ‘exploration’ i.e., it is considered a divergence operator which works

against selection and crossover to help prevent premature convergence by allowing

the search to escape local optima and explore the global search space.

• Some selection strategies, such as elitism, help create less diversity in a population

by only accepting better solutions as parents and replacing the worst solutions with

their children - meaning that the population will eventually converge to sharing

a common set of traits with the side-effect of causing the crossover operator to

become ineffective.

The main generalisations of a GA from mathematical genetics, as discussed by Holland in

[55] and [54], consist of:

1. A concern with the interaction of genes on a chromosome rather than assume that

genetic alleles can act independently from the others [55, 54]

2. An enlargement of the set of available genetic operators that can be used, over and above

the mutation operator used almost exclusively in mathematical genetics. [55, 54]

From the first generalisation, the fitness function becomes complex and non-linear which

quite often cannot be approximated usefully through the summation of the effects from

different genes [55]. The second generalisation places more emphasis on the genetic operators,

in particular on crossover [55]. Holland considers crossover to be essential to the success of

a GA since crossover is an operation that is carried out in all mating organisms in nature

as opposed to mutation whereby the mutation of a given gene takes place at a far lower

frequency (less than 1 in a million individuals) [55]. The effect of crossover within a GA will

be discussed more fully in section 4.3.2.2.
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4.3.1 The Basic GA Procedure

A basic instance of GA is illustrated by pseudocode given in Algorithm 7 and the process

flowchart shown in Fig. 4.3 and can be implemented as follows:

1. A population of candidate solutions is maintained by the algorithm, each one represent-

ing a potential solution to the given problem. Each individual solution is encoded as a

number of variables, each representing some feature of the problem being optimised,

whose values are taken from some predetermined alphabet - for example, binary, integer

and real numbers - (Alg. 7: line 2)2

2. Each individual in the population is assigned a fitness score representing the quality

of the solution, i.e., how well it solves the problem according to the objective function,

which ultimately determines whether or not the solution will be selected for crossover -

(Alg. 7: line 4)

3. A number of solutions are selected according to some selection strategy. These strategies

can often be categorised as being ‘elitist’ or ‘non-elitist’, however, in practice selection

strategies tend to fall within a spectrum with selection strategies being described as

more or less elitist than others. A common strategy that can be said to fall at the centre

of this spectrum is tournament selection described in section 4.3.2.1 - (Alg. 7: line 6)

4. The selected solutions are recombined, by application of a crossover operator, to create

one or more candidate (child) solutions that somehow inherit components from multiple

parents - (Alg. 7: line 7)

5. Given some probability, typically very small, each generated child solution may undergo

mutation whereby one or more of its genes is modified in some way - (Alg 7: line 8)

6. Child solutions are then replaced into the population either by replacing other - often

less fit - individuals or by generating a new population using the child solutions - (Alg

7: line 9)

In this procedure, steps 2 to 5 represent the main GA loop (Alg 7: line 3) and are therefore

repeated until a user specified termination condition is satisfied.

2 The individual solutions in a GA are designed to be analogous to natural genetic structures; therefore, chromosomes

(solutions) are composed of a number of genes (representing problem variables/parameters. This terminology

amongst others from evolutionary genetics is commonplace in the study of genetic algorithms and some other

evolutionary algorithms.
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Figure 4.3: Basic operation of a typical genetic algorithm implementation

Algorithm 7 Pseudocode of a Basic Genetic Algorithm

1: procedure GA

2: population← initialisePopulation

3: Sbest ← ∅

4: terminate← false

5: while terminate == false do

6: evaluatePopulation(population)

7: Sbest ← getBest(population)

8: parents← selectParents(population,numberOfParents)

9: children← crossover(parents,numberOfChildren)

10: children← mutation(children)

11: population← replace(population, children)

12: if (Sbest.score is good enough) then

13: terminate← true

14: end if

15: end while

16: return Sbest . return best solution discovered

17: end procedure
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4.3.2 Genetic Operators

GAs work on three simple rules of genomic evolution analogous to those observed in natural

evolutionary genetics; referred to as the genetic operators of the algorithm. Each operator,

namely: selection, crossover and mutation [29], has a specific role to play within the evolu-

tionary process and work in conjunction to maintain the course of improvement within the

population over time as well as maintaining the stability of the system. Since we focus on

continuous (real-valued) problems in our study, all genetic operators will be discussed in

terms of a real-valued encoding scheme.

4.3.2.1 Selection

The responsibility of the selection operator in a GA is to choose a number of solutions

from the population to become parents in order to produce offspring that will make up the

next generation [29]. In this way, it acts as the force that increases the mean quality of the

solutions in the population [29]. Parent selection in evolutionary algorithms such as GA is

typically a probabilistic procedure - one in which the solutions of higher quality have more

chance of being selected as parents [29]. However due to this probabilistic nature of selection,

lower quality solutions typically have a small - but positive - opportunity of being selected;

this helps to maintain diversity in the population otherwise the search can quickly become

trapped in local optima [29]. Over the following paragraphs, we briefly describe the selection

operator used in the GA studied for this thesis - namely, Tournament Selection - however,

firstly, a couple of other common selection operators found in the literature are presented for

comparison purposes: Fitness Proportionate Selection and Rank-based Selection.

(a) fitness proportionate selection Each solution in the population becomes a

parent with a probability proportionate to its fitness [77]. Higher quality solutions have more

chance of being selected to propagate their information to the next generation than those of

lower quality. Therefore this strategy applies a selection pressure to those individuals in the

population with higher fitness - to drive further progress. Two fitness proportional selection

methods are given in the literature, namely: Roulette Wheel Selection and Stochastic Universal

Sampling (SUS) - with the latter being developed to solve limitations found for the former -

however, for brevity, we will only be discussing Roulette Wheel Selection here.
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(A.i) Roulette Wheel Selection In Roulette Wheel Selection RWS, a probability of selec-

tion, proportionate to fitness value, is first determined for each solution in the population

given by the equation [77]:

pi =
f(xi)∑n
j=1 f(xj)

(4.4)

where, f(xi) is the fitness of the solution xi and n is the total number of solutions in the

population. This equation provides, for each solution, a real valued probability in the range

[0, 1]. Considering each of these probabilities as corresponding to a portion of a roulette wheel,

a random number from the range [0, 1] is generated representing a roulette ball landing in

a portion of our hypothetical roulette wheel, selecting an individual for inclusion into the

mating pool [22]. To gain an intuition of roulette wheel selection, an example is given in Fig.

4.4.

Figure 4.4: Roulette Wheel Selection example showing a single selection over a population of four

individuals. Each individual, A,B,C and D represent a 32.7%, 12.7%, 3.6% and 51% portion of

the roulette wheel respectively. Random point r selects the portion representing chromosome

D similar to a hypothetical roulette ball

In this example, solution D has the highest probability of being selected, with solution C

being the lowest. This is a useful feature of roulette wheel selection; although the solutions

of higher fitness are more likely to be selected, it does not exclude the possibility that some

solutions of lower fitness may be selected to contribute to the next generation, thus preserving

some diversity in the population. The sum total of all the fitnesses t is calculated and a

random point r is selected in the range [0, t]. The fitness of each individual in the population

is subtracted from the value of r until r < 0. The individual whose fitness causes r to become

negative is selected and the process is repeated for the total number of selections to be made.

There is also nothing preventing the same individual to be chosen more than once and this

can indeed happen. The repeated subtraction step in the above example, equivalent to a linear

search over the population elements gives this implementation of roulette wheel selection a

time complexity of O(n); if, however, an implementation were to make use of binary search,
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this can be reduced to O(log n) [77]. Another possibility is to make use of the implementation

outlined in [77] whereby “stochastic acceptance” is used to select an individual with a typical

time complexity of O(1) depending on the distribution of fitness weights.

Although a popular selection operator, roulette wheel selection carries some limitations.

Firstly, the operator in its current form is not suitable for minimisation problems or problems

where fitnesses can take on negative values - although, both issues may be overcome with

appropriate fitness scaling or transformation [5]. Another limitation is that since the likely

variance of fitnesses in the population is initially high, the fittest solution can quickly take

over the population leading to premature convergence [38, 5].

(b) tournament selection In Tournament Selection, a competition, or tournament, is

held between between n solutions chosen randomly from the current population. The winner

of each tournament is allowed to pass through to the intermediate population - either with or

without replacement 3[38]. Usually the size of each tournament is kept small, this is due to the

increasing percentage of diversity invariably lost as the size of tournament groups increase;

likely resulting in premature convergence [38]. An example of tournament selection is shown

in Fig. 4.5.

Tournament selection is popular amongst GA practitioners and has become the main

selection method used in GA for several reasons [82]:

1. Unlike fitness proportionate selection, tournament selection is readily compatible with

minimisation problems, fitness functions that may return negative values and generally

any other particulars of the fitness function [82]

2. The selection pressure is easily controlled by changing the size of the tournament [82];

larger sizes make it harder for weaker solutions to compete as the chance of much better

solutions being included in a tournament increases with group size

3. It provides a means of automatic fitness rescaling in that solutions of similar fitness near

optimality are not considered as equal - as would be the case with fitness proportionate

selection and SUS [82]

In terms of tournament sizes, a typical tournament size is t = 2 [82] however for certain

representations it is common to be a bit more selective by using a larger tournament size [82].

It is also worth noting that t = 1 is equivalent to random selection, however, if t > p, where p

3 With replacement means that a selected individual can be selected more than once from the population meaning

that subsequent tournaments have the possibility of containing a given individual from a previous tournament.

Conversely, without replacement means that once an individual has taken part in a tournament it is no longer allowed

to take part in subsequent ones.

71

[ 22nd January 2020 at 18:00 ]



is the population size, the probability of the fittest solution in the population being part of the

tournament approaches 1.0 and so effectively selects the fittest solution on each tournament

[82].

Figure 4.5: Tournament selection, where t = 8 (tournament size)

4.3.2.2 Crossover (Recombination)

Crossover is used to combine existing solutions into new, hopefully better, candidate solutions

[29] and represents the main source of exploitation in the algorithm [104] - as such, they

encourage the eventual convergence of the GA to a optimum solution. Many techniques exist

for recombining parent solutions whose use is heavily reliant on the properties of the solution

representation used; e.g., the specific encoding of the solution chromosomes and whether

such solutions are of fixed or variable length. Several of the more common crossover operators

will now be described.

(a) uniform crossover Here, each parent solution is able to contribute genes to

child solutions at the gene level rather than at the segment level - as is the case with one

and two-point crossover [29]. For certain problems, this added flexibility can far outweigh

any disadvantages stemming from the destruction or dismantling of whole building blocks.

A probability is defined, often referred to as the mixing ratio (usually set to 0.5), which

determines which parent will contribute each corresponding gene value to the child solution

[29] - and by doing so determining an approximate ratio of genetic material taken from each

parent. For example, supposing the crossover ratio of Fig. 4.6 below is 0.5, then it follows that

roughly half of the genes from each parent will contribute to the resulting child solution.
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Figure 4.6: Uniform Crossover

(b) one-point crossover A single crossover point within a solution chromosome is

selected at random [116]. When solutions in a GA are of a fixed length, a single crossover

point common to both parents is used [65, 92]. Usually, two child solutions are produced

from two parent solutions [116] however, one child can also be produced (see below). Given a

fixed-length scheme, two variations of crossover can occur and are illustrated in Figs. 4.7a and

4.7b:

1. All genes after the crossover point in both parent solutions are swapped over between

the two, resulting in two child solutions

2. All genes before the crossover point are copied from the first parent and all genes

above the crossover points are copied from the second parent resulting in a single child

solution

(a) One-point crossover resulting in a single child

solution

(b) One-point crossover resulting in two single

child solutions

Figure 4.7: One-point Crossover
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4.3.2.3 Mutation

Although the two genetic operators discussed so far serve an important purpose in genetic

algorithms, an algorithm implemented with only these two operators would simply perform

an organisation of the genes of various solutions in order to construct, hopefully, better

solutions [82] . This can place an upper limit to the quality of the solutions produced, as

only gene values available to the population on initialisation could be arranged to make

solutions. The problem here is that the population lacks diversity, without this the population

would simply converge upon a local optimum with no means of escape [82]. A solution, and

the solution adopted in genetic algorithms, is to allow the application of a third operator,

mutation, which also mimics the corresponding process found in nature. Mutations are often

found to be unhelpful, such as, the mutations of one or more genes causing anything from

colour blindness to Turner syndrome. The crux of the matter however is that without this

process in our own genes, although able to mix between individuals, human beings would be

unchanged from our first appearance (aside from cross breeding with other primate species)

and so would not have been able to evolve into the species we are today. Mutation is utilised

in genetic algorithms for the same reason; without mutation new gene values are not created

and, as mentioned previously, genes are simply swapped between the populous to create new

children - whose possible optimisation potential is highly constrained to the available genes

[82].

Mutation makes use of user-defined parameter - the mutation rate Pm - that determines

which gene(s) will undergo mutation. As far back as 1989, a parametric study was carried

out suggesting that a rate calculated as: Pm = 1
n represents an optimal mutation rate for

many cases [111, 26]. Although this finding is in reference to binary-coded GA, our own

studies show that improved performance can be found using this scheme with real-valued

GA. Typically, mutation is carried out over the entire solution string, i.e., every gene has a

chance to be mutated, however schemes where only one gene is mutated each time also exist

such as the one described in [26].

A few common mutation operators common to real-parameter genetic algorithms will

now be discussed along with a short note about mutation operators for binary representations.

(a) uniform mutation This mutation operator, generates a single child solution given

a single parent solution. It selects a gene at random, replacing its value with one selected

uniformly at random between the upper and lower bounds specified for that particular gene
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[128]. More formally; given a solution vector x, the operator generates a child x ′ by selecting

a gene i ∈ {1, ...,n} at random from the vector x = {x1, . . . , xi, . . . , xn} in order to generate a

mutated vector x ′ = {x1, . . . , x ′i, . . . , xn}, where x ′i is a uniformly distributed random value

selected from the range (l(xi),u(xi)) where l(xi) and u(xi) represent the lower and upper

bound of xi. The operator can play an importnt role in the beginning stages of the search

process, where solutions should be allowed to explore more freely [91].

Figure 4.8: Uniform Mutation: where x is transformed to x ′

(b) single gene mutation In [26], the authors describe the use of a mutation operator

for real-valued GA where a single gene in a solution is selected and mutated using polynomial

mutation. In this thesis, we present - and in fact make use of - an alternative to this strategy

where like the operator described above, the gene to be mutated is selected randomly (actually,

uniform random) however, an additional random decision is made before this step that

determines whether to mutate the solution at all. This additional random element of the

operator is added by generating a uniform random number r ∈ [0.0, 1.0] and comparing with

the user supplied mutation rate Pm. If r <= Pm, mutation is carried out on the solution as

described previously and the solution is left in its un-mutated state otherwise. The actual

mutation is carried out using uniform mutation. Over a number of trials with various

mutation operators and replacement strategies, this operator coupled with worst-replacement

(see Section 4.3.2.4) was found to be greatly superior to the other variants trialled over the

majority of our selected benchmark suite (Chapter 3) and comparable over the remaining

functions.

4.3.2.4 Replacement

The replacement process is somewhat similar to that of parent/survivor selection, where

selected solutions are distinguished based on quality [29], but is instead concerned with
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the selection of replacement slots for child solutions to enter into the population - and thus,

is used at a different stage in evolution. Where they differ however, is that, in practice,

selection tends to be stochastic whereas replacement is usually deterministic [29] - although,

replacement schemes such as ‘reverse tournament selection’ and random replacement with an

element of stochasticity show that replacement strategies can exist on a spectrum between

deterministic and non-deterministic approaches. Replacement is a process that is mainly

relevant in steady-state genetic algorithms (section 4.3.3) where the entire parent population is

not being replaced by the child population, but some replacement strategies can be used with

generational genetic algorithms such as: age-based replacement where µ = λ, (µ + λ) selection

and (µ, λ) selection. Given that the size of GA populations, steady state or otherwise, tend to

remain constant, selections therefore have to be made as to which existing solutions will be

discarded to make room for newly generated solutions. Replacement selection, as mentioned,

is often based on fitness values - with bias often given to those of higher quality - however,

the concept of solution age is also frequently used [29]. Therefore, replacement strategies can

broadly be categorised as: (i) fitness-based replacement and (ii) age-based replacement [29]; it

is worth noting however that some fitness-based replacement strategies can also take age into

account as well. Since replacement selection is so similar to parent selection, in theory any of

the selection operators discussed in section 4.3.2.1 can be used for replacement [29], however,

there have been several special replacement operators developed and now commonly in use

by practitioners [29]. The following paragraphs outline some of the more commonly used

fitness-based and age-based replacement schemes.

(a) fitness-based replacement strategies

(A.i) Replace Worst Originally used in the GENITOR steady-state GA [144], this replace-

ment strategy selects the λ worst solutions in the population to be replaced [29] - where

λ refers to the number of child solutions that have been produced. Removing the worst

solutions from the population in this way will lead to fast improvements to the mean fitness

of the population but can also quickly lead to premature convergence [29] as much needed

diversity is purged from the population, reducing the takeover time of the best solution and

significantly increasing innovation time. Therefore, this replacement strategy is mostly used

in situations where the population is large and/or the detection and pruning of duplicate

solutions is being carried out [29].

(A.ii) (µ+ λ) Selection This replacement strategy comes from evolution strategies and in

general refers to the merging of the parent population µ with the child population λ which
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is then ranked according to fitness. The best µ individuals are then chosen to form the next

generation [29].

(A.iii) (µ, λ) Selection Also originating from evolution strategies, this replacement strategy

is made up of both an age component and a fitness component where typically, λ > µ children

are generated from a set of µ parents [29]. The age component of the strategy means that the

entire parent population will be deleted so that no individual lasts beyond a single generation

[29]. The remaining λ population are then ranked according to their fitness and the best µ

solutions go on to form the next generation [29]. Eiben and Smith note that in evolution

strategies, this replacement operator is often preferred over (µ+ λ) as: (i) since all parents are

discarded in (µ, λ) it could allow escape from small local optima and can therefore be useful

in multimodal search spaces containing many local optima [29], and (ii) if the fitness function

is non-stationary i.e., it changes over time along with the location of the global optimum,

(µ+ λ) selection preserves those solutions relevant to an outdated optima and so is not able

to track the new optima as well [29].

(b) age-based replacement strategies The general concept of age-based replace-

ment is that the fitnesses of solutions are not used in determining which solutions will be

replaced and instead designed in such a way as to have each solution exist for the same

number of algorithm iterations [29]. Eiben and Smith point out that since age-based replace-

ment is not reliant on fitness values, there is the possibility that the mean or best fitness of a

given iteration will be lower than the preceding iteration [29], but point out that, although

counter-intuitive, this may actually be of some benefit should the population be centred near

to a local optimum and if a decrease in the mean or best fitness between iterations does not

happen too often [29].

(B.i) Random Replacement The naive Random replacement involves selecting, uniformly

at random, a solution to be deleted from the population. At first glance it may not appear as if

random replacement belongs to the class of age-based replacement strategies, or fitness based

strategies for that matter, however, Eiben and Smith [29] suggest that this strategy has the

same mean effect, meaning that on average individual solutions live for µ iterations - where µ

is the size of the parent population - giving us some concept, however probabilistic, of age.

Eiben and Smith further state that the random replacement strategy is not recommended

since experiments by De Jong and Sarma in [24] between a steady-state GA using random

replacement and a comparable generational GA showed that the steady state GA exhibited

more variance in performance [29]. A reason for this was given by Smith and Vavak in [125]
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stating that random replacement is far more likely to lose the best solution in the population

than ‘delete-oldest’ replacement [29] - a comparable age-based replacement strategy.

(B.ii) Delete-oldest Replacement This operator represents the steady state GA equivalent

of the simple genetic algorithm (SGA) age-based replacement strategy - where the number

of offspring equals the number of parents, i.e., (µ = λ) and so the child population entirely

replaces the parent population so that no one individual survives for more than a single

generation [29]. In a steady state GA where the child population is smaller than the parent

population (λ < µ) age-based replacement instead forms a first-in-first-out (FIFO) queue [29].

As such, the first λ solutions at the head of the queue will then be replaced on each generation.

4.3.3 Steady State GA vs. Generational GA

The first occurrence of a steady state genetic algorithm was that of the GENITOR algorithm

[144] developed by Whitley and Kauth in 1988. The main difference between a generational

GA (GGA) and a Steady State GA (SSGA) such as GENITOR is how the offspring in each

iteration enter the population. In generational GA, new offspring are created from a subset of

the individuals in a population through the mechanisms of crossover and mutation and form

a new population which replaces the old population [140]. In SSGA, typically a single child

solution is generated which replaces a single individual in the current population chosen

by a replacement strategy. SSGA is computationally equivalent to GGA but since only one

individual is replaced in each iteration, it typically takes more iterations (generations) for the

algorithm to converge; however, the computational costs associated with genetic operations in

SSGA are far lower and SSGA itself is much simplified over GGA [113].

In GGA, if the new population is to include some members of the previous population

this is determined by a variable G often referred to as the ‘generation gap’ [24] as originally

defined from a set of empirical studies of overlapping generations by De Jong in [25]. However,

around the same time, Holland was performing analyses on two reproductive schemes: (i)

R1, replaced a single individual in the current population at random with the child of a

single parent using fitness-proportionate selection - a likely precursor to SSGA developed and

popularised by Whitley in [144] - and (ii) Rd in which the expected number of offspring from

parents selected deterministically were produced which replaced the entire current population

[24].

Since a member of the population is to be replaced by a child solution on each iteration,

another step is required in each iteration; namely, the selection of a solution to be replaced.

No such step is required in GGA as the whole population is typically replaced, at least for
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those implementations with no overlapping generations. As with other genetic operators

there are many strategies for selecting a replacement slot. Common methods include: random

replacement and worst replacement. These will be given more attention in section 4.3.2.4.

The SSGA model has been widely studied and applied in various contexts [29]. In [140]

an SSGA and GGA were compared in terms of their ability to work in non-stationary

environments, that is, their ability to adapt to the position or a dynamic optimum. An SSGA

using a “delete the oldest” replacement strategy was shown to outperform an equivalent GGA

in terms of both online and offline optimisation. The authors attribute the success of SSGAs

for these applications to the fact that unlike GGAs, since an SSGA is incremental and a newly

generated child solution is immediately considered as part of the mating pool from the next

iteration, the algorithm is more able to more quickly move towards the optimum at a much

earlier stage in optimisation [140].

4.3.4 Steady State Genetic Algorithm: Implementation

4.3.4.1 Details and Description

The genetic algorithm implementation chosen is that of an SSGA (Section 4.3.3) that replaces

only a single solution in the population with a single child solution generated from the recom-

bination of two parents in any given iteration. The selection of parents in this implementation

is achieved by application of ‘tournament selection’ which are subsequently recombined using

one-point crossover to form the child solution. Mutation is accomplished through the use of

a single-gene uniform crossover (Chapter 4 - Section 4.3.2.3); as the solution representation

used (as in section 4.1.2) bounds each gene by the interval [0.0, 1.0]. If mutation of a solution

is to be performed, a randomly selected gene from a mutation operation is set to a uniform

random value selected from this interval. This type of mutation was decided upon empirically

through performance comparison with some more typical operators; such as those which are

applied to the entire chromosome, and was found to perform best on average across the full

benchmark suite 4.

A steady-state GA was selected due to its reduced computational complexity - both

in terms of runtime and memory. It is well known that one of the most expensive steps in

generational GA is that of population generation; therefore, if generational GA was tuned

4 The algorithm implementation was identical for each variant; the only variable being modified in the experiment was

the choice of mutation operator
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using our parameter tuning method (Chapter 7), the generation of parameter configuration

sets at high dimensionalities by SMAC would likely take far longer than it did for an SSGA.

