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Abstract

This paper addresses the issue of computational resource allocation within
the context of cooperative coevolution. Cooperative coevolution typically
works by breaking a problem down into smaller subproblems (or compo-
nents) and coevolving them in a round-robin fashion, resulting in a uniform
resource allocation among its components. Despite its success on a wide range
of problems, cooperative coevolution struggles to perform efficiently when its
components do not contribute equally to the overall objective value. This is
of crucial importance on large-scale optimization problems where such dif-
ference are further magnified. To resolve this imbalance problem, we extend
the standard cooperative coevolution to a new generic framework capable

Email addresses: borhan.kazimi@gmail.com (Borhan Kazimipour),
m.omidvar@cs.bham.ac.uk (Mohammad Nabi Omidvar), qin@swin.edu.au (A. K. Qin),
xiaodong.li@rmit.edu.au (Xiaodong Li), x.yao@cs.bham.ac.uk (Xin Yao)

On 12/12/2018, this work has been accepted for publication in Applied Soft Com-
puting (Elsevier).

Preprint submitted to Elsevier January 31, 2020



of learning the contribution of each component using multi-armed bandit
techniques. The new framework allocates the computational resources to
each component proportional to their contributions towards improving the
overall objective value. This approach results in a more economical use of
the limited computational resources. We study different aspects of the pro-
posed framework in the light of extensive experiments. Our empirical results
confirm that even a simple bandit-based credit assignment scheme can sig-
nificantly improve the performance of cooperative coevolution on large-scale
continuous problems, leading to competitive performance as compared to the
state-of-the-art algorithms.

Keywords: Large-scale optimization, cooperative coevolutionary,
imbalanced contribution, resource allocation, multi-armed bandit

1. Introduction

Optimization tasks are found in numerous applications ranging from mod-
eling biological systems [1] to engineering design problems [2]. With the rapid
advances in science and technology, more complex optimization problems are
emerging every day. Since the traditional optimization methods usually do
not scale well to very high dimensional problems [3], a divide-and-conquer
strategy can be adopted to alleviate the issue of curse of dimensionality. In
recent years, many meta-heuristic algorithms have leveraged such decompo-
sition strategies to tackle large-scale problems [4].

Cooperative Coevolutionary (CC) is a classic evolutionary technique which
follows the divide-and-conquer approach. The CC framework requires deci-
sion variables to be grouped into separate components (or subproblems), and
subsequently optimization is carried out on each component one at a time
in a round-robin fashion. A default option for CC regarding resource allo-
cation is to allocate an equal portion of the computational budget to each
subproblem. A large and growing body of literature is devoted to utilizing
effective decomposition techniques with CC algorithms [5, 6] and advancing
the schemes for their computational budget allocation [7, 8].

Despite showing promising performances on numerous applications [4],
CC models do not function efficiently and effectively when the problem is
imbalanced [7, 9]. Imbalanced problems are optimization tasks that have
components with unequal contributions to the overall objective value. The
CC techniques typically ignore such imbalanced contributions and treat all
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components equally. As a consequence, the least and most contributing com-
ponents will be allocated with the same amount of the computational bud-
get. This uniform resource allocation scheme results in an unwanted waste
of valuable resources [10].

A few factors make dealing with imbalanced problems challenging. Firstly,
potential contributions from the components are usually unknown to users
and optimizers, especially in the case of black-box problems [11]. Secondly,
the distributions of contributions are not necessarily always linearly corre-
lated to the amounts of resources allocated from the total computational
budget. For example, having a component with twice as large as the other
one’s contribution (in an arbitrary scale) does not necessarily means that it
should receive a portion of resources two times bigger than the other com-
ponent’s budget. The CC algorithms must be equipped with an effective re-
source allocation mechanism to designate an appropriate portion of resources
to solve each subproblem according to its estimated contributions.

Thirdly, a competent device is needed to maintain a right balance be-
tween the budget spent on the contribution learning (i.e., exploring different
components several times) and optimization (i.e., exploiting the most con-
tributing component found so far). Because of the uncertainty in the esti-
mated contributions and also the fact that their distributions may change
dramatically, these estimations should be updated frequently. For exam-
ple, a component that is found to contribute a lot at the beginning stage of
the search may contribute less at a later stage. Furthermore, contribution
learning costs valuable resources that could be spent on the optimization of
the most rewarding components. Therefore, preserving the balance between
contribution learning and component optimization is vital in such a dynamic
environment.

Recently, a few techniques have been proposed to enable the traditional
CC to handle the imbalance issue [7, 8, 10, 12, 13]. These techniques, which
we refer to as contribution-aware CCs, keep track of the components’ con-
tributions to the improvement of the overall objective value. These values
are used to estimate the likelihood of receiving future improvement by opti-
mizing each subproblem. Then, the algorithms allocate the remaining com-
putational resources based on the predicted contributions. As a result, the
highly contributing components are more likely to receive a bigger portion
of the available resources.

In spite of the improvements that contribution-aware techniques demon-
strate over the classic CC framework, they still suffer from some shortcom-
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ings. Firstly, these schemes adopted ad hoc heuristics to learn the contri-
butions and allocate the resources (e.g., [7, 12]). As a result, they seldom
adapt to the dynamics of search process and their parameters are difficult to
specify. Secondly, these techniques are often combinations of several other
algorithms (e.g., [8, 14]). This extra complexity brings lots of parameters
into the framework such that the effects and contributions of each part to
the overall outcome are difficult to identify. Finally, their performance is
only examined on a limited number of test functions. For a better statisti-
cal analysis, a comprehensive set of large-scale imbalanced problems which
covers more cases is required [9].

In this paper, we model the resource allocation problem as a dynamic
multi-armed bandit problem [15]. We propose a modular framework to deal
with the imbalanced contribution issue in the context of large-scale black-
box optimization. Adopting the theoretically-sound bandit methods into this
architecture, which we refer to as Bandit-Based Cooperative Coevolution
(BBCC), has two merits. Firstly, we can leverage on the extensive literature
on bandit problems and solvers to evaluate the proposed framework, develop
several variants of it, and better understand its behavior. As a result, the
theoretical and practical significance of BBCC will be much easier to ap-
preciate than those previous ad hoc techniques. Secondly, the modularity
of BBCC will provide users the flexibility to choose any appropriate decom-
position strategies, reward functions, credit assignment formulations, bandit
solvers, and optimization methods to plug into the framework. This feature
will further facilitate sensible comparative studies on the topic of resource
allocation.

This paper contributes to the field in several ways: Firstly, we formu-
late the problem of budget allocation in CC framework (when dealing with
problems that composed of heterogeneous subfunctions) as a dynamic multi-
armed-bandit problem. Secondly, we provide a generic, flexible, modular, and
yet effective framework capable of solving the formulated problem. We show
that the previously proposed contribution-aware CCs can be reformulated as
particular instances of the BBCC framework. Thirdly, we conduct a compre-
hensive series of case studies to investigate the performance of an instance
of the proposed framework in six different scenarios (covers 30 large-scale
modular problems). Fourthly, we compare a basic implementation of the
framework with three families of contribution-aware CCs (which include12
technique in total) as well as the winners of the past competitions on large-
scale optimization. Finally, we conduct a brief sensitivity analysis on two
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generic parameters to show the stability of the performance of the frame-
work in 16 different settings.

The rest of the paper is organized as follows: Section 2 presents back-
ground information about the CC framework, the issue of imbalanced con-
tributions, and existing contribution-aware algorithms. Section 3 introduces
the proposed framework and a few of its instances in detail. Section 4 pro-
vides a range of case studies, sensitivity analyses and comparative studies
to demonstrate the capacities of BBCC. And finally, Section 5 concludes the
paper and highlights some potential topics for future work.

2. Background

This section briefly reviews the CC framework, formally defines the im-
balance contribution problem and summarizes the contribution-aware tech-
niques that were previously proposed.

2.1. Cooperative Coevolution (CC) Framework

To reduce the adverse influence of dimensionality on the performance of
Evolutionary Algorithms (EAs), two major directions have been followed in
the literature. One approach aims to enhance the traditional EAs by the aid
of different techniques such as advanced initialization [16], intelligent sam-
pling [17], memetic algorithms [18], adaptation [19] and hybridization [20].
The other approach attempts to decompose the problems into smaller pieces
so that existing algorithms can handle them separately. The CC algorithms
fall into the second category [21, 22].

Typically, the original large-scale problem can be divided into smaller
pieces called subproblems or components. This task can be done manually
by a field expert or automatically using a decomposition (a.k.a. variable
grouping) algorithm. In either case, a D-dimensional problem f is split into
K subproblems:

f(x) =
K
∑

k=1

fk(xDk
), (1)

where x, xDk
and Dk are a complete (i.e. D-dimensional) solution, the

kth subsolution, and the set of dimension indices form the kth component,
respectively.
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The task of decomposition may be performed only once at the beginning
(i.e., static variable grouping) or several times during the course of optimiza-
tion (i.e., dynamic grouping). It has been shown that some advanced decom-
position techniques can accurately detect interactions between the variables
and group them using a fraction of computational budget [23].

The effective number of components (i.e., K) varies from one problem to
another. Optimization problems are generally categorized into three major
groups based on the optimal value of K: fully separable problems when there
is no interaction between any two variables (K = D), partially separable
problems when the variables can be clustered into distinct groups of two or
more variables (1 < K < D), and fully non-separable problems when no
isolated cluster of variables can be found (K = 1).

When decomposition is done, each component fk is treated as a separate
optimization problem and tackled by an arbitrary EA (a.k.a. component
optimizer). Since the exact formula or simulator of each single subproblem
might not be available, the fitness of each potential solution is evaluated
using some information from other components. For example, a so-called
context vector may be constructed by merging the potential subsolutions of
all subproblems. Therefore, to evaluate a potential subsolution xDk

, it must
be plugged into the context vector and the whole vector is evaluated by the
original objective function.

Traditionally, each subproblem is optimized for one epoch at a time which
consists of one or more optimization iteration. After each epoch, the context
vector is updated. When all subproblems are optimized for one epoch, one
optimization cycle is completed. This cycle is repeated until the termination
criteria are met. At the end, the best subsolution for each subproblem is
selected and merged with the other subsolutions to form a D-dimensional
solution to the main problem.

Algorithm 1 shows the main steps of the round-robin CC framework.
Here, N and T are the population size and the maximum number of epochs.
Therefore, X and F are N ×D and N ×T tensors, respectively. For the sake
of simplicity, we omit some of the control parameters (e.g., EA parameters
in line 10) that the functions in Algorithm 1 can take.

