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Abstract

In the past, many researchers have analysed queueing models with batch ser-
vice. In such models, the server typically postpones service until the number of
present customers reaches a service threshold, whereupon service is initiated of
a batch consisting of several customers. In addition, correlation in the customer
arrival process has been studied for many different queueing models. However,
correlated arrivals in batch-service models has attracted only modest attention.
In this paper, we analyse a discrete-time D-BMAP/Gl,c/1 queue, whereby the
service time of a batch is dependent on the number of customers within it. In
addition, a timing mechanism is included, to avoid that customers suffer ex-
cessive waiting times because their service is postponed until the amount of
customers reaches the service threshold. We deduce various useful performance
measures related to the buffer content and we investigate the impact of the traf-
fic parameters on the system performance through some numerical examples.
We show that correlation merely has a small impact on the service threshold
that minimizes the mean system content, and consequently, that the existing
results of the corresponding independent system can be applied to determine a
near-optimal service threshold policy, which is an important finding for prac-
titioners. On the other hand, we demonstrate that for other purposes, such
as performance evaluation and buffer management, correlation in the arrival
process cannot be ignored, a conclusion that runs along the same lines as in
queueing models without batch service.
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1. Introduction

Whereas traditional servers can serve only one customer at a time, batch
servers process batches of customers. In fact, a traditional server can be per-
ceived as a special type of batch server, namely whereby the capacity of the
server (the maximum number of customers in a served batch) equals one. Batch
service is ubiquitous in real life, for instance elevators in high buildings, trans-
port vehicles, recreational devices in amusement parks, ovens in production
processes, blood pooling (see e.g. [2], [12], [30]), .... In addition, in telecom-
munications, information packets are often grouped in larger entities (batches)
and these batches are transmitted as a single entity, instead of all packets indi-
vidually. This is mainly done for efficiency reasons, since only one header per
aggregated batch has to be constructed instead of one header per single infor-
mation unit, thus leading to an increased goodput. Technologies using packet
aggregation include Optical burst switched (OBS) networks [26], [61] and IEEE
802.11n WLANs [51]. More examples in telecommunications can be found in
[13].
Although batch-service (1 server of capacity c) resembles multi-service (c servers
of capacity one), it might be less performant: if a customer arrives when the
batch server is processing less than c customers, this customer cannot join the
ongoing service, whereas the customer would be served immediately by one of
the available servers in the multiserver system. In view of this, one often en-
forces a service threshold for the minimum number of customers that have to
be present before the available batch server is allowed to start processing. In
practice, an operator typically has to select an efficient service threshold and
this could have a huge impact on the performance of the system, as we will
demonstrate later on. As batch-service queueing models have a wide area of
applications, they have been studied extensively, as well in continuous ([3], [6],
[7], [9], [18], [20], [22], [23], [57], [60], [65]) as in discrete time ([19], [28], [29],
[31], [37], [39], [43], [46], [62], [70], [72]).

In many real-life circumstances, customer arrivals do not occur independently
from each other. For instance, in modern telecommunication systems, a traffic
source which is inactive in a given time slot is very likely to remain inactive for
a long time (or during a large number of time slots) (see e.g. [36]). In order
to cope with the correlated nature of arrivals, the Markovian arrival process
(MAP) can be adopted. In case of a MAP, the probability of having an arrival
depends on a background state which is governed by a Markov chain. Several
variants of MAP exist: in case of a BMAP, customers arrive in batches instead
of individually, whereas D-MAP and D-BMAP represent the discrete-time ana-
logues of MAP and BMAP. Queueing models with MAP (or variants) have been
studied extensively in the past, for instance the MAP is considered in [4], [5],
[8], [14], [44], [48] and [52], the D-MAP is covered in [21], [25], [41], [68], [69],
the BMAP is studied in [1], [10], [33], [53]–[55], [58], [59], [64] and [15], [21],
[32], [34], [42], [47], [49], [63], [71] deal with D-BMAP.
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Although batch-service queueing models and models with MAP (or variants)
have been analyzed separately to a great extent, the combination has attracted
much less attention. Exceptions are [11], [24], [38], [40], [66]. Gupta and Laxmu
[38] studied the queue content at various epochs in the MAP/Ga,b/1/N queue.
Chaudhry and Gupta [24] translated the analysis from [38] to discrete time,
resulting in the analysis of the D-MAP/Ga,b/1/N queue. Gupta and Sikdar
[40] extended [38] so that single vacations are included and Sikdar and Gupta
[66] further extended this research to multiple vacations. Finally, Banik [11]
analyzed the queue content at various epochs in the BMAP/G(a,b)/1/N and
BMAP/MSP (a,b)/1/N systems. Our paper differs from these papers in several
aspects. First, we consider the D-BMAP, which is more applicable in a telecom-
munications context due to the discrete nature of the information units that are
typically used. Second, we include a dependency between the service time of
a batch and the number of items within it. This is closer to reality, since the
transmission time of a batch of information packets is typically longer when the
batch contains more packets. Also in other application areas, this might be the
case. Thirdly, we incorporate a timing mechanism, that avoids excessive delays
due to postponing service until the service threshold is reached. This mechanism
is of importance when the customers represent for instance real-time data pack-
ets. Further, we deduce an additional set of performance quantities compared
to [11], [24], [38], [40], [66], where the queue content is established at service
completion, pre-arrival and random times. We compute the system content (i.e.
the amount of customers in the entire system, thus those in service included)
at random slot boundaries, the queue content at random slot boundaries, the
system content at the end of a service, the number of customers in a served
batch, the queue content when the server is inactive, the queue content when
the server processes at suboptimal capacity and the probability that the server
processes a batch during a random slot. The number of customers in a served
batch, for instance, is of major concern for practitioners, as it gives a clear indi-
cation of the efficiency of the server. Finally, we evaluate more thoroughly the
influence of correlation on the behaviour of batch-service queueing systems and
more specifically, we investigate the influence on the optimal service threshold.

