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Abstract In this article, we apply an automatic algorithm

configuration tool to improve the performance of the CMA-

ES algorithm with increasing population size (iCMA-ES), the

best performing algorithm on the CEC’05 benchmark set for

continuous function optimization. In particular, we consider a

separation between tuning and test sets and, thus, tune iCMA-

ES on a different set of functions than the ones of the CEC’05

benchmark set. Our experimental results show that the tuned

iCMA-ES improves significantly over the default version of

iCMA-ES. Furthermore, we provide some further analyses on

the impact of the modified parameter settings on iCMA-ES

performance and a comparison with recent results of algo-

rithms that use CMA-ES as a subordinate local search.

Keywords Automatic algorithm configuration �
CMA-ES � Continuous optimization

1 Introduction

The special session on real parameter optimization of the

2005 IEEE Congress on Evolutionary Computation

(CEC’05) initiated a series of research efforts on bench-

marking continuous optimizers and the development of

new, improved continuous optimization algorithms. Two

noteworthy results of this session are the establishment of a

benchmark set of 25 hard benchmark functions and the

establishment of CMA-ES with increasing population size

(iCMA-ES) (Auger and Hansen 2005) as the state-of-the-

art continuous optimizer at least for what concerns the field

of nature-inspired computation in the widest sense.

Here, we explore whether we can improve iCMA-ES’s

performance on the CEC’05 benchmark set by further fine-

tuning iCMA-ES using automatic algorithm configuration

tools. In fact, iCMA-ES has a number of parameters and

hidden constants in its code that make it a parameterized

algorithm. Although its designers have spent a considerable

effort in the design choices and certainly also in the defi-

nition of its parameters, over the past few years evidence

has arisen that many algorithms’ performance can be

improved by considering automatic algorithm configura-

tion and tuning tools (Adenso-Diaz and Laguna 2006;

Birattari et al. 2002; Balaprakash et al. 2007; Bartz-

Beielstein 2006; Hutter et al. 2007, 2009a, b; Nannen and

Eiben 2007). It is therefore a natural question to ask

whether and by how much the performance of iCMA-ES

could be further improved by such tools. Note that the

answer to this question has also implications on method-

ological aspects in algorithm development. When trying to

improve over an algorithm such as iCMA-ES, the design

and tuning process of a new algorithm often starts by some

new idea that is then iteratively refined manually until

better performance on the considered benchmark set is

obtained. One such idea is to embed CMA-ES as a local

search into other algorithms. In fact, various authors have

followed this path and have reported positive results,

claiming better performance than iCMA-ES on the CEC’05
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benchmark set (Molina et al. 2010; Müller et al. 2009). As

an alternative approach, it is reasonable to simply try to

improve directly iCMA-ES by fine-tuning it further. Hence,

the question arises as to how iCMA-ES would perform

against these ‘‘improved’’ algorithms if additional effort is

put directly in iCMA-ES instead of the design of ‘‘new’’

algorithms. In this article, we also try to shed some light on

this issue.

The present paper is not the first to try to further tune

CMA-ES using automatic algorithm configuration tools.

CMA-ES was used in the paper by Hutter et al. (2009a) as

a benchmark algorithm to be tuned for evaluating

SPO?, their improved variant of SPO (Bartz-Beielstein

2006). Following earlier work on SPO, they tuned CMA-

ES only on individual functions; thus, in this sense

‘‘overtuning’’ CMA-ES on individual functions. (One has

to remark, however, that the interest of Hutter et al. (2009a)

was to evaluate SPO and the improved variant SPO? rather

than proposing a new, generally improved parameter set-

ting for CMA-ES.) Another attempt of tuning CMA-ES

was made by Smit and Eiben in the paper ‘‘Beating the

World Champion Evolutionary Algorithm via REVAC

Tuning’’ (Smit and Eiben 2010). However, rather than the

full version of CMA-ES, which is this ‘‘world champion

evolutionary algorithm,’’ in their study they use a reduced

version that has limitations on rotated functions (for details,

see Sect. 2). They reported significant improvements of

their tuned algorithm over the default settings across the

full range of functions of the CEC’05 benchmark set. From

a tuning perspective, it should be mentioned that they tuned

their algorithm on the whole set of the CEC’05 benchmark

functions. For the tuning, they allowed the CMA-ES var-

iant they used on each 10 dimensional function a maximum

of 100 000 function evaluations; then they were running

the tests with the tuned algorithm on the same functions for

1,000,000 function evaluations.

In this article, we tune iCMA-ES on a set of functions

that has no overlap with the functions of the CEC’05

benchmark set. In this sense, we try to avoid a bias of the

results obtained due to potentially overtuning (Birattari

2009) the algorithm on the same benchmark functions as

those on which the algorithm is tested. As such, this gives a

better assessment of the potential for what concerns the

tuning of continuous optimizers as we have a separation

between tuning and test set. Note that such a separation is

standard when studying tuning algorithms for combinato-

rial problems (Birattari 2009; Birattari et al. 2002; Hutter

et al. 2009b). This separation of tuning and test sets for

continuous functions is also different from our own pre-

vious applications, where we have tuned algorithms on

small dimensional functions and later tested them on

(much) larger dimensional variants of the same functions

(Liao et al. 2011c). In this latter case, the training and

testing functions differ only in their dimensionality, which

may potentially lead to some biases in the tuning. The

differences in the applied approaches to tuning CMA-ES

with respect to the separation of tuning and test sets of

functions is summarized in Fig. 1.

As the tuning set, we consider small dimensional

benchmark functions from the recent special issue of the

Soft Computing journal (Herrera et al. 2010; Lozano et al.

2011) on large-scale function optimization. This SOCO

benchmark set contains 19 functions whose dimension is

freely choosable. Four of these functions are the same as in

the CEC’05 benchmark set, so we removed them from the

tuning set. As tuner, we apply the irace software (López-

Ibáñez et al. 2011) to automatically tune seven parameters

of iCMA-ES on the 10 dimensional SOCO benchmark

functions (we refer to this tuned version of iCMA-ES as

iCMA-ES-tsc). Then, we benchmark iCMA-ES-tsc on the

whole CEC’05 benchmark function suite for 10, 30, and 50

dimensions. The experimental results show that iCMA-ES-

tsc improves over the default parameter setting of iCMA-ES

(called iCMA-ES-dp), and, maybe surprisingly, also is

competitive or even improves over a version of iCMA-ES

that we have tuned on the 10-dimensional CEC’05 bench-

mark set (we refer to this tuned version of iCMA-ES as

iCMA-ES-tcec). We also compare iCMA-ES-tsc with MA-

LSch-CMA (Molina et al. 2010) and PS-CMA-ES (Müller

et al. 2009), two state-of-the-art algorithms based on CMA-

ES on CEC’05 benchmark function suite. Finally, we

explore different possible choices of the tuning setup and, in

particular, the choice of different sets of tuning functions.

