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quantitative study with the doctoral dissertation of Eugene Monroe in 1948 [11], and with a popular book authored by Rob-
ert MacArthur and Edward Wilson [40].

Biogeography motivated the development of biogeography-based optimization in 2008 [61]. Since then, BBO has been
mathematically modeled as a Markov process [64] and as a dynamic system [62]. BBO has been successfully applied to many
real-world problems, including robot control tuning [36], power system optimization [54], mechanical gear train design [57],
satellite image classification [47], antenna design [59], image processing [51], prosthesis control optimization [69], and neu-
ro-fuzzy system training for biomedical applications [46].

BBO has seen several improvements since it was first introduced. Ma and Simon [37] explored various migration curve
shapes, which affect the selection pressure used for recombination. They also added blending to the BBO recombination lo-
gic, which resulted in the linear combination of independent variables during recombination [38]. Several researchers have
hybridized BBO with other EAs, including DE [10], PSO [29], and oppositional learning [20].

However, in spite of these and other improvements, BBO still changes only one independent variable at a time in its can-
didate solutions. This is explained in more detail in Section 2, but the important point to note here is that this single-feature-
migration property of BBO can result in poor performance on nonseparable problems. A nonseparable problem is one whose
fitness depends on combinations of variables, rather than on individual variables. Many real-world problems are nonsepa-
rable and so this shortcoming of BBO must be addressed to make it more applicable. In this paper we modify BBO to obtain
an algorithm called linearized BBO (LBBO) that is intended to improve BBO’s performance, especially on nonseparable
problems.

Section 2 gives an overview of standard BBO. Section 3 extends the BBO algorithm to LBBO and augments with the algo-
rithm with several additional features, including local search and re-initialization. Section 4 discusses our experimental set-
up for the evaluation of LBBO and compares it with other state-of-the-art EAs. Section 5 presents a sensitivity study of the
contributions of the various components of LBBO, and especially shows the importance of gradient descent (local search).
Section 6 provides some concluding comments and suggestions for further research.

2. Biogeography-Based Optimization (BBO)

BBO is a population-based optimization method where each candidate solution is called a habitat. Each habitat has a hab-
itat suitability index (HSI), which corresponds to the fitness of a solution. A good solution is like a habitat with a high HSI (a
habitat with large number of species) while a bad solution is like a habitat with a small HSI (a habitat with small number of
species). Good solutions tend to share their features with other solutions, while bad solutions are more likely to accept fea-
tures from other solutions. This principle is motivated by natural biogeography, where high-population islands are more
likely to emigrate species, and low-population islands are more likely to immigrate species [40]. Each solution yk in BBO
has two parameters, the immigration rate kk and emigration rate lk, where kk is inversely proportional to the fitness of yk

while lk is proportional to the fitness of yk. Both kk and lk are defined on the domain [0, 1]. Thus, good solutions have
low k and high l, while bad solutions have high k and low l. BBO consists of two main steps: migration and mutation.

2.1. Migration, or information sharing

For each solution feature yk,s, the immigration rate kk is used to probabilistically decide whether or not to immigrate to
that solution feature. This is described in Algorithm 1.

Algorithm 1. BBO migration decision. yk is the kth candidate solution. r is a random number taken from a uniform
distribution on (0,1). kk e [0,1] is the immigration rate and is described in Eq. (3). yk,s is the sth solution feature (that is, the
sth independent variable) of yk,s.

r � U(0,1)
If r < kk then

Immigrate to yk,s

else
Do not immigrate to yk,s

End if

Note that Algorithm 1 is performed for each solution feature index s e [1,n], where n is the problem dimension. If a decision
is made by Algorithm 1 to immigrate to yk,s , then the emigrating solution yj is chosen probabilistically (e.g., using roulette
wheel selection) using the emigration rates of the entire population:

Probðemigration from yjÞ ¼
lj

PN
m¼1lm

for all j 2 ½1;N� ð1Þ



where N is the population size. Migration is defined by

yk;s  yj;s ð2Þ

where s is a solution feature (that is, one component of a solution). There are several migration models for k and l (e.g., linear,
quadratic, sinusoidal and generalized sinusoidal). According to [37], the generalized sinusoidal model generally performs bet-
ter than the other models on 23 benchmark functions. Hence, the generalized sinusoidal model is used in this study:

kk ¼
1
2
ðcosðpfk þ bÞ þ 1Þ

lk ¼
1
2
ð� cosðpfk þ bÞ þ 1Þ

ð3Þ

where fitness of yk, denoted as fk, is normalized to [0,1], and b = �p/2, as recommended in [37]. The normalization is done
using rank-based fitness. Thus, for a population size of N, the fitness values are normalized to 1/(N + 1), 2/(N + 1), . . .,N/(N+1).

2.2. Mutation and Elitism

The mutation operator randomly modifies a solution feature. Mutation adds diversity to the population. In this study,
mutation is done for each feature of each solution as described in Algorithm 2.

Algorithm 2. BBO mutation. yk,s is the sth independent variable in the kth candidate solution. r � U(0,1) – that is, r is a
random number taken from a uniform distribution on (0,1). pm e [0,1] is the user-specified mutation rate, and Ls and Us are
the minimum and maximum allowed values for feature s, respectively.

If r < pm

yk,s U(Ls, Us)
End if

One iteration of BBO is described in Algorithm 3 [37]. Migration and mutation of the population take place before any solu-
tion is replaced, which requires the use of temporary population Z in the algorithm. In addition, elitism is typically used so
that the best two solutions are kept from one generation to the next. Note that elitism could also involve fewer than, or more
than, two solutions each generation. A higher number of elites encourages exploitation, while fewer elites encourages explo-
ration. We do not study the effect of the number of elites on BBO performance; we use two elites as a good balance between
exploration and exploitation.

Algorithm 3. One iteration of the BBO algorithm. We use N to denote the population size. The population Y contains the
candidate solutions yk for k e [1,N].

For each solution yk e Population Y, define kk and lk using Eq. (3)
Z Y
For each solution zk e Z

For each solution feature s
Use kk to probabilistically decide whether to immigrate to zk (Algorithm 1)
If immigrating then

Use {li} (i = 1, . . .,N) to probabilistically select the emigrating solution yj

zk,s yj,s

End if
Probabilistically decide whether to mutate zk,s (Algorithm 2)

Next solution feature
Next solution
Y Z

3. Linearized BBO (LBBO) with local search and re-initialization

This section introduces several new components to BBO. One drawback of BBO is that it treats each solution feature inde-
pendently – that is, it is not rotationally invariant. An algorithm is rotationally invariant if its performance on an objective



function is independent of the rotation of the objective function [72]. BBO’s rotational variance means that it generally per-
forms poorly when applied to nonseparable functions. To address this drawback, BBO migration is linearized in Section 3.1 to
make it more rotationally invariant. Note that perfect rotational invariance is not possible unless the search space is a hyper-
sphere [12].

Another weakness of BBO is its local search ability, and so we describe the addition of gradient descent to BBO in Sec-
tion 3.2. Next, since many real-world optimization solutions lie on constraint boundaries, we add boundary search in Sec-
tion 3.3. Next, in order to systematically cover the search space, we add a global grid search strategy in Section 3.4. Next,
in order to systematically cover the search space in a region near the current best individual, we add a Latin hypercube
search strategy in Section 3.5. We include re-initialization and restart strategies in Sections 3.6 and 3.7. Finally, Section 3.8
summarizes the entire LBBO algorithm and its tuning parameters.

3.1. LBBO migration

For each solution, zk, the immigration rate kk is used to probabilistically decide whether to immigrate or not. If we decide
to immigrate, w emigrating solutions are probabilistically chosen using their emigration rates, where w e [1,n] is a uniformly
distributed random parameter. The solution zk is linearly combined with the w emigrating solutions such that zk moves to-
wards each emigrating solution yj in an amount that is proportional to its emigration rate lj:

zk  zk þ ljðyj � zkÞ ð4Þ

Thus, an immigrating solution moves toward w emigrating solutions with an amount of change that is proportional to the
fitness rank of the emigrating solutions (as determined by l). The linearized migration method is described in Algorithm 4.

Algorithm 4. The LBBO migration step. This migration step replaces the standard BBO migration loop in Algorithm 3. See
Section 3.1 for a discussion.

For each solution zk

Use kk to probabilistically decide whether to immigrate to zk

If immigrating then
w uniformly distributed random integer e [1,n]
For i = 1 to w

Use {li} (i = 1, . . .,N) to probabilistically select the emigrating solution yj

zk zk + lj (yj � zk)
Next i

End if
Probabilistically decide whether to mutate zk,s

Next solution

3.2. Gradient descent

LBBO is augmented in this paper with several local search operators to improve its performance as it nears the global opti-
mum. LBBO, like many EAs, is primarily intended for global search. It is therefore effective at finding the neighborhood of the
global optimum, but has difficulty in homing in on the exact optimum. We implement gradient descent as shown in Algo-
rithm 5.