The population initialization, problem decomposition and context vector
creation all are performed in lines 1–4. The main loop starts at line 7. In line
9, the next component is selected in a round-robin fashion and optimized in
line 10 for one epoch. Then, the population is re-evaluated and the context
vector is updated (typically by merging the best subsolutions found so far).
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Algorithm 1: CC(f,D,N)
1: t← 0 ⊲ Epoch counter
2: X← initiate(N,D) ⊲ Initialization
3: F[:, t]← evaluate(f,X) ⊲ Evaluation
4: v← initContextVector(X,F) ⊲ Initial Context Vector
5: D ← initGrouping(f) ⊲ Static grouping
6: K ← size(D) ⊲ Number of components
7: repeat
8: t← t+ 1 ⊲ Increase epoch counter
9: k ← (t mod K) + 1 ⊲ Select next component
10: X[:,D[k]]← optimize(f,X[:,D[k]],v) ⊲ One epoch optimization
11: F[:, t]← evaluate(f,X) ⊲ Re-evaluate
12: v← updateContextVector(X,F,v) ⊲ Update Context Vector
13: D ← updateGrouping(f,D) ⊲ Dynamic grouping
14: until termination() = True ⊲ Termination
15: return X[argmin(F[:, t]), :] ⊲ Return final solution

When a dynamic decomposition algorithm is adopted, the variable grouping
should be updated in line 13. If the termination criteria are not satisfied
yet, the main loop continues for another cycle. Otherwise, the final solution
which is a single D-dimensional vector is returned. To form the final solution,
we usually combine all best subsolutions (one per subproblem).

2.2. Imbalance Contribution

It is very likely that the components of an optimization problem have un-
equal contributions to the overall objective value improvement [7]. In such
cases, solving a subset of components may result in a considerably larger
objective value improvement than the other subproblems given a fixed com-
putational budget. Since the computational resources are usually limited
in practice, it is more economical to discover the most contributing com-
ponents and invest more resources in solving them, rather than treating all
subproblems equally regardless of their contributions.

Broadly speaking, the main causes of contribution imbalance can be any
or a combination of the followings: 1) differences in subproblems’ fitness
landscape, 2) unequal dimensionality and 3) non-uniform coefficients. More
formally, an additive partially separable problem is considered as an imbal-
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anced problem if it can be formulated as:

f(x) =
K
∑

k=1

c
(t)
k · fk(xDk

) (2)

and ∃i, j ∈ {1, . . . , K} where i 6= j and c
(t)
i 6= c

(t)
j or fi 6= fj or |Di| 6= |Dj|.

In Equation (2), c
(t)
k , fk and |Dk| represent the coefficient at time t, fitness

function, and dimensionality of the kth component, respectively. In the most
recent large-scale benchmarking test suite [11], a combination of non-uniform
dimension sizes and coefficients are introduced to challenge decomposition
techniques.

2.3. Contribution-aware CC Techniques

Recently, a number of online budget allocation techniques have been pro-
posed to incorporate the estimated contributions of heterogeneous compo-
nents into consideration. These algorithms can be categorized as hyper-
heuristic methodologies (see [24, 25]) as they generally operate on the space
of the optimizers’ segments rather than directly on the search space of the
given large-scale optimization problem. As a result, the main challenge to be
addressed here is not the dimensionality of the original search space but the
underlying dynamism in the evolution of solution population and maintaining
the “Exploration-Exploitation” balance in the budget assignment process.

The so-called Contribution-Based CC (CBCC) technique is the first pub-
lished work that explicitly addressed the imbalanced component contribu-
tions in the context of large-scale optimization [7]. These algorithms adopt
simple heuristics to find the most contributing component and optimize it
more often than the others. The framework consists of two phases (explo-
ration and exploitation) that are executed iteratively. The exploration phase
is similar to one cycle of a round-robin CC where all components are opti-
mized for a single epoch and the fitness values of the best solutions before
and after that epoch are recorded. The differences between these values are
used as an indicator of a component’s contribution to improving the over-
all objective value. In the next exploitation phase, the component with the
highest accumulated contribution receives more computational resources.

The exploitation phase of CBCC1 consists of one optimization epoch
of the most contributing component [7]. In contrast, CBCC2 continuously
optimizes this component until there is no more improvement [7]. These
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algorithms switch between exploration and exploitation phases until the ter-
mination criteria are met. In CBCC3 [12], the algorithm only performs the
exploration phase with a probability that can be tuned by a user defined
parameter pt. In contrast with the earlier versions, CBCC3 does not accu-
mulate the contributions from the very beginning to the end. Instead, it only
takes the most recent improvement as the contribution indicator.

The CC with Adaptive Optimizer Iterations (CCAOI) is another contribution-
aware technique [10]. It projects contributions to a value between zero and
one using a formula inspired by the Gini’s index of inequality. At the start of
each cycle, CCAOI spends a fraction of the computational budget to optimize
the subproblems and record their performances. At the end of each cycle, it
updates the budget allocation for the next cycle and repeats the procedure.
CCAOI’s budget allocator normalizes the recent fitness improvements based
on the calculated Gini’s index and then assigns the resources proportional to
the normalized contributions. The CCAOI has not been compared with other
contribution-aware techniques on any well-known benchmark suite. There-
fore, it remains unclear to what extent CCAOI improves upon CBCCs.

The Multilevel Optimization Framework Based on Variables Effect (MOF-
BVE) is one of the most recent attempts to address the imbalance prob-
lem [8]. The MOFBVE adopts a sensitivity analysis tool to measure the
contributions of components at the early stage of the optimization. It ranks
the components and groups them automatically based on their ranks using
a conventional K-Means clustering algorithm. Then, the components of the
groups with the highest average scores are selected to receive more computa-
tional resources than the others. In contrast with the other computational-
aware techniques, MOFBVE does not update its budget plan during the
optimization process.

The New CC Framework (CCFR) is one of the most recent attempts to
tackle the imbalance problem [13]. Similar to CBCCs, the CCFR consists
of exploration and exploitation phases, although in the exploration phase it
uses a slightly different formula for contribution estimation. In exploitation
phase, it selects the most rewarding component to optimize for one more
epoch. When the estimated contributions of all components converge to the
same level, CCFR moves to exploration phase. It also adopts a stagnation
detection tool that sets the contribution of a component to zero when it
detects that component is stagnated.

Among the contribution-aware techniques, CBCCs are the simplest mod-
els in terms of the number of extra parameters and computational complexity.
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For example, CBCC1 has no additional parameter and CBCC2 and CBCC3
have only one tuning parameter. These algorithms are easy to understand,
implement and tune [12]. MOFBVE, on the other hand, is the most complex
algorithm since it comprises a few modules (e.g., sensitivity analysis algo-
rithms and clustering method). These elements force computational over-
head to the algorithm and also make it difficult to track the contribution of
each element to the overall performance of the algorithm.

The advantage of modular techniques like MOFBVE over the others is
that their modules are well-known algorithms which are studied in many dif-
ferent scenarios [8]. Therefore, we already know the strengths and weaknesses
of each part. However, CBCCs and CCAIO, are more ad hoc techniques and
not designed based on sound theories. Indeed, they are working tools but
there exist no theoretical proof or extensive experimental studies to support
the proposed heuristics. An ideal framework is an algorithm that is as sim-
ple as CBCCs while at the same time it is built based on a more established
theory such as bandit-based credit assignment schema. We elaborate these
concepts and related techniques in the next section.

3. Bandit-Based Cooperative Coevolution

In this paper, we model the computational budget allocation of the CC
framework as a dynamic credit assignment problem. In a typical credit as-
signment problem, two or more actions with unequal benefits are competing
against each other. The objective of the solver is to find a sequence of actions
that maximizes the accumulated rewards in a given time horizon.

A large number of credit assignment problems have been addressed by
Multi-Armed Bandit (MAB) techniques [26]. A heuristic MAB solver sam-
ples the reward distributions by exploring the action space to estimate the
expected long-term profit from execution of each action. At the same time,
the solver should exploit the knowledge and fire the most rewarding action as
much as possible to achieve the maximum accumulated reward. Therefore,
maintaining a balance between action exploration (i.e., examining different
actions) and exploitation (i.e., taking the best action repeatedly) is abso-
lutely vital. Preserving this balance is especially critical in non-stationary
problems where the distributions of the rewards change over time [27, 28, 29].

MAB techniques have been extensively used in the EA domain for adap-
tive operator selection [27, 30, 31], strategy selection in differential evolu-
tion [31, 32], and component size adaptation in the CC framework [5]. In
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Algorithm 2: BBCC(f,D,N)
1: t← 0 ⊲ Epoch counter
2: X← initiate(N,D) ⊲ Initialization
3: F[:, t]← evaluate(f,X) ⊲ Evaluation
4: v← initContextVector(X,F) ⊲ Initial Context Vector
5: D ← initComponentPool(f) ⊲ Equation (3)
6: K ← size(D) ⊲ Number of components
7: µ[:, t]← initContribution(K,∞) ⊲ Initial contribution
8: repeat
9: t← t+ 1 ⊲ Increase epoch counter
10: k ← componentSelector(µ) ⊲ Equation (20)
11: X[:,D[k]]← optimize(f,X[:,D[k]],v) ⊲ One epoch optimization
12: F[:, t]← evaluate(f,X) ⊲ Re-evaluate
13: v← updateContextVector(X,F,v) ⊲ Update Context Vector
14: δ[k, t]← improvementMeasure(F) ⊲ Equation (5)
15: µ[k, t]← contributionEstimator(δ) ⊲ Equation (9)
16: {D} ← updateGrouping(f,D) ⊲ Equation (4)
17: until termination() = True ⊲ Termination
18: return X[argmin(F[:, t]), :] ⊲ Return final solution

all of these instances, four essential building blocks are provided: the ac-
tion set or the collection of all available options (e.g., EA operators), reward
function which measures the immediate benefit of taking a particular action,
credit function which translates the immediate rewards to long-term utility
of taking an action, and strategy which selects the next actions based on
their estimated credits. In what follows, we explain how the resource allo-
cation problem in CC can be formulated as an MAB problem, and how this
formulation is implemented in our Bandit-Based CC (BBCC) framework.

3.1. The BBCC Framework

Analogous to MAB agents, the BBCC framework consists of four funda-
mental building blocks: the component pool or the set of all subproblems,
improvement measure which reflects the immediate fluctuations in the ob-
jective value after optimizing a particular component, contribution estimator
which predicts the contribution of optimizing a component to improving the
quality of final solution, and component selector which selects the next com-
ponent to be optimized based on the estimated contributions.