2 Parameterized iCMA-ES

CMA-ES (Hansen and Ostermeier 1996, 2001; Hansen

et al. 2003) is a (l, k)-evolution strategy that samples new

candidate solutions based on a multivariate normal distri-

bution that is adapted at execution time. In particular,

CMA-ES adapts the full covariance matrix of a normal

search distribution. It is shown to result in a search that is

invariant against linear transformations of the search space

(rotational invariance), which makes it particularly suited

for rotated functions. Sep-CMA-ES (Ros and Hansen 2008;

Ros 2009) is a modification of CMA-ES with lower time

complexity that instead of the full covariance matrix uses a

diagonal matrix (that is, the covariances are assumed to be

zero); in a sense, in Sep-CMA-ES the step size for each

variable is adapted independently of the other variables.

Sep-CMA-ES is also the variant that was used in the paper

by Smit and Eiben (2010), which was mentioned in the

introduction. iCMA-ES (Auger and Hansen 2005) is a

variant of the CMA-ES algorithm that uses a restart schema

coupled with an increasing population size. An outline of
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iCMA-ES is given in Algorithm 1. The core steps of

iCMA-ES are the generation of new solutions for possible

inclusion in the population, the selection of the best can-

didate solutions of the generated population, and the

adaption of the step size and the covariance matrix. If the

inner stopping criterion of CMA-ES triggers, then iCMA-

ES restarts the CMA-ES algorithm with an increased

population size. The execution of iCMA-ES terminates

once the termination criterion such as a maximum number

of function evaluations is met. For a detailed explanation of

the optimization principles of CMA-ES we refer to Hansen

(2010); Auger and Hansen (2005).

The default settings of iCMA-ES are as follows: The ini-

tial population size is k ¼ 4þ b3 lnðDÞc; where D is the

number of dimensions of the function to be optimized. The

number of selected search points in the parent population

is l = b0.5kc. The initial step-size is r(0) = 0.5(B - A),

where [A, B]D is the initial search interval. At each restart,

the population size is multiplied by a factor of two. Restarts

occur if the stopping criterion is met. The three parameters

stopTolFunHist, stopTolFun and stopTolX of the stopping

criterion refer to the range of the improvement of the best

objective function values in the last 10þ d30D=ke gener-

ations, all function values of the recent generation, and the

standard deviation of the normal distribution in all coor-

dinates, respectively. These internal parameter settings of

iCMA-ES are set, as far as we are aware, by the experience

of the developers of iCMA-ES.

For tuning iCMA-ES, we considered seven parameters

related to the above-mentioned default settings. The

parameters are given in Table 1. The first four parameters

are actually used in a formula to compute some internal

parameters of iCMA-ES and the remaining three are used

to define the termination of CMA-ES. Note that if a run of

iCMA-ES is terminated, CMA-ES is restarted with an

increased population size k. For the increase of the popu-

lation size, we here introduce a parameter d we call IPOP

factor. The first five columns of Table 1 give the parame-

ters we use, the formula where they are used, their default

values, and the range that we considered for tuning. The

remaining two columns are explained later.

3 Experimental setup and tuning

We used the C version of iCMA-ES (last modification date

10/16/10) from Hansen’s webpage http://www.lri.fr/*
hansen/cmaesintro.html. We modified the code to handle

bound constraints by clamping the variable values outside

the bounds on the nearest bound value. (the issues about the

effects of enforcing and ignoring bound constraints have

been addressed by Liao et al. (2011a). Our test-suite con-

sists of 25 CEC’05 benchmark functions (functions labeled

as fcec*) of dimensions n 2 f10; 30; 50g: The training

instances of iCMA-ES-tsc and iCMA-ES-tcec involve the

10-dimensional SOCO and CEC’05 benchmark functions,

respectively. The SOCO and CEC’05 benchmark sets have

four same functions (identical except for the shift vectors

for moving the known optimum solution) and therefore we

Fig. 1 Summary of the

methodological approach to

tuning CMA-ES over few recent

articles (Hutter et al. 2009a;

Smit and Eiben 2010; Liao et al.

2011c). The approaches differ in

the usage of a single versus

multiple functions and the

degree of separation between

tuning and test set

Computational results for an automatically tuned CMA-ES
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have removed these four functions from the SOCO

benchmark set that we used as training set for tuning.

In particular, we eliminated the four SOCO functions

fsoco1, fsoco3, fsoco4 and fsoco8, which are the same as the

CEC’05 functions fcec1, fcec6, fcec9 and fcec2, respectively.

The CEC’05 and SOCO benchmark functions are listed

in Table 2. The two benchmark sets have common char-

acteristics such as unimodality, multi-modality, and sepa-

rability. Several of the functions in the two benchmark sets

are also defined as compositions of other two functions; we

refer to these also as hybrid functions in what follows: a

major difference between the two benchmark sets is that in

the CEC’05 benchmark 16 of the 25 functions are rotated

functions, while all SOCO benchmark functions are unro-

tated.1 For a more detailed explanation of the respective

benchmark sets we refer to their original description

(Suganthan et al. 2005; Herrera et al. 2010); for a more

recent intent to develop specific, more low-level function

features for their classification, we refer to Mersmann et al.

(2011). We followed the protocol described in Suganthan

et al. (2005) for the CEC’05 test-suite, that is, the

maximum number of function evaluations was

10,000 9 D where D 2 f10; 30; 50g is the dimensionality

of a function when using them as test set (or as training set

in the case of iCMA-ES-tcec). The investigated algorithms

were run 25 times on each function. We report error values

defined as f(x) - f(x*), where x is a candidate solution and

x* is the optimal solution. Error values lower than 10-8 are

clamped to 10-8, which is the zero threshold defined in the

CEC’05 protocol (Suganthan et al. 2005). Our analysis

considers the median errors, mean errors and the solution

quality distribution for each function.

For tuning the parameters of iCMA-ES, we employ

Iterated F-Race (Birattari et al. 2010), a racing algorithm

for algorithm configuration that is included in the irace

package (López-Ibáñez et al. 2011). Iterated F-Race is an

algorithm that repeatedly applies F-Race (Birattari et al.