Algorithm 5. Local search using gradient descent. See Section 3.2 for a discussion.

If FE > a FEmax or (fmin(g) � fmin(g + 1))/fmin(g) < e1 then
Perform gradient descent on the Ng best individuals

End if

Algorithm 5 shows that gradient descent is activated under two conditions.

1. FE is the current number of function evaluations that have been performed so far, and FEmax is the maximum function
evaluation limit. a e [0,1] is a factor that determines when gradient descent is activated. We typically use a = 1/2 so that
gradient descent is activated whenever we have used up 50% or more of our allotted function evaluations.



2. fmin(g) is the minimum function value obtained by LBBO during the gth generation. The quantity (fmin(g) � fmin(g + 1))/
fmin(g) indicates the relative improvement in the best function value found by LBBO from the gth generation to the
(g + 1)st generation. e1 is a threshold that determines when gradient descent is activated. This condition assumes that
the cost value f(�) is positive for all candidate solutions. We typically use e1 = 0.1 so that gradient descent is activated
whenever the best individual in the population improves by less than 10% from one generation to the next.

Algorithm 4 shows that we implement gradient descent on the Ng best individuals. We typically use Ng = 2. We imple-
ment gradient descent with the interior point algorithm, in particular the MATLAB� Optimization Toolbox™ implementation
fmincon. The tuning parameters are set to default values, or are based on common-sense rules of thumb.

� Termination tolerance on the function value: TolFun = e/100, where e is the admissible function error that defines opti-
mization success (see Section 4).
� Maximum allowable function evaluations: MaxIter = 1000.
� Termination tolerance on the independent variable: TolX = 10�8.
� Typical values for the independent variable: TypicalX = (U � L)/100, where U and L are the upper and lower limits of the

search domain, respectively.
� Finite difference method: FinDiffType = ‘central’ – that is central differences are used for gradient estimation.
� Gradient descent algorithm: Algorithm = ‘interior-point’.

3.3. Boundary search

Many real-world optimization problems have their solution on the boundary of the search space. This is not surprising
because, for example, we normally expect to obtain the best engineering design, allocation of resources, or other optimiza-
tion goal, by using all of the available energy, or force, or some other resource [9]. This idea has given rise to the approach of
searching the constraint boundary for the solution to constrained optimization problems [32].

We implement boundary search in LBBO as follows. If any of the dimensions of the best individual in the population are
within a certain threshold of the search space boundary, then we move that dimension to the search space boundary and
perform local search (gradient descent) on the other dimensions. This idea is shown in Algorithm 6.

Algorithm 6. Boundary search combined with gradient descent. See Section 3.3 for a discussion of the algorithm and a
description of the parameters.

If (fmin(g) � fmin(g + 1))/fmin(g) < e2 then
For k = 1 to Ns

For each solution feature s
If (Us � zk,s) < as(Us � Ls) then

zk,s Us

End if
If (zk,s � Ls) < as(Us � Ls) then

zk,s Ls

End if
Next solution feature
Perform gradient descent on unbounded dimensions of zk

Next k
End if

Algorithm 6 shows that boundary search is implemented under similar conditions as gradient descent in Algorithm 5. That
is, boundary search is implemented whenever the best individual in the population improves by a factor of less than e2

from one generation to the next. We typically set e2 equal to the computer precision so that boundary search is imple-
mented only if the best individual does not improve at all from one generation to the next. We implement boundary search
for the best Ns individuals, and we typically use Ns = 2. If any independent variable of the 2 best individuals is within a
factor of as of the upper boundary of the search domain, we set that independent variable equal to the upper boundary.
Similarly, if any independent variable of the 2 best individuals is within a factor of as of the lower boundary of the search
domain, we set that independent variable equal to the lower boundary. Then we perform gradient descent on those indi-
viduals. However, we only perform gradient descent on dimensions that are not equal to a search space boundary. The de-
fault value of as is 0.01.



3.4. Global grid search

The next type of search that we implement is a global grid search. This search systematically covers the search space, and
is shown in Algorithm 7.

Algorithm 7. Global grid search. See Section 3.4 for a discussion.

If (fmin(g) � fmin(g + 1))/fmin(g) < e3 then
D = ao(Us � Ls)
For k = 1 to No

wk = zk

For s = 1 to D
While wk,s P Ls

zk argmin {f(zk), f(wk)}
wk,s wk,s � D

Loop
Next s
wk = zk

For s = 1 to D
While wk,s 6 Us

zk argmin {f(zk), f(wk)}
wk,s wk,s + D

Loop
Next s

Next k
End if

Algorithm 7 shows that global grid search is implemented under similar conditions as gradient descent in Algorithm 5 and
boundary search in Algorithm 6. That is, global grid search is implemented whenever the best individual in the population
improves by a factor of less than e3 from one generation to the next. We typically set e3 equal to the computer precision so
that global grid search is implemented only if the best individual does not improve at all from one generation to the next. We
implement global grid search for the best No individuals, and we typically use No = 2.

Algorithm 7 shows that for the best No individuals, we increment or decrement each independent variable by a specific
fraction ao of the search space size. We typically use ao = 0.1. With this setting, global grid search decreases the value of a
given dimension of zk by an increment equal to 10% of the search space size, one increment at a time, until the dimension
reaches the lower boundary of the search space. Global grid search then increases the value of a given dimension until it
reaches the upper bound of the search space. Global grid search performs this process for each dimension, and replaces
the individual with the best value that it finds.

3.5. Latin hypercube search

Latin hypercube sampling divides a domain into intervals in each dimension, and then places sample points in such a way
that each interval in each dimension contains only one sample point [63], Example 21.2. This idea is illustrated in Fig. 1.

Latin hypercube sampling can sometimes capture the unpredictable, unknown nature of a function better than uniform
sampling. Also, Latin hypercube sampling is more efficient than uniform sampling. With uniform sampling of a D-dimen-
sional search space where each dimension is divided into n intervals, we need nD sample points; but with Latin hypercube
sampling, we need only n sample points.

We perform Latin hypercube sampling every GL generations around the current best individual in the population if we are
getting close to the optimum. We perform this search each generation under the following conditions. Both conditions must
be satisfied before we perform Latin hypercube sampling.

1. The best individual in the population has a cost that is less than be, where e is the function value required for success (see
Section 4), and b is a scale factor. Note that this requires that we know a priori what function value is required for success.
Although this is not always the case, in real-world problems we often know the target value of our optimization problem
ahead of time. We typically set GL = 10 and b = 1000.

2. The best individual in the population is not improving sufficiently fast. That is,

ðfminðg � GLÞ � fminðgÞÞ=fminðg � GLÞ < e4 ð5Þ



where fmin(g) is the cost function value of the best individual in the population, and e4 is a relative tolerance. We typically set
e4 = e, where e is the function value required for success (see Section 4).

We perform a Latin hypercube search within a domain of size aL(U � L) that is centered at the best individual in the pop-
ulation, where U and L are the upper and lower search space bounds, and aL defines the relative size of the hypercube within
which we search. We typically set aL = 1/50. We divide each dimension of the search space into n evenly-spaced points with-
in the search range, and then find n search points within the search range. We typically set n = 1000. We then perform gra-
dient descent on the best nL of those individuals, where we typically set nL = 10. We combine these individuals with the N-
member population to obtain a temporary population size of N + nL. We then use the best N of these individuals as the pop-
ulation of the next generation.

3.6. Re-initialization

Every Nr function evaluations, we perform a partial re-initialization. Given that the population size is N, we generate N
new random individuals, along with two individuals at each extreme of the search domain. This gives us a temporary pop-
ulation size of 2N + 2. We then select the best N individuals out of these 2N + 2 individuals for the next generation. We typ-
ically set Nr = 1000. With a population size of 50, this typically works out to once every 20 generations.

3.7. Restart, and LBBO tuning parameters

If the population fails to improve after all of the search strategies, we start over. That is, we discard the entire population
and restart with a randomly-generated population.

The LBBO algorithm, including all of the new components discussed in the preceding sections, is summarized in Algorithm
8. As with standard BBO, elitism is typically used where the best two solutions are kept from one generation to the next (see
Section 2.2). Each method in Algorithm 8 executes regardless of the success or failure of the previous methods in the algo-
rithm. Note that the performance of LBBO might be affected if the methods in Algorithm 8 are implemented in a different or-
der; however, we did not conduct any experiments to confirm this. We suggest this as an area for future research.

Algorithm 8. One iteration of the LBBO algorithm.