Our conference paper [27] served as a starting point for this research. In [27],
we have studied the system content in a batch-service queueing model with a
service threshold, with geometrically distributed service times that are indepen-
dent of the number of served customers, and with a customer arrival process
modelled by a D-BMAP. This paper is an extension of [27], in the sense that we
consider a more versatile model with service times that are generally distributed
and dependent on the number of items in a served batch. In addition, a timing
mechanism is included, to avoid excessive delays due to postponing service until
the service threshold is reached. Furthermore, we establish various quantities
related to the number of customers in the queue and server at specific time in-
stants, instead of only the system content at random slot bounds as in [27]. We
also elaborate upon the influence of correlation on the behaviour of the system.
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The paper is organised as follows: the model is described in detail in section 2
and section 3 covers the analysis. The influence of correlation is studied through
an example in section 4 and finally some conclusions are drawn in section 5.

2. Model

The queueing model under consideration has the following features:

• The time axis is divided into fixed-length contiguous slots.

• The queue is infinitely large.

• There is one batch server of capacity c (c a constant), which means that
the server can process up to c customers simultaneously. When the server
becomes available and finds at least as many customers as the service
threshold l, it initiates a new service, whereas when the amount of available
customers, say j, is smaller than l, the server initiates a service with
probability βj and with probability 1 − βj it postpones its service. This
feature avoids that customers suffer excessive delays because the server
waits to initiate service until enough customers have arrived.

• We assume that the already present customers remain in the queue when
the server postpones service. Hence, during each slot, the system con-
tent consists of the customers being served (the server content) and the
customers waiting in the queue (the queue content).

• A service period is the period between the start and end of the service
of one batch of customers, and we assume that services are synchronised
with respect to slot boundaries. The consecutive service times - a service
time is the length of a service period, expressed in a number of slots - are
dependent on the number of customers in the served batch. Given this
number, the service time is independent of all previous service times. We
denote the distribution of the service time Tj of a batch of j customers by

tj(n) , Pr [Tj = n] and its corresponding probability generating function
(PGF) is represented by Tj(z).

• Customers arrive during a slot (and not at slot boundaries). As a result,
an arriving customer has to wait for service at least until the next slot
mark. This is often referred to as late-arrival with delayed access (for in-
stance in [37], [62]). Further, customers arrive in the buffer according to a
homogeneous irreducible aperiodic D-BMAP, meaning that the distribu-
tion of the number of customer arrivals per slot depends on a background
state which is determined by a homogeneous irreducible and aperiodic
first-order Markov chain. The number of background states is finite and
denoted by N . We designate the state during slot k by τk and during a
random slot by τ . Next, let Ak be the amount of customers arriving in
slot k. The arrival process is completely defined by the values a(n, j|i):

a(n, j|i) , lim
k→∞

Pr [Ak = n, τk+1 = j|τk = i] , n ≥ 0; i, j ∈ {1, . . . , N} ,
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denoting the probability that if the background state is i during a slot,
there are n arrivals during this slot and the background state during the
next slot is j. We put these probabilities in an N×N matrix generating
function A(z) , whose entries are defined as follows:

[A(z)]ij ,

∞
∑

n=0

a(n, j|i)zn .

The radius of convergence of A(z) is designated by ℜ and is equal to

ℜ , min
i,j

ℜi,j ,

with ℜi,j the radius of convergence of [A(z)]ij . Hence, each of the entries
of A(z) is an analytic function in the open disk {z ∈ C : |z| < ℜ}.

It is worth noting that in traditional literature D-BMAP is described by stan-
dard notations D0, D1, D2, et cetera, whereby [Dn]ij , a(n, j|i) (see e.g. [10],
[15], [42], [63]). Hence, the connection with our notation is as follows:

A(z) =
∞
∑

n=0

Dnzn .

We prefer working with probability generating matrix A(z) for a twofold reason:
it completely describes the arrival process and it is convenient throughout the
analysis. The following information can be extracted from A(z):

• Transition probabilities of the underlying Markov chain:

Pr [τk+1 = j|τk = i] = [A(1)]ij , ∀k ∈ N .

• Stationary distribution 1 × N vector π of the state of the underlying
Markov chain:

[π]i , lim
k→∞

Pr [τk = i] , 1 ≤ i ≤ N ,

is the solution of π = πA(1) and the normalization condition π1 = 1,
with 1 the N × 1 column vector whose N entries are equal to 1.

• Conditional PGF of the number of arrivals given that the background
state during that slot equals i:

Ai(z) , lim
k→∞

∞
∑

n=0

Pr [Ak = n|τk = i] zn = [A(z)1]i .

• Mean arrival rate λ, i.e., the average number of customer arrivals during
a random slot:

λ ,

N
∑

i=1

Pr [τ = i] A
′

i(1) = πA
′

(1)1 ,

whereby

[A
′

(1)]ij =
∞
∑

n=0

a(n, j|i)n =
d

dz
[A(z)]ij

∣

∣

∣

∣

z=1

,

(we use primes to indicate derivatives). Note that with the above defi-
nitions, the stability condition of this system requires that the load ρ ,
λE[Tc]

c < 1 (we hereby have taken into account that the server nearly
always processes c customers in case of heavy traffic).
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The matrix generating function A(z) is convenient to deal with as the matrix
generating function of the number of arrivals during n consecutive slots is equal
to A(z)n. Similarly, the matrix generating function of the number of arrivals
during the service of n customers equals Tn(A(z)) ,

∑∞
k=0 Pr [Tn = k]A(z)k.