2002) to a set of candidate configurations that are generated

via a sampling mechanism that intensifies the search

around the best found configurations. The generated can-

didate configurations then perform a ‘‘race’’. At each step

of the race, each surviving candidate configuration is run

on one benchmark function of the training set. Poor per-

forming candidate configurations are eliminated from the

race based on the result of statistical tests. To this aim, the

results of each surviving configuration on the same training

problem is ranked. Note that this ranking corresponds to

blocking in statistical tests since ranks are determined on a

same training problem. In fact, ranking is useful in the

context of continuous function optimization to account for

the different ranges of the values of the benchmark func-

tions. Without ranking, few functions with large values

would dominate the evaluation of the algorithm perfor-

mance. Based on the obtained ranks, the Friedman test

checks whether sufficient statistical evidence is gathered

that indicates that some configurations behave differently

from the rest. If the null hypothesis of the F-test is rejected,

Friedman post-tests are used to eliminate the statistically

worse performing candidates.

The performance measure is the fitness error value of

each instance. In the automatic parameter tuning process,

the maximum budget is set to 5,000 runs of iCMA-ES. The

setting of Iterated F-Race we used is the default (López-

Ibáñez et al. 2011). The input to Iterated F-Race are the

ranges for each parameter, which are given in Table 1, and

a set of training instances. When using the SOCO bench-

mark set of tuning, the 10-dimensional versions of fsoco1 -

fsoco19 (except fsoco1, fsoco3, fsoco4 and fsoco8) were sampled

as training instances in a random order and the number of

Table 1 Parameters that have been considered for tuning

Parameters Formulas Factor Default values Range Tuned configurations

fcec* fsoco*

Pop size (k) 4þ ba lnðDÞc a 3 [1, 10] 7.315 9.600

Parent size (l) bk/bc b 2 [1, 5] 3.776 1.452

Init step size (r(0)) c(B - A) c 0.5 (0, 1) 0.8297 0.6034

IPOP factor (d) d d 2 [1, 4] 2.030 3.292

stopTolFun 10e e -12 [-20, -6] -8.104 -8.854

stopTolFunHist 10f f -20 [-20, -6] -6.688 -9.683

stopTolX 10g g -12 [-20, -6] -13.85 -12.55

Given are the default values of the parameters and the continuous range we considered for tuning. The last two columns give for each set of

tuning instances the found algorithm configurations

1 Recall that ‘‘rotational invariance’’ is an important feature of

iCMA-ES. This feature of iCMA-ES means that its performance is

not negatively affected by a rotation of a function with respect to the

coordinate system. From the perspective of parameter tuning, this is

an important property since it implies that we should be able to tune

iCMA-ES on unrotated functions of the SOCO benchmark set. In fact,

in the experimental part we consider as a control experiment also

tuning iCMA-ES directly on the CEC’05 benchmark set with the

rotated functions.
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function evaluations of each run is set equal to

5,000 9 D (D = 10). When using the CEC’05 benchmark

set of tuning in some control experiments, the

10-dimensional variants of fcec1 - fcec25 were sampled as

training instances in a random order and the number of

function evaluations of each run is equal to

Table 2 Benchmark functions

ID Name/description Range [Xmin, Xmax]D Uni/multi-modal Separable Rotated

fcec1 Shift.Sphere [-100, 100]D U Y N

fcec2 Shift.Schwefel 1.2 [-100, 100]D U N N

fcec3 Shift.Ro.Elliptic [-100, 100]D U N Y

fcec4 Shift.Schwefel 1.2 Noise [-100, 100]D U N N

fcec5 Schwefel 2.6 Opt on Bound [-100, 100]D U N N

fcec6 Shift.Rosenbrock [-100, 100]D M N N

fcec7 Shift.Ro.Griewank No Bound [0, 600]D ,� M N Y

fcec8 Shift.Ro.Ackley Opt on Bound [-32, 32]D M N Y

fcec9 Shift.Rastrigin [-5, 5]D M Y N

fcec10 Shift.Ro.Rastrigin [-5, 5]D M N Y

fcec11 Shift.Ro.Weierstrass [-0.5, 0.5]D M N Y

fcec12 Schwefel 2.13 [-p, p]D M N N

fcec13 Griewank plus Rosenbrock [-3, 1]D M N N

fcec14 Shift.Ro.Exp.Scaffer [-100, 100]D M N Y

fcec15 Hybrid Composition [-5, 5]D M N N

fcec16 Ro. Hybrid Composition [-5, 5]D M N Y

fcec17 Ro. Hybrid Composition [-5, 5]D M N Y

fcec18 Ro. Hybrid Composition [-5, 5]D M N Y

fcec19 Ro. Hybrid Composition [-5, 5]D M N Y

fcec20 Ro. Hybrid Composition [-5, 5]D M N Y

fcec21 Ro. Hybrid Composition [-5, 5]D M N Y

fcec22 Ro. Hybrid Composition [-5, 5]D M N Y

fcec23 Ro. Hybrid Composition [-5, 5]D M N Y

fcec24 Ro. Hybrid Composition [-5, 5]D M N Y

fcec25 Ro. Hybrid Composition [2, 5]D,� M N Y

fsoco1 Shift.Sphere [-100, 100]D U Y N

fsoco2 Shift.Schwefel 2.21 [-100, 100]D U N N

fsoco3 Shift.Rosenbrock [-100, 100]D M N N

fsoco4 Shift.Rastrigin [-5, 5]D M Y N

fsoco5 Shift.Griewank [-600, 600]D M N N

fsoco6 Shift.Ackley [-32, 32]D M Y N

fsoco7 Shift.Schwefel 2.22 [-10, 10]D U Y N

fsoco8 Shift.Schwefel 1.2 [-65.536, 65.536]D U N N

fsoco9 Shift.Extended f10 [-100, 100]D U N N

fsoco10 Shift.Bohachevsky [-15, 15]D U N N

fsoco11 Shift.Schaffer [-100, 100]D U N N

fsoco12 fsoco9 �0:25 fsoco1 [-100, 100]D M N N

fsoco13 fsoco9 �0:25 fsoco3 [-100, 100]D M N N

fsoco14 fsoco9 �0:25 fsoco4 [-5, 5]D M N N

fsoco15 fsoco10 �0:25 fsoco7 [-10, 10]D M N N

fsoco16 fsoco9 �0:5 fsoco1 [-100, 100]D M N N

fsoco17 fsoco9 �0:75 fsoco3 [-100, 100]D M N N

fsoco18 fsoco9 �0:75 fsoco4 [-5, 5]D M N N

fsoco19 fsoco10 �0:75 fsoco7 [-10, 10]D M N N

� Denotes initialization range without bound constraints. Its global optimum is outside of initialization range

Computational results for an automatically tuned CMA-ES
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10,000 9 D (D = 10). The differences of the lengths of

iCMA-ES runs on the SOCO and CEC’05 benchmark sets

are due to the different termination criteria used in the

definition of these benchmark sets. The default and tuned

settings of iCMA-ES’ parameters are presented in Table 1.