For each solution yk, define kk and lk based on fitness rank f(yk), where f(yk) e [0,1]
Z Y
Use LBBO migration to update Z (Section 3.1)
Apply gradient descent if needed (Section 3.2)
Apply boundary search if needed (Section 3.3)
Apply global grid search if needed (Section 3.4)
Apply Latin hypercube search if needed (Section 3.5)
Re-initialize if needed (Section 3.6)
Restart if needed (Section 3.7)
Y Z

3.8. Summary of LBBO parameters

We see from the preceding sections that LBBO includes many tuning parameters. We did not attempt to optimize the tun-
ing parameters, but instead we mostly used default parameters. We do not study any tradeoffs on these parameters in this

Fig. 1. The figure on the left illustrates uniform sampling of four points in a two-dimensional search space. The figure on the right illustrates Latin
hypercube sampling of four points in a two-dimensional search space.



paper. However, we do note that BBO tuning parameters have been studied in other papers [39], and that self-adaptive ver-
sions of BBO have also been proposed [23]. Future LBBO research could involve self-adaptation. The LBBO tuning parameters
are summarized as follows.

� Migration (Section 3.1) – no tuning parameters.
� Gradient descent (Section 3.2).

– Function evaluation threshold a.
– Cost function improvement threshold e1.
– Number of individuals Ng.
– Termination tolerance on the function value.
– Maximum allowable function evaluations.
– Termination tolerance on the independent variable.
– Typical values for the independent variable.
– Finite difference method.
– Gradient descent algorithm.
� Boundary search (Section 3.3).

– Cost function improvement threshold e2.
– Number of individuals Ns.
– Boundary threshold as.
� Global grid search (Section 3.4).

– Cost function improvement threshold e3.
– Number of individuals No.
– Search space fraction ao.
� Latin hypercube search (Section 3.5).

– Scale factor threshold b.
– Generation increment GL.
– Cost function improvement threshold e4.
– Relative size of hypercube aL.
– Number of search points n.
– Number of gradient descent points nL.
� Re-initialization (Section 3.6).

– Function evaluation increment Nr.
� Restart (Section 3.7) – no tuning parameters.

4. Simulation results

This section presents LBBO simulation results. Section 4.1 discusses the simulation setup and the benchmark problems
from the 2005 Congress on Evolutionary Computation (CEC). Section 4.2 presents results for 10-dimensional benchmarks,
and Section 4.3 presents results for 30-dimensional benchmarks. Section 4.4 discusses and summarizes the 2005 CEC results.
Section 4.5 presents results for real-world benchmark problems from the 2011 CEC.

4.1. Simulation Setup for the 2005 CEC Benchmarks

We test the performance of the proposed LBBO method on the 23 non-noisy benchmark functions from the 2005 CEC
(F1 � F25, excluding noisy benchmarks F4 and F17). We do not test on the noisy benchmark functions because we have not
included any noise-handling capabilities in LBBO. For details about these functions, the reader is referred to [66].

We limit each simulation to 10,000n function evaluations (FEs), where n is the problem dimension (either 10 or 30). We
use a population size of 50, we run 25 Monte Carlo simulations (i.e. independent runs) for each benchmark, we use a muta-
tion probability pm = 0.01, and the LBBO parameter w is an integer that is randomly distributed between 1 and n for each
migration (see Algorithm 4). We implement elitism by retaining the top two solutions for the next generation. We imple-
ment the LBBO code in MATLAB, and we generate random numbers with the default random number generator, which is
the Mersenne Twister algorithm [42].

Benchmark functions F1 � F6 are unimodal problems,1 and F7 � F25 are multimodal problems. F1 � F7, F9 � F12, and F15 have
known solutions. F8, F13 � F14, and F16 � F25 are unsolved. Problems F1 � F5 are considered solved if we come within 10�6 of the
global minimum. Problems F6, F7, F9 � F12, and F15 are considered solved if we come within 10�2 of the global minimum.

We compared LBBO to the algorithms that were accepted for the 2005 CEC competition, in addition to other recently pub-
lished algorithms.

1 Note that F6, which is a shifted Rosenbrock function, is multimodal for dimensions greater than 3. However, in order to retain the same groupings as in
previous comparisons of the 2005 CEC benchmarks [25], we include F6 with the unimodal functions.



1. BLX-GL50, which is a two-sex GA with unique crossover operators [21].
2. BLX-MA, which is an adaptive memetic algorithm [43].
3. CoEvo, which is a co-evolutionary algorithm [48].
4. DE, which is differential evolution [53].
5. DMS-L-PSO, which is a multi-swarm particle swarm method [34].
6. EDA, which is an estimation of distribution algorithm [73].
7. G-CMA-ES, which is a covariance matrix adaptation evolution strategy [4].
8. K-PCX, which is an amalgamation of various EA strategies [60].
9. L-CMA-ES, which is another covariance matrix adaptation evolution strategy [5].

10. L-SaDE, which is an adaptive differential evolution algorithm [49].
11. SPC-PNX, which is a continuous genetic algorithm [6].
12. PS-CMA-ES, which is a combination of particle swarm optimization, covariance matrix adaptation, and evolution strat-

egy [44].
13. EvLib, which is a self-adaptive algorithm that combines a variety of EAs [8].
14. FEA, which is a flexible EA that self-adapts its crossover and mutation operators [1].
15. PLES, which is a parameter-less evolution strategy [13].
16. STS, which is a combination of scatter search and tabu search [16].
17. RMA, which is a region-based memetic algorithm [30].
18. CMA-GA-PSO, which is a hybrid of covariance matrix adaptation, genetic algorithm, and particle swarm optimization

[70].
19. IPOP-CMA-ES, which is a variant of the CMA-ES algorithm that uses a varying population size [35].
20. ADE, which is an adaptive differential evolution algorithm [26].

We collected benchmark performance data for these EAs from the above references and from [25]. Some of the above ref-
erences do not include data for every benchmark. In the following sections, we only report results that are reported in the
references. As in the 2005 CEC competition, we rank the algorithms based on the number of problems that they solve at least
once out of 25 Monte Carlo simulations. In case of a tie, the algorithm that is successful more often is better.

4.2. 10-Dimensional results for the 2005 CEC benchmarks

Table 1 shows the results of the EAs on the 10-dimensional unimodal problems. The ‘‘# of solved functions’’ column
shows how many of the benchmark problems the algorithm solved at least once out of 25 Monte Carlo simulations. The ‘‘suc-
cess rate’’ column shows the percentage of simulations that successfully solved a problem, out of a total of (25 � 5)
simulations.

Each cell in Table 1 corresponds to a given algorithm and a given benchmark function, and contains two numbers whose
meaning depends on whether or not the algorithm successfully solved the benchmark.

� If the algorithm was successful in solving the problem at least once out of 25 simulations, then the number of successes is
in round parentheses. The number outside of the parentheses is the average number of function evaluations required to
achieve success divided by the success rate for that benchmark, normalized to the best CEC 2005 algorithm. For example,

Table 1
Comparison between LBBO and other EAs on five 10-dimensional unimodal problems. The algorithms are listed in order from best to worst. See the text for a
more detailed description of this table. LBBO performance is shown in bold font.

# of solved functions Success rate (%) F1 F2 F3 F5 F6

G-CMA-ES 5 100 1.6 (25) 1.0 (25) 1.0 (25) 1.0 (25) 1.5 (25)
L-CMA-ES 5 100 1.7 (25) 1.7 (25) 1.1 (25) 1.0 (25) 1.3 (25)
CMA-GA-PSO 5 100 1.7 (25) 1.1 (25) 1.2 (25) 1.2 (25) 1.5 (25)
EDA 5 96 10 (25) 4.6 (25) 2.5 (23) 4.2 (25) 9.6 (22)
DMS-L-PSO 5 96 12.0 (25) 5.0 (25) 1.8 (25) 18.6 (20) 7.7 (25)
DE 5 95 29 (25) 19.2 (25) 18.5 (20) 6.9 (25) 6.6 (24)
LBBO 5 90 1.7 (25) 0.9 (25) 0.4 (25) 18.1 (13) 1.3 (25)
BLX-GL50 4 80 19.0 (25) 17.1 (25) [12] 571 4.7 (25) 7.3 (25)
SPC-PNX 3 60 6.7 (25) 12.5 (25) [15] 108060 6.8 (25) [13] 18.9
CoEVO 3 60 23.0 (25) 11.3 (25) 6.8 (25) [13] 2.13 [12] 12.5
PS-CMA-ES 3 60 21.4 (25) 13.9 (25) [11] 1.59 [16] 68.0 11.4 (25)
L-SaDE 5 59 10.0 (25) 4.2 (25) 8.0 (16) [11] 0.01 6.8 (25)
K-PCX 3 58 1.0 (25) 1.0 (25) [10] 0.42 [15] 48.5 1.0 (22)
EvLib 3 53 6.7 (25) 1.9 (25) [13] 6090 [14] 10.8 11.5 (16)
PLES 3 41 6.0 (25) 16.0 (25) [16] 118060 166 (1) [14] 30.6
BLX-MA 2 40 12.0 (25) 15.4 (25) [14] 47,710 [12] 0.02 [11] 1.49
FEA 2 38 18.5 (25) 144 (23) [17] 646000 [17] 351 [15] 332



consider F6. K-PCX was the best performing algorithm for F6. It solved F6 22 out of 25 times, with an average of 7053 func-
tion evaluations in those 22 successful runs. On the other hand, LBBO solved F6 25 times, with an average of 10,499 func-
tion evaluations. Therefore, the number outside of the parentheses in the LBBO F6 cell in Table 1 is