4.3.4.2 Pseudocode

Algorithm 8 Pseudocode of SSGA Implementation

1: procedure GA(pSize,mutationRate, tSizeProportion)

2: popSize← pSize

3: mutation← mutationRate

4: population← initPopulation(popSize)

5: tSizeProp← tSizeProportion . Proportion of population to use in tournaments

6: tSize← 2+ floor(popSize ∗ tSizeProp)

7: Sbest ← getBest(population)

8: while terminate == false do . Main GA loop procedure

9: evaluatePopulation(population)

10: parent1 ← TournamentSelect(tSize)

11: parent2 ← TournamentSelect(tSize)

12: child← OnePointcrossover(parent1,parent2)

13: child← UniformMutation(child,mutationRate)

14: replace← getWorst(pop)

15: population[replace]← child

16: Sbest ← getBest(population)

17: end while

18: return Sbest . return best solution discovered

19: end procedure

80

[ 22nd January 2020 at 18:00 ]



20: procedure TournamentSelect(tournamentSize)

21: tournamentSet← random set of tournamentSize solutions from pop

22: best← tournamentSet[0]

23: for (i=1 to tournamentSize-1 by 1) do

24: if (tournamentSet[i] < best) then

25: best← tournamentSet[i]

26: end if

27: end for

28: return best

29: end procedure

30: procedure onePointCrossover(parent1, parent2)

31: r← uniform random float ∈ [0.0, 1.0]

32: chromosomeIndex← br ∗ parent1.lengthc

33: for (i = 0 to parent1.length-1 by 1) do

34: if (i < chromosomeIndex) then

35: child[i]← parent1[i]

36: else

37: child[i]← parent2[i]

38: end if

39: end for

40: return child

41: end procedure

42: procedure uniformMutation(child, mutationRate)

43: r← uniform random float ∈ [0.0, 1.0]

44: if (r <= mutationRate) then

45: r← next uniform random float ∈ [0.0, 1.0]

46: geneIndex← br ∗ child.lengthc

47: child [geneIndex]← r

48: end if

49: return child

50: end procedure
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51: procedure getWorst

52: worst← 0

53: for (i = 1 to popSize by 1) do

54: if (population[i].score > population[worst].score) then

55: worst← i

56: end if

57: end for

58: return worst

59: end procedure

60: procedure getBest

61: best← 0

62: for (i = 1 to popSize by 1) do

63: if (population[i].score < population[worst].score) then

64: best← i

65: end if

66: end for

67: return best

68: end procedure

69: procedure evaluatePopulation(population)

70: end procedure

4.3.4.3 Tunable Parameters

The parameters used to control the performance of the algorithm in this implementation are

as follows:

• Population Size

– Type:- integer ∈ [2, 250]

– Used by the initialization procedure to define the size of the population that

will remain fixed throughout execution of the algorithm. A lower bound for this

parameter of 2 is the minimum population size that would allow the genetic

algorithm to be referred to as such; specifically, a population size of only one

would essentially represent regular stochastic hill climbing (as crossover would

not be possible). The upper bound was set as to fall in line with some of the other

population based approaches represented here, as there seemed to be no relatively
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general agreement to a reasonable range for population size in genetic algorithms.

The default value for this parameter as used initially in SMAC is 100.

• Tournament Size Percent

– Type:- float ∈ [0.01, 0.7]

– Defines the size of the tournament groups used for parent selection as a proportion

of the main population i.e., how many randomly selected solutions from the

population are chosen to take part in the tournament. This is equivalent to setting

an explicit number of individuals from the population - as is more typical - but

provides prevention against the tournament size becoming larger than the main

population when SMAC is actively tuning both tournament size and population

size independently. In this implementation of the operator, n tournaments are run

in order to select n parent solutions; thus, two tournaments are carried out to

produce two parents - one from each tournament. This parameter also allows for

the adjustment of selection pressure; a large group size will reduce the chances of

weaker solutions being selected for recombination with the inverse being true of a

smaller group.

The upper bound on the value, of 0.7, was selected arbitrarily for the purposes of

the automatic parameter tuning performed by SMAC. This value was judged to be

a reasonable upper limit in order to prevent premature convergence resulting from

the repeated selection of the very best solutions. Additionally, should an upper

bound of 1.0 have been allowed, any parameter tuning process that produced a

value for this parameter that lay very close to this bound would have caused the

tournament selection procedure to be roughly equivalent (depending on the actual

proportion of the population involved) to selecting the best solution in the entire

population. Since our tournament selection creates tournaments with replacement

and separate tournaments are carried out to select each parent, not only will the

selection result in the same solution being selected far more often, but also that -

without the action of mutation - the entire population would be quickly replaced

with exact copies of a single ‘super-individual’. Mutation would indeed continue to

be applied however, becoming the primary means of search progress, making the

GA process equivalent to a random search. It is clear that avoiding such problems

makes comparison of this SSGA implementation with other approaches used in

this study more straightforward and meaningful.

• Mutation Rate
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– Type:- float ∈ [0.01, 1.0]

– Defines the rate, and therefore the probability, of a randomly selected gene being

mutated or not. In other words, if a uniform random number generated for each

mutation procedure is less than the mutation rate, then the gene is mutated. Given

our implementation makes use of ‘single gene’ uniform mutation operator (Chapter

4 - Section 4.3.2.3); the effect on mutation if different than for other more common

mutation schemes. Usually, lower values of this parameter results in less frequent

mutation operations and in turn, results in slower overall convergence towards the

global optimum with more risk of premature convergence to local optima - due to

imbalance with crossover operations. Higher values on the other hand will result

in faster convergence but will invariably produce too many perturbations to high

quality solutions to progress further towards optimality. For this operator, better

performance was found over more common operators where the rate of mutation

is much higher - typically closer to 1.0. I hypothesise that the operator attempts to

behave more like other typical operators - where the mutation rate give each gene

in a solution the chance to mutate - but there appears to be some benefit to having

no mutation at all. There is credence to this hypothesis in that early Evolution

Strategy (EA) implementations made use of only a mutation operator - where

crossover was omitted [89]. A mutation only GA variant was used successfully in

[72] and was selected as it was found to be fast and reliable; however this was in

the context of binary search spaces. We intend to investigate this further in terms

of continuous search spaces in future work.
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4.4 particle swarm optimisation (pso)

Particle swarm optimisation (PSO) is a population based metaheuristic introduced by Kennedy

and Eberhart in [67] and is heavily influence by the computational models and rules for

coordination developed at the time that simulated the flocking behaviour of birds and the

schooling of fish [67]. The PSO algorithm maintains a population of solutions (particles),

known as the swarm, each representing a point in n-dimensional space [7]. Initialising at

random locations in the search space, the particles traverse the landscape in order to discover

the global optimum of the given objective function [105]. This is in a way similar to a swarm

of organisms in nature foraging for food or a new nesting location, the particle swarm in PSO

makes use of the objective function - akin to biological feedback from an environment - to

determine the quality or the amount of food at a given location; the swarm searches the space

for the location containing the best solution - or most amount of food [105].

In models of flocking birds, the movement of each individual is determined both by (i)

the influence of it’s own perception of the environment and satisfaction of its goals and (ii)

the influence of social pressures such as: separation from other individuals in the swarm,

alignment to the average velocity of the flock and cohesion where the individual moves

towards the average position of its neighbours. Similarly, in PSO the movement of a particle

depends on its own velocity, good solutions or locations previous discovered by the particle

and the good solutions discovered by its neighbouring particles [33]. This particle behaviour

is modelled in PSO by having each particle maintain both the location of the best solution

discovered so far by the particle itself - along with a corresponding objective value - and the

location of the best solution discovered by all particles in its immediate neighbourhood [105].

4.4.1 Neighbourhood Topologies

The choice of neighbourhood topology used by a PSO algorithm can play a significant role

in its overall behaviour. Investigations, such as in [66] by Kennedy, show that a particles

neighbourhood topology interacts directly with the objective function of the problem being

optimised, and further, that it significantly affects the performance of the swarm where the

particular effect it has is dependent on the problem [87]. Therefore, where some topologies are

well suited to certain functions, other functions can present problems to these same topologies

[66, 87].
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Several topologies common to PSO implementations include [87]:

1. Ring Topology

• Also referred to as lbest (or local best) topology, here each particle in the swarm is

only affected by the best performance of its k immediately adjacent neighbours. A

common case is to have lbest = 2.

2. Star Topology

• In this topology, social influence passes through only one central individual/hub,

commonly selected at random, and is itself influenced by the rest of the population

[68, 87]. On each iteration, every particle in the swarm moves towards only the

central particle, and the central particle directs itself towards the best performing

particle in the neighbourhood. This topology can be used to control the possibility

of premature convergence, as since the population remains isolated from each

other directly, the central particle - constantly adjusting its trajectory towards the

best particle - effectively slows the transmission of good solutions throughout the

population and thus maintaining diversity.

3. Von Neumann / Toroidal Topology

• Here, each particle is connected to several others, specifically to the particles

immediately above, below and on each side of it and any edges are wrapped [68].

4. Fully Connected Topology

• Also referred to as a gbest (or global best) topology or full topology, this neigh-

bourhood scheme prescribes the sharing of information amongst all particles in

a population; that is, each particle is directly connected to one another. Here, all

particles in the population are influenced and directed by the best solution found

by any particle in the whole population. Kennedy and Mendes in [68] observed that

fully connected (gbest) populations had a tendancy of converging more quickly that

ring (lbest) populations and further, are more prone to local optima convergence.

This however does not prevent it from being one of the most widely used topologies

[87].

In the PSO algorithm used for this thesis, a fully connected topology is implemented since:

(i) no additional computation or neighbourhood link management needs to be performed

to make use of the topology, which would otherwise extend the required runtime of our

already very expensive parameter tuning processes, and (ii) it allows the PSO implementation
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to more closely resemble the neighbourhood structures of the other population-based meta-

heuristics being investigated; where operators typically choose members of the population at

random (i.e., fully connected). This allows for a fairer comparison to be conducted between

these approaches based on the merits of algorithmic approach rather than on the choice of

neighbourhood structure.

In the PSO literature, such as in [48], it is usual to find the term informants used in place

of ‘neighbour’ as used throughout the rest of the thesis as it more clearly represents the role of

individuals and their neighbours ‘informing’ the direction of search. However, for consistency

with the other metaheuristics described, the terms neighbour and neighbourhood will be

used.

4.4.2 Parameters of PSO

4.4.2.1 Particle Position, Velocity and Related Parameters

Every particle in the swarm maintains for each dimension of the problem both its position

within the search space and its velocity [105]. Velocity is added to the current position of

the particle to move it to a new position of the search space - representing a particle step

[105]. One of the first identified issues related to PSO was that of swarm explosion, where

the swarm would gradually begin to drift apart and more regularly violate bounds on the

search space [13]. This goes against the desire for a convergent algorithm. The solution

proposed by researchers was to ‘clamp’ the velocity to a lower and upper bound specified by a

range [−Vmax, . . . ,Vmax] [105] where Vmax is the maximum velocity threshold. By clamping

velocity, uncontrolled increases in magnitude from a particles current location can be avoided.

Whenever the velocity of a particle in any dimension exceeds ±Vmax it is set to the value of

the violated bound as in[30]:

vid(t+ 1) =


Vmax if vid(t+ 1) > Vmax

−Vmax if vid(t+ 1) < −Vmax

(4.5)

As with all tunable parameters in metaheuristics, and as per NFL (Chapter 2 Section 2.4.5.2),

there is not a single optimum value of Vmax to maximise performance in all conceivable

problem space and so time should be taken to find a suitable value for each problem space

being addressed [105].

The velocity is updated on each iteration of the algorithm based on the three components:

(i) inertia weight ω, (ii) the cognitive component c1 and (iii) the social component c2 [10].
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The inertia weight is used to specify how the current velocity influences the new velocity and

also controls the scope of the search [10]. A higher value of ω favours exploration and lower

values favour exploitation [10]; it is important to determine an appropriate balance, as with all

metaheuristics, between these two actions and so an inertia weight should be careful selected

to avoid either slow convergence or premature convergence. In a similar way, the cognitive

and social parameters specify how much social and cognitive influence contributes to the new

velocity [30]. When c1 < c2 the search is more biased towards global influences and biased

towards personal influence when c1 > c2 [30]. Also, and as with ω, higher and lower values

of c1 and c2 favour more exploration and exploitation respectively [30] and is determined by

the velocity update formula [10]:

vid(t+ 1) = ω× vid(t) + c1 × r1 × (pid − xid) + c2 × r2 × (pgd − xid) (4.6)

where vid is the velocity of a particle at iteration t of the algorithm, c1 and c2 represent

the cognitive and social components respectively and ω is the inertia weight. Two random

parameters r1 and r2 are also used to randomly modify the influence of the social and

cognitive parameters have on any given iteration [30, 10]. An illustration of a single velocity

and position update is shown in Fig. 4.9.

Figure 4.9: Velocity and Position Update in PSO

4.4.2.2 Inertia Weight

The motivation for introducing an inertia weight ω into the velocity equation was to gain

more control over exploration vs. exploitation which would eliminate the need for the Vmax

parameter [7]. The concept of inertia weight was first proposed by Shi and Eberhart in [119]

when they introduced a fixed inertia weight [7]. They stated that inertia weight plays a role in

balancing global vs. local search (exploration vs. exploitation); a low value of inertia weight

encourages a more local search of the available space where larger values would facilitate

a more global search [119, 7]. As well as simply selecting a fixed inertia weight for a given
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problem, as above, many other methods that adaptively control the value of ω have been

proposed in the literature; some of which will be discussed here.

A simple adaptive method is to linearly decrease value of ω so as to shift the mode of

the search from being more exploratory early on in the search process to more exploitative in

later stages [119, 120]. Xin et al. in [148] calculate the value of ω as follows [148]:

ω = (ωs −ωe)(tmax − t)/tmax +ωe (4.7)

where tmax represents the total number of algorithm iterations allowed, t is the current

iteration count and ωs and ωe represent the initial and final values for the inertia weight

respectively [148] - bounding the weight to the range [ωe,ωs]. A weight decreasing linearly

from ωs = 0.9 to ωe = 0.4 is shown to improve performance [120, 148].

Eberhart and Shi proposed a random inertia in [28], where a value of ω is selected

randomly from the range [0.5, 1.0] and by the equation [28]:

ω = 0.5+
rand[0, 1]

2
(4.8)

where rand[0, 1] is a uniformly distributed random number between 0 and 1. Thus, the mean

weight will be ≈ 0.75. It was used to address the issue with using linear decreasing inertia

weight when tracking non-linear dynamic systems, where it is not predictable whether more

exploration or more exploitation would be of benefit at any given time during execution [28].

They report that convergence rate is increased in early the stages of execution [28], although,

it is not reported whether this strategy is of any use for static systems.

Based on linear decreasing inertial weight and random inertia weight, Feng et al. presented

two strategies that used a chaotic mapping to set the inertia weight referred to as the Chaotic

Descending Inertia Weight (CDIW) and the Chaotic Random Inertia Weight (CRIW) [31]. They

report “outstanding” performance of CRIW in comparison to random inertial weight due

to the alternation between rough search and “minute” search throughout the evolutionary

process [31].

Al-Hassan et al. in [2] developed an optimised PSO algorithm known as PSOSA that

makes use of simulated annealing for optimising the inertia weight and was tested against an

urban planning problem [7].
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4.4.2.3 The Cognitive and Social Parameters

The cognitive and social parameters also referred to as the acceleration coefficients, are

represented by c1 and c2 respectively and as mentioned earlier, each determines how much

either cognitive (personal performance) influence or social (global performance) influence

contributes to the velocity update equation. It is often the case that these parameters are fixed

throughout execution of the algorithm with typical, and widely used, values of c1 = c2 = 2

[132]. However, a couple of adaptive variants have been identified.

Ratnaweera et al. in [110] presented a time-varying acceleration coefficient scheme

(PSO-TVAC) with the goal if enhancing global search at the beginning of the search pro-

cess and improving convergence to the global optima near the end of the search by adjusting

the values of c1 and c2 over time - specifically, by reducing the cognitive component and

increasing the social component [110]. With a large value of the cognitive component and

small value of the social component at the beginning of the search, the search will favour

global exploration of the available space. Conversely, a small value of the cognitive component

and a large value of the social component will better facilitate local exploitation of the global

best near the end of the search [110].

4.4.3 Boundary-Handling in PSO

Due to the nature of the displacement update of individual particles in PSO, there is always

the possibility that particles can overshoot any bounds placed on the search space and end

up in infeasible regions if not adequately caught and remedied. Left unchecked, individual

particles and indeed most of the population (the global search itself) can become lost outside

the boundaries resulting either with: (i) infeasible solutions to the given problem, if the search

converges on a solution in the infeasible regions and violating particles are allowed to be

evaluated, or (ii) potential for sub-optimal solutions to be returned, if the search eventually

returns to converge on a solution within bounds or if out-of-bound solutions are not evaluated.

Also, real-world applications often search in spaces that are high-dimensional and bounded

in order to retain the semantics of the parameters [19]. Therefore, detecting and repairing

boundary violations during the search process becomes an essential consideration. Additional

to this, the method chosen to deal with boundary violations has also been shown to be

crucial to the performance of PSO - where some methods may “paralyze” a PSO searching in

high-dimensional and complex search spaces [19].
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Despite this being an important consideration for constrained optimisation problems,

particularly in the case of real-world high-dimensional spaces, how a PSO should handle

boundary violations has been given little mention in the literature. A mathematical proof, and

empirical results using common velocity initialisation techniques, by Helwig and Wanka [52]

showed that for a PSO algorithm in high-dimensional spaces:

“Uniform velocity initialization causes all particles to leave the search space with

overwhelming probability (w.o.p.) with respect to the search space dimensionality

n... Examples demonstrated that this probability rapidly approaches 1 if the search

space dimensionality is increased. [52]”

It is further noted that none of the initialisation approaches used could fully avoid this

eventuality, the results suggest that half-diff velocity initialisation has the fewest drawbacks -

thus demonstrating the importance of boundary handling in influencing search performance

[52].

Chu et al. later provided further empirical results to strengthen this proof in [19] where

the average fraction of particles “flying outside” the boundary in the first iteration, from

100 independent runs of PSO against two benchmark functions at increasing dimensionality,

were recorded. The results showed a clear trend that this fraction increased significantly

as the dimensionality of each benchmark function increased. Also in this same study, Chu

et al. compared the ability of three basic boundary-handling schemes: random, reflecting

and absorbing, in handing and preventing boundary violations and how this translates to

algorithm performance over the two original benchmark functions. These results showed that

both the random and absorbing schemes had the ability to hamper the searches performed

with PSO when compared with the reflecting approach.

4.4.3.1 Boundary-Handling Approaches

This section covers several common boundary-handling schemes in the literature, including

those studied by Chu et al. in [19].

(i) random In this scheme, if a particle violates the boundary of one of its parameters, a

value chosen randomly from a uniform distribution, between the lower and upper bounds

of the offending parameter, is assigned as the new value [19]. That is, if Xc represents the

the location of the current infeasible particle variable and LB and UB denote the lower and

upper bounds of the variable respectively, then a new feasible location can be chosen as in

Xc ∈ [LB,UB] [101].

91

[ 22nd January 2020 at 18:00 ]



(ii) reflecting In this boundary-handling scheme, any violation to a parameter bound-

ary is ‘reflected’ back inside the feasible region as if having ricocheted off a hard surface [149].

This is done by relocating the particle at the violated boundary and the sign of the velocity

component in the offending dimension is flipped [149]

(iii) damping The scheme works similarly to reflection in that the particle rebounds

back into the feasible region; however, a randomly generated damping factor from the interval

[0, 1] is used to reduce the velocity component in that dimension which, as with reflecting,

has its sign changed [149]. Also as with the reflecting scheme, this reflection is carried out

after having been absorbed to the violated boundary [149].

(iv) absorbing Here, a particle violating a parameter boundary is set to the boundary

value it violated. For example, if a particle would pass across the upper bound for a given

parameter, it would instead be placed at the upper boundary and its velocity at that dimension

zeroed [149]. The name of the approach stems from the metaphor of a particle leaving a

parameter boundary and being ‘absorbed’ back. As before, if we consider Xc to be the location

of the current infeasible particle variable, then Xc is set to the violated boundary as follows

[101]:

Xc =


LB if Xc < LB

UB if Xc > UB

(4.9)

Even though the velocity is zeroed, the particles memory of personal best and global best

locations will reorient the particle inside the feasible search space [149].

4.4.4 Particle Swarm Optimisation (PSO): Implementation

4.4.4.1 Details and Description

This implementation was derived from code sourced from [85] and [86] by Gandhi Manalu and

was modified in order to work within our experimental framework. The main omission from

this code however, which had to be implemented, was that of handling boundary violations

(see Section4.4.3) so particles were simply allowed to move beyond the bounds on the search

space and therefore assuming that enough particles would remain within bounds in order to

find the global optimum. This approach is suitable if it is known that there are no points or

regions in the infeasible space with a better objective value than that of the feasible global

optima - as is the case with the example benchmark function provided with the source code
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cited above - as any bound violating particles would eventually, and likely rather quickly,

be drawn back within bounds through the effect of the cognitive and social components of

the velocity formula (See section 4.4.2.1). Otherwise, any infeasible solution measuring better

performance than the true global optima will likely cause the search to converge somewhere

in infeasible space.

Since we do not know the nature of the search spaces beyond the defined bounds on our

benchmark function set, it was necessary to use a boundary handling strategy to avoid any

possibility of objective performances being reported from infeasible regions. For this we opted

to use a simple absorbing scheme (Section 4.4.3) - one in which the velocity of the violating

parameter is also set to zero. During our studies, we found that this scheme outperformed

other variants tested, namely: (i) absorbing and truncating the velocity to 30% of its original,

(ii) Random replacement within the bounds and a random update to the velocity and (iii)

a dampened reflect scheme - where the solution was reflected back into the bounds at 20%

of the distance violated and the velocity was set to zero. A ‘full’ reflecting scheme was tried

initially - where 100% of the violated distance was used and velocity zeroed - however this

lead to particles which were reflected outside the opposing boundary. Although we could

have dealt with this with multiple reflects (within a while loop) until the particle lay within

the bounds, it was felt that since there was no mention found in the literature relating to this

issue with the reflecting scheme that it would not be conducive to a ‘common’ implementation

of the algorithm.
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4.4.4.2 Pseudocode

Algorithm 9 Pseudocode of PSO Implementation

1: procedure PSO(iWeight, cogCoeff, socialCoeff, probSize, popSize) . Main loop

2: problemSize← probSize

3: swarm← ∅

4: swarmSize← popSize

5: w← iWeight . Inertia Weight

6: c1 ← cogCoeff . Cognitive Acceleration Coefficient

7: c2 ← socialCoeff . Social Acceleration Coefficient

8: Vmax ← maximum allowed value

9: fitnessValueList← instantiate(swarmSize) . Current list of all particle fitnesses

10: pBestLocations← instantiate(swarmSize) . List of particles best locations so far

11: pBestScores← ∅ . Best objective scores of all particles so far

12: gBestScore← ∅ . Objective score of global best

13: gBestLocation← ∅ . Location of global best

14: initialiseSwarm

15: updateFitnessList

16: while (terminate == false) do . Main Loop

17: for (i = 0 to swarmSize− 1 by 1) do . Update pBest Lists

18: pBestScores[i]← fitnessValueList[i]

19: pBestLocations[i]← swarm[i].location

20: end for

21: bestParticleIndex← getMinIndex(fitnessValueList)

22: if (fitnessValueList[bestParticleIndex] < gBestScore) then . Update

gBestScore

23: gBestScore← fitnessValueList[bestParticleIndex]

24: gBestLocation = swarm[bestParticleIndex].location

25: end if

26: for (i = 0 to swarmSize− 1 by 1) do

27: r1 ← randomfloat ∈ [0.0, 1.0]

28: r2 ← randomfloat ∈ [0.0, 1.0]

29: particle← swarm[i]
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30: newVel← initialise() . New list of velocities for the particle

31: newLoc← initialise() . New location of the particle

32: for (j = 0 to problemSize by 1) do

33: */Update the velocity and position of the current particle */

34: newVel[j] ← (w ∗ particle.velocity[j]) + (r1) ∗ c1) ∗

(pBestLocations[i].location[j] − particle.location[j]) + (r2 ∗ c2) ∗ (gBestLocation −

particle.location[j])

35: newLoc[j]← particle.location[j] +newVel[j]

36: (*/Boundary Handling: Absorbing and Zero Velocity */)

37: if (newLoc[j] < LB) then

38: newLoc[j]← LB

39: newVel[j]← 0.0

40: else

41: if (newLoc[j] > UB) then

42: newLoc[j]← UB

43: newVel[j]← 0.0

44: end if

45: end if

46: end for

47: particle.velocity← newVel

48: particle.location← newLoc

49: end for

50: updateFitnessList

51: end while

52: return gBestLocation and gBestScore

53: end procedure

54: procedure initialiseSwarm

55: for (i = 0 in swarmSize− 1 by 1) do

56: newParticle← initialise

57: /* Randomise the location in the space defined by the representation */

58: newLoc← instantiate()

59: newVel← instantiate()

60: for (j = 0 in problemSize− 1) do

61: newLoc[j]← uniform random float ∈ [LB,UB]

62: newVel[j]← uniform random float ∈ [−Vmax,Vmax]

63: end for
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64: newParticle.location← newLoc

65: newParticle.velocity← newVel

66: swarm[i]← newParticle

67: end for

68: end procedure

69: procedure updateFitnessList

70: for i = 0 in swarmSize− 1 by 1 do

71: fitnessValueList[i]← scoreSolution(swarm[i])

72: end for

73: end procedure

74: procedure getMinIndex(fitnessList)

75: index← 0

76: minValue← fitnessList[0]

77: for (i = 0 in fitnessList.length by 1) do

78: if (fitnessList[i] < minValue) then . For a minimisation problem

79: index← i

80: minValue← fitnessList[i]

81: end if

82: end for

83: return index

84: end procedure

4.4.4.3 Tunable Parameters

The parameters used to control the performance of the algorithm in this implementation are

the following:

• Population Size

– Type:- integer ∈ [2, 250]

– Used by the initialization procedure to define the size of the population that will

remain fixed throughout execution of the algorithm. The default population size

initially trialled by SMAC is set to 50

• Inertia Weight
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– Type:- float ∈ [0.4, 1.0]

– The inertia weight is used to scale the effect of the previous velocity of a particle

in a given dimension. A lower and upper bound of 0.5 and 1.0 respectively was

suggested by Eberhart and Shi in [28] and so we allowed SMAC to explore a little

below this value. Also as per [28] the default value used by SMAC in the tuning

process was 0.5.