A simplified pseudocode of the BBCC framework is presented in Algo-
rithm 2. As lines 1-3 state, BBCC starts with initializing the population
and building the context vector. Then, the component pool D is formed
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Initialization

Create initial population and the Context Vector
Form component pool Eq. (3)
Set initial contributions to a large number 

Component Selection

Select the next component to be optimized Eq. (20)
Optimize the selected component for one epoch
Re-evaluate the solutions
Update the Context Vector

No

YesIs the termination criterion met?
Termination

Concatenate the best sub-solutions
Return the final solution

Improvement Measure

Measure the improvement after the updates Eq. (5)

Contribution Estimator

Calculate the estimation of the contributions Eq. (9)

Component Pool Update

Update the Component Pool Eq. (4)

Yes

Is a dynamic grouping adopted?No

Figure 1: The flowchart of the BBCC framework.

12



(see Subsection 3.2). The objective of BBCC is to select and optimize one
of the K components at a time such that the overall fitness improvement is
maximized.

In line 6, BBCC initiates the matrix µ which stores the estimated con-
tributions. When there is no prior knowledge about the contributions of the
components, it is recommended to initialize µ with an effectively large value
to ensure all components are examined at least once.

The main loop at lines 8-17 starts by selecting a subproblem using a
component selection algorithm (see Subsection 3.5). The selected component
is then optimized using an arbitrary optimizer for one epoch or δt iterations.
The main challenge here is to maintain a good balance between exploring
all components to improve/update the estimations and optimizing the most
contributing component as many times as possible.

In line 14, BBCC assesses the effectiveness of the optimization of the
recently selected component using an improvement measure (see Subsec-
tion 3.3). Next, BBCC updates the contribution estimations based on the
recent measured improvement (i.e., δ) and other factors, e.g., the number of
times the component is optimized so far or the magnitude of the remaining
budget (see Subsection 3.4). This information is recorded to be used by the
component selector at the next round.

All steps inside the loop are repeated until a termination criterion is
met (line 17). At this point, the solution with the highest fitness value (or
minimum objective value in minimization tasks) is returned as the ultimate
solution (line 18). To preserve simplicity, the control parameters e.g., δf in
Equation (8) or ǫ in Equation (21) are excluded. In the following we discuss
the BBCC building blocks in more details.

3.2. Component Pool

The component pool is conceptually similar to the action set in the MAB
taxonomy. Assume a D-dimensional optimization problem is decomposed
into K distinct components, either manually or automatically:

D = g(f) (3)

where the component pool D = {D1, . . . ,DK} is essentially the superset of
all subproblems of f that formed by the decomposition technique g. Here,
Dk indicates the indices of the decision variables that form the kth compo-
nent. Notably, any decomposition technique can be acquired in Equation (3)
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to initiate the component pool. For example, if a dynamic decomposition
technique is adopted, the component pool should be updated every few iter-
ations:

D(t) = g(f,D(t−1)) (4)

3.3. Improvement Measure

In the absence of a priori knowledge about component contributions,
BBCC needs a tool to measure the goodness of each action. These metrics
are related to the concept of immediate or practical reward in the MAB
literature. In our particular problem, the goodness of optimizing a compo-
nent depends on its contribution to improving the objective value of the final
solution. Therefore, we define the improvement measure as a function of
the fitness fluctuations when a component is being optimized. In the most
general form, we define

δ
(t)
k = ∆(F(t)), (5)

where F(t) is an N×t matrix that contains the complete history of the fitness
values of all candidate solutions till epoch t. Note that in Equation (5), we
implicitly assume that kth component is optimized at epoch t−1. Since only
one component is optimized at a time, the δ

(t)
i for all i 6= k is zero.

Usually, we do not need to record all the fitness values during the opti-
mization to measure the improvement of a component. For example, we can
assess the gained improvement of minimizing the kth component at epoch
t only based on the fitness value of the best solutions before and after the
optimization of that component:

δ
(t)
k =

∗

f (t−1) −
∗

f (t), (6)

where
∗

f (t−1) and
∗

f (t) are the objective values of the best solution before and
after optimizing the kth component for one epoch. In maximization tasks,
the order of the terms in the above definition should be reversed. Note that
each single epoch consists of one or more optimization iterations (i.e., EA
generations). We discuss the role of epoch length δt in Subsection 3.6.3.

Generally speaking, the magnitudes of fitness values vary significantly as
optimization progresses. For example, some δk may take larger values at
the early epochs and smaller values towards the end. In such cases, using
the simple difference may result in over-emphasizing the earlier trials rather
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than the recent observed improvements. To lessen this effect, one can simply
normalize the fitness improvement as:

δ
(t)
k =

∗

f (t−1) −
∗

f (t)

∗

f (t−1) + ε
, (7)

where ε is a small constant that is added to avoid division by zero. Assuming
∗

f (t) is always positive, Equation (7) guarantees that ∀t ∀k, 0 ≤ δk(t) < 1.
The quantization is another approach to deal with the significant varia-

tions in objective values during optimization. For example, it is possible to
binarize the fitness improvement as:

δ
(t)
k =

{

1 if
∗

f (t−1) −
∗

f (t) > δf

0 otherwise
, (8)

where δf is a tuning parameter that can take absolute (e.g., 10−8) or relative

(e.g.,
∗

f (t)/100) values to control the sensitivity of the measurement on the
marginal improvements.

The generality of BBCC framework allows us to adopt any of the afore-
mentioned improvement measures, as well as many others. Practitioners can
choose the most effective form of improvement measure according to prop-
erties such as the sensitivity to small improvements (e.g., Equation (6)) or
robustness in noisy environments (e.g., Equation (8)).

3.4. Contribution Estimator

The contribution estimation in the BBCC framework is similar to the
utility or value function in Reinforcement Learning [33]. The objective of this
module is to translate the measured improvements (as immediate rewards)
to estimated contributions (as long-term utility). Therefore, the general form
of the contribution estimator is:

µ
(t)
k = M(δ(t)), (9)

where δ(t) denotes the measured improvements of all components till epoch
t.

In general, this task can be done in three ways: contribution value esti-
mation, contribution rank estimation, or a combination of both. The first
approach generalizes the past measured improvements to forecast the contri-
bution values in the next optimization epochs. These projected values will
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be used to prioritize the optimization of each component. In contrast to
the value estimation, the rank-based approach directly sorts the components
according to their past performance without any explicit calculation of con-
tribution magnitudes. The hybrid techniques, as their name suggests, are
combinations of the other two categories. These approaches are discussed
below.

3.4.1. Contribution Value Estimation

In a stationary situation, the expected contribution of the kth component
can be approximated as the mean of the past fitness improvements:

µ
(t)
k =

1

nk

t
∑

i=1

δ
(i)
k =

1

|λ
(t)
k |

∑

i∈λ
(t)
k

δ
(i)
k , (10)

where λ
(t)
k denotes a set of length nk that contains all epoch indices that the

kth component has been optimized until epoch t. As mentioned earlier, for
all the other epochs (i.e., i /∈ λ

(t)
k ) the improvements are assumed to be zero.

Based on Central Limit Theorem, as t tends toward infinity, µ
(t)
k approaches

its true value if all δk are drown from a fixed distribution.
Since the distribution of δk may change multiple times during optimiza-

tion, the stationary assumption in Equation (10) becomes invalid. For exam-
ple, it is very likely that an optimizer will be trapped into a local optimum
or stagnate during the search process. In any of these cases, the magnitude
of the recent δk drops dramatically. Therefore, Equation (10) becomes inef-
ficient as it takes a long time to adapt to the dynamics, especially for large
nk.

This issue can be addressed in two ways: passive or active. In the passive
approach, we assume that the improvement distributions are stationary at
least in a bounded time window. By holding this assumption, we can substi-

tute λ
(t)
k by

L

λ
(t)
k = 〈λ1, . . . , λL〉 which only contains the epoch indices of the

last L non-zero improvements of kth component prior to epoch t. Therefore:

µ
(t)
k =

1

L

L
∑

i=1

δ
(λi)
k . (11)

The window length L in Equation (11) can be kept constant or tuned adap-
tively. To have a smoother sliding window, we could adopt a weighted aver-
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aging method:

µ
(t)
k =

1

L

L
∑

i=1

Wi · δ
(λi)
k , (12)

where ∀i,Wi ∈ [0, 1] and
∑L

i=1 Wi = 1. Usually the larger coefficients are
used for the most recent observations. A similar approach is to adopt a
forgetting factor to decrease the memory requirements:

µ
(t)
k = α · δ

(t)
k + (1− α) · µ

(t−1)
k , (13)

where α ∈ (0, 1] controls the length of the memory horizon such that larger
values for α will result in a shorter memory.

In the active approach, we assume that the improvement distributions are
stationary unless we find an evidence that proves otherwise. In other words,
an active estimator calculates contributions based on all observed improve-
ments, while at the same time compares the current statistics of the improve-
ment with the previous records. Once a significant change has been detected,
we clear all records and build the model from scratch. This approach is very
helpful when a dynamic decomposition algorithm is adopted [34]. In the EA
literature, some statistical change detection tests such as Page-Hinkley have
been used in similar situations [31].

3.4.2. Rank-Based Estimations

There are multiple ways to rank components based on their previous
improvements. Let

L
σ
(t)
k denote the sum of the last L improvements gained

by optimizing the kth component:

L
σ
(t)
k =

L
∑

i=1

δ
(λi)
k , (14)

and γ
(t)
k is its position after we sort all components based on the summations

in a descending order. Now, the score of kth component can be defined as:

µ
(t)
k =

αγ
(t)
k

K
∑

i=1

αγ
(t)
i

, (15)

where α ∈ (0, 1) is a decay factor. Equation (15) resembles the famous
normalized exponential function which have been widely used in statistical
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analysis and machine learning representing categorical distributions. Since
the calculated scores µk are in the range (0, 1) that add up to 1, they can be
interpreted as the probabilities of contributing rather than the contribution
values.

Another possible rank-based definition that can be adopted is the well-
known sum-of-ranks that works as follows [27, 31]. Let the last L improve-
ments of all components be sorted in descending order and

L
γ(t) = 〈γ1, . . . , γL〉

contains all the ranks since t−L till t. Then, the sum-of-ranks score is defined
as:

µ
(t)
k =

L
∑

i=1

wk,i · α
γi

K
∑

j=1

L
∑

i=1

wj,i · αγi

, (16)

where wk,i =

{

L− γi if γi is associated with kth component

0 otherwise
(17)

Equation (17), guarantees that components with better ranks (or smaller
γk) are multiplied by larger coefficients. Note that there is a pronounced
difference between Equation (15) and (16): In the former equation we only
consider the most recent ranking of the components, whereas in the latter a
weighted sum of the last L ranks is used.