10499=ð25=25Þ
7053=ð22=25Þ ¼ 1:3

Note that these values are less than 1 for LBBO functions F2 and F3 because LBBO performed better than the best 2005 CEC
algorithm for those functions.
� If the algorithm was not successful even once in solving the benchmark, then the number in square brackets indicates the

performance rank of the algorithm for that particular problem, out of all the algorithms listed in the table. In this case, the
number outside of the square brackets shows the normalized function value that was achieved by the algorithm, averaged
over 25 Monte Carlo simulations.

Table 1 shows that LBBO is able to solve all five of the unimodal benchmarks; however, six other algorithms are also able
to solve all of the unimodal benchmarks, and all six of them perform better, on average, than LBBO. On the other hand, LBBO
is the best algorithm for the F2 and F3 benchmarks.

Table 2 shows the results of the EAs on the solved multimodal problems. LBBO ranks 7th best out of the 17 algorithms.
LBBO is the best algorithm for the F9 benchmark.

Table 3 shows the results of the EAs on the most difficult 2005 CEC benchmarks: unsolved multimodal problems. LBBO
ranks 5th best out of the 19 algorithms. LBBO is the best algorithm for the F8 benchmark (tied with six other algorithms), and
it is also the best algorithm for the F25 benchmark.

4.2.1. Summary of 10-dimensional benchmark results
Tables 1–3 show that for the 10-dimensional benchmarks, LBBO ranks 7th best on the unimodal problems, 7th best on the

solved multimodal problems, and 5th best on the unsolved problems. Combining the ranks of the algorithms that appear in
all three of these tables, we see that overall, LBBO ranks 4th best out of the 16 algorithms.

4.3. 30-Dimensional results for the 2005 CEC benchmarks

Table 4 shows results for the 30-dimensional unimodal problems for all of the EAs for which we have results. For a more
detailed discussion of the meaning of the data in the table, see the beginning of Section 4.2. LBBO ranks 4th best out of 13
algorithms on the unimodal benchmarks. LBBO is able to solve all five of the unimodal benchmarks. Also, LBBO is the best
algorithm for the F1, F2, F3, and F6 benchmarks.

Table 5 shows the results of the EAs on the solved 30-dimensional multimodal problems for all of the EAs for which we
have results. LBBO ranks 3rd out of the 12 algorithms. LBBO is the best algorithm for the F9, F12, and F15 benchmarks.

Table 6 shows the results of the EAs on the 12 unsolved 30-dimensional multimodal problems for all of the EAs for which
we have results. LBBO ranks 12th out of the 15 algorithms.

Table 2
Comparison between LBBO and other EAs on six solved 10-dimensional multimodal problems. The algorithms are listed in order from best to worst. See the text
for a more detailed description of this table. LBBO performance is shown in bold font.

# of solved functions Success rate (%) F7 F9 F10 F11 F12 F15

CMA-GA-PSO 6 96 1.0 (25) 2.6 (25) 1.1 (24) 0.1 (25) 2.1 (25) 2.8 (20)
PS-CMA-ES 6 75 5.1 (25) 0.4 (25) 0.2 (25) 0.4 (10) 3.4 (25) 27.2 (2)
G-CMA-ES 5 63 1.0 (25) 4.5 (19) 1.2 (23) 1.4 (6) 4.0 (22) [10] 28.0
DE 5 30 255 (2) 10.6 (11) [16] 36.0 1.0 (12) 8.8 (19) 75.8 (1)
L-SaDE 4 53 36.2 (6) 1.0 (25) [6] 5.0 [11] 4.9 3.9 (25) 1.0 (23)
DMS-L-PSO 4 47 126 (4) 2.1 (25) [5] 3.6 [10] 4.6 6.6 (19) 1.7 (22)
LBBO 4 45 17.4 (20) 0.2 (25) [11] 14.4 [13] 6.1 6.5 (23) 1.0 (17)
K-PCX 3 40 [14] 0.23 2.9 (24) 1.0 (22) [14] 6.7 1.0 (14) [17] 510
EvLib 3 33 [17] 1270 0.1 (25) [12] 18.6 [12] 5.2 35.3 (5) 1.7 (19)
BLX-GL50 3 17 12.3 (9) 10.0 (3) [6] 5.0 [7] 2.3 12.1 (13) [16] 400
EDA 3 9 404 (1) [14] 5.4 [8] 5.3 2.9 (3) 4.3 (10) [14] 365
FEA 2 28 [15] 1.84 0.5 (25) [13] 23.4 [15] 7.0 [16] 271 0.4 (17)
L-CMA-ES 2 25 1.2 (25) [17] 44.9 [17] 40.8 [8] 3.7 11.6 (12) [11] 211
BLX-MA 2 15 [13] 0.20 5.7 (18) [9] 5.6 [9] 4.6 [14] 74.3 8.5 (5)
SPC-PNX 2 1 383 (1) [13] 4.0 [10] 7.3 5.8 (1) [15] 260 [12] 254
PLES 1 1 [16] 4.09 [15] 16.7 [14] 25.6 [17] 9.5 182 (1) [15] 380
CoEVO 0 0 [12] 0.037 [16] 19.2 [15] 26.8 [16] 9.0 [17] 605 [13] 294



4.3.1. Summary of 30-dimensional benchmark results
Tables 4–6 show that for the 30-dimensional benchmarks, LBBO ranks 4th best on the unimodal problems, 3rd best on the

solved multimodal problems, and 12th best on the unsolved problems. Combining the ranks of the algorithms that appear in
all three of these tables, we see that overall, LBBO ranks 4th best out of the 11 algorithms.

Table 3
Comparison between LBBO and other EAs on 12 unsolved 10-dimensional multimodal problems. The algorithms are listed in order from best to worst. See the
text for a more detailed description of this table. LBBO performance is shown in bold font.