• Cognitive and Social Acceleration Coefficients (c1 and c2)

– Type:- float ∈ [1.0, 2.0]

– These parameters are responsible for scaling the influence of the location of a

particles ‘best ever’ solution and the location of the global best solution in the

velocity update formula respectively. The upper bound for these parameters was

determined by Clerc [20], where c1 = c2 = 2.05 and rounded to 2. Suganathan in

[132] also used a fixed value of 2 for both coefficients. The default value is also 2.0.
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4.5 simulated annealing (sa)

Simulated Annealing (SA), developed by Kirkpatrick et al., is a general purpose algorithm for

the global optimisation of continuous objective functions[27] 5 which takes its inspiration from

the process of metallurgical annealing, and is implemented as an extension of the Metropolis-

Hastings algorithm - a Monte-Carlo algorithm originally used to draw sample states from

the probability distributions of thermodynamic systems. SA is essentially a descent method

for global optimisation - modified by random ascent moves [27] - in which the search for

solutions mimics the controlled heating and cooling of annealing in order to find the global

optima of an objective function. The slow cooling, often referred to as the cooling schedule,

is used to decrease the probability of accepting worse solutions nearer the end of the search

process, and conversely, allowing for greater exploration of the solution space in the early

stages. SA has been shown to produce solutions that lie near to the global optimum in a

computation time within a polynomial upper bound; these findings have further been shown

to be independent of initial conditions [27].

The basic idea behind SA, is to have the heuristic generate, uniformly at random, a move from

a set of neighbouring states N and probabilistically decide on whether or not to accept the new

move - determined by the acceptance probability function. By making use of the temperature,

updated by the cooling schedule as the search progresses, the acceptance probability function

will accept more worsening moves at the beginning of the search - maximising exploration of

the space - and gradually reducing to stochastic descent as the temperature approaches zero.

Therefore, SA is composed of two stochastic processes: one for the generation of candidate

moves and another of the acceptance of candidate moves [27].

In the next few sections, the underlying concepts behind simulated annealing will be

discussed. Firstly, we gain some intuition into annealing within the field of condensed matter

physics and how this motivated the development of the Metropolis-Hastings algorithm - the

backbone of the complete SA algorithm. Next, SA itself is described in comparison to physical

annealing and how the Metropolis-Hastings algorithm is used in SA to imitate annealing for

solving optimisation problems.

5 It is also a popular monte-carlo approach for any kind of optimisation including discrete optimisation such as

combinatorial optimisation [27]
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4.5.1 Annealing in Condensed Matter Physics

Although largely beyond the scope of this section, a short description of the physical annealing

process will aid further discussion and understanding of the simulated annealing algorithm.

In condensed matter physics, annealing is a thermal process for allowing solids in a heat bath

to obtain low energy states [1]. This process can be stated in the following two steps [1]:

1. Melt the solid in a heat bath by increasing the temperature to a maximum value

2. Slowly and carefully decrease the temperature of the heat bath until the particles of the

solid rearrange themselves at it’s ground state

As described by Aarts et al. in [1], in the liquid phase of the material, that is, when the

atoms are in an excited state, the atoms arrange themselves randomly. Conversely, at the

ground state of the material the atoms form in a highly structured lattice in which the energy

value is minimal [1]. The authors continue to explain that the ground state of the material can

only be reached if the maximum temperature is high enough and the cooling sufficiently slow.

4.5.2 Acceptance Probability

When the neighbouring solution selected is a worsening move, the probability P of accepting

the solution is calculated from a function of the difference between the solution scores ∆E

(between the current solution and the neighbour solution) and the current value of the

temperature parameter T , as in [82]:

P = e
−∆E
T (4.10)

The difference ∆E is calculated as the fitness of the neighbour score minus the fitness of the

current solution score [82]:

∆E = f(x ′) − f(x) (4.11)

From equation 4.10, the probability that a worsening move is accepted is larger at a higher

value of T and smaller at lower values of T . At very low values of T , the simulated annealing

algorithm behaves more like a hill climbing algorithm [117] - accepting only those moves

which improve on the current solution. Also, as the value of ∆E increases, i.e., the difference

between the current and neighbouring solution scores, the probability of acceptance at a given

T decreases exponentially [117].
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4.5.3 Cooling Schedules

The cooling schedule, also known as the annealing schedule, in SA is used to determine a

finite sequence of value for T over time as the algorithm progresses and a finite number of

steps taken at each value of T [1]. A cooling schedule is fully defined by [1]:

• An initial value of T

• A minimum value of T

• A decrement function used to reduce the value of T over time

• The number of steps to be taken at each temperature

There are many cooling strategies proposed in the current SA literature however a common

method, first proposed by Kirkpatrick in [69] is simply to decrease the temperature geomet-

rically by a fixed constant α ∈ [0.0, ..., 1.0] [1] and is thus known as the geometric cooling

schedule. This scheme falls under the category of static cooling schedules [1], where the

rate of cooling is not influenced by the state of the search; thus, the strategy remains fixed

throughout the search process and must be specified before execution of the algorithm[53].

Conversely, adaptive (or dynamic) cooling schedules adjust the rate of temperature decrement

from information obtained during execution of the algorithm [53].

In [130], Strenski and Kirkpatrick attempted to categorise optimal cooling schedules by

studying SA over a set of very small problem instances over a finite number of iterations using

three common schedules: geometric, linear and inverse-logarithmic [130, 53]. Their results

suggested that optimal schedules are not those which decrease monotonically [130, 53] - that

is, they do not only decrease with time but may remain stable or increase. The experiments

also show that there is very little difference, in terms of performance, between linear and

geometric schedules [130, 53]. Furthermore, the authors observe that “excessively high” initial

temperatures do not affect geometric schedules [130, 53].

For our experiments, a static schedule implementation (Linear Cooling) is used with the

purpose of producing performance results closer to that of a baseline typical SA implementa-

tion. Dynamic schedules have been shown to improve the performance (in terms of solution

quality) over some static schedules - therefore, their use would present an atypical, and thus

unfair, viewpoint of SA when compared to typical implementations of other metaheuristic

approaches. The following subsections outline a few of the more common static schedules; as

we make no use of dynamic schedules, these are not covered.
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4.5.3.1 Geometric Cooling Schedule

Also referred to as the exponential cooling schedule and first proposed by Kirkpatrick at al. in

[69] during their early work on cooling schedules [1], the geometric cooling schedule is one

of the simplest of the static schedules but is still often in use in many practical applications

[1]. It is categorised by the use of a positive real-valued constant α with a value less than but

close to 1.0; typically set between 0.8 and 0.99 [1]. The temperature decrement function is then

given by [98]:

Tt = T0α
t (4.12)

where Tt represents the temperature at time/cycle t and T0 is the starting temperature.

4.5.3.2 Logarithmic Cooling Schedule

Of some special theoretical importance, the logarithmic cooling schedule first proposed by

Geman and Geman in [37], makes use of the following decrement function [98]:

Tt =
c

log(c+ d)
(4.13)

where d is typically set to a value of one. It has been shown theoretically in [43], “that when c

is set greater than or equal to the largest energy barrier in the problem, this schedule will lead

the system to the global minimum state in the limit of infinite time”[98]. However its use is

impractical due to its extremely slow rate of temperature decrease [98].

4.5.3.3 Linear Cooling Schedule

In the linear schedule, another commonly used static schedule [98], the value of the temperat-

ure parameter is decreased by a constant amount by the decrement function [98]:

Tt = T0 − ηt (4.14)

4.5.4 Simulated Annealing (SA): Implementation

4.5.4.1 Details and Description

The main detail defining this implementation of SA is that it makes use of a linear cooling

schedule as opposed to the more common geometric schedule. This decision was made to

account for the automatic tuning of the algorithm and the fact that comparisons would be

limited to a maximum number of function evaluations. When tuning SA making use of

a geometric schedule, the automatic parameter tuner would often produce a value for α
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that reduced the temperature too quickly resulting in a large portion of the search being

carried out at the minimum temperature - often very close to zero. Since these portions of

the search processes are almost equivalent to a hill climb (descent) algorithm, it was felt that

the results from the algorithm would not fully represent the performance achievable by SA

when compared to hill climbing. As such, a linear schedule was selected that would not use

parameters tuned by our parameter tuner but instead used a constant decrement calculated

as a function of: (i) the maximum number of function evaluations Emax to be carried out

before termination, (ii) the number of iterations to be carried out at each temperature Titers

and (iii) the initial and minimum values of T - Tinit and Tmin. Specifically, the decrement d

was calculated as follows:

d =
Tdiff
Tstates

where: Tdiff = Tinit − Tmin

and: Tstates = Emax/Titers

(4.15)

Tdiff represents the difference between the initial temperature and the minimum temperature

and Tstates is the total number of temperature states. This function results in a value for d that

adapts to the other parameters tuned automatically by our selected tuner so as to reach Tmin

on the final round of iterations. The linear cooling schedule is also used during the tuning

of the remaining parameters, so although we have removed the ability to tune the cooling

schedule itself, parameter configurations will be sought that maximise the performance of the

algorithm when using this scheme.
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4.5.4.2 Pseudocode

Algorithm 10 Pseudocode of SA Implementation

1: procedure SA(stepValue, pSize, startT, minT, iterT α) . Main loop procedure

2: stepSize← stepValue

3: problemSize← pSize

4: T ← startT

5: Tmin ← minT

6: Tdec← getTDecrement

7: iterPerT ← iterT

8: Sbest ← null . Overall best solution discovered

9: Sbest.score ← null

10: S← generateInitialSolution(problemSize)

11: Sscore ← evaluateSolution(S)

12: while (terminate == false) do

13: for (i = 0 to iterPerT -1 by 1) do

14: N← generateNeighbour(S,problemSize, stepSize) . random neighbour of

S

15: Nscore ← evaluateSolution(N)

16: if (Nscore < Sscore) then

17: S← N

18: Sscore ← Nscore

19: if (Sscore < Sbest.score) then

20: Sbest ← S

21: Sbest.score ← Sscore

22: end if

23: else

24: r← uniform random float ∈ [0.0, 1.0]

25: if (calculateAcceptance(Sscore, Nscore, T ) < r) then

26: S← N

27: Sscore ← Nscore

28: if (Sscore < Sbest.score) then

29: Sbest ← S

103

[ 22nd January 2020 at 18:00 ]



30: Sbest.score ← Sscore

31: end if

32: end if

33: end if

34: end for

35: T ← T − Tdec

36: if (T < Tmin) then

37: T ← Tmin

38: end if

39: end while

40: return S . return best solution discovered

41: end procedure

42: procedure GenerateInitialSolution(problemSize)

43: solution← init

44: for (i = 0 to problemSize-1 by 1) do

45: solution[i]← uniform random float ∈ [0.0, 1.0]

46: end for

47: return solution

48: end procedure

49: procedure GenerateNeighbour(solution, problemSize, stepSize)

50: neighbour← solution

51: r← uniform random float ∈ [0.0, 1.0]

52: boundMin← neighbour[i] − stepSize

53: boundMax← neighbour[i] + stepSize

54: if (boundMin < 0.0) then . Boundary handling

55: boundMin← 0.0

56: else

57: if (boundMin > 1.0) then

58: boundMin← 1.0

59: end if

60: end if
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61: boundRange← boundMax− boundMin

62: r← uniform random float ∈ [0.0, 1.0]

63: step← boundRange ∗ r

64: neighbour[i]← boundMin+ step

65: return neighbour

66: end procedure

67: procedure CalculateAcceptance(Sscore, Nscore, T )

68: return exp((Sscore −Nscore)/T)

69: end procedure

70: procedure getTDecrement

71: Tdiff← T − Tmin

72: totalT − iters← maxEvals/iterPerT

73: return Tdiff/totalT − iters

74: end procedure

4.5.4.3 Tunable Parameters

The parameters used to control the performance of the algorithm in this implementation are

as follows:

• Step Size

– See Sections 4.1.3 and 4.2.3.3 for a complete description

• Initial T

– Type:- float ∈ [0.5, 200.0]

– Defines the initial temperature from which to start execution of the algorithm. The

default value used initially by SMAC is 1.0

• Min T

– Type:- float ∈ [0.00001, 0.45]

– Defines the minimum temperature of the algorithm where the annealing schedule

should stop reducing the temperature. In regular implementations, the minimum

temperature would represent a stopping criterion. However, since we require each

algorithm to run for a set number of objective function evaluations, if the minimum
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temperature is reached before the evaluation budget is exhausted, the algorithm

will perform at that temperature for the remainder of the allocated budget

• Iterations Per T

– Type :- integer ∈ [10, 500]

– Defines the number of iterations performed by the algorithm at each temperature

step. The default value used initially by SMAC during tuning is 100
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4.6 differential evolution (de)

Differential Evolution (DE) is a population based metaheuristic from the class of evolutionary

algorithms first introduced by Storn and Price in [129] and was designed specifically for the

optimisation of real-valued, real parameter functions. In a similar way to other evolutionary

algorithms such as GA, DE generates new solutions through mutation and crossover. Mutation

in DE creates a new solution by adding a scaled difference between two randomly chosen

solutions from the population to a third random solution[95, 129]. The resulting solution is

referred to as the donor solution and will be crossed over with another randomly preselected

(parent) solution referred to as the target solution to produce a new candidate solution referred

to as the trial vector [129, 23]. If the trial solution possesses a better objective score than the

target solution the target solution will be replaced by the trial solution in the next generation -

this final step is referred to as selection [129].

This solution generation scheme differentiates DE from other evolutionary algorithms

that typically generate new solutions in a more probabilistic manner through the action

of probabilistic crossover and mutation operators [95]. Another differentiation is that DE

prescribes the replacement of child solutions only if that solution is better than it’s parent [95];

GA, for example, instead replaces each child solution, even if that child creates a worsening

move in respect to the population.

A typical DE implementation can now be said to consist of four fundamental steps: (i)

population initialisation, (ii) mutation, (iii) crossover and (iv) selection, each of these will be

covered in more detail in the next sub section.

4.6.1 The Differential Evolution Process

In this section each of the four fundamental steps in differential evolution will be discussed in

order of occurrence in the evolutionary process.

4.6.1.1 Initialisation of the Population

DE begins with a randomly initialised population of NP n-dimensional real-valued solution

vectors which represents a candidate solution to the n-dimensional problem being tackled

[23]. For each parameter in a solution vector, it is often the case that it is to be bound within

a given range beyond which the solution will become infeasible. Storn and Price [129] note
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that random population generation should cover the whole search space and so prescribe

the use of a uniform probability distribution for all random decisions in DE, including those

involved in solution generation. This is also noted by Das and Suganthan [23]. Therefore, a

given solution will be constrained by the minimum and maximum bounds of its parameters,

as in [23]:

~X = {[x1,min, x1,max], [. . .], [xn,min, xn,max]} (4.16)

So then the jth parameter of the ith solution vector may be instantiated as follows [23]:

xj,i = xj,min + ri,j ∈ [0, 1] · (xj,max − xj,min) (4.17)

where ri,j is a uniformly distributed real value from the interval [0, 1] and is generated

individually for each parameter j of solution vector i [23].

4.6.1.2 Mutation

As mentioned briefly earlier, for each target vector of index i, where i = {1, 2, . . . ,NP} and NP

is the population size, the simplest form of mutation in DE is to create a donor vector from

three randomly selected individuals ~Xri1
, ~Xri2 and ~Xri3

in the population [23]. Where ri1, ri2

and ri3 are indices of the population in the range [1,NP] which are to be mutually exclusive

as well as being distinct from the the target vector index i [129, 23]. This condition clearly

holds only if the population size NP is > 4 [129]. A constant F ∈ [0, 2] [129], which we refer to

as the differential weight, scales the difference between any two of the three vectors and this

scaled difference is added to the third [129, 23]. Thus, F is used to control the magnitude of

the differential variation [129]. The mutation function for generating a mutant vector ~Vi is as

follows:

~Vi = ~Xr1 + F · (~Xr2 − ~Xr3) (4.18)

A graphical example of the production of a mutant vector using differential mutation is shown

in Fig. 4.10 below.

As shown in this example, the mutation step begins with the selection of three random

position vectors (indicated in black) are first selected from the population. Next, the difference

vector is calculated between the two vectors ~Xr2 and ~Xr3 (represented by the longest red

arrow); this difference is calculated by the bracketed sub-term in the second term of equation

4.18. Finally, the difference vector is weighted by F ∈ [0, 2] and added to remaining random

vector ~Xr1 resulting in a new mutant position vector (the shorter red arrow) to be recombined

with the parent vector in the crossover step. It is worth briefly mentioning that the labelling of
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Figure 4.10: Production of a mutant vector ~Vi from the scaled difference vector (~Xr2 − ~Xr3 )

the three vectors Xri1 , Xri2 and Xri3 is down to the order in which they have been selected from

the population, thus, the choice of vectors to be used for the different terms of the mutation

equation are arbitrary and so any other ordering of vectors in the equation should not impact

the performance of the algorithm.

4.6.1.3 Recombination

A recombination step is introduce that is designed to improve the diversity in the resulting

trial vectors, where a trial vector [129]:

~Ui = [u1,i,u2,i, . . . ,un,i] (4.19)

is generated according to [129]:

uji =


vji,G+1 if (randu ∈ [0, 1] 6 CR)∨ j = randn ∈ [0,n]

xji,G if (randu ∈ [0, 1] > CR)∧ j 6= randn ∈ [0,n]

where, j ∈ [0,n]

(4.20)

where, CR ∈ [0, 1] is a user supplied constant referred to as the crossover weight which

determines an approximate rate in which parameters will be donated from the mutant vector,

randu is a uniformly random number - regenerated for every jth parameter of the ith vector

[23]. randn is randomly chosen parameter index that ensured that at least one parameter

value in ~Vi is recombined with ~Ui and is generated once for each vector in each generation

[23]. This type of crossover represents the binomial (uniform) crossover described in Section

4.6.2 below [23].
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4.6.1.4 Selection

In order to maintain the size of the population, a selection operator is applied to decide which

of the target vector ~Xi or ~Ui is carried over to the next generation G, i.e., G = G+ 1 [23]. For a

minimisation problem, this selection is determined by:

~Xi,G+1 =


~Ui,G if f(~Ui,G) 6 f(~Xi,G)

~Xi,G if f(~Ui,G) > f(~Xi,G)

(4.21)

where, f(~X) is the objective function being minimised [23]. In short, this means that the trial

vector will replace the target vector in the subsequent population iff returns an equal or better

objective function value and the target vector is kept otherwise [23]. As noted in Section 4.6

this is one way DE differs from other evolutionary algorithms, where the replacement of only

solutions of greater or equal value means that the mean objective value of the population can

only increase or stay the same but never degenerates [23]

4.6.2 Variants of DE

Apart from the commonly used DE scheme described thus far, there are as many as 10

different variants proposed by Price et al. in [129, 108]. Different DE strategies are represented

by the notation DE/x/y/z where [129, 108]:

1. x represents the base vector that is to be mutated

2. y denotes the number of difference vectors to be used, and

3. z specifies the crossover method to be used either bin (independent binomial) or exp

(exponential)

The strategy presented above is described as DE/rand/1/bin, as: (i) the base vector is randomly

selected, (ii) 1 vector difference is added to this base vector and (iii) the number of parameters

provided by the mutant vector closely follows a binomial distribution [129, 108].

4.6.3 Differential Evolution (DE): Implementation

4.6.3.1 Details and Description

This implementation was based loosely on the differential evolution implementation source

code found at [84] and pseudocode found in [129] and represents a DE/rand/1/bin approach as

described in Section 4.6.2. As such the implementation randomly selects a base vector (the
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vector to be mutated), one difference vector is added to the base vector and the number of

mutant parameters recombined with the base vector is roughly binomial.
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4.6.3.2 Pseudocode

Algorithm 11 Pseudocode of DE Implementation

1: procedure DifferentialEvolution(dWeight, xProb, popSize, pSize) . Main loop

2: problemSize← pSize

3: populationSize← popSize

4: diffWeight← dWeight

5: xoverProb← xProb

6: population← init()

7: S← generatePopulation(problemSize)

8: while (terminate == false) do

9: xIndex← uniform random integer ∈ [0,populationSize− 1]

10: aIndex,bIndex, cIndex← null

11: do

12: aIndex← uniform random integer ∈ [0,populationSize− 1]

13: while (aIndex == xIndex)

14: do

15: bIndex← uniform random integer ∈ [0,populationSize− 1]

16: while (bIndex == xIndex || bIndex == aIndex)

17: do

18: cIndex← uniform random integer ∈ [0,populationSize− 1]

19: while (cIndex == xIndex || cIndex == bIndex || cIndex == aIndex)

20: randIndex← uniform random integer ∈ [0,pSize− 1]

21: parent← population[xIndex]

22: candidate← parent . clone

23: individualA← population[aIndex]

24: individualB← population[bIndex]

25: individualC← population[cIndex]

26: for (i = 0 to pSize by 1) do

27: r← uniform random float ∈ [0.0, 1.0]

28: if (i == randIndex || r < xoverProb) then

29: candidate[i] ← individualA[i] + diffWeight × (individualB[i] −

individualC[i]))

30: end if

31: end for
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32: for (j = 0 to pSize by 1) do . Boundary handling: absorbing to LB or UB

33: if (candidate[j] < 0) then

34: candidate[j] = 0.0

35: else

36: if (candidate[j] > 1) then

37: candidate[j] = 1.0

38: end if

39: end if

40: end for

41: parent.score← evaluateSolution(parent)

42: candidate.score← evaluateSolution(candidate)

43: if (candidate.score < parent.score) then

44: population[xIndex]← candidate

45: end if

46: end while

47: return getBest(population)

48: end procedure

4.6.3.3 Tunable Parameters

The parameters used to control the performance of the algorithm in this implementation are

as follows:

• Population Size

– Type:- integer ∈ [2, 250]

– Used by the initialization procedure to define the size of the population that will

remain fixed throughout execution of the algorithm. The default population size

initially trialled by SMAC is 20

• Differential Weight

– Type:- float ∈ [0.01, 1.0]

– Used in the mutation step to scale the difference between two of the three randomly

selected mutation vectors which are to be added to the third random vector. The

default value of this parameter and therefore the first one attempted by SMAC is

0.5. In [23], the authors state that this parameter has a value that typically lies in

the range [0.4, 1.0] so this default seemed an appropriate starting point.
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• Crossover Rate

– Type: float ∈ [0.01, 1.0]

– Used in the binomial crossover procedure, this parameter represents the probability

(or rate) that parameters from the mutant vector is passed on to the trial vector.

Further, Das and Suganthan [23] note that the use of crossover rate only aids in

approximating the true probability of a crossover occurring.
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4.7 covarience matrix adaption evolutionary strategy (cma-es)

CMA-ES is an extension of the well-known Evolution Strategies, and was mostly developed

by Nikolaus Hansen and Ann Auger [82]. It targets difficult black-box optimisation problems,

which may be non-linear and non-convex [45].

The framework is highly complex so we focus here only on the high-level aspects and

parameters we consider for variation. Additionally, whilst variants intended for multi-objective

optimisation and elitist variants have been proposed [45] this section will only deal with single

objective optimisation and non-elitist selection. A more in depth treatment of this approach

can be found in the excellent tutorials by Hansen [45] and Luke [82].

4.7.1 Algorithm Overview

The classic version of CMA-ES, more formally referred to as (µ/µw, λ)CMA-ES, contains

several components intended to improve its performance. Further from [82], we will begin

with a description of a basic implementation without inclusion of these components be-

fore discussing these components further. CMA-ES generates new solutions by sampling a

multivariate Normal distribution, specified by a mean vector ~m of length n and an n× n

covariance matrix C [82].

During execution of the basic CMA-ES loop, the algorithm samples the µ highest quality

solutions from its current distribution, evaulates these solutions and uses these to update the

distribution [82]. Sampling and updating the covariance matrix to reflect these solution vectors

C is achieved more easily through eigendecomposition of C into BDDBT , which effectively

splits the matrix into two separate matrices B and D [82].