During the analysis in the next section, we will make use of spectral de-
composition2. We thereby assume that A(z) is diagonalizable, i.e., A(z) can
be factorized as

A(z) = R(z)Λ(z)R−1(z) , (1)

with Λ(z) a diagonal matrix. The condition that A(z) is diagonalizable is
standard in order to be able to apply the spectral decomposition approach
([35], [49], [50], [67], [71]) and is not a specific restriction on the generality
of the model. Contribution [35] contains a detailed and extensive analysis on
the conditions under which such a solution exists. It can be proved (see e.g.
[56]) that A(z) is diagonalizable if and only if it possesses a complete set of
eigenvectors, that the columns rj(z) of R(z) then constitute a complete set of
right eigenvectors and that the diagonal entries λi(z) of Λ(z) are the eigenvalues
of A(z), so that each (λj(z), rj(z)) is an eigenpair for A(z):

A(z)rj(z) = λj(z)rj(z) , 1 ≤ j ≤ N .

Note that the eigenvectors are unique upon some factor, which we can, without
loss of generality, fix by making the convention that the row sums of either R(z)
or R−1(z) are equal to one (the former implies the latter and vice versa):

R(z)1 = 1 ⇔ R−1(z)1 = 1 .

This convention will turn out to be convenient for further calculations. Next,
relation (1) implies that

A(z)n = R(z)Λ(z)nR−1(z) ,

Tc(A(z)) = R(z)Tc(Λ(z))R−1(z) ,

which means that

A(z)nrj(z) = λj(z)nrj(z) , 1 ≤ j ≤ N ,

and

Tc(A(z))rj (z) = Tc(λj(z))rj (z) , 1 ≤ j ≤ N .

In other words, each rj(z) is a right eigenvector of A(z)n and Tc(A(z)) as well,
with corresponding eigenvalues λj(z)n and Tc(λj(z)) respectively.

Next, since A(z) is a matrix with positive entries for all z ∈]0,ℜ[, it has one
real and positive eigenvalue that exceeds the moduli of all other eigenvalues for
these values of z ([56]). This eigenvalue is called the Perron-Frobenius (PF)
eigenvalue and we let λ1(z) represent that eigenvalue. The PF eigenvalue and
its corresponding right eigenvector satisfy λ1(1) = 1, r1(1) = 1. In addition, it

2For a good introduction on matrix algebra and more specifically on spectral decomposition
we recommend the book [56].
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can be proved that λ
′

1(1) = λ. Indeed, it holds that A(z)r1(z) = λ1(z)r1(z).
Taking the first derivative at z = 1 and invoking λ1(1) = 1 and r1(1) = 1 yields

A
′

(1)1 + A(1)r
′

1(1) = λ
′

1(1)1 + r
′

1(1) . (2)

Multiplying (2) to the left with π, the steady-state vector of the state of the

underlying Markov chain, relying on πA(1) = π, πA
′

(1)1 = λ and π1 = 1,
produces

λ
′

1(1) = λ .

Before closing this section, we define the vector generating function X(z) of
a random variable X that depends on the state τk (Xk represents its value at
slot mark k) as the 1 × N vector whose entries are defined as follows:

[X(z)]j , lim
k→∞

E
[

zXk1{τk=j}

]

,

with 1{Y } the indicator function of Y .

3. Analysis

This section is organised as follows: first, we compute the joint vector gener-
ating function of the queue content, the server content and the remaining service
time. From this formula and from some intermediate results, we then deduce
various relevant quantities and finally we explain how performance measures
can be extracted from these quantities.

3.1. Joint vector generating function W(z, x, y)

In this subsection, we compute the joint vector generating function W(z, x, y)
of the queue content, the server content and the remaining service time:

[W(z, x, y)]j , lim
k→∞

E
[

zQk xSkyRk1{τk=j}

]

,

with Qk (Sk) the queue (server) content and Rk the remaining service time at
slot boundary k. We commence by writing down the system equations, which
express the relation between (Qk+1, Sk+1, Rk+1) and (Qk, Sk, Rk):

(Qk+1, Sk+1, Rk+1) =


































































(Qk + Ak, Sk , Rk − 1) if Rk > 1

(0, Qk + Ak, TQk+Ak
) if Rk ≤ 1 and l ≤ Qk + Ak < c

(Qk + Ak − c, c, Tc) if Rk ≤ 1 and Qk + Ak ≥ c

(0, Qk + Ak, TQk+Ak
)

if Rk ≤ 1, Qk + Ak < l and service starts
(with probability βQk+Ak

)

(Qk + Ak, 0, 0)
if Rk ≤ 1, Qk + Ak < l and service does
not start (with probability 1 − βQk+Ak

)

Indeed, in the first case, the service continues during slot k+1, so that customers
that have arrived during slot k are stored in the queue. In the other cases, the
server is available at slot mark k + 1. Whether a new service is initiated or not
is described by the rules mentioned in section 2 and is thus dependent on the
number of available customers.
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Remark 1. Sk = 0 does not necessarily imply Rk = 0. Indeed, since it is
allowed that β0 might differ from zero, it is possible to start a service with
0 customers. This can be interpreted as a server vacation, which duration is
characterized by the PGF T0(z).

The system equations can be translated into vector generating functions as
follows:

[Wk+1(z, x, y)]j ,E
[

zQk+1xSk+1yRk+11{τk+1=j}

]

=
1

y
E

[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

+ E
[

xQk+AkyTQk+Ak 1{Rk≤1,l≤Qk+Ak<c,τk+1=j}

]

+
( x

z

)c
Tc(y)E

[

zQk+Ak1{Rk≤1,Qk+Ak≥c,τk+1=j}

]

+ E
[

xQk+AkyTQk+Ak 1{Rk≤1,Qk+Ak<l,service starts,τk+1=j}

]

+ E
[

zQk+Ak1{Rk≤1,Qk+Ak<l,no service start,τk+1=j}

]

. (3)

We now calculate each term from the right-hand-side of (3) separately. We
therefore introduce the 1 × N row vectors q0k(n), dk(n) and Fk(z, x):

[q0k(n)]j , Pr [Qk = n, Rk = 0, τk = j] , (4)

[dk(n)]j , Pr [Qk + Ak = n, Rk ≤ 1, τk+1 = j] , (5)

[Fk(z, x))]j , E
[

zQkxSk1{Rk=1,τk=j}

]

. (6)

Let us start with the first term from (3). We take the sum over all possible
states τk during slot k:

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

=
N

∑

i=1

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j,τk=i}

]

.