Ave. rank F8 F13 F14 F16 F18 F19 F20 F21 F22 F23 F24 F25

G-CMA-ES 4.3 [1] 20.0 [11] 0.70 [11] 3.01 [4] 91 [2] 332 [3] 326 [1] 300 [4] 500 [6] 729 [1] 559 [1] 200 [6] 374
IPOP-CMA-ES 4.3 [9] 20.2 [12] 0.71 [1] 2.03 [2] 89 [3] 360 [2] 320 [3] 340 [4] 500 [5] 728 [1] 559 [1] 200 [9] 403
L-SaDE 6.8 [1] 20.0 [2] 0.22 [10] 2.92 [8] 101 [11] 719 [11] 705 [11] 713 [2] 464 [8] 735 [9] 664 [1] 200 [7] 376
DMS-L-PSO 7.8 [1] 20.0 [4] 0.37 [5] 2.36 [6] 95 [13] 761 [12] 714 [16] 822 [8] 536 [4] 692 [11] 730 [10] 224 [4] 366
LBBO 8.0 [1] 20.0 [5] 0.40 [14] 3.51 [13] 134 [10] 511 [7] 516 [8] 538 [7] 506 [11] 748 [10] 712 [9] 220 [1] 216
PS-CMA-ES 8.0 [12] 20.3 [5] 0.40 [13] 3.47 [3] 90 [6] 472 [6] 467 [7] 494 [9] 557 [1] 587 [8] 643 [17] 403 [9] 403
BLX-GL50 8.1 [15] 20.4 [13] 0.75 [3] 2.17 [5] 94 [4] 420 [5] 449 [6] 446 [14] 689 [14] 759 [6] 639 [1] 200 [11] 404
DE 8.2 [15] 20.4 [17] 1.81 [15] 3.52 [18] 173 [1] 300 [1] 300 [1] 300 [4] 500 [7] 734 [1] 559 [1] 200 [17] 928
EvLib 8.8 [1] 20.0 1 (10) [7] 2.81 [16] 157 [9] 500 [10] 666 [9] 585 [11] 638 [17] 792 [5] 600 [1] 200 [18] 1757
EDA 8.9 [12] 20.3 [18] 1.84 [6] 2.63 [14] 144 [7] 483 [9] 564 [10] 652 [3] 484 [15] 771 [7] 641 [1] 200 [5] 373
SPC-PNX 9.4 [19] 21.0 [15] 0.84 [12] 3.05 [12] 110 [5] 440 [4] 380 [4] 440 [13] 680 [12] 749 [4] 576 [1] 200 [12] 406
L-CMA-ES 9.5 [1] 20.0 [8] 0.49 [18] 4.01 [11] 105 [8] 497 [7] 516 [5] 442 [1] 404 [9] 740 [12]791 [19] 865 [15] 442
BLX-MA 10.8 [9] 20.2 [14] 0.77 [1] 2.03 [10] 102 [16] 803 [15] 763 [14] 800 [15] 722 [3] 671 [15] 927 [10] 224 [8] 396
K-PCX 10.8 [1] 20.0 [10] 0.65 [4] 2.35 [7] 96 [12] 752 [14] 751 [15] 813 [18] 1050 [2] 659 [17] 1060 [18] 406 [12] 406
STS 11.0 [9] 20.2 [7] 0.45 [9] 2.87 [8] 101 [14] 772 [13] 730 [12] 716 [12] 656 [13] 758 [14] 864 [10] 224 N/A
RMA 12.1 [15] 20.4 [9] 0.63 [8] 2.84 [1] 84 [15] 779 [15] 763 [13] 751 [16] 747 [10] 742 [16] 931 [13] 236 [14] 410
FEA 14.1 [8] 20.1 [3] 0.32 [16] 3.53 [17] 158 [18] 909 [18] 900 [18] 951 [17] 1020 [18] 846 [19] 1130 [15] 289 [2] 256
CoEVO 14.4 [12] 20.3 [16] 1.14 [17] 3.71 [19] 177 [17] 902 [17] 845 [17] 863 [10] 635 [16] 779 [13] 835 [16] 314 [3] 257
PLES 17.6 [15] 20.4 [19] 8.7 [19] 4.14 [15] 147 [19] 1015 [19] 1002 [19] 999 [19] 1079 [19] 880 [18] 1114 [14] 282 [16] 692

Table 4
Comparison between LBBO and other EAs on five 30-dimensional unimodal problems. The algorithms are listed in order from best to worst. See the text for a
more detailed description of this table. LBBO performance is shown in bold font.

# of solved functions Success rate (%) F1 F2 F3 F5 F6

G-CMA-ES 5 100 1.7 (25) 1.1 (25) 1 (25) 1 (25) 1 (25)
L-CMA-ES 5 100 1.8 (25) 1.2 (25) 1 (25) 1.1 (25) 1.1 (25)
CMA-GA-PSO 5 99 1.7 (25) 1.2 (25) 1.2 (25) 1.5 (24) 3.3 (25)
LBBO 5 83 0.99 (25) 0.4 (25) 0.2 (25) [4] 1.7 0.8 (25)
DMS-L-PSO 4 76 1.9 (25) 10.8 (25) 7.9 (21) N/A 5.5 (24)
EDA 3 60 55.6 (25) 13.3 (25) 5.1 (25) [5] 0.055 [10] 21.1
BLX-GL50 3 60 21.5 (25) 13.3 (25) [9] 3112 [7] 332.6 3.7 (25)
K-PCX 3 51 1 (25) 1 (25) [7] 57.9 [8] 2040 1.1 (14)
DE 2 40 51.9 (25) 20.5 (25) [10] 3E5 [6] 235 [9] 3.77
SPC-PNX 3 38 11.1 (25) 26.7 (22) [12] 1E6 [10] 4237 86.7 (1)
BLX-MA 1 20 11.9 (25) [12] 8E�6 [11] 9E5 [9] 2183 [11] 49.5
CoEVO 2 9 519 (3) 70.0 (8) [8] 367 [11] 8344 [13] 1211
FEA 0 0 [13] 70.6 [13] 982 [13] 7E6 [12] 9913 [12] 258

Table 5
Comparison between LBBO and other EAs on six solved 30-dimensional multimodal problems. The algorithms are listed in order from best to worst. See the text
for a more detailed description of this table. LBBO performance is shown in bold font.

# of solved functions Success rate F7 F9 F10 F11 F12 F15

CMA-GA-PSO 6 52 1.3 (25) 3.7 (23) 7.6 (3) 0.03 (22) 6.7 (2) 1.0 (3)
G-CMA-ES 5 31 1.0 (25) 8.0 (9) 5.3 (3) 1.0 (1) 1.3 (8) [4] 208
LBBO 4 38 12.4 (24) 0.15 (25) [8] 172 [6] 28.1 0.5 (5) 1.0 (3)
DE 2 31 32.8 (22) 0.7 (25) [6] 61.6 [10] 32.6 [7] 8430 [11] 484
K-PCX 4 31 2.5 (10) 3.3 (18) 1.0 (14) [7] 29.5 1.0 (5) [12] 876
EDA 1 17 21.3 (25) [11] 179 [10] 189 [12] 39.5 [6] 6054 [9] 396
L-CMA-ES 1 17 1.1 (25) [12] 291 [12] 563 [3] 15.2 [10] 13,200 [3] 21.6
BLX-GL50 1 17 10.2 (25) [7] 15.1 [4] 35.2 [5] 24.7 [8] 9521 [5] 304
SPC-PNX 1 11 60.7 (16) [8] 23.9 [5] 60.3 [4] 18.1 [9] 13,134 [8] 368
CoEVO 1 7 93.4 (11) [10] 131 [11] 232 [11] 37.7 [12] 1E5 [10] 411
BLX-MA 1 6 [11] 0.01 6.7 (9) [7] 90.6 [8] 31.1 [5] 4391 [7] 356
FEA 0 0 [12] 3.6 [9] 24.1 [9] 186 [9] 31.4 [11] 14,819 [6] 341



4.4. Discussion of the 2005 CEC benchmark results

The results of the previous sections reveal some interesting characteristics of LBBO.

� In general, LBBO performs well on unimodal benchmarks. It ranks 7th out of 17 algorithms for the 10-dimensional prob-
lems, and it ranks 4th out of 13 for the 30-dimensional problems. In addition, it obtained the best performance on two of
the five problems in 10 dimensions, and on four of the five problems in 30 dimensions.
� LBBO performs well for multimodal benchmarks with known solutions. LBBO ranks 7th out of 17 algorithms for the 10-

dimensional problems, and 3rd out of 12 algorithms for the 30-dimensional problems. This implies that LBBO is suitable
for multimodal problems that are not too difficult.
� LBBO’s performance was mediocre for high-dimensional unsolved multimodal problems. LBBO ranks 5th out of 19 algo-

rithms for the 10-dimensional problems, but only 12th out of 15 algorithms for the 30-dimensional problems. This
implies that LBBO may not be the best choice for extremely difficult, high-dimensional, multimodal problems. However,
we will see in the following section that this does not imply that LBBO is unsuitable for real-world problems. The
unsolved multimodal problems may be artificially difficult, and may therefore not be a good indication of real-world
performance.
� Next we compare LBBO performance on F9 with F10 (a rotated version of F9), and F15 with F16 (a rotated version of F15).

LBBO ranks first on the non-rotated functions F9 and F15 in both 10 dimensions and 30 dimensions. However, LBBO ranks
much worse on the rotated functions F10 and F16. Superficially, this may lead one to conclude that LBBO does not perform
well on rotated functions. However, a rotated function may be quite different than its original version, and so the com-
parison of performances may not be meaningful. For example, the solution of the 10-dimensional Rastrigin benchmark F9

is within the search space, but the solution of the rotated version F10 is outside the search space. Also, since we obtain F10

by rotating F9 with rotation matrix M, that means we obtain F9 by rotating F10 with rotation matrix M�1. Therefore, in
general, it is not meaningful to say that an optimization algorithm performs well, or poorly, on rotated functions. There
are exactly the same number of functions for which rotation deteriorates the performance of an algorithm, as there are
functions for which rotation improves the performance. Note that this is not the same as saying that an algorithm is rota-
tionally invariant – otherwise all algorithms would be rotationally invariant. Many benchmarks are separable under a
specific rotation, and certain algorithms perform well only on separable functions. Those algorithms will thus perform
well only if the benchmark is rotated with a specific rotation matrix. Rotational invariance means that an algorithm per-
forms equally well on separable and nonseparable functions.
� LBBO performs just as well on functions whose solution lies on the search domain boundary, as on functions whose solu-

tion lies within the boundary. F20 is a version of F18 with the global optimum on the domain boundary. In both 10 and 30
dimensions, LBBO performed slightly better on F20 than it did on F18. LBBO’s slightly better performance on F20 may be due
to the boundary search logic described in Section 3.3.
� LBBO performs just as well on functions with narrow optimum basins as on functions with wider basins. F19 is a version of

F18 with a narrow global optimum basin. LBBO performed relatively better on F19 than on F18 in 10 dimensions, and its
performance was the same on F19 and F18 in 30 dimensions. LBBO’s slightly better performance on F19 may be due to
the local gradient search logic described in Section 3.2.
� LBBO performs just as well on functions whose optimum is outside the initialization domain, as on functions whose opti-

mum is within the initialization range. F25 is a version of F24 with its optimum outside the initialization range. In both 10
and 30 dimensions, LBBO performed about the same on F25 as on F24. In fact, its equivalent performance on F25 and F24

resulted in its being ranked 1st on F25 in 10 dimensions. This may be due to several factors. First, the migration logic

Table 6
Comparison between LBBO and other EAs on 12 unsolved 30-dimensional multimodal problems. The algorithms are listed in order from best to worst. See the
text for a more detailed description of this table. LBBO performance is shown in bold font.

