75 research outputs found

    An Analytical Approach to Cycle Time Evaluation in an Unreliable Multi-Product Production Line with Finite Buffers

    Get PDF
    This thesis develops an analytical approximation method to measure the performance of a multi-product unreliable production line with finite buffers between workstations. The performance measure used in this thesis is Total Cycle Time. The proposed approximation method generalizes the processing times to relax the variation of product types in a multi-product system. A decomposition method is then employed to approximate the production rate of a multi-product production line. The decomposition method considers generally distributed processing times as well as random failure and repair. A GI/G/1/N queuing model is also applied to obtain parameters such as blocking and starving probabilities that are needed for the approximation procedure. Several numerical experiments under different scenarios are performed, and results are validated by simulation models in order to assess the accuracy and strength of the approximation method. Consequent analysis and discussion of the results is also presented

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Analysis of queueing models with batch service

    Get PDF
    This dissertation is the result of my research work at the SMACS research group (Department of Telecommunications and Information Processing, Ghent University) and it concerns the analysis of queueing models with batch service. A queueing model basically is a mathematical abstraction of a situation where customers arrive and queue up until they receive some kind of service. These phenomena are omnipresent in real life: people waiting at a counter of a post office or bank, people in the waiting room of a doctor, airplanes waiting to take off, people waiting until they get connected with the call center, data packets which are temporarily stored into a buffer until the transmisssion channel is available, et cetera. The analysis of queueing models constitutes the subject of the applied mathematical discipline called queueing theory and amounts to answering questions such as “How many customers are waiting on average?”, “How long do customers have to wait?”, “Is there a large variation on the waiting time?”, “What is the probability that data packets are lost due to a full buffer?”, “What is the probability that a customer suffers a lengthy delay?”, et cetera. In queueing theory, the number of customers and their waiting time are often denominated by respectively buffer content and customer delay. In addition, the probability that a quantity, such as the buffer content or customer delay, is very large or lengthy, is generally called a tail probability. The models we investigate throughout this dissertation have in common that customers can be served in batches, meaning that several customers can be served simultaneously. An elevator can be viewed as a classic example, as several people can be transported simultaneously to another floor. Also, in a variety of production or transport processes several goods can be processed together. Furthermore, in quality control, classification of items as good or bad can often be achieved more economically by examining the items in groups rather than individually. If the result of a group test is good, all items within it can then be classified as good, whereas one or more items are bad in the opposite case, where the items can then be retested by considering smaller groups. Group testing is especially of importance when the percentage of bad items is small. In addition, in telecommunications networks, packets with the same destination and quality of service (QoS) requirements are often aggregated into so-called bursts and these bursts are transmitted over the network. This is mainly done for efficiency reasons, since only one header per aggregated burst has to be constructed, instead of one header per single information unit, thus leading to an increased throughput. Technologies using packet aggregation include for instance Optical burst switched (OBS) networks and IEEE 802.11n wireless local area networks (WLANs). An inherent aspect of batch service is that newly arriving customers cannot join the ongoing service, even if there is free capacity (we denominate the maximum number of customers that can be served simultaneously by server capacity). For instance, an arriving person cannot enter an elevator that has just left, even if space is available. This person has to wait until the elevator has transported its occupants to their requested floors and has returned, which might take a long time in high buildings. In view of this, it is of importance to take a well-considered decision when the server becomes available and finds less customers than it can serve in theory. This decision is called the service policy. A whole spectrum of service policies exist. The server could, for instance, start serving the already present customers immediately. Although the present customers benefit from this approach, capacity is wasted: customers that arrive later cannot join the ongoing service. An alternative for this so-called immediate-batch service policy is the full-batch service policy. In this case, the available server postpones service until the number of present customers reaches or exceeds the server capacity, which, in turn, has a negative effect on the delay of the customers waiting to form a full batch (postponing delay). The threshold-based policy is a kind of compromise between immediate-batch service policy and full-batch service policy. When the number of present customers is below some service threshold, service is postponed, whereas service is initiated when the number of present customers reaches or exceeds this threshold. It is important to realize that even with this compromise, long postponing delays are possible. Therefore, in this dissertation, we combine a thresholdbased policy with a timer mechanism that avoids excessive postponing delays. The purpose of this dissertation is to calculate a large spectrum of performance measures, which enable to evaluate a broad set of situations with batch service and aid in selecting an efficient service policy. The studied performance measures are moments, such as the mean value and variance, and tail probabilities of the buffer content and the customer delay. This dissertation is structured as follows. In chapter 1, we motivate our work and we introduce crucial concepts such as probability generating functions (PGFs), whose useful properties are frequently relied upon throughout the analysis. Then we deduce moments and tail probabilities of the buffer content in chapter 2. The resulting formulas still contain unknown probabilities that have to be calculated numerically. As this might become unfeasible in some cases, we compute in chapter 3 approximations for the buffer content. Next, moments and tail probabilities of the customer delay are covered in respectively chapters 4 and 5. In order to analyze the moments, we conceive the customer delay as the sum of two non-overlapping parts, whereas for the tail probabilities, it turns out to be more convenient to interpret the delay as the maximum of two time periods. Further, in real life the customer arrival process often exhibits some kind of dependency. For instance, if a large amount of customers have recently arrived, it is likely that many customers arrive in the near future, as it might be an indication of a peak moment. Therefore, we investigate in chapter 6 the influence of dependency in the arrival process on the behaviour of batch-service phenomena and on the selection of an efficient service policy. Finally, the main contributions are summarized in chapter 7