In CMA-ES, new solutions are sampled randomly from the current distribution - where

the actual sampling is scaled by a value σ, the step size parameter, which for all intents and

purposes acts as the algorithms mutation rate; the larger the value of σ, the further spread out

the samples are relative to the current distribution [82].

Given the components: C, ~m and σ, a point Pi in the solution space is represented by

three different but equivalent forms, aimed at making the mathematics easier to perform[82].

Specifically, a solution is given by: Pi = {~x(i),~y(i),~z(i)}; these are defined as:
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1. ~z(i): an n-dimensional real-valued solution which has been sampled at the multivariate

Normal distribution N(~0, I) where the mean ~0 is the origin (at zero) with I - the identity

matrix - as the n×n covariance matrix [82]

2. ~y(i): is the point ~z(i) that has been transformed into the space where the distribution

currently is, i.e.,N(~0, I). This is achieved through the use of the equation ~y(i) = C
1
2~z(i) =

BDBT~z(i) = BDT~z(i) [82]

3. ~x(i): this is the point ~y(i) scaled by the step size σ and translated by ~m i.e., ~x(i) =

~m+ σ~y(i) [82]

Remaining in the context of this simple implementation, the distribution can be updated by

completely rebuilding the distribution to fit with the new samples, for example by firstly

updating the mean as in [82]:

~m← 1

µ

µ∑
i=1

~x(i) (4.22)

and update the covariance matrix by [82]:

C← 1

µ− 1

µ∑
i=1

(~x(i) − ~m)(~x(i) − ~m)T (4.23)

However, given that the fitnesses for our set of ~x have already been calculated so we could use

their rank order instead of simply relying on truncation selection. This is done by sorting the

truncated population such that fitter solutions appear first [82]. Weights are then calculated

for each member of the ranked truncated population to give each more or less weight that

could impact the outcome of ~m and C. These should be assigned in such a way as to have

all weights sum to 1.0 [82]. Using these weights the distribution mean ~m and the covariance

matrix C can be updated by the following [82]:

~m← 1

µ

µ∑
i=1

ωi~x
(i) (4.24)

and update the covariance matrix by [82]:

C← 1

µ− 1

µ∑
i=1

ωi(~x
(i) − ~m)(~x(i) − ~m)T (4.25)

However, and as mentioned previously, CMA-ES makes use of several components in order

to improve the performance of the algorithm [82].

4.7.2 CMA-ES for Large-scale Optimisation

It is well documented that due to the high computational cost associated with calculation of

the co-variance matrices in particular, that CMA-ES in its original form is unsuitable for use on
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large-scale optimisation problems [114]. Indeed, from our own experiences with the algorithm,

by the time we attempted to solve for 1000D problems, runtime was already exceeding 2-3

hours for a single repetition. Given that there was also a need to tune CMA-ES as we did for

our other approaches (See Chapter 6) where up to 1000 repeats of the algorithm would be

performed, using the full (original) approach was not feasible.

A partial solution to the above problem comes from a small modification to the approach

sep-CMA-ES - as introduced by Rose and Hansen in [114] and provided with our imple-

mentation (see Section 4.7.3) - where instead of calculating full co-variance matrices, only

diagonal matrices are computed; reducing the time and space complexity from quadratic

(as we ourselves were observing) to linear - so effectively reducing model complexity and

increasing the learning rate [114]. This modification however comes with reduced generality to

the types of problem of which it is suitable; specifically, by reducing the co-variance matrices to

diagonal (identity) matrices the degrees of freedom possessed by the original implementation

that provided rotational invariance - allowing it to successfully solve many non-separable

problems - is much reduced meaning that dependencies between solution variables are not

captured and coordinates are sampled independently [114]. Consequently, some decreased

performance should be expected from this variant [114]. Ros and Hansen report that for sep-

arable problems, sep-CMA-ES “significantly outperforms” regular CMA-ES with the added

benefit that the time and space scale-up is linear [114]. Further, for low to moderate levels of

non-separability sep-CMA-ES still outperforms CMA-ES for all dimensionalities by almost

a factor of n10 + 1 [114]. However, for larger levels of non-separability, the authors report an

advance to sep-CMA-ES only on problem dimensionalities greater than 100 [114]. Lastly, for a

single fully non-separable problem instance (the block-ellipsoid function) regular CMA-ES

was always found to be significantly superior [114].

However despite the possible loss of performance over our benchmark suite, of which

there are several non-separable problems, we continue to use sep-CMA-ES for our experiments

for its significant - and in practice, noticeable - reduction in time complexity.

4.7.3 Covariance Matrix Adaption Evolution Strategy (CMA-ES): Implementation

4.7.3.1 Details and Description

The CMA-ES implementation is that of a Java library sourced from [44] to work within our

experimental framework. This implementation of the algorithm, using its default settings,
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utilises a full covariance matrix for its updates, which for all benchmark functions at much

higher dimensions, (> 1000), had a runtime in the region of 2-3+ hours for a single repeat of

the algorithm. As such, this setup was unsuitable for our purposes where dimensions greater

than 1000 were being probed and 20 repeats at each dimension of a problem were necessary.

Furthermore, when tuning the algorithm, up to 1000 repetitions of the algorithm would be

carried out by SMAC in search for parameter configurations, so this represented a greater

obstacle to the approach.

However, the developers site, from which the source code was found, noted an inbuilt

setting which if toggled would instruct CMA-ES to use only diagonal covariance matrices

and speed up the approach from quadratic to linear time as described in the relevant article

pertaining to this development, sep-CMA-ES, by Ros and Hansen [114]. They state however

that this modification to the original approach makes sep-CMA-ES less effective on most

non-separable objective functions, however it was found to vastly outperform the original

implementation on separable functions. We found that sep-CMA-ES was still competitive with

our other implementations and so still included in our algorithm set.

4.7.3.2 Tunable Parameters

The parameters used to control the performance of the algorithm in this implementation are

as follows:

• Population Size

– Type:- integer ∈ [6, 150]

– As with the other population based approaches described, this parameter determ-

ines the number of solutions maintained by the algorithm at any one time. The

lower bound on this parameter of 6 was determined to be suitable since the im-

plementation as written defaulted to a population size λ of 6 for a 2-dimensional

problem through the function: λ = (4+ 3)× loge(n), where n is the problem di-

mensionality. The upper bound was determined to be lower than that of the other

population based approaches to further reduce the overall runtime since this placed

a smaller upper bound on the number of diagonal covariance matrices that would

need to be calculated.

• Initial Sigma (Step-size)

– Type:- float ∈ [0.2, 30.0]

– Represents the initial standard deviation used in the parameterised Normal dis-

tribution modelled by the algorithm and thus can be regarded as the initial step
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size. Again, the default σ used by the algorithm was 0.2 so therefore we made use

of it also as the parameters lower bound. The upper bound was determined by

studying an article [46] by Hansen and Kern, which investigated the modification

of this parameter in the context of several standard continuous benchmarks - some

of which are included in our own suite. The authors concluded that a value of half

the range between the lower and upper bound of the search space represented a

reasonable setting; stating that a “considerable impact” on the performance against

multi-modal functions is observed if initial step size is set too low [46]. However,

since we are investigating with several benchmark functions a reasonable interme-

diate upper bound had to be selected. Given that one of our functions (specifically,

the Griewank function) had parameter bounds of [−600, 600], half of this would

present too many possible combinations for SMAC to enable it to find an effective

set of parameter configurations.
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5
C H A P T E R 5 : T H E P R O B L E M S O F A L G O R I T H M S E L E C T I O N A N D

C O N F I G U R AT I O N

5.1 introduction

The algorithm selection problem (ASP) first identified and discussed by Rice [112] is the

problem of selecting the most appropriate algorithm for solving a given problem and has

become increasing relevant to optimisation researchers due to the realisation that no one

algorithm can be developed that can work effectively against all problems - as per the NFL

(Chapter 2 - section 2.4.5.2). Rice in [112] presented a formal abstract model that aimed to

help explore this problem [139]:

1. The space of problems P [139]

2. The feature space F of all measurable characteristics of the problems contained in p as

calculated by a feature extraction procedure f [139]

3. The space of algorithms A [139] that can be used against problems in P

4. The performance space Y containing a mapping between each algorithm a ∈ A to a set

of performance metrics [139]

Following Rice [112] and Vanschoren [139] the ASP can then be defined as follows:

“For a given problem instance x ∈ P with features f(x) ∈ F, find a mapping

S(f(x)) into algorithm space A, such that the selected algorithm α ∈ A maximises

the performance mapping y(α(x)) ∈ Y”

Where S is a selection mapping method responsible for selecting the appropriate algorithm

α given features f(x) [139].

Simply put, the algorithm selection problem involves selecting the most appropriate al-

gorithm from a suite of algorithms that best solves a given problem instance.

The various algorithms used to solve optimisation problems, in terms of both deterministic

and stochastic algorithms, are often highly parameterised, sometimes involving tens or
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hundreds of parameters 1. Finding an optimal set of values for these settings, hereafter

referred to as a parameter configuration, can greatly improve the performance of a target

algorithm against a given set of problem instances but this can often be an intractable goal -

especially when large numbers of parameters and many possible values for each parameter

are concerned.

The rationale for tuning the metaheuristic algorithms used for our purposes is to provide

an appropriate set of parameter configurations for each such that all later experiments

comparing the results of the metaheuristics can be made in the context of well performing

algorithms for each problem instance at each given dimension. By tuning individually for each

dimensionality of a problem we can obtain an appropriately ’good’ parameter configuration

for a given dimensionality - meaning that comparisons between other algorithms for the

same problem instance at the same dimensionality can be made more meaningfully. All

experimentation with the metaheuristic approaches in this thesis requires that each approach

gives the best possible performance, in terms of average solution quality, for each given

problem instance. This is very different from requiring that all algorithms perform equally

well on all problem instances as prohibited by the no-free-lunch theorem. When comparing

metaheuristic approaches, the no-free-lunch theorem falsifies any claim that one approach is

better than any other when averaged over all problems, this also carries the implication that for

some problems an approach may simply perform badly when compared to others - regardless

of the settings of any tunable parameters. However, there will exist, for all approaches with

at least one tunable parameter, one or more parameter configurations that facilitate the best

performance on a given problem in relation to all other configurations.

5.2 relationships between algorithm selection and other areas of research

5.2.1 Meta-learning

Most related to the problem of algorithm selection is that of meta-learning, a term originating

from the field of educational psychology. Meta-learning has been described as “being in aware

and taking control of one’s own learning” [9] or alternatively, learning to learn. More concisely,

Lemke et al. considers meta-learning as being an understanding and subsequent adaptation

of learning itself - on a higher level - rather than simply about gaining “subject knowledge”.

An individual can then introspect about their approach to leaning and adapt it depending on

1 a parameter here refers to a variable that is part of an algorithm that can be tuned to alter the behaviour and/or

performance of the algorithm
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the given task requirements [74]. As used in the context of machine learning, the concept of

meta-learning is still closely based on this same description. However, here the term subject

knowledge will translate to base learning, which refers to the aquisition of experience of a

specific learning task [74]. In [14], Brazdil et al. explain the distinction between base-learning

and meta-learning, as being categorised mainly by the scope of the level of their adaptations;

specifically, base-learning is concerned only with the accumulation of experience on a specified

task, where meta-learning on the other hand focusses on gathering experience over a number

of applications of a learning system [14].

In this section we will follow a brief outline of meta-learning; specifically on its relationship

to algorithm selection in particular but also introducing specific methods widely held to be

instances of meta-learning as well as a comparison in terms of the how the constituent

components of meta-learning are represented, or not represented, in each.

5.2.1.1 Definition

So close is the relationship between meta-learning and algorithm selection, meta-learning as a

concept can be traced back directly to the formalisation of the algorithm selection problem by

Rice [112]. However, the actual use of the term only appeared in the literature for machine

learning in the 1990s [74]. Since then, many definitions of meta-learning have appeared in

the literature, most sharing the common understanding - as noted by Lemke et al. [74] - that

“meta-learning becomes meta-learning by looking at different problems, domains, tasks or contexts or

simply past experience”. This understanding is most easily seen in the definition presented by

Brazdil et al. in [14] stating that; “meta-learning is the study of principled methods that exploit

metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining

processes”. The authors explain that the term metaknowledge refers to the knowledge obtained

from past learning experiences, either from past experiences on the same data or using data

obtained from another problem domain [14]. Therefore, it would be reasonable to conclude

from this definition that the main prerequisite for any meta-learning approach is the use

of at least one form of metaknowledge. From the common understanding found in the

various definitions, Lemke et al. propose their own more formalised definition - provided

here verbatim [74]:

1. A meta-learning system must include a learning sub-system, which adapts with experi-

ence

2. Experience is gained by extracting metaknowledge extracted

a) ...in a previous learning episode on a single dataset, and/or
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b) ...from different domains or problems

A further concept in meta-learning, also noted by Lemke et al. [74] is that of bias, here,

referring to a set of assumptions which influence the choice of hypotheses that could explain

the data. Brazdil et al. [14] refer to two types of bias that could impart influence in a meta-

learning system. Firstly, declarative bias which relates to the representation given to the space

of hypotheses, for example, where hypotheses are represented exclusively by neural networks;

and procedural bias, affecting the precedence of hypotheses, for example, preferring hypotheses

providing shorter runtimes over others [74, 14]. The assumption given this notion is that the

bias in the base-learners remains fixed, where for meta-learning the system attempts to select

the most appropriate bias dynamically [74].

5.2.1.2 Algorithm Recommendation / Selection

Out of the many forms of ‘meta-learning’ discussed in the literature, including but not limited

to ensemble methods and dynamic bias selection, algorithm recommendation is the only form

which is applicable to each point from the definition outlined above according to Lemke et

al.[74]. Here the interest to the metalearner is the relationship between the characteristics

of the data and the algorithm performance with the end goal of being able to select one

or more algorithms from a set of algorithms suitable for a given problem 2 [74]. Since it

is generally infeasible to select amongst all the possible alternative algorithms available

for a given problem in a trial and error manner, meta-learning can therefore prove useful

in recommending an algorithm to an end-user or in automatically weighting algorithms

according to their suitability [74].

Vanschoren [139] also points out that it is not simply the algorithms themselves that

allows the performance of the same algorithm to vary over different datasets, but also that

these algorithms can have different parameter configurations. Therefore it would be reasonable

to suggest that an algorithm with various different parameter settings can be considered as

representing different algorithms altogether [139]. The author however suggests that the study

of this subject and its effects should remain separate.

In machine learning the traditional application of algorithm selection is classification;

however, efforts have been made to generalise the concepts to other areas of application

such as: regression, sorting, constraint satisfaction and optimisation [126, 74]. For the latter,

2 Note that this description of algorithm selection in the meta-learning context is equivalent to that defined by Rice as

described in Section 5.1

123

[ 22nd January 2020 at 18:00 ]



optimisation, one such application example by Pavelski et al. [102] is that of meta-learning

optimisation for the flowshop problem through the use of decision trees. Specifically, the work

proposed a meta-learning approach for knowledge discovery that operated on the performance

data from four different metaheuristic algorithms whilst they solved several flowshop problem

instances. As well as being able to recommend the most suitable metaheuristic for each

problem instance, it is also capable of suggesting well-suited parameter configurations [102].

Although the authors suggest that for algorithm recommendation in this particular case study,

there is “a lot of room for improvement”, their results were deemed promising as the rules

induced indicated that some metaheuristic parameters were more preferrable than others

[102].

5.2.1.3 Considerations for Using a Meta-learning Approach

This section focusses on several practical decisions which have to be made before applying

meta-learning to a problem, which can include: the selection of a meta-learning algorithm,

the choice of appropriate metaknowledge and the issue of implementing and maintaining

metadatabases [74].

a) prerequisites It is usually beneficial to consider whether or not a particular meth-

odology is appropriate for use at all against a given problem or applicaton before effort

is expended. Meta-learning is no different, and as such can not be considered as a “magic

cure” to any and all machine learning problems [74]. As Brazdil points out in [14], it is

important that the metafeatures extracted from a problem domain are representative of that

domain; a failure to ensure this will prevent meta-learning from identifying whether or not

other domains are similar [74]. Similarly, atempting to apply meta-learning to new problems

which have never been tackled in the past (or rarely so) will not be able to take advantage of

past experiences which would improve its predictions [14, 74]. Other factors influencing the

applicability of meta-learning also include: (i) the possibility that performance estimations -

being reliant on the accuracy and effectiveness of being able to estimate true performance -

may be too unreliable and (ii) different metafeatures might be applicable to each dataset [74].

b) meta-learning algorithms The selection of a particular meta-learning algorithm

is very problem specific, in general, Lemke et al. [74] suggest that traditional algorithms

used in classification can be very successful for meta-learning algorithm selection and could

include: meta-decision trees, neural networks or support vector machines (SVM) to name but

a few. The application of regression algorithms however remains less popular [74] .
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c) meta-knowledge As discussed in section 5.2.1.1, Brazdil et al. [14] define meta-

knowledge as being derived from the application of a learning system. A common type of

metaknowledge is the performance of algorithms in the context of certain problem domains,

which is then linked to characteristics of the task [74].

In terms of extracting metaknowledge from the data, the most intuitive include statistical

or information-theoretic features e.g., according to Brazdil [14], for classification problems

we could use the number of classes or features, ratio of examples to features and the average

entropy of a class/classes [74]. For different areas of application however, features can be very

different [74].

As an alternative to focussing on the data only for extracting metaknowledge, information

about individual algorithms and how they produced a solution to the problem could also

be used such as their predicted confidence [74]. One method of achieving this is by building

a model that is both easy to generate and train and interrogating its properties. Another is

an approach known as landmarking and roughly involves using the performance of simple

algorithms in order to describe a problem and then correlating this information with the

performance of far more complex algorthms [74].

It is also worth noting that as with all learning problems, meta-learning is also subject to the

curse-of-dimensionality (Chapter 3, Section 3.2), which is ‘traditionally’ solved by selecting

only a subset of the most relevent features - as would be done with regular feature selection

of which meta-feature selection is not foundationally different [74].

5.3 automatic parameter tuning

The problem can be laid out more formally as the algorithm configuration problem (ACP) [59, 58],

where, given a target algorithm with tunable parameters A, a set or distribution of problem

instances I and a cost metric c the goal is to find a parameter configuration(s) of A that

minimises the cost c on I [59, 58].

If we were to choose to tune exhaustively on an approach with p tunable parameter

settings each with j discrete values, a total number of dimensions d (according to the geometric

progression) over a set of benchmark functions F with cardinality |F|, we would need to

test jp × d× |F| individual parameter combinations. For example, an approach with only 2

tunable parameters with 10 discrete values each, considering 10 different dimensions and a
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set of benchmark functions with cardinality 10 then 102 × 10× 10 = 10, 000 separate tunings

would need to be carried out to ensure the best parameter combination for each scenario. It

follows that with more tunable parameters, an increased number of parameter values, more

dimensions and over a larger set of benchmark functions, this approach quickly becomes

intractable.

For this reason many automatic parameter tuners (APTs) have been developed that can

produce a reasonable, albeit approximate, set of parameter configurations without the need to

test every possible configuration of the target algorithm. 3 Several notable APTs are described

and made use of in the literature, including model-free methods such as: F-Race, iRace,

ParamILS and ROAR along with model-based techniques such as SMAC; each with their own

set of benefits and drawbacks. In terms of optimising the parameters of the algorithms used

in this study we opted to make use of the SMAC automatic configuration tool described in

[59, 58].

5.3.1 Model-free vs. Model-based Methods

The existing APTs differ in whether or not explicit models are used to represent the dependence

of the performance of a target algorithm on particular parameter configurations [59]. Model-

free approaches, studied as far back as the 1990s, have the advantages of being able to be

used ‘out-of-the-box’ and are relatively simple when compared to model-based methods

[59, 58]. The various model-free approaches can be separated into those which focus only on

optimising numerical parameters (i.e., integer or real-valued) such as F-race and those which

can also be used within categorical domains (i.e., discrete and unordered) such as ParamILS

[59, 58].

Model-based methods, on the other hand, has been cited as a promising path towards the

next generation of automatic algorithm configuration methods [59, 58]. A well known branch

of this class of methods is the Sequential Model-Based Optimisation (SMBO) framework, with

benefits ranging from:

3 However, in our case, automatic parameter tuning only improves the value of jp meaning that, given the same

example as above, the total number of individual tuning operations, if the APT only tested half of the possible

configurations, would be reduced from 10,000 to 0.5(102)× 10× 10 = 5,000 tuning operations - the number of

dimensions to tune against as well as the number of benchmark functions is not affected by the use of an APT.
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1. Being able to interpolate performances between between parameter settings that have

been observed [59, 58] 4

2. Able to extrapolate from what is known to unseen regions of the parameter space [59, 58]

3. And, can be used to provide quantitative data regarding the importance of both indi-

vidual parameters and interactions between parameters [59, 58]

SMBO has however been shown to have a few limitations - on account of being derived

from the statistics literature on black-box optimisation - that make it an inappropriate choice

for automated algorithm configuration. Amongst other limitations, these include: a reliance of

computationally expensive models and being focussed heavily on deterministic algorithms

[59, 58]. However, work continues to overcome these and other limitations of the framework

- such examples include the development of methods such as Random Online Aggressive

Racing (ROAR) and Sequential Model-based Algorithm Configuration (SMAC).

In simple terms, SMBO works by iterating between fitting models based on observed

configurations and using these to select promising configurations [59]. Specifically, SMBO

methods construct regression models from sampled configurations that are used to predict

performance and then use these model in the optimisation process. According to Hutter at al.

[59, 58]:

“In the context of parameter configuration, the model is fitted to training set

{(θ1,o1), . . . , (θn,on)} where parameter setting θi = (θi, 1, . . . , θi,d) is a complete

instantiation of the target algorithm’s d parameters and oi is the target algorithm’s

observed performance when run with configuration θi. Given a new configuration

θn + 1, the model tries to predict its performance on + 1.”

As mentioned above, SMBO was derived from the statistics literature on global black-box

function optimisation. As such, a simple example of its basic workflow as provided by Hutter

et al. in [59, 58], considers a rough approximation of the algorithm of the most notable

example in this literature [59, 58], Efficient Global Optimisation or (EGO) [64]. Here, they

consider a deterministic algorithm A with a single continuous parameter x and runtime as

a 1-dimensional function of x represented by the solid line shown in Fig.5.1a, SMBO looks

to optimise (minimise) the runtime of algorithm A by searching for a suitable value for x.

Also note in Fig.5.1a that SMBO is first initialised by running algorithm A with the parameter

4 interpolate here is used in the mathematical sense, where performances of new parameter settings within the range

of a set of known parameter setting performances (data points) can be constructed.

127

[ 22nd January 2020 at 18:00 ]



values indicated by circles [59, 58]. Next, a Gaussian process (GP) regression model5 [109] is

fit to the sampled parameter value data [59, 58]. The black dotted line in Fig.5.1a and b shows

the predictive mean of the GP regression model that has been trained on the parameter value

samples given by the circles; where the shaded region surrounding this line represents the

uncertainty in prediction - growing as distance increases from the training data [59]. SMBO

then uses this performance data in order to predict and then select a promising configuration

for the next run of algorithm A [59, 58]. Promising parameter configurations are predicted

to perform well and/or be found in regions where the model is still uncertain [59]. These

expectations are both encapsulated by the Expectated Improvement (EI), the dashed lines

in Fig.5.1, which has a larger value in areas of low predictive mean and high predictive

variance [59, 58] (representing high performing configurations and found in uncertain areas

respectively). Expected Improvement (EI) therefore provides a automatic tradeoff between

focussing on promising parts of the parameter space (exploitation) and finding out more

information about more unknown regions (exploration) [59, 58].

Figure 5.1: Taken from [58], This figure shows two steps of SMBO (EGO) for the optimization of a 1D

function. The true function is shown as a solid line, and the circles denote our observations.

The dotted line represents the mean prediction of a noise-free Gaussian process model (the

DACE model), with the grey area representing its uncertainty. Expected improvement, EI,

(scaled by the authors for visualisation) is shown by a dashed line.

An exact formula for EI, is introduced in [61] as E[Iexp] for log-transformed costs and

used for this example by Hutter et al. [59, 58], is defined as:

EI(θ) := E[Iexp(θ)] = fminΦ(v) − e
1
2σ
2
θ+µθ ·Φ(v− σθ), (5.1)

where, µθ and σ2θ represent the predictive mean and variance of the log-transformed cost

obtained by a configuration θ respectively. Further, Φ denotes the cumulative distribution

5 A generalisation of a gaussian distribution, a gaussian process is defined by its mean function and covariance function

(a gaussian distribution is defined by its mean vector and covariance matrix). Therefore, a Gaussian distribution is

over vectors, where a Gaussian process is over functions. [109, 71, 40]
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function (CDF) of a standard Normal distribution and fmin is the empirical mean performance

of the incumbent configuration θinc [59, 58].