As Ak is independent of Qk, Sk and Rk when τk and τk+1 are given, this
expresssion can be transformed into

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

=
N

∑

i=1

E
[

zQk xSkyRk1{Rk>1}|τk+1 = j, τk = i
]

Pr [τk = i]

. E
[

zAk |τk+1 = j, τk = i
]

Pr [τk+1 = j|τk = i] .

Note that Qk, Sk and Rk are independent of τk+1 if τk is given. Indeed, Qk, Sk
and Rk are influenced by Ak−1, which is not dependent of τk+1 if τk is known.
As a result, we find,

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

=
N

∑

i=1

E
[

zQk xSkyRk1{Rk>1,τk=i}

]

[A(z)]ij .
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Applying the law of total probability yields

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

=
N

∑

i=1

[

E
[

zQkxSkyRk1{τk=i}

]

− E
[

zQkxSkyRk1{Rk=1,τk=i}

]

−E
[

zQkxSkyRk1{Rk=0,τk=i}

]

]

[A(z)]ij .

Next, Rk = 0 (i.e., no service in slot k) implies that Sk = 0 and Qk < l. As
a consequence, we obtain, by taking into account the definitions of Wk(z, x, y)
and those for q0k(n) and Fk(z, x) ((4) and (6)):

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

=
N

∑

i=1

[

Wk(z, x, y)−yFk(z, x)−

l−1
∑

n=0

q0k(n)zn

]

i

[A(z)]ij ,

which is nothing else than a matrix multiplication. Hence,

E
[

zQk+AkxSkyRk1{Rk>1,τk+1=j}

]

=

[{

Wk(z, x, y) − yFk(z, x) −

l−1
∑

n=0

q0k(n)zn

}

A(z)

]

j

. (7)

The third term from the right-hand-side of (3) can be established analogously
as the first, which yields:

E

[

zQk+Ak1{Rk≤1,Qk+Ak≥c,τk+1=j}

]

=

[

Fk(z, 1)A(z) +

l−1
∑

n=0

q0k(n)znA(z) −

c−1
∑

n=0

dk(n)zn

]

j

. (8)

The other terms are easier to calculate, because we just have to rely on definition
(5) of dk(n). As a result, we find for respectively the second, fourth and fifth
term:

E
[

xQk+AkyTQk+Ak 1{Rk≤1,l≤Qk+Ak<c,τk+1=j}

]

=

[

c−1
∑

n=l

dk(n)xnTn(y)

]

j

, (9)

E
[

xQk+AkyTQk+Ak 1{Rk≤1,Qk+Ak<l,service starts,τk+1=j}

]

=

[

l−1
∑

n=0

dk(n)βnxnTn(y)

]

j

, (10)

E
[

zQk+Ak1{Rk≤1,Qk+Ak<l,no service start,τk+1=j}

]

=

[

l−1
∑

n=0

dk(n)(1 − βn)zn

]

j

. (11)

Owing to the definition of vector equality, the substitution of (7)-(11) in (3)
produces in the steady state
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W(z, x, y) =
1

y

{

W(z, x, y) − yF(z, x) −

l−1
∑

n=0

q0(n)zn

}

A(z)

+

c−1
∑

n=l

d(n)xnTn(y)

+
( x

z

)c
Tc(y)

[

F(z, 1)A(z) +

l−1
∑

n=0

q0(n)znA(z) −

c−1
∑

n=0

d(n)zn

]

+

l−1
∑

n=0

d(n)βnxnTn(y) +

l−1
∑

n=0

d(n)(1 − βn)zn , (12)

whereby the 1×N row vectors q0(n), d(n) and F(z, x) represent the steady-state
equivalents of q0k(n), dk(n) and Fk(z, x):

[q0(n)]j , lim
k→∞

Pr [Qk = n, Rk = 0, τk = j] , (13)

[d(n)]j , lim
k→∞

Pr [Qk + Ak = n, Rk ≤ 1, τk+1 = j] , (14)

[F(z, x))]j , lim
k→∞

E
[

zQkxSk1{Rk=1,τk=j}

]

.

Next, mark that definitions (13) and (14) imply that

q0(n) = d(n)(1 − βn) , 0 ≤ n ≤ l − 1 . (15)

Indeed, “Qk+1 = n, Rk+1 = 0” means that the server is not processing during
slot k + 1 and that n customers are present at the beginning of that slot. This
can only be the case if the server is or becomes available at the end of slot k
(Rk ≤ 1) and if n customers are present at that moment (i.e. Qk +Ak = n) and
if the server does not start service anyway at slot mark k + 1 (with probability
(1−βn)). Hence, Pr [Qk+1 = n, Rk+1 = 0] = Pr [Qk + Ak = n, Rk ≤ 1] (1−βn).
Since ρ < 1, this becomes independent of the slot index k (or k + 1), and thus
leads to expression (15).