Ave. rank F8 F13 F14 F16 F18 F19 F20 F21 F22 F23 F24 F25

ADE 1.7 [1] 20.0 [1] 1.11 [4] 12.5 [3] 52.3 [1] 716 [1] 806 [1] 619 [2] 500 [1] 500 [1] 534 [1] 200 [3] 210
IPOP-CMA-ES 4.1 [9] 20.8 [7] 2.53 [1] 11.0 [1] 11.1 [8] 904 [8] 904 [7] 904 [2] 500 [3] 817 [1] 534 [1] 200 [1] 209
G-CMA-ES 5.3 [5] 20.1 [5] 2.49 [7] 12.9 [2] 35.0 [8] 904 [8] 904 [7] 904 [2] 500 [2] 803 [1] 534 [13] 910 [4] 211
RMA 5.3 [10] 20.9 [6] 2.50 [5] 12.6 [7] 85.7 [7] 902 [5] 902 [11] 906 [2] 500 [4] 867 [1] 534 [1] 200 [4] 211
EDA 5.6 [10] 20.9 [15]15.3 [12] 13.3 [10] 208 [3] 847 [3] 842 [3] 851 [2] 500 [6] 872 [1] 534 [1] 200 [1] 209
BLX-MA 6.3 [8] 20.7 [9] 3.96 [5] 12.6 [14] 326 [4] 878 [4] 880 [4] 879 [2] 500 [9] 908 [8] 559 [1] 200 [7] 212
STS 6.4 [7] 20.5 [2] 1.72 [2] 11.8 [9] 121 [6] 891 [5] 902 [6] 897 [2] 500 [11] 991 [9] 575 [11] 445 N/A
L-CMA-ES 6.8 [1] 20.0 [4] 2.32 [15] 14.0 [4] 58.4 [5] 890 [7] 903 [5] 889 [1] 485 [5] 871 [7] 535 [15] 1410 [12] 691
SPC-PNX 7.2 [10] 20.9 [8] 3.59 [10] 13.1 [6] 74.0 [11] 905 [11] 905 [10] 905 [2] 500 [8] 880 [1] 534 [1] 200 [8] 213
BLX-GL50 8.0 [15] 21.0 [11] 5.15 [3] 12.1 [8] 88.7 [8] 904 [8] 904 [7] 904 [2] 500 [7] 874 [11] 587 [12] 877 [4] 211
K-PCX 8.2 [1] 20.0 [14] 11.9 [14] 13.8 [5] 71.5 [2] 830 [2] 831 [2] 831 [15] 859 [15] 1560 [13] 866 [7] 213 [8] 213
LBBO 8.8 [1] 20.0 [3] 2.26 [9] 13.1 [12] 273 [13] 933 [13] 930 [13] 929 [2] 500 [12] 1073 [10] 582 [8] 264 [10] 270
DE 11.4 [10] 20.9 [10] 4.51 [12] 13.3 [13] 282 [12] 913 [12] 913 [12] 913 [12] 581 [10] 964 [12] 621 [9] 314 [13] 786
FEA 11.8 [6] 20.3 [12] 5.57 [8] 12.9 [11] 270 [14] 964 [14] 943 [14] 967 [14] 695 [13] 1080 [14] 910 [10] 328 [11] 517
CoEVO 13.7 [10] 20.9 [13] 9.02 [11] 13.2 [15] 381 [15] 1061 [15] 1049 [15] 1059 [13] 604 [14] 1155 [15] 922 [14] 1097 [14] 1027



of Eq. (4) allows an LBBO offspring variable to move outside of the range of its parents. Second, the mutation described in
Section 2.2, and the Latin hypercube search and re-initialization described in Sections 3.5 and 3.6, are allowed to search
outside the initialization boundaries if the optimum is known a priori to lie outside those boundaries.
� The inclusion of seven new components to BBO to obtain the LBBO procedure of Algorithm 8 improves performance, but

results in a higher computational cost. The increased computational cost varies depending on the particular random num-
ber sequence realization for a particular simulation, and depending on the cost function. However, the vast majority of
computational effort in interesting, real-world problems is consumed with fitness function evaluations, and so the com-
putational effort of the optimization algorithm is rarely significant as discussed in Section 21.1 of [63]. This consideration
leads us to study LBBO performance on real-world benchmarks in the following section.

4.5. 2011 CEC benchmarks

Next we test the performance of the proposed LBBO method on the 22 real-world benchmark functions from the 2011
CEC. These problems include a parameter estimation problem for frequency-modulated sound saves (T1); a Lennard-Jones
potential problem (T2); a bifunctional catalyst blend control problem (T3); a stirred tank reactor control problem (T4); two
Tersoff potential minimization problems (T5 and T6); a radar polyphase code design problem (T7); a transmission network
expansion problem (T8); a transmission pricing problem (T9); an antenna array design problem (T10); two dynamic economic
dispatch problems (T11.1 and T11.2); five static economic dispatch problems (T11.3 � T11.7); three hydrothermal scheduling
problems (T11.8 � T11.10); and two spacecraft trajectory optimization problems (T12 and T13). The dimensions of these prob-
lems range from a minimum of 1 to a maximum of 216. The benchmarks include unconstrained problems, equality-con-
strained problems, and inequality constrained problems. Constraints are augmented to the cost functions as penalty
terms. For details about these functions, the reader is referred to [14,56]. As in the 2011 CEC, in this paper we limit each
simulation to 150,000 function evaluations. LBBO parameters are the same as those described at the beginning of Section 4.1.

We compared LBBO algorithms to the 14 algorithms that were accepted for the 2011CEC competition.

1. GAMPC, which is a GA with multi-parent crossover [18].
2. SAMODE, which is differential evolution with a mixture of search operators [19].
3. ENSDE, which is ensemble-based differential evolution [41].
4. EADEMA, which is a hybrid of a memetic algorithm and a differential evolution variant [58].
5. AdapDE, which is adaptive differential evolution [3].
6. EDDE, which is a hybrid of estimation of distribution and differential evolution [71].
7. OXDE, which is differential evolution with orthogonal crossover [33].
8. DERHC, which is a hybrid of differential evolution and random hill climbing [31].
9. RGA, which is a real-coded GA [55].

10. CDASA, which is an ant system [28].
11. mSBXGA, which is a GA with simulated binary crossover [7].
12. DEcr, which is differential evolution with adaptive crossover and local search [52].
13. WIDE, which is a hybrid of invasive weed optimization and differential evolution [24].
14. ModDELS, which is differential evolution with local search [2].

We collected benchmark performance data for these EAs from [67,68]. As in the 2011 CEC competition, we ran 25 Monte
Carlo simulations of LBBO for each benchmark, and then ranked all of the algorithms based on both the best cost achieved
out of 25 simulations, and the average cost achieved over 25 simulations. Tables 7 and 8 show the results. Note that the rank-
ings in these tables differ slightly from those reported in [68]. This is because we used all reported significant digits in deter-
mining the rankings reported in this paper, whereas [68] rounded the results to a given number of significant digits for each
benchmark. Table 7 shows that in terms of the best cost achieved, LBBO performs third best out of 15 algorithms. Table 8
shows that in terms of the average cost achieved, LBBO performs fourth best.

Tables 7 and 8 show that LBBO performs relatively poorly on benchmarks T1, T10, T11.9, and T11.10. LBBO’s poor perfor-
mance on T1 could simply be a matter of reporting precision. The best seven algorithms reported a best cost of exactly 0
for T1, while LBBO reported a best cost of 1.83 � 10�15. So although it appears from Tables 7 and 8 that LBBO has poor per-
formance on T1, its performance may be the best for all practical purposes. We see a similar phenomenon with T10. However,
LBBO’s poor performance on T11.9 and T11.10 is more difficult to explain. LBBO clearly performs poorly on these two bench-
marks, with average costs of 2.2 � 106 and 1.8 � 106 respectively, compared to average costs by the best algorithm (DEcr) of
9.3 � 105 and 9.2 � 105 respectively. T11.9 and T11.10 are hydrothermal scheduling problems, but so is T11.8, for which LBBO
attained the best ranking.