5.4 smac : sequential model-based algorithm configuration

SMAC is an instantiation of the general Sequential Model-Based Optimization (SMBO)

framework and an extension of a previous approach known as Randomised Online Aggressive

Racing (ROAR) which is also an instantiation of the general framework. This section discusses

what makes SMAC different from ROAR and the basic iterative procedure by which it

constructs and samples from its models in order to make predictions about suitable parameter

configurations for a given target algorithm.

5.4.1 The SMAC Tuning Procedure

5.4.1.1 Random Online Aggressive Racing (ROAR)

Before continuing on to discuss SMAC specifically, it is first necessary to briefly cover its

precursor, Random Online Aggressive Racing (ROAR), as SMAC makes use of the aggressive

racing element of this approach. ROAR is a model-free instantiation of the general SMBO

framework and works by firstly selecting new parameter configurations of the target algorithm

uniformly at random which it iteratively compares to the current best configuration, known

as the incumbent, using a form of aggressive racing.

This racing is applied by a generalisation of the SMBO frameworks intensify procedure,

adapted by the SMAC developers to be able to configure algorithms to multiple problem

instances, so as to solve the additional problem - introduced by multiple instances - of deciding

which instances to use on each run. The original intensify procedure as defined in the SMBO

framework is only responsible for: (i) determining how many evaluations with each candidate

configuration are to be performed, and crucially, (ii) when confidence in a configuration is

strong enough to accept it as the new incumbent configuration.

5.4.1.2 Basic SMAC Procedure

As hinted in the previous section, SMAC makes several generalisations which solve some

of the problems relating to ROAR, namely: (i) use of models that allow for categorical

parameters and (ii) use of models that allow for sets of problem instances to be used [59, 58].

The most commonly used model in SMAC is a random forest model, which supports these
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generalisations, and are covered in section 5.4.1.3. Along with the updated intensify procedure

from ROAR, a summary of the basic iterative SMAC procedure can then be defined as follows

[60]:

1. Construct a random forest model to predict algorithm performance over instances

2. Use the constructed model to select new promising configurations

a) Uses the expected improvement criterion (EI) which combines predicted mean with

prediction uncertainty (section 5.3.1)

b) Finds configuration with the highest expected improvement via local search

3. Compare each new configuration to the current ‘best’ configuration (the incumbent)

a) Uses the same aggressive racing strategy as for ROAR

b) Save all data generated from runs to construct a model in the next iteration

5.4.1.3 Random Forest Models

The default model used within SMAC is Random Forests, an ensemble learning method used

as a standard model in machine learning for regression and classification [59]. From a basic

standpoint, random forests are essentially collections of regression trees. Similar in nature to

decision trees, regression trees make use of real values at their leaves instead of class labels -

in the context of SMAC these real values represent the performance of the target algorithm

[59]. Regression trees have been used in the past to model heuristic performance both in terms

of runtime and quality of solutions and are known to perform well for categorical input data

[59]. Random forests also share the benefit of being able to model performance as runtime

and solution quality, but additionally, allowing the uncertainty of given predictions to be

quantified [59]. In addition to these benefits, further benefits stated by Breiman and Cutler

[15] make it clear why the developers of SMAC would choose random forests as their default

model:

• They can be run efficiently on large data sets

• They can handle thousands of input variables without variable deletion

• They are able to give estimates of what variables are important in the classification

• They create internal and unbiased estimates of the generalisation error as the building

of the forest progresses

• They possess an effective approach to estimating missing data and can additionally

maintain accuracy even when a large proportion of the data is missing
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• They have methods for balancing error in class population unbalanced datasets

• The forests generated can be saved and reused on other data

• Prototypes can be developed which give information regarding the relationship between

variables and a generated classification

• They are able to compute proximities between pairs of cases to be used in the contexts of

clustering, outlier detection or giving more interesting views of the data through scaling

• The capabilities of the previous point can be extended to unlabelled data

• They offer an experimental approach to detecting variable interactions

In terms of computational costs, random forests are also fast, Breiman and Cutler claim that

with a dataset containing 500 cases and 100 variables, an implementation of a random forest

managed to produce 100 trees in 11 minutes using an 800MHz processor [15]. They also state

that the main memory requirements come from the storage of the datasets themselves along

with 3 arrays each with the same dimensionality as the data but if proximities are calculated

the storage requirements grow as the number of cases multiplied by the number of trees in

the forest [15].
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6
C H A P T E R 6 : A L G O R I T H M PA R A M E T E R C O N F I G U R AT I O N

6.1 introduction

Before conducting any experimentation using the metaheuristic approaches outlined in

Chapter 4, it was first necessary to conduct parameter tuning processes on each approach. It is

considered standard practice when using stochastic approaches such as metaheuristics to tune

the parameters of the utilised approach in order to produce the best possible performance

against a particular problem instance or set of instances being addressed. This tuning aimed to

obtain configurations that provided the best possible performance for each algorithm - based

on a measure of solution quality - against a specific problem at a specific dimensionality.

From the point of view of comparing the performances of the algorithms in our experi-

ments, it would be unwise to leave our implementations in an untuned state as any findings

would carry lower confidence since there would be know way of knowing if the implementa-

tions could have performed better. For example, if one approach was found to perform better

on some problem at higher dimensionalities than some other approach we could not state this

with high confidence since we do not know how much better each approach can become with

appropriate tuning. In this scenario, the better approach may already be close to an optimally

performing state whereas the other approach may have much performance to be gained if

tuned. If both approaches are tuned, comparisons like this can more accurately reflect the full

potential of each approach and as such lead to more trustworthy conclusions.

It is sometimes the case that a practitioner will tune their approaches against several

different problem instances (possibly of different sizes) in order to generate an average set

of parameter configurations that, it is hoped, will provide good performance against all

similar instances. For our purposes, this type of tuning of our implementations would cause

inconsistent performance across problems and their various dimensionalities. Similarly to

the disadvantages of having the implementations remain untuned, here we would not know

with any confidence to which problems and to which dimensionalities the approach has been

tuned to address better than others.
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To eliminate the potential issues discussed above we tuned our implementations on a

per-instance-per-dimension basis; that is, the implementations would be tuned against each

benchmark problem at each dimensionality independently so as to obtain the best performance

possible from an approach against a single problem at one specific dimensionality. This would

result in far fairer comparisons; if one approach is compared with another and is found to

perform better at higher dimensionalities for a given problem, this result carries a higher

confidence level since there is no tuning that would allow the worse approach to perform

better. Furthermore, this approach to tuning allows us to more easily and more justifiably

generalise any conclusions to higher levels such as, to other approaches of the same class or

to problem types.

To reduce the computational cost of tuning each metaheuristic approach when considering

each subsequent dimension xi as a linear progression (e.g., xi ∈ {2, 3, 4, ...,n}) the dimensions

to be considered instead follow a geometric progression, specifically xi = bxi = xi−1
√
2e,

where xi ∈N : N 6 n. To illustrate this point, considering we make use of our 17 standard

benchmark functions F with cardinality |F| (see Chapter 3, Section 3.4) up to a maximum

dimensionality of 1500, we would need to carry out d− 1× |F| = 25, 483 separate tuning

procedures if we were to consider a linear increment of 1 to the dimensionality of each

problem 1. This problem would be compounded further when we consider that multiple

repeats of each of these would have to be performed to offset the stochasticity inherent in

our selected APT (see Section 6.2 and Chapter 5, Section 5.4 for details) - this would require

127,415 tuning procedures if we conduct each tuning procedure five times. Conversely, using

a geometric progression of dimensionality results in a set of dimensions dgp with cardinality

|dgp| = 20 meaning we only need to perform a more manageable |dgp|× |F| = 340 tuning

procedures, equating to 1700 when conducting each procedure five times.

6.2 parameter tuning method

We tuned our metaheuristic implementations using the state-of-the-art automatic parameter

tuner SMAC. For each metaheuristic approach, the tuning process consisted of the following

steps:

1. Identified tunable parameters and appropriate value ranges. These were specified in

SMAC parameter files to be used by the SMAC tuning procedures.

1 a dimensionality of 1 is not considered so we only consider 1499 out of the 5000 dimensionalities
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2. Compiled a set of SMAC instance files each containing an algorithm recognisable string

identifying a benchmark function and a specific dimensionality to tune against.

3. Compiled a set of scenario files to be used by SMAC which among other things addresses

the instance file to be used and the path to an algorithms executable code.

4. Conducted five independent tuning procedures for each scenario file in order to offset

the possibility of obtaining less optimal parameter configurations due to the stochastic

noise that is invariably part of random processes such as those used by SMAC

5. Obtained tuned approach performance data by conducting a series of repeated runs

using each of the five independent configuration sets against their corresponding

problem-dimension pairing.

6. Using the tuned performance data above, produced a ‘final’ parameter configuration set

containing the best configurations from each of the five independent problem-dimension

configurations

Each of these steps with be covered in more detail in the following subsections.

6.2.1 Parameter Identification and Range Selection

For each metaheuristic approach implemented, a suitable set of SMAC parameter files needed

to be produced. Identification of the ‘tunable’ parameters was straightforward as any para-

meter of an approach can be considered tunable when its value can affect the behaviour

of the algorithm [121] and thus its performance outcome. Since all user specified variable

parameters used during an algorithms execution have an affect on algorithm behaviour these

are the ones tuned to obtain better performance. The parameter file content for each of our

implementations showing the identified parameters and ranges will be made available via the

university’s digital repository in due course.

On the other hand, selection of an appropriate range for these parameters was not as

straightforward. Care needed to be taken when selecting the ranges of the parameters used

in conjunction within the algorithm; as SMAC, having no sense of correspondence between

parameters, can potentially return an infeasible value for one parameter in respect to the other.

One such example is that of the parameters used in the GA tournament selection, population

size and tournament size. When originally tuned by SMAC, both parameters were stated as

integer types each representing a number of individuals. Since SMAC has no knowledge

of each use within the algorithm and it will always return the best configuration found
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during tuning - even if that means the operator in question become equivalent to another,

we found in early tuning attempts that tournament size (of type integer) would often return

with a larger value than population size suggesting a tournament consisting of the whole

population. Of course, given a GA tournament with replacement consisting of the whole

population, it becomes increasingly likely that the best solution in the population will take

part in all tournaments - although small there is still a non-zero probability that this will not

be the case on every iteration. This was overcome by making tournament size a parameter

representing a proportion of the main population, which allowed us to prevent this problem

for any population size SMAC produced.

6.2.2 Conducting the Tuning Procedures

It is suggested that when using SMAC that multiple independent tuning procedures are

carried out to better ensure a high quality parameter configuration output due to the inherent

stochasticity used within the SMAC implementation. This being considered, five independent

tuning procedures were carried out per SMAC scenario/instance file (problem-dimension

pair) for each metaheuristic approach implemented. We make use of 17 standard benchmark

functions (Chapter 3) and a rounded geometric progression of problem dimensionality -

resulting in 20 different dimensionalities ranging from [0, 1448]. Across all problem-dimension

pairs for each approach, we carried out a total of 17× 20× 5 = 1700 independent SMAC

tuning processes run by utilising the departments CPU cluster. It was determined that the

dimensionality increase of each problem being addressed by our approaches was to follow a

geometric progression. The reason for this was mainly to reduce computational cost, since

even tuning with a linear progression using dimensionality increases of size 10 in the range

[0, 1500] would need 12,750 independent tunings.

6.2.3 Generation of Tuned Performance Data

Having obtained a set of independent parameter configurations, five for each problem-

dimension pairing, the algorithms were initialised with each configuration in order to gen-

erate the required performance data. Each algorithm was repeated for 20 independent runs

with each parameter configuration relating to the current benchmark problem with a fixed

maximum function evaluation budget of 50,000. In practice, it was far simpler to compile the

tuning configurations obtained from SMAC into five comma separated value (CSV) files per

problem with each line representing one of the five tuned parameter configurations at a given
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dimensionality. These files would then be passed to the algorithm on execution which would

carry out 20 independent repeats for each configuration. Fig. 6.1 shows an example of one of

these compiled CSV files.

Figure 6.1: Example of a parameter configuration file compiled from the individual problem-dimension

configurations obtained from SMAC

For each dimension of the current problem, a separate CSV file was produced as output at

different stages of the search process - in 5000 evaluation increments - containing the objective

value of the best solution at that stage of the search for each of the 20 independent repeats

carried out. Therefore, the output CSV files for 50,000 function evaluations would represent

final solutions to the problem instances given our budget.

6.2.4 Obtaining a Final Parameter Configuration Set

Given the output CSV files at 50,000 function evaluations from our implementations described

above, the median of the 20 independent repeats was used from each to determine the best

parameter configuration for each dimension-problem pairing. The median was used in this

case as the distribution of the data contained in most of the output CSV files was not Normally

distributed; that is, it tended to be either very left or right skewed. Therefore, in the majority

of cases the mean of the repeat data would not accurately convey the central tendency of the

performance data from an algorithm for a given dimension-problem pair. This however is not

unusual for data obtained from stochastic approaches such as metaheuristics.

To calculate the median from our algorithm outputs and subsequently compile a ‘final’

set of parameter configuration files for use in our experiments an R script was written. This

would read in the set of five CSV parameter configuration files for each problem - from our

five independent SMAC tuning procedures - and for each dimension of the problem, generate

the median solution performance from the output CSV files associated with each of the five

SMAC tuning procedures. Where a median was found to be lowest out of the five for a given
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dimension, the corresponding line of the associated parameter configuration CSV file is copied

into a new file.

6.3 improving the generality of empirical results and observations

In order to better generalise my observations, results and conclusions derived from our tuned

metaheuristic algorithms as well as to provide stronger evidence that observed relationships

are not simply produced from biases that might be inherent to SMAC; a repetition of the

tuning procedure was carried out using another popular automatic parameter tuning approach.

The selected alternative, Irace [79], was used to tune our algorithms on a representative subset

(7 functions) of the benchmark function suite. Although other widely used APTs exist, such as

ParamILS, Irace is capable of handling real-valued parameters as well as discrete parameters,

whereas ParamILS is designed only for use with discrete parameters.

Irace, developed by López-Ibánez et al. [79] makes use of an iterated racing approach to

algorithm configuration and consists of three distinct steps: (i) sampling of new configurations

based on a particular distribution, (ii) selects the most promising configurations from the

samples through the use of racing and (iii) updating the distribution used for sampling in

order to bias further sampling towards promising configurations [79]. A racing procedure

typically starts with a finite number of candidate configurations. At each step of a race, the

candidate configurations are evaluated on a single problem instance. After a number of steps,

those configurations which are shown to perform statistically worse are rejected and the race

continues with those configurations which survive [79].

The Irace implementation used (Version 3.3) was produced by the developers as a CRAN

library for the statistics package R. An R script, all required input files and command line

scripts (.bat files for Microsoft Windows command line and a shell script (.sh) for UNIX-based

systems) were constructed using templates provided as part of the source files of same CRAN

library - available from [78].

As with SMAC, the maximum number of single algorithm executions allowed during

tuning was set to 1000, in keeping with the execution budget afforded for SMAC tuning

processes, and all other required settings were kept as default. Also, as Irace also has a

stochastic element, five independent tuning procedures were carried out for each Algorithm-
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Problem-Dimension triplet in order to better insure against unsuccessful tuning procedures

(see Section 6.2.2).

In an effort to make the comparison between the two tuning approaches as fair as possible,

the allowable parameters ranges used in tuning each algorithm were identical to those used by

SMAC. This removes the potential of any difference in tuning performance observed between

the two approaches being down simply to one tuning method having to search over larger

parameter spaces than the other, i.e., if the difference between the lower and upper bounds

are larger.

6.4 result of parameter tuning with smac

For each of the algorithms tuned with SMAC, the median performance over all function-

dimension pairings (compared to the untuned median performance) was improved signific-

antly; particularly when searching at higher dimensionalities. The line plot in Fig. 6.2 shows

the median performance results - aggregated from 20 repeats - of our DE implementation

against the Ackley function (Chapter 3) over all dimensionalities. The red line depicts the

median performances of the untuned algorithm and the black line is the median performances

of the algorithm using the final configuration set. For this particular result, no significant

difference in the performance between the tuned and untuned versions was observed up to 91

dimensions, however, from the 128 dimensional problem instance, the median performance

difference increases noticeably. Similar trends were found true for each of the algorithms

implemented, where the tuned version was found to perform significantly better on all

benchmark functions.
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Figure 6.2: Result Obtained from DE Implementation (tuning at 50,000 function evaluations) vs. Untuned

Version
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7
C H A P T E R 7 : E M P I R I C A L R E S U LT S

7.1 algorithm tuning results

In this section we outline the results obtained through our selected tuning procedure as

compared to the same algorithms in their untuned states as well as present findings from our

analysis related to parameter tuning at differing function evaluation budgets.

This first set of results represents a ‘sanity-check’ for further experimentation, specifically,

I compare the metaheuristic approaches in the context of the best tuning found by the selected

parameter tuner (SMAC), therefore, it was sensible to ensure that the performance of the

algorithms was indeed being improved beyond the baseline ‘untuned’ equivalent algorithms.

Non-improvement may have indicated a problem/bug in the tuner which would have to be

remedied before any data generation and comparison could be performed.

Before continuing on to presenting the tuning results, I must clarify what is meant by an

‘untuned’ algorithm in this context. This is where an algorithm has been initialised with a

parameter configuration obtained either from: (i) common settings found in literature sources

or (ii) where no suitable settings could be found in the literature based on specific design

choices - such as, when using a different parameter representation to work better with SMAC

e.g., GA Tournament Size vs Tournament Size Percent (See Chapter 4 Section 4.3.4.3) - a

sensible value for the parameter was used instead. In short, ‘untuned’ here refers to an

algorithm that has a single set of parameter settings that have not been selected in the context

of our benchmark suite and therefore, are not necessarily appropriate or effective at obtaining

high performance on this problem set and at larger problem scales.

Here we present several plots showing that SMAC indeed effectively tuned all algorithms

often well beyond their baseline untuned performance - however, the full plot listing showing

the tuning results for all problems and algorithms can be found in Appendix D section D.1.
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(a) RMHC Tuned to Ackley Function at 50,000 GA Evalu-

ations

(b) RMHC Tuned to Alpine n.1 Function at 50,000 GA

Evaluations

(c) SSGA Tuned to Ackley Function at 50,000 GA Evalu-

ations

(d) SSGA Tuned to Alpine n.1 Function at 50,000 GA Eval-

uations

Figure 7.1: Examples of Successful Tunings of RMHC and SSGA Using SMAC on Ackleys Function and

Alpine n.1

7.1.1 Comparing SMAC and Irace Tuning Performance

To better generalise my observations, results and conclusions and generally provide stronger

evidence that observed relationships are not simply produced from biases present in SMAC;

a repetition of the tuning procedure, over a representative subset of my benchmark set(7

functions), was carried out using the automatic parameter tuning approach, Irace (See Chapter

6, Section 6.3 for a discussion on this method). To provide a fair comparison, Irace was

provided with the same initial conditions as were true for SMAC where possible1, specifically

these include:

1 Where these conditions were not individual to a particular approach and implementation thereof
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• The tuning algorithms were both afforded a maximum budget of 1000 algorithm execu-

tions to use during the tuning procedures. This was kept constant as the problem size

was increased 2

• The ranges for each algorithms parameter set were consistent between tuning methods

• The exact same target algorithm files and benchmark function suite file (utilised as

executable Java .jar files) were used by both SMAC and Irace

• As with SMAC, the final set of configurations for each algorithm were taken as the

best of five independent tuning procedures (determined individually for each problem-

dimension tuple)

The results of tuning each algorithm using Irace in comparison to tuning with SMAC are

presented in Appendix D, section D.2.

From the results, it can be easily verified that, in general, Irace found parameter configur-

ations that produce results which follow a similar trend to those of the algorithms tuned with

SMAC. However, the similarities between the two tuning methods is limited only to this single

observation. Over the representative subset of functions utilised by the Irace experiments,

SMAC was shown consistently to have produced far better parameter configurations which

again, in general, produced a far more stable set of performance values (i.e., little variance

between independent repeats of an algorithm, illustrated by the interquartile range bars on

the plots in Appendix D.2) than the corresponding performances obtained with Irace config-

urations. Given that this is the case, and also that the initial conditions were kept consistent

between SMAC and Irace where possible, then SMAC has shown itself to be the more reliable,

consistent and robust to noise of the two approaches, at least against this particular suite

of problem instances. Additionally, these results also show SMAC as being less prone to

converging to locally optimal parameter settings - prematurely or otherwise - as a result of its

inherent stochasticity.

2 In general for SMAC, the search for configurations converges before the maximum number of algorithm executions

is reached - even for the maximum problem size of 1448 - so not increasing this budget as problem size increases

should not present a problem in terms of observing how an algorithms real performance decreases as problem size

increases. Further, for SMAC at least, the configurations returned should therefore be reasonably close to optimal for

that tuning method.

144

[ 22nd January 2020 at 18:00 ]



7.2 function evaluation budget comparison

Here we presents several findings related to the tuning of our metaheuristic implementations

over two distinct evaluation budgets.

Plots showing the median objective value (raw) returned from 20 algorithm repeats vs.

problem dimensionality for each of the benchmark problems and metaheuristics is provided

in Appendix A. For each of these plots, each line represents an approach either tuned using

a 10,000 or 50,000 function evaluation budget and error bars represent the lower and upper

quartiles of the data at each point - Q1 and Q3 respectively. Additionally, the plots have been

generated at 5000 evaluation increments for the same set of algorithm repeats, i.e., output was

generated for each algorithm repeat when the number of evaluations: (eval mod 5000) == 0.

For brevity, we will form our discussions here in terms of only one or two Functions from our

suite (Chapter 3) and present select plots from Appendix A as appropriate.

Additionally, Appendix B provides supplimentary descriptive statistics tables for each of

the plots in Appendix A.

7.2.1 Effects Observed when Tuning with 10,000 and 50,000 Function Evaluation Budgets

We compared our implementations on their ability to produce quality solutions when tuned

with two different function evaluation budgets. Each set of resulting parameter configurations

generated using these two budget schemes were then applied against our benchmark function

suite - running with a budget of 50,000 objective function evaluations. The goal of this

experiment was to see whether algorithms should be tuned at the same number of evaluations

of which it would be expected to perform - hereafter referred to as the target evaluations - or

if, in some instances, it were possible to obtain better or equal performance with a smaller

evaluation budget.

In general, we found that, when configuring the parameters for the metaheuristics, it

is better to use an evaluation budget at least equal to the target evaluations when solving

problems of higher dimensionality. Specifically, at lower dimensionalities (typically < 91D),

using either tuning evaluation budget will produce comparable median solution quality; and

at higher dimensionalities (typically > 91D), the performance obtained from each scheme

begins to diverge in favour of tuning at the higher evaluation budget - here 50,000 evaluations.
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However, in a relatively high number of cases no such divergence occurs, i.e., there is

no difference when tuning algorithms at the target evaluation budget or a much lower

budget. Table 7.1 summarises this divergent behaviour as observed in the comparison plots in

Appendix A. In this table, no-div indicates where very little or no divergence of solution quality

performance is found between tuning evaluation budget schemes, UM and MM indicates

whether a function is uni-modal or multi-modal respectively and S and NS indicate whether

or not a function is separable (either multiplicatively or additively). Additionally, PSO is

intentionally omitted from the table as this will be treated separately.

Table 7.1: Plot summary of problem dimensionalities where algorithm performance between 10k and

50k evaluations diverge in favour of tuning at 50k function evaluations

Function/Alg. CMA-ES DE GA RMHC SA

Ackley (MM,NS) no-div 91 no-div 91 no-div

Alpine n.1 (MM,S) 181 91 no-div 1448 no-div

Bent Cigar (UM,S) no-div 91 no-div 32 45

Brown (UM,NS) no-div 1448 no-div 256 128

Chung-Reynolds (UM,PS) 1448 128 no-div 181 91

Deflected Corrugated Spring (MM,NS) 512 91 no-div no-div 1448

Exponential (MM,NS) 1448 181 1448 512 no-div

Griewank (MM,NS) no-div 91 no-div 181 64

Inverted Cosine Wave (MM,NS) no-div 91 no-div no-div no-div

Levy (MM,NS) 181 128 no-div 362 128

Qing (MM,S) no-div 64 no-div 64 64

Rastrigin (MM,NS) 181 16 no-div 181 181

Rosenbrock (UM,NS) no-div 64 no-div 362 128

Schwefel (MM,S) n/a 16 no-div no-div no-div

Sphere (UM,S) 1448 128 no-div 362 91

Sum of Different Powers (UM,S) no-div no-div no-div 724 no-div

Sum Squares (UM,S) no-div 128 no-div 128 64

Mean 771 178 1448 349 221

No Divergence Count 9 of 17 1 of 17 16 of 17 3 of 17 6 of 17
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The first thing to notice in Table 7.1 is that for 16 out of the 17 benchmark functions,

when using our GA implementation no significant difference can be observed between tuning

at 10,000 or 50,000 evaluations. This finding suggests that when using our GA (steady-state)

for continuous function optimisation that the approach may be tuned at a significantly lower

number of evaluations than the required target evaluation budget. Since automatic parameter

tuning, despite not being an exhaustive process, can still be a computationally costly operation

- and will likely require a lot of wall clock time to complete - this finding potentially eases

this restriction that may prohibit APT for other approaches, allowing GA to be tuned faster.