3.4.3. Hybrid Estimators

By combining the aforementioned approaches one can have the best of
two worlds. The main disadvantage of contribution value estimation is that
it can overestimate the contribution of some components if the improvement
range is too wide. On the other hand, a very small difference in recorded
improvement of two or more components has the potential to change their
orders and dramatically affect the performance of rank-based techniques.
Therefore, incorporating the magnitude of the observed improvements into
the rank-based estimator can help us to differentiate components while min-
imizing the risk of over/underestimations.

The simplest hybridization is to define a function based on the improve-
ment values and plug it into the definition of a rank-based estimator. For
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example, one can modify Equation (15) to:

µ
(t)
k =

L
σ
(t)
k · α

γ
(t)
k

K
∑

i=1

L
σ
(t)
i · α

γ
(t)
i

, (18)

where
L
σ
(t)
k is the sum of the last L improvements of kth component (defined

in Equation (14)) and γ
(t)
k is its rank among all components (used in Equa-

tion (15)). It is worth noting that any of the aforementioned contribution
estimation methods can be adopted in BBCC. In addition, it is possible to
make a combination of them to maintain better accuracy in very noisy or
dynamic situations.

3.5. Component Selector

The main goal of the component selector, which is conceptually close to
strategy in MAB literature, is to select a component to be optimized at the
next epoch based on the estimated contributions. Note that the selection
algorithm should maintain a good balance between exploitation (i.e., allo-
cating more resources to the most contributing components) and exploration
(i.e., trying different components to improve/update the estimations).

Several techniques have been developed in the MAB literature for sus-
taining the exploration-exploitation balance [15, 31, 35]. With no exception,
any of these algorithms can be adopted in BBCC as a component selector.
We can define a stochastic selector (e.g., semi-uniform and probability-based
selectors) as:

p
(t+1)
k = S(µ(t)), (19)

where p
(t+1)
k is the probability of the kth component being selected for the

next epoch and µ(t) denotes the estimated contributions of all components
till epoch t. The deterministic selectors (e.g., interval-based selectors) can
be defined as:

k(t+1) = S(µ(t)), (20)

where k(t+1) denotes the component that is selected to be optimized in the
next epoch. In the following, we briefly review some representative ap-
proaches from each category.
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3.5.1. Semi-uniform Component Selectors

In the exploration phase, semi-uniform techniques uniformly allocate a
portion of the budget to all components regardless of their contributions.
In the exploitation phase, these algorithms spend a part of the remaining
resources to the component with the highest estimated contribution. ǫ-greedy
is a famous example of semi-uniform techniques:

k(t+1) =

{

∗

k if rand(1) ≥ ǫ

⌈rand(1) ·K⌉ otherwise
, (21)

where
∗

k(t) denotes the component with the highest estimated contribution at
epoch t, rand(1) generates a random number in range [0, 1] and ⌈.⌉ denotes
the ceiling function. In Equation (21), the ǫ ∈ (0, 1) can be either constant
or variable. As the above equation states, decreasing ǫ will result in a more
greedy selection. Some of other variants of semi-uniform techniques e.g.,
ǫ-first, GreedyMix and LeastTaken are discussed in [35].

3.5.2. Probability-based Component Selectors

To avoid uniform budget distribution over all non-optimal components,
probability-based strategies map each µ

(t)
k to a different probability of be-

ing selected. These probabilities are usually proportional to the expected
contributions. SoftMax (or Boltzmann Exploration) is a widely-used tech-
nique from this category [5]. In SoftMax, the probability of selecting the kth

component in the next epoch is:

p
(t+1)
k =

e
µ
(t)
k
τ

K
∑

i=1

e
µ
(t)
i
τ

, (22)

where τ is a temperature parameter that controls exploration-exploitation
balance. For τ = 0, Softmax only selects the most contributing component,
while it picks all components uniformly when τ tends towards infinity.

Some probability-based techniques e.g., Probability Matching and Adap-
tive Pursuit algorithms explicitly guarantee the minimum and maximum like-
lihoods that a component can be selected [36]. Other forms of these tech-
niques, e.g., Adaptive Probability Matching, Power Probability Matching,
Exp3 and SoftMix are explained in [35, 36].
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3.5.3. Interval-based Component Selectors

These algorithms compute the confidence interval which indicates to what
extent we are confident of the accuracy of estimated contributions. The well-
known Upper Confidence Bound (UCB) algorithms [30] follow the rule of
‘optimism in the face of uncertainty’ [31]. This means the components that
are less explored so far have a higher chance of being selected even if their
expected contributions are not very high. For example, UCB1 selects the
next component according to the following rule:

k(t+1) = argmax
1≤i≤K

(

µ
(t)
i + α ·

√

2 ln(t)

n
(t)
i

)

, (23)

where α is a scaling factor that controls the trade-off between exploration
and exploitation. As the equation suggests, by decreasing α the algorithm
greedily selects the most contributive component more often than the less-
explored components that might have some undiscovered potentials. POKER
(Price Of Knowledge and Estimated Reward) is another example of interval-
based strategies which explicitly takes the horizon (i.e., the maximum number
of objective function calls) into account. POKER and other variants of UCB
are described in [15, 35].

There exist extensive literature about the advantages and disadvantages
of these techniques in different applications [15, 35, 36]. However, there is
no single study that compares them in the context of computational budget
assignment when dealing with imbalanced problems.

3.6. Notes and Discussions

Before proceeding to the empirical studies, there are a few special topics
worth highlighting.

3.6.1. BBCC and Other Contribution-Aware Techniques

As mentioned earlier, BBCC is a general framework rather than a single
specific technique. This means, one can easily create special instances of the
BBCC framework by adopting different techniques for each of its modules.
Indeed, it can be shown that all available contribution-aware CCs are special
cases of the BBCC framework.

For example, the normalized improvement in Equation (7) is used as the
improvement measure in all variants of CBCC. Conversely, CCFR uses the
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absolute difference between the fitness values of the best solutions before and
after epoch t as the improvement measure (i.e., |

∗

f (t−1) −
∗

f (t)|).
The contribution estimator of CBCC1 and CBCC2 is simply the average

of improvement over all epochs as presented in Equation (10). CBCC3,
however, only considers the last recorded improvement which is a special
case of Equation (11) with L = 1. In CCFR, contributions are calculated
according to Equation (13) where α = 0.5. It also uses a stagnation detection
technique to reset the estimations if it finds a stagnant subpopulation. In
fact, this is an active approach to deal with the dynamics in the contributions
that was discussed in Subsection 3.4.

CCFR and all variants of CBCC adopt the same semi-uniform compo-
nent selection strategy. In their exploitation phase, they always select the
most contributing component: k(t+1) = argmaxµ

(t)
i . In contrast, all com-

ponents are optimized in a round-robin fashion in the exploration phase:
k(t+1) = k(t) + 1. The main difference between these algorithms is the rules
they determine to switch between exploration and exploitation phases (see
Subsection 2.3).

The so-called CCEA-MAB can be identified as another instance of BBCC
although the notion of ‘species’ as defined in [34] is different from what we
refer to as separable components or subfunctions. In CCEA-MAB, a pool
of species is randomly formed from the current population and underper-
forming species may be replaced by a fresh randomly generated species (note
that the species are not independent by design). The Equation (8) with
δf = 0 is used in CCEA-MAB as the binary improvement measure. It also
adopts a rank-based contribution estimator (namely modified Area-Under-
Curve based on [37]) and an interval-based species selector similar to Equa-
tion (23). In CCEA-MAB the epoch length δt is fixed to 1.

3.6.2. Dynamic Grouping/Decomposition

As clearly stated in Algorithm 2, it is possible to adopt a dynamic de-
composition (e.g., [5]) in the BBCC framework. In this case, BBCC should
update δ and µ matrices whenever the indices of a component (i.e., Dk) have
been changed, a component is removed or new components are created [34].
It is also possible to inherent these values from parent(s) to the child com-
ponent(s) if the new components are created by splitting or merging actions.
Obviously, too frequent changes in the decomposition adversely affect the
learning capability of contribution-aware CCs, including BBCC instances, as
the recorded information becomes inoperative very soon.
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3.6.3. Epoch Length

Although all CC techniques should tune the epoch length (i.e., δt value)
to achieve the maximum performance, this parameter could have more influ-
ence on the contribution-aware CC techniques, including BBCC instances.
Choosing a large value for δt has advantages such as improving the robustness
of the measured improvements in the face of fitness fluctuations as well as
decreasing the overhead costs of component switching. On the other hand,
a too large δt may increase the delay in response to the dynamics of mea-
sured improvements. Since the number of function evaluations is fixed, as the
epoch length increases, the number of epochs must be decreased. This would
decrease the exploration capability of the algorithms. In Subsection 4.3 we
will show that for some implementations of BBCC, there are a range of pa-
rameter settings for which the performance of the algorithm is less affected
by δt.

4. Experiments

This section consists of six parts: Subsection 4.1 provides the details of
the studied techniques and performance metrics. Subsection 4.2 includes six
case studies that deeply investigate the behavior of a BBCC instance called
BBCC1 (as discussed in Subsection 4.1.1) in different scenarios covering 30
large-scale optimization problems in total. This comprehensive set of case
studies help us evaluate the performance of BBCC1 in dealing with a wide
range of imbalance sources and levels. Then, we perform a brief sensitivity
analysis on BBCC1 generic parameters: population size and epoch length in
Subsection 4.3. A set of 16 different settings has been examined to compare
BBCC1 with a CC counterpart on 30 large-scale minimization functions.
The objective of this part is to measure the robustness of the framework as
the parameter values change. Next, we conduct a comparison study between
BBCC1 and two variants of round-robin CCs on partially separable problems
from CEC’13 LSGO benchmark functions collection (see Subsection 4.4).
Then, we implement a set of comparative studies between BBCC1 and other
contribution-aware CCs in Subsection 4.5. The primary objective here is to
study the relative performance of the proposed framework in comparison with
the available budget allocation techniques. Finally, we compare BBCC1 and
the winners of the past competitions on large-scale optimization problems
to verify that even a basic implementation of the framework can provide
competitive outcome (see Subsection 4.6).
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We use the well-known CEC’13 LSGO benchmark functions to compare
BBCC with other available techniques. This test suite is the most recent and
widely used large-scale optimization benchmark in this domain. However,
only 8 of 15 functions are partially separable with some degrees of imbal-
anced contributions. In addition, the non-uniform contributions introduced
in these 8 functions are set arbitrarily which does not cover all common
cases. Therefore, we expand this set to 30 large-scale partially separable
imbalanced functions to carry out the case studies and sensitivity analysis.
Since these problems were not available when the previous algorithms were
proposed, it is not possible to compare them against the other researchers’
results. Instead, we use the widely studied CEC’13 LSGO benchmarks to
compare BBCC instances with other methods.