Comparing the tuned parameter settings to the default

settings, maybe the most noteworthy difference is that the

tuned settings imply a more explorative search behavior.

This is true least for the initial phases of the iCMA-ES

search at the algorithm start and after each restart. This

more explorative search behavior is due to the larger initial

population size (through parameter a), a larger initial step

size and a larger factor for the increase of the population

size at restarts (at least for configuration iCMA-ES-tsc,

which, as we will see later, is the best performing one). The

performance of iCMA-ES-dp and iCMA-ES-tsc will be

compared in Sect. 4.1.

The significance of the differences of the algorithmic

variants is assessed using statistical tests in two ways. First,

on an instance level, we use a two-sided Wilcoxon signed-

rank test at the 0.05 a-level to check whether the perfor-

mance of two algorithms is statistically significantly dif-

ferent. Recall that each algorithm is run 25 independent

times on each benchmark function. Second, across all

benchmark functions, we apply a two-sided Wilcoxon

matched-pairs signed-rank test at the 0.05 a-level to check

whether the differences in the mean or median results

obtained by two algorithms on each of the 25 CEC’05

benchmark functions is statistically significant.

In Table 3, we give an overview of the abbreviations

that are used the experimental analysis section.

4 Experimental study

In this section, we compare the performance of iCMA-ES-

tsc to the default paramter settings, to iCMA-ES-dp, and to

other algorithms that use CMA-ES as a local search

operator and that have been proposed with the aim of

improving over iCMA-ES.

4.1 iCMA-ES-tsc versus iCMA-ES-dp

First, we focus on the improvement iCMA-ES-tsc obtains

over iCMA-ES-dp. Table 4 shows the performance of

iCMA-ES-dp (default parameters) and iCMA-ES-tsc

(tuned on SOCO benchmark functions) on the CEC’05

benchmark function suite. Considering the differences on

individual functions, we first observe that iCMA-ES-dp

and iCMA-ES-tsc reach on surprisingly many functions

similar performance at least from the perspective of the

applied Wilcoxon test: on 19, 17, and 14 functions for 10,

30, and 50 dimensions, respectively, no statistically sig-

nificant differences could be observed. On the one hand,

Table 3 Overview of the abbreviations used in the article

Iterated F-Race An algorithm for algorithm configuration that is included in the irace package (Birattari et al. 2010;

López-Ibáñez et al. 2011)

CMA-ES Covariance matrix adaptation evolution strategy

iCMA-ES CMA-ES with increasing population size

iCMA-ES-dp iCMA-ES with default parameter setting

iCMA-ES-tcec iCMA-ES with parameters tuned on CEC’05 functions fcec1 - fcec25

iCMA-ES-tsc iCMA-ES with parameters tuned on SOCO functions fsoco1 - fsoco19 (except fsoco1, fsoco3, fsoco4 and fsoco8)

iCMA-ES-� iCMA-ES with parameters tuned on all hybrid functions of SOCO

iCMA-ES-uni iCMA-ES with parameters tuned on uni-modal functions of SOCO except fsoco1, fsoco8

iCMA-ES-multi iCMA-ES with parameters tuned on all non-hybrid multi modal functions of SOCO except fsoco3, fsoco4

iCMA-ES-uni? Adding uni-modal functions fsoco1 and fsoco8 to respective training set

iCMA-ES-multi? Adding multi modal functions fsoco3 and fsoco4 to respective training set

Sep-CMA-ES A modification of CMA-ES that uses a diagonal matrix instead of the full covariance matrix (Ros and Hansen 2008)

Sep-iCMA-ES Sep-CMA-ES with increasing population size (Ros 2009; smit and Eiben 2010)

Sep-iCMA-ES-tsc Results of a tuned Sep-iCMA-ES from (Liao et al. 2011c)

iCMA-ES-05 Results of the Matlab version of iCMA-ES with a sophisticated bound handling mechanism

from the CEC’05 special session (Auger and Hansen 2005)

MA-LSch-CMA A memetic algorithm integrating CMA-ES as a local search algorithm (Molina et al. 2010)

PS-CMA-ES A particle swarm optimization algorithm integrating CMA-ES as a local search algorithm (Müller et al. 2009)

CEC’05 Special session on real parameter optimization of the 2005 IEEE Congress on Evolutionary

Computation (Suganthan et al. 2005)

SOCO Benchmark set of a special issue of the Soft Computing journal on the scalability of evolutionary

algorithms and other metaheuristics for large scale continuous optimization problems (Herrera et al. 2010)
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this may be due to the relatively small number of 25

independent runs of the algorithms; on the other hand, this

is also caused by the fact that several benchmark functions

are very easy to solve and therefore introduce floor effects.

For example, functions fcec1, fcec2, fcec3, fcec6, and fcec7 are

solved by iCMA-ES-dp and iCMA-ES-tsc in all runs and in

all dimensions to the zero threshold. In the other functions,

iCMA-ES-tsc performs better than iCMA-ES-dp except in

2, 1, and 1 cases for dimensions 10, 30, and 50, respec-

tively, indicating superior performance of iCMA-ES-tsc

over iCMA-ES-dp.

When comparing the means and medians obtained

across each of the benchmark functions, we can observe

that iCMA-ES-tsc reaches statistically better results on

dimension 50 according to the Wilcoxon test, while on

dimensions 10 and 30 the observed differences are not

statistically significant. However, on a function-by-func-

tion basis iCMA-ES-tsc is statistically better than iCMA-

ES-dp on more functions than vice-versa.

On few functions, the differences in the solution quali-

ties are very strong. As an example, consider function fcec4,

where iCMA-ES-dp stagnated at very high mean error

values of 6.58E?02 and 1.43E?04 for dimensions 30 and

50, respectively, while iCMA-ES-tsc reached in each trial a

solution better than the zero threshold. On other functions

of dimension 50, such as functions fcec12, fcec16, and fcec17,

iCMA-ES-tsc more than halved the error values that were

reached by iCMA-ES-dp.

Figure 2 shows correlation plots where each point has as

x and y coordinate the mean error obtained with iCMA-ES-

tsc and iCMA-ES-dp on a same function. The plots of

Fig. 2 show the mean errors for the 10, 30, and 50

dimensional problems, respectively. Clearly, on some

functions iCMA-ES-tsc reaches results that are of much

better solution quality than those of iCMA-ES-dp (indi-

cated by the circles that are above the diagonal). This is the

case especially on functions fcec4, fcec5, fcec11, fcec12, fcec16

and fcec17. fcec4 and fcec17 are the two noisy functions of the

CEC’05 benchmark. The other four are multi-modal

functions; among these, fcec5 has the optimum on the

bounds. Next, we focus on these six functions.