However, one caveat is that this in no way means that the target evaluation budget can also be

lowered; looking at the the plots in Appendix A it is clear to see that the algorithm has not

yet converged by 10,000 evaluations for the vast majority of our benchmark suite, as progress

towards better solutions continues up until our 50,000 target evaluation budget - and in some

cases appears as though this progress would continue given a larger budget. Fig. 7.2 shows

our GAs performance on Ackley’s function for 1000, 10000, 30000 and 50000 evaluations

illustrating this observation more clearly.

(a) Ackley Function at 1000 GA Evaluations (b) Ackley Function at 10,000 GA Evaluations

(c) Ackley Function at 30,000 GA Evaluations (d) Ackley Function at 50,000 GA Evaluations

Figure 7.2: Example of GA Continuing to Progress Beyond 10,000 Function Evaluations for Ackley’s

Function
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The performance results for SSGA tuned by Irace, across a representative subset of the

function suite, provides further evidence for the generality of this result. As with the algorithm

tuned by SMAC, the performances for both the 10,000 evaluation and 50,000 evaluation tuning

budget strategies are for all intents and purposes identical, with no significant divergence

between the results. Fig. 7.4 illustrates this observation for both Ackley and Qing functions.

(a) Ackley Function at 50,000 SSGA Function Evaluations (b) Qing Function at 50,000 SSGA Function Evaluations

Figure 7.3: SSGA Performance Results Comparison (Irace Tuned) Example - 10,000 and 50,000 Tuning

Evaluation Budgets

Moreover, with the exception of the Rosenbrock function, the SSGA tuned with Irace

produces performances that are almost identical to those of the SSGA algorithm tuned

using SMAC across the representative function subset used for the Irace experiments. For

Rosenbrock, we find that the configurations found by SMAC slightly outperform those of

Irace. Despite this performance improvement only being ‘slight’, the interquartile ranges for

each tuning method (SMAC vs. Irace) are very small and diverge cleanly with no overlap.
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(a) Rosenbrock Function at 50,000 SSGA Function Evaluations

Figure 7.4: SSGA: Divergence of Performance between 10,000 and 50,000 Tuning Evaluation Budgets of

SMAC and Irace

The Irace results for the remainder of the benchmark function subset can be found in

Appendix D Section D.2.

The next thing we can observe from Table 7.1 is that DE appears to be the most sensitive -

of all the implementations - to the number of evaluations used to tune the approach. Further,

when compared with the other approaches not yet discussed, DE requires to be tuned at the

target evaluation budget of 50,000 evaluations far sooner, in terms of problem size - with a

mean point of divergence occurring at 178 (if we consider browns function an outlier this is

decreased further to 93).

As mentioned previously, we deal with PSO here separately as it behaves quite differently

from the other approaches discussed so far. What can be observed in general here is not simply

a divergence of performance at a certain dimensionality when using different tuning evaluation

budgets or even observing no such divergence at all. For around 2
3 of our function suite,

it can be seen that no performance deviation occurs between budgets at lower dimensions,

but after a significant divergence of performance at mid ranged dimensions when using

different budgets, a re-convergence occurs in higher dimensions that is here interpreted as

there being no difference between using lower or higher tuning budgets. Also, against many

of these functions, this divergence and re-convergence of performance can occur several times

throughout an experiment. This effect can be seen clearly for Alpine no.1 function shown in

Fig. 7.5.
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Figure 7.5: Example showing divergence between parameter tuning evaluation budgets for PSO (Alpine

n.1 Function) at dimensions 11-16 and re-convergence occuring at dimension 128

Through some analysis of the original five parameter configuration set returned for PSO, we

feel that this behaviour can be attributed to a dramatic change in population size: (i) a large

increase from 10s of individuals to 100s when the lines representing tuned evaluation budgets

diverge, and (ii) a large decrease in population size causing re-convergence of the budget

strategies. Fig. 7.6, shows plots of each parameter used to tune our PSO implementation,

where each line represents the parameter values from one of our original five configuration

sets tuned with a 10,000 evaluation budget (from which we selected our final configuration).

We have also included in each a line representing the parameter values of the final parameter

configuration. We make use of the 10,000 budget configuration files as in Fig. 7.5 the 50,000

evaluation budget line is far more stable and so is less likely to include any ‘strange’ parameter

settings around within the dimensionalities of interest.

150

[ 22nd January 2020 at 18:00 ]



(a) PSO: Plot of Population Sizes from the Five Original

Parameter Configuration Sets and the Final Configur-

ation Set

(b) PSO: Plot of c1 (Cognitive Component) from the

Five Original Parameter Configuration Sets and the

Final Configuration Set

(c) PSO: Plot of c2 (Social Component) from the Five

Original Parameter Configuration Sets and the Final

Configuration Set

(d) PSO: Plot of Inertia Weightω from the Five Original

Parameter Configuration Sets and the Final Config-

uration Set

Figure 7.6: Plots showing individual values for each tuned parameter from our original 5 parameter

configurations sets obtained from SMAC

From the plots in Fig. 7.6, it is clear to see in the population size plot that a dramatic increase

of population size corresponds to to a similarly dramatic decrease in solution quality obtained

from PSO at the same dimensionality (Fig. 7.5). The reverse is also true when the lines in Fig.

7.5 re-converge at a problem dimensionality of 128, in that a corresponding increase of the

solution quality occurs. This effect is not only limited to the Alpine n.1 function, the remaining

function plots in Appendix A in which we observe this effect3 also show similar reliance on

the population size parameter. Clearly, there is a threshold above which the presence of a

large population presents a problem to our PSO implementation and conversely, below this

threshold there appears to be no ideal value for population size at all.

3 Ackley, Bent Cigar, Brown, Chung-Reynolds, Exponential (however less pronounced), Griewank, Inverted Cosine

Wave, Levy, Qing, Rastrigin, Sphere (less pronounced) and Sum Squares
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Also from the plots in Fig. 7.6, it can be seen that an apparent negative correlation between

population size and the social acceleration coefficient (c2) exists. A suggested explanation of

this effect could be due to the sharing of components between particles i.e., in cases where the

population size is smaller, the social coefficient may have to be larger in order to maintain a

consistent level of exploitation.

I felt that it would be worth exploring this behaviour further through an extension of

the tuning experiment at a larger scale, specifically by: (i) doubling the maximum number of

dimensions of each problem to 3000 dimensions in order to see if this behaviour continues

beyond the original 1500-D limit, and, (ii) increasing the dimensionality of the problem linearly

- by increments of 50 - in place of the usual geometric progression - to observe how this

behaviour presents itself at smaller dimensional granularities. The results of this experiment

can be found in Appendix F Section F.1.

The results show that the effect observed for the functions in my original PSO experiment

is also represented in this extended version for the same set of functions, with the same 13

of functions exhibiting normal behaviour i.e., performance divergence with very little to no

re-convergence. Further, the effect does present itself as being cyclic in nature - even at these

extended problem scales and smaller granularity. As an example, in Fig. 7.7, we see that the

performances between tuning budget strategies diverge and re-converge multiple times, and

that each consecutive divergence increases in magnitude as the dimensionality increases. 4

4 For some of the other functions included in Appendix F that display this behaviour, such as: Ackleys Function and

Alpine Function no.1, the high frequency of the divergences coupled with the similar baseline performances for both

tuning budget schemes does not facilitate clear comparison, however, on close examination the same behaviour can

also be observed for these functions. The majority of the comparisons however provide clear indications of where

divergence is occurring.
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(a) PSO Performance Against Chung-Reynolds Function

Over a Geometric Progression of Dimensionalities from

2 to 1448 Dimensions (Original Experiment) after 50,000

Evaluations

(b) PSO Performance Against Chung-Reynolds Function

Over a Linear Progression of Dimensionalities in Incre-

ments of 50 Dimensions (Extended Experiment) after

50,000 Evaluations

Figure 7.7: Comparison of Performance (Median Solution Quality of 20 Independent Repeats) Against

the Chung-Reynolds Function Between Original and Extended Scale PSO Experiments

Of course, this exponential decrease in performance could easily be attributed to the

increased difficulty of finding good solutions within exponentially increasing search space

volumes (curse-of-dimensionality). However, the root cause for the occurrence of this cycle of

behaviour is still largely unclear. One possibility is that where the performance divergence

occurs, the underlying structure of the function at that particular dimensionality becomes

such that the automatic parameter tuner finds it more difficult in earlier stages of the search

to identify a parameter configuration providing a significant improvement in performance

in the shorter search scale of 10,000 function evaluations. As suggested of the original PSO

experiment, from SMACs perspective, no configuration is found to be more effective than

any other. In effect, this would mean that the same behaviour is largely unseen for the 50,000

budget strategy, as we observe, where PSO is given enough time during tuning to explore the

potential of the various configurations provided to it.

Finally, the performance results of PSO when using the parameter configurations obtained

through Irace do not clearly show that the observed effect can be further generalised to

alternative tuning methods other than SMAC; the corresponding PSO performances when

tuned using Irace (Appendix D, Section D.2) are too erratic to reliably differentiate between

noise produced by more poorly performing parameter configurations and actual instances

of the same effect discussed thus far. However, comparing the noise between different scales

of the same problem for PSO to the other algorithms configured using Irace, we see that the

configurations for PSO produces the most inconsistent performance data. It may therefore
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be hypothesised that what we are observing with the Irace results for PSO are exaggerated

instances of the original effect, caused by the increased difficulty and inconsistently in finding

reliable configurations when compared with SMAC.

7.3 performance comparison between algorithm implementations

7.3.1 Random Mutation Hill Climbing (RMHC)

The first, rather unexpected, observation that can be made from the algorithm comparison

plots of Appendix C Sections C.1.4 and C.1.4 is that our Random Mutation Hill Climbing

(RMHC) implementation regularly performs competitively with far more complex approaches.

It places third - albeit jointly in some cases - in 6 of the 17 benchmark functions, second in 4

of the functions and first position in 7 functions (beating every other approach outright in 3

out of the 7 - including the far more complex sep-CMA-ES).

This observation, although relatively trivial, actually provides some evidence contrary to

the widely held belief that hill climbing algorithms, particularly of the most basic stochastic

variations, are not viewed as very useful when compared to more powerful evolutionary

algorithms [115]. Rosete-Suarez et al. in [115] describe this belief as being a bias likely

introduced due to: (i) a lack of rigour in terms of defining the ‘true’ complexity of problems

and (ii) the situation that it is rare to find comparisons against basic stochastic hill climbing

variations. In fact, Rosete-Suarez et al. also offer a multitude of examples from the literature

where simple stochastic hill climbing variants outperform some Evolutionary Algorithms in

various contexts [115]. This, conclusion should not be new to the search and optimisation

community - we know from the NFL theorem [146] that all search methods perform equally

well when averaged over all possible search spaces; the obvious consequence of which is Hill

Climbing Algorithms, as a valid search strategy, must have a niche set of functions for which

it is ideally suited [115].

When compared to the Irace performance results, we see that Irace - although being

afforded similar initial conditions (e.g. total number of algorithm executions) - was not as

successful in tuning RMHC as SMAC. Therefore, depending on whether SMAC or Irace was

used for the tuning procedure, the performance results will not likely be consistent with

the observations above; especially if such comparisons are made between the remaining

metaheuristics that have also been tuned through the use of Irace.
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7.3.2 Changes to Rank Ordering of Performance at Larger Scales

Here we make use of tables of ranks and ranking plots to investigate the scalability of

our metaheuristic implementations given a fixed budget of function evaluations (50,000)

as problem scale increases. The full set of results can be found in Appendix C, which

includes plots showing the raw performance medians with and without IQR error bars

(Sections Sections C.1.4 and C.1.4) as well as providing the rank ordering plots and tables

(Sections C.2 and C.3) respectively. However, for the purposes of discussion, selected results

will be presented in this section. Additionally, in order to gain some insight into the general

robustness and effectiveness of the metaheuristic implementations over our benchmark suite as

dimensionality increases, and in effect, an idea of the comparative performance when averaged

over functions possessing features of interest for this study i.e., multi-modality, uni-modality,

full separability and full non-separability; plots presenting the mean aggregate rank ordering

of each algorithm over several subsets of the benchmark suite will be discussed. Due to space

restrictions, the tables corresponding to these plots can be found in Appendix C Section C.3.2.

Additionally, and in order to more easily discuss the general trends in terms of scalability,

results in this section are often presented as pooled mean rankings over dimensionality ranges

rather than individual dimensions e.g., for: {2, 3, 4, 6, 8}D, {11, 16, 23, 32, 45}D and so on.

For both of these types of plots, care should be taken in the interpretation of the aggregate

ranks as there are a couple of reasons an algorithm can appear to improve as the scale of

problems increase. Specifically, an improvement of the overall movement of rank over time of

a given algorithm can be attributed to: (i) the rank changing in relation to the worsening of

other algorithms ranks where the performance at larger scale is only better comparatively, and

(ii) a genuine improvement in the performance of the algorithm resulting in better ranking.

Depending on the situation however, the interpretation may matter more or less, for example,

when simply determining which algorithms scale better than others in comparative terms,

whether improved scaling is due to better performance or not matters little. On the other hand,

when looking to identify algorithms which are more successful - performance-wise - as the

scale increases, interpretation of these plots will be more troublesome5. In the plots found in

Appendix C Sections C.1.3 and C.1.4, we can observe only a few isolated instances where the

median performance is found to be better than that achieved at the previous dimensionality

scale, where afterwards the expected trend of decreasing performance recovers. Therefore

for our purposes in this section, any perceived improvement to rank order as dimensionality

5 This situation was always very unlikely to transpire due to the effects of the curse of dimensionality. It is mentioned

here only to draw attention to the possibility of misinterpreting this kind of rank visualisation
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increases can be safely assumed to attributed only to the rank reduction of other algorithms

(point (i) above).

To reiterate the corresponding hypothesis, we expected that the ordering (and therefore

the performance) between algorithms would change as problem dimensionality increases.

In providing evidence supporting this hypothesis, we hoped to further find out: (i) whether

there is a pattern, in terms of the presence of certain problem features, as to what kind of

problems and/or at which point an algorithm performs well or ceases to perform well, (ii) the

scale of performance degradation for each algorithm in terms of dimensionality increase, and

(iii) the comparative scalability of the algorithms given (ii).

7.3.2.1 Rank Ordering Over the Entire Benchmark Suite

Before exploring the results in the context of problems possessing specific features, it is worth

discussing the comparative results in terms of the entire benchmark suite i.e., the general

performance of algorithms when all four of the investigated features are present. It is often the

case, particularly for real-world problems, that little is known about the underlying structure

of a particular problem or problem class; algorithm selection then must be performed from a

more general ‘higher level’ context, such as in terms of a given application domain e.g., the

space of symbolic regression problems, of a certain size. Algorithm selection at these higher

granularities will almost certainly produce less meaningful recommendations compared to

those made in the context of a more defined set of problems, however they can still usefully

give some idea as to the likelihood that one algorithm is more suitable for use than another.

For example in Fig. 7.8 and Table 7.2, the mean aggregate rank (between approximately 1.5

- 2.5) of CMA-ES over all scales provides some confidence - given no deeper investigation -

that most of the comparative rankings are good (around ranks 1 or 2) for functions which

can include: unimodal, multimodal, separable and non-separable features, and further that

it remains robust at larger scales. On the other hand, at scales of above 128 dimensions for

this set of problems, DE would likely be unsuitable. Thus, performing a general comparison

such as this allows one to focus in on promising recommendations for further analysis if

and when more is known about the structure of the specific problem being tackled, whilst

simultaneously being able to discard algorithms which are more unlikely to be useful.
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Table 7.2: Pooled Mean Rank Table Over All Functions

Alg./Dim. Range Mean Rank

(2-8D)

Mean Rank

(11-45D)

Mean Rank

(64-256D)

Mean Rank

(362-1448D)

CMA-ES 1.86 2.33 2.26 2.16

DE 1.27 1.58 2.98 5.07

GA 3.75 4.20 4.18 3.94

PSO 1.98 4.16 4.79 3.89

RMHC 3.18 3.29 2.61 2.19

SA 4.25 4.74 4.19 3.74

Mean Aggregate Rankings Pooled Mean Rankings

Figure 7.8: Mean Aggregate Ranking for Each Dimensionality and Pooled Mean Rank Over Every n

Data Points Over All Benchmark Functions (where n = 5)

From the plots in Fig. 7.8, we can immediately make observations about the behaviour

of both PSO and DE in comparison to the other algorithms as the scale of the problems

in the benchmark suite increase. Firstly, DE is shown to be the best approach to use on

average on our benchmark suite until the problem scale reaches 64 dimensions, after which

it sharply decreases in performance in comparison to the other approaches, becoming the

worst performing approach at a scale of 362 dimensions of which it does not recover. This

observation is also mirrored clearly in the pooled mean plot albeit with less precision. Similarly

to the observation made of PSO in section 7.2.1, here PSO performs relatively well at the

lower dimensionalities of the benchmark suite becoming significantly worse at the low-mid to

mid-high dimensionality ranges, to the point of ranking as the worst approach on average at

45 dimensions. Again, and where this observation is similar to that made in section 7.2.1, is

that from 45 dimensions onwards, PSO becomes more efficient in comparison to the other
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algorithms - settling at an average rank of approximately 3.5 at a problem scale of 1448

dimensions, beaten only by CMA-ES and RMHC. It is unclear if this behaviour is a direct

effect of the main behavioural observation discussed in section 7.2.1, as the cyclic and sharp

decreases in performance which would readily explain the similarity of behaviour here were

related only to parameter configurations from a tuning strategy making use of 10,000 function

evaluations, where the ranks discussed in this section are related to the performance of

algorithms tuned with a budget of 50,000 evaluations. However, what can be observed from

the 50,000 function evaluation plots for PSO in Appendix A is that for each of the benchmark

functions where the cyclic behaviour can be observed for PSO tuned to 10,000 evaluations, a

corresponding but often far less pronounced decrease - occurring at similar dimensionalities -

can also be seen for PSO tuned at 50,000 evaluations which also recovers along with the 10,000

evaluation tuned PSO. Looking at the comparison plots in Appendix C, sections C.1.3 and

C.1.4, we can see the effect of these small decreases in performance on rank ordering more

clearly - particularly for the plots concerning: Bent Cigar, Chung-Reynolds, Rastrigin and Sum

Squares. Here, where there is a small decrease in performance around the mid ranges for

PSO, it is often enough to worsen the standing of the approach in comparison with the others

- regularly falling into the worst performing algorithm at these points. As dimensionality

increases, and since the drop off in performance often presents itself as being more gradual

for PSO when compared to other approaches (i.e., is more robust to scale), PSO is eventually

ranked better than those approaches which do not scale as well. The effect of these small

decreases in performance on the ranking of PSO is also viewed clearly on the rank orderings

on individual functions in Appendix C Section C.2.1.

From a more general standpoint, from the plots in Fig. 7.8 we can observe only slight

changes in ordering amongst the remaining approaches - at least in the context of aggregated

ranks. The ranks of SA and GA switch in favour of SA beyond 181 dimensions, this does

not reoccur higher scales. The difference in average ranking between SA and GA, although

larger at small to small-medium scales (2-64 dimensions) decreases at higher scales to that of

being negligible. Additionally, the gradual improvement to the rank of both these approaches

as dimensionality increases beyond 16 dimensions seems likely to be an effect originating

mainly from the sharp decline of the ranks of both DE and PSO as discussed previously

rather than an improvement in the performance of SA and GA at larger scales. Both RMHC

and CMA-ES are seen to be the best algorithms to use on this benchmark suite on average,

where the typical mean rank ordering is in the range of ≈ 1.6 - 3.5. At larger scales, the mean

ranks of both algorithms coalesce at around 2.1 - 2.5, with the only ordering change occurring
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at 1448 dimensions in favour of RMHC. Otherwise, CMA-ES maintains its rank as the best

algorithm to use on this suite overall.

7.3.2.2 Rank Ordering Over the Set of Uni-modal Versus Multi-modal Functions

Here and in the next section, the ranking of algorithms against sets of problems possessing

complementary pairs of features will be discussed. Fig. 7.9 presents both the mean aggregate

ranks and pooled mean ranks over several dimensionality ranges (as in the previous section)

over all uni-modal problems in the benchmark suite. Fig. 7.10 similarly presents the rank

orderings over all multi-modal problems. The pooled mean ranking tables for uni-modal and

multi-modal problems are provided as Tables 7.3 and 7.4 respectively.

Mean Aggregate Rankings Pooled Mean Rankings

Figure 7.9: Mean Aggregate Ranking for Each Dimensionality and Pooled Mean Rank Over Every n

Data Points Over All Uni-modal Functions (where n = 5)

Mean Aggregate Rankings Pooled Mean Rankings

Figure 7.10: Mean Aggregate Ranking for Each Dimensionality and Pooled Mean Rank Over Every n

Data Points Over All Multi-modal Functions (where n = 5)
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Table 7.3: Table of Pooled Mean Ranks Over All Uni-modal Functions

Alg./Dim. Range Mean Rank

(2-8D)

Mean Rank

(11-45D)

Mean Rank

(64-256D)

Mean Rank

(362-1448D)

CMA-ES 1.37 1.69 1.40 1.86

DE 1.17 1.43 3.03 5.11

GA 3.91 5.03 4.91 4.60

PSO 1.31 3.97 4.83 3.71

RMHC 2.71 3.37 2.63 2.37

SA 4.09 5.09 4.20 3.34

Table 7.4: Table of Pooled Mean Ranks Over All Multi-modal Functions

Alg./Dim. Range Mean Rank

(2-8D)

Mean Rank

(11-45D)

Mean Rank

(64-256D)

Mean Rank

(362-1448D)

CMA-ES 2.2 2.78 2.86 2.38

DE 1.34 1.68 2.94 5.04

GA 3.64 3.62 3.66 3.48

PSO 2.44 4.3 4.76 4.02

RMHC 3.5 3.24 2.6 2.06

SA 4.36 4.5 4.18 4.02
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From this set of results, we again see evidence of the poor comparative scalability of DE

and PSO on high dimensional problems previously observed when all benchmark functions

were considered in the last section. Over both sets of problems, the mean ranking trends for

DE appear very similar showing little discernible difference in rankings on average against

each set. However, despite the scalability issues at higher dimensions, DE ranks best overall

for both uni-modal and multi-modal problems at lower scales. For uni-modal problems, the

comparative effectiveness of DE arises only up until a scale of 32 dimensions after which the

rankings of the algorithm rapidly decline placing as the least effective algorithm at a scale of

362 dimensions onwards. DE however does fair better comparatively with others against the

multi-modal set, maintaining the best average ranking until a scale of 91 dimensions where,

as for its rankings against uni-modal problems, there is a sharp deterioration in rank, again

becoming the worst performing algorithm at the 362 dimensional scale. As with DE, there

appears to be little difference between the trends of PSO against each problem set, again

suggesting that problems possessing either of the two features do not significantly affect the

scalability of the approach. Additionally, there is little variation between the PSO ranks which

have been mean aggregated across all benchmark functions (Fig. 7.8) and those aggregated

by either of the problem features. For uni-model problems however, PSO does maintain a

good averaged rank compared to the other algorithms over a larger range of dimensions albeit

negligable extending only so far as 8 dimensional problems before seeing a sharp decline in

its rankings - again falling in line with those presented for all benchmark problems (Fig. 7.8)

and multi-modal problems (Fig. 7.10). The rank ordering between DE and PSO switches in

favour of PSO at a scale of 256 dimensions for uni-modal problems and 362 dimensions for

multi-modal problems.

As with the rank results in the context of the entire benchmark suite, the visualisations

similarities of mean rankings between distinct pairs of algorithms - where the ranks fall closely

to one another but more distant from either algorithm comprising the other pair. Again, this

pairing between algorithms with similar scalability relative to the other algorithms can also be

observed in the results over the whole suite of problems (Fig. 7.8). However, in the context of

the set of multi-modal problems, the distinct pairings become more evident as the scale of the

problems increase as at low scales, RMHC and GA rank more similarly to each other than

with the remaining algorithms.

Although changes to the rank ordering of the pairing comprised of GA and SA and the

pairing of RMHC and CMA-ES are negligable for the set of uni-modal problems, as well as

for GA and SA against the set of multi-modal functions, a change of rank order does occur
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between CMA-ES and RMHC at a scale of 64 dimensions for the multi-modal set after which

the mean rank of RMHC remains better than that of CMA-ES at the remaining scales.