Substitution of (15) in (12) produces

W(z, x, y)

[

I −
1

y
A(z)

]

=

l−1
∑

n=0

d(n)(1 − βn)zn

[

I −
A(z)

y

]

+
( x

z

)c
Tc(y)

l−1
∑

n=0

d(n)zn[A(z) − I]

+

l−1
∑

n=0

d(n)βn

[

xnTn(y)I − zn
( x

z

)c
Tc(y)A(z)

]

+
( x

z

)c
Tc(y)F(z, 1)A(z) − F(z, x)A(z)

+

c−1
∑

n=l

d(n)
[

xnTn(y) − zn
( x

z

)c
Tc(y)

]

, (16)

with I the N × N identity matrix. For the purpose of extracting performance
measures in the next sections, it turns out to be more convenient to multiply
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expression (16) to the right with ri(z), the i-th right eigenvector of A(z). We
obtain

[

1 −
λi(z)

y

]

W(z, x, y)ri(z) =

[

1 −
λi(z)

y

] l−1
∑

n=0

d(n)ri(z)(1 − βn)zn

+
( x

z

)c
Tc(y)[λi(z) − 1]

l−1
∑

n=0

d(n)ri(z)zn

+

l−1
∑

n=0

d(n)ri(z)βn

[

xnTn(y) − zn
( x

z

)c
Tc(y)λi(z)

]

+
( x

z

)c
Tc(y)λi(z)Gi(z, 1) − λi(z)Gi(z, x)

+

c−1
∑

n=l

d(n)ri(z)
[

xnTn(y) − zn
( x

z

)c
Tc(y)

]

, (17)

with

Gi(z, x) , F(z, x)ri(z) .

Substituting y by λi(z), multiplying by zc and letting x → 1 leads to the
following expression for Gi(z, 1):

λi(z) [zc − Tc(λi(z))] Gi(z, 1) =Tc(λi(z))[λi(z) − 1]

l−1
∑

n=0

d(n)ri(z)zn

+

l−1
∑

n=0

d(n)ri(z)βn [zcTn(λi(z)) − znTc(λi(z))λi(z)]

+

c−1
∑

n=l

d(n)ri(z) [zcTn(λi(z)) − znTc(λi(z))] . (18)

Finally, substituting y by λi(z) in (17), multiplying by zc [zc − Tc(λi(z))] and
appealing to (18) yields

zcλi(z) [zc − Tc(λi(z))] Gi(z, x)

=zcxcTc(λi(z))[λi(z) − 1]

l−1
∑

n=0

d(n)ri(z)zn

+ xcTc(λi(z))

l−1
∑

n=0

d(n)ri(z)βn [zcTn(λi(z)) − znTc(λi(z))λi(z)]

+ xcTc(λi(z))

c−1
∑

n=l

d(n)ri(z) [zcTn(λi(z)) − znTc(λi(z))]

+ [zc − Tc(λi(z))]

l−1
∑

n=0

d(n)ri(z)βn [zcxnTn(λi(z)) − xcznTc(λi(z))λi(z)]

+ [zc − Tc(λi(z))]

c−1
∑

n=l

d(n)ri(z) [zcxnTn(λi(z)) − xcznTc(λi(z))] . (19)

Expressions (17)-(19) provide enough information to deduce a spectrum of quan-
tities related to the buffer content, which constitutes the subject of the next
section.
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3.2. Quantities related to the buffer content

3.2.1. System content at random slot boundaries
As the system content U equals the sum of the queue and the server content,

its vector generating function U(z) is found by letting y → 1 and x → z in (17)
and applying (18) and (19), resulting in

[1 − λi(z)] [zc − Tc(λi(z))] U(z)ri(z) =(zc − 1)Tc(λi(z))[1 − λi(z)]

l−1
∑

n=0

d(n)ri(z)zn

+

l−1
∑

n=0

d(n)gn,i(z)βn +

c−1
∑

n=l

d(n)hn,i(z) , (20)

with

gn,i(z) , [(zn − zc)Tn(λi(z))Tc(λi(z)) + zn(zc − 1)Tc(λi(z))λi(z)

−zc(zn − 1)Tn(λi(z))] ri(z) ,

hn,i(z) , [Tn(λi(z))zc{(1 − zn) − Tc(λi(z))}

−Tc(λi(z))zn{(1 − zc) − Tn(λi(z))}] ri(z) .

The unknown vectors d(n) have to be determined by solving a set of linear
equations. This is explained in section 3.3.1.

3.2.2. Queue content at random slot boundaries
The vector generating function Q(z) of the queue content at random slot

boundaries is found by summing out both the server content and the remaining
service time from W(z, x, y). Hence, letting y → 1 and x → 1 in (17) and
applying (18), we find

[1 − λi(z)] [zc − Tc(λi(z))] Q(z)ri(z)

=(zc − 1)[1 − λi(z)]

l−1
∑

n=0

d(n)ri(z)zn

+

l−1
∑

n=0

d(n)ri(z)βn [(1 − zn){zc − Tc(λi(z))} + (zc − 1){znλi(z) − Tn(λi(z))}]

+

c−1
∑

n=l

d(n)ri(z) [zc − zn + (zn − 1)Tc(λi(z)) + (1 − zc)Tn(λi(z))] . (21)

Remark 2. Note that in [45], where the service times are independent of the
number of customers in a served batch, it holds that U(z) = Q(z)T (A(z)), with
T (z) the PGF of the service times. Here, the service times are dependent on
the number of customers in a served batch and it thus turns out that a similar
relation as in [45] does not hold anymore.

3.2.3. System content at the end of a service

The system content Ũ at the end of a service equals the sum of the queue
content at the beginning of the last slot of the service and the customers that
have arrived during that slot. Hence, by definition, we get

Ũ(z) =
F(z, 1)A(z)

F(1, 1)1
, (22)
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or, by multiplying both sides to the right with 1:

Ũ(z) =
F(z, 1)A(z)1

F(1, 1)1
.