Figure 3 shows the development of the mean error for

iCMA-ES-dp and iCMA-ES-tsc over the number of func-

tion evaluations on functions fcec4, fcec5, fcec11, fcec12, fcec16

and fcec17 of dimension 50. We observe that iCMA-ES-tsc

and iCMA-ES-dp perform similar up to about 1.00E?04

function evaluations. As the number of function evaluation

increases, the advantage of iCMA-ES-tsc over iCMA-ES-

dp starts to become apparent. At the stopping criterion of

5.00E?05 function evaluations from the CEC’05 compe-

tition rules (indicated by the dotted, vertical lines in the

plots), iCMA-ES-tsc shows generally much lower mean

errors. Especially on fcec4 and fcec5, iCMA-ES-tsc

converges fast to the zero threshold after 1.00E?04 func-

tion evaluations. Looking at what happens beyond the

termination criterion of 5.00E?06 function evaluations

(right from the dotted vertical lines in the plots), we can see

that iCMA-ES-dp catches up with the lower mean errors of

iCMA-ES-tsc on functions fcec5, fcec11, and fcec16. Hence, on

these functions the tuned parameter settings appear to

result in a faster convergence towards near-optimal solu-

tions. On functions fcec4 and fcec12 the advantage of iCMA-

ES-tsc with respect to the mean error remains substantial.

These general conclusions are also backed up by a more

detailed analysis of the algorithms’ qualified run-length

distributions (RLDs) (Hoos and Stützle 2004). Qualified

RLDs give the distribution of the number of function

evaluations to reach specific bounds on the errors. For

details on the qualified RLDs, which are measured across

100 independent algorithm trials, we refer to this articles’s

supplementary information pages (Liao et al. 2011b).

Finally, we consider qualified RLDs for iCMA-ES-dp and

iCMA-ES-tsc on functions fcec1, fcec2, fcec3, fcec6 and fcec7 on

dimension 50. On these functions each trial of iCMA-ES-dp

and iCMA-ES-tsc reaches the zero threshold within the ter-

mination criterion of the CEC’05 protocol. Figure 4 shows

the qualified RLDs for reaching the zero threshold over 100

independent runs for iCMA-ES-dp and iCMA-ES-tsc on

these five functions. We observe that on fcec1, fcec2 and fcec3,

both iCMA-ES-dp and iCMA-ES-tsc converge very fast to

the zero threshold in each trial without recurring to restarts.

For these three, relatively easy functions, iCMA-ES-tsc

converges slightly more slowly than iCMA-ES-dp mainly

because of its larger initial population size. On fcec6 and fcec7,

in contrast, iCMA-ES-tsc reaches a 100 % success rate faster

than iCMA-ES-dp, although there is no dominance rela-

tionship among the RLDs.

As said at the end of the previous section, the parameter

settings of iCMA-ES-tsc imply a larger exploration at the

beginning of the search. For example, for dimension 50, the

population size is 15 for the default settings but 41 for

the tuned settings, that is, almost three times larger.2 The

experimental results are somehow in accordance with this

interpretation of a higher exploration. In fact, on the hard

noisy functions, most multi-modal and especially the

hybrid functions the larger exploration apparently leads to

better final performance. However, the larger initial

exploration also leads to a slightly slower convergence to

the optimum on several, relatively easily solved unimodal

functions such as fcec1, fcec2 and fcec3, as we have shown

through qualified RTDs in Fig. 4.

2 Note that a different interpretation of the population size is that not

the parameter setting for factor a should be changed but possibly the

scaling function with the problem dimension. In fact, the scaling by a

logarithmic function may be too weak and other scaling laws may be

examined leading to overall better behavior of iCMA-ES.

Computational results for an automatically tuned CMA-ES
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4.2 iCMA-ES-tsc versus iCMA-ES-tcec

One may wonder whether tuning iCMA-ES on the CEC’05

benchmark suite directly incurs better final performance on

this set of functions. To explore this question, we compare

in Table 5 the performance of iCMA-ES-tcec and iCMA-

ES-tsc on the CEC’05 benchmark set. iCMA-ES-tcec and

iCMA-ES-tsc are mutually statistically better than each

other on four functions of dimension 10, respectively. On

the 10-dimensional functions, iCMA-ES-tsc is slightly

worse than iCMA-ES-tcec with respect to the distribution

of mean or median errors. This may be due to the fact that
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Fig. 2 Correlation plots of iCMA-ES-dp and iCMA-ES-tsc on

dimensions 10, 30, and 50, respectively. Each point represents the

mean error value obtained by either of the two algorithms. A point on

the upper triangle delimited by the diagonal indicates better

performance for the algorithm on the x-axis; a point on the lower
right triangle indicates better performance for the algorithm on the

y-axis. The number labeled beside some outstanding points represent

the index of the corresponding function. The comparison is conducted

based on mean error values and the comparison results of the

algorithm on the x-axis are presented in form of -win, -draw, -lose,

respectively. We marked with a ? symbol those cases in which there

is a statistically significant difference at the 0.05 a-level between the

algorithms. The number of opt on the axes shows the number of

means lower than the zero threshold by the corresponding algorithm
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Fig. 3 The development of the mean error of the fitness values across

100 independent runs of iCMA-ES-dp and iCMA-ES-tsc over the

number of function evaluations on functions fcec4, fcec5, fcec11,

fcec12, fcec16 and fcec17 of 50 dimensions. The vertical, dotted line in

each plot indicates 5.00E?05 function evaluations, which is the

termination criterion for the number of function evaluations in the

CEC’05 protocol
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iCMA-ES-tcec is tuned on the 10-dimensional CEC’05

benchmark set, the same functions on which it is tested.

Interestingly, this slight superiority of iCMA-ES-tcec on the

10-dimensional functions does not generalize to higher

dimensions. As an example, consider functions fcec18,

fcec19, fcec20 of dimension 10. On these, iCMA-ES-tcec

obtains an error value of 3.00E?02 in all independent 25 runs

which is the lowest value reported in the literature for these

functions as far as we aware. However, on the 50-dimensional

version of these functions, iCMA-ES-tcec is significantly

worse than iCMA-ES-tsc. Moreover, considering the differ-

ences on all functions of dimension 50, iCMA-ES-tsc sta-

tistically significantly improves upon iCMA-ES-tcec on 12

functions while it performs statistically significantly worse

than iCMA-ES-tcec on only three functions. Considering the

distribution of the mean or median error values of the

50-dimensional functions, iCMA-ES-tsc statistically signif-

icantly improves upon iCMA-ES-tcec.