    Modelling activities in a Critical Care Unit

    Get PDF
    The Critical Care Unit (CCU) is the sector of the hospital where, as the name suggests, critically ill patients receive treatment. The main aim of this research is to identify and apply suitable Operational Research techniques to model patient flow in the CCU at the University Hospital of Wales, Cardiff. The Operational Research techniques employed in this thesis include queueing theory and simulation. These methods have been utilised previously in the field of healthcare with much success. The thesis begins by considering two aspects of queueing theory, namely batch service queueing theory and batch arrival queueing theory. The latter of these is utilised to model patient flow within the CCU. Although queueing theory may be used as a good approximation to activities in the Unit, it does not incorporate all aspects of real-life. Thus discrete-event simulation is suggested as an alternative approach. Two types of statistical analysis, CART and Regression, are applied to both length of stay and mortality variables. The results from these statistical tests are compiled and investigated in more depth. Finally, a discrete event simulation model is built in Visual Basic for Applications, for Microsoft Excel. This simulation model incorporates many of the complexities of a CCU, such as patient priority and cancellation of scheduled patients if all beds on the Unit are occupied. The model is then used to test various "what-if type" scenarios, including the possibility of funding additional beds, the concept of ring-fencing of beds for different levels of care, and the likely effect of reducing the impact of bed-blocking

    The power-series algorithm:A numerical approach to Markov processes

    Get PDF
    Abstract: The development of computer and communication networks and flexible manufacturing systems has led to new and interesting multidimensional queueing models. The Power-Series Algorithm is a numerical method to analyze and optimize the performance of such models. In this thesis, the applicability of the algorithm is extended. This is illustrated by introducing and analyzing a wide class of queueing networks with very general dependencies between the different queues. The theoretical basis of the algorithm is strengthened by proving analyticity of the steady-state distribution in light traffic and finding remedies for previous imperfections of the method. Applying similar ideas to the transient distribution renders new analyticity results. Various aspects of Markov processes, analytic functions and extrapolation methods are reviewed, necessary for a thorough understanding and efficient implementation of the Power-Series Algorithm.

    Mathematical Analysis of Queue with Phase Service: An Overview

    Get PDF
    We discuss various aspects of phase service queueing models. A large number of models have been developed in the area of queueing theory incorporating the concept of phase service. These phase service queueing models have been investigated for resolving the congestion problems of many day-to-day as well as industrial scenarios. In this survey paper, an attempt has been made to review the work done by the prominent researchers on the phase service queues and their applications in several realistic queueing situations. The methodology used by several researchers for solving various phase service queueing models has also been described. We have classified the related literature based on modeling and methodological concepts. The main objective of present paper is to provide relevant information to the system analysts, managers, and industry people who are interested in using queueing theory to model congestion problems wherein the phase type services are prevalent

    CGAMES'2009

    Get PDF
    • 

    corecore