Note however that we have deduced an expression for Gi(z, x) and not for
F(z, x). We therefore multiply both sides of (22) to the right with ri(z), which
yields

Ũ(z)ri(z) = λi(z)
Gi(z, 1)

G1(1, 1)
. (23)

We have hereby taken into account that r1(1) = 1.

3.2.4. Number of customers in a served batch

The number of customers in a random served batch, S̃, is equally distributed
as the server content at the last slot of a random service period, which yields

S̃(z) =
F(1, z)

F(1, 1)1
. (24)

As we have deduced an expression for Gi(z, x) instead of for F(z, x), we rewrite
(24), by multiplying both sides to the right with 1, as

S̃(z) =
G1(1, z)

G1(1, 1)
. (25)

3.2.5. Queue content when the server is inactive
The queue content when the server is inactive (because none or not enough,

i.e., less than l, customers are present), say Q̃, is found by taking into account
that the server is not processing if and only if the remaining service time equals
0. Hence

Q̃(z) =

∑l−1
n=0 q0(n)1zn

∑l−1
n=0 q0(n)1

. (26)

3.2.6. Queue content when the server processes at suboptimal capacity
The vector generating function Q∗(z) of the queue content at random slot

boundaries when the server processes at suboptimal capacity (i.e., the server is
serving less than c customers: Rk 6= 0, 0 ≤ Sk ≤ c − 1) is found by applying
the law of total probability and thereby taking into account the probability
generating property of generating functions and Sk = c ⇒ Rk 6= 0,

Q∗(z)ri(z) =

[

W(z, 1, 1) − W(z, 0, 0) − 1
c!

∂c

∂xc W(z, x, 1)
∣

∣

∣

x=0

]

ri(z)

1 −
[

W(1, 0, 0) + 1
c!

∂c

∂xc W(1, x, 1)
∣

∣

∣

x=0

]

r1(1)
. (27)

Note that we have multiplied this equation with ri(z), because we have estab-
lished a formula for W(z, x, y)ri(z) and not for W(z, x, y) individually.

3.3. Performance measures

In the previous subsection, we have deduced various quantities related to the
buffer content ((20), (21), (23), (25)-(27)). These formulas allow us to calculate
performance measures such as moments and tail probabilities. As compared
to the case of independent arrivals, this matter is more complicated now and
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we therefore briefly explain how the mean value (subsection 3.3.2) and the tail
probabilities (subsection 3.3.3) of the system content can be calculated (for a
more extensive treatment we refer to more technical papers such as [35]). As
formula (20) contains the unknown vectors d(n), we first compute these vectors
in subsection 3.3.1.

3.3.1. Calculation of the vectors d(n)
We start with rewriting (20) as follows:

[1 − λi(z)] [zc − Tc(λi(z))]U(z)ri(z) = fi(z) , 1 ≤ i ≤ N , (28)

whereby fi(z) represents the right-hand-side of (20). Unlike the case of indepen-
dent arrivals, it is impossible to construct an irrefutable mathematical proof,
based on Rouché’s theorem, to show that each of the equations zc−Tc(λi(z)) =
0 , 1 ≤ i ≤ N necessarily has c solutions inside the closed complex unit disk.
Nevertheless, an example where this is not the case has not been encountered
up to now, and, to the best of our knowledge, such an example, if it exists, has
yet to be constructed. Hence, for practical purposes, we can venture to state
that the above equation has indeed c solutions inside the closed complex unit
disk for each value of i, provided that the equilibrium condition ρ < 1 holds.
Let us characterise the k-th solution of the i-th equation by zi,k. As λ1(1) = 1,
one of the zeros of zc − Tc(λ1(z)) equals one. Without loss of generality, we let
z1,1 be that zero. As U(z) is analytic inside the closed complex unit disk, fi(z)
must also vanish at zi,k, 1 ≤ k ≤ c and this for all i, 1 ≤ i ≤ N . This observa-
tion leads to Nc − 1 linear equations in the 1 × N vectors d(n), 0 ≤ n ≤ c − 1.
The zero z1,1 cannot be used as it produces the trivial equation 0 = 0. Fortu-
nately, we can resort to the normalisation condition to obtain another equation.
Deriving (28) twice at z = 1 for i = 1 and taking into account that r1(1) = 1,
U(1)1 = 1 and λ′

1(1) = λ, produces the normalisation condition

d2

dz2
f1(z)

∣

∣

∣

∣

z=1

= −2λc(1 − ρ) .

3.3.2. Mean value of the system content
The mean value of the system content is found by deriving (28) three times

at z = 1 for i = 1 and taking into account that r1(1) = 1, λ
′

1(1) = λ and

U
′

(1)1 = E [U ], leading to

E [U ] =
1

6λc(ρ − 1)

[

d3

dz3
f1(z)

∣

∣

∣

∣

z=1

+ 6λc(1 − ρ)U(1)r′1(1)

− 3λ3T ′′
c (1) − 6λ′′

1 (1)T ′
c(1)λ + 3λ′′

1 (1)c + 3λc2 − 3λc

]

.

Note hereby that U(1) = π, the steady-state probability vector of the back-
ground state.

3.3.3. Tail probabilities of the system content

In this paper, we assume an infinite buffer capacity. Nevertheless, buffers
have a finite capacity, which causes customers to get rejected if they arrive
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when the buffer is full. As a result, the loss ratio - defined as the fraction of
customers that are rejected - is an important performance measure. In addition,
the buffer capacity, say b, is typically designed such that loss is a rare event, and
the tail probability Pr [U > b] in the corresponding infinite capacity model then
provides a good approximation for the loss ratio [17]. Therefore, we calculate
the tail probabilities and we achieve this by applying the dominant singularity
approximation [17]. First, we divide (28) by [1 − λi(z)] [zc − Tc(λi(z))] and
we sum both sides of this equation over i from 1 to N . On account of the
distributive property of matrices, R(z)1 = 1 and U(z)1 = U(z), we find

U(z) =
N

∑

i=1

fi(z)

[1 − λi(z)][zc − Tc(λi(z))]

=
N

∑

i=1

fi(z)
∏N

k=1,k 6=i[1 − λk(z)][zc − Tc(λk(z))]
∏N

j=1[1 − λj(z)][zc − Tc(λj (z))]
.