It should also be mentioned that tuning on the SOCO

benchmark functions is much faster than on the CEC’05

benchmark set. In fact, the difference in computation time

amounts to a factor of about 50. This difference is mainly

due to the fact that 16 of the 25 CEC’05 functions of each

dimension are rotated functions, which requires more

costly computations in the evaluation such as multiplica-

tion operations on a rotated matrix.

4.3 Comparison to state-of-the-art methods that exploit

CMA-ES

At least two recent, newly designed state-of-the-art algo-

rithms exploit CMA-ES as an underlying local search

method; these are a memetic algorithm with local search

chains based on CMA-ES (MA-LSch-CMA) (Molina et al.

2010) and a hybridization of a PSO algorithm with CMA-

ES (PS-CMA-ES) (Müller et al. 2009). We compare

iCMA-ES-tsc to these following the experimental analysis

used in Molina et al. (2010) and Müller et al. (2009), that is

by (1) statistically analyzing for the distribution of the

mean errors as in Molina et al. (2010) and, (2) ranking the

mean errors as in Müller et al. (2009). As the results of

MA-LSch-CMA and PS-CMA-ES we use those reported in

Liao et al. (2011a). Note that the original results reported in

Molina et al. (2010) and Müller et al. (2009) did not nec-

essarily satisfy the bound constraints of the CEC’05

benchmark functions, which is corrected in the results

reported in (Liao et al. 2011a). Table 6 shows that iCMA-

ES-tsc performs statistically significantly better than MA-

LSch-CMA in all dimensions; iCMA-ES-tsc performs

statistically significantly better than PS-CMA-ES on the

50-dimensional functions and it reaches better performance

than PS-CMA-ES on more functions for dimensions 10 and

30. Table 6 also shows that iCMA-ES-tsc obtains the best
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average ranking in all dimensions and most often the zero

threshold in all dimensions. Clearly, it would be interesting

to also automatically tune MA-LSch-CMA and PS-CMA-

ES to exploit possibly more their potential. Nevertheless,

this comparison indicates that a feasible way to go for

improving the performance of iCMA-ES-dp is to further

fine-tune iCMA-ES parameters (or maybe other design

choices of iCMA-ES) instead of embedding CMA-ES into

other algorithms. Recall that this also justifies the effort in

tuning iCMA-ES because when designing new hybrid

algorithms, often also a substantially large effort flows into

the further, often manual fine-tuning of algorithm param-

eters and algorithm designs.

5 Additional experiments

5.1 Comparison with other results by iCMA-ES

We also compared iCMA-ES-tsc with Sep-iCMA-ES-tsc

(Liao et al. 2011c), the algorithm used in the article by

Smit and Eiben (2010), on the full CEC’05 benchmark set.

Table 6 The mean errors obtained by MA-LSch-CMA, PS-CMA-ES and iCMA-ES-tsc (MA, PS, iCMAESt for their abbreviations, respec-

tively, in this table) over 25 independent runs for CEC’05 functions

fcec 10 dimensions 30 dimensions 50 dimensions

Mean errors Mean errors Mean errors

MA PS iCMAESt MA PS iCMAESt MA PS iCMAESt

f1 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08

f2 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 3.06E-02 7.36E-06 1.00E-08

f3 1.00E-08 1.45E-01 1.00E-08 2.75E?04 2.96E?04 1.00E-08 3.21E?04 9.10E?04 1.00E-08

f4 5.54E-03 1.00E-08 1.00E-08 3.02E?02 4.56E?03 1.00E-08 3.23E?03 2.17E?04 1.00E-08

f5 6.75E-07 1.00E-08 1.00E-08 1.26E?03 2.52E?01 1.00E-08 2.69E?03 1.79E?03 1.00E-08

f6 3.19E-01 1.00E-08 1.00E-08 1.12E?00 1.15E?01 1.00E-08 4.10E?00 2.91E?01 1.00E-08

f7 1.43E-01 1.00E-08 1.00E-08 1.75E-02 1.00E-08 1.00E-08 5.40E-03 1.00E-08 1.00E-08

f8 2.00E?01 2.00E?01 2.02E?01 2.00E?01 2.00E?01 2.08E?01 2.00E?01 2.00E?01 2.10E?01

f9 1.00E-08 3.98E-02 4.81E-02 1.00E-08 8.76E-01 1.99E?00 1.00E-08 5.45E?00 4.18E?00

f10 2.67E?00 1.00E-08 3.73E-03 2.25E?01 5.57E-01 1.59E?00 5.01E?01 5.33E?00 2.71E?00

f11 2.43E?00 8.51E-01 1.00E-08 2.15E?01 7.10E?00 5.09E-05 4.13E?01 1.59E?01 6.03E-02

f12 1.14E?02 1.10E?00 1.00E-08 1.67E?03 8.80E?02 4.22E?02 1.39E?04 6.90E?03 4.69E?03

f13 5.45E-01 3.67E-01 7.14E-01 2.03E?00 2.05E?00 2.53E?00 3.15E?00 4.15E?00 4.70E?00

f14 2.25E?00 3.40E?00 2.03E?00 1.25E?01 1.24E?01 1.10E?01 2.22E?01 2.15E?01 2.09E?01

f15 2.24E?02 8.67E?01 3.32E?02 3.00E?02 1.37E?02 2.00E?02 3.72E?02 1.25E?02 2.00E?02

f16 9.18E?01 9.28E?01 8.86E?01 1.26E?02 1.59E?01 1.11E?01 6.90E?01 1.62E?01 5.34E?00

f17 1.01E?02 1.12E?02 9.34E?01 1.83E?02 9.15E?01 2.08E?02 1.47E?02 9.13E?01 6.36E?01

f18 8.84E?02 3.60E?02 3.60E?02 8.98E?02 9.05E?02 9.04E?02 9.41E?02 8.70E?02 9.13E?02

f19 8.78E?02 3.25E?02 3.20E?02 9.01E?02 8.85E?02 9.04E?02 9.38E?02 9.13E?02 9.13E?02

f20 8.63E?02 3.43E?02 3.40E?02 8.96E?02 9.05E?02 9.04E?02 9.28E?02 9.09E?02 9.13E?02

f21 7.94E?02 4.71E?02 5.00E?02 5.12E?02 5.00E?02 5.00E?02 5.00E?02 6.62E?02 7.05E?02

f22 7.53E?02 7.46E?02 7.28E?02 8.80E?02 8.43E?02 8.17E?02 9.14E?02 8.63E?02 8.19E?02

f23 8.88E?02 5.58E?02 5.59E?02 5.34E?02 5.34E?02 5.34E?02 5.39E?02 8.12E?02 7.30E?02

f24 2.28E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02 2.00E?02

f25 4.55E?02 4.00E?02 4.03E?02 2.14E?02 2.10E?02 2.09E?02 2.21E?02 2.14E?02 2.13E?02

V.S. (3, 4, 18)� (8, 8, 9) (7, 4, 14)� (7, 6, 12) (5, 2, 18)� (6, 4, 15)�

Optima 4 7 9 3 3 7 2 2 7

Rank 2.52 1.78 1.7 2.26 1.98 1.76 2.42 2.02 1.56

The numbers in parenthesis represent the times of\, =, and[, respectively, when the corresponding algorithms are compared with iCMA-ES-