4.1. Experiments Setup

In all experiments we chose to study the simplest possible implementation
of BBCC (see Subsection 4.1.1). This helps us to avoid unnecessary compli-
cations and minimize the effects of the factors that are out of the scope of this
study. This paper shows that even a simple implementation of BBCC can
provide very competitive results. Thus, the main objective of the following
experimental studies is to provide a proof of concept and show the potentials
of the framework.

4.1.1. BBCC1: The Simplest BBCC Implementation

Algorithm 3 shows the pseudocode of BBCC1. A normalized fitness im-
provement in Equation (7) with epoch length δt = 50 is used to measure
the improvements after optimizing each component. As in Equation (10),
the basic average of all improvements is adopted for contribution estimation.
We adopt the simplest component selector here, ǫ-greedy in Equations (21).
The ǫ value is set to 0.1 which means the most rewarding component will be
selected with at least 90% chance. The remaining 10% of the budget will be
spent uniformly on all components regardless of their estimated contribution.

BBCC1 adopts the ideal grouping (e.g., [7]) as the decomposition algo-
rithm and DE/rand/1/bin as the optimizer. The DE parameters are set
based on the advised values in [38]. Therefore, the population size N = 50,
weighting factor F = 0.5, and crossover rate CR = 0.9 are used for the
experiments.
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Algorithm 3: BBCC1(f,D,N, l,u, δt)
1: t← 0 ⊲ Epoch counter
2: X← rand(N,D) ◦ (u− l) + l ⊲ Initialization
3: F[:, t]← evaluate(f,X) ⊲ Evaluation

4:
∗

it ← argmin(F[:, t]) ⊲ Find best solution

5:
∗

ft ← F[
∗

i, t] ⊲ Best objective value

6: v← X[
∗

i, :] ⊲ Initial Context Vector
7: D ← idealGrouping(f) ⊲ Decomposition Eq. (3)
8: K ← size(D) ⊲ Number of components
9: n[1:K]← 0
10: µ[1:K, t]←∞ ⊲ Initial contribution
11: repeat
12: t← t+ 1 ⊲ Increase epoch counter
13: if rand(1) ≥ ǫ then
14: k ← argmax(µ[:, t]) ⊲ Exploitation Eq. (21)
15: else
16: k ← ceil(rand(1) ·K) ⊲ Exploration Eq. (21)
17: end if
18: n[k]← n[k] + 1
19: X[:,D[k]]← DE(f,X[:,D[k]],v, δt) ⊲ One epoch DE
20: F[:, t]← f(X) ⊲ Re-evaluate

21:
∗

it ← argmin(F[:, t]) ⊲ Find best solution

22: v[D[k]]← X[
∗

i,D[k]] ⊲ Update Context Vector

23:
∗

ft−1 ←
∗

ft ⊲ Old best objective value

24:
∗

ft ← F[
∗

i, t] ⊲ New best objective value

25: δ[k, t]← (
∗

ft−1 −
∗

ft)/(
∗

ft−1 + 10−8) ⊲ Equation (7)
26: µ[k, t]← sum(δ[k, :])/n[k] ⊲ Equation (10)
27: until t ·N · δt ≥ 3000 ·D ⊲ Termination
28: return X[argmin(F[:, t]), :] ⊲ Return final solution

4.1.2. Performance Metrics

In this study, we consider two aspects when analyzing the performance of
the algorithms: components selection distribution and final solution quality.
These numbers are recorded for 51 independent runs of each algorithm where
the maximum number of objective function evaluation for each run is fixed
to 3, 000, 000.

For the case studies, we analyze the selection distributions to study the
performance of BBCC1 in identifying the most contributing component and
effective budget allocation. These distributions are calculated based on the
number of times each component is selected during the optimization. These

25



statistics, which are presented using a variety of diagrams, indicate how
precisely BBCC1 can find the most contributing component, and how efficient
the exploration-exploitation balance is maintained.

We assess the final solution quality in terms of the objective value of
the best solution found in each single run. We use this metric especially for
sensitivity analysis and comparative studies. In addition to the fitness mean
and standard deviation of the final solutions, nWins scores, Win-Tie-Loss
values and Friedman rankings are also reported in the comparison tables [39].

Each nWins value indicates the number of times BBCC1 significantly
improves other algorithms, subtracting the number of times it performs sig-
nificantly worse than its competitors. Therefore, nWins scores take values in
the range {−Na,+Na} when BBCC1 is compared with Na other algorithms.
The values in each Win-Tie-Loss triple respectively indicates the number of
times BBCC1 performs significantly better than, statistically similar to, or
significantly worse than a particular competitor. For both metrics, the non-
parametric Mann–Whitney U test (a.k.a. Wilcoxon rank-sum test) with 95%
confidence interval is adopted as the significance test. Any comparison with
a p-value greater than or equal to 0.05 is considered as statistically similar
performances. In cases where the detailed results of an algorithm were not
available, we substitute Mann–Whitney U test with the standard two-sided
t-test. Although we cannot guarantee that the result distributions satisfy
the t-test assumptions, at least it allows us to perform some significant test
in the absence of detailed results.

For further statistical analyses, we also perform Friedman and Quade
significance tests [39]. For each comparison study, we provide Friedman
ranks and orders, as well as Friedman and Quade p-values. When the overall
p-values are smaller than 0.05, which signals a significant difference between
the compared algorithms, we perform post-hoc tests to find the pairs that are
responsible for that large difference. In this case, we adjust p-values using the
famous Holm’s and Bonferroni’s correction techniques to control family-wise
error rate [39].

4.2. Case Studies

In this part, we conduct a series of experiments to study the performance
of BBCC1 component selection mechanism (see Algorithm 3). In particu-
lar, we analyze the effectiveness of component selector in four different sce-
narios: uniform contributions, unequal component coefficients, nonuniform
component sizes, and problems with mixed landscapes (i.e., heterogeneous
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Table 1: Case Study Problems: coefficients (Ck) and components’ sizes (|Dk|). The symbol
k indicates the subproblem index.

Problems Ck |Dk|

f1-f5 1 100, · · · , 100

f6-f10 2k 100, · · · , 100
f11-f15 10k 100, · · · , 100

f16-f20 1 50, 50, 50, 100, 100, 100, 100, 150, 150, 150
f21-f25 1 25, 25, 50, 50, 75, 75, 100, 150, 200, 250

f26-f30 1 100, · · · , 100

Table 2: Case Study Problems: base functions. The fi−j(Dk) indicates the kth subprob-
lems of problems {i, . . . , j}.

Base Problem (Components)

Elliptic f1, f6, f11, f16, f21, f26−29(D3,D4)
Rastrigin f2, f7, f12, f17, f22, f26−28(D5,D6), f30(D3,D4)
Ackley f3, f8, f13, f18, f23, f26−27(D7,D8), f29−30(D5,D6)
Schwefel 1.2 f4, f9, f14, f19, f24, f26(D9,D10), f28−30(D7,D8)
Rosenbrock f5, f10, f15, f20, f25, f27−30(D9,D10)
Sphere f26−30(D1,D2)

components). We deliberately choose these scenarios to investigate the effect
of each imbalance source in a controlled environment.

For these case studies, we designed a set of 1000-dimensional problems
each of which has exactly 10 partially separable components. We fixed the
dimensionality and number of components to minimize the effect of these
factors on the outcome of the studies.

The chosen problems fall into six categories each containing five problems.
All problems within a category have the same source and level of imbalance,
while their base functions differ. Having five different base functions in each
category helps us to reduce the chance of biased conclusion towards a specific
landscape.

Since the order of the base functions is fixed, the problems which their
indices modulo 5 are equal have the same base function. This helps us
to study the impact of an imbalance source and level on each single base
function. For example, by comparing f5, f10 and f15, we can investigate the
effects of three levels of unequal coefficients on Rosenbrock’s problems.

Table 1 provides the subproblem sizes and coefficients. The symbol k in
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this table indicates component indices. As mentioned in the table, f1–f5 are
fully balanced problems, f6–f15 have unequal coefficients, and f16–f25 consist
of components with nonuniform sizes. The problems in the last category
(f26–f30) consist of components with equal sizes and coefficients, but different
landscapes.

Table 2 summarizes the base functions, where the numbers in the paren-
thesis indicate component indices. For f1–f25 the component indices are
omitted as all components of each of them have the same base function.
Note that all the base functions are borrowed from CEC’13 LSGO bench-
mark suite, and shifted and rotated using the same algorithms. Further-
more, special transformations such as ill-conditioning, symmetry breaking,
and adding smooth local irregularities are employed based on the sugges-
tions in [40]. Therefore, the interested readers can repeat the experiments
by following the available guidelines. More details about the problems are
provided in the following subsections.

4.2.1. The Uniform Contributions

In the first part of the case studies, we investigate the behavior of BBCC1
on balanced problems. For this case, we use f1–f5 where each of them has
10 components with equal sizes, coefficients and base functions. Figure 2
presents the performance of BBCC1 on these problems.

The x-axis of Figure 2 represents the components indices and the y-axis
shows the number of epochs each component is selected. To produce a concise
graphic, the statistics of similar components are aggregated. Therefore, the
left-most box summarizes the average number of epochs the first components
of f1–f5 are selected. The dashed line in the figure indicates the performance
of a round-robin CC.

As Figure 2 shows, all components of balanced problems are selected
equally, regardless of their base functions. This confirms that in the case of
uniform contributions, BBCC1 allocates the resources uniformly (the same
as round-robin CCs). Therefore, applying BBCC framework on balanced
problems should not degrade the performance of CC algorithms.

4.2.2. The Unequal Coefficients

In the second set of the case studies, we investigate the effect of unequal
component coefficients using the first three categories of the problems. In
contrast to the first group, the second and third categories consist of prob-
lems having components with nonuniform coefficients. The only difference
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Figure 2: The performance of BBCC1 on balanced problems.

between these two categories is the level of imbalance (i.e., the variance in the
coefficients’ magnitude), in a sense that the imbalance in f11–f15 are more
severe than f6–f10 (see Table 1).