First, recall that |λ1(z)| > |λj(z)| for all 2 ≤ j ≤ N and for all z ∈]1,ℜ[.
Second, note that when z̃ ∈]1,ℜ[ is a zero of [1 − λi(z)], fi(z) also vanishes at
z = z̃ (observe equation (20)). Next, using similar arguments as in [1], where a
continuous Markovian arrival process is considered, one can prove that λ1(z) is
a strictly increasing and convex function for z ∈]1,ℜ[. Hence, zc−Tc(λ1(z)) will
have a unique solution in this region if limz↑ℜ Tc(λ1(z))/zc > 1, a requirement
that we assume to be satisfied from now on. As a result, the dominant singularity
of U(z), z∗, is the zero from zc − Tc(λ1(z)) in ]1,ℜ[. Analogously as in the case
of independent arrivals, we thus find the following approximate expression for
the tail of U :

Pr [U > n] ∼ −
(z∗)−(1+n)

z∗ − 1

f1(z∗)

[1 − λ1(z∗)][c(z∗)c−1 − T ′

c(λ1(z∗))λ
′

1(z∗)]
, (29)

where f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1. Hence, expression (29)
allows us to calculate the probability that the system content exceeds a threshold
n, for large enough values of n. In practice, buffer dimensioning is an important
assignment. For instance, one has to dimension the buffer so that the loss ratio
is smaller than 10−6. We can translate this problem to our setting: determine
b such that Pr [U > b] ≤ 10−6. Taking the Neperian logarithm of this equation
and on account of (29), we obtain:

b ≥
6 ln 10 + lnK

ln z∗
− 1 ,

with

K = −
1

z∗ − 1

f1(z∗)

[1 − λ1(z∗)][c(z∗)c−1 − T ′

c (λ1(z∗))λ
′

1(z∗)]
.

Hence, the smallest buffer capacity b ∈ N that insures a loss ratio not larger
than 10−6 is equal to

b =

⌈

6 ln 10 + lnK

ln z∗

⌉

− 1 .

3.3.4. Probability that the server processes during a random slot
To conclude this section, we provide a performance measure that requires no

manipulation of generating functions: the probability that the server processes
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during a random slot. This probability ensues almost immediately from the
definition of q0(n):

Pr [server processes] = 1 −

l−1
∑

n=0

q0(n)1 .

4. Influence of correlation

In this section, we evaluate the influence of combining correlation in the
arrival process and batch service on the behaviour of the system. To this end,
we consider a numerical example whereby the number of background states N
equals 2. We denote the probability that if the background state is i during
a slot, the background state remains i during the next slot by pi , [A(1)]ii,
i = 1, 2 and we assume that p1 = p2. In view of the above assumptions, we
define the coefficient of correlation γ between the states of two consecutive slots
as

γ , lim
k→∞

E [τkτk+1] − E [τk] E [τk+1]

(Var [τk] Var [τk+1])1/2
= 2p1 − 1 .

We also assume that no customers arrive when the background state equals 1
and that the number of arrivals in the other case is geometrically distributed,
i.e. A1(z) = 1 and A2(z) = 1/(1 + 2λ − 2λz). We further consider a server of
capacity 10 (c = 10). The service times are geometrically distributed with the
mean length being dependent on the number of customers in the served batch.
More specifically, the average time to serve a batch of j customers is equal to
3 + j0.2. Finally, the probability βn that the server initiates a service when n
customers are present (n < l) equals n/l.

In Fig.1, the mean system content E [U ] is depicted versus the load ρ for several
values of the correlation coefficient γ. It is assumed that the service threshold l
equals 5. Fig.1 learns us that positive correlation (γ > 0) leads to a significant
larger E [U ] as compared to the independent case (γ = 0). Hence, disregarding
positive correlation can lead to a severe underrating of the mean system content.
Fig.1 also exhibits that ignoring negative correlation leads to some overestima-
tion of E [U ]. We further perceive that these observations manifest themselves
more as ρ increases. These conclusions are similar to those in multiserver sys-
tems with correlated arrivals (see e.g. [16], [36]).
Fig.2 shows the tail probabilities Pr [U > n] versus n in the case that the load

ρ equals 0.6 and the service threshold l being 5. We perceive that positive cor-
relation leads to much larger probabilities whereas negative correlation causes
some smaller probabilities, which confirms the results of Fig.1.
When we take a look at the buffer capacity required to ensure that the loss

ratio is smaller than 10−6 (Fig.3), we come to similar conclusions. Hence, we
can state that correlation potentially has a huge impact on the system content.

Next, we investigate the server efficiency. Therefore, the filling degree - de-

fined as E
[

S̃
]