tsc based on the mean errors. The number of means below the zero-threshold found by each algorithm (indicated by ‘‘Optima’’ and the average

ranking of each algorithm are also given
� Denotes there is a significant difference over the distribution of mean errors between the corresponding algorithm with iCMA-ES-tsc by a two-

sided Wilcoxon matched-pairs signed-ranks test at the 0.05 a-level.

Bold values indicate the algorithm with the best average rank and the largest number of optimal solutions

T. Liao et al.

123



Figure 5 shows correlation plots that illustrate the relative

performance for Sep-iCMA-ES-tsc and iCMA-ES-tsc on

dimensions 10, 30, and 50, respectively. Each point rep-

resents the mean error value obtained by either of the two

algorithms. These plots indicate superior performance of

iCMA-ES-tsc over Sep-iCMA-ES-tsc, which is confirmed

by the table of full results available at Liao et al. (2011b).

We verified that iCMA-ES-tsc reaches statistically signif-

icantly better performance than Sep-iCMA-ES-tsc on the

distribution of mean error values on all dimensions. This

comparison confirms our expectation of iCMA-ES-tsc’s

superiority over Sep-iCMA-ES-tsc on the CEC’05 bench-

mark set, where 16 of 25 functions are rotated functions.

The most significant example is fcec3, a unimodal rotated

high conditional function, where Sep-iCMA-ES-tsc stag-

nated at very high mean error values for all dimensions,

while iCMA-ES-tsc reached in each trial the zero threshold.

However, Sep-iCMA-ES-tsc obtains better performance than

iCMA-ES-tsc on fcec10, a rotated Rastrigin function, over all

dimensions. This case gives an indication that we can only

conclude that iCMA-ES’s rotational invariance plays a

pivotal role to handle most but not all rotated functions.

Next, we take the mean errors reported for iCMA-ES in

the CEC’05 special session as a reference and refer to these

results as iCMA-ES-05. Note that the results of iCMA-ES-

05 were obtained with a different implementation (using

the Matlab and not the C code we use) and with a much

more sophisticated bound handling mechanism. We sum-

marize the comparison with iCMA-ES-tsc in Table 7.

iCMA-ES-tsc performs statistically significantly better

than iCMA-ES-05 on dimension 30 and reaches on more

functions statistically significantly better results (on a per

function basis). This confirms the high performance of

iCMA-ES-tsc.

5.2 Tuning setup

In this section, we examine different choices for the

composition of the training set to obtain an indication

which types of functions are important for high perfor-

mance of the tuned iCMA-ES. We also explore alternative

settings of the irace tool.

In what follows, we define training sets that are com-

posed of different subsets of the SOCO benchmark func-

tions and evaluate the tuned performance of iCMA-ES

using the mean errors on the 50-dimensional CEC’05

benchmark functions. We summarize here our main find-

ings and for detailed numerical results we refer to the

supplementary page (Liao et al. 2011b).

The convention we use for labeling the training function

sets is introduced first:

� all hybrid functions of SOCO

uni uni-modal functions of SOCO except fsoco1, fsoco8

multi all non-hybrid multi modal functions of SOCO

except fsoco3, fsoco4

? adds the uni-modal (fsoco1, fsoco8) or multi modal

(fsoco3, fsoco4) functions to respective training

For example, iCMA-ES-� denotes iCMA-ES tuned

using only the eight hybrid functions, iCMA-ES-uni,multi

denotes iCMA-ES tuned with the seven uni-modal

and (non-hybrid) multi-modal functions of SOCO, and
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Fig. 5 Correlation plots of iCMA-ES-tsc and Sep-iCMA-ES-tsc on

dimensions 10, 30, and 50, respectively. Each point represents the

mean error value over 25 independent runs obtained by either of

the two algorithms. A point on the upper triangle delimited by the

diagonal indicates better performance for the algorithm on the x-axis;

a point on the lower right triangle indicates better performance for the

algorithm on the y-axis. The number labeled beside some outstanding

points represent the index of the corresponding function. The

comparison is conducted based on mean error values and the

comparison results of the algorithm on the x-axis are presented in

the form of -win, -draw, -lose, respectively, using iCMA-ES-tsc as the

reference. We marked with a ? symbol those cases in which there is a

statistically significant difference at the 0.05 a-level between the

algorithms. The number of opt on the axes shows the number of

means that is lower than the zero threshold, obtained by the

corresponding algorithm
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iCMA-ES-uni? denotes iCMA-ES tuned with all seven

uni-modal functions.

In Table 8 we summarize the average ranking and the

statistical analysis of several parameter settings of iCMA-

ES that were obtained with the various training set com-

positions that we considered. In Table 9 are given the

parameter setting obtained using these training set com-

positions; the parameter settings for iCMA-ES-tsc and

iCMA-ES-dp are given in Table 1. The main conclusions

we can obtain are the following:

1. The usage of the hybrid functions in the training set is

a key to high tuned performance. iCMA-ES-� obtains

about the same performance as iCMA-ES-tsc and if the

hybrid functions are not part of the training set, the

performance of the tuned iCMA-ES degrades consid-

erably. Interestingly, the configuration iCMA-ES-�
obtains on all 50-dimensional hybrid functions of

CEC’05 significantly better results than iCMA-ES-tsc-

uni,multi, indicating that there maybe some common

aspects between the hybrid functions of the SOCO and

the CEC’05 benchmark set.

2. The usage of the multi-modal functions only, that is,

configuration iCMA-ES-multi, leads to significantly

worse performance than iCMA-ES-�: One may object

that the set multi contains only two training functions;

however, adding the two multi-modal functions fsoco3

and fsoco4 to the training set does not lead to much

improved performance (configuration iCMA-ES-mul-

ti?, see Liao et al. (2011b)).