Figure 3 presents the performance of BBCC1 on f6–f15. The figure con-
sists of two facets, each of which belongs to one of the categories. In contrast
to the balanced functions in Figure 2, we observe a marked increase in selec-
tion rates as the indices increase in Figure 3. Recall that the magnitude of
a coefficient is an exponential function of the component index (i.e., 2k for
f6–f10 and 10k for f11–f15). Therefore, as we move towards the right side of
a facet, the contributions increase.

The strong correlation between the coefficients and average number of
selection approves that BBCC1 correctly identified the most contributing
component among the others. A comparison between the BBCC1 resource
allocation and traditional round-robin component selector (i.e., the dashed
line) reveals that the adaptive component selectors can advance the CCs out-
come by allocating a larger portion of the resources to the most contributing
components.

Another important observation from comparing categories with various
levels of coefficient imbalance is the differences in the selection variances
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Figure 3: The effect of imbalance in component coefficients on the number of epochs a
component is selected by BBCC for optimization.

(height of a box plot is an indication of the variance in the correspond-
ing population). Figure 2 shows that the variance in the selection among
the first group of problems (f1-f5) is negligible and remains constant for all
components. For imbalanced problems in Figure 3, however, the variance
rapidly increases as the coefficients grow. Particularly for the severely imbal-
anced problems (f11–f15), the variances for the first five components (with
the smallest coefficients) are almost zero. Nevertheless, this number for the
last component (with the largest coefficient) is extremely large. To inves-
tigate whether the differences between search landscapes caused the large
variances in the Figure 3, we compare two groups of problems with different
base functions.

Figure 4 compares the behavior of BBCC1 on Rastrigin and Schwefel func-
tions in three scenarios. As the plot shows, regardless of the base function,
the selection ratio is constant for balanced problems (the solid lines for f2
and f4), and increasing for imbalanced problems (the dashed lines for f7, f9,
f12 and f14). However, the slope of the growth largely depends on the search
landscape in the case of imbalanced problems. For example, the 10th compo-
nent of f12 is selected almost 1000 times more often than the last component
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Figure 4: The effect of search landscape on the behavior of component selector when
coefficients are imbalanced.

of f14 which has the same coefficient and size, but different base function.
This observation suggests that base functions may affect the contribution of
components. We will explore this topic further in Subsection 4.2.4.

4.2.3. The Unequal Dimensionality

In this part of the case studies, we investigate the impact of unequal
component sizes using the fourth and fifth categories of problems (f16–f25).
As presented in Table 1, all components of a problem in these categories have
the same coefficients and base functions, while their sizes may vary. To create
two problem sets with different imbalance levels, the ranges of subproblem
sizes are deliberately chosen to be different in the fourth and fifth categories.
Particularly, for f16–f20 the component sizes are limited to 50, 150 and 200,
while for f20–f25 they vary from 25 to 250 (see Table 1).

Note that the nonuniform coefficients (studied in Subsection 4.2.2) only
affects the importance (fitness range) of components, while varying compo-
nent sizes also influence the complexity of the subproblems. This means, for
f16–f25 components with larger indices not only have a greater impact on the
overall fitness values, but also tend to demand more objective function calls
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Figure 5: The effect of moderate imbalance in component sizes on the number of epochs
a component is selected by BBCC for optimization.

to be solved. Therefore, if a particular optimizer fails to make significant
progress in the optimization of the large-size subproblems, the component
selector may switch to components with more manageable sizes.

Figures 5 and 6 illustrate the average number of times that components
with the same size are selected. As a general trend, components with higher
dimensionality are selected more frequently regardless of the level of imbal-
ance. This pattern is expected from contribution-aware CCs as components
with a larger number of decision variables tend to have a stronger impact on
the overall fitness than the other components.

The only exceptions in Figures 5 and 6 are Ackley’s functions (f18 and
f23) which the smallest subproblems are selected the most. This behavior
does not challenge the importance of dimensionality, but instead, it suggests
that the basic DE/rand/1/bin is not powerful enough to improve very large
Ackley’s subproblems with the given budget. In these cases, the fitness im-
provements gained from optimizing smaller components is relatively larger
than searching high-dimensional search spaces. As a result, BBCC1 selects
the simpler subproblems more often than the higher dimensional components
which our basic optimizer is incapable to improve significantly. This exam-
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Figure 6: The effect of severe imbalance in component sizes on the number of epochs a
component is selected by BBCC for optimization.

ple highlights the effects of optimizer’s power on the components’ relative
contributions. Neglecting this factor may result in investing too much on
optimization of components that are too complex for the adopted optimizer
to obtain any significant improvement.

4.2.4. The Unequal Landscapes

To find out whether BBCC can differentiate between components with
different landscapes, we apply it to the sixth category of problems, i.e., f25–
f30, each of which has a unique combination of five different base functions
(see Table 2). To make the combinations different, for each problem, we
leave out one of the six possible base functions. For example, f26 and f30 do
not include Rosenbrock and Elliptic components, respectively. As shown in
Table 1, all components of f26–f30 have the same coefficient and size (i.e.,
∀k, ck = 1 and |Dk| = 100).

Each pie chart in Figure 7 corresponds to one of the problems and shows
the distribution of selected components. Note that, each function consists
of ten components with five different landscapes. Therefore, each pie has
only five parts. We chose to use pie charts instead of line chart because, as
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Figure 7: Average number of component selection.

opposed to the other problems, there is no meaningful relationship between
the index and contribution of a component.

Figure 7 reveals that BBCC1 chooses components according to their base
functions. For example, when Elliptic components exist in a problem (i.e.,
f26–f29), they are selected more often than any other components such that
at least 60% of the budget is allocated to them. After Elliptic, Rosenbrbrock
and Schwefel subproblems are respectively the second and the third highly
selected components, when they are included in a problem. On the other
hand, Rastrigin, Ackley and Sphere base functions are the least selected
components among the others such that only 2% of the budget is allocated
to each of them.

Another interesting observation from Figure 7 is that both the simplest
(i.e., Sphere) and most difficult (i.e., Ackley’s) base functions, for this par-
ticular optimizer, are among the least selected components. The rationale
for this behavior is that since the Sphere subproblems are easy to solve, they
need very few epochs to reach a point that their contributions become rel-
atively insignificant. In another extreme case, the 100-dimensional Ackley
subproblems are very difficult for our DE/rand/1/bin. In other words, given
the same number of function calls, it is less likely to receive larger improve-
ment over Ackley’s subproblems than the others. In such a case, BBCC1
selects components that bring the largest improvement for each single epoch.
Note that adopting a different subproblem optimizer may change the order of
selection and the portion of computational budget designated to each com-
ponent. However, BBCC should still be able to adapt to the power of the
adopted optimizer and effectively allocate the resources. Due to the limited
space, we postpone further empirical studies on the adaptiveness of BBCC
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Figure 8: Comparing BBCC and CC performance in 16 different parameter settings. The
brighter a tile is, the more likely that BBCC outperforms the CC with the same parameter
values.

to an adopted optimizer to future work.

4.3. Sensitivity Analysis

In the previous part, we studied the sensitivity of BBCC1 to different
types of imbalance, base functions, and imbalance levels. In this part, we
analyze its sensitivity to the values of its parameters. Since BBCC can po-
tentially have numerous instances each having its own set of parameters, a
comprehensive parameter analysis demands a separate study. Furthermore,
a number of parameters are unique to some specific implementations. For
example, ǫ and τ values are only meaningful in ǫ-greedy and Softmax com-
ponent selectors, respectively. As a result, we choose the simplest implemen-
tation of BBCC (i.e., BBCC1) to only study generic parameters that exist in
all variants of this framework. Nonetheless, other implementations of BBCC
may present different degrees of sensitivity to these generic parameters.

Here, we study the population size N ∈ {10, 20, 50, 100} and epoch length
δt ∈ {10, 20, 50, 100} which is the number of iterations each component is
optimized when selected. Both of these parameters directly affect the budget
allocated to a selected component. More precisely, a selected component
consumes N × δt function calls in each epoch. In this study, we compare
BBCC1 and its round-robin counterpart, CC1, using the same parameter
setting on all the problems that we introduced in the case studies. The

35



quality of final solutions obtained by these algorithms is compared using a
one-sided Mann–Whitney U test with 95% confidence level where the H1 is
that the distribution of BBCC results is shifted to the left of the distribution
of the CC outcomes. The resulting p-values are depicted in Figure 8. In this
heatmap, a bright cell (i.e., small p-value) indicates a strong superiority of the
BBCC1 over CC1. The black cells, in contrast, determine both algorithms
perform statistically similar.

The x-axis of the Figure 8 indicates the function indices and the y-axis
shows the δt×N . Therefore, the row at the bottom of the plot belongs to the
epochs with the least allocated budget (only 100 function calls per epoch)
and the row at the top associates with the epochs with the largest portion
of the budget (10, 000 function call per epoch). Since the total function calls
are fixed, the number of epochs decreases as δt or N increase.

An observation from the figure is that the four rows at the bottom have
the most number of dark cells. This suggests that N = 10 is not a good
choice for this particular implementation of BBCC framework. Although
having small population provides more exploration opportunities as the num-
ber of epochs increases, it seems DE/rand/1/bin cannot make any significant
progress with this small population. Perhaps some other optimizers or im-
provement measures can remedy or alleviate this problem.

The cells in the five left-most columns are also dark colored which means
BBCC1 and CC1 perform statistically comparable on f1–f5. This is not
surprising as we already showed in the case studies that BBCC1 allocated
budget uniformly when the problems are balanced (see Section 4.2.1). This
shows that it is safe to use BBCC even if we are not sure whether a given
problem is balanced or not.

For many of the problems with mild dimensional imbalance (especially
f17–f19), BBCC1 demonstrates negligible improvement over CC1. The most
effective parameter settings for this category are δ2 ∈ {50, 100} and N = 20.

The behavior of BBCC1 on Rosenbrock’s and Ackley’s problems is par-
ticularly interesting. In Rosenbrock’s case, the more severe the imbalance
the more likely BBCC1 outperforms CC1 (compare f15 with f10, and f25
with f20). It is also evident that BBCC1 handles the dimensional imbalance
better than the coefficient imbalance in the Rosenbrock’s case (compare f20
and f25 with f10 and f15).