Tables 7 and 8 shows that LBBO performs exceptionally well on benchmarks T11.1, T11.2, T11.5, T11.6, T11.7, and T11.8, where
LBBO’s performance ranks at the top in terms of both the best cost attained and the average cost attained. In general, these
six benchmarks have the common feature of high dimensionality, with problem dimensions of 120, 216, 15, 40, 140, and 96
respectively. These problems include the ones with the highest, third highest, fourth highest, and fifth highest dimensions.
Also, LBBO performs third best (on average) on the problem with the second highest dimension (T9). So in general, LBBO per-
forms very well on high-dimension problems.



Another common feature of the benchmarks for which LBBO performs well is inequality constraints. The 2011 CEC bench-
marks augment inequality constraints to the original cost function with a penalty function. This results in augmented cost
functions with deep, narrow valleys at their constrained minima. Of the 22 benchmarks, 10 of them have only inequality
constraints (no equality constraints), and all six of the benchmarks for which LBBO performs best belong to that group.

In summary, we conclude that, in general, LBBO performs particularly well on high-dimensional problems with the type
of deep, narrow optima that characterizes cost functions that are augmented with inequality constraints.

5. The relative importance of LBBO components

Section 3 shows that LBBO includes seven components that are added to BBO: migration (Section 3.1), gradient descent
(Section 3.2), boundary search (Section 3.3), grid search (Section 3.4), Latin hypercube search (Section 3.5), re-initialization
(Section 3.6), and restart (Section 3.7). The issue that we address in this section is the relative importance of each of these
components.

First we run LBBO with all seven components except the first one; that is, we replace the unique LBBO migration logic of
Section 3.1 with the standard BBO migration logic of Section 2.1. Next, we run LBBO with all seven components except the
second one; that is, we skip the gradient descent logic of Section 3.2. In general, we run LBBO with all seven components
except the nth one, for n e [1,7].

We repeat the 10-dimensional benchmark tests of Section 4.2 under these conditions. Results for the unimodal problems,
the solved multimodal problems, and the unsolved multimodal problems are shown in Tables 9–11 respectively.

Table 12 shows the results of pair-wise Wilcoxon signed rank tests [45] between the complete LBBO algorithm with all
seven additional components, and each algorithm that has a single component removed. Each cell in Table 12 indicates
whether the given algorithm with a single component removed performs better than, worse than, or statistically equal to
the complete LBBO algorithm on the given benchmark, where we used 95% as the confidence threshold.

Table 7
Comparison between LBBO and 14 other EAs on real-world benchmark problems in terms of the best results obtained after 25 Monte Carlo simulations. The
table shows the rank of each algorithm, and the algorithms are listed in order from best to worst. This table shows the ranks of the algorithms in terms of best
results, while Table 8 shows the ranks in terms of average results. LBBO performance is shown in bold font.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11.1 T11.2 T11.3 T11.4 T11.5 T11.6 T11.7 T11.8 T11.9 T11.10 T12 T13 Ave.

GAMPC 1 4 1 3 7 2 1 1 5 3 4 4 1 2 3 5 11 10 4 7 3 1 3.8
DEcr 11 4 1 3 7 1 9 1 13 10 2 2 1 1 3 2 2 2 1 1 10 9 4.4
LBBO 10 4 1 3 2 2 8 1 4 10 1 1 1 6 1 1 1 1 14 14 5 8 4.5
SAMODE 1 4 1 3 7 2 1 1 9 3 7 4 1 9 9 6 11 9 7 8 2 2 4.9
OXDE 1 1 1 1 6 14 1 1 13 1 10 4 1 2 3 6 4 7 8 12 6 5 4.9
EDDE 1 4 1 3 2 2 7 1 15 3 7 4 1 6 9 6 6 4 6 3 8 13 5.1
WIDE 1 4 14 3 7 2 1 1 10 3 7 4 1 2 3 9 7 11 5 9 1 7 5.1
AdapDE 1 2 13 14 5 10 1 1 1 2 3 9 10 8 7 3 5 3 2 2 11 3 5.3
ENSDE 1 15 1 3 15 15 15 1 7 3 5 3 1 2 2 4 7 4 3 3 14 6 5.9
RGA 15 11 1 3 7 2 11 1 3 13 12 13 14 10 9 14 7 6 10 5 7 10 8.4
CDASA 9 13 1 3 7 2 10 1 6 15 6 11 14 12 14 11 3 7 9 5 13 14 8.5
EADEMA 12 3 1 12 1 11 1 1 2 8 15 15 11 11 8 15 14 15 12 15 4 4 8.7
DERHC 8 4 1 15 2 2 14 1 8 14 11 14 1 12 15 13 15 14 15 13 15 15 10.1
mSBXGA 14 12 12 13 13 12 12 1 11 12 14 10 13 14 9 10 10 12 11 10 12 12 11.3
ModDELS 13 14 14 2 14 13 13 1 12 9 13 12 12 15 13 12 13 13 13 11 9 11 11.5

Table 8
Comparison between LBBO and 14 other EAs on real-world benchmark problems in terms of the average results obtained by 25 Monte Carlo simulations. The
table shows the rank of each algorithm, and the algorithms are listed in order from best to worst. This table shows the ranks of the algorithms in terms of
average results, while Table 7 shows the ranks in terms of best results. LBBO performance is shown in bold font.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11.1 T11.2 T11.3 T11.4 T11.5 T11.6 T11.7 T11.8 T11.9 T11.10 T12 T13 Ave.

GAMPC 1 2 1 1 5 5 5 1 6 1 4 3 1 4 3 5 7 10 4 8 2 1 3.6
DEcr 4 2 1 13 6 1 9 1 14 13 2 2 1 1 3 2 2 2 1 1 10 7 4.5
SAMODE 5 4 1 5 12 4 7 1 8 1 7 3 1 7 3 5 9 8 7 7 1 2 4.9
LBBO 10 1 1 1 1 7 6 1 3 9 1 1 10 7 1 1 1 1 14 15 6 14 5.1
EDDE 1 9 1 1 11 7 14 1 15 5 4 7 1 4 8 5 3 4 5 3 7 9 5.7
OXDE 12 5 1 11 9 14 4 1 13 4 8 3 1 4 3 8 4 6 8 13 4 6 6.5
AdapDE 9 6 1 14 10 11 1 1 1 8 12 9 10 9 8 3 6 3 3 2 14 3 6.5
WIDE 8 11 14 8 4 10 3 1 10 1 11 7 1 3 3 10 12 12 6 11 9 4 7.2
ENSDE 6 14 1 12 14 15 15 1 9 14 6 3 10 1 2 4 4 5 2 4 12 5 7.2
RGA 14 12 1 5 7 3 11 1 2 12 9 13 10 11 8 14 14 9 10 6 8 8 8.5
ModDELS 3 13 14 1 8 11 8 1 12 7 13 12 7 12 13 11 7 11 13 9 3 11 9.1
EADEMA 7 10 1 9 2 6 2 1 4 6 15 15 8 14 12 15 15 15 15 14 5 12 9.2
DERHC 13 7 1 15 3 2 13 1 7 11 9 14 10 13 14 12 12 13 11 10 13 13 9.9
CDASA 15 15 1 5 15 9 10 1 5 15 3 11 10 15 15 13 11 6 9 5 15 15 10.0
mSBXGA 11 8 13 10 13 13 12 1 11 10 14 10 9 10 8 9 10 14 12 12 11 10 10.5



Tables 9–12 show that the worst-performing algorithm is LBBO without gradient descent, which performs worse than
LBBO on 20 of the 23 benchmarks. This means that gradient descent is the most important feature of our LBBO algorithm.
We conclude that LBBO is not very effective unless it is augmented with a local search method such as gradient descent.

Tables 9–12 also show that some of the algorithms perform better than LBBO on certain benchmarks. This is most clear
from Table 12, where we see that LBBO without grid search performs better than LBBO on five benchmarks, although LBBO
still performs better on seven benchmarks.

In general, we conclude that gradient descent is the most important feature of LBBO, and grid search is the least important
feature. For the simplest functions like the unimodal functions of Table 9, all of the features are of secondary importance
compared to gradient descent. For solved multimodal functions (Table 10), the restart and grid search features are also
important, but still less important than gradient descent. For the most difficult problems (the unsolved multimodal functions
of Table 11), all of the LBBO features appear to be important except Latin hypercube search and periodic re-initialization.