7.3.2.3 Rank Ordering Over the Set of Separable Versus Non-separable Functions

In this section, the mean aggregate rankings and pooled mean rankings of the algorithms

against the set of separable problems and the set of non-separable problems are presented

(Figs. 7.11 and 7.12 respectively). Tables 7.5 and 7.6 additionally provide the pooled mean

rankings for both sets of problems.

Mean Aggregate Rankings Pooled Mean Rankings

Figure 7.11: Mean Aggregate Ranking for Each Dimensionality and Pooled Mean Rank Over Every n

Data Points Over All Separable Functions (where n = 5)

Mean Aggregate Rankings Pooled Mean Rankings

Figure 7.12: Mean Aggregate Ranking for Each Dimensionality and Pooled Mean Rank Over Every n

Data Points Over All Non-separable Functions (where n = 5)

As with the ranking results over uni-modal and multi-modal problems and for those over

the benchmark suite as a whole, a similar pattern of rapid decline in scalability relative to

the other approaches again emerges for both DE and PSO. Where the ranking trend for DE
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Table 7.5: Table of Pooled Mean Ranks Over All Separable Functions

Alg./Dim. Range Mean Rank

(2-8D)

Mean Rank

(11-45D)

Mean Rank

(64-256D)

Mean Rank

(362-1448D)

CMA-ES 1.625 2.35 2.175 2.125

DE 1.275 1.3 2.7 5.075

GA 3.85 4.525 4.275 4.15

PSO 1.8 4.275 5.25 3.875

RMHC 2.925 3.25 2.45 2.425

SA 4.2 4.925 4.15 3.35

Table 7.6: Table of Pooled Mean Ranks Over All Non-separable Functions

Alg./Dim. Range Mean Rank

(2-8D)

Mean Rank

(11-45D)

Mean Rank

(64-256D)

Mean Rank

(362-1448D)

CMA-ES 2.07 2.31 2.33 2.20

DE 1.27 1.82 3.22 5.07

GA 3.67 3.91 4.09 3.76

PSO 2.13 4.07 4.38 3.91

RMHC 3.40 3.33 2.76 1.98

SA 4.29 4.58 4.22 4.09
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over both separable and non-separable problems largely matches those for sets of problems

discussed previously; PSO in the context the set of non-separable problems, although showing

the same pattern of rapid worsening of rank before improving at larger scales, does not show

the same level of decline in ranking as we have seen over other problem subsets. Where

previously, in the worst case, PSO achieves a mean aggregate ranking of between 5 - 5.5,

this time around the medium scale problems PSO achieves a worst case mean ranking of

approximately 4.7. Although this still places PSO as the worst performing at this scale, it is

still far closer to the rankings of SA and GA which we have not previously observed over

other sets of problems.

The close pairings of the rankings of the remaining algorithms previously discussed in

relation to other problem sets remains the same for both separable and non separable problems.

In terms of the rank order of the members of these pairings, a change occurs at a problem

scale of 128 dimensions in favour of SA when considering only separable problems with no

such change in ordering between CMA-ES and RMHC. On the non-separable set however,

there is no change to rank order between SA and GA, despite achieving closely related mean

rankings, but a change occurs for RMHC and CMA-ES at a scale of 256 dimensions.

7.4 conclusions and discussion

7.4.1 Tuning Evaluation Budget Comparisons

Here we firstly presented a finding that suggests it is generally better, given no other indicators,

to use an evaluation budget at least equal to the target evaluations when solving large-scale

optimisation problems. This conclusion runs contrary to a current SMAC recommendation that

one should use a budget of 10×D evaluations, where D is the problem dimensionality [62].

For the largest number of dimensions we experimented with (1448D) this equates to a budget

recommendation of around 14,480 function evaluations. Further in this study, a suggestion

that this should be further extended to 100×D evaluations [62]. The latter suggestion we

feel is ‘overkill’ and only aids in worsening the situation in relation to the runtime of tuning

processes - where common sense would dictate that actually, since an algorithm tuned for

this number of evaluations targeting a lower budget would expect more time to explore the

available space, that algorithm performance would worsen. We have observed a similar effect

from the plots in Appendix A where an algorithm is tuned at a 50,000 evaluation budget,

but when the algorithm reaches only 10,000 evaluations during experiments the performance
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is shown to be significantly worse (compared to results from the 10,000 evaluation budget)

over the various dimension thresholds of all our functions, with the exception of: Deflected

Corrugated Spring, Inverted-Cosine-Wave and Rastrigin which showed little or no difference

between the two budgets at 10,000 evaluations.

We also found no appreciable difference between tuning at either tuning evaluation

budget for our implementation of GA (an SSGA). We conclude from our findings here that

when using an SSGA making use of the same operators and solution representation for

continuous function optimisation as we have here, the approach can be tuned at a significantly

lower number of evaluations than the required target evaluation budget. Automatic parameter

tuning can often be computationally expensive so this finding potentially eases this restriction

that may prohibit APT for the other approaches we tested, allowing GA to be tuned faster.

Next we presented our findings relating to the initial observation that our implementation

of PSO behaves differently from the others when tuned for our two evaluation budgets (10,000

and 50,000). In general, what we observed was that for all but ≈ 1
4 of our function suite, no

deviation occurs between budgets at lower dimensions and after a significant divergence of

performance in mid ranged dimensions when using different budgets a re-convergence occurs

in higher dimensions. We initially interpreted these observations as there being no difference

between using lower or higher tuning budgets. After some investigation we concluded further

that the effect could be attributed to there being a threshold number of dimensions above

which a larger population causes our implementation some difficulty. Similar past results in

the field of Genetic Programming in [3], suggested that small population sizes were better

at solving some problems. Further, evidence also shows that small population sizes can

sometimes lead the search to the optimum solutions in fewer objective function evaluations

- for certain problems - when compared to the use of larger sizes [147]. This may explain

why a dramatic decrease in population size for the algorithm using the 10,000 evaluation

parameter set produces comparable results to the alternate scheme (50,000 evaluation budget);

SMAC could have determined that a smaller population size (increasing exploitation effects

around any decent local minimum) would be more successful where the scale of the problem

instances reached a point where a more equal balance between exploration and exploitation

could not do better than a highly exploitative search. Indeed, in the large scale optimisation

literature, small populations are used with LSOPs to ‘brute-force’ promising search directions

[18], since full coverage of a very large search space is intractable using reasonable population

sizes and/or function evaluation budgets. However, we currently have no explanation or
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reason as to why SMAC found a high population size - which invariably produced worse

solutions - to be the best configuration.

7.4.2 Performance Comparison Between Algorithm Implementations

Here we made the moderately surprising observation that our Random Mutation Hill Climbing

(RMHC) algorithm regularly performs competitively with far more complex approaches. We

conclude through further analysis of the available literature that results such as those discussed

here oppose widely held opinions that simple algorithm like Stochastic Hill Climbing - of

which RMHC is a variation - are not very useful when compared to more complex evolutionary

algorithms. A contribution here is that although it is rare to find comparisons between more

powerful EAs and simple hill climbing algorithms, we have now produced data for this kind

of comparison, for large-scale optimisation, which can be made available to the wider research

community through the University’s Digital Repository.

7.4.3 Rank Ordering Changes at Larger Problem Scales

In general we can conclude that when viewed as the aggregate rank over several functions from

the benchmark set, much of the noise from small intermittent re-orderings can be removed

leaving only the most meaningful changes to rank order thus reflecting a clearer picture

of comparative performance between the algorithms covered. Such meaningful transitions

between the algorithms are therefore few, but occur around the medium to large problem

scales as hypothesised and persist over the remaining (higher) scales. In terms of ranked

performance over subsets of the benchmark suite, i.e., subsets delineated by the problem

features: modality (uni-modal vs. multi-modal) and separability (separable vs. non-separable,

there is not sufficient reason to conclude that any of the problem features considered pose any

kind of differing levels of difficulty for any particular one of the metaheuristic implementations

compared. Despite generally localised differences to the mean aggregate rankings for different

problem subsets, these when compared by problem scale do not show much variation.

7.5 contributions

• We have produced a concise review of the subject area for future consumption by other

researchers looking to make progress in this area
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• We have generated a vast amount of data relating to the large-scale optimisation of

several standard continuous function benchmarks found in the literature that can be

made available to the wider community through the university’s digital repository in

due course.

• We have identified several behaviours of common metaheuristics as applied to optim-

isation problems with many hundreds of dimensions. Filling some of the gaps in our

understanding of how the optimisation approaches, we may assume behave in certain

ways, actually do behave when presented with much harder problems than have they

have typically been investigated against.

• We have identified an effect in PSO in which for the majority of our benchmark set

behaves unusually in the presence of large population sizes - an effect we felt to be

counter-intuitive. Through further investigation we hope to further explain the causes

of this effect and be better able to predict the type of functions where it is likely we

will observe this effect occurring, and further, research into the possible benefits or

disadvantages such a situation may present

• Results show that the SSGA used in this study can be tuned at a significantly lower

evaluation budget than that of the intended target budget without affecting performance

(in terms of solution quality). This finding carries the implication that the observed

requirement of tuning at the target evaluation budget in other algorithms can be largely

alleviated for SSGA - allowing the algorithm to be tuned faster.

7.6 future work

Based on some of the behaviours we are beginning to observe in even the most common of

metaheuristic implementations, there is of course scope to continue this line of research - not

only to develop more evidence to support our findings here but also to investigate further

into the possible reasons - an overlap into the realm of ‘Explanatory Metaheuristics’ - for

behavioural changes observed at the kind of scale we have been dealing with.

In particular, the discovery of a threshold above which large population sizes in PSO are

unhelpful warrants much further investigation; as an understanding of how and when this

effect will present itself may inspire improvements to the current state of affairs in regards to

particle swarm optimisation research and state-of-the-art PSO algorithm performance as well

as aiming to generate insight into how parameters interact within metaheuristic algorithms in

general - a very interesting prospect quickly gaining momentum in the research community.

167

[ 22nd January 2020 at 18:00 ]



B I B L I O G R A P H Y

[1] Emile Aarts, Jan Korst, and Wil Michiels. Simulated annealing. Search Methodologies:

Introductory Tutorials in Optimization and Decision Support Techniques, page 187, 2006.

[2] W. Al-Hassan, M. B. Fayek, and S. I. Shaheen. Psosa: An optimized particle swarm

technique for solving the urban planning problem. In 2006 International Conference on

Computer Engineering and Systems, pages 401–405, Nov 2006. doi: 10.1109/ICCES.2006.

320481.

[3] D. A. Ashlock, K. M. Bryden, and S. Corns. Small population effects and hybridization.

In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational

Intelligence), pages 2637–2643, June 2008. doi: 10.1109/CEC.2008.4631152.

[4] Anne Auger and Olivier Teytaud. Continuous lunches are free! In Proceedings of the 9th

annual conference on Genetic and evolutionary computation, pages 916–922. ACM, 2007.

[5] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Evolutionary Computation 1:

Basic algorithms and Operators, volume 1. CRC press, 2000.

[6] Sunith Bandaru and Kalyanmoy Deb. Metaheuristic techniques. Decision Sciences: Theory

and Practice, pages 693–750, 2016.

[7] Jagdish Chand Bansal, PK Singh, Mukesh Saraswat, Abhishek Verma, Shimpi Singh

Jadon, and Ajith Abraham. Inertia weight strategies in particle swarm optimization. In

Nature and Biologically Inspired Computing (NaBIC), 2011 Third World Congress on, pages

633–640. IEEE, 2011.

[8] Richard E Bellman. Adaptive Control Processes: a Guided Tour, volume 2045. Princeton

University Press, 1961.

[9] John B Biggs. The role of metalearning in study processes. British journal of educational

psychology, 55(3):185–212, 1985.

[10] James Blondin. Particle swarm optimization: A tutorial. Availaible from: http://cs. arm-

strong. edu/saad/csci8100/pso tutorial. pdf, 2009.

[11] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Over-

view and conceptual comparison. ACM computing surveys (CSUR), 35(3):268–308, 2003.

i

[ 22nd January 2020 at 18:00 ]



[12] Yossi Borenstein and Alberto Moraglio. Theory and Principled Methods for the Design of

Metaheuristics. Springer, 2014.

[13] Daniel Bratton and James Kennedy. Defining a standard for particle swarm optimization.

In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 120–127. IEEE, 2007.

[14] Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo Vilalta. Metalearn-

ing: Applications to Data Mining. Springer Science & Business Media, 2008.

[15] Leo Breiman and Adele Cutler. Random forests. URL https://www.stat.berkeley.

edu/~breiman/RandomForests/cc_home.htm#remarks.

[16] Jason Brownlee. Clever Algorithms: Nature-inspired Programming Recipes. Jason Brownlee,

2011.

[17] Edmund K Burke, Graham Kendall, et al. Search methodologies. Springer, 2005.

[18] Fabio Caraffini, Ferrante Neri, and Giovanni Iacca. Large scale problems in practice:

The effect of dimensionality on the interaction among variables. In Giovanni Squillero

and Kevin Sim, editors, Applications of Evolutionary Computation, pages 636–652. Springer

International Publishing, 2017. ISBN 978-3-319-55849-3.

[19] Wei Chu, Xiaogang Gao, and Soroosh Sorooshian. Handling boundary constraints for

particle swarm optimization in high-dimensional search space. Information Sciences,

181(20):4569–4581, October 2011. ISSN 0020-0255. doi: 10.1016/j.ins.2010.11.030. URL

http://dx.doi.org/10.1016/j.ins.2010.11.030.

[20] Maurice Clerc. The swarm and the queen: Towards a deterministic and adaptive particle

swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999

Congress on, volume 3, pages 1951–1957. IEEE, 1999.

[21] Maurice Clerc. Guided randomness in optimization, volume 1. John Wiley & Sons, 2015.

[22] David A Coley. An introduction to genetic algorithms for scientists and engineers. World

Scientific Publishing Company, 1999.

[23] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: A

survey of the state-of-the-art. IEEE transactions on evolutionary computation, 15(1):4–31,

2011.

[24] Kenneth A De Jong and Jayshree Sarma. Generation gaps revisited. In Foundations of

Genetic Algorithms, volume 2, pages 19–28. Elsevier, 1993.

ii

[ 22nd January 2020 at 18:00 ]

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#remarks
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#remarks
http://dx.doi.org/10.1016/j.ins.2010.11.030


[25] Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.

PhD thesis, MI, USA, 1975. AAI7609381.

[26] Kalyanmoy Deb and Debayan Deb. Analysing mutation schemes for real-parameter

genetic algorithms. International Journal of Artificial Intelligence and Soft Computing, 4(1):

1–28, 2014.

[27] Ke-Lin Du and MNS Swamy. Simulated annealing. In Search and Optimization by

Metaheuristics, pages 29–36. Springer, 2016.

[28] Russell C Eberhart and Yuhui Shi. Tracking and optimizing dynamic systems with

particle swarms. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on,

volume 1, pages 94–100. IEEE, 2001.

[29] Agoston E Eiben, James E Smith, et al. Introduction to Evolutionary Computing, volume 53.

Springer, 2003.

[30] Andries P. Engelbrecht. Computational Intelligence: An Introduction. Wiley Publishing,

2nd edition, 2007. ISBN 0470035617.

[31] Yong Feng, Gui-Fa Teng, Ai-Xin Wang, and Yong-Mei Yao. Chaotic inertia weight in

particle swarm optimization. In Innovative Computing, Information and Control, 2007.

ICICIC’07. Second International Conference on, pages 475–475. IEEE, 2007.

[32] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-

box optimization benchmarking 2009: Presentation of the noiseless functions. Technical

report, Citeseer, 2010.

[33] Len Fisher. The Perfect Swarm: The Science of Complexity in Everyday Life. Basic Books,

2009.

[34] Ronald Aylmer Fisher. The genetical theory of natural selection: a complete variorum edition.

Oxford University Press, 1999.

[35] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building-

block hypothesis. In Foundations of genetic algorithms, volume 2, pages 109–126. Elsevier,

1993.

[36] Andrea Gavana. Test functions index - ampgo 0.1.0 documentation.

URL http://infinity77.net/global_optimization/test_functions.html#

test-functions-index.

iii

[ 22nd January 2020 at 18:00 ]

http://infinity77.net/global_optimization/test_functions.html#test-functions-index
http://infinity77.net/global_optimization/test_functions.html#test-functions-index


[37] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. In Readings in Computer Vision, pages 564–584. Elsevier,

1987.

[38] Robert Ghanea-Hercock. Applied Evolutionary Algorithms in Java. Springer Science &

Business Media, 2013.

[39] F. Glover and K. Sörensen. Metaheuristics. Scholarpedia, 10(4):6532, 2015. doi: 10.4249/

scholarpedia.6532. revision #149834.

[40] Jochen Gortler, Rebecca Kehlbeck, and Oliver Deussen. Visual explor-

ation of gaussian processes, 2019. URL https://distill.pub/2019/

visual-exploration-gaussian-processes/.

[41] Kevin Graham and Leslie Smith. Comparing hyper-heuristics with blackboard systems.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages

1141–1145, 2017.

[42] Kevin Graham, Jerry Swan, and Simon Martin. The ‘blackboard pattern’ for metaheur-

istics. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic

and Evolutionary Computation, pages 1265–1267, 2015.

[43] Bruce Hajek. Cooling schedules for optimal annealing. Mathematics of operations research,

13(2):311–329, 1988.

[44] Nikolaus Hansen. Cma evolution strategy source code, 2011. URL http://cma.gforge.

inria.fr/cmaes_sourcecode_page.html.

[45] Nikolaus Hansen. The cma evolution strategy: A tutorial. 2016.

[46] Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multimodal

test functions. In International Conference on Parallel Problem Solving from Nature, pages

282–291. Springer, 2004.

[47] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter black-

box optimization benchmarking 2009: Presentation of the noiseless functions. Technical

report, 2010.

[48] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger.

Impacts of invariance in search: When cma-es and pso face ill-conditioned and non-

separable problems. Applied Soft Computing, 11(8):5755–5769, 2011.

iv

[ 22nd January 2020 at 18:00 ]

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html


[49] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockhoff. Coco:

A platform for comparing continuous optimizers in a black-box setting. arXiv preprint

arXiv:1603.08785, 2016.

[50] Randy L Haupt and Sue Ellen Haupt. Practical genetic algorithms, volume 2. Wiley New

York, 2004.

[51] Abdel-Rahman Hedar. Global optimisation test problems. URL http://www-optima.

amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm.

[52] Sabine Helwig and Rolf Wanka. Theoretical analysis of initial particle swarm behavior.

In International conference on parallel problem solving from nature, pages 889–898. Springer,

2008.

[53] Darrall Henderson, Sheldon H Jacobson, and Alan W Johnson. The theory and practice

of simulated annealing. In Handbook of metaheuristics, pages 287–319. Springer, 2003.

[54] J. H. Holland. Genetic algorithms. Scholarpedia, 7(12):1482, 2012. doi: 10.4249/

scholarpedia.1482. revision #128222.

[55] John H. Holland. Hidden Order: How Adaptation Builds Complexity. Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, USA, 1995. ISBN 0-201-40793-0.

[56] S. Hollasch. Four-space Visualization of 4D Objects. PhD thesis, 1991.

[57] Qiang Huang, Thomas White, Guanbo Jia, Mirco Musolesi, Nil Turan, Ke Tang, Shan He,

John K Heath, and Xin Yao. Community detection using cooperative co-evolutionary

differential evolution. In International Conference on Parallel Problem Solving from Nature,

pages 235–244, 2012.

[58] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization

for general algorithm configuration (extended version). Technical Report TR-2010-10,

University of British Columbia, Department of Computer Science, 2010. Available online:

http://www.cs.ubc.ca/˜hutter/papers/10-TR-SMAC.pdf.

[59] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for

general algorithm configuration. In Proc. of LION-5, pages 507–523, 2011.

[60] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for

general algorithm configuration (slide presentation), 2011.

[61] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin P Murphy. An ex-

perimental investigation of model-based parameter optimisation: Spo and beyond. In

v

[ 22nd January 2020 at 18:00 ]

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm


Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages

271–278. ACM, 2009.

[62] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. An evaluation of sequential

model-based optimiation for expensive blackbox functions. In GECCO, 2013.

[63] Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global

optimisation problems. International Journal of Mathematical Modelling and Numerical

Optimisation, 4(2):150–194, 2013.

[64] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization

of expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[65] Yılmaz Kaya, Murat Uyar, et al. A novel crossover operator for genetic algorithms: Ring

crossover. arXiv preprint arXiv:1105.0355, 2011.

[66] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on particle

swarm performance. In Proceedings of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406), volume 3, pages 1931–1938 Vol. 3, July 1999. doi: 10.1109/

CEC.1999.785509.

[67] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on, volume 4, pages 1942–1948 vol.4, Nov 1995.

doi: 10.1109/ICNN.1995.488968.

[68] James Kennedy and Rui Mendes. Population structure and particle swarm perform-

ance. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.

02TH8600), volume 2, pages 1671–1676. IEEE, 2002.

[69] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated

annealing. science, 220(4598):671–680, 1983.

[70] Jack PC Kleijnen. Response surface methodology. In Handbook of simulation optimization,

pages 81–104. Springer, 2015.

[71] Oscar Knagg. An intuitive guide to gaussian pro-

cesses, 2015. URL https://towardsdatascience.com/

an-intuitive-guide-to-gaussian-processes-ec2f0b45c71d.

[72] Johannes W Kruisselbrink, Rui Li, Edgar Reehuis, Jeroen Eggermont, and Thomas Bäck.

On the log-normal self-adaptation of the mutation rate in binary search spaces. In

Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages

893–900. ACM, 2011.

vi

[ 22nd January 2020 at 18:00 ]

https://towardsdatascience.com/an-intuitive-guide-to-gaussian-processes-ec2f0b45c71d
https://towardsdatascience.com/an-intuitive-guide-to-gaussian-processes-ec2f0b45c71d


[73] Manuel Laguna and Rafael Martí. Experimental testing of advanced scatter search

designs for global optimization of multimodal functions. Journal of Global Optimization,

33(2):235–255, 2005.

[74] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey of trends

and technologies. Artificial intelligence review, 44(1):117–130, 2015.

[75] Xiaodong Li and Xin Yao. Tackling high dimensional nonseparable optimisation prob-

lems by cooperatively coevolving particle swarms. In 2009 IEEE Congress on Evolutionary

Computation, pages 1546–1553, 2009.

[76] Xiaodong Li and Xin Yao. Cooperatively coevolving particle swarms for large scale

optimization. IEEE Transactions on Evolutionary Computation, 16(2):210–224, 2011.

[77] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic accept-

ance. Physica A: Statistical Mechanics and its Applications, 391(6):2193–2196, 2012.

[78] Manuel López-Ibán̋ez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle,

and Mauro Birattari. Iterated racing for automatic algorithm configuration [r package

irace version 3.3]. URL https://cran.r-project.org/package=irace.

[79] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,

and Thomas Stützle. The irace package: Iterated racing for automatic algorithm config-

uration. Operations Research Perspectives, 3:43–58, 2016.

[80] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search. In

Handbook of Metaheuristics, pages 320–353. Springer, 2003.

[81] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search:

Framework and applications. In Handbook of metaheuristics, pages 363–397. Springer,

2010.

[82] Sean Luke. Essentials of metaheuristics, volume 113. Lulu Raleigh, 2009.

[83] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, and Z. Zhu. A survey on cooperative

co-evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 23(3):421–441,

June 2019. ISSN 1089-778X. doi: 10.1109/TEVC.2018.2868770.

[84] Sarim Mahmood, Scott Rosenquist, and Bryce Benn. skarjoko/differential-evolution,

2013. URL https://github.com/skarjoko/differential-evolution/blob/master/

DifferentialEvolution.java.

vii

[ 22nd January 2020 at 18:00 ]

https://cran.r-project.org/package=irace
https://github.com/skarjoko/differential-evolution/blob/master/DifferentialEvolution.java
https://github.com/skarjoko/differential-evolution/blob/master/DifferentialEvolution.java


[85] Gandhi Manalu. Particle swarm optimization: Sample code us-

ing java, 2010. URL https://gandhim.wordpress.com/2010/04/04/

particle-swarm-optimization-pso-sample-code-using-java/.

[86] Gandhi Manalu. Particle swarm optimization: Sample code using java, 2014. URL

https://github.com/therealmanalu/pso-example-java.

[87] Angelina Jane Reyes Medina, Gregorio Toscano Pulido, and José Gabriel Ramírez-Torres.

A comparative study of neighborhood topologies for particle swarm optimizers. In

IJCCI, pages 152–159, 2009.

[88] Olaf Mersmann, Mike Preuss, Heike Trautmann, Bernd Bischl, and Claus Weihs. Ana-

lyzing the bbob results by means of benchmarking concepts. Evolutionary computation,

23(1):161–185, 2015.