In Ackley’s cases, BBCC1 easily outperforms CC1 on coefficient imbal-
ance (i.e., f8 and f13), however, it is less likely to improve the baseline in di-
mensionally imbalanced problems (i.e., f18 and f23). Once again, it confirms
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that DE/rand/1/bin is incapable of solving large-scale Ackley’s functions.
For the last category of problems that includes mixed landscape compo-

nents, BBCC1 improves CC1 performance in most of the cases as long as
N > 10. Based on Figure 8, we can conclude that the most difficult case
for BBCC1 is f28 followed by f27. These problems consist of all base func-
tions except Ackley’s and Schwefel’s functions, respectively. From Figure 7,
we know that BBCC1 tends to spend most of the resources on Elliptic and
Rastrigin’s subproblems when dealing with f27 and f28

Figure 8 also suggests that the sensitivity to N may differ from one search
landscape to another. For example, the effective range of N is considerably
wider for Ackley’s instances (e.g., f8 and f13) than for Rastrigin’s problems
(e.g., f7 and f12). The vertical blocks of four tiles (where N is fixed but δt
varies) that are visible in several parts of Figure 8 is another indication of
the sensitivity of BBCC1 (or DE) to population size.

There is almost no significant evidence in Figure 8 that suggests δt has
a great influence on the relative performance of BBCC1. Indeed, in most of
the cases, variation in δt has little or no effect on the p-values. In the other
cases, it seems that having large δt when N is also large (e.g., N = 100 and
δt ≥ 50 for f10, f15 and f17–f20) has an adverse effect on BBCC1. Here, the
limited number of epochs can be the reason. Since the maximum number
of objective function calls is fixed, having large values for these parameters
results in a very few number of epochs.

Overall, this sensitivity analysis suggests that the behavior of BBCC1
may be affected by the landscape structure. Regardless of the base func-
tions, the most effective range for N is {20, · · · , 100}, while one should avoid
choosing large values for both parameters at the same time. According to Fig-
ure 8, setting both values to 50 results in a significant improvement (BBCC1
over CC1) in the majority of instances.

4.4. BBCC vs. Round-robin CCs

In this part, we compare BBCC1 with two variants of round-robin CCs:
CC1 and CC2. The main difference between these two CCs is the adopted
EA since we use DE/rand/1/bin and SaNSDE as the subproblem optimizers
in CC1 and CC2, respectively. For the comparisons, we use all partially
separable imbalanced problems from CEC’13 LSGO benchmark set which
are f4-f11. In addition, the effective decomposition for f1–f3 and f12–f15
is unknown and existing decomposition techniques typically return a single
component in which case using a CC framework is irrelevant.
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Table 3: BBCC1 vs. Round-robin CCs on CEC’13 LSGO Imbalanced Benchmarks. The
µ and σ symbols represent mean and STD values, respectively. The best average fitness
values are shown in bold.

function BBCC1 CC1 CC2 nWins

f4
µ 3.27e+08 1.52e+09 1.97e+08

0
σ 1.41e+08 5.56e+08 1.51e+08

f5
µ 1.45e+06 4.20e+06 2.66e+06

2
σ 3.23e+05 2.54e+06 7.12e+05

f6
µ 1.04e+06 1.04e+06 1.06e+06

0
σ 1.47e+05 1.47e+05 1.49e+03

f7
µ 2.14e+05 1.93e+05 5.12e+07

1
σ 1.56e+05 5.04e+04 3.67e+07

f8
µ 6.96e+12 3.02e+14 7.19e+13

2
σ 4.21e+12 1.82e+14 6.07e+13

f9
µ 1.21e+08 5.69e+08 2.85e+08

2
σ 3.42e+07 8.59e+07 6.20e+07

f10
µ 9.21e+07 9.28e+07 9.43e+07

0
σ 1.30e+07 1.31e+07 3.64e+05

f11
µ 5.99e+07 5.68e+08 2.62e+10

2
σ 6.64e+07 1.53e+08 3.10e+10

W-T-L: - 5-3-0 5-2-1

rank: 1.3125 2.3125 2.3750

order: 1 2 3

As Table 3 shows, BBCC1 finds the best solutions in six out of eight
cases. In the Ackley’s instances (i.e., f6 and f10), however, the improvements
are not statistically significant. According to the Win-Tie-Loss (W-T-L)
numbers, BBCC1 significantly outperforms each of the round-robin CCs in
five problems. The Friedman ranks at the bottom of the table confirm that
BBCC1 is the best performer among the compared CC variants.

4.5. BBCC vs. Contribution-aware CCs

In this part we conduct a series of comparison studies between BBCC1
and other contribution-aware CCs such as CBCC [7, 12], MOFBVE [8], and
CCFR [13] variants.

Table 4 compares BBCC1 with CBCC1, CBCC2 and three variants of
CBCC3. The Friedman ranks and orders show that BBCC1 achieves the best
overall results in comparison with CBCCs, and closely followed by CBCC3
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Table 4: BBCC1 vs. CBCCs on CEC’13 LSGO Imbalanced Benchmarks. The µ and σ
symbols represent mean and STD values, respectively. The best average fitness values are
shown in bold.

function BBCC1 CBCC1 CBCC2
CBCC3

nWins

pt = 0 pt = 0.05 pt = 1

f4
µ 3.27e+08 7.71e+07 8.77e+10 2.20e+07 2.97e+07 4.08e+07

-3
σ 1.41e+08 4.05e+07 1.14e+10 8.05e+06 1.56e+07 2.09e+07

f5
µ 1.45e+06 2.28e+06 2.09e+06 2.13e+06 1.99e+06 2.34e+06

5
σ 3.23e+05 3.55e+05 3.52e+05 3.49e+05 3.61e+05 4.70e+05

f6
µ 1.04e+06 1.06e+06 1.06e+06 1.05e+06 1.05e+06 1.06e+06

0
σ 1.47e+05 2.18e+03 1.65e+03 1.07e+04 1.97e+03 2.15e+03

f7
µ 2.14e+05 6.38e+07 8.82e+07 2.09e+07 1.42e+07 4.75e+07

5
σ 1.56e+05 4.01e+07 6.78e+07 3.04e+07 2.18e+07 3.38e+07

f8
µ 6.96e+12 1.38e+13 1.88e+12 1.21e+10 8.23e+09 1.51e+11

-3
σ 4.21e+12 1.14e+13 2.80e+11 2.40e+10 1.03e+10 2.87e+11

f9
µ 1.21e+08 2.32e+08 2.03e+08 1.40e+08 1.56e+08 2.02e+08

5
σ 3.42e+07 4.85e+07 2.45e+07 1.55e+07 3.51e+07 5.09e+07

f10
µ 9.21e+07 9.41e+07 9.41e+07 9.22e+07 9.29e+07 9.40e+07

0
σ 1.30e+07 3.91e+05 2.59e+05 1.10e+06 5.81e+05 4.82e+05

f11
µ 5.99e+07 1.58e+10 1.63e+10 4.74e+08 6.24e+08 1.33e+09

5
σ 6.64e+07 2.26e+10 2.76e+10 2.95e+08 3.47e+08 1.41e+09

W-T-L: - 5-2-1 5-2-1 4-2-2 4-2-2 4-2-2

rank: 2.0625 5.1875 5.0625 2.2500 2.3125 4.1250

order: 1 6 5 2 3 4

when pt ∈ {0, 0.05}. The W-T-L numbers reveal that it significantly im-
proves CBCC1 and CBCC2 in five out of eight problems while each of them
outperforms BBCC1 in only one task. BBCC1 significantly improves CBCC3
variants in half of the cases, whilst performs statistically similar in two prob-
lems and losses in the other two.

The average nWins score of BBCC1 in Table 4 is +35%. These scores
show that BBCC1 significantly outperforms all variants of CBCC in f5, f7,
f9 and f11. It also improves all CBCC variants on Ackley’s instances (i.e.,
f6 and f10), although the improvements are not statistically significant. It
is evident in Table 4 that BBCC1 performance on Elliptic (i.e., f4 and f8)
is lower than CBCC3 variants. Indeed, the fitness values highlighted in
bold reveal that BBCC1 finds the best solutions for all problems except the
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Elliptic instances. Since CBCCs use an adaptive optimizer (i.e., SaNSDE)
rather than simple DE/rand/1/bin, one may conclude that adopting different
optimizers is a contributing factor in the superiority of CBCCs in Elliptic
cases. This hypothesis is supported by the fact that CC2 with SaNSDE also
outperforms CC1 with DE/rand/1/bin in Elliptic problems (see Table 3).
We intend to investigate this hypothesis by adopting a variety of optimizers
on a wider range of problems in our future work.

Table 5: BBCC1 vs. MOFBVEs on CEC’13 LSGO Imbalanced Benchmarks. The µ and
σ symbols represent mean and STD values, respectively. The best average fitness values
are shown in bold.

function BBCC1
MOFBVE

nWins

bi-level 3-level 4-level 5-level

f4
µ 3.27e+08 9.09e+09 9.92e+09 9.13e+09 7.29e+09

4
σ 1.41e+08 2.60e+09 5.01e+09 3.08e+09 3.63e+09

f5
µ 1.45e+06 2.69e+06 2.77e+06 2.80e+06 3.01e+06

4
σ 3.23e+05 5.30e+05 4.19e+05 3.61e+05 5.43e+05

f6
µ 1.04e+06 8.56e+04 9.33e+04 9.25e+04 8.81e+04

-4
σ 1.47e+05 2.41e+04 2.91e+04 2.15e+04 2.59e+04

f7
µ 2.14e+05 5.85e+06 5.82e+06 9.35e+06 6.53e+06

4
σ 1.56e+05 2.18e+06 2.21e+06 1.26e+07 2.80e+06

f8
µ 6.96e+12 2.31e+13 1.81e+13 2.54e+13 2.88e+13

4
σ 4.21e+12 8.86e+12 9.05e+12 1.03e+13 1.15e+13

f9
µ 1.21e+08 2.81e+08 2.65e+08 2.62e+08 1.94e+08

4
σ 3.42e+07 3.09e+07 3.16e+07 2.62e+07 3.30e+07

f10
µ 9.21e+07 3.34e+04 2.09e+04 2.55e+03 1.89e+03

-4
σ 1.30e+07 2.17e+04 2.22e+04 3.31e+02 1.15e+03

f11
µ 5.99e+07 7.64e+08 4.55e+08 4.48e+08 3.83e+09

3
σ 6.64e+07 1.04e+09 3.66e+08 3.97e+08 1.34e+10

W-T-L - 6-0-2 6-0-2 6-0-2 5-1-2

rank: 2.000 3.125 3.250 3.375 3.250

order: 1 2 3 4 3

Table 5 compares the results of BBCC1 with bi-level to 5-level MOF-
BVEs. Putting the special case of Ackley’s functions (i.e., f6 and f10) aside,
BBCC1 significantly outperforms all variants of MOFBVE on all other im-
balanced problems (except f11 for 5-level MOFBVE which there is a tie).
Although the BBCC1’s average nWins score is +46.87%, it shows no im-
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Table 6: BBCC1 vs. CCFRs on CEC’13 LSGO Imbalanced Benchmarks. The µ and σ
symbols represent mean and STD values, respectively. The best average fitness values are
shown in bold.