/c, the mean number of customers in a served batch divided by
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Figure 1: mean system content E [U ] versus the load ρ for several values of the correlation
coefficient γ; l = 5, c = 10, Tj geometrically distributed, E [Tj ] = 3 + 0.2j, βn = n/l,
0 ≤ n ≤ l − 1

the server capacity, or, in other words, the ratio of the actual mean number of
customers versus the maximum number of customers in a served batch - and
the probability p that the server processes during a random slot are depicted
versus the load in Fig.4. We observe that positive correlation leads to a larger
filling degree and a smaller serving probability, whereas the opposite holds (in
a lesser degree) for negative correlation. Hence, positive correlation leads to a
more efficient usage of the server. Indeed, in case of positive correlation, long
periods exist during which the server is idle because no customers arrive. On
the other hand, when customers arrive, this is likely to happen during many
contiguous slots, so that the server then serves more customers.
As determining the optimal service threshold (we define it as the one that min-

imizes E [U ]) is of the utmost importance in batch-service systems, we study
whether correlation affects this optimum. For this purpose, the optimal thresh-
old is shown versus ρ in Fig.5, for several values of γ. We perceive that the
larger the correlation coefficient, the faster the optimum of l increases. Indeed,
when, in the independent case, it becomes advantageous to postpone service
until more customers have arrived, it can be beneficial in the correlated case to
wait until even more customers have arrived, because when customers arrive it
is very likely that other customers arrive in the subsequent slots.
We now investigate the impact of adopting the optimal threshold of the inde-
pendent case in the correlated system. Therefore, we define the relative error
as

E [U ]l̃opt
− E [U ]lopt

(

E [U ]lopt
+ E [U ]l̃opt

)

/2

,
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Figure 2: Pr [U > n] versus n for several values of the correlation coefficient γ; ρ = 0.6, l = 5,
c = 10, Tj geometrically distributed, E [Tj ] = 3 + 0.2j, βn = n/l, 0 ≤ n ≤ l − 1

with E [U ]lopt
the mean system content in the correlated case when the opti-

mal service threshold is adopted and E [U ]l̃opt
the mean system content in the

correlated system when the optimal threshold of the corresponding independent
system is adopted. In Fig.6, the relative errors are depicted for the example in
Fig.5. We observe that even when the optimal service threshold is different, the
relative error is rather small. In view of this, the existing results of the corre-
sponding independent system can be used to determine a near-optimal service
threshold. Adopting this near-optimal threshold has only a marginal impact on
the mean system content.
Before closing this section, we evaluate the impact of the probabilities βn on

the mean customer delay (equal to E [U ] /λ due to Little’s law). In Fig.7, the
mean delay is depicted versus the load both for the case βn = n/l and βn = 0
(the latter case was considered in our paper [27]). The left pane of the figure
corresponds to γ = 0.9 and the right pane represents γ = −0.9. We observe
that for small loads the mean delay tends to infinity when βn = 0, whereas it
is finite when βn = n/l. When the load becomes larger, the difference between
both policies diminishes. We can thus conclude that the inclusion of the βn’s
in our model is a good mechanism to avoid excessive delays due to the service
threshold, especially for small values of ρ.

Remark 3. We have considered one example for the distribution of the number
of arrivals: no arrivals occur during background state 1 and the arrivals are
generated according to a geometric distribution during the second state. We
however also have examined a large set of other examples (which we do not add
to the paper due to page limitations). For instance, we have combined 0 arrivals
in the first state (A1(z) = 1) with other commonly adopted arrival distributions:
Poisson (A2(z) = e2λ(z−1)), binomial (A2(z) = (1 − 2λ/m + 2λz/m)m) for
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Figure 3: required buffer capacity versus the load ρ for several values of the correlation
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(b) probability that the server
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Figure 4: server efficiency versus the load ρ for several values of the correlation coefficient γ;
l = 5, c = 10, Tj geometrically distributed, E [Tj ] = 3 + 0.2j, βn = n/l, 0 ≤ n ≤ l − 1

various values of m and batch Bernoulli (A2(z) = 1 − 2λ/m + 2λzm/m) for
various values of m. In addition, we have studied examples where arrivals can
occur in both states, whereby the arrival rate in one of the states is m times
larger than in the other state, for various values of m. We have considered all
possible combinations of the above mentioned arrival distributions. In all these
cases, the behaviour of the performance indices is quite similar as described in
Figs 1-7, and the same conclusions could be drawn.
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Figure 5: optimal service threshold l versus the load ρ for several values of the correlation
coefficient γ; c = 10, Tj geometrically distributed, E [Tj ] = 3 + 0.2j, βn = n/l, 0 ≤ n ≤ l − 1

Remark 4. In the examples, we have noticed that positive correlation has a
larger effect on the behaviour of the system than negative correlation. We can
explain this intuitively. Therefore, let us call state 1 the “inactive” (no arrivals)
and state 2 the “active” state. When being in the inactive state, the temporary
load (the load during several consecutive slots of the same state) becomes very
small. This effect causes a temporarily smaller system content. When being in
the active state, the temporary load becomes very large, which causes a temporar-
ily larger system content. Due to the queueing effect (i.e. the system content
increases exponentially for large load), the effect of being in active state is larger
than the effect of being in inactive state. Of course, the longer active periods
last (i.e. the larger the correlation), the more this effect plays a role.

5. Conclusions

In this paper, we have studied a discrete-time D-BMAP/Gl,c/1 queueing
model, that includes service times that are dependent on the number of served
customers and a mechanism to avoid that customers suffer excessive waiting
times due to postponing service until more customers have arrived. We have
deduced various useful performance measures related to the buffer content and
we have investigated the impact of the traffic parameters on the system per-
formance through some numerical examples. We have shown that correlation
has only a small impact on the service threshold that minimizes the mean sys-
tem content, and consequently, that the existing results of the corresponding
independent arrivals system can be applied to determine a near-optimal ser-
vice threshold policy, which is an important finding for practitioners. On the
other hand, we have demonstrated that for other purposes, such as performance
evaluation and buffer management, correlation in the arrival process cannot be
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Figure 6: relative error versus the load ρ for several values of the correlation coefficient γ;
c = 10, Tj geometrically distributed, E [Tj ] = 3 + 0.2j, βn = n/l, 0 ≤ n ≤ l − 1
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Figure 7: influence of βn to the mean customer delay; l = 5, c = 10, Tj geometrically
distributed, E [Tj ] = 3 + 0.2j

ignored, a conclusion that runs along the same lines as is found for queueing
models without batch service.
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