3. Configuration iCMA-ES-uni leads to, at first sight,

surprisingly high performance on the CEC’05 func-

tions, and it has only a slightly worse mean rank than

iCMA-ES-�: At a second glance, it is noteworthy that

uni-modal functions such as those in the set ‘‘uni’’ can

actually be quite difficult to optimize; for example, the

default parameter setting of iCMA-ES has poor

performance on uni-modal functions fcec4 and fcec5

(see Table 3). Configurations iCMA-ES-uni?, which

uses also functions fsoco1 and fsoco8 in the training set,

is, however, worse than iCMA-ES-uni (and signifi-

cantly worse performing than iCMA-ES-�). This is

possibly caused by floor effects obtained due to adding

functions that are easily solved by iCMA-ES.

A common pattern among the best performing param-

eter settings, which are iCMA-ES-tsc, iCMA-ES-�; and

iCMA-ES-uni, is that they tend to increase the exploration

performed by iCMA-ES. In fact, the commonalities of

these parameter settings are a higher population size, a

(slightly) larger initial step size, and a faster increase of the

population size upon a restart than the default parameter

settings. Since these parameter settings improve perfor-

mance, in particular, on the hardest benchmark problems, it

may be that the default settings were possibly biased by

experiments on too simple benchmark functions.

Considering the tuning setup, we also made tests (1)

replacing the F-test with a t-test (that is, using the Student

t-test for the race) and (2) increasing the tuning budget to

25000 runs. Similar to the results reported previously by

iCMA-ES-tsc, the resulting configurations improved upon

iCMA-ES-dp, being statistically significantly better than

iCMA-ES-dp on the distribution of the mean or the median

error values. These experiments also indicate that the

observation of the superior performance of iCMA-ES-tsc

over iCMA-ES-dp is relatively stable with respect to some

(minor) changes in the tuning setup. The detailed data of

these trials are available at Liao et al. (2011b).

6 Conclusions and future work

In this article, we tuned iCMA-ES to improve its perfor-

mance on the CEC’05 benchmark set. We did so by using a

Table 8 Given are for each algorithm the number of optima reached

and the average rank on the CEC’05 benchmark problems of

dimension 50

DRa Algs OptNum Rank DR

19.75 iCMA-ES-tsc 7 2.9 0

iCMA-ES-� 4 2.9 0

iCMA-ES-uni 7 3.2 7.5

iCMA-ES-dp 5 3.7 20.0

iCMA-ES-uni,multi 6 3.8 22.5

iCMA-ES-multi 4 4.5 40.0

We use the Friedman test at significance level a = 0.05 is used. DRa

is the minimum significant difference between the ranks of algo-

rithms. The numbers in the last column are the differences of the sum

of ranks relative to the best algorithm; if a difference is larger than

DRa, it is statistically significant

Table 7 Summary of the comparison with iCMA-ES-tsc on 10, 30

and 50 dimensions with respect to mean error values: (better, equal,

worse)

iCMA-ES-05 Sep-iCMA-ES-tsc

vs.iCMA-ES-tsc vs.iCMA-ES-tsc

10 Dim (6, 10, 9) (5, 4, 16)�

30 Dim (4, 11, 10)� (3, 6, 16)�

50 Dim (7, 6, 12) (3, 4, 18)�

Error values lower than 10-8 are approximated to 10-8

� Denotes there is a significant difference over the distribution of

mean errors between the corresponding algorithm and iCMA-ES-tsc

according to a two-sided Wilcoxon matched-pairs signed-rank test at

the 0.05 a-level
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123



separation between training and test set to avoid the bias of

the results due to potentially overtuning the algorithm. Our

experimental results showed that the tuned iCMA-ES

improves significantly over the default parameter settings

of iCMA-ES-dp. While on some individual functions the

improvements observed from a solution quality perspective

are rather large, on many other functions only minor

though often statistically significant improvements are

observed. iCMA-ES-tsc also performs competitive or

superior to methods, such as MA-LSch-CMA (Molina et al.

2010) and PS-CMA-ES (Müller et al. 2009), which were

developed with the goal of improving over iCMA-ES

performance. This indicates that, instead of embedding

CMA-ES into other algorithms to improve over its per-

formance, a viable, alternative approach is to further fine-

tune the parameter settings or maybe some design choices

of iCMA-ES. This direction would involve to further

parameterize choices that are currently fixed in the algo-

rithm. Examples of such parameterizations are to treat

further constants as parameters that are to be tuned or to

consider alternative choices for specific functions. A con-

crete example could be the formula that is used to deter-

mine the initial population size, which is 4þ ba lnðDÞc (see

also Table 1). Here, the constant 4 could be replaced by a

real-valued parameter and different functions instead of ?

and ln may be considered.

It is also interesting to consider the impact the tuned

parameter settings have on the behavior of iCMA-ES. In

fact, a common pattern among the best performing tuned

parameter settings we observed is that they lead to an

increased exploration of the search space at least in the

initial search phases and upon a restart of iCMA-ES. This

more explorative behavior is implied by larger population

sizes, larger step sizes, and a higher factor for the increase

of the population size upon a restart of iCMA-ES. Inter-

estingly, increasing search space exploration is also often

the goal of hybrid algorithms such as the above-mentioned

MA-LSch-CMA and PS-CMA-ES where CMA-ES is used

as a local search. In fact, it seems that such increased

exploration can be directly provided inside the iCMA-ES

framework by modified parameter settings.

Our experimental results also indicate that using off-line

automatic algorithm configuration to further improve

adaptive algorithms is a viable approach—recall that

iCMA-ES is such an adaptive algorithm where step sizes

and search directions are adapted to the particular contin-

uous optimization function under concern.

We have also presented initial results examining the role

of the specific composition of a training set on the per-

formance of the tuned parameter settings. On the one hand,

these results indicated that the hybrid functions in the

SOCO benchmark set alone are enough to derive high-

performing tuned parameter settings. Maybe surprisingly,

using only the uni-modal functions of the SOCO bench-

mark set resulted in a same level of performance of the

tuned iCMA-ES on the CEC’05 benchmark set. Although it

is known that uni-modal functions can be difficult to

optimize, in future research the importance of the training

set should be examined in much more detail. For this task,

it is important to consider interactions between algorithm

properties and properties of the training set. For example,

the fact that iCMA-ES is rotationally invariant made it

possible to use the SOCO benchmark set of functions

which contains only unrotated functions—the rotational

invariance implies that iCMA-ES’s performance should be

unaffected by rotations of the functions. For algorithms that

are not invariant with respect to rotations, the usage of the

SOCO benchmark set as training set may actually lead to

poor performance. An interesting direction here would be

to consider other benchmark set such as the BBOB

benchmark function suite (see http://coco.gforge.inria.

fr/doku.php?id=bbob-2012) or newly designed benchmark

suites containing functions with specific properties for the

tuning of continuous optimizers.
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