function BBCC1
CCFR

nWins

IDG2 DG CMA-ES

f4
µ 3.2e+08 9.6e+07 9.1e+10 9.5e+07

-1
σ 1.4e+08 4.0e+07 5.6e+10 4.0e+07

f5
µ 1.4e+06 4.2e+07 3.0e+06 2.8e+06

3
σ 3.2e+05 3.2e+05 5.2e+05 3.1e+05

f6
µ 1.0e+06 4.1e+07 1.1e+06 1.0e+06

1
σ 1.4e+05 1.0e+03 1.6e+03 1.0e+03

f7
µ 2.1e+05 8.2e+08 1.4e+08 2.0e+07

3
σ 1.5e+05 2.9e+07 9.7e+07 2.9e+07

f8
µ 6.eE+12 4.6e+11 1.6e+15 6.6e+10

-1
σ 4.2e+12 9.5e+10 1.0e+15 9.5e+10

f9
µ 1.2e+08 8.1e+09 1.9e+08 1.8e+08

3
σ 3.4e+07 2.8e+07 2.8e+07 2.8e+07

f10
µ 9.2e+07 7.9e+08 9.5e+07 9.4e+07

1
σ 1.3e+07 1.8e+05 3.1e+05 1.8e+05

f11
µ 5.9e+07 1.4e+09 2.8e+10 4.1e+08

3
σ 6.6e+07 3.4e+08 6.0e+10 3.4e+08

W-T-L: - 6-0-2 6-2-0 4-2-2

rank: 1.500 3.375 3.375 1.750

order: 1 3 3 2

provement over MOFBVE variants in the Ackley’s cases. This is not a sur-
prising observation as from Table 3 we recall that the BBCC1 was incapable
of significantly improving the round-robin CCs in these problems.

As the W-T-L summary in Table 5 shows, BBCC1 performs better than
MOFBVEs in the majority of the tasks. Indeed, it significantly improves
each MOFBVE instance in at least six out of eight cases. In addition, the
bold fitness values in the table reveal that among all five algorithms, BBCC1
found the best solutions for five out of eight problems. Finally, the Friedman
ranking identifies BBCC1 as the best algorithm.

Table 6 compares BBCC1 with three variants of CCFR. The main differ-
ences between these algorithms are the adopted grouping and optimizer. As
the nWins scores (with the average of +50%) reveal, BBCC1 outperform all
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variants of CCFR on f5, f7, f9, and f11. However, its relative performance
on Elliptic instances (i.e., f4 and f8) is not promising. In these two cases,
CCFR with CMA-ES optimizer performs the best.

The W-T-L numbers in Table 6 show that BBCC1 significantly improves
CCFR with SaNSDE optimizer in six cases, and CCFR-CMA-ES in half
of the cases. The Friedman statistics ranks BBCC1 as the best performer
closely followed by CCFR-CMA-ES.

Table 7: Overall Significance Tests for BBCC1 vs. Contribution-awar CCs. All p-values
smaller than 0.05 are shown in bold.

test CBCCs MOFBVEs CCFRs

Friedman 1.3e-04 3.92e-01 1.94e-03

Quade 1.8e-05 1.48e-01 7.13e-03

For further statistical analysis, we perform Friedman and Quade signifi-
cant tests. Table 7 provides the obtained p-values. As the results show, both
test show there are significant differences between the performance of CBCCs
and CCFRs when compared with BBCC1. Therefore, we perform pairwise
posthoc test to find the pairs that are responsible for these differences. The
results are summarized in Tables 8 and 9. Note that we do not perform
posthoc tests on MOFBVE results since nor Friedman neither Quade test
show a huge difference.

Table 8: Pairwise Significance Tests on BBCC1 and CBCCs. All p-values smaller than
0.05 are shown in bold.

test adjustment CBCC1 CBCC2
CBCC3

pt = 0 pt = 0.05 pt = 1

Friedman
none 1.6e-06 3.2e-06 7.3e-01 6.4e-01 5.5e-04

Holm 8.0e-06 1.2e-05 7.3e-01 1 1.6e-03

Bonferroni 8.0e-06 1.6e-05 1 1 2.7e-03

Quade
none 4.0e-03 4.4e-03 3.8e-01 5.2e-01 2.2e-01
Holm 2.0e-02 1.7e-02 7.7e-01 5.2e-01 6.6e-01
Bonferroni 2.0e-02 2.2e-02 1 1 1

The Friedman posthoc test (a.k.a. Conover’s pairwise tests) in Table 8
reveals that BBCC1 performs significantly better than CBCC1, CBCC2,
and CBCC3 when pt = 1. The pairwise posthoc-Quade test only confirms a
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significant difference between BBCC1 and the early variants of CBCC (i.e.,
CBCC1 and CBCC2). In other cases, BBCC1’s performance statistically
comparable with CBCC3 variants.

Table 9: Pairwise Significance Tests on BBCC1 and CCFR. All p-values smaller than 0.05
are shown in bold.

test adjustment
CCFR

IDG2 DG CMA-ES

Friedman
none 1.5e-05 1.5e-05 4.6e-01
Holm 3.7e-05 3.75-05 4.6e-01
Bonferroni 4.5e-05 4.5e-05 1

Quade
none 5.9e-02 6.9e-03 6.7e-01
Holm 1.1e-01 2.0e-02 6.7e-01
Bonferroni 1.7e-01 2.0e-02 1

According to Friedman posthoc test in Table 9, BBCC1 performs signif-
icantly better than all CCFR variants except when CMA-ES is adopted as
the optimizer. The posthoc-Quade tests, however, only confirms a significant
difference between BBCC1 and CCFR-DG.

Overall, BBCC1, as the simplest implementation of BBCC framework,
is ranked as the best performer when compared with the other available
contribution-aware CCs. As mentioned above, the improvements are statis-
tically sound, in many cases. We could probably observe more interesting
patterns and detect more significant differences if the number of imbalanced
benchmark functions was large enough.

4.6. BBCC vs.State-of-the-art

In the experiments, we compare the BBCC1 results with the two state-of-
the-art algorithms: MA-SW-Chains and MOS’13. These two particular al-
gorithms are chosen because MA-SW-Chains is the winner of CEC’10 LSGO
competition and MOS won the CEC’13 and CEC’15 LSGO competitions.
The main goal of this brief comparison is to show that the simplest im-
plementation of BBCC framework coupled with a very basic optimizer can
compete with the most advanced large-scale optimizers. Since BBCC1 could
outperform CC1 and other contribution-aware CCs, we expect that by adopt-
ing these advanced EAs as the subproblem optimizer of BBCC instances, we
can enhance their performance even further.
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Table 10: BBCC vs. State-of-The-Art Algorithms on CEC’13 LSGO Benchmark. µ and
σ represent mean and STD values, respectively. The bold numbers indicate the best
performer for a particular problem.

function BBCC1 MA-SW-Chains MOS-CEC’13

f4
µ 3.27e+08 4.58e+09 1.74e+08

σ 1.41e+08 2.46e+09 7.87e+07

f5
µ 1.45e+06 1.87e+06 6.94e+06
σ 3.23e+05 3.06e+05 8.85e+05

f6
µ 1.04e+06 1.01e+06 1.48e+05

σ 1.47e+05 1.53e+04 6.43e+04

f7
µ 2.14e+05 3.45e+06 1.62e+04

σ 1.56e+05 1.27e+06 9.10e+03

f8
µ 6.96e+12 4.85e+13 8.00e+12
σ 4.21e+12 1.02e+13 3.07e+12

f9
µ 1.21e+08 1.07e+08 3.83e+08
σ 3.42e+07 1.68e+07 6.29e+07

f10
µ 9.22e+07 9.18e+07 9.02e+05

σ 1.30e+07 1.06e+06 5.07e+05

µ 5.99e+07 2.19e+08 5.22e+07
f11 σ 6.64e+07 2.98e+07 2.05e+07

rank: 2.000 2.375 1.625

order: 2 3 1

44



Table 10 presents the results of BBCC1, MA-SW-Chains [18] and MOS [41]on
the imbalanced problems from CEC’13 LSGO benchmarks. As the results
show, BBCC1 significantly outperforms MA-SW-Chains in five problems and
MOS in only two cases. The MOS can outperform BBCC1 in four problems,
whilst MA-SW-Chains cannot significantly beat BBCC1 in any cases.

The average nWins score of BBCC1 is positive (+18.75%) and it can
achieve the second position based on Friedman ranking. However, none of
the statistical tests confirm any significant differences between BBCC1 and
the winners of the previous LSGO competitions. The Friedman and Quade
p-values for the results in Table 10 are 3.24e − 01 and 4.08e − 01, respec-
tively. These statistics confirm that the most basic implementation of BBCC
can compete with the most advanced EAs on solving large-scale imbalanced
optimization problems.

5. Conclusions

In this paper, we have proposed a general framework called bandit-based
cooperative coevolution (BBCC) to address the imbalance subproblem con-
tributions in large-scale optimization problems. In contrast with the tradi-
tional CC framework which uniformly allocates computational resources to
all components, BBCC adopts well-studied bandit algorithms to learn the
contribution of each component to the long-term improvement in objective
value and allocate resources accordingly.

Through extensive experiments on 30 imbalance large-scale benchmarks,
we have shown that BBCC has the ability to handle a variety of scenarios.
The sensitivity studies revealed that our simple BBCC implementation is ro-
bust with respect to the changes in generic parameter values. Our comparison
studies also confirmed that the efficiency of BBCC in exploration-exploitation
maintenance helps it to outperform previous contribution-aware techniques.
We have also demonstrated that when some degrees of imbalance exists in
the problems, even simple instances of BBCC perform statistically similar or
better than the state-of-the-art algorithms that ignore such property of the
problems.

With respect to the flexibility and generality of the proposed framework,
we expect several future studies to analyze BBCC’s performance in different
scenarios, to expand the framework, and to apply it to real-world applica-
tions image matting and adapting recurrent neural networks. We will further
examine the sensitivity of BBCC to the accuracy of decomposition and the
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number of components, study the behavior of BBCC when a dynamic group-
ing algorithm is adopted, and compare different instances of BBCC in order
to find the most effective combination of the improvement measure, contri-
bution estimator, and component selector algorithms.
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