The only gradient descent algorithm that we tested was the interior point algorithm as implemented by MATLAB’s fmin-
con function. We have not implemented our own local optimization algorithm, or tested other algorithms as alternatives to
fmincon, but that could be an important task for future research. How important is the particular gradient descent algorithm
that we used? The gradient descent algorithm, along with its settings, can be considered to be tuning parameters of LBBO.

This section has shown the relative importance of each component of LBBO by eliminating one component at a time. It
would also be interesting to study this question from the opposite perspective; that is, start with standard BBO and add one
component at a time to see how each component affects performance in isolation from the other components. Such a study
may give different results than what we conclude here, and we suggest that idea for future research.

Table 9
Comparison between LBBO, and LBBO with the nth component omitted for n e [1,7], on 10-dimensional unimodal problems. The algorithms are listed in order
from best to worst. See Sections 4.2 and 5 for a more detailed description of this table. Note that the last seven rows of the table show the performance of the
complete LBBO algorithm except for the omission of a single algorithmic component.

# of solved functions Success rate (%) F1 F2 F3 F5 F6

LBBO 5 90 1.7 (25) 0.9 (25) 0.4 (25) 18.1 (13) 1.5 (25)
No grid search 5 88 1.7 (25) 0.8 (25) 0.3 (25) 23.9 (10) 1.2 (25)
Std. migration 5 84 3.5 (25) 1.9 (25) 0.8 (25) 19.5 (5) 1.6 (25)
No Latin 5 84 3.5 (25) 1.8 (25) 0.9 (25) 51.4 (5) 1.7 (25)
No restart 5 83 4.2 (25) 1.7 (25) 0.9 (25) 32.2 (4) 1.6 (25)
No re-init 5 82 3.3 (25) 2.1 (25) 0.9 (25) 73.9 (3) 1.7 (25)
No boundary 4 80 3.9 (25) 2.2 (25) 0.9 (25) [7] 0.59 1.5 (25)
No gradient 0 0 [8] 508 [8] 2405 [8] 4.9E5 [8] 3725 [8] 5.3E6

Table 10
Comparison between LBBO, and LBBO with the nth component omitted for n e [1,7], on solved 10-dimensional multimodal problems. The algorithms are listed
in order from best to worst. See Sections 4.2 and 5 for a more detailed description of this table. Note that the last seven rows of the table show the performance
of the complete LBBO algorithm except for the omission of a single algorithmic component.

# of solved functions Success rate (%) F7 F9 F10 F11 F12 F15

LBBO 4 57 17.4 (20) 0.2 (25) [4] 14.4 [8] 6.1 6.3 (23) 1.0 (17)
Std. migration 3 50 [5] 1.2 0.2 (25) [1] 11.9 [3] 5.5 3.1 (25) 0.5 (25)
No boundary 3 50 [5] 1.2 0.2 (25) [2] 12.6 [6] 5.8 3.1 (25) 0.6 (25)
No re-init. 3 50 [4] 1.1 0.2 (25) [6] 16.0 [5] 5.7 5.4 (25) 0.6 (25)
No Latin 3 49 [3] 1.0 0.2 (25) [5] 15.4 [7] 5.9 4.2 (25) 0.8 (23)
No restart 3 36 [7] 1.3 0.2 (25) [7] 17.9 [1] 5.1 6.6 (17) 0.6 (12)
No grid search 2 27 14.2 (16) [7] 7.0 [3] 14.2 [2] 5.4 4.5 (25) [7] 138
No gradient 0 0 [8] 18.6 [8] 15.9 [8] 27.3 [4] 5.6 [8] 1.0E4 [8] 142

Table 11
Comparison between LBBO, and LBBO with the nth component omitted for n e [1,7], on unsolved 10-dimensional multimodal problems. The algorithms are
listed in order from best to worst. See Sections 4.2 and 5 for a more detailed description of this table. Note that the last seven rows of the table show the
performance of the complete LBBO algorithm except for the omission of a single algorithmic component.

F8 F13 F14 F16 F18 F19 F20 F21 F22 F23 F24 F25

LBBO [1] 20.0 [1] 0.40 [3] 3.51 [2] 134 [1] 511 [1] 516 [1] 538 [2] 506 [2] 748 [5] 712 [6] 220 [4] 216
No Latin [1] 20.0 [4] 0.45 [1] 3.35 [6] 139 [3] 762 [3] 766 [3] 747 [1] 491 [5] 760 [2] 598 [1] 205 [1] 205
No re-init [1] 20.0 [2] 0.41 [2] 3.41 [4] 137 [2] 754 [2] 762 [2] 744 [5] 574 [7] 797 [3] 618 [2] 206 [1] 205
Std. migration [1] 20.0 [6] 0.50 [6] 3.56 [1] 133 [5] 794 [5] 826 [6] 818 [4] 541 [6] 784 [1] 588 [4] 215 [4] 216
No boundary [1] 20.0 [7] 0.51 [8] 3.91 [5] 138 [6] 797 [4] 783 [4] 776 [3] 513 [1] 728 [4] 662 [3] 212 [3] 213
No grid search [1] 20.0 [5] 0.48 [5] 3.54 [2] 134 [4] 782 [7] 831 [4] 776 [6] 577 [3] 749 [7] 882 [5] 219 [6] 223
No restart [1] 20.0 [2] 0.41 [4] 3.52 [7] 144 [8] 902 [8] 912 [8] 906 [8] 902 [4] 756 [8] 925 [7] 296 [7] 380
No gradient [8] 20.3 [8] 0.52 [7] 3.57 [8] 167 [7] 826 [6] 827 [7] 858 [7] 819 [8] 837 [6] 746 [8] 441 [8] 488



6. Conclusions and future work

A linearized version of BBO, LBBO, was introduced in this paper. LBBO modifies the BBO migration operator to reduce
rotational variance. In addition, we included global and local search operators, along with re-initialization logic, to improve
performance.

LBBO was compared with the entries to the 2005 Congress on Evolutionary Computation on 23 benchmark problems. The
results show that LBBO provides competitive performance. LBBO performs particularly well for certain types of multimodal
problems. Also, LBBO is insensitive to whether or not the solution lies on the search domain boundary, to whether or not the
global optimum lies in a wide or narrow basin, and to whether or not the global optimum lies within or outside of the ini-
tialization domain. Compared to 11 other EAs, LBBO performed the best for 5 out of 23 benchmarks in 10 dimensions, and it
performed the best for 9 out of 23 benchmarks in 30 dimensions. The improved relative performance of LBBO in 30 dimen-
sions indicates that it may perform even better on higher dimensional problems, which we suggest for future research.

LBBO was also compared with the entries to the 2011 Congress on Evolutionary Computation on 22 real-world problems.
The results show that LBBO performs particularly well for high dimensional problems, and for problems with inequality con-
straints. Compared to 14 other EAs, LBBO performed third best in terms of best performance, and fourth best in terms of
average performance.

Tables 9–11 showed that local search is the most important new component that we added to BBO to obtain LBBO. We
used gradient descent as a default local search operator, but our results indicate that it may be fruitful to experiment with
other local search operators to improve LBBO performance.

One area in which LBBO fell short was its performance on extremely difficult (unsolved) multimodal problems, including
highly nonseparable problems. This reveals an area where LBBO could be improved. Other future work could include testing
on additional benchmark functions, testing with higher dimensions, noise handling, comparing LBBO with additional EAs,
and hybridizing LBBO with other successful EAs. The MATLAB software that we used to generate the results in this paper
is available at http://www.academic.csuohio.edu/simond/bbo/linearized.
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Table 12
Statistical comparison between LBBO, and LBBO with a single component omitted. Each cell indicates whether the given algorithm is better than (B), worse than
(W), or equal to (�) LBBO, based on a Wilcoxon signed rank test with a confidence threshold of 95%. The number at the bottom of each column is equal to the
number of W cells minus the number of B cells. Note that the seven right-most columns of the table compare the performance of LBBO, with the complete LBBO
algorithm except for the omission of a single algorithmic component.

Standard migration No boundary No gradient No grid No Latin No reinit. No restart

F1 � W W B � � W
F2 W W W B W W W
F3 W W W B W W W
F5 � W W � � � �
F6 W W W � W W W
F7 W W W � W W W
F8 � � W � � � �
F9 � B W W B B B
F10 � � W B W W W
F11 � � � � � � �
F12 � � W � � � W
F13 W � W � � � �
F14 � W � � � � �
F15 � � W W � � �
F16 � � W � � � �
F18 W W W W W W W
F19 W W W W W W W
F20 W W W W W W W
F21 � � W � � � W
F22 � � W � � � �
F23 B � � W B B W
F24 B � W B B � �
F25 � � W W B B �
Net # Worse
than LBBO 6 9 20 2 4 5 11

http://www.academic.csuohio.edu/simond/bbo/linearized
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