[89] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs (3rd

Ed.). Springer-Verlag, London, UK, UK, 1996. ISBN 3-540-60676-9.

[90] Zbigniew Michalewicz and David B Fogel. How to solve it: modern heuristics. Springer

Science & Business Media, 2013.

[91] Zbigniew Michalewicz, Thomas Logan, and Swarnalatha Swaminathan. Evolutionary

operators for continuous convex parameter spaces. In Proceedings of the 3rd Annual

conference on Evolutionary Programming, pages 84–97. World Scientific, 1994.

[92] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[93] Marcin Molga and Czesław Smutnicki. Test functions for optimization needs. Test

functions for optimization needs, 101, 2005.

[94] John A Nelder and Roger Mead. A simplex method for function minimization. The

Computer Journal, 7(4):308–313, 1965.

[95] Ferrante Neri and Ville Tirronen. Recent advances in differential evolution: a survey

and experimental analysis. Artificial Intelligence Review, 33(1-2):61–106, 2010.

[96] Alexander G Nikolaev and Sheldon H Jacobson. Simulated annealing. In Handbook of

Metaheuristics, pages 1–39. Springer, 2010.

[97] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY,

USA, 2nd edition, 2006.

[98] Yaghout Nourani and Bjarne Andresen. A comparison of simulated annealing cooling

strategies. Journal of Physics A: Mathematical and General, 31(41):8373, 1998.

viii

[ 22nd January 2020 at 18:00 ]

https://gandhim.wordpress.com/2010/04/04/particle-swarm-optimization-pso-sample-code-using-java/
https://gandhim.wordpress.com/2010/04/04/particle-swarm-optimization-pso-sample-code-using-java/
https://github.com/therealmanalu/pso-example-java


[99] Mohammad Nabi Omidvar, Xiaodong Li, Zhenyu Yang, and Xin Yao. Cooperative

co-evolution for large scale optimization through more frequent random grouping. In

IEEE Congress on Evolutionary Computation, pages 1–8, 2010.

[100] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. Cooperative co-evolution with

delta grouping for large scale non-separable function optimisation. In IEEE Congress on

Evolutionary Computation, pages 1–8, 2010.

[101] Nikhil Padhye, Kalyanmoy Deb, and Pulkit Mittal. Boundary handling approaches

in particle swarm optimization. In Proceedings of Seventh International Conference on

Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pages 287–298. Springer,

2013.

[102] Lucas Pavelski, Myriam Delgado, and Marie-Eleonore Kessaci. Meta-learning for

optimization: A case study on the flowshop problem using decision trees. In 2018 IEEE

Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, 2018.

[103] Peter Frank Perroni, Daniel Weingaertner, and Myriam Regattieri Delgado. Automated

iterative partitioning for cooperatively coevolving particle swarms in large scale op-

timization. In 2015 Brazilian Conference on Intelligent Systems (BRACIS), pages 19–24,

2015.

[104] Stjepan Picek, Domagoj Jakobovic, and Marin Golub. On the recombination operator in

the real-coded genetic algorithms. In Evolutionary Computation (CEC), 2013 IEEE Congress

on, pages 3103–3110. IEEE, 2013.

[105] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization. Swarm

intelligence, 1(1):33–57, 2007.

[106] Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. De Jong. Coevolu-

tionary Principles, pages 987–1033. Springer, Berlin, Heidelberg, 2012. ISBN 978-

3-540-92910-9. doi: 10.1007/978-3-540-92910-9_31. URL https://doi.org/10.1007/

978-3-540-92910-9_31.

[107] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to

function optimization. In International Conference on Parallel Problem Solving from Nature,

pages 249–257, 1994.

[108] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: a Practical

Approach to Global Optimization. Springer Science & Business Media, 2006.

ix

[ 22nd January 2020 at 18:00 ]

https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-540-92910-9_31


[109] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on

Machine Learning, pages 63–71. Springer, 2003.

[110] Asanga Ratnaweera, Saman K Halgamuge, and Harry C Watson. Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE

Transactions on evolutionary computation, 8(3):240–255, 2004.

[111] Colin Reeves. Genetic algorithms. In Handbook of metaheuristics, pages 55–82. Springer,

2003.

[112] John R Rice. The algorithm selection problem. In Advances in computers, volume 15,

pages 65–118. Elsevier, 1976.

[113] Alex Rogers and Adam Prügel-Bennett. Modelling the dynamics of a steady-state

genetic algorithm. Foundations of genetic algorithms, 5:57–68, 1999.

[114] Raymond Ros and Nikolaus Hansen. A simple modification in cma-es achieving linear

time and space complexity. In International Conference on Parallel Problem Solving from

Nature, pages 296–305. Springer, 2008.

[115] Alejandro Rosete-Suárez, Alberto Ochoa-Rodríguez, and Michele Sebag. Automatic

graph drawing and stochastic hill climbing. In Proceedings of the 1st Annual Conference

on Genetic and Evolutionary Computation - Volume 2, GECCO’99, pages 1699–1706, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-611-4. URL

http://dl.acm.org/citation.cfm?id=2934046.2934177.

[116] Franz Rothlauf. Design of Modern Heuristics: Principles and Application. Springer Science

& Business Media, 2011.

[117] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia;

Pearson Education Limited„ 2016.

[118] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,

Inc., New York, NY, USA, 1981. ISBN 0471099880.

[119] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The

1998 IEEE International Conference on, pages 69–73. IEEE, 1998.

[120] Yuhui Shi and Russell C Eberhart. Empirical study of particle swarm optimization.

In Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 congress on, volume 3,

pages 1945–1950. IEEE, 1999.

x

[ 22nd January 2020 at 18:00 ]

http://dl.acm.org/citation.cfm?id=2934046.2934177


[121] John Silberholz and Bruce Golden. Comparison of Metaheuristics, pages 625–640. Springer

US, Boston, MA, 2010. ISBN 978-1-4419-1665-5. doi: 10.1007/978-1-4419-1665-5_21. URL

https://doi.org/10.1007/978-1-4419-1665-5_21.

[122] S. Singer and J. Nelder. Nelder-Mead algorithm. Scholarpedia, 4(7):2928, 2009. doi:

10.4249/scholarpedia.2928. revision #91557.

[123] Sanja Singer and Saša Singer. Complexity analysis of nelder-mead search iterations. In

Proceedings of the 1. Conference on Applied Mathematics and Computation, Dubrovnik, Croatia,

pages 185–196. PMF–Matematički odjel, Zagreb, 1999.
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A
A P P E N D I X A : 1 0 , 0 0 0 A N D 5 0 , 0 0 0 E VA L U AT I O N C O M PA R I S O N

P L O T S

random mutation hill climbing (rmhc)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations

2
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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simulated annealing (sa)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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steady state genetic algorithm (ssga)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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differential evolution (de)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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particle swarm optimisation

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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covariance matrix adaption evolutionary strategy (cma-es)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations

31
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B
A P P E N D I X B : 1 0 K & 5 0 K E VA L U AT I O N T U N I N G B U D G E T

D E S C R I P T I V E S TAT I S T I C S

32
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C
A P P E N D I X C : S M A L L T O L A R G E - S C A L E M E TA H E U R I S T I C

C O M PA R I S O N M AT E R I A L

c.1 metaheuristic comparison plots

c.1.1 Comparison of Approaches Tuned at the 10,000 Evaluation Budget (With Q1 & Q3 Error Bars)

Ackley Function at 50,000 Evaluations Alpine n.1 Function at 50,000 Evaluations

Bent Cigar Function at 50,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 50,000 Evaluations Deflected Corrugated Spring Function at 50,000 Evalu-

ations
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Exponential Function at 50,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 50,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 50,000 Evaluations Rastrigin Function at 50,000 Evaluations
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Rosenbrock Function at 50,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 50,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 50,000 Evaluations
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c.1.2 Comparison of Approaches Tuned at the 10,000 Evaluation Budget (No Error Bars)

Ackley Function at 50,000 Evaluations Alpine n.1 Function at 50,000 Evaluations

Bent Cigar Function at 50,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 50,000 Evaluations Deflected Corrugated Spring Function at 50,000 Evalu-

ations
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Exponential Function at 50,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 50,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 50,000 Evaluations Rastrigin Function at 50,000 Evaluations
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Rosenbrock Function at 50,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 50,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 50,000 Evaluations
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c.1.3 Comparison of Approaches Tuned at the 50,000 Evaluation Budget (With Q1 & Q3 Error Bars)

Ackley Function at 50,000 Evaluations Alpine n.1 Function at 50,000 Evaluations

Bent Cigar Function at 50,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 50,000 Evaluations Deflected Corrugated Spring Function at 50,000 Evalu-

ations
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Exponential Function at 50,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 50,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 50,000 Evaluations Rastrigin Function at 50,000 Evaluations
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Rosenbrock Function at 50,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 50,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 50,000 Evaluations
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c.1.4 Comparison of Approaches Tuned at the 50,000 Evaluation Budget (No Error Bars)

Ackley Function at 50,000 Evaluations Alpine n.1 Function at 50,000 Evaluations

Bent Cigar Function at 50,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 50,000 Evaluations Deflected Corrugated Spring Function at 50,000 Evalu-

ations
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Exponential Function at 50,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 50,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 50,000 Evaluations Rastrigin Function at 50,000 Evaluations
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Rosenbrock Function at 50,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 50,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 50,000 Evaluations
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c.2 graphical metaheuristic rankings

c.2.1 Rank Ordering By Benchmark Function

Rankings for Ackley Function Rankings for Alpine no.1 Function

Rankings for Bent Cigar Function Rankings for Brown Function

Rankings for Chung Reynolds Function Rankings for Deflected Corrugated Spring Function
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Rankings for Exponential Function Rankings for Griewank Function

Rankings for Inverted Cosine Wave Function Rankings for Levy Function

Rankings for Qing Function Rankings for Rastrigin Function
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Rankings for Rosenbrock Function Rankings for Schwefel Function

Rankings for Sphere Function Rankings for Sum of Different Powers Function

Rankings for Sum Squares Function
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c.2.2 Rank Ordering: Mean Aggregate and Pooled Mean Over Subsets of the Benchmark Suite

c.2.2.1 Mean Aggregated Rank Ordering Over All Dimensionalities

Mean Aggregate Rankings Over Entire Benchmark

Suite

Mean Aggregate Rankings Over All Uni-modal Prob-

lems

Mean Aggregate Rankings Over All Multi-modal

Problems

Mean Aggregate Rankings Over All Separable Prob-

lems

Mean Aggregate Rankings Over All Non-separable

Problems
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c.2.2.2 Pooled Mean Rank Ordering Over Several Dimension Ranges

Pooled Mean Rankings Over Entire Benchmark Suite Pooled Mean Rankings Over All Uni-modal Problems

Pooled Mean Rankings Over All Multi-modal Problems Pooled Mean Rankings Over All Separable Problems

Pooled Mean Rankings Over All Non-separable Problems
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c.3 algorithm ranking tables

c.3.1 Algorithm Rank Ordering By Benchmark Function
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D
A P P E N D I X D : P L O T S S H O W I N G T H E R E S U LT S O F T U N I N G E A C H

A L G O R I T H M AT A 1 0 , 0 0 0 A N D 5 0 , 0 0 0 E VA L U AT I O N B U D G E T

C O M PA R E D T O T H E C O R R E S P O N D I N G U N T U N E D A L G O R I T H M

d.1 smac parameter tuning results

Random Mutation Hill Climbing (RMHC)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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Simulated Annealing (SA)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations

92

[ 22nd January 2020 at 18:00 ]



Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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Steady State Genetic Algorithm (SSGA)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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Differential Evolution (DE)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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Particle Swarm Optimisation

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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Covariance Matrix Adaption Evolutionary Strategy (CMA-ES)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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d.2 irace vs. smac parameter tuning results

Random Mutation Hill Climbing (RMHC)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations
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Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations

Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations
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Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Simulated Annealing (SA)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations
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Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations

Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

118

[ 22nd January 2020 at 18:00 ]



Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Steady State Genetic Algorithm (SSGA)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations
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Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations

Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations
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Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Differential Evolution (DE)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations
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Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations

Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations
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Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Particle Swarm Optimisation (PSO)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations
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Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations

Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations
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Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Covariance Matrix Adaption Evolutionary Strategy (CMA-ES)

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations
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Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations

Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations
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Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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E
A P P E N D I X E : D E F I N I T I O N S O F B E N C H M A R K F U N C T I O N S I N T H E

T E S T S U I T E

e.1 ackley function no.1

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20+ exp (1) (E.1)

Subject to domain, −32.768 6 xi 6 32.768 for all i{1, 2, ...,n}. The global minima is found at

the origin x∗i = 0 with value f(x∗) = 0.

Figure E.1a and E.1b shows a 3D and contour plot representing Ackley function no.1 in

2-dimensional space.

(a) Ackley Function 3D View (b) Ackley Function Contour Plot

Figure E.1: Ackley Function no.1 in its 2-dimensional form

e.2 alpine function no.1

f(x) =

n∑
i=1

|xi sin(xi) + 0.1xi| (E.2)
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Subject to domain, −10 6 xi 6 10 for all i{1, 2, ...,n}. The global minima is found at the origin

x∗i = 0 with value 0.

Figure E.2a and E.2b shows a 3D and contour plot representing Alpine function no.1 in

2-dimensional space.

(a) Alpine Function no.1 3D View (b) Alpine Function no.1 Contour Plot

Figure E.2: Alpine Function no.1 in its 2-dimensional form

e.3 bent cigar function

f(x) = x21 + 10
6
n∑
i=2

x2i (E.3)

Subject to domain, −100 6 xi 6 100 for all i{1, 2, ...,n}. The global minima is found at the

origin x∗i = 0 with value f(x∗) = 0.

Figure E.3a and E.3b shows a 3D and contour plot representing Bent Cigar function in

2-dimensional space.
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(a) Bent Cigar Function 3D View (b) Bent Cigar Function Contour Plot

Figure E.3: Bent Cigar Function in its 2-dimensional form

e.4 brown function

f(x) =

n−1∑
i=1

(x2i )
x2i+1+1 + (x2i+1)

x2i+1 (E.4)

Subject to domain, −1 6 xi 6 4 for all i{1, 2, ...,n}. The global minima is found at the origin

x∗i = 0 with value f(x∗) = 0.

Figures E.4a and E.4b shows a 3D and contour plot representing the Brown function in

2-dimensional space, subject to the full sized domain. To clearly show the function structure

near the global optimum, Figures E.4c and E.4d represents the function with domain restricted

to −1 6 xi 6 1
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(a) Brown Function 3D View (Full Domain) (b) Brown Function Contour Plot (Full Domain)

(c) Brown Function Contour Plot (Limited Domain) (d) Brown Function Contour Plot (Limited Domain)

Figure E.4: Brown Function in its 2-dimensional form: (a) and (b) shows the function’s full domain, and

(c) and (d) shows the function with domain limited to −1 6 xi 6 1

e.5 chung-reynolds function

f(x) =

(
n∑
i=1

x2i

)2
(E.5)

Subject to domain, −100 6 xi 6 100 for all i{1, 2, ...,n}. The global minima is found at the

origin x∗i = 0 with value f(x∗) = 0.
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(a) Chung-Reynolds Function 3D View (b) Chung-Reynolds Function Contour Plot

Figure E.5: Chung-Reynolds Function in its 2-dimensional form

e.6 deflected corrugated spring function

f(x) = 0.1
n∑
i=1

(xi −α)2 − cos

K
√√√√ n∑
i=1

(xi −α)2

 (E.6)

The function is subject to domain, 0 6 xi 6 2α for all i{1, 2, ...,n}. and the global minima is

found at the point x∗i = α with value f(x∗) = −1. The variables α and K are both set equal to 5.

Figures E.6a and E.6b shows a 3D and contour plot representing the Deflected Corrugated

Spring function in 2-dimensional space.
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(a) Deflected Corrugated Spring Function 3D View (b) Deflected Corrugated Spring Function Contour Plot

Figure E.6: Deflected Corrugated Spring Function in its 2-dimensional form

e.7 exponential function

f(x) = − exp

(
−0.5

n∑
i=1

x2i

)
(E.7)

Subject to domain, −1 6 xi 6 1 for all i{1, 2, ...,n}. The global minima is found at the origin

x∗i = 0 with value f(x∗) = −1. This optimum of this function is it’s maxima not it’s minima -

to be used for minimisation purposed the result of the function is negated - i.e., the minima

becomes the negative maxima.

Figures E.7a and E.7b shows a 3D and contour plot representing the Exponential function in

2-dimensional space.
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(a) Exponential Function 3D View (b) Exponential Function Contour Plot

Figure E.7: Exponential Function in its 2-dimensional form

e.8 griewank function

f(x) =
1

4000

n∑
i=1

x2i −

n∏
i=1

cos
(
xi√
i

)
+ 1 (E.8)

Subject to domain, −600 6 xi 6 600 for all i{1, 2, ...,n}. The global minima is found at the

origin x∗i = 0 with value f(x∗) = 0.

Figures E.8a and E.8b shows a 3D and contour plot representing the Griewank function

in 2-dimensional space.
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(a) Griewank Function 3D View (b) Griewank Function Contour Plot

Figure E.8: Griewank Function in its 2-dimensional form

e.9 inverted cosine wave function

f(x) =

n−1∑
i=1

e
[
−(x2i+x

2
i+1+0.5xixi+1)

8

]
cos
(
4×

√
x2i + x

2
i+1 + 0.5xixi+1

) (E.9)

Subject to domain, −5 6 xi 6 5 for all i{1, 2, ...,n}. The global minima is found at the origin

x∗i = 0 with value f(x∗) = −n+ 1.

Figures E.9a and E.9b shows a 3D and contour plot representing the Inverted Cosine Wave

function in 2-dimensional space.
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(a) Inverted Cosine Wave Function 3D View (b) Inverted Cosine Wave Function Contour Plot

Figure E.9: Inverted Cosine Wave Function in its 2-dimensional form

e.10 levy function

f(x) = sin2 (πw1) +
n−1∑
i=1

(wi − 1)
2
[
1+ 10 sin2 (πwi + 1)

]
+ (wn − 1)2

[
1+ sin2 (2πwn)

]
,

(E.10)

where wi = 1+
xi−1
4 for all i{1, 2, ...,n}

Subject to domain, −10 6 xi 6 10 for all i{1, 2, ...,n}. The global minima is found at the

point x∗i = 1 with value f(x∗) = 0.

Figures E.10a and E.10b shows a 3D and contour plot representing the Levy function in

2-dimensional space.
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(a) Levy Function 3D View (b) Levy Function Contour Plot

Figure E.10: Levy Function in its 2-dimensional form
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e.11 qing function

f(x) =

n∑
i=1

(
x2i − i

)2
(E.11)

Subject to domain, −500 6 xi 6 500 for all i{1, 2, ...,n}. There are 2n global minima found at

points x∗i = ±
√
i,wherei = 1...n, with value f(x∗) = 0.

Figures E.11a and E.11b shows a 3D and contour plot representing the Qing function in

2-dimensional space, subject to the full sized domain. To clearly show the function structure

near the global optima, Figures E.11c and E.11d represents the function with domain restricted

to −2 6 xi 6 2
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(a) Qing Function 3D View (Full Domain) (b) Qing Function Contour Plot (Full Domain)

(c) Qing Function Contour Plot (Limited Domain) (d) Qing Function Contour Plot (Limited Domain)

Figure E.11: Qing Function in its 2-dimensional form: (a) and (b) shows the function’s full domain, and

(c) and (d) shows the function with domain limited to −2 6 xi 6 2

e.12 rastrigin function

f(x) = 10n

n∑
i=1

[
x2i − 10 cos (2πxi)

]
(E.12)

Subject to domain, −5.12 6 xi 6 5.12 for all i{1, 2, ...,n}. The global minima is found at the

origin x∗i = 0 with value f(x∗) = 0.
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Figures E.12a and E.12b shows a 3D and contour plot representing the Rastrigin function in

2-dimensional space.

(a) Rastrigin Function 3D View (b) Rastrigin Function Contour Plot

Figure E.12: Rastrigin Function in its 2-dimensional form

e.13 rosenbrock function

f(x) =

n−1∑
i=1

[
100

(
xi+1 − x

2
i

)2
+ (xi − 1)

2

]
(E.13)

Subject to domain, −30 6 xi 6 30 for all i{1, 2, ...,n}. The global minima is found at the point

x∗i = 1 with value f(x∗) = 0.

Figures E.13a and E.13b shows a 3D and contour plot representing the Rosenbrock function in

2-dimensional space, subject to the full sized domain. To clearly show the function structure

near the global optima, Figures E.13c and E.13d represents the function with domain restricted

to −2.5 6 xi 6 2.5
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(a) Rosenbrock Function 3D View (Full Domain) (b) Rosenbrock Function Contour Plot (Full Domain)

(c) Rosenbrock Function Contour Plot (Limited Domain) (d) Rosenbrock Function Contour Plot (Limited Domain)

Figure E.13: Rosenbrock Function in its 2-dimensional form: (a) and (b) shows the function’s full domain,

and (c) and (d) shows the function with domain limited to −2.5 6 xi 6 2.5
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e.14 schwefel function no.26

f(x) = 418.9829n−

n∑
i=1

xi sin
(√

|xi|
)

(E.14)

Subject to domain, −500 6 xi 6 500 for all i{1, 2, ...,n}. The global minima is found at the

point x∗i = 420.9687 with value f(x∗) = 0.

Figures E.14a and E.14b shows a 3D and contour plot representing the Schwefel function in

2-dimensional space.

(a) Schwefel Function 3D View (b) Schwefel Function Contour Plot

Figure E.14: Schwefel Function in its 2-dimensional form
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e.15 sphere function

f(x) =

n∑
i=1

x2i (E.15)

Subject to domain, −5.12 6 xi 6 5.12 for all i{1, 2, ...,n}. The global minima is found at the

origin x∗i = 0 with value f(x∗) = 0.

Figures E.15a and E.15b shows a 3D and contour plot representing the Sphere function

in 2-dimensional space.

(a) Sphere Function 3D View (b) Sphere Function Contour Plot

Figure E.15: Sphere Function in its 2-dimensional form
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e.16 sum of different powers function

f(x) =

n∑
i=1

|xi|
i+1 (E.16)

Subject to domain, −1 6 xi 6 1 for all i{1, 2, ...,n}. The global minima is found at the origin

x∗i = 0 with value f(x∗) = 0.

Figures E.16a and E.16b shows a 3D and contour plot representing the Sum of Different

Powers function in 2-dimensional space.

(a) Sum of Different Powers Function 3D View (b) Sum of Different Powers Function Contour Plot

Figure E.16: Sum of Different Powers Function in its 2-dimensional form

e.17 sum squares function

f(x) =

n∑
i=1

ix2i (E.17)

Subject to domain, −10 6 xi 6 10 for all i{1, 2, ...,n}. The global minima is found at the origin

x∗i = 0 with value f(x∗) = 0.

Figures E.17a and E.17b shows a 3D and contour plot representing the Sum Squares function

in 2-dimensional space.
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(a) Sum Squares Function 3D View (b) Sum Squares Function Contour Plot

Figure E.17: Sum Squares Function in its 2-dimensional form
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F
S U P P L E M E N TA RY E X P E R I M E N T M AT E R I A L

f.1 extended pso experiment results

Ackley Function at 10,000 Evaluations Ackley Function at 50,000 Evaluations

Alpine no.1 Function at 10,000 Evaluations Alpine no.1 Function at 50,000 Evaluations

Bent Cigar Function at 10,000 Evaluations Bent Cigar Function at 50,000 Evaluations
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Brown Function at 10,000 Evaluations Brown Function at 50,000 Evaluations

Chung-Reynolds Function at 10,000 Evaluations Chung-Reynolds Function at 50,000 Evaluations

Deflected Corrugated Spring Function at 10,000 Evalu-

ations

Deflected Corrugated Spring Function at 50,000 Evalu-

ations

Exponential Function at 10,000 Evaluations Exponential Function at 50,000 Evaluations
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Griewank Function at 10,000 Evaluations Griewank Function at 50,000 Evaluations

Inverted Cosine Wave Function at 10,000 Evaluations Inverted Cosine Wave Function at 50,000 Evaluations

Levy Function at 10,000 Evaluations Levy Function at 50,000 Evaluations

Qing Function at 10,000 Evaluations Qing Function at 50,000 Evaluations
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Rastrigin Function at 10,000 Evaluations Rastrigin Function at 50,000 Evaluations

Rosenbrock Function at 10,000 Evaluations Rosenbrock Function at 50,000 Evaluations

Schwefel Function at 10,000 Evaluations Schwefel Function at 50,000 Evaluations

Sphere Function at 10,000 Evaluations Sphere Function at 50,000 Evaluations
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Sum of Different Powers Function at 10,000 Evaluations Sum of Different Powers Function at 50,000 Evaluations

Sum Squares Function at 10,000 Evaluations Sum Squares Function at 50,000 Evaluations
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